WO2022030610A1 - Stud pin and tire comprising same - Google Patents

Stud pin and tire comprising same Download PDF

Info

Publication number
WO2022030610A1
WO2022030610A1 PCT/JP2021/029267 JP2021029267W WO2022030610A1 WO 2022030610 A1 WO2022030610 A1 WO 2022030610A1 JP 2021029267 W JP2021029267 W JP 2021029267W WO 2022030610 A1 WO2022030610 A1 WO 2022030610A1
Authority
WO
WIPO (PCT)
Prior art keywords
stud pin
tire
stud
groove
tip
Prior art date
Application number
PCT/JP2021/029267
Other languages
French (fr)
Japanese (ja)
Inventor
孝志 芝井
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to FI20235121A priority Critical patent/FI20235121A1/en
Priority to JP2021546313A priority patent/JP7248135B2/en
Priority to CN202180060350.5A priority patent/CN116157282A/en
Publication of WO2022030610A1 publication Critical patent/WO2022030610A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes

Definitions

  • the present invention relates to a stud pin and a tire equipped with the stud pin, and more specifically, to a stud pin and a tire equipped with the stud pin, which makes it possible to reduce the weight and improve the performance on ice.
  • the stud pin has a body portion embedded in the tread portion of the tire, a tip portion protruding from the tip end side of the body portion and in contact with the road surface, and a flange portion arranged on the base end side of the body portion. ing.
  • the tip portion of the studded pin mainly comes into contact with the icy road surface and exerts its edge effect, so that excellent on-ice performance can be exhibited as compared with the studless tire.
  • An object of the present invention is to provide a stud pin capable of reducing the weight and improving the performance on ice and a tire equipped with the stud pin.
  • the stud pin of the present invention for achieving the above object is arranged on the body portion embedded in the tread portion of the tire, the tip portion protruding from the tip end side of the body portion, and the proximal end side of the body portion.
  • the tip portion has a groove portion on its tip surface, and the total area Sx of the tip portion and the area Sy of the groove portion when viewed in the central axis direction of the body portion are 0.20 ⁇ Sy / Sx ⁇ . It is characterized by satisfying the relationship of 0.50.
  • the tire of the present invention for achieving the above object is characterized in that the above-mentioned stud pin is arranged in the tread portion.
  • the tip portion of the stud pin has a groove portion on the tip surface thereof, and the total area Sx of the tip portion and the area Sy of the groove portion when viewed in the direction of the central axis of the body portion are 0.20 ⁇ Sy. Since the relationship of / Sx ⁇ 0.50 is satisfied, the weight of the stud pin is reduced by forming the groove while suppressing the decrease in the strength of the tip, and the handling performance on ice and the handling performance on ice based on the edge attached to the groove are achieved. It is possible to improve the performance on ice represented by the braking performance. Further, by providing the groove portion on the tip surface of the tip portion, the effect of reducing damage to the road surface can be expected.
  • the shape of the tip portion when viewed in the central axis direction of the body portion has a longitudinal direction
  • the groove portion extends in the lateral direction orthogonal to the longitudinal direction, and both ends open on the side surface of the chip portion.
  • the edge in the lateral direction increases, the performance on ice can be effectively improved.
  • the tip portion when the stud pin is installed so that the longitudinal direction of the tip portion is the tire width direction, the tip portion extends along the tire width direction to improve braking performance on ice, and the groove portion is in the tire circumferential direction. By extending along the line, handling performance on ice is improved.
  • the shape of the tip portion when viewed in the central axis direction of the body portion has a longitudinal direction
  • the groove portion extends in the lateral direction orthogonal to the longitudinal direction, and at least one end thereof is terminated in the chip portion.
  • the thickness We of the chip portion and the maximum width Wz of the chip portion in the lateral direction satisfy the relationship of We / Wz ⁇ 0.10.
  • the edge in the lateral direction increases, so that the performance on ice can be effectively improved.
  • the tip portion when the stud pin is installed so that the longitudinal direction of the tip portion is the tire width direction, the tip portion extends along the tire width direction to improve braking performance on ice, and the groove portion is in the tire circumferential direction.
  • the protrusion height Ht from the body portion of the tip portion and the depth Hg of the groove portion satisfy the relationship of 0.5 ⁇ Hg / Ht.
  • the height Hs of the stud pin and the depth Hg of the groove portion satisfy the relationship of Hg / Hs ⁇ 0.15. As a result, it is possible to sufficiently obtain the effect of weight reduction and the effect of improving the performance on ice while suppressing the decrease in the durability of the chip portion.
  • the cross-sectional area in a plane orthogonal to the central axis of the body portion, the cross-sectional area Sa at the maximum width position of the body portion, and the total area Sx of the chip portion when viewed in the direction of the central axis of the body portion are 0.10 ⁇ . It is preferable to satisfy the relationship of Sx / Sa ⁇ 0.20. As a result, it is possible to sufficiently obtain the effect of weight reduction while suppressing a decrease in the durability of the chip portion. In addition, the effect of reducing damage to the road surface is also improved.
  • the tip portion preferably has a convex portion protruding in a direction orthogonal to the groove portion and a concave portion recessed between both ends of the groove portion and the convex portion toward the central axis of the body portion.
  • the stud pin configured as described above is arranged in the tread portion, it is possible to reduce the weight and improve the performance on ice as compared with the conventional tire.
  • the stud pins are a plurality of first stud pins whose angle formed by the longitudinal direction of the groove with respect to the tire circumferential direction is in the range of 0 ° to 10 °, and the longitudinal direction of the groove is with respect to the tire circumferential direction.
  • the second stud pins include a plurality of second stud pins having an angle larger than that of the first stud pins, and the second stud pins are scattered along the tire circumferential direction with respect to the first stud pins.
  • At least one first stud pin and at least one second stud pin in each of the first region, the second region, and the third region formed when the tread portion is divided into three equal parts in the tire width direction within the ground contact width is preferably arranged. In this case, since the first stud pin and the second stud pin are present over the entire ground contact area of the tread portion, the effect of improving the handling performance on ice can be enhanced.
  • the distance between the pair of second stud pins closest to the tire circumferential direction in the tread portion in the tire circumferential direction is preferably in the range of 1.0% to 100.0% of the ground contact length of the tread portion.
  • the effect of improving the handling performance on ice can be enhanced.
  • the effect of suppressing noise (pin noise) on the dry road surface can be expected.
  • the average protrusion amount Px of the second stud pin and the average protrusion amount Py of the first stud pin satisfy the relationship of Px> Py.
  • the vibration frequency derived from the first stud pin and the vibration frequency derived from the second stud pin are different, so that the average of the second stud pins scattered in the first stud pin is obtained.
  • the frequency dispersion effect of the pin noise is enhanced to improve the noise performance on the dry road surface, while the edge effect of the second stud pin is enhanced to improve the handling performance on ice. Can be improved.
  • the average protrusion amount Px of the second stud pin and the average protrusion amount Py of the first stud pin satisfy the relationship of 1.05 ⁇ Px / Py.
  • the tread portion has a plurality of first inclined grooves that extend inward in the tire width direction from one tread end in the tire width direction and incline in the rotation direction. It is preferable to have a plurality of second inclined grooves extending inward in the tire width direction and inclined in the rotation direction from the tread end on the other side in the tire width direction.
  • Such a V-shaped tread pattern has an advantage that the stud pins are less likely to overlap in the tire circumferential direction because the stud pins are arranged in the land portion formed along the first inclined groove and the second inclined groove. Yes, it can demonstrate excellent on-ice performance based on stud pins.
  • the tire of the present invention is preferably a pneumatic tire, but may be a non-pneumatic tire.
  • the inside thereof can be filled with an inert gas such as air or nitrogen or other gas.
  • the "ground contact width” is formed when a tire is rim-assembled on a regular rim, is placed vertically on a flat surface with a regular internal pressure (in the case of a pneumatic tire), and a regular load is applied. This is the maximum width of the ground contact area in the tire axial direction.
  • the "ground contact length” is the maximum length of the ground contact region in the tire circumferential direction.
  • a “regular rim” is a rim defined for each tire in the standard system including the standard on which the tire is based. For example, JATTA is a standard rim, TRA is "DesignRim", or ETRTO. If so, use "Measuring Rim".
  • Regular internal pressure is the air pressure defined for each tire in the standard system including the standard on which the tire is based. If it is JATTA, it is the maximum air pressure, and if it is TRA, it is the table “TIRE LOAD LIMITED AT VARIOUS". The maximum value described in "COLD INFRATION PRESSURES", if it is ETRTO, it is “INFRATION PRESSURE", but if the tire is for a passenger car, it is 250 kPa.
  • Regular load is the load defined for each tire in the standard system including the standard on which the tire is based. If it is JATTA, it is the maximum load capacity, and if it is TRA, it is the table “TIRE LOAD LIMITED AT VARIOUS". The maximum value described in "COLD INFORMATION PRESSURES" is "LOAD CAPACTY" in the case of ETRTO, but when the tire is for a passenger car, the load is equivalent to 70% of the above load.
  • FIG. 1 is a perspective view showing a stud pin according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the stud pin of FIG.
  • FIG. 3 is a side view showing the stud pin of FIG.
  • FIG. 4 is a plan view showing a stud pin made of another embodiment of the present invention.
  • 5 (a) to 5 (f) are plan views showing deformation examples of the tip portion of the stud pin, respectively.
  • 6 (a) to 6 (d) are plan views showing further deformation examples of the tip portion of the stud pin, respectively.
  • FIG. 7 is a cross-sectional view taken along the meridian showing an example of the pneumatic tire of the present invention.
  • FIG. 8 is a developed view showing a tread pattern of the pneumatic tire shown in FIG. 7.
  • FIG. 9 is a plan view showing the first stud pin and the second stud pin arranged in the tread portion of the pneumatic tire.
  • 1 to 3 show stud pins according to an embodiment of the present invention.
  • the stud pin P of the present embodiment has a body portion 10 embedded in the tread portion of the tire and a tip portion 11 protruding from the tip end side of the body portion 10 and in contact with the road surface. And a flange portion 12 arranged on the base end side of the body portion 10.
  • the body portion 10 extends along its central axis X and has the most bulging structure in the middle portion in the extending direction.
  • On the outer peripheral surface of the body portion 10 a pair of recessed portions 13, 13 that are recessed while being curved toward the central axis X of the body portion 10 are formed. Further, a plurality of inclined surfaces 14 are formed on the tip end side of the body portion 10.
  • a groove portion 15 is formed on the tip surface of the tip portion 11.
  • the groove portion 15 is chamfered on the tip surface of the tip portion 11, and such chamfering is optional.
  • the tip surface (the portion other than the groove portion) of the tip portion 11 is a plane orthogonal to the central axis X of the body portion 10, but may be a curved surface bulging toward the tip side of the tip portion 11. , These may be a combination of a flat surface and a curved surface.
  • the body portion 10 and the flange portion 12 are integrally molded from the same metal material.
  • the metal material constituting the tip portion 11 has a higher hardness than the metal material constituting the body portion 10 and the flange portion 12, and the tip portion 11 is integrally processed with the body portion 10.
  • the total area Sx of the tip portion 11 and the area Sy of the groove portion 15 when viewed in the direction of the central axis X of the body portion 10 satisfy the relationship of 0.20 ⁇ Sy / Sx ⁇ 0.50. is doing.
  • the total area Sx of the chip portion 11 corresponds to the area of the region surrounded by the contour line of the chip portion 11, and the area Sy of the groove portion 15 is surrounded by the contour line of the groove portion 15 (including the chamfered portion). Corresponds to the area of the area.
  • the tip portion 11 has a groove portion 15 on the tip surface thereof, and the total area Sx of the tip portion 11 and the area of the groove portion 15 when viewed in the direction of the central axis X of the body portion 10. Since Sy satisfies the relationship of 0.20 ⁇ Sy / Sx ⁇ 0.50, the weight of the stud pin P is reduced by forming the groove portion 15 while suppressing the decrease in the strength of the tip portion 11, and the groove portion 15 is formed. On-ice performance (particularly on-ice handling and braking performance) can be improved based on the accompanying edges. Further, by providing the groove portion 15 on the tip surface of the tip portion 11, the effect of reducing damage to the road surface can be expected.
  • the total area Sx of the chip portion 11 and the area Sy of the groove portion 15 when viewed in the direction of the central axis X of the body portion 10 satisfy the relationship of 0.25 ⁇ Sy / Sx ⁇ 0.45. .. Further, the total area Sx of the chip portion 11 when viewed in the direction of the central axis X of the body portion 10 is preferably in the range of 2.0 mm 2 to 5.5 mm 2 .
  • the tip portion 11 has a shape in the longitudinal direction L when viewed in the direction of the central axis X of the body portion 10, and the groove portion 15 extends in the lateral direction S orthogonal to the longitudinal direction L. There is. Both ends of the groove portion 15 are open to the side surface of the chip portion 11. In this case, since the edge extending along the lateral direction S in the chip portion 11 increases, the performance on ice can be effectively improved. In particular, when the stud pin P is installed on the tread portion of the tire so that the longitudinal direction L of the tip portion 11 is in the tire width direction, the tip portion 11 extends along the tire width direction to provide braking performance on ice. The groove portion 15 extends along the circumferential direction of the tire, so that the handling performance on ice is improved.
  • the groove width Wg of the groove portion 15 is preferably in the range of 0.5 mm to 1.0 mm. Further, the groove width Wg of the groove portion 15 is preferably in the range of 15% to 45% of the maximum width Wt in the longitudinal direction L of the chip portion 11.
  • the protruding height Ht of the tip portion 11 from the body portion 10 and the depth Hg of the groove portion 15 satisfy the relationship of 0.5 ⁇ Hg / Ht.
  • the effect of weight reduction and the effect of improving the performance on ice can be sufficiently obtained.
  • the value of Hg / Ht is smaller than 0.5, the effect of weight reduction and the effect of improving the performance on ice are reduced.
  • the protruding height Ht of the tip portion 11 from the body portion 10 and the depth Hg of the groove portion 15 satisfy the relationship of Hg / Ht ⁇ 1.0. Further, it is preferable to satisfy the relationship of Hg / Ht ⁇ 0.85.
  • the height Hs of the stud pin P and the depth Hg of the groove 15 satisfy the relationship of Hg / Hs ⁇ 0.15.
  • Hg / Hs ⁇ 0.15 it is possible to sufficiently obtain the effect of weight reduction and the effect of improving the performance on ice while suppressing the decrease in durability of the chip portion 11. That is, since the chip portion 11 having the groove portion 15 is inferior in durability as compared with the case where there is no groove portion, it is possible to avoid a decrease in durability by setting the Hg / Hs value to 0.15 or less.
  • the maximum width position of the body portion 10 is a position where the dimension in the direction orthogonal to the central axis X is maximum in the body portion 10, and is a position of the plane A in FIG.
  • the tip portion 11 of the stud pin P has a pair of convex portions 16 projecting in a direction orthogonal to the groove portion 15 (longitudinal direction L), and a body portion 10 between both ends of the groove portion 15 and each convex portion 16. It has a recess 17 recessed toward the central axis X of the above.
  • FIG. 4 shows a stud pin made of another embodiment of the present invention.
  • the same objects as those in FIGS. 1 to 3 are designated by the same reference numerals, and detailed description of the portions thereof will be omitted.
  • the shape of the tip portion 11 when viewed in the direction of the central axis X of the body portion 10 has the longitudinal direction L, and the groove portion 15 extends in the lateral direction S orthogonal to the longitudinal direction L. There is. At least one end (both ends in FIG. 4) of the groove portion 15 is not opened on the side surface of the chip portion 11 and is terminated in the chip portion 11. Further, the thickness We of the tip portion 11 at at least one end of the groove portion 15 and the maximum width Wz of the tip portion 11 in the lateral direction S satisfy the relationship of We / Wz ⁇ 0.10.
  • the edge in the lateral direction S increases, so that the performance on ice can be effectively improved.
  • the tip portion 11 extends along the tire width direction to provide braking performance on ice. Is improved, and the groove portion 15 extends along the tire circumferential direction to improve the handling performance on ice, which is the same as that of FIG. 2, but at least one end of the groove portion 15 is inside the chip portion 11.
  • FIGS. 5 (a) to 5 (f) show deformation examples of the tip portion of the stud pin, respectively
  • FIGS. 6 (a) to 6 (d) show further deformation examples of the tip portion of the stud pin, respectively.
  • the shape of the tip portion 11 when viewed in the direction of the central axis X of the body portion 10 has the longitudinal direction L
  • the groove portion 15 Extends in the lateral direction S orthogonal to the longitudinal direction L. Both ends of the groove portion 15 may be open to the side surface of the chip portion 11, only one end thereof may be terminated in the chip portion 11, or both ends may be terminated in the chip portion 11.
  • the chip portion 11 has a plan view shape based on a rhombus in FIGS. 5 (a) to 5 (f), and has a plan view shape based on a fan shape in FIGS. 6 (a) to 6 (d).
  • a plan view shape other than this.
  • FIG. 7 shows an example of the pneumatic tire of the present invention
  • FIG. 8 shows the tread pattern.
  • the pneumatic tire of the present embodiment is a tire in which the rotation direction R is designated.
  • the pneumatic tire T includes a tread portion 21 extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions 22 and 22 arranged on both sides of the tread portion 21, and these. It includes a pair of bead portions 23, 23 arranged inside the sidewall portion 22 in the tire radial direction.
  • a carcass layer 24 is mounted between the pair of bead portions 23, 23.
  • the carcass layer 24 includes a plurality of reinforcing cords extending in the radial direction of the tire, and is folded back from the inside to the outside of the tire around the bead core 25 arranged in each bead portion 23.
  • a bead filler 26 made of a rubber composition having a triangular cross section is arranged on the outer periphery of the bead core 25.
  • a plurality of belt layers 27 are embedded on the outer peripheral side of the carcass layer 24 in the tread portion 21.
  • These belt layers 27 include a plurality of reinforcing cords that are inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to intersect each other between the layers.
  • the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set to, for example, in the range of 10 ° to 40 °.
  • a steel cord is preferably used as the reinforcing cord of the belt layer 27 preferably used.
  • At least one belt cover layer 28 having reinforcing cords arranged at an angle of, for example, 5 ° or less with respect to the tire circumferential direction is arranged for the purpose of improving high-speed durability.
  • an organic fiber cord such as nylon or aramid is preferably used.
  • the tread portion 21 has a plurality of first inclined grooves 31 extending inward in the tire width direction from one tread end in the tire width direction and inclined in the rotation direction R.
  • a plurality of second inclined grooves 32 extending inward in the tire width direction and inclined toward the rotation direction R are formed from the tread end on the other side in the tire width direction.
  • the first inclined grooves 31 and the second inclined grooves 32 are alternately arranged along the tire circumferential direction, and both extend to a position crossing the tire equator.
  • the tread portion 21 has a first vertical groove 33 that connects a plurality of first inclined grooves 31 to each other while being inclined with respect to the tire peripheral direction, and a plurality of second vertical grooves while being inclined with respect to the tire peripheral direction.
  • a second vertical groove 34 connecting the inclined grooves 32 is formed.
  • the tread portion 21 is divided into a plurality of block-shaped land portions 35 by the first inclined groove 31, the second inclined groove 32, the first vertical groove 33, and the second vertical groove 34.
  • a plurality of implantation holes 36 for implanting the stud pin P are formed in these block-shaped land portions 35.
  • the body portion 10 of the stud pin P is inserted into the implant hole 36, and the tip portion 11 is arranged in the tread portion 21 so as to protrude from the tread portion 21.
  • the inner diameter of the implantation hole 36 is slightly smaller than the outer diameter of the stud pin P, and the stud pin P implanted in the implantation hole 36 is firmly held against the tread portion 21.
  • the tread portion 21 has a plurality of first inclined grooves 31 extending inward in the tire width direction from one tread end in the tire width direction and inclined toward the rotation direction R, and a plurality of first inclined grooves 31 in the tire width direction.
  • the reinforcing structure of the pneumatic tire T shown in FIG. 7 shows a typical example, but is not limited to this. Further, the tread pattern formed on the tread portion 21 of the pneumatic tire T is not particularly limited.
  • FIG. 9 shows the first stud pin and the second stud pin arranged in the tread portion of the pneumatic tire.
  • Tc is the tire circumferential direction.
  • the plurality of stud pins P arranged in the tread portion 21 as shown in FIG. 8 have a plurality of first stud pins P having an angle ⁇ formed by the longitudinal direction of the groove portion 15 with respect to the tire circumferential direction Tc in the range of 0 ° to 10 °.
  • the stud pin P1 includes a plurality of second stud pins P2 having an angle ⁇ formed by the longitudinal direction of the groove 15 with respect to the tire circumferential direction Tc larger than that of the first stud pin P1, and is the first with respect to the first stud pin P1.
  • the stud pins P2 are scattered along the tire circumferential direction.
  • the number of first stud pins P1 in the tread portion 21 is larger than the number of second stud pins P2.
  • the angle ⁇ formed by the longitudinal direction of the groove 15 with respect to the tire circumferential direction Tc is preferably set in the range of 30 ° to 90 °, more preferably in the range of 45 ° to 85 °.
  • the angle difference with respect to the first stud pin P1 can be sufficiently secured, and the effect of improving the handling performance on ice can be enhanced.
  • the number of the second stud pins P2 in the tread portion 21 is preferably 10% to 45% of the number of all the stud pins P.
  • C is a ground contact region formed when a pneumatic tire T is rim-assembled on a regular rim, placed vertically on a flat surface with a regular internal pressure, and a regular load is applied, and TCW is a ground contact region.
  • TCW is a ground contact region.
  • the width the three regions formed when the tread portion 21 is divided into three equal parts in the tire width direction within the ground contact width TCW are referred to as a first region R1, a second region R2, and a third region R3, respectively.
  • the first region R1 and the third region R3 are shoulder regions, and the second region R2 is a center region.
  • At least one first stud pin P1 and at least one second stud pin P2 are arranged in each of the first region R1, the second region R2, and the third region R3. In this case, since the first stud pin P1 and the second stud pin P2 are present over the entire grounding region C of the tread portion 21, the effect of improving the handling performance on ice can be enhanced.
  • the distance D2 in the tire circumferential direction of the pair of second stud pins P2 and P2 closest to the tire circumferential direction in the tread portion 21 is in the range of 1.0% to 100.0% of the ground contact length Lc of the tread portion 21. It would be nice to have it. In this case, since at least one second stud pin P2 is surely arranged in the ground contact region C, the effect of improving the handling performance on ice can be enhanced.
  • the distance D1 in the tire circumferential direction of the pair of first stud pins P1 and P1 closest to the tire circumferential direction in the tread portion 21 is also in the range of 1.0% to 100.0% of the ground contact length Lc of the tread portion 21. It is good to be in.
  • the effect of suppressing noise (pin noise) on a dry road surface can also be expected. If the distance D2 between the second stud pins P2 is smaller than 1.0% of the grounding length Lc, the second stud pins P2 may approach each other and worsen the pin noise, and conversely, from 100.0% of the grounding length Lc. If it is too large, the effect of improving the handling performance on ice will decrease.
  • the average protrusion amount Px of the second stud pin P2 and the average protrusion amount Py of the first stud pin P1 satisfy the relationship of Px> Py.
  • the vibration frequency derived from the first stud pin P1 and the vibration frequency derived from the second stud pin P2 are different, so that the second studs scattered in the first stud pin P1 are scattered.
  • the frequency dispersion effect of the pin noise is enhanced to improve the noise performance on the dry road surface, while the edge effect of the second stud pin P2 is enhanced on ice.
  • the handling performance of the can be effectively improved.
  • the average protrusion amount Px of the second stud pin P2 is the average value of the protrusion amount of the second stud pin P2 from the tread of the tread portion 21, and the average protrusion amount Py of the first stud pin P1 is the tread portion 21. It is an average value of the protrusion amount of the 1st stud pin P1 from the tread.
  • the average protrusion amount Px of the second stud pin P1 and the average protrusion amount Py of the first stud pin P2 satisfy the relationship of 1.05 ⁇ Px / Py.
  • the value of Px / Py exceeds 1.20, the pin noise derived from the second stud pin P2 will increase. Therefore, it is desirable to satisfy the relationship of 1.05 ⁇ Px / Py ⁇ 1.20.
  • Comparative Examples 1 and 2, and Examples 1 to 11 the shape of the tip portion when viewed in the central axis direction of the body portion, the total area Sx of the chip portion, the area Sy of the groove portion, Sy / Sx, and the chip portion. Whether or not there is a longitudinal direction, the presence or absence of an opening in the groove, the maximum width Wz in the lateral direction of the tip, the thickness We, We / Wz of the tip at both ends of the groove, the protruding height Ht of the tip, and the depth of the groove.
  • the angle ⁇ of the groove portion of the pin and the ratio (%) of the second stud pin were set as shown in Tables 1 and 2.
  • Handling performance on ice Each test tire is attached to a wheel with a rim size of 16 x 6.5J, mounted on a front-wheel drive vehicle with a displacement of 1.4 liters, filled with the specified air pressure of the vehicle, and a test driver for handling performance on a test course consisting of ice and snow road surfaces. Sensory evaluation was performed by. The evaluation results are shown by an index of 100 in the conventional example. The larger this index value is, the better the handling performance on ice is.
  • Each test tire is attached to a wheel with a rim size of 16 x 6.5J, mounted on a front-wheel drive vehicle with a displacement of 1.4 liters, filled with the specified air pressure of the vehicle, and the vehicle speed is applied on a test course (straight road) consisting of a icy road surface.
  • the brake was applied from the running state of 25 km / h, and the braking distance from the vehicle speed of 20 km / h to 5 km / h was measured.
  • the evaluation result is shown by an index of 100 in the conventional example using the reciprocal of the measured value. The larger this index value is, the better the braking performance on ice is.
  • Stud pin mass The mass of the stud pin was measured for each test tire. The evaluation results are shown by an index of 100 in the conventional example using the reciprocal of the measured value. The larger the index value, the lighter the weight.
  • Durability of stud pins Each test tire is attached to a wheel with a rim size of 16 x 6.5J, mounted on a front-wheel drive vehicle with a displacement of 1.4 liters, filled with the specified air pressure of the vehicle, and in a test course consisting of a dry asphalt road surface, a predetermined driving mode. After running in, the number of broken chips of the stud pin was measured. The evaluation results are shown by an index with Comparative Example 1 as 100 using the reciprocal of the measured value. The larger this index value is, the better the durability of the stud pin is.
  • Body part 11 Tip part 12 Flange part 13 Depressed part 14 Inclined surface 15 Groove part 16 Convex part 17 Concave part 21 Tread part 22 Side wall part 23 Bead part P Stud pin T Pneumatic tire

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

Provided are a stud pin with which a lighter weight is attained and with which improved on-ice performance is possible, and a tire comprising said stud pin. A stud pin P includes a body 10 embedded into the tread of a tire, a tip 11 that projects out from the leading end of the body 10, and a flange 12 disposed on the base end of the body 10, wherein a groove 15 is formed in the surface on the leading end of the tip 11, and the total area Sx of the tip 11 and the area Sy of the groove 15 when viewed in the direction of the central axis of the body 10 satisfies the relationship 0.20 ≤ Sy / Sx ≤ 0.50. In a tire T, the stud pin P is placed in a tread 21.

Description

スタッドピン及びそれを備えたタイヤStud pins and tires with them
 本発明は、スタッドピン及びそれを備えたタイヤに関し、更に詳しくは、軽量化を図ると共に、氷上性能の改善を可能にしたスタッドピン及びそれを備えたタイヤに関する。 The present invention relates to a stud pin and a tire equipped with the stud pin, and more specifically, to a stud pin and a tire equipped with the stud pin, which makes it possible to reduce the weight and improve the performance on ice.
 氷雪路面上での走行性能を改善した空気入りタイヤにおいて、トレッド部にスタッドピンが打ち込まれたスタッドタイヤが知られている(例えば、特許文献1参照)。スタッドピンは、タイヤのトレッド部に埋設されるボディ部と、該ボディ部の先端側から突出していて路面と接触するチップ部と、ボディ部の基端側に配置されたフランジ部とを有している。そして、スタッドタイヤの走行時には、主としてスタッドピンのチップ部が氷路面と接触し、そのエッジ効果を発揮することにより、スタッドレスタイヤに比べて優れた氷上性能を発揮することができる。 Among pneumatic tires with improved running performance on ice and snow road surfaces, studded tires in which stud pins are driven into the tread portion are known (see, for example, Patent Document 1). The stud pin has a body portion embedded in the tread portion of the tire, a tip portion protruding from the tip end side of the body portion and in contact with the road surface, and a flange portion arranged on the base end side of the body portion. ing. When the studded tire is running, the tip portion of the studded pin mainly comes into contact with the icy road surface and exerts its edge effect, so that excellent on-ice performance can be exhibited as compared with the studless tire.
 上述のように構成されるスタッドタイヤにおいて、スタッドピンの構造を工夫することにより、氷上性能を更に改善することが求められている。それと同時に、スタッドピンの軽量化も求められている。 In the studded tire configured as described above, it is required to further improve the performance on ice by devising the structure of the studded pin. At the same time, weight reduction of stud pins is also required.
国際公開第WO2018/078941号International Publication No. WO2018 / 078941
 本発明の目的は、軽量化を図ると共に、氷上性能を改善することを可能にしたスタッドピン及びそれを備えたタイヤを提供することにある。 An object of the present invention is to provide a stud pin capable of reducing the weight and improving the performance on ice and a tire equipped with the stud pin.
 上記目的を達成するための本発明のスタッドピンは、タイヤのトレッド部に埋設されるボディ部と、該ボディ部の先端側から突出するチップ部と、前記ボディ部の基端側に配置されたフランジ部とを有するスタッドピンにおいて、
 前記チップ部はその先端面に溝部を有しており、前記ボディ部の中心軸方向に見たときの前記チップ部の総面積Sxと前記溝部の面積Syとが0.20≦Sy/Sx≦0.50の関係を満足することを特徴とするものである。
The stud pin of the present invention for achieving the above object is arranged on the body portion embedded in the tread portion of the tire, the tip portion protruding from the tip end side of the body portion, and the proximal end side of the body portion. In a stud pin with a flange
The tip portion has a groove portion on its tip surface, and the total area Sx of the tip portion and the area Sy of the groove portion when viewed in the central axis direction of the body portion are 0.20 ≦ Sy / Sx ≦. It is characterized by satisfying the relationship of 0.50.
 また、上記目的を達成するための本発明のタイヤは、上述のスタッドピンがトレッド部に配設されていることを特徴とするものである。 Further, the tire of the present invention for achieving the above object is characterized in that the above-mentioned stud pin is arranged in the tread portion.
 本発明では、スタッドピンのチップ部はその先端面に溝部を有しており、ボディ部の中心軸方向に見たときのチップ部の総面積Sxと溝部の面積Syとが0.20≦Sy/Sx≦0.50の関係を満足するので、チップ部の強度低下を抑制しながら、溝部の形成によりスタッドピンの軽量化を図ると共に、溝部に付随するエッジに基づいて氷上でのハンドリング性能及び制動性能に代表される氷上性能を改善することができる。また、チップ部の先端面に溝部を設けることにより、路面の損傷を低減する効果も期待することができる。 In the present invention, the tip portion of the stud pin has a groove portion on the tip surface thereof, and the total area Sx of the tip portion and the area Sy of the groove portion when viewed in the direction of the central axis of the body portion are 0.20 ≦ Sy. Since the relationship of / Sx≤0.50 is satisfied, the weight of the stud pin is reduced by forming the groove while suppressing the decrease in the strength of the tip, and the handling performance on ice and the handling performance on ice based on the edge attached to the groove are achieved. It is possible to improve the performance on ice represented by the braking performance. Further, by providing the groove portion on the tip surface of the tip portion, the effect of reducing damage to the road surface can be expected.
 本発明において、チップ部はボディ部の中心軸方向に見たときの形状が長手方向を有し、溝部は長手方向と直交する短手方向に延在して両端がチップ部の側面に開口していることが好ましい。この場合、短手方向のエッジが増加するため氷上性能を効果的に改善することができる。特に、チップ部の長手方向がタイヤ幅方向となるようにスタッドピンを設置した場合、チップ部がタイヤ幅方向に沿って延在することで氷上での制動性能が良化し、溝部がタイヤ周方向に沿って延在することで氷上でのハンドリング性能が良化する。 In the present invention, the shape of the tip portion when viewed in the central axis direction of the body portion has a longitudinal direction, the groove portion extends in the lateral direction orthogonal to the longitudinal direction, and both ends open on the side surface of the chip portion. Is preferable. In this case, since the edge in the lateral direction increases, the performance on ice can be effectively improved. In particular, when the stud pin is installed so that the longitudinal direction of the tip portion is the tire width direction, the tip portion extends along the tire width direction to improve braking performance on ice, and the groove portion is in the tire circumferential direction. By extending along the line, handling performance on ice is improved.
 或いは、チップ部はボディ部の中心軸方向に見たときの形状が長手方向を有し、溝部は長手方向と直交する短手方向に延在して少なくとも一端が前記チップ部内で終端し、溝部の少なくとも一端の各々におけるチップ部の厚さWeとチップ部の短手方向の最大幅WzとがWe/Wz≦0.10の関係を満足することが好ましい。この場合も、短手方向のエッジが増加するため氷上性能を効果的に改善することができる。特に、チップ部の長手方向がタイヤ幅方向となるようにスタッドピンを設置した場合、チップ部がタイヤ幅方向に沿って延在することで氷上での制動性能が良化し、溝部がタイヤ周方向に沿って延在することで氷上でのハンドリング性能が良化する点は前述の形態と同様であるが、溝部の少なくとも一端がチップ部内で終端することにより、チップ部のタイヤ幅方向のエッジ成分が増加するため、氷上での制動性能の改善効果を高めることができる。 Alternatively, the shape of the tip portion when viewed in the central axis direction of the body portion has a longitudinal direction, the groove portion extends in the lateral direction orthogonal to the longitudinal direction, and at least one end thereof is terminated in the chip portion. It is preferable that the thickness We of the chip portion and the maximum width Wz of the chip portion in the lateral direction satisfy the relationship of We / Wz ≦ 0.10. In this case as well, the edge in the lateral direction increases, so that the performance on ice can be effectively improved. In particular, when the stud pin is installed so that the longitudinal direction of the tip portion is the tire width direction, the tip portion extends along the tire width direction to improve braking performance on ice, and the groove portion is in the tire circumferential direction. The point that the handling performance on ice is improved by extending along the above is the same as the above-mentioned form, but the edge component in the tire width direction of the tip portion is formed by terminating at least one end of the groove portion in the tip portion. Therefore, the effect of improving the braking performance on ice can be enhanced.
 チップ部のボディ部からの突出高さHtと溝部の深さHgとは0.5≦Hg/Htの関係を満足することが好ましい。これにより、軽量化の効果と氷上性能の改善効果を十分に得ることができる。 It is preferable that the protrusion height Ht from the body portion of the tip portion and the depth Hg of the groove portion satisfy the relationship of 0.5 ≦ Hg / Ht. As a result, the effect of weight reduction and the effect of improving the performance on ice can be sufficiently obtained.
 スタッドピンの高さHsと溝部の深さHgとはHg/Hs≦0.15の関係を満足することが好ましい。これにより、チップ部の耐久性の低下を抑制しつつ、軽量化の効果と氷上性能の改善効果を十分に得ることができる。 It is preferable that the height Hs of the stud pin and the depth Hg of the groove portion satisfy the relationship of Hg / Hs ≦ 0.15. As a result, it is possible to sufficiently obtain the effect of weight reduction and the effect of improving the performance on ice while suppressing the decrease in the durability of the chip portion.
 ボディ部の中心軸と直交する平面における断面積であってボディ部の最大幅位置での断面積Saとボディ部の中心軸方向に見たときのチップ部の総面積Sxとは0.10≦Sx/Sa≦0.20の関係を満足することが好ましい。これにより、チップ部の耐久性の低下を抑制しつつ、軽量化の効果を十分に得ることができる。また、路面の損傷を低減する効果も向上する。 The cross-sectional area in a plane orthogonal to the central axis of the body portion, the cross-sectional area Sa at the maximum width position of the body portion, and the total area Sx of the chip portion when viewed in the direction of the central axis of the body portion are 0.10 ≦. It is preferable to satisfy the relationship of Sx / Sa ≦ 0.20. As a result, it is possible to sufficiently obtain the effect of weight reduction while suppressing a decrease in the durability of the chip portion. In addition, the effect of reducing damage to the road surface is also improved.
 チップ部は、溝部と直交する方向に突出する凸部と、溝部の両端と凸部との間でボディ部の中心軸に向かって窪んだ凹部とを有することが好ましい。このようにチップ部の外周面に凸部と凹部を設けることにより、縦方向及び横方向のエッジ量が多くなるため、氷上での旋回性能や制動性能を改善することができる。 The tip portion preferably has a convex portion protruding in a direction orthogonal to the groove portion and a concave portion recessed between both ends of the groove portion and the convex portion toward the central axis of the body portion. By providing the convex portion and the concave portion on the outer peripheral surface of the chip portion in this way, the amount of edges in the vertical direction and the horizontal direction is increased, so that the turning performance and the braking performance on ice can be improved.
 上述のように構成されるスタッドピンがトレッド部に配設されたタイヤによれば、従来に比べて、軽量化を図ると共に、氷上性能を改善することができる。 According to the tire in which the stud pin configured as described above is arranged in the tread portion, it is possible to reduce the weight and improve the performance on ice as compared with the conventional tire.
 本発明のタイヤにおいて、スタッドピンは、溝部の長手方向がタイヤ周方向に対してなす角度が0°~10°の範囲にある複数の第1スタッドピンと、溝部の長手方向がタイヤ周方向に対してなす角度が第1スタッドピンよりも大きい複数の第2スタッドピンとを含み、第1スタッドピンに対して第2スタッドピンがタイヤ周方向に沿って点在していることが好ましい。このように第1スタッドピンと第2スタッドピンとを混在させることにより、氷上でのハンドリング性能を飛躍的に改善することができる。 In the tire of the present invention, the stud pins are a plurality of first stud pins whose angle formed by the longitudinal direction of the groove with respect to the tire circumferential direction is in the range of 0 ° to 10 °, and the longitudinal direction of the groove is with respect to the tire circumferential direction. It is preferable that the second stud pins include a plurality of second stud pins having an angle larger than that of the first stud pins, and the second stud pins are scattered along the tire circumferential direction with respect to the first stud pins. By mixing the first stud pin and the second stud pin in this way, the handling performance on ice can be dramatically improved.
 トレッド部を接地幅内でタイヤ幅方向に3等分したときに形成される第1領域、第2領域及び第3領域の各々には少なくとも1つの第1スタッドピン及び少なくとも1つの第2スタッドピンが配置されていることが好ましい。この場合、トレッド部の接地領域の全域にわたって第1スタッドピン及び第2スタッドピンが存在するので、氷上でのハンドリング性能の改善効果を高めることができる。 At least one first stud pin and at least one second stud pin in each of the first region, the second region, and the third region formed when the tread portion is divided into three equal parts in the tire width direction within the ground contact width. Is preferably arranged. In this case, since the first stud pin and the second stud pin are present over the entire ground contact area of the tread portion, the effect of improving the handling performance on ice can be enhanced.
 トレッド部においてタイヤ周方向に最も近接する一対の第2スタッドピンのタイヤ周方向の間隔はトレッド部の接地長の1.0%~100.0%の範囲にあることが好ましい。この場合、接地領域内に少なくとも1つの第2スタッドピンが配置されることになるので、氷上でのハンドリング性能の改善効果を高めることができる。また、接地領域内に第1スタッドピン及び第2スタッドピンが混在することにより、乾燥路面における騒音(ピンノイズ)を抑制する効果も期待することができる。 The distance between the pair of second stud pins closest to the tire circumferential direction in the tread portion in the tire circumferential direction is preferably in the range of 1.0% to 100.0% of the ground contact length of the tread portion. In this case, since at least one second stud pin is arranged in the ground contact area, the effect of improving the handling performance on ice can be enhanced. Further, by mixing the first stud pin and the second stud pin in the ground contact area, the effect of suppressing noise (pin noise) on the dry road surface can be expected.
 第2スタッドピンの平均突出量Pxと第1スタッドピンの平均突出量PyとはPx>Pyの関係を満足することが好ましい。これにより、氷上でのハンドリング性能の改善効果を高めることができる。特に、乾燥路面の走行時において、第1スタッドピンに由来する振動周波数と第2スタッドピンに由来する振動周波数とが相違するので、第1スタッドピンの中に点在する第2スタッドピンの平均突出量Pxを相対的に大きくすることで、ピンノイズの周波数の分散効果を高めて乾燥路面での騒音性能を改善する一方で、第2スタッドピンによるエッジ効果を高めて氷上でのハンドリング性能を効果的に改善することができる。 It is preferable that the average protrusion amount Px of the second stud pin and the average protrusion amount Py of the first stud pin satisfy the relationship of Px> Py. As a result, the effect of improving the handling performance on ice can be enhanced. In particular, when traveling on a dry road surface, the vibration frequency derived from the first stud pin and the vibration frequency derived from the second stud pin are different, so that the average of the second stud pins scattered in the first stud pin is obtained. By increasing the protrusion amount Px relatively, the frequency dispersion effect of the pin noise is enhanced to improve the noise performance on the dry road surface, while the edge effect of the second stud pin is enhanced to improve the handling performance on ice. Can be improved.
 第2スタッドピンの平均突出量Pxと第1スタッドピンの平均突出量Pyとは1.05≦Px/Pyの関係を満足することが好ましい。上記関係を満足することにより、乾燥路面での騒音性能と氷上でのハンドリング性能をバランス良く改善することができる。 It is preferable that the average protrusion amount Px of the second stud pin and the average protrusion amount Py of the first stud pin satisfy the relationship of 1.05 ≦ Px / Py. By satisfying the above relationship, it is possible to improve the noise performance on a dry road surface and the handling performance on ice in a well-balanced manner.
 回転方向が指定されたタイヤにおいては、トレッド部に、タイヤ幅方向の一方側のトレッド端からタイヤ幅方向内側に向かって延在しつつ回転方向に向かって傾斜する複数本の第1傾斜溝と、タイヤ幅方向の他方側のトレッド端からタイヤ幅方向内側に向かって延在しつつ回転方向に向かって傾斜する複数本の第2傾斜溝とを有することが好ましい。このようなV字基調のトレッドパターンは、第1傾斜溝及び第2傾斜溝に沿って形成される陸部にスタッドピンが配設されるので、スタッドピンがタイヤ周方向に重なり難いという利点があり、スタッドピンに基づいて優れた氷上性能を発揮することができる。 In a tire whose rotation direction is specified, the tread portion has a plurality of first inclined grooves that extend inward in the tire width direction from one tread end in the tire width direction and incline in the rotation direction. It is preferable to have a plurality of second inclined grooves extending inward in the tire width direction and inclined in the rotation direction from the tread end on the other side in the tire width direction. Such a V-shaped tread pattern has an advantage that the stud pins are less likely to overlap in the tire circumferential direction because the stud pins are arranged in the land portion formed along the first inclined groove and the second inclined groove. Yes, it can demonstrate excellent on-ice performance based on stud pins.
 本発明のタイヤは、空気入りタイヤであることが好ましいが、非空気式タイヤであっても良い。空気入りタイヤの場合、その内部には空気、窒素等の不活性ガス又はその他の気体を充填することができる。 The tire of the present invention is preferably a pneumatic tire, but may be a non-pneumatic tire. In the case of a pneumatic tire, the inside thereof can be filled with an inert gas such as air or nitrogen or other gas.
 本発明において、「接地幅」とは、タイヤを正規リムにリム組みして正規内圧(空気入りタイヤの場合)を充填した状態で平面上に垂直に置いて正規荷重を加えたときに形成される接地領域のタイヤ軸方向の最大幅である。「接地長」とは、接地領域のタイヤ周方向の最大長さである。「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMAであれば標準リム、TRAであれば“Design Rim”、或いはETRTOであれば“Measuring Rim”とする。「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“INFLATION PRESSURE”であるが、タイヤが乗用車用である場合には250kPaとする。「正規荷重」は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“LOAD CAPACITY”であるが、タイヤが乗用車用である場合には前記荷重の70%に相当する荷重とする。 In the present invention, the "ground contact width" is formed when a tire is rim-assembled on a regular rim, is placed vertically on a flat surface with a regular internal pressure (in the case of a pneumatic tire), and a regular load is applied. This is the maximum width of the ground contact area in the tire axial direction. The "ground contact length" is the maximum length of the ground contact region in the tire circumferential direction. A "regular rim" is a rim defined for each tire in the standard system including the standard on which the tire is based. For example, JATTA is a standard rim, TRA is "DesignRim", or ETRTO. If so, use "Measuring Rim". "Regular internal pressure" is the air pressure defined for each tire in the standard system including the standard on which the tire is based. If it is JATTA, it is the maximum air pressure, and if it is TRA, it is the table "TIRE LOAD LIMITED AT VARIOUS". The maximum value described in "COLD INFRATION PRESSURES", if it is ETRTO, it is "INFRATION PRESSURE", but if the tire is for a passenger car, it is 250 kPa. "Regular load" is the load defined for each tire in the standard system including the standard on which the tire is based. If it is JATTA, it is the maximum load capacity, and if it is TRA, it is the table "TIRE LOAD LIMITED AT VARIOUS". The maximum value described in "COLD INFORMATION PRESSURES" is "LOAD CAPACTY" in the case of ETRTO, but when the tire is for a passenger car, the load is equivalent to 70% of the above load.
図1は本発明の実施形態からなるスタッドピンを示す斜視図である。FIG. 1 is a perspective view showing a stud pin according to an embodiment of the present invention. 図2は図1のスタッドピンを示す平面図である。FIG. 2 is a plan view showing the stud pin of FIG. 図3は図1のスタッドピンを示す側面図である。FIG. 3 is a side view showing the stud pin of FIG. 図4は本発明の他の実施形態からなるスタッドピンを示す平面図である。FIG. 4 is a plan view showing a stud pin made of another embodiment of the present invention. 図5(a)~(f)はそれぞれスタッドピンのチップ部の変形例を示す平面図である。5 (a) to 5 (f) are plan views showing deformation examples of the tip portion of the stud pin, respectively. 図6は(a)~(d)はそれぞれスタッドピンのチップ部の更なる変形例を示す平面図である。6 (a) to 6 (d) are plan views showing further deformation examples of the tip portion of the stud pin, respectively. 図7は本発明の空気入りタイヤの一例を示す子午線断面図である。FIG. 7 is a cross-sectional view taken along the meridian showing an example of the pneumatic tire of the present invention. 図8は図7に示す空気入りタイヤのトレッドパターンを示す展開図である。FIG. 8 is a developed view showing a tread pattern of the pneumatic tire shown in FIG. 7. 図9は空気入りタイヤのトレッド部に配設される第1スタッドピン及び第2スタッドピンを示す平面図である。FIG. 9 is a plan view showing the first stud pin and the second stud pin arranged in the tread portion of the pneumatic tire.
 以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1~図3は本発明の実施形態からなるスタッドピンを示すものである。 Hereinafter, the configuration of the present invention will be described in detail with reference to the attached drawings. 1 to 3 show stud pins according to an embodiment of the present invention.
 図1~図3に示すように、本実施形態のスタッドピンPは、タイヤのトレッド部に埋設されるボディ部10と、該ボディ部10の先端側から突出していて路面と接触するチップ部11と、ボディ部10の基端側に配置されたフランジ部12を備えている。ボディ部10は、その中心軸Xに沿って延長し、その延長方向の中腹部分において最も膨らんだ構造を有している。ボディ部10の外周面には、ボディ部10の中心軸Xに向かって湾曲しながら窪んだ一対の窪み部13,13が形成されている。また、ボディ部10の先端側には複数の傾斜面14が形成されている。一方、チップ部11の先端面には溝部15が形成されている。チップ部11の先端面において溝部15には面取り加工が施されているが、このような面取り加工は任意である。チップ部11の先端面(溝部以外の部分)はボディ部10の中心軸Xに対して直交する平面であるが、チップ部11の先端側に向かって膨らんだ湾曲面であっても良く、或いは、これら平面と湾曲面との組み合わせであっても良い。また、ボディ部10及びフランジ部12は同一の金属材料から一体的に成形されている。チップ部11を構成する金属材料はボディ部10及びフランジ部12を構成する金属材料よりも高硬度であり、チップ部11はボディ部10に対して一体的に加工されている。 As shown in FIGS. 1 to 3, the stud pin P of the present embodiment has a body portion 10 embedded in the tread portion of the tire and a tip portion 11 protruding from the tip end side of the body portion 10 and in contact with the road surface. And a flange portion 12 arranged on the base end side of the body portion 10. The body portion 10 extends along its central axis X and has the most bulging structure in the middle portion in the extending direction. On the outer peripheral surface of the body portion 10, a pair of recessed portions 13, 13 that are recessed while being curved toward the central axis X of the body portion 10 are formed. Further, a plurality of inclined surfaces 14 are formed on the tip end side of the body portion 10. On the other hand, a groove portion 15 is formed on the tip surface of the tip portion 11. The groove portion 15 is chamfered on the tip surface of the tip portion 11, and such chamfering is optional. The tip surface (the portion other than the groove portion) of the tip portion 11 is a plane orthogonal to the central axis X of the body portion 10, but may be a curved surface bulging toward the tip side of the tip portion 11. , These may be a combination of a flat surface and a curved surface. Further, the body portion 10 and the flange portion 12 are integrally molded from the same metal material. The metal material constituting the tip portion 11 has a higher hardness than the metal material constituting the body portion 10 and the flange portion 12, and the tip portion 11 is integrally processed with the body portion 10.
 上記スタッドピンPにおいて、ボディ部10の中心軸Xの方向に見たときのチップ部11の総面積Sxと溝部15の面積Syとが0.20≦Sy/Sx≦0.50の関係を満足している。図2において、チップ部11の総面積Sxはチップ部11の輪郭線により囲まれた領域の面積に相当し、溝部15の面積Syは溝部15(面取り部を含む)の輪郭線により囲まれた領域の面積に相当する。 In the stud pin P, the total area Sx of the tip portion 11 and the area Sy of the groove portion 15 when viewed in the direction of the central axis X of the body portion 10 satisfy the relationship of 0.20 ≦ Sy / Sx ≦ 0.50. is doing. In FIG. 2, the total area Sx of the chip portion 11 corresponds to the area of the region surrounded by the contour line of the chip portion 11, and the area Sy of the groove portion 15 is surrounded by the contour line of the groove portion 15 (including the chamfered portion). Corresponds to the area of the area.
 このようにスタッドピンPにおいて、チップ部11はその先端面に溝部15を有しており、ボディ部10の中心軸Xの方向に見たときのチップ部11の総面積Sxと溝部15の面積Syとが0.20≦Sy/Sx≦0.50の関係を満足するので、チップ部11の強度低下を抑制しながら、溝部15の形成によりスタッドピンPの軽量化を図ると共に、溝部15に付随するエッジに基づいて氷上性能(特に、氷上でのハンドリング性能や制動性能)を改善することができる。また、チップ部11の先端面に溝部15を設けることにより、路面の損傷を低減する効果も期待することができる。 As described above, in the stud pin P, the tip portion 11 has a groove portion 15 on the tip surface thereof, and the total area Sx of the tip portion 11 and the area of the groove portion 15 when viewed in the direction of the central axis X of the body portion 10. Since Sy satisfies the relationship of 0.20 ≦ Sy / Sx ≦ 0.50, the weight of the stud pin P is reduced by forming the groove portion 15 while suppressing the decrease in the strength of the tip portion 11, and the groove portion 15 is formed. On-ice performance (particularly on-ice handling and braking performance) can be improved based on the accompanying edges. Further, by providing the groove portion 15 on the tip surface of the tip portion 11, the effect of reducing damage to the road surface can be expected.
 ここで、Sy/Sxの値が0.20よりも小さいと氷上でのハンドリング性能や軽量化の改善効果が不十分になり、逆に0.50よりも大きいとチップ部11の強度低下によりスタッドピンPの耐久性が不十分になる。特に、ボディ部10の中心軸Xの方向に見たときのチップ部11の総面積Sxと溝部15の面積Syとは0.25≦Sy/Sx≦0.45の関係を満足することが望ましい。また、ボディ部10の中心軸Xの方向に見たときのチップ部11の総面積Sxは2.0mm2~5.5mm2の範囲にあると良い。 Here, if the value of Sy / Sx is smaller than 0.20, the effect of improving the handling performance and weight reduction on ice becomes insufficient, and conversely, if it is larger than 0.50, the strength of the tip portion 11 decreases and the stud The durability of the pin P becomes insufficient. In particular, it is desirable that the total area Sx of the chip portion 11 and the area Sy of the groove portion 15 when viewed in the direction of the central axis X of the body portion 10 satisfy the relationship of 0.25 ≦ Sy / Sx ≦ 0.45. .. Further, the total area Sx of the chip portion 11 when viewed in the direction of the central axis X of the body portion 10 is preferably in the range of 2.0 mm 2 to 5.5 mm 2 .
 スタッドピンPにおいて、チップ部11はボディ部10の中心軸Xの方向に見たときの形状が長手方向Lを有し、溝部15は長手方向Lと直交する短手方向Sに延在している。そして、溝部15の両端はチップ部11の側面に開口している。この場合、チップ部11にいて短手方向Sに沿って延在するエッジが増加するため氷上性能を効果的に改善することができる。特に、チップ部11の長手方向Lがタイヤ幅方向となるようにスタッドピンPをタイヤのトレッド部に設置した場合、チップ部11がタイヤ幅方向に沿って延在することで氷上での制動性能が良化し、溝部15がタイヤ周方向に沿って延在することで氷上でのハンドリング性能が良化する。 In the stud pin P, the tip portion 11 has a shape in the longitudinal direction L when viewed in the direction of the central axis X of the body portion 10, and the groove portion 15 extends in the lateral direction S orthogonal to the longitudinal direction L. There is. Both ends of the groove portion 15 are open to the side surface of the chip portion 11. In this case, since the edge extending along the lateral direction S in the chip portion 11 increases, the performance on ice can be effectively improved. In particular, when the stud pin P is installed on the tread portion of the tire so that the longitudinal direction L of the tip portion 11 is in the tire width direction, the tip portion 11 extends along the tire width direction to provide braking performance on ice. The groove portion 15 extends along the circumferential direction of the tire, so that the handling performance on ice is improved.
 スタッドピンPにおいて、溝部15の溝幅Wgは0.5mm~1.0mmの範囲にあると良い。また、溝部15の溝幅Wgはチップ部11の長手方向Lにおける最大幅Wtの15%~45%の範囲にあると良い。溝部15の溝幅Wgを適切に設定することにより、氷上性能の改善効果と軽量化の効果を十分に得ることができる。 In the stud pin P, the groove width Wg of the groove portion 15 is preferably in the range of 0.5 mm to 1.0 mm. Further, the groove width Wg of the groove portion 15 is preferably in the range of 15% to 45% of the maximum width Wt in the longitudinal direction L of the chip portion 11. By appropriately setting the groove width Wg of the groove portion 15, the effect of improving the performance on ice and the effect of reducing the weight can be sufficiently obtained.
 スタッドピンPにおいて、チップ部11のボディ部10からの突出高さHtと溝部15の深さHgとは0.5≦Hg/Htの関係を満足していると良い。これにより、軽量化の効果と氷上性能の改善効果を十分に得ることができる。Hg/Htの値が0.5よりも小さいと軽量化の効果と氷上性能の改善効果が低下する。なお、チップ部11の耐久性の観点から、チップ部11のボディ部10からの突出高さHtと溝部15の深さHgとはHg/Ht≦1.0の関係を満足することが好ましく、更には、Hg/Ht≦0.85の関係を満足することが好ましい。 In the stud pin P, it is preferable that the protruding height Ht of the tip portion 11 from the body portion 10 and the depth Hg of the groove portion 15 satisfy the relationship of 0.5 ≦ Hg / Ht. As a result, the effect of weight reduction and the effect of improving the performance on ice can be sufficiently obtained. When the value of Hg / Ht is smaller than 0.5, the effect of weight reduction and the effect of improving the performance on ice are reduced. From the viewpoint of the durability of the tip portion 11, it is preferable that the protruding height Ht of the tip portion 11 from the body portion 10 and the depth Hg of the groove portion 15 satisfy the relationship of Hg / Ht ≦ 1.0. Further, it is preferable to satisfy the relationship of Hg / Ht ≦ 0.85.
 スタッドピンPにおいて、スタッドピンPの高さHsと溝部15の深さHgとはHg/Hs≦0.15の関係を満足していると良い。これにより、チップ部11の耐久性の低下を抑制しつつ、軽量化の効果と氷上性能の改善効果を十分に得ることができる。つまり、溝部15を有するチップ部11は溝部がない場合に比べて耐久性が劣るので、Hg/Hsの値を0.15以下とすることで、耐久性の低下を回避することができる。また、氷上性能を改善する観点から、チップ部11の突出高さHt及び溝部15の深さHgをある程度確保することが必要であるので、0.05≦Ht/Hs≦0.15の関係を併せて満足することが望ましい。 In the stud pin P, it is preferable that the height Hs of the stud pin P and the depth Hg of the groove 15 satisfy the relationship of Hg / Hs ≦ 0.15. As a result, it is possible to sufficiently obtain the effect of weight reduction and the effect of improving the performance on ice while suppressing the decrease in durability of the chip portion 11. That is, since the chip portion 11 having the groove portion 15 is inferior in durability as compared with the case where there is no groove portion, it is possible to avoid a decrease in durability by setting the Hg / Hs value to 0.15 or less. Further, from the viewpoint of improving the performance on ice, it is necessary to secure a certain degree of protrusion height Ht of the tip portion 11 and depth Hg of the groove portion 15, so that the relationship of 0.05 ≦ Ht / Hs ≦ 0.15 is established. It is also desirable to be satisfied.
 スタッドピンPにおいて、ボディ部10の中心軸Xと直交する平面における断面積であってボディ部10の最大幅位置での断面積Saとボディ部10の中心軸Xの方向に見たときのチップ部11の総面積Sxとは0.10≦Sx/Sa≦0.20の関係を満足していると良い。ボディ部10の最大幅位置とは、ボディ部10において中心軸Xと直交する方向の寸法が最大となる位置であり、図3においては、平面Aの位置である。Sx/Saを上記関係に設定することにより、チップ部11の耐久性の低下を抑制しつつ、軽量化の効果を十分に得ることができる。また、上記関係により、路面の損傷を低減する効果を改善することができる。 In the stud pin P, the cross-sectional area in a plane orthogonal to the central axis X of the body portion 10 and the cross-sectional area Sa at the maximum width position of the body portion 10 and the tip when viewed in the direction of the central axis X of the body portion 10. It is preferable that the relationship of 0.10 ≦ Sx / Sa ≦ 0.20 is satisfied with the total area Sx of the part 11. The maximum width position of the body portion 10 is a position where the dimension in the direction orthogonal to the central axis X is maximum in the body portion 10, and is a position of the plane A in FIG. By setting Sx / Sa in the above relationship, it is possible to sufficiently obtain the effect of weight reduction while suppressing a decrease in durability of the chip portion 11. Further, due to the above relationship, the effect of reducing damage to the road surface can be improved.
 ここで、Sx/Saの値が0.10よりも小さくなり、チップ部11の総面積Sxに対してボディ部10の最大幅位置での断面積Saが過度に大きくなると、軽量化の改善効果が低下する。一方、Sx/Saの値が0.20よりも大きくなり、チップ部11の総面積Sxに対してボディ部10の最大幅位置での断面積Saが過度に小さくなると、高負荷時にチップ部11の負担分担率が急激に増加し、チップ部11が折れ易くなる。 Here, when the value of Sx / Sa becomes smaller than 0.10 and the cross-sectional area Sa at the maximum width position of the body portion 10 becomes excessively large with respect to the total area Sx of the chip portion 11, the effect of improving the weight reduction is improved. Decreases. On the other hand, when the value of Sx / Sa becomes larger than 0.20 and the cross-sectional area Sa at the maximum width position of the body portion 10 becomes excessively small with respect to the total area Sx of the chip portion 11, the chip portion 11 is subjected to a high load. The burden sharing ratio of the chip portion 11 increases sharply, and the chip portion 11 is easily broken.
 図2において、スタッドピンPのチップ部11は、溝部15と直交する方向(長手方向L)に突出する一対の凸部16と、溝部15の両端と各凸部16との間でボディ部10の中心軸Xに向かって窪んだ凹部17とを有している。このようにチップ部11の外周面に凸部16と凹部17を設けた特異な構造を採用することにより、縦方向及び横方向のエッジ量が多くなるため、氷上での旋回性能や制動性能を改善することができる。このような構造はエッジ量の増大のみならず耐久性の観点からも好ましい。 In FIG. 2, the tip portion 11 of the stud pin P has a pair of convex portions 16 projecting in a direction orthogonal to the groove portion 15 (longitudinal direction L), and a body portion 10 between both ends of the groove portion 15 and each convex portion 16. It has a recess 17 recessed toward the central axis X of the above. By adopting a unique structure in which the convex portion 16 and the concave portion 17 are provided on the outer peripheral surface of the tip portion 11 in this way, the amount of edges in the vertical and horizontal directions increases, so that the turning performance and braking performance on ice can be improved. Can be improved. Such a structure is preferable not only from the viewpoint of increasing the amount of edges but also from the viewpoint of durability.
 図4は本発明の他の実施形態からなるスタッドピンを示すものである。図4において、図1~図3と同一物には同一符号を付してその部分の詳細な説明は省略する。本実施形態では、チップ部11はボディ部10の中心軸Xの方向に見たときの形状が長手方向Lを有し、溝部15は長手方向Lと直交する短手方向Sに延在している。そして、溝部15の少なくとも一端(図4では、両端)はチップ部11の側面に開口しておらずチップ部11内で終端している。更に、溝部15の少なくとも一端の各々におけるチップ部11の厚さWeとチップ部11の短手方向Sの最大幅WzとがWe/Wz≦0.10の関係を満足している。 FIG. 4 shows a stud pin made of another embodiment of the present invention. In FIG. 4, the same objects as those in FIGS. 1 to 3 are designated by the same reference numerals, and detailed description of the portions thereof will be omitted. In the present embodiment, the shape of the tip portion 11 when viewed in the direction of the central axis X of the body portion 10 has the longitudinal direction L, and the groove portion 15 extends in the lateral direction S orthogonal to the longitudinal direction L. There is. At least one end (both ends in FIG. 4) of the groove portion 15 is not opened on the side surface of the chip portion 11 and is terminated in the chip portion 11. Further, the thickness We of the tip portion 11 at at least one end of the groove portion 15 and the maximum width Wz of the tip portion 11 in the lateral direction S satisfy the relationship of We / Wz ≦ 0.10.
 このように溝部15の少なくとも一端がチップ部11の側面に開口していない場合も、短手方向Sのエッジが増加するため氷上性能を効果的に改善することができる。特に、チップ部11の長手方向Lがタイヤ幅方向となるようにスタッドピンPをタイヤのトレッド部に設置した場合、チップ部11がタイヤ幅方向に沿って延在することで氷上での制動性能が良化し、溝部15がタイヤ周方向に沿って延在することで氷上でのハンドリング性能が良化する点は図2の形態と同様であるが、溝部15の少なくとも一端がチップ部11内で終端することにより、チップ部11のタイヤ幅方向のエッジ成分が増加するため、氷上での制動性能の改善効果を高めることができる。 Even when at least one end of the groove portion 15 is not opened on the side surface of the chip portion 11 as described above, the edge in the lateral direction S increases, so that the performance on ice can be effectively improved. In particular, when the stud pin P is installed on the tread portion of the tire so that the longitudinal direction L of the tip portion 11 is in the tire width direction, the tip portion 11 extends along the tire width direction to provide braking performance on ice. Is improved, and the groove portion 15 extends along the tire circumferential direction to improve the handling performance on ice, which is the same as that of FIG. 2, but at least one end of the groove portion 15 is inside the chip portion 11. By terminating, the edge component of the tip portion 11 in the tire width direction increases, so that the effect of improving the braking performance on ice can be enhanced.
 ここで、We/Wzの値が0.10よりも大きいと、軽量化の効果が低下するばかりでなく、チップ部11の短手方向Sのエッジ量が減少するため氷上性能の改善効果が低下することになる。 Here, if the We / Wz value is larger than 0.10, not only the effect of weight reduction is reduced, but also the edge amount in the lateral direction S of the chip portion 11 is reduced, so that the effect of improving the performance on ice is reduced. Will be done.
 図5(a)~(f)はそれぞれスタッドピンのチップ部の変形例を示し、図6(a)~(d)はそれぞれスタッドピンのチップ部の更なる変形例を示すものである。図5(a)~(f)及び図6(a)~(d)において、チップ部11はボディ部10の中心軸Xの方向に見たときの形状が長手方向Lを有し、溝部15は長手方向Lと直交する短手方向Sに延在している。溝部15は、両端がチップ部11の側面に開口していても良く、一端のみがチップ部11内で終端していても良く、両端がチップ部11内で終端していても良い。チップ部11は、図5(a)~(f)では菱形を基調とする平面視形状を有し、図6(a)~(d)では扇形を基調とする平面視形状を有しているが、これ以外の平面視形状を採用することも可能である。 5 (a) to 5 (f) show deformation examples of the tip portion of the stud pin, respectively, and FIGS. 6 (a) to 6 (d) show further deformation examples of the tip portion of the stud pin, respectively. In FIGS. 5 (a) to 5 (f) and FIGS. 6 (a) to 6 (d), the shape of the tip portion 11 when viewed in the direction of the central axis X of the body portion 10 has the longitudinal direction L, and the groove portion 15 Extends in the lateral direction S orthogonal to the longitudinal direction L. Both ends of the groove portion 15 may be open to the side surface of the chip portion 11, only one end thereof may be terminated in the chip portion 11, or both ends may be terminated in the chip portion 11. The chip portion 11 has a plan view shape based on a rhombus in FIGS. 5 (a) to 5 (f), and has a plan view shape based on a fan shape in FIGS. 6 (a) to 6 (d). However, it is also possible to adopt a plan view shape other than this.
 図7は本発明の空気入りタイヤの一例を示し、図8はそのトレッドパターンを示すものである。本実施形態の空気入りタイヤは、回転方向Rが指定されたタイヤである。 FIG. 7 shows an example of the pneumatic tire of the present invention, and FIG. 8 shows the tread pattern. The pneumatic tire of the present embodiment is a tire in which the rotation direction R is designated.
 図7に示すように、空気入りタイヤTは、タイヤ周方向に延在して環状をなすトレッド部21と、該トレッド部21の両側に配置された一対のサイドウォール部22,22と、これらサイドウォール部22のタイヤ径方向内側に配置された一対のビード部23,23とを備えている。 As shown in FIG. 7, the pneumatic tire T includes a tread portion 21 extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions 22 and 22 arranged on both sides of the tread portion 21, and these. It includes a pair of bead portions 23, 23 arranged inside the sidewall portion 22 in the tire radial direction.
 一対のビード部23,23間にはカーカス層24が装架されている。このカーカス層24は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部23に配置されたビードコア25の廻りにタイヤ内側から外側へ折り返されている。ビードコア25の外周上には断面三角形状のゴム組成物からなるビードフィラー26が配置されている。 A carcass layer 24 is mounted between the pair of bead portions 23, 23. The carcass layer 24 includes a plurality of reinforcing cords extending in the radial direction of the tire, and is folded back from the inside to the outside of the tire around the bead core 25 arranged in each bead portion 23. A bead filler 26 made of a rubber composition having a triangular cross section is arranged on the outer periphery of the bead core 25.
 一方、トレッド部21におけるカーカス層24の外周側には複数層のベルト層27が埋設されている。これらベルト層27はタイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。ベルト層27において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°~40°の範囲に設定されている。ベルト層27の補強コードとしては、スチールコードが好ましく使用される。ベルト層27の外周側には、高速耐久性の向上を目的として、補強コードをタイヤ周方向に対して例えば5°以下の角度で配列してなる少なくとも1層のベルトカバー層28が配置されている。ベルトカバー層28の補強コードとしては、ナイロンやアラミド等の有機繊維コードが好ましく使用される。 On the other hand, a plurality of belt layers 27 are embedded on the outer peripheral side of the carcass layer 24 in the tread portion 21. These belt layers 27 include a plurality of reinforcing cords that are inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to intersect each other between the layers. In the belt layer 27, the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set to, for example, in the range of 10 ° to 40 °. As the reinforcing cord of the belt layer 27, a steel cord is preferably used. On the outer peripheral side of the belt layer 27, at least one belt cover layer 28 having reinforcing cords arranged at an angle of, for example, 5 ° or less with respect to the tire circumferential direction is arranged for the purpose of improving high-speed durability. There is. As the reinforcing cord of the belt cover layer 28, an organic fiber cord such as nylon or aramid is preferably used.
  図8に示すように、トレッド部21には、タイヤ幅方向の一方側のトレッド端からタイヤ幅方向内側に向かって延在しつつ回転方向Rに向かって傾斜する複数本の第1傾斜溝31と、タイヤ幅方向の他方側のトレッド端からタイヤ幅方向内側に向かって延在しつつ回転方向Rに向かって傾斜する複数本の第2傾斜溝32が形成されている。これら第1傾斜溝31及び第2傾斜溝32はタイヤ周方向に沿って交互に配置され、いずれもタイヤ赤道を横切る位置まで延在している。また、トレッド部21には、タイヤ周方向に対して傾斜しつつ複数本の第1傾斜溝31を互いに連結する第1縦溝33と、タイヤ周方向に対して傾斜しつつ複数本の第2傾斜溝32を連結する第2縦溝34が形成されている。これら第1傾斜溝31、第2傾斜溝32、第1縦溝33及び第2縦溝34により、トレッド部21には複数のブロック状陸部35が区画されている。これらブロック状陸部35には、スタッドピンPを植え込むための複数の植え込み穴36が形成されている。スタッドピンPは、そのボディ部10が植え込み穴36に挿入され、チップ部11がトレッド部21から突き出すようにトレッド部21に配設されている。植え込み穴36の内径はスタッドピンPの外径よりも若干小さくなっており、植え込み穴36に植え込まれたスタッドピンPはトレッド部21に対して強固に保持される。 As shown in FIG. 8, the tread portion 21 has a plurality of first inclined grooves 31 extending inward in the tire width direction from one tread end in the tire width direction and inclined in the rotation direction R. A plurality of second inclined grooves 32 extending inward in the tire width direction and inclined toward the rotation direction R are formed from the tread end on the other side in the tire width direction. The first inclined grooves 31 and the second inclined grooves 32 are alternately arranged along the tire circumferential direction, and both extend to a position crossing the tire equator. Further, the tread portion 21 has a first vertical groove 33 that connects a plurality of first inclined grooves 31 to each other while being inclined with respect to the tire peripheral direction, and a plurality of second vertical grooves while being inclined with respect to the tire peripheral direction. A second vertical groove 34 connecting the inclined grooves 32 is formed. The tread portion 21 is divided into a plurality of block-shaped land portions 35 by the first inclined groove 31, the second inclined groove 32, the first vertical groove 33, and the second vertical groove 34. A plurality of implantation holes 36 for implanting the stud pin P are formed in these block-shaped land portions 35. The body portion 10 of the stud pin P is inserted into the implant hole 36, and the tip portion 11 is arranged in the tread portion 21 so as to protrude from the tread portion 21. The inner diameter of the implantation hole 36 is slightly smaller than the outer diameter of the stud pin P, and the stud pin P implanted in the implantation hole 36 is firmly held against the tread portion 21.
 上述のように空気入りタイヤTのトレッド部21に所定の構造を有するスタッドピンPを配設することにより、軽量化を図ると共に、氷上性能を改善することが可能となる。特に、トレッド部21に、タイヤ幅方向の一方側のトレッド端からタイヤ幅方向内側に向かって延在しつつ回転方向Rに向かって傾斜する複数本の第1傾斜溝31と、タイヤ幅方向の他方側のトレッド端からタイヤ幅方向内側に向かって延在しつつ回転方向Rに向かって傾斜する複数本の第2傾斜溝32とを有するV字基調のトレッドパターンでは、第1傾斜溝31及び第2傾斜溝32に沿って形成される陸部35にスタッドピンPが配設されるので、スタッドピンPがタイヤ周方向に重なり難いという利点があり、スタッドピンPに基づいて優れた氷上性能を発揮することができる。 By arranging the stud pin P having a predetermined structure on the tread portion 21 of the pneumatic tire T as described above, it is possible to reduce the weight and improve the performance on ice. In particular, the tread portion 21 has a plurality of first inclined grooves 31 extending inward in the tire width direction from one tread end in the tire width direction and inclined toward the rotation direction R, and a plurality of first inclined grooves 31 in the tire width direction. In a V-shaped tread pattern having a plurality of second inclined grooves 32 that extend inward in the tire width direction from the tread end on the other side and are inclined toward the rotation direction R, the first inclined groove 31 and Since the stud pin P is arranged on the land portion 35 formed along the second inclined groove 32, there is an advantage that the stud pin P does not easily overlap in the tire circumferential direction, and excellent on-ice performance based on the stud pin P. Can be demonstrated.
 なお、図7に示す空気入りタイヤTの補強構造は代表的な例を示すものであるが、これに限定されるものではない。また、空気入りタイヤTのトレッド部21に形成されるトレッドパターンも特に限定されるものではない。 The reinforcing structure of the pneumatic tire T shown in FIG. 7 shows a typical example, but is not limited to this. Further, the tread pattern formed on the tread portion 21 of the pneumatic tire T is not particularly limited.
 図9は空気入りタイヤのトレッド部に配設される第1スタッドピン及び第2スタッドピンを示すものである。図9において、Tcはタイヤ周方向である。図8のようなトレッド部21に配設される複数のスタッドピンPは、溝部15の長手方向がタイヤ周方向Tcに対してなす角度θが0°~10°の範囲にある複数の第1スタッドピンP1と、溝部15の長手方向がタイヤ周方向Tcに対してなす角度θが第1スタッドピンP1よりも大きい複数の第2スタッドピンP2とを含み、第1スタッドピンP1に対して第2スタッドピンP2がタイヤ周方向に沿って点在していることが好ましい。トレッド部21における第1スタッドピンP1の本数は第2スタッドピンP2の本数よりも多くなっている。このように第1スタッドピンP1と第2スタッドピンP2とを混在させることにより、氷上でのハンドリング性能を飛躍的に改善することができる。なお、このように第1スタッドピンP1と第2スタッドピンP2とを混在させる配置は、スタッドピンPの形状に拘わらず、チップ部11に溝部15を備えたスタッドピンPに適用可能である。 FIG. 9 shows the first stud pin and the second stud pin arranged in the tread portion of the pneumatic tire. In FIG. 9, Tc is the tire circumferential direction. The plurality of stud pins P arranged in the tread portion 21 as shown in FIG. 8 have a plurality of first stud pins P having an angle θ formed by the longitudinal direction of the groove portion 15 with respect to the tire circumferential direction Tc in the range of 0 ° to 10 °. The stud pin P1 includes a plurality of second stud pins P2 having an angle θ formed by the longitudinal direction of the groove 15 with respect to the tire circumferential direction Tc larger than that of the first stud pin P1, and is the first with respect to the first stud pin P1. 2 It is preferable that the stud pins P2 are scattered along the tire circumferential direction. The number of first stud pins P1 in the tread portion 21 is larger than the number of second stud pins P2. By mixing the first stud pin P1 and the second stud pin P2 in this way, the handling performance on ice can be dramatically improved. The arrangement in which the first stud pin P1 and the second stud pin P2 are mixed in this way can be applied to the stud pin P having the groove portion 15 in the tip portion 11 regardless of the shape of the stud pin P.
 第2スタッドピンP2において、溝部15の長手方向がタイヤ周方向Tcに対してなす角度θは好ましくは30°~90°の範囲、より好ましくは45°~85°の範囲に設定される。これにより、第1スタッドピンP1に対する角度差を十分に確保し、氷上でのハンドリング性能の改善効果を高めることができる。また、トレッド部21における第2スタッドピンP2の本数は全てのスタッドピンPの本数の10%~45%とすることが好ましい。 In the second stud pin P2, the angle θ formed by the longitudinal direction of the groove 15 with respect to the tire circumferential direction Tc is preferably set in the range of 30 ° to 90 °, more preferably in the range of 45 ° to 85 °. As a result, the angle difference with respect to the first stud pin P1 can be sufficiently secured, and the effect of improving the handling performance on ice can be enhanced. Further, the number of the second stud pins P2 in the tread portion 21 is preferably 10% to 45% of the number of all the stud pins P.
 図8において、Cは空気入りタイヤTを正規リムにリム組みして正規内圧を充填した状態で平面上に垂直に置いて正規荷重を加えたときに形成される接地領域であり、TCWは接地幅である。ここで、トレッド部21を接地幅TCW内でタイヤ幅方向に3等分したときに形成される3つの領域をそれぞれ第1領域R1、第2領域R2及び第3領域R3とする。第1領域R1及び第3領域R3はショルダー領域であり、第2領域R2はセンター領域である。これら第1領域R1、第2領域R2及び第3領域R3の各々には少なくとも1つの第1スタッドピンP1及び少なくとも1つの第2スタッドピンP2が配置されていることが好ましい。この場合、トレッド部21の接地領域Cの全域にわたって第1スタッドピンP1及び第2スタッドピンP2が存在するので、氷上でのハンドリング性能の改善効果を高めることができる。 In FIG. 8, C is a ground contact region formed when a pneumatic tire T is rim-assembled on a regular rim, placed vertically on a flat surface with a regular internal pressure, and a regular load is applied, and TCW is a ground contact region. The width. Here, the three regions formed when the tread portion 21 is divided into three equal parts in the tire width direction within the ground contact width TCW are referred to as a first region R1, a second region R2, and a third region R3, respectively. The first region R1 and the third region R3 are shoulder regions, and the second region R2 is a center region. It is preferable that at least one first stud pin P1 and at least one second stud pin P2 are arranged in each of the first region R1, the second region R2, and the third region R3. In this case, since the first stud pin P1 and the second stud pin P2 are present over the entire grounding region C of the tread portion 21, the effect of improving the handling performance on ice can be enhanced.
 また、トレッド部21においてタイヤ周方向に最も近接する一対の第2スタッドピンP2,P2のタイヤ周方向の間隔D2はトレッド部21の接地長Lcの1.0%~100.0%の範囲にあると良い。この場合、接地領域C内に少なくとも1つの第2スタッドピンP2が確実に配置されることになるので、氷上でのハンドリング性能の改善効果を高めることができる。同様に、トレッド部21においてタイヤ周方向に最も近接する一対の第1スタッドピンP1,P1のタイヤ周方向の間隔D1もトレッド部21の接地長Lcの1.0%~100.0%の範囲にあると良い。接地領域C内に第1スタッドピンP1及び第2スタッドピンP2が混在することにより、乾燥路面における騒音(ピンノイズ)を抑制する効果も期待することができる。第2スタッドピンP2の間隔D2が接地長Lcの1.0%よりも小さいと、第2スタッドピンP2同士が接近するめピンノイズを悪化させる虞があり、逆に接地長Lcの100.0%よりも大きいと、氷上でのハンドリング性能の改善効果が低下する。 Further, the distance D2 in the tire circumferential direction of the pair of second stud pins P2 and P2 closest to the tire circumferential direction in the tread portion 21 is in the range of 1.0% to 100.0% of the ground contact length Lc of the tread portion 21. It would be nice to have it. In this case, since at least one second stud pin P2 is surely arranged in the ground contact region C, the effect of improving the handling performance on ice can be enhanced. Similarly, the distance D1 in the tire circumferential direction of the pair of first stud pins P1 and P1 closest to the tire circumferential direction in the tread portion 21 is also in the range of 1.0% to 100.0% of the ground contact length Lc of the tread portion 21. It is good to be in. By mixing the first stud pin P1 and the second stud pin P2 in the ground contact region C, the effect of suppressing noise (pin noise) on a dry road surface can also be expected. If the distance D2 between the second stud pins P2 is smaller than 1.0% of the grounding length Lc, the second stud pins P2 may approach each other and worsen the pin noise, and conversely, from 100.0% of the grounding length Lc. If it is too large, the effect of improving the handling performance on ice will decrease.
 第2スタッドピンP2の平均突出量Pxと第1スタッドピンP1の平均突出量PyとはPx>Pyの関係を満足することが好ましい。これにより、氷上でのハンドリング性能の改善効果を高めることができる。特に、乾燥路面の走行時において、第1スタッドピンP1に由来する振動周波数と第2スタッドピンP2に由来する振動周波数とが相違するので、第1スタッドピンP1の中に点在する第2スタッドピンP2の平均突出量Pxを相対的に大きくすることで、ピンノイズの周波数の分散効果を高めて乾燥路面での騒音性能を改善する一方で、第2スタッドピンP2によるエッジ効果を高めて氷上でのハンドリング性能を効果的に改善することができる。第2スタッドピンP2の平均突出量Pxとは、トレッド部21の踏面からの第2スタッドピンP2の突出量の平均値であり、第1スタッドピンP1の平均突出量Pyとは、トレッド部21の踏面からの第1スタッドピンP1の突出量の平均値である。 It is preferable that the average protrusion amount Px of the second stud pin P2 and the average protrusion amount Py of the first stud pin P1 satisfy the relationship of Px> Py. As a result, the effect of improving the handling performance on ice can be enhanced. In particular, when traveling on a dry road surface, the vibration frequency derived from the first stud pin P1 and the vibration frequency derived from the second stud pin P2 are different, so that the second studs scattered in the first stud pin P1 are scattered. By increasing the average protrusion amount Px of the pin P2 relatively, the frequency dispersion effect of the pin noise is enhanced to improve the noise performance on the dry road surface, while the edge effect of the second stud pin P2 is enhanced on ice. The handling performance of the can be effectively improved. The average protrusion amount Px of the second stud pin P2 is the average value of the protrusion amount of the second stud pin P2 from the tread of the tread portion 21, and the average protrusion amount Py of the first stud pin P1 is the tread portion 21. It is an average value of the protrusion amount of the 1st stud pin P1 from the tread.
 特に、第2スタッドピンP1の平均突出量Pxと第1スタッドピンP2の平均突出量Pyとは1.05≦Px/Pyの関係を満足することが好ましい。上記関係を満足することにより、乾燥路面での騒音性能と氷上でのハンドリング性能をバランス良く改善することができる。但し、Px/Pyの値が1.20を超えると第2スタッドピンP2に由来するピンノイズが増大することになる。そのため、1.05≦Px/Py≦1.20の関係を満足することが望ましい。 In particular, it is preferable that the average protrusion amount Px of the second stud pin P1 and the average protrusion amount Py of the first stud pin P2 satisfy the relationship of 1.05 ≦ Px / Py. By satisfying the above relationship, it is possible to improve the noise performance on a dry road surface and the handling performance on ice in a well-balanced manner. However, if the value of Px / Py exceeds 1.20, the pin noise derived from the second stud pin P2 will increase. Therefore, it is desirable to satisfy the relationship of 1.05 ≦ Px / Py ≦ 1.20.
 タイヤサイズ205/55R16 94Tである空気入りタイヤにおいて、トレッド部に配設されるスタッドピンの構造だけを異ならせた従来例、比較例1~2及び実施例1~11のタイヤを製作した。 In the pneumatic tire having a tire size of 205 / 55R16 94T, the tires of the conventional examples, Comparative Examples 1 and 2 and Examples 1 to 11 in which only the structure of the stud pin arranged in the tread portion was different were manufactured.
 従来例、比較例1~2及び実施例1~11において、ボディ部の中心軸方向に見たときのチップ部の形状、チップ部の総面積Sx、溝部の面積Sy、Sy/Sx、チップ部における長手方向の有無、溝部の開口の有無、チップ部の短手方向の最大幅Wz、溝部両端でのチップ部の厚さWe、We/Wz、チップ部の突出高さHt、溝部の深さHg、Hg/Ht、スタッドピンの高さHs、Hg/Hs、Ht/Hs、ボディ部の最大幅位置での断面積Sa、Sx/Sa、第1スタッドピンの溝部の角度θ、第2スタッドピンの溝部の角度θ、第2スタッドピンの割合(%)を表1及び表2のように設定した。 In the conventional example, Comparative Examples 1 and 2, and Examples 1 to 11, the shape of the tip portion when viewed in the central axis direction of the body portion, the total area Sx of the chip portion, the area Sy of the groove portion, Sy / Sx, and the chip portion. Whether or not there is a longitudinal direction, the presence or absence of an opening in the groove, the maximum width Wz in the lateral direction of the tip, the thickness We, We / Wz of the tip at both ends of the groove, the protruding height Ht of the tip, and the depth of the groove. Hg, Hg / Ht, stud pin height Hs, Hg / Hs, Ht / Hs, cross-sectional area Sa, Sx / Sa at the maximum width position of the body, angle θ of the groove of the first stud pin, second stud. The angle θ of the groove portion of the pin and the ratio (%) of the second stud pin were set as shown in Tables 1 and 2.
  これら試験タイヤについて、下記試験方法により、氷上でのハンドリング性能、氷上での制動性能、スタッドピンの質量、スタッドピンの耐久性を評価し、その結果を表1及び表2に併せて示した。 For these test tires, the handling performance on ice, braking performance on ice, mass of stud pins, and durability of stud pins were evaluated by the following test methods, and the results are shown in Tables 1 and 2.
 氷上でのハンドリング性能:
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて排気量1.4リットルの前輪駆動車に装着し、車両指定空気圧を充填し、氷雪路面からなるテストコースにおいて、ハンドリング性能について、テストドライバーによる官能評価を行った。評価結果は、従来例を100とする指数にて示した。この指数値が大きいほど氷上でのハンドリング性能が優れていることを意味する。
Handling performance on ice:
Each test tire is attached to a wheel with a rim size of 16 x 6.5J, mounted on a front-wheel drive vehicle with a displacement of 1.4 liters, filled with the specified air pressure of the vehicle, and a test driver for handling performance on a test course consisting of ice and snow road surfaces. Sensory evaluation was performed by. The evaluation results are shown by an index of 100 in the conventional example. The larger this index value is, the better the handling performance on ice is.
 氷上での制動性能:
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて排気量1.4リットルの前輪駆動車に装着し、車両指定空気圧を充填し、氷盤路面からなるテストコース(直線路)において、車速25km/hの走行状態からブレーキを掛けて、車速が20km/hから5km/hになるまでの制動距離を測定した。評価結果は、測定値の逆数を用い、従来例を100とする指数にて示した。この指数値が大きいほど氷上での制動性能が優れていることを意味する。
Braking performance on ice:
Each test tire is attached to a wheel with a rim size of 16 x 6.5J, mounted on a front-wheel drive vehicle with a displacement of 1.4 liters, filled with the specified air pressure of the vehicle, and the vehicle speed is applied on a test course (straight road) consisting of a icy road surface. The brake was applied from the running state of 25 km / h, and the braking distance from the vehicle speed of 20 km / h to 5 km / h was measured. The evaluation result is shown by an index of 100 in the conventional example using the reciprocal of the measured value. The larger this index value is, the better the braking performance on ice is.
 スタッドピンの質量:
 各試験タイヤについて、スタッドピンの質量を測定した。評価結果は、計測値の逆数を用い、従来例を100とする指数にて示した。この指数値が大きいほど軽量であることを意味する。
Stud pin mass:
The mass of the stud pin was measured for each test tire. The evaluation results are shown by an index of 100 in the conventional example using the reciprocal of the measured value. The larger the index value, the lighter the weight.
 スタッドピンの耐久性:
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて排気量1.4リットルの前輪駆動車に装着し、車両指定空気圧を充填し、乾燥したアスファルト路面からなるテストコースにおいて、所定の走行モードで走行を行った後、スタッドピンのチップ折れ本数を計測した。評価結果は、計測値の逆数を用い、比較例1を100とする指数にて示した。この指数値が大きいほどスタッドピンの耐久性が優れていることを意味する。
Durability of stud pins:
Each test tire is attached to a wheel with a rim size of 16 x 6.5J, mounted on a front-wheel drive vehicle with a displacement of 1.4 liters, filled with the specified air pressure of the vehicle, and in a test course consisting of a dry asphalt road surface, a predetermined driving mode. After running in, the number of broken chips of the stud pin was measured. The evaluation results are shown by an index with Comparative Example 1 as 100 using the reciprocal of the measured value. The larger this index value is, the better the durability of the stud pin is.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2から判るように、実施例1~11では、従来例との対比において、軽量化を図ると共に、氷上でのハンドリング性能及び制動性能を改善することができた。一方、比較例1では、Sy/Sxの値が小さ過ぎるため軽量化及び氷上性能について改善効果が殆どなかった。また、比較例2では、Sy/Sxの値が大き過ぎるためスタッドピンの耐久性の低下が著しかった。 As can be seen from Tables 1 and 2, in Examples 1 to 11, it was possible to reduce the weight and improve the handling performance and braking performance on ice as compared with the conventional examples. On the other hand, in Comparative Example 1, since the value of Sy / Sx was too small, there was almost no effect of improving the weight reduction and the performance on ice. Further, in Comparative Example 2, since the value of Sy / Sx was too large, the durability of the stud pin was significantly reduced.
 10 ボディ部
 11 チップ部
 12 フランジ部
 13 窪み部
 14 傾斜面
 15 溝部
 16 凸部
 17 凹部
 21 トレッド部
 22 サイドウォール部
 23 ビード部
 P スタッドピン
 T 空気入りタイヤ
10 Body part 11 Tip part 12 Flange part 13 Depressed part 14 Inclined surface 15 Groove part 16 Convex part 17 Concave part 21 Tread part 22 Side wall part 23 Bead part P Stud pin T Pneumatic tire

Claims (14)

  1.  タイヤのトレッド部に埋設されるボディ部と、該ボディ部の先端側から突出するチップ部と、前記ボディ部の基端側に配置されたフランジ部とを有するスタッドピンにおいて、
     前記チップ部はその先端面に溝部を有しており、前記ボディ部の中心軸方向に見たときの前記チップ部の総面積Sxと前記溝部の面積Syとが0.20≦Sy/Sx≦0.50の関係を満足することを特徴とするスタッドピン。
    In a stud pin having a body portion embedded in the tread portion of a tire, a tip portion protruding from the tip end side of the body portion, and a flange portion arranged on the proximal end side of the body portion.
    The tip portion has a groove portion on its tip surface, and the total area Sx of the tip portion and the area Sy of the groove portion when viewed in the central axis direction of the body portion are 0.20 ≦ Sy / Sx ≦. A stud pin characterized by satisfying a relationship of 0.50.
  2.  前記チップ部は前記ボディ部の中心軸方向に見たときの形状が長手方向を有し、前記溝部は前記長手方向と直交する短手方向に延在して両端が前記チップ部の側面に開口していることを特徴とする請求項1に記載のスタッドピン。 The shape of the tip portion when viewed in the central axis direction of the body portion has a longitudinal direction, and the groove portion extends in the lateral direction orthogonal to the longitudinal direction, and both ends are opened on the side surface of the chip portion. The stud pin according to claim 1, wherein the stud pin is provided.
  3.  前記チップ部は前記ボディ部の中心軸方向に見たときの形状が長手方向を有し、前記溝部は前記長手方向と直交する短手方向に延在して少なくとも一端が前記チップ部内で終端し、前記溝部の前記少なくとも一端の各々における前記チップ部の厚さWeと前記チップ部の短手方向の最大幅WzとがWe/Wz≦0.10の関係を満足することを特徴とする請求項1に記載のスタッドピン。 The shape of the tip portion when viewed in the central axis direction of the body portion has a longitudinal direction, and the groove portion extends in the lateral direction orthogonal to the longitudinal direction, and at least one end thereof is terminated in the chip portion. The claim is characterized in that the thickness We of the chip portion at each of the at least one ends of the groove portion and the maximum width Wz of the chip portion in the lateral direction satisfy the relationship of We / Wz ≦ 0.10. The stud pin according to 1.
  4.  前記チップ部の前記ボディ部からの突出高さHtと前記溝部の深さHgとが0.5≦Hg/Htの関係を満足することを特徴とする請求項1~3のいずれかに記載のスタッドピン。 The invention according to any one of claims 1 to 3, wherein the height Ht of the tip portion protruding from the body portion and the depth Hg of the groove portion satisfy the relationship of 0.5 ≦ Hg / Ht. Stud pin.
  5.  前記スタッドピンの高さHsと前記溝部の深さHgとがHg/Hs≦0.15の関係を満足することを特徴とする請求項1~4のいずれかに記載のスタッドピン。 The stud pin according to any one of claims 1 to 4, wherein the height Hs of the stud pin and the depth Hg of the groove portion satisfy the relationship of Hg / Hs ≦ 0.15.
  6.  前記ボディ部の中心軸と直交する平面における断面積であって前記ボディ部の最大幅位置での断面積Saと前記ボディ部の中心軸方向に見たときの前記チップ部の総面積Sxとが0.10≦Sx/Sa≦0.20の関係を満足することを特徴とする請求項1~5のいずれかに記載のスタッドピン。 The cross-sectional area in a plane orthogonal to the central axis of the body portion, the cross-sectional area Sa at the maximum width position of the body portion, and the total area Sx of the chip portion when viewed in the central axis direction of the body portion. The stud pin according to any one of claims 1 to 5, wherein the relationship of 0.10 ≦ Sx / Sa ≦ 0.20 is satisfied.
  7.  前記チップ部は、前記溝部と直交する方向に突出する凸部と、前記溝部の両端と前記凸部との間で前記ボディ部の中心軸に向かって窪んだ凹部とを有することを特徴とする請求項1~6のいずれかに記載のスタッドピン。 The tip portion is characterized by having a convex portion protruding in a direction orthogonal to the groove portion and a concave portion recessed between both ends of the groove portion and the convex portion toward the central axis of the body portion. The stud pin according to any one of claims 1 to 6.
  8.  請求項1~7のいずれかに記載されたスタッドピンがトレッド部に配設されていることを特徴とするタイヤ。 A tire characterized in that the stud pin according to any one of claims 1 to 7 is arranged on the tread portion.
  9.  前記スタッドピンは、前記溝部の長手方向がタイヤ周方向に対してなす角度が0°~10°の範囲にある複数の第1スタッドピンと、前記溝部の長手方向がタイヤ周方向に対してなす角度が前記第1スタッドピンよりも大きい複数の第2スタッドピンとを含み、前記第1スタッドピンに対して前記第2スタッドピンがタイヤ周方向に沿って点在していることを特徴とする請求項8に記載のタイヤ。 The stud pins are formed by a plurality of first stud pins having an angle formed by the longitudinal direction of the groove with respect to the tire circumferential direction in the range of 0 ° to 10 °, and an angle formed by the longitudinal direction of the groove with respect to the tire circumferential direction. The present invention includes a plurality of second stud pins larger than the first stud pin, and the second stud pin is scattered along the tire circumferential direction with respect to the first stud pin. The tire according to 8.
  10.  前記トレッド部を接地幅内でタイヤ幅方向に3等分したときに形成される第1領域、第2領域及び第3領域の各々に少なくとも1つの第1スタッドピン及び少なくとも1つの第2スタッドピンが配置されていることを特徴とする請求項9に記載のタイヤ。 At least one first stud pin and at least one second stud pin in each of the first region, the second region, and the third region formed when the tread portion is divided into three equal parts in the tire width direction within the ground contact width. The tire according to claim 9, wherein the tire is arranged.
  11.  前記トレッド部においてタイヤ周方向に最も近接する一対の第2スタッドピンのタイヤ周方向の間隔が前記トレッド部の接地長の1.0%~100.0%の範囲にあることを特徴とする請求項9又は10に記載のタイヤ。 A claim characterized in that the distance between the pair of second stud pins closest to the tire circumferential direction in the tread portion in the tire circumferential direction is in the range of 1.0% to 100.0% of the ground contact length of the tread portion. Item 9. The tire according to Item 9.
  12.  前記第2スタッドピンの平均突出量Pxと前記第1スタッドピンの平均突出量PyとがPx>Pyの関係を満足することを特徴とする請求項9~11のいずれかに記載のタイヤ。 The tire according to any one of claims 9 to 11, wherein the average protrusion amount Px of the second stud pin and the average protrusion amount Py of the first stud pin satisfy the relationship of Px> Py.
  13.  前記第2スタッドピンの平均突出量Pxと前記第1スタッドピンの平均突出量Pyとが1.05≦Px/Pyの関係を満足することを特徴とする請求項12に記載のタイヤ。 The tire according to claim 12, wherein the average protrusion amount Px of the second stud pin and the average protrusion amount Py of the first stud pin satisfy the relationship of 1.05 ≦ Px / Py.
  14.  回転方向が指定されたタイヤであって、前記トレッド部に、タイヤ幅方向の一方側のトレッド端からタイヤ幅方向内側に向かって延在しつつ前記回転方向に向かって傾斜する複数本の第1傾斜溝と、タイヤ幅方向の他方側のトレッド端からタイヤ幅方向内側に向かって延在しつつ前記回転方向に向かって傾斜する複数本の第2傾斜溝とを有することを特徴とする請求項8~13のいずれかに記載のタイヤ。 A plurality of first tires whose rotation direction is specified and which are inclined toward the rotation direction while extending inward in the tire width direction from the tread end on one side in the tire width direction to the tread portion. The claim is characterized by having an inclined groove and a plurality of second inclined grooves extending inward in the tire width direction from the tread end on the other side in the tire width direction and inclined toward the rotation direction. The tire according to any one of 8 to 13.
PCT/JP2021/029267 2020-08-06 2021-08-06 Stud pin and tire comprising same WO2022030610A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FI20235121A FI20235121A1 (en) 2020-08-06 2021-08-06 Stud pin and tire including the same
JP2021546313A JP7248135B2 (en) 2020-08-06 2021-08-06 Stud pin and tire with it
CN202180060350.5A CN116157282A (en) 2020-08-06 2021-08-06 Stud and tire provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-133600 2020-08-06
JP2020133600 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022030610A1 true WO2022030610A1 (en) 2022-02-10

Family

ID=80118151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029267 WO2022030610A1 (en) 2020-08-06 2021-08-06 Stud pin and tire comprising same

Country Status (4)

Country Link
JP (1) JP7248135B2 (en)
CN (1) CN116157282A (en)
FI (1) FI20235121A1 (en)
WO (1) WO2022030610A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004901A1 (en) * 2022-06-27 2024-01-04 横浜ゴム株式会社 Tire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148262A1 (en) * 2013-03-19 2014-09-25 株式会社ブリヂストン Stud pin and tire using same
JP2016215727A (en) * 2015-05-15 2016-12-22 横浜ゴム株式会社 Pneumatic tire
WO2021117678A1 (en) * 2019-12-10 2021-06-17 横浜ゴム株式会社 Pneumatic tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148262A1 (en) * 2013-03-19 2014-09-25 株式会社ブリヂストン Stud pin and tire using same
JP2016215727A (en) * 2015-05-15 2016-12-22 横浜ゴム株式会社 Pneumatic tire
WO2021117678A1 (en) * 2019-12-10 2021-06-17 横浜ゴム株式会社 Pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004901A1 (en) * 2022-06-27 2024-01-04 横浜ゴム株式会社 Tire

Also Published As

Publication number Publication date
JP7248135B2 (en) 2023-03-29
FI20235121A1 (en) 2023-02-07
JPWO2022030610A1 (en) 2022-02-10
CN116157282A (en) 2023-05-23

Similar Documents

Publication Publication Date Title
EP1440822B1 (en) Pneumatic tire
EP1992504A1 (en) Motorcycle tire for off-road traveling
JP5888368B2 (en) Pneumatic tire
JP6946641B2 (en) Pneumatic tires
US10618357B2 (en) Stud pin, and pneumatic tire
WO2018131475A1 (en) Pneumatic tire
JP4180910B2 (en) Heavy duty radial tire
CN112124008B (en) pneumatic tire
JP2014213832A (en) Heavy load tire
US20180339555A1 (en) Pneumatic Tire
CN110091676B (en) Tyre for vehicle wheels
WO2022030610A1 (en) Stud pin and tire comprising same
US11235622B2 (en) Pneumatic tire
JP2023064576A (en) tire
JP7095374B2 (en) Pneumatic tires
JP2017140858A (en) Pneumatic tire
CN110290940B (en) Anti-skid nail and nail-embedded tire
US11872849B2 (en) Stud pin and stud tire
JP7091818B2 (en) tire
WO2020059395A1 (en) Pneumatic tire
CN110290943B (en) Anti-skid nail and nail-embedded tire
RU2807161C1 (en) Stud and tire including such stud
WO2022024541A1 (en) Stud pin and tire comprising same
JP7063350B2 (en) Stud pins and tires with them
US11780270B2 (en) Tire

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021546313

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853981

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023103649

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853981

Country of ref document: EP

Kind code of ref document: A1