WO2022032571A1 - 资源配置方法、装置、通信设备和存储介质 - Google Patents

资源配置方法、装置、通信设备和存储介质 Download PDF

Info

Publication number
WO2022032571A1
WO2022032571A1 PCT/CN2020/108899 CN2020108899W WO2022032571A1 WO 2022032571 A1 WO2022032571 A1 WO 2022032571A1 CN 2020108899 W CN2020108899 W CN 2020108899W WO 2022032571 A1 WO2022032571 A1 WO 2022032571A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
fbe
parameter
parameters
resource
Prior art date
Application number
PCT/CN2020/108899
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US18/014,115 priority Critical patent/US20230269767A1/en
Priority to CN202080001902.0A priority patent/CN114365578B/zh
Priority to PCT/CN2020/108899 priority patent/WO2022032571A1/zh
Publication of WO2022032571A1 publication Critical patent/WO2022032571A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of wireless communication technologies, but is not limited to the field of wireless communication technologies, and in particular, to a resource configuration method, apparatus, communication device, and storage medium.
  • the data transmitter in the wireless communication system needs to monitor the channel before occupying the channel to send data, that is, clear channel assessment (CCA, Clear Channel Assessment). If the data sender determines that the channel is idle after CCA is performed, it can occupy the channel to send data; otherwise, the channel cannot be occupied.
  • CCA clear Channel Assessment
  • LBT listen-before-talk
  • Channel Access Channel Access
  • the data transmitter performs CCA in the unit of LBT bandwidth (band).
  • band LBT bandwidth
  • the spectrum used by the data sender and the data receiver to communicate may contain one or more LBT bands. CCA monitoring on each LBT band is independent.
  • embodiments of the present disclosure provide a resource configuration method, apparatus, communication device, and storage medium.
  • a resource configuration method which is applied to a base station, and the method includes: configuring frame-based equipment (FBE, Frame Based Equipment) parameters, wherein the FBE parameters include : A frequency domain parameter indicating the frequency domain resource for CCA to perform idle channel assessment.
  • FBE frame-based equipment
  • the FBE parameters include at least one of the following:
  • the first FBE parameter wherein the first FBE parameter includes: an uplink frequency domain parameter indicating an uplink frequency domain resource for CCA;
  • the second FBE parameter wherein the second FBE parameter includes: a downlink frequency domain parameter indicating a downlink frequency domain resource for CCA.
  • the uplink frequency domain resource indicated by the uplink frequency domain parameter is different from the downlink frequency domain resource indicated by the downlink frequency domain parameter.
  • the method further includes:
  • the FBE parameters are sent to a user equipment (UE, User Equipment).
  • UE User Equipment
  • the sending the FBE parameter to the UE includes one of the following:
  • Radio Resource Control RRC, Radio Resource Control
  • the sending the RRC signaling carrying the FBE parameter to the UE includes:
  • the RRC signaling carrying the FBE parameters associated with the UE is sent to the UE.
  • the frequency domain resources include at least one of the following:
  • At least one listen-before-talk LBT bandwidth resource At least one listen-before-talk LBT bandwidth resource
  • At least one resource block (RB, Resource Block).
  • the frequency domain parameters included in the FBE parameters indicate different frequency domain resources for different UEs.
  • a resource configuration method wherein, applied to a user equipment UE, the method includes:
  • a frame-based device FBE parameter is received, wherein the FBE parameter includes: a frequency domain parameter indicating a frequency domain resource for performing idle channel assessment CCA.
  • the receiving FBE parameters include at least one of the following:
  • the first FBE parameter includes: an uplink frequency domain parameter indicating an uplink frequency domain resource for CCA;
  • a second FBE parameter is received, wherein the second FBE parameter includes: a downlink frequency domain parameter indicating a downlink frequency domain resource for CCA.
  • the uplink frequency domain resource indicated by the uplink frequency domain parameter is different from the downlink frequency domain resource indicated by the downlink frequency domain parameter.
  • the method further includes:
  • the frequency domain resource for CCA is determined according to the frequency domain parameter.
  • the receiving FBE parameters include one of the following:
  • the receiving the RRC signaling that carries the FBE parameter includes:
  • RRC signaling carrying the FBE parameters associated with the UE is received.
  • the frequency domain resources include at least one of the following:
  • At least one listen-before-talk LBT bandwidth resource At least one listen-before-talk LBT bandwidth resource
  • At least one resource block RB At least one resource block RB.
  • a resource configuration apparatus wherein, applied to a base station, the apparatus includes: a configuration module, wherein:
  • the configuration module is configured to configure frame-based device FBE parameters, wherein the FBE parameters include: frequency domain parameters indicating frequency domain resources for CCA to perform idle channel assessment.
  • the FBE parameters include at least one of the following:
  • the first FBE parameter wherein the first FBE parameter includes: an uplink frequency domain parameter indicating an uplink frequency domain resource for CCA;
  • the second FBE parameter wherein the second FBE parameter includes: a downlink frequency domain parameter indicating a downlink frequency domain resource for CCA.
  • the uplink frequency domain resource indicated by the uplink frequency domain parameter is different from the downlink frequency domain resource indicated by the downlink frequency domain parameter.
  • the apparatus further includes:
  • a sending module configured to send the FBE parameters to the UE.
  • the sending module includes one of the following:
  • a first sending submodule configured to send the RRC signaling carrying the FBE parameter to the UE
  • the second sending submodule is configured to broadcast the broadcast information carrying the FBE parameter to the UE.
  • the first sending submodule includes:
  • a sending unit configured to send the RRC signaling carrying the FBE parameter associated with the UE to the UE.
  • the frequency domain resources include at least one of the following:
  • At least one listen-before-talk LBT bandwidth resource At least one listen-before-talk LBT bandwidth resource
  • At least one resource block RB At least one resource block RB.
  • the frequency domain parameters included in the FBE parameters indicate different frequency domain resources for different UEs.
  • a resource configuration apparatus wherein, applied to a user equipment UE, the apparatus includes: a receiving module, wherein:
  • the receiving module is configured to receive frame-based device FBE parameters, wherein the FBE parameters include: frequency domain parameters indicating frequency domain resources for idle channel evaluation CCA.
  • the receiving module includes at least one of the following:
  • the first receiving sub-module is configured to receive a first FBE parameter, wherein the first FBE parameter includes: an uplink frequency domain parameter indicating an uplink frequency domain resource for CCA;
  • the second receiving sub-module is configured to receive a second FBE parameter, wherein the second FBE parameter includes: a downlink frequency domain parameter indicating a downlink frequency domain resource for CCA.
  • the uplink frequency domain resource indicated by the uplink frequency domain parameter is different from the downlink frequency domain resource indicated by the downlink frequency domain parameter.
  • the apparatus further comprises:
  • the determining module is configured to determine the frequency domain resources for CCA according to the frequency domain parameters.
  • the receiving module includes one of the following:
  • a third receiving module configured to receive the RRC signaling that carries the FBE parameter
  • the fourth receiving module is configured to receive the broadcast information carrying the FBE parameter.
  • the third receiving module includes:
  • a receiving unit configured to receive the RRC signaling that carries the FBE parameter associated with the UE.
  • the frequency domain resources include at least one of the following:
  • At least one listen-before-talk LBT bandwidth resource At least one listen-before-talk LBT bandwidth resource
  • At least one resource block RB At least one resource block RB.
  • a communication equipment apparatus including a processor, a memory, and an executable program stored on the memory and executable by the processor, wherein the processor executes the executable program.
  • the program executes the executable program.
  • a storage medium on which an executable program is stored wherein when the executable program is executed by a processor, the resource configuration method according to the first aspect or the second aspect is implemented A step of.
  • the resource configuration method, apparatus, communication device, and storage medium provided according to the embodiments of the present disclosure include: a base station configures a frame-based device FBE parameter, wherein the FBE parameter includes: indicating a frequency domain resource for performing idle channel evaluation CCA frequency domain parameters.
  • the frequency domain resources of CCA can be configured.
  • the frequency domain parameters configured for the base station and the UE can allocate different frequency domain resources for different transmissions, thereby reducing the frequency of CCA. Conflict of domain resources, thereby improving the efficiency of data transmission.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • FIG. 2 is a schematic diagram of an FFP timing sequence according to an exemplary embodiment
  • FIG. 3 is a schematic flowchart of a resource configuration method according to an exemplary embodiment
  • FIG. 4 is a schematic flowchart of another resource configuration method according to an exemplary embodiment
  • FIG. 5 is a schematic flowchart of yet another resource configuration method according to an exemplary embodiment
  • FIG. 6 is a schematic flowchart of still another resource configuration method according to an exemplary embodiment
  • FIG. 7 is a block diagram of a resource configuration apparatus according to an exemplary embodiment
  • FIG. 8 is a block diagram of another resource configuration apparatus according to an exemplary embodiment
  • Fig. 9 is a block diagram of an apparatus for resource configuration according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several terminals 11 and several base stations 12 .
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 may communicate with one or more core networks via a radio access network (RAN), and the terminal 11 may be an IoT terminal such as a sensor device, a mobile phone (or "cellular" phone) and a
  • RAN radio access network
  • the computer of the IoT terminal for example, may be a fixed, portable, pocket, hand-held, computer-built-in or vehicle-mounted device.
  • a station For example, a station (Station, STA), a subscriber unit (subscriber unit), a subscriber station (subscriber station), a mobile station (mobile station), a mobile station (mobile), a remote station (remote station), an access point, a remote terminal ( remote terminal), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user equipment (user equipment, UE).
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be a vehicle-mounted device, for example, a trip computer with a wireless communication function, or a wireless communication device connected to an external trip computer.
  • the terminal 11 may also be a roadside device, for example, may be a streetlight, a signal light, or other roadside device having a wireless communication function.
  • the base station 12 may be a network-side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, a new generation of radio access network).
  • the MTC system may be a network-side device in a wireless communication system.
  • the base station 12 may be an evolved base station (eNB) used in the 4G system.
  • the base station 12 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Media Access Control (Media Access Control, MAC) layer; distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 12 is not limited in this embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 12 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the terminals 11 .
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle-to-everything (V2X) communication etc. scene.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in a wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rule functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 13 is not limited in this embodiment of the present disclosure.
  • the execution bodies involved in the embodiments of the present disclosure include, but are not limited to, UEs such as mobile phone terminals that support cellular mobile communication, and base stations.
  • a frame based equipment (FBE, frame based equipment) is a terminal that implements a specific channel access mode. ) for channel monitoring.
  • the data sender Before starting data transmission, the data sender only needs to perform CCA on one observation slot, and after judging that the channel is idle, it can start transmitting data.
  • each FFP will include a fixed idle period at the end (idle duration), except for the idle period and the observation time slot of CCA, the other part of the FFP is the maximum value of the data sender in a continuous transmission. Allowed occupied channel time COT.
  • the uplink channel of the UE still needs to be pre-configured or dynamically scheduled by the base station to ensure that the base station can predict the resource location and modulation method used for uplink transmission to accurately receive the uplink. information.
  • the terminal can use the configuration authorized uplink physical shared channel (CG-PUSCH, Configured Grant-Physical Uplink Shared Channel), dynamic scheduling (DS, dynamic scheduled) PUSCH, physical uplink control channel (PUCCH, Physical Uplink Control Channel) ) and other resource uplink data.
  • CG-PUSCH Configured Grant-Physical Uplink Shared Channel
  • DS dynamic scheduling
  • PUSCH physical uplink control channel
  • PUCCH Physical Uplink Control Channel
  • the base station When the base station configures FBE parameters, it will configure time domain parameters such as FFP cycle parameters and idle period.
  • this exemplary embodiment provides a resource configuration method, which can be applied to a base station of a cellular mobile communication system, including:
  • Step 301 Configure frame-based device FBE parameters, wherein the FBE parameters include: frequency domain parameters indicating frequency domain resources for CCA to perform idle channel assessment.
  • the base station may include, but is not limited to, a base station in a cellular mobile communication system, and the base station may include, but is not limited to, a UE in a cellular mobile communication system.
  • the base station and the UE can perform wireless communication through licensed cellular mobile communication spectrum resources, and can also conduct wireless communication through unlicensed spectrum resources.
  • Cellular mobile communication systems can share unlicensed spectrum resources with Wi-Fi systems and the like.
  • the base station configures FBE parameters. As shown in FIG. 2 , the base station can configure time domain parameters such as FFP cycle parameters and idle period. On the other hand, the base station may carry available frequency domain resources in broadcast information such as system messages. The base station schedules uplink frequency domain resources and downlink frequency domain resources by means of time division multiplexing. The frequency domain resource usage efficiency is low.
  • the base station may configure frequency domain parameters in the FBE parameters at the same time when configuring the FBE parameters.
  • the frequency domain parameter may be a frequency domain resource used to instruct CCA to be performed.
  • the frequency domain resource may be a spectrum range for CCA, and the like.
  • the frequency domain parameter may indicate frequency domain resources for the base station to perform CCA, and/or spectrum resources for each UE to perform CCA.
  • the base station may configure frequency domain parameters for the UE through UE-specific signaling.
  • the base station may configure the LBT bandwidth for the UE through UE-specific signaling.
  • the base station may configure at least one LBT bandwidth resource for the UE in the FBE parameter.
  • the frequency domain parameters are configured by the base station, which can provide a basis for implementing frequency division multiplexing (FDD) for communication between different UEs and the base station.
  • FDD frequency division multiplexing
  • Uplink transmission between different UEs can be performed simultaneously on different frequency domain resources.
  • the uplink transmission of the UE and the downlink transmission of the base station can communicate simultaneously on different frequency domain resources.
  • the base station can configure the UE1 as the initiator and the frequency domain parameter of the FBE occupied channel is LBT band 1, and configure the UE2 for the UE.
  • the frequency domain parameter of the channel occupied by the FBE at the initiator is LBT band 2.
  • the base station configures the base station for itself as the initiator FBE occupied channel frequency domain parameter is LBT band 3/4. With this configuration, LBT band 1/2 is used for upstream transmission and LBT band 3/4 is used for downstream transmission. Since the uplink and downlink transmissions use completely different frequency bands, the uplink and downlink transmissions can be performed simultaneously without interfering with each other, which reduces the time delay of data transmission and realizes FDD on the unlicensed spectrum.
  • the frequency domain resources of CCA can be configured.
  • the frequency domain parameters configured for the base station and the UE can allocate different frequency domain resources for different transmissions, thereby reducing the frequency of CCA.
  • Conflict of domain resources thereby improving the efficiency of data transmission.
  • the FBE parameters include at least one of the following:
  • the first FBE parameter wherein the first FBE parameter includes: an uplink frequency domain parameter indicating an uplink frequency domain resource for CCA;
  • the second FBE parameter wherein the second FBE parameter includes: a downlink frequency domain parameter indicating a downlink frequency domain resource for CCA.
  • the base station acts as the initiator FBE to occupy the channel, and the base station uses downlink frequency domain resources for transmission.
  • CCA may be performed by the base station.
  • uplink data that is, the UE as the initiator FBE occupies the channel, and the UE uses uplink frequency domain resources for transmission.
  • CCA may be performed by the UE.
  • the base station may configure FBE parameters for uplink transmission and downlink transmission respectively.
  • the FBE parameters for uplink transmission may include uplink frequency domain parameters indicating uplink frequency domain resources.
  • the UE may determine, according to the uplink frequency domain parameter, the frequency domain resources for performing CCA in the FFP when the UE performs uplink transmission in the FBE communication.
  • the FBE parameters for downlink transmission may include downlink frequency domain parameters indicating downlink frequency domain resources.
  • the base station may determine, according to the downlink frequency domain parameter, the frequency domain resources for CCA in the FFP when the base station performs downlink transmission in the FBE communication.
  • the frequency domain parameters included in the FBE parameters indicate different frequency domain resources for different UEs.
  • the base station may configure different frequency domain resources to different UEs.
  • the frequency domain resources include uplink frequency domain resources and downlink frequency domain resources.
  • different UEs can use their own frequency domain resources to transmit at the same time, so as to realize FDD, improve frequency resource utilization efficiency, and reduce transmission delay.
  • the uplink frequency domain resource indicated by the uplink frequency domain parameter is different from the downlink frequency domain resource indicated by the downlink frequency domain parameter.
  • the base station can configure downlink transmission and uplink transmission to different frequency domain resources respectively, so as to avoid the conflict between uplink transmission and downlink transmission, and realize simultaneous uplink and downlink transmission. Improve frequency resource usage efficiency and reduce transmission delay.
  • the method further includes:
  • Step 302 Send the FBE parameters to the UE.
  • the base station may send the configured FBE parameters to the UE.
  • the UE may determine downlink frequency domain resources and/or uplink frequency domain resources according to the delivered FBE parameters.
  • the UE may perform CCA on the uplink frequency domain resource indicated by the uplink frequency domain parameter to determine the occupancy of the uplink frequency domain resource.
  • the UE may also perform CCA on the downlink frequency domain resources indicated by the downlink frequency domain parameters, and assist the base station to monitor the downlink frequency domain resources.
  • the sending the FBE parameter to the UE includes one of the following:
  • the base station may also carry the FBE parameter through dedicated signaling, such as RRC signaling.
  • the base station needs to send the RRC signaling carrying the FBE parameters including the downlink frequency domain parameters to each UE respectively.
  • the terminal After obtaining the FBE parameters including the downlink frequency domain parameters, the terminal can monitor the downlink transmission on the corresponding downlink frequency domain.
  • the base station may also carry the FBE parameter through dedicated signaling, such as RRC signaling.
  • the uplink frequency domain parameter included in the FBE parameter sent by the RRC signaling may indicate the frequency domain resource configured to the UE at the RRC signaling receiving end to perform CCA.
  • the base station may also broadcast the FBE parameters including the uplink frequency domain parameters to each UE by broadcasting the system message, and the broadcasted FBE parameters may include the uplink frequency domain parameters of one or more UEs.
  • the uplink frequency domain parameters of different UEs may be respectively identified by the identification information of each UE. In this way, the UEs may determine their respective uplink frequency domain parameters according to the identification information.
  • the base station may carry uplink frequency domain parameters and downlink frequency domain parameters in broadcast information such as system messages, indicating frequency domain resources available for downlink transmission and frequency domain resources available for uplink transmission.
  • the base station performs CCA and downlink transmission in the frequency domain resources configured by the base station for downlink transmission
  • the terminal performs CCA and uplink transmission in the frequency domain resources configured by the base station for uplink transmission.
  • the base station can configure downlink transmission and uplink transmission to different frequency domain resources respectively, so as to avoid the conflict between uplink transmission and downlink transmission, and realize simultaneous uplink and downlink transmission.
  • the sending the RRC signaling carrying the FBE parameter to the UE includes:
  • the RRC signaling carrying the FBE parameters associated with the UE is sent to the UE.
  • the base station may send the uplink frequency domain parameter and the downlink frequency domain parameter associated with the UE to the UE through RRC signaling.
  • the base station can send the downlink frequency domain parameters to the UE through RRC signaling, and the UE can determine the downlink frequency domain resources of the base station.
  • the UE may perform assisted CCA, that is, the monitoring of downlink frequency domain resources is assisted by the data receiving end.
  • the uplink frequency domain parameters can be sent to the UE through UE-specific signaling, so that the base station can configure different uplink frequency domain resources for different UEs.
  • the UE can determine its own uplink frequency domain resources and perform CCA.
  • the frequency domain resources include at least one of the following:
  • At least one listen-before-talk LBT bandwidth resource At least one listen-before-talk LBT bandwidth resource
  • At least one resource block RB At least one resource block RB.
  • the communication between the base station and the UE occupies frequency domain resources in the unit of LBT bandwidth. Communication between a base station and a UE may occupy one or more LBT bandwidths.
  • the frequency domain resources indicated by the frequency domain parameters may refer to LBT bandwidth resources.
  • the base station can configure the UE1 for the UE1 as the initiator and the frequency domain parameter of the FBE occupied channel is LBT band 1, and the base station configures itself.
  • the frequency domain parameter of the channel occupied by the base station as the initiator FBE is LBT band 3/4.
  • the LBT bandwidth resource may consist of RBs.
  • the frequency domain parameter may indicate RBs, such as indicating the number of RBs.
  • the frequency domain bandwidth indicated by the frequency domain parameter can be determined according to the number of RBs, the subcarrier book and the subcarrier width of each RB.
  • this exemplary embodiment provides a resource configuration method, and the resource configuration method can be applied to a UE of a cellular mobile communication system, including:
  • Step 501 Receive frame-based device FBE parameters, wherein the FBE parameters include: frequency domain parameters indicating frequency domain resources for CCA to perform idle channel assessment.
  • the base station may include, but is not limited to, a base station in a cellular mobile communication system, and the base station may include, but is not limited to, a UE in a cellular mobile communication system.
  • the base station and the UE can perform wireless communication through licensed cellular mobile communication spectrum resources, and can also conduct wireless communication through unlicensed spectrum resources.
  • Cellular mobile communication systems can share unlicensed spectrum resources with Wi-Fi systems and the like.
  • the base station configures FBE parameters. As shown in FIG. 2 , the base station can configure time domain parameters such as FFP cycle parameters and idle period. On the other hand, the base station may carry available frequency domain resources in broadcast information such as system messages. The base station schedules uplink frequency domain resources and downlink frequency domain resources by means of time division multiplexing. The frequency domain resource usage efficiency is low. .
  • the base station may configure frequency domain parameters in the FBE parameters at the same time when configuring the FBE parameters.
  • the frequency domain parameter may be a frequency domain resource used to instruct CCA to be performed.
  • the frequency domain resource may be a spectrum range for CCA, and the like.
  • the frequency domain parameter may indicate frequency domain resources for the base station to perform CCA, and/or spectrum resources for each UE to perform CCA.
  • the base station may configure frequency domain parameters for the UE through UE-specific signaling.
  • the base station may configure frequency domain parameters for the UE through UE-specific signaling.
  • the base station may configure at least one LBT bandwidth resource for the UE in the FBE parameter.
  • the frequency domain parameters are configured by the base station, which can provide a basis for implementing frequency division multiplexing (FDD) for communication between different UEs and the base station.
  • FDD frequency division multiplexing
  • Uplink transmission between different UEs can be performed simultaneously on different frequency domain resources.
  • the uplink transmission of the UE and the uplink transmission between the base stations can communicate simultaneously on different frequency domain resources.
  • the base station can configure the UE1 as the initiator and the frequency domain parameter of the FBE occupied channel is LBT band 1, and configure the UE2 for the UE.
  • the frequency domain parameter of the channel occupied by the FBE at the initiator is LBT band 2.
  • the base station configures the base station for itself as the initiator FBE occupied channel frequency domain parameter is LBT band 3/4. With this configuration, LBT band 1/2 is used for upstream transmission and LBT band 3/4 is used for downstream transmission. Since the uplink and downlink transmissions use completely different frequency bands, the uplink and downlink transmissions can be performed simultaneously without interfering with each other, which reduces the time delay of data transmission and realizes FDD on the unlicensed spectrum.
  • the base station may send the configured FBE parameters to the UE.
  • the UE may determine downlink frequency domain resources and/or uplink frequency domain resources according to the delivered FBE parameters.
  • the UE may perform CCA on the uplink frequency domain resource indicated by the uplink frequency domain parameter to determine the occupancy of the uplink frequency domain resource.
  • the UE may also perform CCA on the downlink frequency domain resources indicated by the downlink frequency domain parameters, and assist the base station to monitor the downlink frequency domain resources.
  • the frequency domain resources of CCA can be configured.
  • the frequency domain parameters configured for the base station and the UE can allocate different frequency domain resources for different transmissions, thereby reducing the frequency of CCA.
  • Conflict of domain resources thereby improving the efficiency of data transmission.
  • the receiving FBE parameters include at least one of the following:
  • the first FBE parameter includes: an uplink frequency domain parameter indicating an uplink frequency domain resource for CCA;
  • a second FBE parameter is received, wherein the second FBE parameter includes: a downlink frequency domain parameter indicating a downlink frequency domain resource for CCA.
  • the base station acts as the initiator FBE to occupy the channel, and the base station uses downlink frequency domain resources for transmission.
  • CCA may be performed by the base station.
  • uplink data that is, the UE as the initiator FBE occupies the channel, and the UE uses uplink frequency domain resources for transmission.
  • CCA may be performed by the UE.
  • the base station may configure FBE parameters for uplink transmission and downlink transmission respectively.
  • the FBE parameters for uplink transmission may include uplink frequency domain parameters indicating uplink frequency domain resources.
  • the UE may determine, according to the uplink frequency domain parameter, the frequency domain resources for performing CCA in the FFP when the UE performs uplink transmission in the FBE communication.
  • the FBE parameters for downlink transmission may include downlink frequency domain parameters indicating downlink frequency domain resources.
  • the base station may determine, according to the downlink frequency domain parameter, the frequency domain resources for CCA in the FFP when the base station performs downlink transmission in the FBE communication.
  • the frequency domain parameters included in the FBE parameters indicate different frequency domain resources for different UEs.
  • the base station may configure different frequency domain resources to different UEs.
  • the frequency domain resources include uplink frequency domain resources and downlink frequency domain resources.
  • different UEs can use their own frequency domain resources to transmit at the same time, so as to realize FDD, improve frequency resource utilization efficiency, and reduce transmission delay.
  • the uplink frequency domain resource indicated by the uplink frequency domain parameter is different from the downlink frequency domain resource indicated by the downlink frequency domain parameter.
  • the base station can configure downlink transmission and uplink transmission to different frequency domain resources respectively, so as to avoid the conflict between uplink transmission and downlink transmission, and realize simultaneous uplink and downlink transmission. Improve frequency resource usage efficiency and reduce transmission delay.
  • the method further includes:
  • Step 502 Determine frequency domain resources for CCA according to the frequency domain parameters.
  • the UE After the UE receives the FBE parameter, it can determine the frequency domain resources for data downlink by the base station, and/or the frequency domain resources for data uplink configured by the base station for the UE.
  • the receiving FBE parameters include one of the following:
  • the base station may also carry the FBE parameter through dedicated signaling, such as RRC signaling.
  • the base station needs to send the RRC signaling carrying the FBE parameters including the downlink frequency domain parameters to each UE respectively.
  • the terminal After obtaining the FBE parameters including the downlink frequency domain parameters, the terminal can monitor the downlink transmission on the corresponding downlink frequency domain.
  • the base station may also carry the FBE parameter through dedicated signaling, such as RRC signaling.
  • the uplink frequency domain parameter included in the FBE parameter sent by the RRC signaling may indicate the frequency domain resource configured to the UE at the RRC signaling receiving end to perform CCA.
  • the base station may also broadcast the FBE parameters including the uplink frequency domain parameters to each UE by broadcasting the system message, and the broadcasted FBE parameters may include the uplink frequency domain parameters of one or more UEs.
  • the uplink frequency domain parameters of different UEs may be respectively identified by the identification information of each UE. In this way, the UEs may determine their respective uplink frequency domain parameters according to the identification information.
  • the base station may carry uplink frequency domain parameters and downlink frequency domain parameters in broadcast information such as system messages, indicating frequency domain resources available for downlink transmission and frequency domain resources available for uplink transmission.
  • the base station performs CCA and downlink transmission in the frequency domain resources configured by the base station for downlink transmission
  • the terminal performs CCA and uplink transmission in the frequency domain resources configured by the base station for uplink transmission.
  • the base station can configure downlink transmission and uplink transmission to different frequency domain resources respectively, so as to avoid the conflict between uplink transmission and downlink transmission, and realize simultaneous uplink and downlink transmission.
  • the receiving the RRC signaling that carries the FBE parameter includes:
  • RRC signaling carrying the FBE parameters associated with the UE is received.
  • the base station may send the uplink frequency domain parameter and the downlink frequency domain parameter associated with the UE to the UE through RRC signaling.
  • the base station can send the downlink frequency domain parameters to the UE through RRC signaling, and the UE can determine the downlink frequency domain resources of the base station.
  • the UE may perform assisted CCA, that is, the monitoring of downlink frequency domain resources is assisted by the data receiving end.
  • the uplink frequency domain parameters can be sent to the UE through UE-specific signaling, so that the base station can configure different uplink frequency domain resources for different UEs.
  • the UE can determine its own uplink frequency domain resources and perform CCA.
  • the frequency domain resources include at least one of the following:
  • At least one listen-before-talk LBT bandwidth resource At least one listen-before-talk LBT bandwidth resource
  • At least one resource block RB At least one resource block RB.
  • the communication between the base station and the UE occupies frequency domain resources in the unit of LBT bandwidth. Communication between a base station and a UE may occupy one or more LBT bandwidths.
  • the frequency domain resources indicated by the frequency domain parameters may refer to LBT bandwidth resources.
  • the base station can configure the UE1 for the UE1 as the frequency domain parameter of the FBE occupied channel of the initiator as LBT band 1, and the base station configures itself.
  • the frequency domain parameter of the channel occupied by the base station as the initiator FBE is LBT band 3/4.
  • the LBT bandwidth resource may consist of RBs.
  • the frequency domain parameter may indicate RBs, such as indicating the number of RBs.
  • the frequency domain bandwidth indicated by the frequency domain parameter can be determined according to the number of RBs, the subcarrier book and the subcarrier width of each RB.
  • the base station configures the FBE parameter
  • the FFP cycle parameter the idle duration (idle duration) duration, etc.
  • the idle duration (idle duration) duration are all time domain parameters.
  • the base station configures the UE as the initiator FBE occupied channel (UE initiated COT for FBE) parameters for the terminal.
  • the time domain parameters such as the FFP period parameter/idle period
  • it can also configure the frequency domain parameters for the terminal to perform CCA monitoring. , such as one or more LBT bands, or a set of multiple RBs in the frequency domain.
  • the terminal performs CCA only on one or more configured LBT bands, or a set of multiple RBs in the frequency domain, and determines whether to send uplink data according to the CCA result.
  • the base station may also include frequency domain parameters such as one or more LBT bands, or a set of multiple RBs in the frequency domain.
  • the base station only performs CCA on one or more configured LBT bands, or a set of multiple RBs in the frequency domain, and determines whether to send downlink data according to the CCA result.
  • the advantage of configuring the frequency domain parameters in the FBE parameters is that the FDD data transmission method can be implemented, so the uplink and downlink data can be transmitted simultaneously, which reduces the data transmission delay compared with the TDD method in the general unlicensed frequency band.
  • the base station can configure the UE1 as the initiator and the frequency domain parameter of the FBE occupied channel is LBT band 1, and configure the UE2 for the UE.
  • the frequency domain parameter of the channel occupied by the FBE at the initiator is LBT band 2.
  • the base station configures the base station for itself as the initiator FBE occupied channel frequency domain parameter is LBT band 3/4. With this configuration, LBT band 1/2 is used for upstream transmission and LBT band 3/4 is used for downstream transmission. Since the uplink and downlink transmissions use completely different frequency bands, the uplink and downlink transmissions can be performed simultaneously without interfering with each other, which reduces the time delay of data transmission and realizes FDD on the unlicensed spectrum.
  • An embodiment of the present invention further provides a resource configuration apparatus, which is applied to a data frame sending end of wireless communication.
  • the resource configuration apparatus 100 includes: a configuration module 110, wherein:
  • the configuration module 110 is configured to configure frame-based device FBE parameters, wherein the FBE parameters include: frequency domain parameters indicating frequency domain resources for CCA to perform idle channel assessment.
  • the FBE parameters include at least one of the following:
  • the first FBE parameter wherein the first FBE parameter includes: an uplink frequency domain parameter indicating an uplink frequency domain resource for CCA;
  • the second FBE parameter wherein the second FBE parameter includes: a downlink frequency domain parameter indicating a downlink frequency domain resource for CCA.
  • the uplink frequency domain resource indicated by the uplink frequency domain parameter is different from the downlink frequency domain resource indicated by the downlink frequency domain parameter.
  • the apparatus 100 further includes:
  • the sending module 120 is configured to send the FBE parameters to the UE.
  • the sending module 120 includes one of the following:
  • a first sending submodule 121 configured to send the RRC signaling carrying the FBE parameter to the UE
  • the second sending submodule 122 is configured to broadcast broadcast information carrying the FBE parameter to the UE.
  • the first sending submodule 121 includes:
  • the sending unit 1211 is configured to send the RRC signaling carrying the FBE parameter associated with the UE to the UE.
  • the frequency domain resources include at least one of the following:
  • At least one listen-before-talk LBT bandwidth resource At least one listen-before-talk LBT bandwidth resource
  • At least one resource block RB At least one resource block RB.
  • the frequency domain parameters included in the FBE parameters indicate different frequency domain resources for different UEs.
  • a resource configuration apparatus is provided, which is applied to a user equipment UE.
  • the apparatus includes: a receiving module 210, wherein:
  • the receiving module 210 is configured to receive frame-based device FBE parameters, wherein the FBE parameters include: frequency domain parameters indicating frequency domain resources for CCA to perform idle channel assessment.
  • the receiving module 210 includes at least one of the following:
  • the first receiving sub-module 211 is configured to receive a first FBE parameter, wherein the first FBE parameter includes: an uplink frequency domain parameter indicating an uplink frequency domain resource for CCA;
  • the second receiving sub-module 212 is configured to receive a second FBE parameter, wherein the second FBE parameter includes: a downlink frequency domain parameter indicating a downlink frequency domain resource for CCA.
  • the uplink frequency domain resource indicated by the uplink frequency domain parameter is different from the downlink frequency domain resource indicated by the downlink frequency domain parameter.
  • the apparatus 200 further includes:
  • the determining module 220 is configured to determine the frequency domain resources for CCA according to the frequency domain parameters.
  • the receiving module 210 includes one of the following:
  • the third receiving module 213 is configured to receive the RRC signaling that carries the FBE parameter
  • the fourth receiving module 214 is configured to receive broadcast information carrying the FBE parameter.
  • the third receiving module 213 includes:
  • the receiving unit 2131 is configured to receive the RRC signaling that carries the FBE parameter associated with the UE.
  • the frequency domain resources include at least one of the following:
  • At least one listen-before-talk LBT bandwidth resource At least one listen-before-talk LBT bandwidth resource
  • At least one resource block RB At least one resource block RB.
  • the configuration module 110, the transmission module 120, the reception module 210, the determination module 220, etc. may be controlled by one or more central processing units (CPU, Central Processing Unit), graphics processing unit (GPU, Graphics Processing Unit) , Baseband Processor (BP, baseband processor), Application Specific Integrated Circuit (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device ), Field-Programmable Gate Array (FPGA, Field-Programmable Gate Array), general-purpose processor, controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronic components to achieve, for Perform the preceding method.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • BP Baseband Processor
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • FIG. 9 is a block diagram of an apparatus 3000 for resource configuration according to an exemplary embodiment.
  • apparatus 3000 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • an apparatus 3000 may include one or more of the following components: a processing component 3002, a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And the communication component 3016.
  • the processing component 3002 generally controls the overall operation of the apparatus 3000, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 can include one or more processors 3020 to execute instructions to perform all or some of the steps of the methods described above.
  • processing component 3002 may include one or more modules that facilitate interaction between processing component 3002 and other components.
  • processing component 3002 may include a multimedia module to facilitate interaction between multimedia component 3008 and processing component 3002.
  • Memory 3004 is configured to store various types of data to support operation at device 3000 . Examples of such data include instructions for any application or method operating on the device 3000, contact data, phonebook data, messages, pictures, videos, and the like. Memory 3004 may be implemented by any type of volatile or non-volatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply assembly 3006 provides power to various components of device 3000.
  • Power supply components 3006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 3000.
  • Multimedia component 3008 includes a screen that provides an output interface between device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. A touch sensor can sense not only the boundaries of a touch or swipe action, but also the duration and pressure associated with the touch or swipe action.
  • the multimedia component 3008 includes a front-facing camera and/or a rear-facing camera. When the apparatus 3000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 3010 is configured to output and/or input audio signals.
  • audio component 3010 includes a microphone (MIC) that is configured to receive external audio signals when device 3000 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 3004 or transmitted via communication component 3016.
  • the audio component 3010 also includes a speaker for outputting audio signals.
  • the I/O interface 3012 provides an interface between the processing component 3002 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 3014 includes one or more sensors for providing status assessment of various aspects of device 3000 .
  • the sensor assembly 3014 can detect the open/closed state of the device 3000, the relative positioning of the components, such as the display and keypad of the device 3000, the sensor assembly 3014 can also detect the position change of the device 3000 or a component of the device 3000, the user The presence or absence of contact with the device 3000, the orientation or acceleration/deceleration of the device 3000 and the temperature change of the device 3000.
  • Sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 3014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 3016 is configured to facilitate wired or wireless communication between apparatus 3000 and other devices.
  • the apparatus 3000 may access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 3016 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 3016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 3000 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 3004 including instructions, which are executable by the processor 3020 of the apparatus 3000 to perform the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例是关于资源配置方法、装置、通信设备和存储介质,基站配置基于帧的设备(FBE)参数,其中,所述FBE参数,包括:指示进行空闲信道评估(CCA)的频域资源的频域参数。

Description

资源配置方法、装置、通信设备和存储介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及资源配置方法、装置、通信设备和存储介质。
背景技术
在非授权频谱上,无线通信系统中的数据发送端在占用信道发送数据之前,需要对信道进行监听,即进行空闲信道评估(CCA,Clear Channel Assessment)。如果数据发送端进行CCA后,判断信道空闲,则可以占用信道发送数据;否则不能占用信道。以上过程一般被称为非授权频段上先听后说(LBT,Listen Before Talk)的信道接入(Channel Access)的过程。
在频域上,数据发送端以LBT带宽(band)为单位进行CCA,目前,通信协议中约定一个LBT band是20MHz。数据发送端和数据接收端通信所使用的频谱可能包含一个或者多个LBT band。每个LBT band上的CCA监听都是独立的。
发明内容
有鉴于此,本公开实施例提供了一种资源配置方法、装置、通信设备和存储介质。
根据本公开实施例的第一方面,提供一种资源配置方法,其中,应用于基站,所述方法包括:配置基于帧的设备(FBE,Frame Based Equipment)参数,其中,所述FBE参数,包括:指示进行空闲信道评估CCA的频域资源的频域参数。
在一个实施例中,所述FBE参数包括至少以下之一:
第一FBE参数,其中,所述第一FBE参数,包括:指示进行CCA的上行频域资源的上行频域参数;
第二FBE参数,其中,所述第二FBE参数,包括:指示进行CCA的下行频域资源的下行频域参数。
在一个实施例中,所述上行频域参数指示的所述上行频域资源不同于所述下行频域参数指示的所述下行频域资源。在一个实施例中,所述方法还包括:
向用户设备(UE,User Equipment)发送所述FBE参数。
在一个实施例中,所述向UE发送所述FBE参数,包括以下之一:
向所述UE发送携带有所述FBE参数的无线资源控制(RRC,Radio Resource Control)信令;
向所述UE广播携带有所述FBE参数的广播信息。
在一个实施例中,所述向所述UE发送携带有所述FBE参数的RRC信令,包括:
向所述UE发送携带有与所述UE关联的所述FBE参数的所述RRC信令。
在一个实施例中,所述频域资源,至少包括以下之一:
至少一个先听后说LBT带宽资源;
至少一个资源块(RB,Resource Block)。
在一个实施例中,当向多于一个UE发送所述FBE参数时,所述FBE参数包括的所述频域参数为不同的所述UE指示不同的所述频域资源。
根据本公开实施例的第二方面,提供一种资源配置方法,其中,应用于用户设备UE,所述方法包括:
接收基于帧的设备FBE参数,其中,所述FBE参数,包括:指示进行空闲信道评估CCA的频域资源的频域参数。
在一个实施例中,所述接收FBE参数,包括至少以下之一:
接收第一FBE参数,其中,所述第一FBE参数,包括:指示进行CCA的上行频域资源的上行频域参数;
接收第二FBE参数,其中,所述第二FBE参数,包括:指示进行CCA的下行频域资源的下行频域参数。
在一个实施例中,所述上行频域参数指示的所述上行频域资源不同于所述下行频域参数指示的所述下行频域资源。
在一个实施例中,所述方法还包括:
根据所述频域参数确定进行CCA的频域资源。
在一个实施例中,所述接收FBE参数,包括以下之一:
接收携带有所述FBE参数的RRC信令;
接收携带有所述FBE参数的广播信息。
在一个实施例中,所述接收携带有所述FBE参数的RRC信令,包括:
接收携带有与所述UE关联的所述FBE参数的RRC信令。
在一个实施例中,所述频域资源,至少包括以下之一:
至少一个先听后说LBT带宽资源;
至少一个资源块RB。
根据本公开实施例的第三方面,提供一种资源配置装置,其中,应用于基站,所述装置包括:配置模块,其中,
所述配置模块,配置为配置基于帧的设备FBE参数,其中,所述FBE参数,包括:指示进行空闲信道评估CCA的频域资源的频域参数。
在一个实施例中,所述FBE参数包括至少以下之一:
第一FBE参数,其中,所述第一FBE参数,包括:指示进行CCA的上行频域资源的上行频域参数;
第二FBE参数,其中,所述第二FBE参数,包括:指示进行CCA的 下行频域资源的下行频域参数。
在一个实施例中,所述上行频域参数指示的所述上行频域资源不同于所述下行频域参数指示的所述下行频域资源。
在一个实施例中,所述装置还包括:
发送模块,配置为向UE发送所述FBE参数。
在一个实施例中,所述发送模块,包括以下之一:
第一发送子模块,配置为向所述UE发送携带有所述FBE参数的RRC信令;
第二发送子模块,配置为向所述UE广播携带有所述FBE参数的广播信息。
在一个实施例中,所述第一发送子模块,包括:
发送单元,配置为向所述UE发送携带有与所述UE关联的所述FBE参数的所述RRC信令。
在一个实施例中,所述频域资源,至少包括以下之一:
至少一个先听后说LBT带宽资源;
至少一个资源块RB。
在一个实施例中,当向多于一个UE发送所述FBE参数时,所述FBE参数包括的所述频域参数为不同的所述UE指示不同的所述频域资源。
根据本公开实施例的第四方面,提供一种资源配置装置,其中,应用于用户设备UE,所述装置包括:接收模块,其中,
所述接收模块,配置为接收基于帧的设备FBE参数,其中,所述FBE参数,包括:指示进行空闲信道评估CCA的频域资源的频域参数。
在一个实施例中,所述接收模块,包括至少以下之一:
第一接收子模块,配置为接收第一FBE参数,其中,所述第一FBE参数,包括:指示进行CCA的上行频域资源的上行频域参数;
第二接收子模块,配置为接收第二FBE参数,其中,所述第二FBE参数,包括:指示进行CCA的下行频域资源的下行频域参数。
在一个实施例中,所述上行频域参数指示的所述上行频域资源不同于所述下行频域参数指示的所述下行频域资源。
在一个实施例中,所述装置还包括:
确定模块,配置为根据所述频域参数,确定进行CCA的频域资源。
在一个实施例中,所述接收模块,包括以下之一:
第三接收模块,配置为接收携带有所述FBE参数的RRC信令;
第四接收模块,配置为接收携带有所述FBE参数的广播信息。
在一个实施例中,所述第三接收模块,包括:
接收单元,配置为接收携带有与所述UE关联的所述FBE参数的RRC信令。
在一个实施例中,所述频域资源,至少包括以下之一:
至少一个先听后说LBT带宽资源;
至少一个资源块RB。
根据本公开实施例的第五方面,提供一种通信设备装置,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如第一方面或第二方面所述资源配置方法的步骤。
根据本公开实施例的第六方面,提供一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如第一方面或第二方面所述资源配置方法的步骤。根据本公开实施例提供的资源配置方法、装置、通信设备和存储介质,包括:基站配置基于帧的设备FBE参数,其中,所述FBE参数,包括:指示进行空闲信道评估CCA的频域资源的频域参数。如此,配置包含频域参数的FBE参数,可以对CCA的频域资源进行配置, 如为基站和UE配置的频域参数可以将不同的传输分配不同的频域资源上,从而降低进行CCA的频域资源的冲突,进而提高数据传输的效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的FFP时序示意图;
图3是根据一示例性实施例示出的一种资源配置方法的流程示意图;
图4是根据一示例性实施例示出的另一种资源配置方法的流程示意图;
图5是根据一示例性实施例示出的又一种资源配置方法的流程示意图;
图6是根据一示例性实施例示出的再一种资源配置方法的流程示意图;
图7是根据一示例性实施例示出的一种资源配置装置的框图;
图8是根据一示例性实施例示出的另一种资源配置装置的框图;
图9是根据一示例性实施例示出的一种用于资源配置的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单 数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
本公开实施例涉及的执行主体包括但不限于:支持蜂窝移动通信的手机终端等UE,以及基站等。
本公开实施例的一个应用场景为,基于帧的设备(FBE,frame based equipment)一种执行特定信道接入方式的终端,在该方式下,数据发送端会以固定周期(FFP,fixed frame period)的进行信道监听。在开始数据传输之前,数据发送端只需要在一个观察时隙(observation slot)上进行CCA,判断信道空闲后,即可开始传输数据。如图2所示,每个FFP中都会在尾部包含固定时长的空闲时段(idle duration),除去空闲时段和CCA的观察时隙,FFP中其他的部分就是数据发送端在一次连续的传输中最大允许的占用信道时间COT。
UE作为发起端FBE占用信道(initiated COT for FBE)的通信中,UE的上行信道仍然需要基站预先配置或者动态调度,以保证基站能够预知上行发送所使用的资源位置、调制方式等以准确接收上行信息。在COT内,终端可以采用配置授权上行物理共享信道(CG-PUSCH,Configured Grant–Physical Uplink Shared Channel)、动态调度(DS,dynamic scheduled)PUSCH、物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)等资源 上行数据。
基站配置FBE参数时,会配置FFP周期参数、空闲时段等时域参数。
如图3所示,本示例性实施例提供一种资源配置方法,资源配置方法可以应用于蜂窝移动通信系统的基站中,包括:
步骤301:配置基于帧的设备FBE参数,其中,所述FBE参数,包括:指示进行空闲信道评估CCA的频域资源的频域参数。
基站可以包括但不限于蜂窝移动通信系统中的基站,基站可以包括但不限于蜂窝移动通信系统中的UE。
基站和UE可以通过授权的蜂窝移动通信频谱资源进行无线通信,也可以通过非授权的频谱资源进行无线通信。蜂窝移动通信系统可以与Wi-Fi系统等共享非授权频谱资源。
相关技术中,在基站和UE进行FBE的通信中,基站会进行FBE参数的配置。如图2所示,基站可以配置FFP周期参数、空闲时段等时域参数。另一方面,基站可以在系统消息等广播信息携带可供使用的频域资源。基站采用时分复用的方式调度上行频域资源和下行频域资源。频域资源使用效率较低。
这里,基站在配置FBE参数时可以同时在FBE参数中配置频域参数。频域参数可以是用于指示进行CCA的频域资源。这里频域资源可以是进行CCA的频谱范围等。频域参数可以指示基站进行CCA的频域资源,和/或,各UE进行CCA的频谱资源。基站可以通过UE专用信令为UE配置频域参数。
示例性的,基站可以通过UE专用信令为UE配置LBT带宽。这里,基站可以在FBE参数中给UE配置至少一个LBT带宽资源。
由基站配置频域参数,可以为不同UE与基站之间的通信实现频分复用(FDD)提供基础。不同UE之间的上行传输可以在不同的频域资源上同时 进行。UE的上行传输与基站下行传输可以在不同的频域资源上同时进行通信。
示例性的,假定在基站和UE通信频率包括4个LBT band(1-4)的情况下,基站可以给UE1配置UE作为发起端FBE占用信道的频域参数为LBT band 1,给UE2配置UE作为发起端FBE占用信道的频域参数为LBT band 2。基站给自身配置基站作为发起端FBE占用信道频域参数为LBT band 3/4。通过如此配置,LBT band 1/2用于上行传输,LBT band 3/4用于下行传输。由于上下行传输使用了完全不同的频带,因而能做到上下行互不干扰的同时传输,降低了数据传输的时延,实现了在非授权频谱上的FDD。
如此,配置包含频域参数的FBE参数,可以对CCA的频域资源进行配置,如为基站和UE配置的频域参数可以将不同的传输分配不同的频域资源上,从而降低进行CCA的频域资源的冲突,进而提高数据传输的效率。
在一个实施例中,所述FBE参数包括至少以下之一:
第一FBE参数,其中,所述第一FBE参数,包括:指示进行CCA的上行频域资源的上行频域参数;
第二FBE参数,其中,所述第二FBE参数,包括:指示进行CCA的下行频域资源的下行频域参数。
针对下行数据,即基站作为发起端FBE占用信道,基站采用下行频域资源进行传输。可以由基站进行CCA。
针对上行数据,即UE作为发起端FBE占用信道,UE采用上行频域资源进行传输。可以由UE进行CCA。
基站可以分别配置针对上行传输和下行传输的FBE参数。
这里,针对上行传输的FBE参数,可以包含指示上行频域资源的上行频域参数。UE可以根据上行频域参数确定在FBE通信中,UE进行上行传输时,在FFP内进行CCA的频域资源。
针对下行传输的FBE参数,可以包含指示下行频域资源的下行频域参数。基站可以根据下行频域参数确定在FBE通信中,基站进行下行传输时,在FFP内进行CCA的频域资源。
在一个实施例中,当向多于一个UE发送所述FBE参数时,所述FBE参数包括的所述频域参数为不同的所述UE指示不同的所述频域资源。
基站可以将不同的频域资源配置给不同的UE。这里,频域资源包括上行频域资源和下行频域资源。如此,不同UE可以利用自己的频域资源在同时进行传输,实现FDD,提高频率资源使用效率,降低传输延迟。
在一个实施例中,所述上行频域参数指示的所述上行频域资源不同于所述下行频域参数指示的所述下行频域资源。
基站可以将下行传输和上行传输分别配置到不同的频域资源上,从而避免上行传输和下行传输的冲突,能实现上行和下行同时传输。提高频率资源使用效率,降低传输延迟。
在一个实施例中,如图4所示,所述方法还包括:
步骤302:向UE发送所述FBE参数。
基站可以将配置的FBE参数发送给UE。UE可以根据下发的FBE参数确定下行频域资源和/或上行频域资源。
UE可以在上行频域参数指示的上行频域资源进行CCA,确定上行频域资源的占用情况。
在一个实施例中,UE也可在下行频域参数指示的下行频域资源进行CCA,辅助基站进行下行频域资源的监听。
在一个实施例中,所述向UE发送所述FBE参数,包括以下之一:
向所述UE发送携带有所述FBE参数的RRC信令;
向所述UE广播携带有所述FBE参数的广播信息。
基站还可以通过专用信令,如RRC信令,携带该FBE参数。基站需要 分别向每个UE分别发送携带包含下行频域参数的FBE参数RRC信令。终端获得包含下行频域参数的FBE参数后,可以在对应的下行频域上监听下行传输。
基站还可以通过专用信令,如RRC信令,携带该FBE参数。通过RRC信令发送的FBE参数所包含上行频域参数可以指示配置给RRC信令接收端UE进行CCA的频域资源。
基站还可以通过广播系统消息,向各UE广播包含上行频域参数的FBE参数,广播的FBE参数可以包含一个或多个UE的上行频域参数。不同UE的上行频域参数可以分别用个UE的标识信息进行标识,如此,UE可以根据标识信息确定各自的上行频域参数。
基站可以在系统消息等广播信息携带上行频域参数和下行频域参数,指示可供下行传输使用的频域资源和可供上行传输使用的频域资源。基站在基站配置的用于下行传输的频域资源内进行CCA及下行传输,终端在基站配置的用于上行传输的频域资源内进行CCA及上行传输。基站可以将下行传输和上行传输分别配置到不同的频域资源上,从而避免上行传输和下行传输的冲突,能实现上行和下行同时传输。
在一个实施例中,所述向所述UE发送携带有所述FBE参数的RRC信令,包括:
向所述UE发送携带有与所述UE关联的所述FBE参数的所述RRC信令。
基站可以将与UE关联的上行频域参数和下行频域参数通过RRC信令发送给UE。
基站可以将下行频域参数通过RRC信令发送给UE,UE可以确定基站下行频域资源。在一个实施例中,UE可以进行辅助CCA,即由数据接收端辅助监听下行频域资源的监听。
通过RRC信令携带的上行频域参数,可以通过UE专用信令将上行频域参数发送给UE,从而基站可以为不同的UE配置不同的上行频域资源。UE可以确定自身的上行频域资源,并进行CCA。
在一个实施例中,所述频域资源,至少包括以下之一:
至少一个先听后说LBT带宽资源;
至少一个资源块RB。
基站和UE之间的通信以LBT带宽为单位占用频域资源。基站和一个UE之间的通信可以占用一个或多个LBT带宽。频域参数指示的频域资源可以是指LBT带宽资源。
示例性的,假定在基站和UE通信频率包括4个LBT band(1-4)的情况下,基站可以给UE1配置UE作为发起端FBE占用信道的频域参数为LBT band 1,基站给自身配置基站作为发起端FBE占用信道频域参数为LBT band 3/4。
LBT带宽资源可以由RB构成。频域参数可以指示RB,如指示RB的数量。可以根据RB的数量,每个RB的子载波书和子载波宽度,确定频域参数所指示的频域带宽。
如图5所示,本示例性实施例提供一种资源配置方法,资源配置方法可以应用于蜂窝移动通信系统的UE中,包括:
步骤501:接收基于帧的设备FBE参数,其中,所述FBE参数,包括:指示进行空闲信道评估CCA的频域资源的频域参数。
基站可以包括但不限于蜂窝移动通信系统中的基站,基站可以包括但不限于蜂窝移动通信系统中的UE。
基站和UE可以通过授权的蜂窝移动通信频谱资源进行无线通信,也可以通过非授权的频谱资源进行无线通信。蜂窝移动通信系统可以与Wi-Fi系统等共享非授权频谱资源。
相关技术中,在基站和UE进行FBE的通信中,基站会进行FBE参数的配置。如图2所示,基站可以配置FFP周期参数、空闲时段等时域参数。另一方面,基站可以在系统消息等广播信息携带可供使用的频域资源。基站采用时分复用的方式调度上行频域资源和下行频域资源。频域资源使用效率较低。。
这里,基站在配置FBE参数时可以同时在FBE参数中配置频域参数。频域参数可以是用于指示进行CCA的频域资源。这里频域资源可以是进行CCA的频谱范围等。频域参数可以指示基站进行CCA的频域资源,和/或,各UE进行CCA的频谱资源。基站可以通过UE专用信令为UE配置频域参数。
示例性的,基站可以通过UE专用信令为UE配置频域参数。这里,基站可以在FBE参数中给UE配置至少一个LBT带宽资源。
由基站配置频域参数,可以为不同UE与基站之间的通信实现频分复用(FDD)提供基础。不同UE之间的上行传输可以在不同的频域资源上同时进行。UE的上行传输与基站之间的上行传输可以在不同的频域资源上同时进行通信。
示例性的,假定在基站和UE通信频率包括4个LBT band(1-4)的情况下,基站可以给UE1配置UE作为发起端FBE占用信道的频域参数为LBT band 1,给UE2配置UE作为发起端FBE占用信道的频域参数为LBT band 2。基站给自身配置基站作为发起端FBE占用信道频域参数为LBT band 3/4。通过如此配置,LBT band 1/2用于上行传输,LBT band 3/4用于下行传输。由于上下行传输使用了完全不同的频带,因而能做到上下行互不干扰的同时传输,降低了数据传输的时延,实现了在非授权频谱上的FDD。
基站可以将配置的FBE参数发送给UE。UE可以根据下发的FBE参数确定下行频域资源和/或上行频域资源。
UE可以在上行频域参数指示的上行频域资源进行CCA,确定上行频域资源的占用情况。
在一个实施例中,UE也可在下行频域参数指示的下行频域资源进行CCA,辅助基站进行下行频域资源的监听。
如此,配置包含频域参数的FBE参数,可以对CCA的频域资源进行配置,如为基站和UE配置的频域参数可以将不同的传输分配不同的频域资源上,从而降低进行CCA的频域资源的冲突,进而提高数据传输的效率。
在一个实施例中,所述接收FBE参数,包括至少以下之一:
接收第一FBE参数,其中,所述第一FBE参数,包括:指示进行CCA的上行频域资源的上行频域参数;
接收第二FBE参数,其中,所述第二FBE参数,包括:指示进行CCA的下行频域资源的下行频域参数。
针对下行数据,即基站作为发起端FBE占用信道,基站采用下行频域资源进行传输。可以由基站进行CCA。
针对上行数据,即UE作为发起端FBE占用信道,UE采用上行频域资源进行传输。可以由UE进行CCA。
基站可以分别配置针对上行传输和下行传输的FBE参数。
这里,针对上行传输的FBE参数,可以包含指示上行频域资源的上行频域参数。UE可以根据上行频域参数确定在FBE通信中,UE进行上行传输时,在FFP内进行CCA的频域资源。
针对下行传输的FBE参数,可以包含指示下行频域资源的下行频域参数。基站可以根据下行频域参数确定在FBE通信中,基站进行下行传输时,在FFP内进行CCA的频域资源。
在一个实施例中,当向多于一个UE发送所述FBE参数时,所述FBE参数包括的所述频域参数为不同的所述UE指示不同的所述频域资源。
基站可以将不同的频域资源配置给不同的UE。这里,频域资源包括上行频域资源和下行频域资源。如此,不同UE可以利用自己的频域资源在同时进行传输,实现FDD,提高频率资源使用效率,降低传输延迟。
在一个实施例中,所述上行频域参数指示的所述上行频域资源不同于所述下行频域参数指示的所述下行频域资源。
基站可以将下行传输和上行传输分别配置到不同的频域资源上,从而避免上行传输和下行传输的冲突,能实现上行和下行同时传输。提高频率资源使用效率,降低传输延迟。
在一个实施例中,如图6所示,所述方法还包括:
步骤502:根据所述频域参数确定进行CCA的频域资源。
UE接收到FBE参数后,可以确定基站进行数据下行的频域资源,和/或,基站为UE配置的数据上行的频域资源。
在一个实施例中,所述接收FBE参数,包括以下之一:
接收携带有所述FBE参数的RRC信令;
接收携带有所述FBE参数的广播信息。
基站还可以通过专用信令,如RRC信令,携带该FBE参数。基站需要分别向每个UE分别发送携带包含下行频域参数的FBE参数RRC信令。终端获得包含下行频域参数的FBE参数后,可以在对应的下行频域上监听下行传输。
基站还可以通过专用信令,如RRC信令,携带该FBE参数。通过RRC信令发送的FBE参数所包含上行频域参数可以指示配置给RRC信令接收端UE进行CCA的频域资源。
基站还可以通过广播系统消息,向各UE广播包含上行频域参数的FBE参数,广播的FBE参数可以包含一个或多个UE的上行频域参数。不同UE的上行频域参数可以分别用个UE的标识信息进行标识,如此,UE可以根 据标识信息确定各自的上行频域参数。
基站可以在系统消息等广播信息携带上行频域参数和下行频域参数,指示可供下行传输使用的频域资源和可供上行传输使用的频域资源。基站在基站配置的用于下行传输的频域资源内进行CCA及下行传输,终端在基站配置的用于上行传输的频域资源内进行CCA及上行传输。基站可以将下行传输和上行传输分别配置到不同的频域资源上,从而避免上行传输和下行传输的冲突,能实现上行和下行同时传输。
在一个实施例中,所述接收携带有所述FBE参数的RRC信令,包括:
接收携带有与所述UE关联的所述FBE参数的RRC信令。
基站可以将与UE关联的上行频域参数和下行频域参数通过RRC信令发送给UE。
基站可以将下行频域参数通过RRC信令发送给UE,UE可以确定基站下行频域资源。在一个实施例中,UE可以进行辅助CCA,即由数据接收端辅助监听下行频域资源的监听。
通过RRC信令携带的上行频域参数,可以通过UE专用信令将上行频域参数发送给UE,从而基站可以为不同的UE配置不同的上行频域资源。UE可以确定自身的上行频域资源,并进行CCA。
在一个实施例中,所述频域资源,至少包括以下之一:
至少一个先听后说LBT带宽资源;
至少一个资源块RB。
基站和UE之间的通信以LBT带宽为单位占用频域资源。基站和一个UE之间的通信可以占用一个或多个LBT带宽。频域参数指示的频域资源可以是指LBT带宽资源。
示例性的,假定在基站和UE通信频率包括4个LBT band(1-4)的情况下,基站可以给UE1配置UE作为发起端FBE占用信道的频域参数为LBT  band 1,基站给自身配置基站作为发起端FBE占用信道频域参数为LBT band 3/4。
LBT带宽资源可以由RB构成。频域参数可以指示RB,如指示RB的数量。可以根据RB的数量,每个RB的子载波书和子载波宽度,确定频域参数所指示的频域带宽。
以下结合上述任意实施例提供一个具体示例:
相关技术中,基站配置FBE参数时,会配置FFP周期参数、空闲时段(idle duration)时长等,都是时域参数。
本示例中,基站为终端配置UE作为发起端FBE占用信道(UE initiated COT for FBE)参数,除了FFP周期参数/空闲时段等时域参数之外,还可以配置该终端进行CCA监听的频域参数,例如一个或者多个LBT band,或者频域上多个RB的集合。终端只在被配置的一个或者多个LBT band,或者频域上多个RB的集合上,进行CCA,并依据CCA的结果确定是否发送上行数据。
基站在配置本基站的FBE参数时,也可以包含频域参数例如一个或者多个LBT band,或者频域上多个RB的集合。基站只在被配置的一个或者多个LBT band,或者频域上多个RB的集合上,进行CCA,并依据CCA的结果确定是否发送下行数据。
在FBE参数中配置频域参数的好处是,可以实现FDD的数据传输方式,因而能上下行数据同时传输,相比于一般非授权频段中的TDD方式,降低了数据传输的时延。
示例性的,假定在基站和UE通信频率包括4个LBT band(1-4)的情况下,基站可以给UE1配置UE作为发起端FBE占用信道的频域参数为LBT band 1,给UE2配置UE作为发起端FBE占用信道的频域参数为LBT band 2。基站给自身配置基站作为发起端FBE占用信道频域参数为LBT band 3/4。 通过如此配置,LBT band 1/2用于上行传输,LBT band 3/4用于下行传输。由于上下行传输使用了完全不同的频带,因而能做到上下行互不干扰的同时传输,降低了数据传输的时延,实现了在非授权频谱上的FDD。
本发明实施例还提供了一种资源配置装置,应用于无线通信的数据帧发送端中,如图7所示,所述资源配置装置100包括:配置模块110,其中,
所述配置模块110,配置为配置基于帧的设备FBE参数,其中,所述FBE参数,包括:指示进行空闲信道评估CCA的频域资源的频域参数。
在一个实施例中,所述FBE参数包括至少以下之一:
第一FBE参数,其中,所述第一FBE参数,包括:指示进行CCA的上行频域资源的上行频域参数;
第二FBE参数,其中,所述第二FBE参数,包括:指示进行CCA的下行频域资源的下行频域参数。
在一个实施例中,所述上行频域参数指示的所述上行频域资源不同于所述下行频域参数指示的所述下行频域资源。
在一个实施例中,所述装置100还包括:
发送模块120,配置为向UE发送所述FBE参数。
在一个实施例中,所述发送模块120,包括以下之一:
第一发送子模块121,配置为向所述UE发送携带有所述FBE参数的RRC信令;
第二发送子模块122,配置为向所述UE广播携带有所述FBE参数的广播信息。
在一个实施例中,所述第一发送子模块121,包括:
发送单元1211,配置为向所述UE发送携带有与所述UE关联的所述FBE参数的所述RRC信令。
在一个实施例中,所述频域资源,至少包括以下之一:
至少一个先听后说LBT带宽资源;
至少一个资源块RB。
在一个实施例中,当向多于一个UE发送所述FBE参数时,所述FBE参数包括的所述频域参数为不同的所述UE指示不同的所述频域资源。
根据本公开实施例的第四方面,提供一种资源配置装置,应用于用户设备UE中,如图8所示,所述装置包括:接收模块210,其中,
所述接收模块210,配置为接收基于帧的设备FBE参数,其中,所述FBE参数,包括:指示进行空闲信道评估CCA的频域资源的频域参数。
在一个实施例中,所述接收模块210,包括至少以下之一:
第一接收子模块211,配置为接收第一FBE参数,其中,所述第一FBE参数,包括:指示进行CCA的上行频域资源的上行频域参数;
第二接收子模块212,配置为接收第二FBE参数,其中,所述第二FBE参数,包括:指示进行CCA的下行频域资源的下行频域参数。
在一个实施例中,所述上行频域参数指示的所述上行频域资源不同于所述下行频域参数指示的所述下行频域资源。
在一个实施例中,所述装置200还包括:
确定模块220,配置为根据所述频域参数,确定进行CCA的频域资源。
在一个实施例中,所述接收模块210,包括以下之一:
第三接收模块213,配置为接收携带有所述FBE参数的RRC信令;
第四接收模块214,配置为接收携带有所述FBE参数的广播信息。
在一个实施例中,所述第三接收模块213,包括:
接收单元2131,配置为接收携带有与所述UE关联的所述FBE参数的RRC信令。
在一个实施例中,所述频域资源,至少包括以下之一:
至少一个先听后说LBT带宽资源;
至少一个资源块RB。
在示例性实施例中,配置模块110、发送模块120、接收模块210和确定模块220等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,baseband processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图9是根据一示例性实施例示出的一种用于资源配置的装置3000的框图。例如,装置3000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图9,装置3000可以包括以下一个或多个组件:处理组件3002,存储器3004,电源组件3006,多媒体组件3008,音频组件3010,输入/输出(I/O)的接口3012,传感器组件3014,以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在装置3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3004可以由 任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以包括电源管理系统,一个或多个电源,及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当装置3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到装置3000的打开/关闭状态,组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变,用户与装置3000接触的存在或不存在,装置3000方位或加速/减速和装置3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设 备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (32)

  1. 一种资源配置方法,其中,应用于基站,所述方法包括:
    配置基于帧的设备FBE参数,其中,所述FBE参数,包括:指示进行空闲信道评估CCA的频域资源的频域参数。
  2. 根据权利要求1所述的方法,其中,所述FBE参数包括至少以下之一:
    第一FBE参数,其中,所述第一FBE参数,包括:指示进行CCA的上行频域资源的上行频域参数;
    第二FBE参数,其中,所述第二FBE参数,包括:指示进行CCA的下行频域资源的下行频域参数。
  3. 根据权利要求2所述的方法,其中,所述上行频域参数指示的所述上行频域资源不同于所述下行频域参数指示的所述下行频域资源。
  4. 根据权利要求1至3任一项所述的方法,其中,所述方法还包括:
    向UE发送所述FBE参数。
  5. 根据权利要求4所述的方法,其中,所述向UE发送所述FBE参数,包括以下之一:
    向所述UE发送携带有所述FBE参数的RRC信令;
    向所述UE广播携带有所述FBE参数的广播信息。
  6. 根据权利要求5所述的方法,其中,所述向所述UE发送携带有所述FBE参数的RRC信令,包括:
    向所述UE发送携带有与所述UE关联的所述FBE参数的所述RRC信令。
  7. 根据权利要求1至3任一项所述的方法,其中,所述频域资源,至少包括以下之一:
    至少一个先听后说LBT带宽资源;
    至少一个资源块RB。
  8. 根据权利要求1至3任一项所述的方法,其中,当向多于一个UE发送所述FBE参数时,所述FBE参数包括的所述频域参数为不同的所述UE指示不同的所述频域资源。
  9. 一种资源配置方法,其中,应用于用户设备UE,所述方法包括:
    接收基于帧的设备FBE参数,其中,所述FBE参数,包括:指示进行空闲信道评估CCA的频域资源的频域参数。
  10. 根据权利要求9所述的方法,其中,所述接收FBE参数,包括至少以下之一:
    接收第一FBE参数,其中,所述第一FBE参数,包括:指示进行CCA的上行频域资源的上行频域参数;
    接收第二FBE参数,其中,所述第二FBE参数,包括:指示进行CCA的下行频域资源的下行频域参数。
  11. 根据权利要求10所述的方法,其中,所述上行频域参数指示的所述上行频域资源不同于所述下行频域参数指示的所述下行频域资源。
  12. 根据权利要求9所述的方法,其中,所述方法还包括:
    根据所述频域参数确定进行CCA的频域资源。
  13. 根据权利要求9至12任一项所述的方法,其中,所述接收FBE参数,包括以下之一:
    接收携带有所述FBE参数的RRC信令;
    接收携带有所述FBE参数的广播信息。
  14. 根据权利要求13所述的方法,其中,所述接收携带有所述FBE参数的RRC信令,包括:
    接收携带有与所述UE关联的所述FBE参数的RRC信令。
  15. 根据权利要求9至12任一项所述的方法,其中,所述频域资源, 至少包括以下之一:
    至少一个先听后说LBT带宽资源;
    至少一个资源块RB。
  16. 一种资源配置装置,其中,应用于基站,所述装置包括:配置模块,其中,
    所述配置模块,配置为配置基于帧的设备FBE参数,其中,所述FBE参数,包括:指示进行空闲信道评估CCA的频域资源的频域参数。
  17. 根据权利要求16所述的装置,其中,所述FBE参数包括至少以下之一:
    第一FBE参数,其中,所述第一FBE参数,包括:指示进行CCA的上行频域资源的上行频域参数;
    第二FBE参数,其中,所述第二FBE参数,包括:指示进行CCA的下行频域资源的下行频域参数。
  18. 根据权利要求17所述的装置,其中,所述上行频域参数指示的所述上行频域资源不同于所述下行频域参数指示的所述下行频域资源。
  19. 根据权利要求16至18任一项所述的装置,其中,所述装置还包括:
    发送模块,配置为向UE发送所述FBE参数。
  20. 根据权利要求19所述的装置,其中,所述发送模块,包括以下之一:
    第一发送子模块,配置为向所述UE发送携带有所述FBE参数的RRC信令;
    第二发送子模块,配置为向所述UE广播携带有所述FBE参数的广播信息。
  21. 根据权利要求20所述的装置,其中,所述第一发送子模块,包括:
    发送单元,配置为向所述UE发送携带有与所述UE关联的所述FBE参数的所述RRC信令。
  22. 根据权利要求16至18任一项所述的装置,其中,所述频域资源,至少包括以下之一:
    至少一个先听后说LBT带宽资源;
    至少一个资源块RB。
  23. 根据权利要求16至18任一项所述的装置,其中,当向多于一个UE发送所述FBE参数时,所述FBE参数包括的所述频域参数为不同的所述UE指示不同的所述频域资源。
  24. 一种资源配置装置,其中,应用于用户设备UE,所述装置包括:接收模块,其中,
    所述接收模块,配置为接收基于帧的设备FBE参数,其中,所述FBE参数,包括:指示进行空闲信道评估CCA的频域资源的频域参数。
  25. 根据权利要求24所述的装置,其中,所述接收模块,包括至少以下之一:
    第一接收子模块,配置为接收第一FBE参数,其中,所述第一FBE参数,包括:指示进行CCA的上行频域资源的上行频域参数;
    第二接收子模块,配置为接收第二FBE参数,其中,所述第二FBE参数,包括:指示进行CCA的下行频域资源的下行频域参数。
  26. 根据权利要求25所述的装置,其中,所述上行频域参数指示的所述上行频域资源不同于所述下行频域参数指示的所述下行频域资源。
  27. 根据权利要求24所述的装置,其中,所述装置还包括:
    确定模块,配置为根据所述频域参数,确定进行CCA的频域资源。
  28. 根据权利要求24至27任一项所述的装置,其中,所述接收模块,包括以下之一:
    第三接收模块,配置为接收携带有所述FBE参数的RRC信令;
    第四接收模块,配置为接收携带有所述FBE参数的广播信息。
  29. 根据权利要求28所述的装置,其中,所述第三接收模块,包括:
    接收单元,配置为接收携带有与所述UE关联的所述FBE参数的RRC信令。
  30. 根据权利要求24至27任一项所述的装置,其中,所述频域资源,至少包括以下之一:
    至少一个先听后说LBT带宽资源;
    至少一个资源块RB。
  31. 一种通信设备装置,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至8、或9至15任一项所述资源配置方法的步骤。
  32. 一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如权利要求1至8、或9至15任一项所述资源配置方法的步骤。
PCT/CN2020/108899 2020-08-13 2020-08-13 资源配置方法、装置、通信设备和存储介质 WO2022032571A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/014,115 US20230269767A1 (en) 2020-08-13 2020-08-13 Method for resource configuration, and communication device
CN202080001902.0A CN114365578B (zh) 2020-08-13 2020-08-13 资源配置方法、装置、通信设备和存储介质
PCT/CN2020/108899 WO2022032571A1 (zh) 2020-08-13 2020-08-13 资源配置方法、装置、通信设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108899 WO2022032571A1 (zh) 2020-08-13 2020-08-13 资源配置方法、装置、通信设备和存储介质

Publications (1)

Publication Number Publication Date
WO2022032571A1 true WO2022032571A1 (zh) 2022-02-17

Family

ID=80246781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108899 WO2022032571A1 (zh) 2020-08-13 2020-08-13 资源配置方法、装置、通信设备和存储介质

Country Status (3)

Country Link
US (1) US20230269767A1 (zh)
CN (1) CN114365578B (zh)
WO (1) WO2022032571A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106454881A (zh) * 2015-08-06 2017-02-22 中兴通讯股份有限公司 数据发送、接收方法及装置
CN106686603A (zh) * 2015-11-05 2017-05-17 中兴通讯股份有限公司 信道干净评估检测方法和装置
WO2018152985A1 (zh) * 2017-02-27 2018-08-30 华为技术有限公司 数据发送方法和用户设备
US20190281482A1 (en) * 2015-04-17 2019-09-12 Qualcomm Incorporated Control of ue clear channel assessment by an enb
WO2020035026A1 (en) * 2018-08-17 2020-02-20 Huawei Technologies Co., Ltd. Network-assisted Clear Channel Assessment Bandwidth Adaptation Mechanism
WO2020034437A1 (en) * 2018-11-02 2020-02-20 Zte Corporation Interference mitigation in wireless systems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160121781A (ko) * 2015-04-10 2016-10-20 한국전자통신연구원 상향링크 자원 할당 방법 및 장치
CN107889114B (zh) * 2016-09-30 2023-11-17 华为技术有限公司 一种非授权频谱信道占用的方法及设备
CN110945937B (zh) * 2017-12-01 2023-06-20 Oppo广东移动通信有限公司 用于数据传输时隙中数据符号的确定
US11140708B2 (en) * 2018-07-30 2021-10-05 Samsung Electronics Co., Ltd. Method and apparatus for frame based equipment operation of NR unlicensed
CN110831179A (zh) * 2018-08-10 2020-02-21 索尼公司 用于无线通信系统的电子设备、方法和存储介质
CN110890953B (zh) * 2018-09-11 2022-07-19 华为技术有限公司 使用免授权频段的通信方法和通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190281482A1 (en) * 2015-04-17 2019-09-12 Qualcomm Incorporated Control of ue clear channel assessment by an enb
CN106454881A (zh) * 2015-08-06 2017-02-22 中兴通讯股份有限公司 数据发送、接收方法及装置
CN106686603A (zh) * 2015-11-05 2017-05-17 中兴通讯股份有限公司 信道干净评估检测方法和装置
WO2018152985A1 (zh) * 2017-02-27 2018-08-30 华为技术有限公司 数据发送方法和用户设备
WO2020035026A1 (en) * 2018-08-17 2020-02-20 Huawei Technologies Co., Ltd. Network-assisted Clear Channel Assessment Bandwidth Adaptation Mechanism
WO2020034437A1 (en) * 2018-11-02 2020-02-20 Zte Corporation Interference mitigation in wireless systems

Also Published As

Publication number Publication date
CN114365578A (zh) 2022-04-15
US20230269767A1 (en) 2023-08-24
CN114365578B (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
CN110337830B (zh) 监听方法、信令下发方法及装置、通信设备及存储
CN110622617A (zh) 信息处理方法、装置及计算机存储介质
CN110495196B (zh) 能力参数处理方法及装置、通信设备及存储介质
WO2022027496A1 (zh) 资源配置方法、装置、通信设备和存储介质
WO2022133826A1 (zh) 资源选择方法、资源选择装置及存储介质
WO2021184217A1 (zh) 信道状态信息测量方法、装置及计算机存储介质
WO2022052024A1 (zh) 参数配置方法、装置、通信设备和存储介质
WO2022183456A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022120854A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021114050A1 (zh) 非连续接收drx的处理方法、装置及计算机存储介质
CN110945921A (zh) 被调度载波的激活时刻确定方法及装置、设备及介质
WO2021174510A1 (zh) 无线网络接入方法、装置、通信设备及存储介质
WO2021102990A1 (zh) 短周期配置方法、装置、通信设备及存储介质
WO2022032581A1 (zh) 上行传输的发送、接收方法及装置、通信设备及介质
WO2022006759A1 (zh) 信息传输方法、装置、通信设备和存储介质
CN113228794A (zh) 上行传输时域资源的确定方法及装置、ue、网络设备及存储介质
WO2022151387A1 (zh) 信息动态指示方法及装置、网络设备、用户设备及存储介质
WO2022126576A1 (zh) 无线通信方法及装置、通信设备及存储介质
WO2021203245A1 (zh) 传输数据的指示方法、装置、通信设备及存储介质
WO2022077377A1 (zh) 通信方法及装置、网络设备、用户设备及存储介质
WO2021258371A1 (zh) 直连通信控制方法、装置及用户设备
WO2022032571A1 (zh) 资源配置方法、装置、通信设备和存储介质
US20220408469A1 (en) Downlink control information configuration method and apparatus, and communication device and storage medium
WO2023197188A1 (zh) 信息传输方法、装置、通信设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949070

Country of ref document: EP

Kind code of ref document: A1