WO2022033234A1 - 侧入式光源、背光模组及显示装置 - Google Patents

侧入式光源、背光模组及显示装置 Download PDF

Info

Publication number
WO2022033234A1
WO2022033234A1 PCT/CN2021/104521 CN2021104521W WO2022033234A1 WO 2022033234 A1 WO2022033234 A1 WO 2022033234A1 CN 2021104521 W CN2021104521 W CN 2021104521W WO 2022033234 A1 WO2022033234 A1 WO 2022033234A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
edge
guide layer
layer
Prior art date
Application number
PCT/CN2021/104521
Other languages
English (en)
French (fr)
Inventor
梁菲
陈秀云
孙凌宇
杜景军
钟鹏
侯婷琇
赵健
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/792,445 priority Critical patent/US11709309B2/en
Publication of WO2022033234A1 publication Critical patent/WO2022033234A1/zh
Priority to US18/325,146 priority patent/US20230296826A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an edge-type light source, a backlight module and a display device.
  • LCD Liquid Crystal Display, liquid crystal display
  • PDA Personal Digital Assistant, personal digital assistant
  • flat-screen TVs and mobile phones and other displays in the device.
  • an edge-lit light source includes: a layer of light guide layer or at least two layers of light guide layers arranged in layers, the side surface of at least one layer of the light guide layer includes a light incident surface and a light exit surface, and the light guide layer includes The curved area between the light incident surface and the light exit surface; at least one light-emitting element, the light-emitting surface of each light-emitting element faces the light-incident surface of at least one layer of the light guide layer.
  • the light guide layer includes: a first light guide part and a second light guide part that are connected to each other; an end surface of the first light guide part away from the second light guide part is the light exit surface ; the second light guide part comprises at least two light guide strips, each light guide strip comprises a curved part connected with the first light guide part and an extension part connected with the curved part; each of the extended parts
  • the surface opposite to one end of the connecting curved portion is a sub-light-incident surface; the light-emitting surface of each of the light-emitting parts faces at least one of the sub-light-incident surfaces; the curved area of the light guide layer includes the light guide layer of each of the curved portions.
  • the curved portions in the light guide layer are arranged in sequence along the first direction; the extension portions in the light guide layer extend along the first direction and are arranged in layers.
  • At least one light-emitting element corresponding to the light-guiding layer is disposed on one side of the light-guiding layer in the first direction.
  • the light-emitting elements corresponding to the same light-guiding layer are located on the same side of the light-guiding layer along the first direction; the bending radius of the curved portion in the light-guiding layer is from The direction from approaching the corresponding light-emitting element to being away from the corresponding light-emitting element gradually increases.
  • the extension portion in the light guide layer is located on at least one side of the first light guide portion along the thickness direction thereof.
  • the extension portion in the light guide layer is located on the same side of the first light guide portion along its thickness direction, and the sub-light incident surface of the extension portion constitutes the light incident surface of the light guide layer.
  • the light incident surface is located on one side of two opposite sides of the first light guide portion along the first direction, and the light incident surface faces the light emitting surface of one of the light emitting elements.
  • the number of layers of the light guide layer is at least two, and the second light guide portions of the light guide layer are arranged in sequence along a second direction; the second direction and the first light guide portion The thickness directions of the two are perpendicular to each other, and the second direction is perpendicular to the interface between the first light guide portion and the second light guide portion.
  • the edge-type light source further includes: a light guide layer shaping member, the light guide layer shaping member has an opposite first main surface and a second main surface, and penetrates through the first main surface and a plurality of communication grooves on the second main surface; each of the curved parts of the light guide layer passes through a communication groove, and each of the extended parts of the light guide layer is close to the first main surface, so The first light guide portion of the light guide layer is close to the second main surface.
  • one side wall of the communication groove is arc-shaped; the curved portion passes through the communication groove and is attached to the arc-shaped side wall, so that the curved portion The degree of bending does not destroy the total reflection state of its internal light.
  • the edge-type light source further includes: a first reflective glue disposed between the first main surface and the extension portion of the light guide layer that is closest to the first main surface and/or, a second reflective glue disposed between the second main surface and the first light guide portion.
  • the light guide layer shaping member includes: a first groove and a second groove disposed on the first main surface, the second groove being located at one of the first grooves each extension part of the light guide layer is located in the first groove, and the at least one light-emitting element is located in the second groove; and/or, disposed on the second main surface
  • the third groove, part of the first light guide part is located in the third groove.
  • the edge-type light source further includes: a first cover covering the first groove and the second groove; and/or a second cover covering the on the third groove.
  • the first light guide portion includes: a first portion having the light exit surface; and a curved second portion located between the first portion and the second light guide portion ; wherein, the curved region of the light guide layer includes the second portion of the first light guide portion in the light guide layer.
  • the first light guide portion further includes a third portion located between the second portion and the second light guide portion, the third portion and the first portion being substantially parallel to each other , and the third part and the first part are located on the same side of the second part.
  • the edge-type light source further includes: a bonding glue disposed between two adjacent light guide layers; wherein the refractive index of the bonding glue is the same as the refractive index of the light guide layer Basically the same; alternatively, the bonding glue is a reflective glue.
  • the edge-type light source further comprises: a reflective coating disposed on the exposed surface of the one light guide layer or the at least two light guide layers stacked in layers.
  • the edge-type light source further comprises: a light-absorbing coating disposed on a surface of the reflective adhesive layer away from the at least one light-guiding layer.
  • a backlight module in another aspect, includes: a light guide plate; and, the side-in type light source according to any one of the above embodiments, the light-emitting surface of the side-in type light source is matched with at least part of the side surface of the light guide plate, and the side-in type light source is The light emitting surface of the light source faces at least part of the side surface of the light guide plate.
  • a display device in yet another aspect, includes: a display panel, and opposite sides of the display panel are a display side and a non-display side respectively; the backlight module according to any one of the above embodiments; wherein, the backlight module is arranged on the the non-display side of the display panel; or, the light guide plate of the backlight module is disposed on the display side of the display panel, and the edge-type light source of the backlight module extends to the non-display side of the display panel.
  • a display device in yet another aspect, includes: a display panel; and the edge-type light source according to any one of the above embodiments, wherein the light-emitting surface of the edge-type light source faces at least part of the side surface of the display panel.
  • FIG. 1A is a top plan view of a light bar and a light guide plate according to the related art after they are installed together;
  • FIG. 1B is a front structural view of a light bar and a light guide plate according to the related art after the matching installation;
  • FIG. 2A is a structural diagram of an edge-type light source according to some embodiments of the present disclosure.
  • FIG. 2B is a structural diagram of another edge-lit light source according to some embodiments of the present disclosure.
  • 3A is a structural diagram of a light guide layer according to some embodiments of the present disclosure.
  • 3B is a structural diagram of a multilayer light guide layer according to some embodiments of the present disclosure when the light guide layers are stacked;
  • 3C is an exploded structural view of a light guide layer shaping member and a first cover and a second cover according to some embodiments of the present disclosure
  • 3D is a structural diagram of a light guide layer shaping member according to some embodiments of the present disclosure.
  • Fig. 3E is a cross-sectional view of the light guide layer shaping member along A-A' in Fig. 3D;
  • 3F is a structural diagram of a light guide layer shaping member assembled with a light emitting member, a light guide layer, and a light guide plate (or a display panel) according to some embodiments of the present disclosure
  • 3G is a cross-sectional view along B-B' in FIG. 3D;
  • 3H is a structural diagram of a light guide layer shaping member assembled with a first cover plate, a second cover plate, a light-emitting element, a light guide layer, a light guide plate (or a display panel) according to some embodiments of the present disclosure;
  • Figure 3I is a cross-sectional view along C-C' in Figure 3H;
  • FIG. 4 is a structural diagram of a light guide layer in an unfolded state after a light guide plate (or a display panel) is assembled and installed according to some embodiments of the present disclosure
  • FIG. 5 is a structural diagram of a light-emitting element according to some embodiments of the present disclosure.
  • FIG. 6 is a structural diagram of a light guide layer provided with a reflective coating and a light absorbing coating according to some embodiments of the present disclosure
  • FIG. 7A is a structural diagram of a backlight module (or display device) according to some embodiments of the present disclosure.
  • FIG. 7B is a structural diagram of another backlight module according to some embodiments of the present disclosure.
  • FIG. 7C is a structural diagram of another display device according to some embodiments of the present disclosure.
  • FIG. 7D is a structural diagram of yet another display device according to some embodiments of the present disclosure.
  • FIG. 7E is a structural diagram of yet another display device according to some embodiments of the present disclosure.
  • FIG. 7F is a structural diagram of yet another display device according to some embodiments of the present disclosure.
  • FIG. 8 is a structural diagram of a display panel according to some embodiments of the present disclosure.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes of the drawings due to, for example, manufacturing techniques and/or tolerances, are contemplated.
  • example embodiments should not be construed as limited to the shapes of the regions shown herein, but to include deviations in shapes due, for example, to manufacturing. For example, an etched area shown as a rectangle will typically have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • the LCD panel itself in the display device does not emit light.
  • a backlight source needs to be provided.
  • the design forms of the backlight mainly include two types: edge-type light source and direct-type light source.
  • the direct type light source is usually arranged below the LCD panel, but since the direct type light source needs to realize light mixing through multi-layer prisms, the overall thickness of the display device is large, which makes it difficult to achieve a thin and light design of the display device.
  • the edge-type light source can be directly arranged on the side of the LCD panel, or can be arranged on the side of the light guide plate in cooperation with the light guide plate arranged below the LCD panel.
  • the edge-type light source can better solve the problem of the large thickness of the display device caused by the direct-type light source.
  • the light mixing distance of the edge-type light source is short, and the hotspot phenomenon is prone to occur. If the light mixing distance of the edge-type light source is increased, the frame of the display device will be enlarged, making it difficult to realize a narrow frame design of the display device. Therefore, the light mixing distance of the side-illuminated light source and the light incident effect are mutually restricted, which becomes the design bottleneck of the narrow frame requirement.
  • hotspot is also known as firefly spot.
  • the LED lights 01 are arranged according to a certain gap value to form a light bar, and the light bar is directly arranged on the side surface of the light guide plate 01 .
  • the LED light 01 is a point light source, the light intensity distribution is similar to a Lambertian body, that is, the light-emitting state is fan-shaped emission and has a certain light-emitting angle. Therefore, multiple LED lights will form light-emitting areas with different brightness on the light-incident side of the light guide plate.
  • the phenomenon of alternating light and dark on the incoming light side is called hotspot or firefly spot.
  • the hotspot cannot end within the blocked light incident range (ie, the non-effective light-emitting area A1 of the light guide plate 02), it will be exposed to the effective light-emitting area A2 of the light guide plate 02 (corresponding to the display area of the LCD panel), and then It causes the display screen of the LCD panel to appear bright and dark, which is called hotspot defect.
  • the light with the strongest light intensity in the center of each LED lamp (the light shown by the arrow in FIG. 1B) is difficult to be effectively utilized, and the light distributed by the Lambertian has a scattering effect inside the light guide layer. It will further aggravate the hotspot phenomenon.
  • the edge-type light source 100 includes at least one light guide layer 10 and at least one light-emitting element 20 . That is, the edge-type light source 100 may include only one light guide layer 10 , or may include multiple layers of light guide layers 10 (eg, two layers of light guide layers 10 , five layers of light guide layers 10 , or ten layers of light guide layers 10 ) arranged in layers.
  • the edge-type light source 100 may include only one light-emitting element 20, or may include multiple light-emitting elements 20 (for example, two light-emitting elements 20, five light-emitting elements 20, or ten light-emitting elements 20, etc.) ).
  • the side surface of the light guide layer 10 includes a light incident surface 11 and a light exit surface 12, and the light guide layer 10 includes a light entrance surface 11 and a light exit surface 12. Bending region N between.
  • the light-emitting surface of each light-emitting element 20 faces the light-incident surface 11 of at least one light-guiding layer 10 .
  • This design enables the light emitted by the light emitting element 20 to enter the light guide layer 10 from the light incident surface 11 of the light guide layer 10 , and then exit from the light exit surface 12 of the light guide layer 10 after passing through the curved area N of the light guide layer 10 . .
  • the light-emitting element 20 may be an LED (Light Emitting Diode, light-emitting diode) lamp.
  • the light guide layer 10 of the edge-type light source 100 has a curved area N between the light incident surface 11 and the light-emitting surface 12, when the edge-type light source 100 is applied to a display device, it is possible to reduce the impact on the display.
  • the device frame area is occupied, so that the display device can realize a narrow frame design.
  • the edge-type light source 100 since the edge-type light source 100 includes the light guide layer 10 having the curved area N, the light mixing distance of the edge-type light source 100 and the light in the light guide layer can also be increased. 10, so that the light can be fully mixed in the light guide layer 10 and then exit, which is beneficial to improve the above hotspot phenomenon.
  • the degree of curvature of the above-mentioned curved region N is configured so as not to destroy the total reflection state of its internal light rays.
  • the bending radius of the bending area N can be set to be not less than its own thickness, which can prevent the total reflection state of light in the bending area N from being broken, thereby preventing the leakage of light in the bending area N, and improving the light guide of the light guide layer 10. effectiveness.
  • the light guide layer 10 includes a first light guide portion 1 and a second light guide portion 2 .
  • the end surface of the first light guide portion 1 away from the second light guide portion 2 is the light exit surface 12 .
  • the light emitting surface 12 can be configured in various shapes, so that it can be adapted to light guide plates (or display panels) of various shapes.
  • the light emitting surface 12 when the light emitting surface 12 is curved, it can be matched and aligned with the light guide plate (or display panel) whose sides are curved, so that light can enter the light guide plate (or display panel).
  • the light emitting surface 12 is not limited to be a curved surface. That is, the light emitting surface can also be a plane, or the light emitting surface 12 can also include a flat surface and a curved surface at the same time, or the light emitting surface 12 can also be in other irregular shapes. That is, it is only necessary to ensure that the light emitting surface 12 can match and align with the side surface of the corresponding light guide plate (or display panel), which is not limited in the present disclosure.
  • the second light guide portion 2 includes at least two light guide bars 21 , and each light guide bar 21 includes a curved portion 211 connected to the first light guide portion 1 and an extension portion 212 connected to the curved portion 211 .
  • the surface of each extension portion 212 opposite to one end of the connecting curved portion 211 is the sub-light incident surface b.
  • each light-emitting element 20 faces at least one of the sub-light-incident surfaces b, that is, the light-emitting surface of one light-emitting element 20 can be set to face one sub-light-incident surface b (that is, the outgoing light of each light-emitting element 20 at this time) It can enter into a light guide bar 21 through a sub-light incident surface b), or, it is also possible to set the light-emitting surface of a light-emitting element 20 to face two or more sub-light-incident surfaces b at the same time (that is, at this time each The light emitted from the light-emitting element 20 may enter two or more light guide bars 21 simultaneously through two or more sub-light incident surfaces b).
  • each light guide layer 10 includes each curved portion 21 of the light guide layer 10 .
  • the light emitted by the light emitting element 20 enters each light guide strip 21 , the light passes through the extension portion 212 and the curved portion 211 in sequence. After that, the light is emitted to the first light guide portion 1 by the curved portion 211 of the light guide bar 21 . Therefore, in some of the above embodiments, the light mixing distance in the light guide layer 10 is increased, and by setting the curved portion 211 to connect the extension portion 212 and the first light guide portion 1, the light scattering effect can also be increased, The light is more fully mixed in the light guide layer 10, thereby improving the hotspot phenomenon.
  • the size of the light guide layer 10 along the second direction Y (as shown in FIGS. 2A and 2B ) can also be reduced, for example, the extension portion 212 originally extending along the second direction Y can be made , turned to extend along the first direction X (as shown in FIG. 2A and FIG. 2B ) perpendicular to the second direction Y, so that the length of the side-illuminated light source 100 along the second direction Y can be reduced, so that the side-illuminated light source 100 can be When the type light source is arranged in the display device, the display device can realize a narrow frame design.
  • the bending degree of each bending portion 211 is configured so as not to destroy the total reflection state of its internal light.
  • the bending radius of each curved portion 211 can be set not less than its own thickness, which can prevent the total reflection state of light in each curved portion 211 from being broken, thereby preventing light from leaking at each curved portion 211, and improving each curved portion 211. light-guiding efficiency.
  • the extension portions 212 in the light guide layer 10 are arranged in layers. This arrangement is beneficial to reduce the space range occupied by the second light guide portion 2 , so it is beneficial to realize the miniaturized design of the edge-type light source 100 , and further, the display device using the edge-type light source 100 is easy to realize the narrow frame design .
  • the curved portions 211 in the light guide layer 10 are arranged in sequence along the first direction X; the extension portions 212 extend along the first direction X.
  • the at least two light guide bars 21 of the second light guide portion 2 in each light guide layer 10 are arranged neatly, and the at least two light guide bars 21 of the second light guide portion 2 in each light guide layer 10 are arranged in order.
  • the sub-light incident surface b of the extension portion 212 is easier to align with the light emitting surface of the light emitting element 20 .
  • At least one side of the light guide layer 10 located in the first direction X is provided with a light emitting element 20 corresponding to the light guide layer 10 .
  • one side of the light guide layer 10 along the first direction X is provided with a part of the light emitting elements 20 corresponding to the light guide layer 10 , and the light guide layer 10 is arranged along the first direction X
  • Another part of the light-emitting element 20 corresponding to the light-guiding layer 10 is disposed on the other side of the light-guiding layer 10 .
  • a part of the light-emitting elements 20 may refer to one light-emitting element 20 , or may refer to two or more light-emitting elements 20 .
  • “another part of the light-emitting element 20 ” may refer to one light-emitting element 20 , or may refer to two or more light-emitting elements 20 .
  • one or more light emitting elements 20 corresponding to the light guide layer 10 are disposed on the same side of the same light guide layer 10 along the first direction X.
  • FIG. 2A and FIG. 2B show The case where one light-emitting element 20 corresponding to the light-guiding layer 10 is disposed on the same side of the light-guiding layer 10 in the same layer along the first direction X.
  • the above-mentioned first direction X and the thickness direction of the first light guide portion 1 are perpendicular to each other, and the first direction X is parallel to the gap between the first light guide portion 1 and the second light guide portion 2 .
  • Interface M is perpendicular to each other.
  • the light-emitting elements 20 corresponding to the same light-guiding layer 10 are located in the light-guiding layer 10 of the same layer.
  • the bending radius of the curved portion 211 in the light guide layer 10 gradually increases from the direction close to the corresponding light emitting element 20 to the direction away from the corresponding light emitting element 20 .
  • This arrangement makes it easy to realize the stacked arrangement along the thickness direction of the first light guide portion 1 for each extension portion 212 connected to each curved portion 211 in the light guide layer 10 .
  • the light can pass through each curved portion 211 more easily, which is beneficial to improve the light mixing effect.
  • the length of the extension portion 212 in the light guide layer 10 can also be set to gradually increase from the direction close to the first light guide portion 1 to the direction away from the first light guide portion 1 , so that each layer of the light guide layer 10
  • the sub-light incident surfaces of the middle extension portion 212 are easily connected together to form the light incident surface 11 of the light guide layer 10 as a whole.
  • the light incident surface 11 includes a flat surface and/or a curved surface.
  • the light incident surface may only include a flat surface, or only a curved surface, or both a flat surface and a curved surface. Other irregular shapes.
  • the sub-light incident surface b of each extension portion 212 may be located on either side of the first direction X. Specifically, in some examples, the sub-light incident surface b of a part of the extension part 212 in each light guide layer 10 is located on one side of the first direction X, and the sub-light incident surface b of another part of the extension part 212 in each light guide layer 10 The smooth surface b is located on the other side of the first direction X.
  • the sub-light incident surfaces b of a part of the extension parts 212 may face the light-emitting surface of the same light-emitting element 20 at the same time, and the sub-light-incident surfaces b of another part of the extension parts 212 may also face the light-emitting surface of another light-emitting element 20 at the same time.
  • a part of the sub-light incident surface b of the extension part 212 may refer to the sub-light-incident surface b of one extension part, or may refer to the sub-light-incident surface b of two or more extension parts 212.
  • the sub-light-incident surface b of another extension part 212 may refer to the sub-light-incident surface b of one extension part, or may refer to the sub-light-incident surface b of two or more extension parts 212.
  • the sub-light incident surfaces b of the extending portions 212 in each light guide layer 10 are located on the same side of the first direction X. At this time, as shown in FIGS. 2A and 2B , the sub-light incident surfaces b of the extending portions 212 in each light guide layer 10 may face the light emitting surface of the same light emitting element 20 at the same time.
  • each extension 212 in the same light guide layer 10 may be located on either side of the first light guide portion 1 of the light guide layer 10 along its thickness direction.
  • a part of the extension part 212 in the same light guide layer 10 is located on one side of the first light guide part 1 of the light guide layer 10 along the thickness direction Y, and another part of the same light guide layer 10 A part of the extension portion is located on the other side of the first light guide portion 1 of the light guide layer 10 along the thickness direction Y thereof.
  • the sub-light-incident surfaces b of a part of the extension parts 212 may face the light-emitting surface of the same light-emitting element 20 at the same time, and the sub-light-incident surfaces b of the other part of the extension parts 212 may also face the light-emitting surface of another light-emitting element 20 at the same time; or, The sub-light incident surface b of the extension part 212 may also face the light-emitting surface of the same light-emitting element 20 at the same time.
  • “a part of the extension portion 212 ” may refer to one extension portion 212 , or may refer to two or more extension portions 212 .
  • extension part 212 may refer to one extension part 212, or may refer to two or more extension parts 212.
  • the extending portions 212 in each light guide layer 10 are located on the same side of the first light guide portion 1 along the thickness direction Y thereof.
  • the sub-light incident surface b of the extension part 212 may face the light-emitting surface of one light-emitting element 20 at the same time.
  • the extension 212 is located on the same side of the first light guide portion 1 along its thickness direction Y, for example, see FIG. 2A and 2B, the sub-light incident surface b of the extension part 212 constitutes the light-incident surface 11 of the light guide layer 10 (for example, at this time, the sub-light incident surface b of the extension part 212 in each layer of the light guide layer 10 is flush or roughly arranged in a Curved surface), the light incident surface 11 is located on one of the opposite sides in the first direction X, and the light incident surface 11 faces the light emitting surface of the same light emitting element 20 .
  • the light incident surface 11 may only include a flat surface, may only include a curved surface, or may include both a flat surface and a curved surface, or the light incident surface may also be in other irregular shapes.
  • the present disclosure does not limit this, as long as the light incident surface 11 can be matched and aligned with the side surface of the light guide plate (or the display panel).
  • each light guide layer 10 includes the sub-light incident surface b in the light guide layer 10 .
  • the light emitted by each light-emitting element 20 may only be directed to one sub-light incident surface b in each light guide layer 10 , or may be directed to two or more sub-incident surfaces b in each light guide layer 10 at the same time.
  • the light surface b can also be directed to the sub-light incident surfaces in each light guide layer 10 at the same time. The present disclosure does not limit this.
  • the edge-type light source 100 includes only one light guide layer 10
  • the light-emitting surface 12 of the light-guiding layer 10 is the light-emitting surface of the edge-type light source 100
  • the edge-type light source 100 includes two
  • the light emitting surfaces 12 of the light guide layer 10 together constitute a light emitting surface of the edge-type light source 100 (for example, at this time, the light emitting surfaces 12 of the light guide layer 10 are flush or roughly aligned into a curved surface).
  • the present disclosure does not limit the shape and size of the light emitting surface, as long as the light emitting surface can be matched and aligned with the side surface of the light guide plate (or display panel), so that light can enter the light guide plate (or display panel), that is, Can.
  • the light emitting surface of the edge-type light source 100 may include only a flat surface, only a curved surface, or both a flat surface and a curved surface, or the light emitting surface may also have other irregular shapes.
  • the number of layers of the light guide layer 10 in the edge-type light source 100 may be determined by the alignment thickness. That is, when the thickness of each light guide layer 10 is constant, the number of layers of the light guide layer in the edge light source 100 can be determined according to the thickness of the light guide plate (or the display panel), so that the thicknesses of the two are consistent or It is approximately the same, so that the light can almost all enter the light guide plate (or display panel).
  • the number of the light-emitting elements 20 in the edge-type light source 100 can be determined according to the required brightness. That is, the number of the light-emitting elements 20 can also be increased with the increase of the required brightness.
  • the material of each light guide layer 10 includes a flexible material.
  • a flexible material with better light guide performance can be selected; in some examples, the material of the light guide layer 10 includes flexible materials such as PC (Polycarbonate, polycarbonate), PET (Polyethylene terephthalate, polyester resin).
  • the thickness of the light guide layer 10 may be set to be not more than 100 ⁇ m. In this way, the light guide layer 10 is easy to bend and align, and the light guide layer 10 is not easily broken during bending.
  • the second light guide portion 2 includes at least two light guide bars 21 .
  • the two light guide bars 21 can be directly cut from the layered part by a cutter. Then, each light guide strip is turned from extending along the second direction Y to extending along the first direction X, and the light guide layer 10 shown in FIG. 2A can be obtained.
  • the edge light source includes only one light guide layer 10 , the light emitting surface 12 of the first light guide portion 1 in the light guide layer 10 and the light guide plate 500 (or the display panel 400 ) side matching alignment.
  • the second light guide portion 2 of the light guide layer 10 is divided into five light guide strips 21 of equal width, and the five light guide strips 21 correspond to the same LED lamp (ie, light emitting element) after being bent in the above manner.
  • the display area AA the brightness of five points c1 to c5 are respectively extracted along the first direction X, and the brightness uniformity is greater than 95%. Therefore, it can be proved that the second light guide part 2 of the light guide layer 10 is cut after cutting. , has little effect on the brightness uniformity of the display area AA.
  • the number of divisions of the second light guide portions 2 in each light guide layer 10 may be determined by the height of the light emitting surface of the light emitting element 20 .
  • the number of divisions ie the number of light-guiding strips 21
  • the number of divisions may vary with the height of the light-emitting surface of the light-emitting element 20 . increases with the increase.
  • each light guide strip 10 is fixed, so the more the number of light guide strips 21, the thicker the overall thickness of the light guide strips 21 after stacking, and the overall thickness of the light guide strips 21 after stacking is the same as
  • the height of the light-emitting surface of the light-emitting element 20 corresponds to the height of the light-emitting surface of the light-emitting element 20 . Therefore, by properly setting the number of the light-guiding strips 21 , the overall thickness of the superposed light-guiding strips 21 can be the same or similar to the height of the light-emitting surface of the light-emitting element 20 .
  • each light guide strip 21 can be set according to the width of the light emitting surface of the light emitting element 20 (that is, the size of each light guide strip 21 along the first direction X before being turned over), so as to make the light emitting element 20
  • the light-emitting surface can be more fully attached to the sub-light-incident surface b of the light guide bar 21 in each light guide layer 10 after being turned over.
  • the thickness of the single-layer light guide layer may be 50 ⁇ m, and the material may include PC.
  • h1 shown in FIG. 3A
  • 3B shows a structure in which the multilayer light guide layers 10 are stacked.
  • the number of light-emitting elements 20 can be flexibly switched by setting the number of layers of the light guide layer.
  • the edge-type light source includes at least two light guide layers 10 arranged in layers, exemplarily, as shown in FIG. 3B , the edge-type light source further includes a The adhesive 30 is attached, and the refractive index of the adhesive 30 is substantially the same as the refractive index of the light guide layer 10 .
  • substantially the same may mean that the refractive indices of the two are equal, or that the difference between the refractive indices of the two is less than one-eighth of the refractive index of the larger one.
  • the two adjacent light guide layers 10 can be relatively fixed, which improves the connection stability and reliability between the two adjacent light guide layers 10, and the setting of the adhesive 30 is not easy to match.
  • the light between two adjacent light guide layers 10 has a great influence, and the light can still achieve total reflection in the stacked light guide layers 10 .
  • the above-mentioned adhesive 30 may not be disposed between the two adjacent light guide layers 10 . In this case, it is easier for the light to achieve total reflection in the stacked light guide layers 10 .
  • the above-mentioned bonding glue 30 is a reflective glue, and in this case, the light rays in each light guide layer 10 will not interfere with each other.
  • the above-mentioned adhesive 30 may be provided between any two adjacent extension parts 212 .
  • the bonding glue 30 located between any two adjacent extension parts 212 may be set to be substantially the same as the refractive index of the extension parts 212, or may be set to be a reflective glue.
  • the beneficial effect of disposing the adhesive 30 between the two adjacent extension parts 212 is the same as the above-mentioned beneficial effect of disposing the adhesive 30 between the two adjacent light guide layers 10 , so it is omitted here. Repeat.
  • the number of layers of the light guide layer 10 is at least two, and the second light guide portions 2 of the light guide layer 10 are sequentially arranged along the second direction Y.
  • each light guide layer 10 is easy to be installed in alignment with the corresponding light-emitting element 20 , and the entire edge-type light source 100 has a neat structure while meeting the requirement of high brightness, which is conducive to realizing miniaturization, and is further convenient to be installed in the In the display device, a narrow frame design is realized while making the display device less prone to hotspot defects.
  • the second direction Y and the thickness direction of the first light guide portion 1 are perpendicular to each other, and the second direction Y is perpendicular to the interface M between the first light guide portion 1 and the second light guide portion 2 .
  • the edge light source 100 further includes a light guide layer shaping member 101 , and the light guide layer shaping member 101 has opposite first and second main surfaces, and passes through the light guide layer.
  • each curved portion 211 of the light guide layer passes through a communication groove, so that each extension portion 212 of the light guide layer is close to the first main surface, and the first light guide portion 1 of the light guide layer is close to the second main surface.
  • the light guide layer shaping member 101 can be used to support the light guide layer to a certain extent, thereby making the overall structure of the light guide layer more stable.
  • the plurality of communication grooves 1011 are parallel to each other. Such a design is favorable for extending the extension parts 212 in the same direction.
  • FIG. 3E shows a schematic cross-sectional view of the communication groove 1011 in the direction AA' in FIG. 3D. 3E and FIG. 3F, one side wall w of the communication groove 1011 is cambered; the curved portion 211 passes through the communicating groove 1011 and is attached to the sidewall w that is cambered,
  • the bending degree of the bending portion 211 does not destroy the total reflection state of the internal light.
  • the bending radius of the curved portion 211 may not be smaller than its own thickness. In this way, the leakage of light at the curved portion 211 can be prevented, and the light guide efficiency of the light guide layer 10 can be improved.
  • the other side wall of the communication groove 1011 (ie, the side wall opposite to the side wall w of the communication groove 1011 ) can be set to any shape.
  • the other side wall may be provided as a plane as shown in FIG. 3E.
  • the end of the other side wall located at the opening of the communication groove 1011 can also be set to a curved surface, so that the extension part 212 and the curved part 211 are not easily communicated by the communication groove 1011 when passing through the communication groove 1011 .
  • the other side wall of the groove 1011 is scratched.
  • the edge light source further includes a first reflective glue 601 and/or a second reflective glue 602 .
  • the first reflective glue 601 is disposed between the first main surface of the base 101 and the extending portion 212 of the light guide layer that is closest to the first main surface. In this way, the extension portion 212 can be attached to the first main surface of the base 101 and the light can be reflected by the first reflective glue 601 . That is, by providing the first reflective glue 601 , the extension portion 212 is fixed, and the light in the extension portion 212 is not easily extracted into the base 101 .
  • the second reflective glue 602 is disposed between the second main surface of the base 101 and the first light guide portion 1 of the light guide layer. In this way, at least part of the first light guide part 1 (that is, the area of the first light guide part 1 close to the second main surface) can be attached to the second main surface of the base 101, and the second reflection can be used.
  • the glue 602 reflects light. That is, by providing the second reflective glue 602 , the at least part of the first light guide part 1 is fixed, and the light in the at least part of the first light guide part 1 is not easily extracted into the base 101 .
  • the light guide layer shaping member 101 includes: a first groove 1012 and a second groove 1013 disposed on the first main surface, the second groove The groove 1013 is located on one side of the first groove 1012 .
  • each extension 212 of the light guide layer is located in the first groove 1013
  • the at least one light-emitting element 20 is located in the second groove 1013 .
  • each extension portion 212 of the light guide layer can be accommodated by the first groove 1012
  • the at least one light-emitting element 20 can be accommodated by the second groove 1013 .
  • the light-emitting surface of each light-emitting element 20 in the second groove 1013 can be directed toward the sub-light-incident surface of the corresponding extension part 212 in the first groove 1012 .
  • the bottom wall of the first groove 1012 is stepped.
  • the extending portions 212 of each light guide layer are easily contacted with the bottom wall of the first groove 1012 after being bent.
  • the edge light source further includes a first cover 102 covering the first groove 1012 and the second groove 1013 .
  • each extension portion 212 of the light guide layer can be defined in the first groove 1012, and the at least one light-emitting element 20 can be defined in the second groove 1013 at the same time. That is, each extension portion 212 and the at least one light emitting member 20 may be defined in a region between the light guide layer shaping member 101 and the first cover body 102 .
  • the first cover 102 and the light guide layer shaping member 101 may be detachably connected or fixedly connected, which is not limited in the present disclosure, as long as the two can be relatively fixed.
  • FIG. 3H and FIG. 3I there is a gap between the first cover 102 and the second light guide portion 2 of the light guide layer.
  • This design prevents direct contact between the second light guide portion 2 and the first cover 102 (for example, it can be isolated by air), so that the light in the second light guide portion 2 is not easily extracted to the first cover in body 102.
  • the light guide layer shaping member 101 includes: a third groove 1014 disposed on the second main surface, at least part of the first light guide part 1 (that is, the first light guide part 1 ). A region of the light guide portion 1 close to the second main surface) is located in the third groove 1014 .
  • the third groove 1014 can be used to accommodate part of the first light guide portion 1 .
  • the first light guide part 1 further includes another part located outside the third groove 1014 , and the end of the first light guide part 1 of the other part (that is, the edge of the edge light source)
  • the light exit surface may be disposed opposite to the side surface of the light guide plate 500 (or the display panel 400 ), so that the light can be incident into the light guide plate 500 (or the display panel 400 ).
  • the other part of the first light guide part 1 can be set in a plane shape as shown in FIG. 3F , or can also be set in a curved shape.
  • the shape of the light guide layer can be formed.
  • 101 is located below the light guide plate 500 (or the display panel 400 ), so that the space occupied on the peripheral side of the light guide plate 500 (or the display panel 400 ) can be reduced.
  • the edge light source further includes a second cover 103 covering the third groove 1014 .
  • part of the first light guide portion 1 can be defined in the above-mentioned third groove 1014 . That is, a part of the first light guide portion 1 may be defined in a region between the light guide layer shaping member 101 and the second cover body 103 .
  • the second cover 103 and the light guide layer shaping member 101 may be detachably connected or fixedly connected, which is not limited in the present disclosure, as long as the two can be relatively fixed.
  • the above-mentioned light guide layer shaping member 101 may include a first groove 1012 , a second groove 1013 and a third groove 1014 at the same time.
  • the beneficial effects of arranging the first groove 1012 , the second groove 1013 and the third groove 1014 will not be repeated here.
  • the edge-type light source may include the above-mentioned first cover body 102 and second cover body 103 at the same time.
  • the beneficial effects of arranging the first cover body 102 and the second cover body 103 will not be repeated here.
  • the second groove 1013 for accommodating the at least one light-emitting element 20 can be set as If there is no through groove with a bottom wall, at this time, the first cover body 102 and the second cover body 103 can be used to jointly realize that the at least one light-emitting element 20 is confined in the second groove 1013 .
  • the light guide layer shaping member 101, the first cover body 102 and the second cover body 103 can all be made of opaque materials, so that the light can be better limited to the light guide layer shaping member 101 and the first cover between the body 102 and between the light guide layer shaping member 101 and the second cover body 103 to prevent light leakage.
  • the first light guide portion 1 includes a first portion 10A having a light exit surface 12 ; and a curved first portion 10A located between the first portion 10A and the second light guide portion 2 . Part II 10B.
  • the curved region N of the light guide layer 10 includes the second portion 10B of the first light guide portion 1 in the light guide layer 10 .
  • This arrangement is beneficial to increase the scattering effect of light in the light guide layer 10 , so that the light can be fully mixed in the light guide layer 10 and then exit, which is beneficial to improve the above hotspot phenomenon.
  • the degree of curvature of the second portion 10B is configured so as not to destroy the total reflection state of its internal light.
  • the bending radius of the second part 10B can be set not less than its own thickness, which can prevent the total reflection state of the light in the second part 10B from being broken, thereby preventing the leakage of light at the second part 10B, and improving the The light guide efficiency of the two parts 10B.
  • the first light guide part 1 further includes: a third part 10C located between the second part 10B and the second light guide part 2 ;
  • the three parts 10C and the first part 10A are substantially parallel to each other, and the third part 10C and the first part 10A are located on the same side of the second part 10B.
  • substantially parallel means that the third portion 10C and the first portion 10A may be parallel or may have a certain deviation, for example, there may be a difference within 10 degrees between the plane where the third portion 10C is located and the plane where the first portion 10A is located. angle.
  • each light guide layer 10 when the light emitting surface 12 of each light guide layer 10 is matched and aligned with the side surface of the light guide plate (or display panel), the second light guide portion 2 of each light guide layer can extend to the edge of the light guide plate (or display panel). In this way, the space on the periphery of the light guide plate (or the display panel) can be reduced, and the display device using the edge-type light source can realize a narrow frame design.
  • each light guide layer of the edge light source 100 may include only the first light guide portion 1, the second light guide portion 2, or the first light guide portion at the same time. 1 and the second light guide portion 2. This disclosure does not limit this.
  • the edge light source 100 further includes a reflective coating 40 disposed on the exposed surface of the at least one light guide layer 10 .
  • the reflective coating 40 can be white glue.
  • the light in the light guide layer 10 can be reflected by the reflective coating 40 , so that the light is totally reflected in the light guide layer 10 .
  • FIG. 6 only takes the edge light source 100 including one light guide layer as an example for illustration. It should be understood that in the case where the edge light source 100 includes two or more light guide layers 10 , the above-mentioned reflective coating may be provided on the exposed surface of the two or more light guide layers 10 after the overall bonding.
  • the light is easier to pass from the curved first light guide portion 1 or the second light guide portion 2.
  • the curved portion 211 in the light guide portion 2 is refracted to the outside of the light guide layer 10 (for example, when the bending radius of the first light guide portion 1 is smaller than its own thickness, the light is easily refracted from the first light guide portion 1 ). to the outside of the light guide layer 10; when the bending radius of each curved portion 211 is smaller than its own thickness, the light is easily refracted from each curved portion 211 to the outside of the light guide layer 10).
  • the reflective coating 40 by disposing the reflective coating 40 on the exposed surface of the at least one light guide layer 10, light leakage can be better prevented (for example, even when the bending radius of the first light guide portion 1 is smaller than its In the case of its own thickness, the reflective coating 40 can better prevent light from leaking from the curved first light guide portion 1 to the outside of the light guide layer 10; When the thickness is smaller than its own thickness, the reflective coating 40 can also better prevent the light from leaking from each curved portion 211 to the outside of the light guide layer 10), thereby helping to ensure that the light is emitted from the light emitting surface 12 of the light guide layer 10. amount of light.
  • the edge-type light source 100 further includes a light-absorbing coating 50 disposed on a surface of the reflective adhesive layer 40 away from the at least one light-guiding layer 10 .
  • the light absorbing coating 50 may be black glue. In this way, even if the light passes through the reflective coating 40 , it will be blocked and absorbed by the light absorbing coating 50 . Further, it is possible to prevent the light from leaking and irradiating other components in the display device, so that other components are less likely to be affected.
  • the backlight module 200 includes a light guide plate 500 and the above-mentioned edge-type light source 100.
  • the light-emitting surface of the edge-type light source 100 At least part of the side surface of the light guide plate 500 (for example, it may be part of the side surface of the light guide plate 500 , or it may be toward the entire side surface of the light guide plate 500 ).
  • the backlight module 200 includes the edge-type light source 100 described in any of the above-mentioned embodiments, the backlight module 200 has all the beneficial effects of the edge-type light source 100 as described above, which will not be repeated here.
  • the display device 300 includes a display panel 400 and the above-mentioned edge-type light source 100 , the edge-type light source 100 emits light
  • the face faces at least a part of the side surface of the display panel 400 (for example, it may be facing a part of the side surface of the display panel 400 , or it may be facing the entire side surface of the display panel 400 ).
  • the display panel 400 may be a transparent display panel.
  • the transparent display panel may include an optical waveguide layer. In this case, the side surface of the optical waveguide layer may be used to receive light emitted from the edge light source 100, and the light may be totally reflected in the optical waveguide layer.
  • the display device 300 includes the edge-type light source 100 described in any of the above-mentioned embodiments, the display device 300 has all the beneficial effects of the edge-type light source 100 as described above, which will not be repeated here.
  • the display device 300A includes a display panel 400 and the above-mentioned backlight module.
  • the opposite sides of the display panel 400 are the display side Q1 and the non-display side Q2 respectively.
  • the backlight module 200 is disposed on the non-display side of the display panel 400 .
  • the display device 300A includes the edge-type light source 100 described in any of the above embodiments, the display device 300A has all the beneficial effects of the edge-type light source 100 as described above, which will not be repeated here.
  • the display device 300B includes the display panel 400 and the above-mentioned backlight module.
  • the opposite sides of the display panel 400 are the display side Q1 and the non-display side Q2 respectively.
  • the light guide plate 500 of the backlight module 200 is disposed on the display side Q1 of the display panel 400, and the edge-type light source 100 of the backlight module 200 extends to the non-display side Q2 of the display panel 400.
  • the display panel 400 is a reflective display panel.
  • a reflective layer is provided in the area of the display panel 400 close to the non-display side Q2, so that the light incident on the display panel 400 from the light guide plate 500 can be reflected to the display panel 400.
  • the display side Q1 of the panel 400 realizes screen display.
  • the display device 300B includes the edge-type light source 100 described in any of the above embodiments, the display device 300B has all the beneficial effects of the edge-type light source 100 as described above, which will not be repeated here.
  • the edge light source 100 included in any one of the above-mentioned FIGS. 7A to 7E may be provided with the above-mentioned light guide layer shaping member 101 , the first cover plate 102 and the third cover plate 103 .
  • FIG. 7F adds a light guide layer shaping member 101 , a first cover plate 102 and a third cover plate 103 .
  • the second light guide portion of each light guide layer in the edge light source 100 can be fixed, so that the second light guide portion is not easily deformed, thereby improving the stability of light propagation in each second light guide portion. That is, the phenomenon of light leakage due to the deformation of the second light guide portion is less likely to occur.
  • the edge light source 100 of any one of the above-mentioned backlight module 200 , the display device 300 and the display device 300B may include the above-mentioned light guide.
  • Layer profile 101 , first cover plate 102 and third cover plate 103 may be included in the display device 300A. And it can achieve the same technical effect as the above-mentioned display device 300A, which will not be repeated here.
  • any one of the above-mentioned display device 300 , display device 300A and display device 300B may be any component having a display function, such as a TV, a digital camera, a mobile phone, a watch, a tablet computer, a notebook computer, and a navigator.
  • a display function such as a TV, a digital camera, a mobile phone, a watch, a tablet computer, a notebook computer, and a navigator.
  • the above-mentioned display panel 400 can be a liquid crystal display panel, for example, the liquid crystal display panel can be a TN (Twisted Nematic, twisted nematic) display panel, an IPS (In-Plane Switching, plane switching type) display panel and a VA (Vertical Alignment, vertical Alignment type) any of the display panels.
  • TN Transmission Nematic, twisted nematic
  • IPS In-Plane Switching, plane switching type
  • VA Vertical Alignment, vertical Alignment type
  • the display panel 400 includes: an array substrate 41 , a cell assembling substrate 42 , and a liquid crystal layer 43 disposed between the array substrate 41 and the cell assembling substrate 42 .
  • each sub-pixel of the array substrate 41 is provided with a thin film transistor 411 and a pixel electrode 412 on the first substrate 410 .
  • the thin film transistor 411 includes an active layer, a source electrode, a drain electrode, a gate electrode and a gate insulating layer, the source electrode and the drain electrode are respectively in contact with the active layer, and the pixel electrode 412 is electrically connected to the drain electrode of the thin film transistor 411 .
  • the array substrate 41 further includes a common electrode 413 disposed on the first substrate 410 .
  • the pixel electrode 412 and the common electrode 413 may be disposed on the same layer, in this case, the pixel electrode 412 and the common electrode 413 are both comb-teeth structures including a plurality of strip-shaped sub-electrodes.
  • the pixel electrode 412 and the common electrode 413 may also be provided in different layers.
  • a first insulating layer 414 is provided between the pixel electrode 412 and the common electrode 413 .
  • a second insulating layer 415 is further disposed between the common electrode 413 and the thin film transistor 411 .
  • the cell assembly substrate 42 includes a common electrode 413 .
  • the cell assembling substrate 42 includes a color filter layer 421 disposed on the second substrate 420.
  • the cell assembling substrate 42 may also be called CF (Color filter, color filter substrate).
  • the color filter layer 421 at least includes a red photoresist unit, a green photoresist unit, and a blue photoresist unit.
  • the red photoresist unit, the green photoresist unit, and the blue photoresist unit are respectively aligned with the sub-pixels on the array substrate 41 one by one. right.
  • the cell assembling substrate 42 further includes a black matrix pattern 422 disposed on the second substrate 420, and the black matrix pattern 422 is used to separate the red photoresist unit, the green photoresist unit and the blue photoresist unit.
  • the liquid crystal display panel 400 further includes a first polarizer 44 disposed on the side of the cell assembly substrate 42 away from the liquid crystal layer 43 and a second polarizer disposed on the side of the array substrate 41 away from the liquid crystal layer 43 .
  • Sheet 45 disposed on the side of the array substrate 41 away from the liquid crystal layer 43 .

Abstract

一种侧入式光源,包括:一层导光层或层叠设置的至少两层导光层,至少一层所述导光层的侧面包括入光面和出光面,并且所述导光层包括位于所述入光面和所述出光面之间的弯曲区域;至少一个发光件,每个发光件的发光面朝向至少一层所述导光层的入光面。

Description

侧入式光源、背光模组及显示装置
本申请要求于2020年08月13日提交的、申请号为202010811924.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种侧入式光源、背光模组及显示装置。
背景技术
LCD(Liquid Crystal Display,液晶显示)面板具有低辐射、体积小及低耗能等优点,能够被广泛地应用于笔记本电脑、PDA(Personal Digital Assistant,个人数字助理)、平面电视和移动电话等显示装置中。
发明内容
一方面,提供一种侧入式光源。所述侧入式光源包括:一层导光层或层叠设置的至少两层导光层,至少一层所述导光层的侧面包括入光面和出光面,并且所述导光层包括位于所述入光面和所述出光面之间的弯曲区域;至少一个发光件,每个发光件的发光面朝向至少一层所述导光层的入光面。
在一些实施例中,所述导光层包括:彼此相连的第一导光部分和第二导光部分;所述第一导光部分远离所述第二导光部分的端面为所述出光面;所述第二导光部分包括至少两个导光条,每个导光条包括与所述第一导光部分相连的弯曲部以及与所述弯曲部相连的延伸部;各所述延伸部的与其连接弯曲部一端相对的表面为子入光面;每个所述发光件的发光面朝向至少一个所述子入光面;所述导光层的所述弯曲区域包括所述导光层的各所述弯曲部。
在一些实施例中,所述导光层中所述弯曲部沿第一方向依次排列;所述导光层中所述延伸部沿所述第一方向延伸且层叠设置。
在一些实施例中,所述导光层位于所述第一方向的一侧设置有与该层导光层对应的至少一个所述发光件。
在一些实施例中,与同一层所述导光层对应的所述发光件位于该层导光层沿所述第一方向的同一侧;所述导光层中所述弯曲部的弯曲半径自靠近对应的所述发光件至远离对应的所述发光件的方向依次逐渐增大。
在一些实施例中,所述导光层中所述延伸部位于所述第一导光部分沿其厚度方向的至少一侧。
在一些实施例中,所述导光层中所述延伸部位于所述第一导光部分沿其 厚度方向的同一侧,所述延伸部的子入光面构成所述导光层的入光面,所述入光面位于所述第一导光部分沿所述第一方向相对两侧中的一侧,所述入光面朝向一个所述发光件的发光面。
在一些实施例中,所述导光层的层数为至少两层,所述导光层的第二导光部分沿第二方向依次排列;所述第二方向与所述第一导光部分的厚度方向彼此垂直,且所述第二方向垂直于所述第一导光部分和所述第二导光部分之间的分界面。
在一些实施例中,所述侧入式光源还包括:导光层定型件,所述导光层定型件具有相对的第一主表面和第二主表面,以及贯通于所述第一主表面和所述第二主表面的多个连通槽;所述导光层的各所述弯曲部穿过一个连通槽,所述导光层的各所述延伸部靠近所述第一主表面,所述导光层的第一导光部分靠近所述第二主表面。
在一些实施例中,所述连通槽的一个侧壁呈弧面状;所述弯曲部穿过所述连通槽且贴附在呈弧面状的所述侧壁上,以使所述弯曲部的弯曲程度不破坏其内部光线的全反射状态。
在一些实施例中,所述侧入式光源还包括:第一反射胶,设置于所述第一主表面与所述导光层中距离所述第一主表面最近的所述延伸部之间;和/或,第二反射胶,设置于所述第二主表面与所述第一导光部分之间。
在一些实施例中,所述导光层定型件包括:设置于所述第一主表面上的第一凹槽和第二凹槽,所述第二凹槽位于所述第一凹槽的一侧;所述导光层的各所述延伸部位于所述第一凹槽内,所述至少一个发光件位于所述第二凹槽内;和/或,设置于所述第二主表面上的第三凹槽,部分所述第一导光部分位于所述第三凹槽内。
在一些实施例中,所述侧入式光源还包括:第一盖体,覆盖于所述第一凹槽和所述第二凹槽上;和/或,第二盖体,覆盖于所述第三凹槽上。
在一些实施例中,所述第一盖体与所述导光层的第二导光部分之间具有间隙;和/或,所述第二盖体与所述导光层的第一导光部分之间具有间隙。
在一些实施例中,所述第一导光部分包括:具有所述出光面的第一部分;和,位于所述第一部分与所述第二导光部分之间、且呈弯曲状的第二部分;其中,所述导光层的弯曲区域包括所述导光层中第一导光部分的第二部分。
在一些实施例中,所述第一导光部分还包括:位于所述第二部分与所述第二导光部分之间的第三部分,所述第三部分与所述第一部分彼此大致平行,且所述第三部分和所述第一部分位于所述第二部分的同一侧。
在一些实施例中,所述侧入式光源还包括:设置于相邻两层导光层之间的贴合胶;其中,所述贴合胶的折射率与所述导光层的折射率基本相同;或者,所述贴合胶为反射性胶。
在一些实施例中,所述侧入式光源还包括:设置于所述一层导光层或层叠设置的至少两层导光层的裸露表面的反射涂层。
在一些实施例中,所述侧入式光源还包括:设置于所述反射胶层远离所述至少一层导光层一侧表面的吸光涂层。
另一方面,提供一种背光模组。所述包括:导光板;和,如上述任一项实施例所述的侧入式光源,所述侧入式光源的出光面与所述导光板的至少部分侧面相匹配,且所述侧入式光源的出光面朝向所述导光板的至少部分侧面。
再一方面,提供一种显示装置。所述显示装置包括:显示面板,所述显示面板的相对两侧分别为显示侧和非显示侧;如上述任一项实施例所述的背光模组;其中,所述背光模组设置于所述显示面板的非显示侧;或者,所述背光模组的导光板设置于所述显示面板的显示侧,所述背光模组的侧入式光源延伸至所述显示面板的非显示侧。
又一方面,提供一种显示装置。所述显示装置包括:显示面板;如上述任一项实施例所述的侧入式光源,所述侧入式光源的出光面朝向所述显示面板的至少部分侧面。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1A为根据相关技术的灯条与导光板配合安装后的俯视结构图;
图1B为根据相关技术的灯条与导光板配合安装后的主视结构图;
图2A为根据本公开一些实施例的一种侧入式光源的结构图;
图2B为根据本公开一些实施例的另一种侧入式光源的结构图;
图3A为根据本公开一些实施例的一种导光层的结构图;
图3B为根据本公开一些实施例的一种多层导光层层叠设置时的结构图;
图3C为根据本公开一些实施例的一种导光层定型件和第一盖体、第 二盖体的分解结构图;
图3D为根据本公开一些实施例的一种导光层定型件的结构图;
图3E为图3D中导光层定型件沿A-A′处的截面图;
图3F为根据本公开一些实施例的一种导光层定型件与发光件、导光层、导光板(或显示面板)组装后的结构图;
图3G为图3D中沿B-B′处的截面图;
图3H为根据本公开一些实施例的一种导光层定型件与第一盖板、第二盖板、发光件、导光层、导光板(或显示面板)组装后的结构图;
图3I为图3H中沿C-C′处的截面图;
图4为根据本公开一些实施例的一种导光层在展开状态下与导光板(或显示面板)配合安装后的结构图;
图5为根据本公开一些实施例的一种发光件的结构图;
图6为根据本公开一些实施例的一种设置有反射涂层和吸光涂层的导光层的结构图;
图7A为根据本公开一些实施例的一种背光模组(或显示装置)的结构图;
图7B为根据本公开一些实施例的另一种背光模组的结构图;
图7C为根据本公开一些实施例的另一种显示装置的结构图;
图7D为根据本公开一些实施例的再一种显示装置的结构图;
图7E为根据本公开一些实施例的又一种显示装置的结构图;
图7F为根据本公开一些实施例的又一种显示装置的结构图;
图8为根据本公开一些实施例的一种显示面板的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)” 或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”、“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
显示装置中的LCD面板自身并不发光,为了清楚地看到LCD面板显示的内容,需要设置背光源。背光源的设计形态主要有侧入式光源和直下式光源两种。其中,直下式光源通常设置于LCD面板的下方,但由于直下式光源需要通过多层棱镜实现混光,使得显示装置的整体厚度较大,进而使得显示装置难以实现轻薄化设计。而侧入式光源可以直接设 置在LCD面板的侧面,也可以与设置于LCD面板下方的导光板配合,设置在该导光板的侧面。因此,侧入式光源可以较好的解决由直下式光源造成的显示装置厚度较大的问题。但是,侧入式光源的混光距离较短,容易出现hotspot现象。如果增大侧入式光源的混光距离,则会导致显示装置的边框增大,使得显示装置难以实现窄边框设计。因此,侧入式光源的混光距离与入光效果相互制约,成为了窄边框需求的设计瓶颈。
其中,hotspot又称为萤火虫光斑。示例性的,参见图1A和图1B,LED灯01按照一定的间隙值排布形成灯条,灯条直接设置在导光板01的侧面。由于LED灯01为点光源,光强分布近似朗伯体,也即发光状态为扇状发射,具有一定的出光角度,因此,多个LED灯会在导光板入光侧形成亮度不同的发光区域,这种入光侧明暗交替现象叫做hotspot或者萤火虫光斑。如果hotspot不能在被遮挡的入光形程内(即导光板02的非有效出光区A1)结束,就会外露至导光板02的有效出光区A2(与LCD面板的显示区相对应),进而导致LCD面板的显示画面出现明暗相间现象,这种画面缺陷叫做hotspot不良。而且,在光线进入导光板02后,各LED灯中心光强最强的光线(如图1B中箭头所示的光线)难以被有效利用,且朗伯体分布的光线在导光层内部散射效果差,因此还会进一步加重hotspot现象。
基于此,本公开一些实施例提供一种侧入式光源100。如图2A和图2B所示,该侧入式光源100包括至少一层导光层10和至少一个发光件20。也即,该侧入式光源100可以仅包括一层导光层10,也可以包括层叠设置的多层导光层10(例如两层导光层10、五层导光层10或十层导光层10等);同时,该侧入式光源100可以仅包括一个发光件20,也可以包括多个发光件20(例如两个发光件20、五个发光件20或十个发光件20等)。
对于至少一层导光层10而言,如图2A所示,该导光层10的侧面包括入光面11和出光面12,并且该导光层10包括位于入光面11和出光面12之间的弯曲区域N。与此同时,每个发光件20的发光面朝向至少一层导光层10的入光面11。这样设计,使得发光件20发出的光线可以从导光层10的入光面11进入导光层10内,并在经过导光层10的弯曲区域N后由导光层10的出光面12射出。
其中,发光件20可以为LED(Light Emitting Diode,发光二极管)灯。
通过设置侧入式光源100的导光层10中具有位于入光面11和出光面12之间的弯曲区域N,使得该侧入式光源100在应用于显示装置中时,可以减小对显示装置边框区域的占用,从而使显示装置可以实现窄边框设计。而且 在显示装置实现窄边框设计的同时,由于该侧入式光源100包括具有弯曲区域N的导光层10,因此还能够增大该侧入式光源100的混光距离以及光线在导光层10内的散射效果,从而使得光线可以在导光层10内充分混匀后出射,有利于改善上述hotspot现象。
在一些示例中,上述弯曲区域N的弯曲程度配置为不破坏其内部光线的全反射状态。例如,可以设置弯曲区域N的弯曲半径不小于其自身的厚度,这样可以防止弯曲区域N内光线的全反射状态被打破,从而可以防止弯曲区域N处泄露光线,改善导光层10的导光效率。
上述弯曲区域N的设置方式有多种。下面参照一些实施例对弯曲区域N的设置方式进行描述。
在一些实施例中,如图2A所示,导光层10包括第一导光部分1和第二导光部分2。
第一导光部分1的远离第二导光部分2的端面为出光面12。
需要说明的是,该出光面12可以被配置为各种形状,从而可以适配于各种形状的导光板(或显示面板)。例如在该出光面12为曲面时,可以与侧面为曲面的导光板(或显示面板)匹配对位,以使光线进入到该导光板(或显示面板)中。此外,可以理解的是,该出光面12不局限于为曲面。也即,该出光面还可以为平面,或者该出光面12还可以同时包括平面和曲面,或者该出光面12还可以呈其它不规则形状。也即,此处只需要保证该出光面12能够与相应的导光板(或显示面板)的侧面匹配对位即可,本公开并不对此进行限制。
继续参见图2A,第二导光部分2包括至少两个导光条21,每个导光条21包括与第一导光部分1相连的弯曲部211以及与弯曲部211相连的延伸部212。各延伸部212的与其连接弯曲部211一端相对的表面为子入光面b。每个发光件20的发光面朝向至少一个所述子入光面b,也即,可以设置一个发光件20的发光面朝向一个子入光面b(即此时每个发光件20的出射光线可以通过一个子入光面b进入到一个导光条21中),或者,也可以设置一个发光件20的发光面同时朝向两个或两个以上的子入光面b(即此时每个发光件20的出射光线可以通过两个或两个以上的子入光面b同时进入到两个或两个以上的导光条21中)。
其中,每个导光层10的弯曲区域N包括该导光层10的各弯曲部21。在发光件20发出的光线进入到各导光条21期间,光线依次经过延伸部212和弯曲部211。之后,光线由导光条21的弯曲部211射向第一导光部分1。因 此,在上述一些实施例中,增大了光线在导光层10中的混光距离,而且通过设置弯曲部211连接延伸部212与第一导光部分1,还可以增大光线散射效果,使得光线在导光层10中更充分的混匀,进而改善了hotspot现象。此外,通过设置弯曲部211,还可以减小导光层10沿第二方向Y(如图2A和图2B所示)的尺寸,例如,可以使原本沿该第二方向Y延伸的延伸部212,翻转至沿与该第二方向Y垂直的第一方向X(如图2A和图2B所示)延伸,从而可以减小该侧入式光源100沿第二方向Y的长度,使得该侧入式光源设置在显示装置中时,能够使显示装置实现窄边框设计。
示例性的,各弯曲部211的弯曲程度配置为不破坏其内部光线的全反射状态。例如,可以设置各弯曲部211的弯曲半径不小于其自身的厚度,这样可以防止各弯曲部211内光线的全反射状态被打破,从而可以防止各弯曲部211处泄露光线,改善各弯曲部211的导光效率。
在一些实施例中,如图3A所示,导光层10中延伸部212(本实施例中沿第一导光部分1的厚度方向Z)层叠设置。这样设置,有利于减小第二导光部分2占用的空间范围,因此有利于实现该侧入式光源100的小型化设计,进而使得采用该侧入式光源100的显示装置易于实现窄边框设计。
在一些实施例中,如图2A和图2B所示,导光层10中弯曲部211沿第一方向X依次排列;延伸部212沿所述第一方向X延伸。这样设计,使得各导光层10中第二导光部分2的至少两个导光条21排列整齐,并且使得各导光层10中第二导光部分2的至少两个导光条21的延伸部212的子入光面b更容易与发光件20的发光面进行对位。
示例性的,参见图2A和图2B,所述导光层10位于第一方向X的至少一侧设置有与该层导光层10对应的发光件20。具体而言,在一些示例中,所述导光层10沿第一方向X的一侧设置有与该层导光层10对应的一部分发光件20,所述导光层10沿第一方向X的另一侧设置有与该层导光层10对应的另一部分发光件20。其中,“一部分发光件20”可以是指一个发光件20,也可以是指两个或两个以上的发光件20。同样的,“另一部分发光件20”可以是指一个发光件20,也可以是指两个或两个以上的发光件20。而在另一些示例中,同一层导光层10沿第一方向X的同一侧设置有与该层导光层10对应的一个或多个发光件20,例如,图2A和图2B示出了同一层导光层10沿第一方向X的同一侧设置有与该层导光层10对应的一个发光件20的情况。
示例性的,参见图2A,上述第一方向X与第一导光部分1的厚度方向彼此垂直,且该第一方向X平行于第一导光部分1和第二导光部分2之间的分 界面M。
继续参见图2A和图2B,在与同一层导光层10对应的发光件20(此处发光件20的数量可以是一个,也可以是两个或两个以上)位于该层导光层10沿第一方向X的同一侧的情况下,示例性的,该导光层10中弯曲部211的弯曲半径自靠近对应的发光件20至远离对应的发光件20的方向依次逐渐增大。这样设置,使得导光层10中与各个弯曲部211连接的各个延伸部212易于实现沿第一导光部分1的厚度方向层叠设置,换言之,这样设计,在导光条21的延伸部212层叠设置时,光线更容易通过各个弯曲部211,从而有利于提高混光效果。
在此基础上,还可以设置该导光层10中延伸部212的长度自靠近第一导光部分1至远离第一导光部分1的方向依次逐渐增大,这样使得每层导光层10中延伸部212的子入光面易于连接在一起,以整体构成该导光层10的入光面11。示例性的,该入光面11包括平面和/或曲面,例如,该入光面可以仅包括平面,也可以仅包括曲面,还可以同时包括平面和曲面,或者,该入光面还可以呈其它不规则形状。
示例性的,各延伸部212的子入光面b可以位于所述第一方向X的任一侧。具体而言,在一些示例中,各导光层10中一部分延伸部212的子入光面b位于所述第一方向X的一侧,各导光层10中另一部分延伸部212的子入光面b位于所述第一方向X的另一侧。此时,一部分延伸部212的子入光面b可以同时朝向同一个发光件20的发光面,另一部分延伸部212的子入光面b也可以同时朝向另一个发光件20的发光面。其中,“一部分延伸部212的子入光面b”可以是指一个延伸部的子入光面b,也可以是指两个或两个以上的延伸部212的子入光面b。同样的,“另一部分延伸部212的子入光面b”可以是指一个延伸部的子入光面b,也可以是指两个或两个以上的延伸部212的子入光面b。在另一些示例中,参见图2A和图2B,各导光层10中延伸部212的子入光面b位于所述第一方向X的同一侧。此时,如图2A和图2B所示,各导光层10中延伸部212的子入光面b可以同时朝向同一个发光件20的发光面。
在一些实施例中,参见图3A和图3B,同一层导光层10中第一导光部分1沿其厚度方向Y的至少一侧设置有延伸部212。也即同一层导光层10中各延伸部212可以位于该导光层10的第一导光部分1沿其厚度方向的任一侧。具体而言,在一些示例中,同一层导光层10中一部分延伸部212位于该导光层10的第一导光部分1沿其厚度方向Y的一侧,同一层导光层10中另一部 分延伸部位于该导光层10的第一导光部分1沿其厚度方向Y的另一侧。此时,一部分延伸部212的子入光面b可以同时朝向同一个发光件20的发光面,另一部分延伸部212的子入光面也可以同时朝向另一个发光件20的发光面;或者,延伸部212的子入光面b也可以同时朝向同一个发光件20的发光面。其中,“一部分延伸部212”可以是指一个延伸部212,也可以是指两个或两个以上的延伸部212。同样的,“另一部分延伸部212”可以是指一个延伸部212,也可以是指两个或两个以上的延伸部212。在另一些示例中,参见图3A和图3B,各导光层10中延伸部212位于第一导光部分1沿其厚度方向Y的同一侧。此时,延伸部212的子入光面b可以同时朝向一个发光件20的发光面。
继续参见图2A和图2B,以及图3A和图3B,在各导光层10中延伸部212位于第一导光部分1沿其厚度方向Y的同一侧的情况下,示例性的,参见图2A和图2B,延伸部212的子入光面b构成导光层10的入光面11(例如,此时每层导光层10中延伸部212的子入光面平齐或者大致排列成曲面),该入光面11位于第一方向X相对两侧中的一侧,并且该入光面11朝向同一个发光件20的发光面。此处,该入光面11可以仅包括平面,也可以仅包括曲面,还可以同时包括平面和曲面,或者,该入光面还可以呈其它不规则形状。本公开对此不进行限制,只要该入光面11能够与导光板(或显示面板)的侧面匹配对位即可。
需要说明的是,上述各导光层10的入光面包括该导光层10中的子入光面b。每个发光件20可以发出的光线可以仅射向每层导光层10中的一个子入光面b,也可以同时射向每层导光层10中的两个或两个以上的子入光面b,或者,还可以同时射向每层导光层10中的子入光面。本公开对此不进行限制。此外,在该侧入式光源100仅包括一层导光层10时,该层导光层10的出光面12为该侧入式光源100的出光表面;而在该侧入式光源100包括两层或两层以上的导光层10时,导光层10的出光面12共同构成该侧入式光源100的一个出光表面(例如,此时导光层10的出光面12平齐或者大致排列成曲面)。可以理解,本公开不对该出光表面的形状大小进行限定,只需满足该出光表面可以与导光板(或显示面板)的侧面匹配对位,使光线能够进入到该导光板(或显示面板)即可。例如,该侧入式光源100的出光表面可以仅包括平面,也可以仅包括曲面,还可以同时包括平面和曲面,或者,该出光表面还可以呈其它不规则形状。
该侧入式光源100中导光层10的层数可以由对位厚度决定。也即,在各导光层10的厚度一定的情况下,可以根据导光板(或显示面板)的厚度,来 决定侧入式光源100中导光层的层数,以使两者厚度一致或近似一致,从而使得光线能够几乎全部进入到导光板(或显示面板)中。
该侧入式光源100中发光件20的个数可以根据所需要提供的亮度决定。也即,该发光件20的个数也可以随所需要提供的亮度的增加而增加。
示例性的,各层导光层10的材料包括柔性材料。例如可以选用导光性能较好的柔性材料;在一些示例中,该导光层10的材料包括PC(Polycarbonate,聚碳酸酯)、PET(Polyethylene terephthalate,涤纶树脂)等柔性材料。此外,该导光层10的厚度可以设置为不超过100μm。这样设计,使得该导光层10易于弯折、对位,并且使得该导光层10在弯折时不容易断裂。
对于各导光层10而言,参见图4,第二导光部分2包括至少两个导光条21。这两个导光条21可以由层状部分通过刀具直接切割而成。随后,将各导光条由沿第二方向Y延伸翻转至沿第一方向X延伸,即可得到图2A示出的导光层10。
值得指出的是,参见图4,假设该侧入式光源仅包括一层导光层10,该导光层10中第一导光部分1的出光面12与导光板500(或显示面板400)的侧面匹配对位。且该导光层10的第二导光部分2等宽度分为五个导光条21,五个导光条21以上述方式弯折后对应同一LED灯(即发光件)。此时,在显示区AA内沿第一方向X分别提取c1~c5五点亮度,其亮度均一性大于95%,因此,可以证明,该导光层10的第二导光部分2分切后,对于显示区AA的亮度均一性几乎无影响。
其中,各导光层10中第二导光部分2的分切数(即导光条21的个数)可以由发光件20的发光面高度决定。例如,在每个发光件20的发光面朝向一层导光层10中的子入光面的情况下,该分切数(即导光条21的个数)可以随发光件20发光面高度的增加而增加。可以理解,各导光条10的层厚是一定的,因此导光条21的个数越多,导光条21叠加后的整体厚度越厚,而该导光条21叠加后的整体厚度与发光件20发光面的高度对应,因此通过合理设置导光条21的个数,即可使该导光条21叠加后的整体厚度与发光件20发光面的高度相同或相近。在此基础上,还可以根据发光件20发光面的宽度,设置各导光条21的宽度(即翻转前的各导光条21沿第一方向X的尺寸),进而能够使发光件20的发光面能够与各导光层10中翻转后的导光条21的子入光面b更充分地贴合。
例如,参见图5,以高度h2为0.6mm、宽度d2为3.8mm的发光件20的为例,单层导光层厚度可以选用50μm,材料可以包括PC。此时,将该导光 层10的第二导光部分2等分为十份,每份宽度d1(例如图2B、图3A和图4中示出的d1)为3.8mm,也即使d1=d2,这样导光条21弯曲并与发光件20配合后,可确保发光件20的宽度方向不漏光。同时,将十个导光条21分别弯折后层叠设置,其总厚度h1(例如图3A中示出的h1)等于50μm×10=500μm,也即0.5mm,而0.5mm小于0.6mm(即h1小于h2),因此该导光层10与发光件20对位(例如通过机械结构实现对位安装)后,能够确保光线由发光件20全部进入导光层10的内部。
此外,对于高亮度显示需求,单层导光层10匹配一个发光件20无法满足时,可以增加单层导光层10匹配的发光件20的个数;或者,还可以可选用图2B和图3B示出的多层导光层10层叠的结构。
在多层导光层10层叠的结构中,参见图2B和图3B,通过设置各导光层10长度不同,可以分别实现与发光件20进行对位。并且可以通过设置导光层的层数,灵活切换发光件20的数量。
在侧入式光源包括层叠设置的至少两层导光层10的情况下,示例性的,如图3B所示,该侧入式光源还包括设置于相邻两层导光层10之间的贴合胶30,该贴合胶30的折射率与导光层10的折射率基本相同。此处“基本相同”可以是指两者的折射率相等,也可以是指这两者的折射率之差小于其中较大一者的折射率的八分之一。在该示例中,可以使相邻两层导光层10之间相对固定,提高了相邻两层导光层10之间的连接稳定性和可靠性,并且贴合胶30的设置不容易对相邻两层导光层10之间的光线产生较大的影响,光线仍能够在层叠设置的导光层10内实现全反射。此外,在另一些示例中,该相邻两层导光层10之间也可以不设置上述贴合胶30,此时,光线更容易在层叠设置的导光层10内实现全反射。
在一些实施例中,上述贴合胶30为反射性胶,此时,各个导光层10内的光线之间不会相互干扰。
此外,在导光层10中的多个延伸部212层叠设置的情况下,可以在任意相邻两个延伸部212之间设置上述贴合胶30。并且,位于该任意相邻两个延伸部212之间的贴合胶30,可以设置为与延伸部212的折射率基本相同,也可以设置为反射性胶。而对于在相邻两个延伸部212之间设置贴合胶30的有益效果,则与上述在相邻两层导光层10之间设置贴合胶30的有益效果相同,所以此处不再进行赘述。
在一些实施例中,参见图2B和图3B,导光层10的层数为至少两层,导光层10的第二导光部分2沿第二方向Y依次排列。这样设置,使得各层导光 层10便于与对应的发光件20对位安装,在满足高亮度需求的同时,使得整个侧入式光源100结构整齐,利于实现小型化,进而便于将其安装在显示装置中,使显示装置不易出现hotspot不良的同时,实现窄边框设计。
示例性的,上述第二方向Y与第一导光部分1的厚度方向彼此垂直,且该第二方向Y垂直于第一导光部分1和第二导光部分2之间的分界面M。
在一些实施例中,如图3C~3E所示,侧入式光源100还包括导光层定型件101,导光层定型件101具有相对的第一主表面和第二主表面,以及贯通于第一主表面和第二主表面的多个连通槽1011。如图3F所示,导光层的各弯曲部211穿过一个连通槽,使导光层的各延伸部212靠近第一主表面,并使导光层的第一导光部分1靠近第二主表面。这样设置,可以利用导光层定型件101对导光层起到一定的支撑作用,从而使得导光层的整体结构更加稳定。
其中,示例性的,参见图3C和图3D,多个连通槽1011之间相互平行。这样设计,有利于使延伸部212沿同一方向延伸。
图3E示出了图3D中连通槽1011沿A-A'向的一种截面示意图。示例性的,参见图3E和图3F,该连通槽1011的一个侧壁w呈弧面状;弯曲部211穿过该连通槽1011且贴附在呈弧面状的所述侧壁w上,以使弯曲部211的弯曲程度不破坏其内部光线的全反射状态。例如,可以设置弯曲部211贴附在侧壁w时,弯曲部211的弯曲半径不小于其自身的厚度。这样设置,可以防止弯曲部211处泄露光线,改善了导光层10的导光效率。
继续参见图3E,该连通槽1011的另一个侧壁(即,与连通槽1011的与侧壁w相对的侧壁)可以设置为任意形状。例如,该另一个侧壁可以设置为图3E示出的平面。在此基础上,还可以将该另一个侧壁位于连通槽1011开口处的端部设置为曲面状,这样使得延伸部212和弯曲部211在穿过该连通槽1011时,不容易被该连通槽1011的另一个侧壁划伤。
在一些实施例中,参见图3G,所述侧入式光源还包括第一反射胶601和/或第二反射胶602。
第一反射胶601设置于底座101的第一主表面与所述导光层中距离所述第一主表面最近的所述延伸部212之间。这样设置,既可以使延伸部212贴附在底座101的第一主表面上,又可以利用第一反射胶601对光线进行反射。也即,通过设置第一反射胶601,既实现对延伸部212的固定,又使得延伸部212中的光线不容易被萃取到底座101中。
第二反射胶602设置于底座101的第二主表面与所述导光层的第一导光部分1之间。这样设置,既可以至少部分第一导光部分1(也即该第一导光部 分1中靠近第二主表面的区域)贴附在底座101的第二主表面上,又可以利用第二反射胶602对光线进行反射。也即,通过设置第二反射胶602,即实现对该至少部分第一导光部分1的固定,又使得该至少部分第一导光部分1内的光线不容易被萃取到底座101中。
在一些实施例中,如图3C和图3D所示,所述导光层定型件101包括:设置于所述第一主表面上的第一凹槽1012和第二凹槽1013,第二凹槽1013位于第一凹槽1012的一侧。结合图3F,导光层的各延伸部212位于第一凹槽1013内,所述至少一个发光件20位于第二凹槽1013内。这样设计,可以利用第一凹槽1012容纳导光层的各延伸部212,同时可以利用第二凹槽1013容纳所述至少一个发光件20。同时,可以使第二凹槽1013内的各个发光件20的发光面朝向第一凹槽1012内对应的延伸部212的子入光面。
在此基础上,示例性的,参见图3C,第一凹槽1012的底壁呈阶梯状。这样设计,使得各层导光层的延伸部212在弯折后均容易与第一凹槽1012的底壁相接触。
示例性的,参见图3C,该侧入式光源还包括覆盖于第一凹槽1012和第二凹槽1013上的第一盖体102。这样设置,可以将导光层的各延伸部212限定在上述第一凹槽1012内,同时将所述至少一个发光件20限定在上述第二凹槽1013内。也即,可以将各延伸部212和所述至少一个发光件20限定在导光层定型件101和第一盖体102之间的区域。
其中,第一盖体102与导光层定型件101之间可以是可拆卸连接,也可以是固定连接,本公开对此不做限定,只要这两者可以实现相对固定即可。
示例性的,参见图3H和图3I,所述第一盖体102与所述导光层的第二导光部分2之间具有间隙。这样设计,使得第二导光部分2与第一盖体102之间不直接接触(例如可以被空气所隔绝),进而使得该第二导光部分2内的光线不容易被萃取到第一盖体102中。
在一些实施例中,参见图3C和图3F,所述导光层定型件101包括:设置于第二主表面上的第三凹槽1014,至少部分第一导光部分1(也即该第一导光部分1中靠近第二主表面的区域)位于第三凹槽1014内。这样设计,可以利用第三凹槽1014容纳部分第一导光部分1。
继续参见图3F,在另一些实施例中,第一导光部分1还包括位于第三凹槽1014外的另一部分,该另一部分第一导光部分1的端部(即侧入式光源的出光面)可以与导光板500(或显示面板400)的侧面相对设置,从而使光线可以入射至导光板500(或显示面板400)中。
其中,该另一部分第一导光部分1可以设置为图3F示出的平面状,或者也可以设置为弯曲状,例如,通过弯曲该另一部分第一导光部分1可以使导光层定型件101位于导光板500(或显示面板400)的下方,从而可以减小对导光板500(或显示面板400)周侧空间的占用。
在此基础上,示例性的,参见图3C,该侧入式光源还包括覆盖于第三凹槽1014上的第二盖体103。这样设置,可以将部分第一导光部分1限定在上述第三凹槽1014内。也即,可以将部分第一导光部分1限定在导光层定型件101和第二盖体103之间的区域。
其中,第二盖体103与导光层定型件101之间可以是可拆卸连接,也可以是固定连接,本公开对此不做限定,只要这两者可以实现相对固定即可。
示例性的,参见图3H和图3I,所述第二盖体103与所述导光层的第一导光部分1之间具有间隙。这样设计,使得第一导光部分1与第二盖体103之间不直接接触(例如可以被空气所隔绝),进而使得该第一导光部分1内的光线不容易被萃取到第二盖体103中。
需要说明的是,在另一些实施例中,上述导光层定型件101可以同时包括第一凹槽1012、第二凹槽1013和第三凹槽1014。对于设置该第一凹槽1012、第二凹槽1013和第三凹槽1014的有益效果,此处不再赘述。
在此基础上,示例性的,侧入式光源可以同时包括上述第一盖体102和第二盖体103。而对于设置上述第一盖体102和第二盖体103的有益效果,此处也不再赘述。此处,值得指出的是,在该侧入式光源同时包括第一盖体102和第二盖体103的情况下,用于容纳所述至少一个发光件20的第二凹槽1013可以设置为不具有底壁的通槽,此时,可以利用第一盖体102和第二盖体103共同实现将所述至少一个发光件20限定在第二凹槽1013内。
其中,上述导光层定型件101、第一盖体102和第二盖体103均可以由不透光材料制成,这样可以较好的将光线限制在导光层定型件101与第一盖体102之间,以及导光层定型件101和第二盖体103之间,防止出现漏光现象。
在一些实施例中,如图3A所示,第一导光部分1包括具有出光面12的第一部分10A;和,位于第一部分10A与第二导光部分2之间、且呈弯曲状的第二部分10B。
其中,所述导光层10的弯曲区域N包括所述导光层10中第一导光部分1的第二部分10B。
这样设置,有利于增大光线在在导光层10内的散射效果,使得光线可以在导光层10内充分混匀后出射,有利于改善上述hotspot现象。
示例性的,第二部分10B的弯曲程度配置为不破坏其内部光线的全反射状态。例如,可以设置第二部分10B的弯曲半径不小于其自身的厚度,这样可以防止该第二部分10B内光线的全反射状态被打破,从而可以防止该第二部分10B处泄露光线,改善该第二部分10B的导光效率。
在上述一些实施例的基础上,示例性的,如图3A所示,该第一导光部分1还包括:位于第二部分10B与第二导光部分2之间的第三部分10C,第三部分10C与第一部分10A彼此大致平行,且该第三部分10C和第一部分10A位于第二部分10B的同一侧。其中,“大致平行”是指第三部分10C与第一部分10A之间可以平行或者也可以存在一定的偏差,例如该第三部分10C所在平面与第一部分10A所在平面之间可能具有10度以内的夹角。
这样设计,使得各导光层10的出光面12与导光板(或显示面板)的侧面匹配对位时,各导光层的第二导光部分2可以延伸至导光板(或显示面板)的下方,这样有利于减小对导光板(或显示面板)周侧空间的占用,进而有利于使采用该侧入式光源的显示装置实现窄边框设计。
需要说明的是,侧入式光源100的各导光层中可以仅包括上述第一导光部分1,也可以仅包括上述第二导光部分2,或者还可以同时包括上述第一导光部分1和第二导光部分2。本公开不对此进行限制。
在一些实施例中,参见图6,该侧入式光源100还包括设置于所述至少一层导光层10的裸露表面的反射涂层40。例如该反射涂层40可以为白胶。这样设计,可以利用反射涂层40对导光层10中的光线进行反射,从而使光线在导光层10中发生全反射。需要说明的是,图6仅以侧入式光源100包括一层导光层为例进行示意,应当理解,在该侧入式光源100包括两层或两层以上的导光层10的情况下,该两层或两层以上的导光层10整体贴合后的裸露表面上,均可以设置有上述反射涂层。
此外,值得指出的是,对于上述弯曲状的第一导光部分1,以及第二导光部分2中的弯曲部211而言,光线较容易从弯曲状的第一导光部分1或者第二导光部分2中的弯曲部211处折射至导光层10外(例如,在第一导光部分1的弯曲半径小于其自身的厚度的情况下,光线容易从第一导光部分1处折射至导光层10外;在各弯曲部211的弯曲半径小于其自身的厚度的情况下,光线容易从各弯曲部211处折射至导光层10外)。而上述一些实施例中,通过在所述至少一层导光层10的裸露表面设置反射涂层40,可以较好的防止光线泄露(例如,即使在第一导光部分1的弯曲半径小于其自身的厚度的情况下,也能够通过反射涂层40较好的防止光线从弯曲状的第一导光部分1处泄露至 导光层10外;同样的,即使在各弯曲部211的弯曲半径小于其自身的厚度的情况下,也能够通过反射涂层40较好的防止光线从各弯曲部211处泄露至导光层10外),从而有利于保证从导光层10的出光面12出射的光线量。
在一些实施例中,参见图6,该侧入式光源100还包括设置于反射胶层40远离所述至少一层导光层10一侧表面的吸光涂层50。例如该吸光涂层50可以为黑胶。这样设计,使得光线即使穿过了反射涂层40,也会被吸光涂层50所阻挡和吸收。进而能够防止光线泄露而照射到显示装置中的其它部件,不易对其它部件造成影响。
本公开一些实施例提供了一种背光模组200,参见图7A和图7B,背光模组200包括导光板500和如上所述的侧入式光源100,所述侧入式光源100的出光面朝向所述导光板500的至少部分侧面(例如可以是朝向该导光板500的部分侧面,也可以是朝向该导光板500的全部侧面)。
由于该背光模组200包括上述任一实施例所述的侧入式光源100,所以该背光模组200具有如上所述侧入式光源100的全部有益效果,此处不再赘述。
本公开一些实施例提供了一种显示装置300,如图7A和图7C所示,该显示装置300包括显示面板400和如上所述的侧入式光源100,所述侧入式光源100的出光面朝向所述显示面板400的至少部分侧面(例如可以是朝向该显示面板400的部分侧面,也可以是朝向该显示面板400的全部侧面)。示例性的,该显示面板400可以为透明显示面板。该透明显示面板中可以包括光波导层,此时,可以利用光波导层的侧面接收侧入式光源100出射光线,并使光线在该光波导层内发生全反射。
由于该显示装置300包括上述任一实施例所述的侧入式光源100,所以该显示装置300具有如上所述侧入式光源100的全部有益效果,此处不再赘述。
本公开一些实施例还提供了一种显示装置300A,如图7D所示,该显示装置300A包括显示面板400和如上所述的背光模组。所述显示面板400的相对两侧分别为显示侧Q1和非显示侧Q2。所述背光模组200设置于所述显示面板400的非显示侧。
由于该显示装置300A包括上述任一实施例所述的侧入式光源100,所以该显示装置300A具有如上所述侧入式光源100的全部有益效果,此处不再赘述。
本公开一些实施例还提供了一种显示装置300B,如图7E所示,该显示装置300B包括显示面板400和如上所述的背光模组。所述显示面板400的相对两侧分别为显示侧Q1和非显示侧Q2。所述背光模组200的导光板500设 置于所述显示面板400的显示侧Q1,所述背光模组200的侧入式光源100延伸至所述显示面板400的非显示侧Q2。
此时,显示面板400为反射式显示面板,例如该显示面板400中靠近所述非显示侧Q2的区域设置有反射层,从而能够将由导光板500入射至显示面板400的光线反射至所述显示面板400的显示侧Q1,从而实现画面显示。
由于该显示装置300B包括上述任一实施例所述的侧入式光源100,所以该显示装置300B具有如上所述侧入式光源100的全部有益效果,此处不再赘述。
此外,需要说明的是,上述图7A~图7E中任一者包含的侧入式光源100,可以设置有如上所述的导光层定型件101、第一盖板102和第三盖板103。例如,参见图7F,图7F在图7D示出的显示装置300A的基础上,增加了导光层定型件101、第一盖板102和第三盖板103。这样可以对侧入式光源100中各导光层的第二导光部分进行固定,使第二导光部分不容易发生变形,进而提高了光线在各第二导光部分内传播的稳定性,也即不易因第二导光部分发生变形而出现漏光现象。
上述仅以显示装置300A为示例进行了说明,可以理解的是,上述背光模组200、显示装置300和显示装置300B中任一者的侧入式光源100,均可以包括如上所述的导光层定型件101、第一盖板102和第三盖板103。并且能够达到与上述显示装置300A相同的技术效果,此处不再赘述。
上述显示装置300、显示装置300A和显示装置300B中的任一者可以是电视、数码相机、手机、手表、平板电脑、笔记本电脑、导航仪等任何具有显示功能的部件。
上述显示面板400可以为液晶显示面板,例如该液晶显示面板可以为TN(Twisted Nematic,扭曲向列型)显示面板、IPS(In-Plane Switching,平面转换型)显示面板和VA(Vertical Alignment,垂直配向型)显示面板中的任一种。
在一些实施例中,如图8所示,该显示面板400包括:阵列基板41、对盒基板42以及设置在阵列基板41和对盒基板42之间的液晶层43。
如图8所示,阵列基板41的每个亚像素均设置有位于第一衬底410上的薄膜晶体管411和像素电极412。薄膜晶体管411包括有源层、源极、漏极、栅极及栅绝缘层,源极和漏极分别与有源层接触,像素电极412与薄膜晶体管411的漏极电连接。
在一些示例中,如图8所示,阵列基板41还包括设置在第一衬底410上的公共电极413。像素电极412和公共电极413可以设置在同一层,在此情况 下,像素电极412和公共电极413均为包括多个条状子电极的梳齿结构。像素电极412和公共电极413也可以设置在不同层,在此情况下,如图8所示,像素电极412和公共电极413之间设置有第一绝缘层414。在公共电极413设置在薄膜晶体管411和像素电极412之间的情况下,如图8所示,公共电极413与薄膜晶体管411之间还设置有第二绝缘层415。在另一些示例中,对盒基板42包括公共电极413。
如图8所示,对盒基板42包括设置在第二衬底420上的彩色滤光层421,在此情况下,对盒基板42也可以称为CF(Color filter,彩膜基板)。其中,彩色滤光层421至少包括红色光阻单元、绿色光阻单元以及蓝色光阻单元,红色光阻单元、绿色光阻单元以及蓝色光阻单元分别与阵列基板41上的亚像素一一正对。对盒基板42还包括设置在第二衬底420上的黑矩阵图案422,黑矩阵图案422用于将红色光阻单元、绿色光阻单元以及蓝色光阻单元间隔开。
示例性的,如图8所示,液晶显示面板400还包括设置在对盒基板42远离液晶层43一侧的第一偏光片44以及设置在阵列基板41远离液晶层43一侧的第二偏光片45。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种侧入式光源,包括:
    一层导光层或层叠设置的至少两层导光层,至少一层所述导光层的侧面包括入光面和出光面,并且所述导光层包括位于所述入光面和所述出光面之间的弯曲区域;
    至少一个发光件,每个发光件的发光面朝向至少一层所述导光层的入光面。
  2. 根据权利要求1所述的侧入式光源,其中,所述导光层包括:
    彼此相连的第一导光部分和第二导光部分;所述第一导光部分远离所述第二导光部分的端面为所述出光面;
    所述第二导光部分包括至少两个导光条,每个导光条包括与所述第一导光部分相连的弯曲部以及与所述弯曲部相连的延伸部;各所述延伸部的与其连接弯曲部一端相对的表面为子入光面;每个所述发光件的发光面朝向至少一个所述子入光面;
    所述导光层的所述弯曲区域包括所述导光层的各所述弯曲部。
  3. 根据权利要求2所述的侧入式光源,其中,
    所述导光层中所述弯曲部沿第一方向依次排列;所述导光层中所述延伸部沿所述第一方向延伸且所述延伸部层叠设置。
  4. 根据权利要求3所述的侧入式光源,其中,所述导光层位于所述第一方向的一侧设置有与该层导光层对应的至少一个所述发光件。
  5. 根据权利要求3所述的侧入式光源,其中,与同一层所述导光层对应的所述发光件位于该层导光层沿所述第一方向的同一侧;
    所述导光层中所述弯曲部的弯曲半径自靠近对应的所述发光件至远离对应的所述发光件的方向依次逐渐增大。
  6. 根据权利要求3~5中任一项所述的侧入式光源,其中,
    所述导光层中所述延伸部位于所述第一导光部分沿其厚度方向的至少一侧。
  7. 根据权利要求3~5中任一项所述的侧入式光源,其中,
    所述导光层中所述延伸部位于所述第一导光部分沿其厚度方向的同一侧,所述延伸部的子入光面构成所述导光层的入光面,所述入光面位于所述第一导光部分沿所述第一方向相对两侧中的一侧,所述入光面朝向一个所述发光件的发光面。
  8. 根据权利要求2~7中任一项所述的侧入式光源,其中,
    所述导光层的层数为至少两层,所述导光层的第二导光部分沿第二方向依次排列;
    所述第二方向与所述第一导光部分的厚度方向彼此垂直,且所述第二方向垂直于所述第一导光部分和所述第二导光部分之间的分界面。
  9. 根据权利要求2~8中任一项所述的侧入式光源,还包括:
    导光层定型件,所述导光层定型件具有相对的第一主表面和第二主表面,以及贯通于所述第一主表面和所述第二主表面的多个连通槽;
    所述导光层的各所述弯曲部穿过一个连通槽,所述导光层的各所述延伸部靠近所述第一主表面,所述导光层的第一导光部分靠近所述第二主表面。
  10. 根据权利要求9所述的侧入式光源,其中,所述连通槽的一个侧壁呈弧面状;所述弯曲部穿过所述连通槽且贴附在呈弧面状的所述侧壁上,以使所述弯曲部的弯曲程度不破坏其内部光线的全反射状态。
  11. 根据权利要求9或10所述的侧入式光源,还包括:
    第一反射胶,设置于所述第一主表面与所述导光层中距离所述第一主表面最近的所述延伸部之间;和/或,
    第二反射胶,设置于所述第二主表面与所述第一导光部分之间。
  12. 根据权利要求9~11中任一项所述的侧入式光源,其中,所述导光层定型件包括:
    设置于所述第一主表面上的第一凹槽和第二凹槽,所述第二凹槽位于所述第一凹槽的一侧;所述导光层的各所述延伸部位于所述第一凹槽内,所述至少一个发光件位于所述第二凹槽内;和/或,
    设置于所述第二主表面上的第三凹槽,至少部分所述第一导光部分位于所述第三凹槽内。
  13. 根据权利要求12所述的侧入式光源,还包括:
    第一盖体,覆盖于所述第一凹槽和所述第二凹槽上;和/或,
    第二盖体,覆盖于所述第三凹槽上。
  14. 根据权利要求13所述的侧入式光源,其中,
    所述第一盖体与所述导光层的第二导光部分之间具有间隙;和/或,
    所述第二盖体与所述导光层的第一导光部分之间具有间隙。
  15. 根据权利要求2~14中任一项所述的侧入式光源,其中,所述第一导光部分包括:
    具有所述出光面的第一部分;和,
    位于所述第一部分与所述第二导光部分之间、且呈弯曲状的第二部分;
    其中,所述导光层的弯曲区域包括所述导光层中第一导光部分的第二部分。
  16. 根据权利要求15所述的侧入式光源,其中,所述第一导光部分还包括:
    位于所述第二部分与所述第二导光部分之间的第三部分,所述第三部分与所述第一部分彼此大致平行,且所述第三部分和所述第一部分位于所述第二部分的同一侧。
  17. 根据权利要求1~16中任一项所述的侧入式光源,还包括:
    设置于相邻两层导光层之间的贴合胶;
    其中,所述贴合胶的折射率与所述导光层的折射率基本相同;或者,所述贴合胶为反射性胶。
  18. 根据权利要求1~17中任一项所述的侧入式光源,还包括:
    设置于所述一层导光层或层叠设置的至少两层导光层的裸露表面的反射涂层。
  19. 根据权利要求18所述的侧入式光源,还包括:
    设置于所述反射胶层远离所述至少一层导光层一侧表面的吸光涂层。
  20. 一种背光模组,包括:
    导光板;和,
    如权利要求1~19中任一项所述的侧入式光源,所述侧入式光源的出光面与所述导光板的至少部分侧面相匹配,且所述侧入式光源的出光面朝向所述导光板的至少部分侧面。
  21. 一种显示装置,包括:
    显示面板,所述显示面板的相对两侧分别为显示侧和非显示侧;
    如权利要求20所述的背光模组;其中,所述背光模组设置于所述显示面板的非显示侧;或者,所述背光模组的导光板设置于所述显示面板的显示侧,所述背光模组的侧入式光源延伸至所述显示面板的非显示侧。
  22. 一种显示装置,包括:
    显示面板;
    如权利要求1~19中任一项所述的侧入式光源,所述侧入式光源的出光面与所述显示面板的至少部分侧面相匹配,且所述侧入式光源的出光面朝向所述显示面板的至少部分侧面。
PCT/CN2021/104521 2020-08-13 2021-07-05 侧入式光源、背光模组及显示装置 WO2022033234A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/792,445 US11709309B2 (en) 2020-08-13 2021-07-05 Edge-lit light source, backlight module and display devices
US18/325,146 US20230296826A1 (en) 2020-08-13 2023-05-30 Edge-lit light source, backlight module and display devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010811924.5A CN114077093B (zh) 2020-08-13 2020-08-13 侧入式光源、背光模组及显示装置
CN202010811924.5 2020-08-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/792,445 A-371-Of-International US11709309B2 (en) 2020-08-13 2021-07-05 Edge-lit light source, backlight module and display devices
US18/325,146 Continuation US20230296826A1 (en) 2020-08-13 2023-05-30 Edge-lit light source, backlight module and display devices

Publications (1)

Publication Number Publication Date
WO2022033234A1 true WO2022033234A1 (zh) 2022-02-17

Family

ID=80246842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104521 WO2022033234A1 (zh) 2020-08-13 2021-07-05 侧入式光源、背光模组及显示装置

Country Status (3)

Country Link
US (2) US11709309B2 (zh)
CN (1) CN114077093B (zh)
WO (1) WO2022033234A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113721391A (zh) * 2021-11-01 2021-11-30 惠科股份有限公司 背光模组及液晶显示器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102292591A (zh) * 2009-01-26 2011-12-21 弗莱克斯照明第二有限责任公司 通过柔性薄膜实现照明
US20120287674A1 (en) * 2011-05-13 2012-11-15 Flex Lighting Ii, Llc Illumination device comprising oriented coupling lightguides
US9566751B1 (en) * 2013-03-12 2017-02-14 Flex Lighting Ii, Llc Methods of forming film-based lightguides
CN106569298A (zh) * 2015-10-08 2017-04-19 小米科技有限责任公司 导光板结构、显示组件和电子设备
CN108693593A (zh) * 2017-03-30 2018-10-23 英特尔公司 具有偏转结构的倾斜光导
CN110785606A (zh) * 2017-04-21 2020-02-11 康宁股份有限公司 光耦合器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW373116B (en) 1994-12-15 1999-11-01 Sharp Kk Lighting apparatus
KR100939219B1 (ko) 2003-03-13 2010-01-28 엘지디스플레이 주식회사 도광판 및 이를 이용한 액정표시모듈
WO2007122758A1 (ja) * 2006-04-19 2007-11-01 Sharp Kabushiki Kaisha バックライト装置、及びこれを用いた表示装置
CN101109869A (zh) * 2007-08-24 2008-01-23 中山大学 侧入直下式背光模组
JP5738742B2 (ja) 2011-11-09 2015-06-24 株式会社東芝 面光源装置
JP2014093229A (ja) 2012-11-05 2014-05-19 Toshiba Corp 面光源装置
CN203405654U (zh) 2013-08-06 2014-01-22 深圳Tcl新技术有限公司 背光模组和液晶显示装置
CN104832885A (zh) 2015-04-24 2015-08-12 深圳市华星光电技术有限公司 液晶显示器、背光模组及其导光板
CN104776363A (zh) * 2015-04-28 2015-07-15 京东方科技集团股份有限公司 一种背光模组及显示装置
FR3064756A1 (fr) 2017-03-31 2018-10-05 Valeo Vision Guide de lumiere courbe propagateur de rayons lumineux
CN207181740U (zh) 2017-09-08 2018-04-03 深圳禾苗通信科技有限公司 一种超窄边框化lcd背光源
CN110501848A (zh) 2018-05-18 2019-11-26 胜利仕科技股份有限公司 液晶显示装置
CN108614372B (zh) 2018-06-06 2021-07-16 上海中航光电子有限公司 液晶显示装置
CN109613754A (zh) * 2018-12-28 2019-04-12 厦门天马微电子有限公司 背光模组和显示装置
WO2020201251A1 (en) * 2019-04-04 2020-10-08 Signify Holding B.V. Light guide device
US11513274B2 (en) * 2019-08-01 2022-11-29 Azumo, Inc. Lightguide with a light input edge between lateral edges of a folded strip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102292591A (zh) * 2009-01-26 2011-12-21 弗莱克斯照明第二有限责任公司 通过柔性薄膜实现照明
US20120287674A1 (en) * 2011-05-13 2012-11-15 Flex Lighting Ii, Llc Illumination device comprising oriented coupling lightguides
US9566751B1 (en) * 2013-03-12 2017-02-14 Flex Lighting Ii, Llc Methods of forming film-based lightguides
CN106569298A (zh) * 2015-10-08 2017-04-19 小米科技有限责任公司 导光板结构、显示组件和电子设备
CN108693593A (zh) * 2017-03-30 2018-10-23 英特尔公司 具有偏转结构的倾斜光导
CN110785606A (zh) * 2017-04-21 2020-02-11 康宁股份有限公司 光耦合器

Also Published As

Publication number Publication date
CN114077093A (zh) 2022-02-22
US20230296826A1 (en) 2023-09-21
US11709309B2 (en) 2023-07-25
CN114077093B (zh) 2023-06-16
US20230080052A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US8388207B2 (en) Illuminating device and display device having the same
US20160216435A1 (en) Curved display device
CN107945664B (zh) 拼接显示装置
KR20150026044A (ko) 광학 시트, 이를 포함하는 백라이트 유닛 및 표시장치
WO2016104352A1 (ja) 照明装置及び表示装置
WO2018051855A1 (ja) 光学部材、照明装置及び表示装置
US20220120957A1 (en) Backlight assembly and display device
US20220037622A1 (en) Display panel and display apparatus
WO2023160643A1 (zh) 显示模组和显示装置
JP5604342B2 (ja) 額縁被覆部材
KR102090457B1 (ko) 액정표시장치
US20170059764A1 (en) Light guide plate, backlight unit and display device
US20230296826A1 (en) Edge-lit light source, backlight module and display devices
WO2017077910A1 (ja) 照明装置及び表示装置
JP6644510B2 (ja) 照明装置、表示装置及びテレビ受信装置
US20110109840A1 (en) Light guide unit, surface light source device and liquid crystal display device
KR101929378B1 (ko) 액정표시장치
JPH10268306A (ja) 液晶表示装置
KR20150079231A (ko) 이물침투가 방지된 액정표시소자
KR102611148B1 (ko) 백라이트 유닛 및 이를 포함하는 디스플레이 장치
US11360255B2 (en) Display device
CN112771308B (zh) 导光组件、光源模组和显示装置
JP2001133776A (ja) 反射型液晶表示装置
KR102128924B1 (ko) 액정표시장치 및 그 제조방법
KR102084399B1 (ko) 액정표시장치 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855287

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/09/2023)