WO2022024541A1 - Stud pin and tire comprising same - Google Patents

Stud pin and tire comprising same Download PDF

Info

Publication number
WO2022024541A1
WO2022024541A1 PCT/JP2021/020602 JP2021020602W WO2022024541A1 WO 2022024541 A1 WO2022024541 A1 WO 2022024541A1 JP 2021020602 W JP2021020602 W JP 2021020602W WO 2022024541 A1 WO2022024541 A1 WO 2022024541A1
Authority
WO
WIPO (PCT)
Prior art keywords
body portion
central axis
stud pin
maximum width
longitudinal direction
Prior art date
Application number
PCT/JP2021/020602
Other languages
French (fr)
Japanese (ja)
Inventor
孝志 芝井
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to FI20226187A priority Critical patent/FI20226187A1/en
Priority to CN202180035416.5A priority patent/CN115666968A/en
Publication of WO2022024541A1 publication Critical patent/WO2022024541A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile
    • B60C11/1675Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile with special shape of the plug- tip

Definitions

  • the present invention relates to a stud pin and a tire provided with the stud pin, and more particularly to a stud pin capable of improving noise performance and pin pull-out resistance and a tire provided with the stud pin.
  • the stud pin has a body portion embedded in the tread portion of the tire, a tip portion protruding from the tip end side of the body portion and in contact with the road surface, and a flange portion arranged on the base end side of the body portion. ing.
  • the tip portion of the studded pin mainly comes into contact with the icy road surface and exerts its edge effect, so that excellent on-ice performance can be exhibited as compared with the studless tire.
  • stud pins are composed of metal compounds, stud tires are inferior in noise performance to studless tires.
  • the noise performance of a studless tire without a stud pin deteriorates as the wear progresses, but the noise performance of the stud tire tends to improve as the stud pin wears. Therefore, there is a strong demand for improving the noise performance of studded tires when they are new. Further, in a studded tire, the stud pin may come off during running, and it is required to improve the pin pull-out resistance.
  • An object of the present invention is to provide a stud pin capable of improving noise performance and pin pull-out resistance, and a tire provided with the stud pin.
  • the stud pin of the present invention for achieving the above object is arranged on the body portion embedded in the tread portion of the tire, the tip portion protruding from the tip end side of the body portion, and the proximal end side of the body portion.
  • a stud pin with a flange The cross-sectional area of the body portion in a plane orthogonal to the central axis thereof changes along the central axis of the body portion, and the cross-sectional area Sa at the maximum width position of the body portion and the most advanced position of the body portion. It is characterized in that the cross-sectional area Sb of the above satisfies the relationship of 0.30 ⁇ Sb / Sa ⁇ 0.80.
  • the tire of the present invention for achieving the above object is characterized in that the above-mentioned stud pin is arranged in the tread portion.
  • the cross-sectional area of the body portion of the stud pin in a plane orthogonal to the central axis thereof changes along the central axis of the body portion
  • the cross-sectional area Sa and the body portion at the maximum width position of the body portion are Since the cross-sectional area Sb at the most advanced position satisfies the relationship of 0.30 ⁇ Sb / Sa ⁇ 0.80, when the stud pin is arranged on the tread portion of the tire, the body of the stud pin at the time of a new product is used. It is possible to suppress the contact between the portion and the road surface and improve the noise performance.
  • the stud pin implanted in the tread portion is difficult to come off during running, so that the pin pull-out resistance can be improved, and the stud pin can be improved.
  • the driving accuracy can be maintained well.
  • At least one concave portion recessed toward the central axis of the body portion and a pair of convex portions located on both sides of the concave portion are formed on the outer peripheral surface of the body portion.
  • the recess formed on the outer peripheral surface of the body portion is in close contact with the implant hole of the tread portion, the contact area between the body portion and the rubber becomes large, so that the stud pin is well held.
  • the contact pressure between the body portion and the rubber is high in the pair of convex portions located on both sides of the concave portion, the stud pin is well held. Thereby, the pin pull-out resistance can be improved.
  • the concave portion and the convex portion are provided on the outer peripheral surface of the body portion, the area of the portion where the body portion comes into contact with the road surface at the same time is reduced, so that such a structure also contributes to the improvement of noise performance.
  • the concave portion and the convex portion are arranged toward the tire circumferential direction (traveling direction of the vehicle), the effect of improving the noise performance can be remarkably obtained.
  • the body portion has a shape when viewed in the central axis direction has a longitudinal direction, and the convex portion is arranged so as to be convex toward the lateral direction orthogonal to the longitudinal direction. That is, since the recess extends along the longitudinal direction of the body portion, the contact area between the body portion and the rubber can be effectively increased, and the pin pull-out resistance can be improved.
  • the lateral direction of the body portion is made to coincide with the tire circumferential direction (traveling direction of the vehicle), the contact end line of the body portion with the road surface is curved by the concave portion, so that the effect of improving noise performance can be remarkably obtained. ..
  • the maximum width WB1 at the maximum width position of the body portion, the maximum width WP1 of the chip portion, and the maximum width WC1 at the most advanced position of the body portion are WB1> WC1> WP1, 0.30 ⁇ WP1 / WB1 ⁇ 0.60, 0. It is preferable to satisfy the relationship of .50 ⁇ WC1 / WB1 ⁇ 0.80.
  • A is a plane including a cross section having the maximum cross-sectional area of the body portion
  • B is a plane including a cross section on the tip side of the plane A and having the minimum cross-sectional area of the body portion
  • the body portion is a plane.
  • the distance La between an arbitrary point a on the contour line of the body portion in A and the central axis of the body portion, and a point b and a body portion which are points on the contour line of the body portion on the plane B and are located at positions corresponding to the point a.
  • the body portion has a longitudinal direction when viewed in the central axis direction, and the vertical region is arranged in the lateral direction orthogonal to the longitudinal direction.
  • an inclined surface is formed in the longitudinal direction of the body portion based on the setting of Sb / Sa, and the inclined surface does not exist in the lateral direction of the body portion.
  • the presence of an inclined surface in the longitudinal direction of the body effectively improves weight reduction and noise performance
  • the presence of a vertical region in the lateral direction of the body effectively improves pin removal resistance. Can be improved.
  • the shape of the body part when viewed in the central axis direction has a longitudinal direction, and the minimum value WB2 and the maximum value WB3 of the dimensions of the body portion measured along the lateral direction orthogonal to the longitudinal direction are 1.05 ⁇ . It is preferable to satisfy the relationship of WB3 / WB2 ⁇ 1.30. As a result, pin removal resistance and noise performance can be improved in a well-balanced manner.
  • the body portion has a plurality of inclined surfaces having different inclination angles with respect to a plane orthogonal to the central axis of the body portion between the maximum width position and the most advanced position.
  • the shape of the body portion when viewed in the central axis direction has a longitudinal direction, and two recesses recessed toward the central axis of the body portion on the outer peripheral surface of the body portion and a pair located on both sides of each recess.
  • Convex portions are formed, and these convex portions are arranged so as to be convex toward the lateral direction orthogonal to the longitudinal direction, and a plurality of inclined surfaces are formed between the maximum width position and the cutting edge position of the body portion. It is preferably formed and a plurality of inclined surfaces are arranged along the lateral direction.
  • the tip surface of the chip portion has a bulging portion having a curved surface shape and a flat portion arranged around the bulging portion.
  • the noise performance and the pin pull-out resistance can be improved as compared with the conventional tires.
  • the body portion has a plurality of inclined surfaces having different inclination angles with respect to a plane orthogonal to the central axis of the body portion between the maximum width position and the most advanced position, and is inclined toward the stepping side. It is preferable that the inclination angle of the inclined surface is larger than the inclination angle of the inclined surface inclined toward the kicking side.
  • the tire of the present invention is preferably a pneumatic tire, but may be a non-pneumatic tire.
  • the inside thereof can be filled with an inert gas such as air or nitrogen or other gas.
  • FIG. 1 is a perspective view showing a stud pin according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the stud pin of FIG.
  • FIG. 3 is a side view showing the stud pin of FIG.
  • FIG. 4 is a perspective view showing a stud pin made of another embodiment of the present invention.
  • FIG. 5 is a plan view showing the stud pin of FIG.
  • FIG. 6 is a side view showing the stud pin of FIG.
  • FIG. 7 is a plan view showing a stud pin made of still another embodiment of the present invention.
  • FIG. 8 is a side view showing the stud pin of FIG. 7.
  • FIG. 9 is a plan view showing a stud pin made of still another embodiment of the present invention.
  • FIG. 10 is a side view showing the stud pin of FIG.
  • FIG. 11 is a cross-sectional view taken along the meridian showing an example of the pneumatic tire of the present invention.
  • FIG. 12 is a plan view showing
  • 1 to 3 show stud pins according to an embodiment of the present invention.
  • the stud pin P of the present embodiment has a body portion 10 embedded in the tread portion of the tire and a tip portion 11 protruding from the tip end side of the body portion 10 and in contact with the road surface. And a flange portion 12 arranged on the base end side of the body portion 10.
  • the body portion 10 extends along its central axis X and has the most bulging structure in the middle portion in the extending direction.
  • two recesses 13 and 13 recessed while curving toward the central axis X of the body portion 10 are formed, and a pair of convex portions 14 and 13 are formed at positions on both sides of each recess 13. 14 is formed.
  • the body portion 10 and the flange portion 12 are integrally molded from the same metal material.
  • the metal material constituting the tip portion 11 has a higher hardness than the metal material constituting the body portion 10 and the flange portion 12, and the tip portion 11 is integrally processed with the body portion 10.
  • the cross-sectional area of the body portion 10 in a plane orthogonal to the central axis X changes along the central axis X of the body portion 10, and the cross-sectional area Sa at the maximum width position of the body portion 10 And the cross-sectional area Sb at the most advanced position of the body portion 10 satisfy the relationship of 0.30 ⁇ Sb / Sa ⁇ 0.80.
  • the maximum width position of the body portion 10 is a position where the dimension in the direction orthogonal to the central axis X is maximum in the body portion 10.
  • the state-of-the-art position of the body portion 10 is the position of the top surface of the body portion 10 on the chip portion 11 side. As shown in FIG.
  • the body portion 10 has a maximum width WB1 at the maximum width position, and has a maximum width WC1 at the most advanced position. Then, as shown in FIG. 3, when a plane A orthogonal to the central axis X is defined at the maximum width position of the body portion 10 and a plane B orthogonal to the central axis X is defined at the most advanced position of the body portion 10.
  • the cross-sectional area Sa of the body portion 10 on the plane A and the cross-sectional area Sb of the body portion 10 on the plane B satisfy the above relationship.
  • an inclined surface 15 inclined with respect to the planes A and B orthogonal to the central axis X of the body portion 10 is formed between the maximum width position and the most advanced position.
  • the cross-sectional area of the body portion 10 in the plane orthogonal to the central axis X gradually decreases from the maximum width position toward the most advanced position.
  • the cross-sectional area Sa corresponds to the area of the region surrounded by the contour line Ra of the body portion 10
  • the cross-sectional area Sb corresponds to the area of the region surrounded by the contour line Rb of the body portion 10.
  • the cross-sectional area of the body portion 10 in the plane orthogonal to the central axis X changes along the central axis X of the body portion 10, and the body portion 10 is cut off at the maximum width position. Since the area Sa and the cross-sectional area Sb at the most advanced position of the body portion 10 satisfy the relationship of 0.30 ⁇ Sb / Sa ⁇ 0.80, when the stud pin P is arranged on the tread portion of the tire, It is possible to suppress the contact between the body portion 10 of the stud pin P and the road surface at the time of a new product, and improve the noise performance.
  • the stud pin P implanted in the tread portion does not easily come off during running, so that the pin pull-out resistance can be improved, and the stud pin can be improved. It is possible to maintain good driving accuracy.
  • the cross-sectional area Sa at the maximum width position of the body portion 10 and the cross-sectional area Sb at the most advanced position of the body portion 10 satisfy the relationship of 0.40 ⁇ Sb / Sa ⁇ 0.65.
  • At least one concave portion 13 recessed toward the central axis X of the body portion 10 and a pair of convex portions 14, 14 located on both sides of the concave portion 13 are formed on the outer peripheral surface of the body portion 10.
  • the recess 13 formed on the outer peripheral surface of the body portion 10 is in close contact with the implant hole of the tread portion, the contact area between the body portion 10 and the rubber becomes large, so that the stud pin P is well held.
  • Ru On the other hand, in the pair of convex portions 14 and 14 located on both sides of the concave portion 13, the contact pressure between the body portion 10 and the rubber is high, so that the stud pin P is well held.
  • the pin pull-out resistance can be improved.
  • the concave portion 13 and the convex portion 14 are provided on the outer peripheral surface of the body portion 10, the area of the portion where the body portion 10 simultaneously contacts the road surface is reduced, so that such a structure also improves the noise performance. Contribute.
  • the concave portion 13 and the convex portion 14 are arranged toward the tire circumferential direction (traveling direction of the vehicle), the effect of improving the noise performance can be remarkably obtained.
  • the number of recesses 13 installed on the outer peripheral surface of the body portion 10 may be one, two, or more.
  • the convex portion 14 When the shape of the body portion 10 (see FIG. 2) when viewed in the direction of the central axis X of the body portion 10 has the longitudinal direction L, the convex portion 14 is convex toward the lateral direction S orthogonal to the longitudinal direction L. It is good if it is arranged so as to be. That is, since the recess 13 extends along the longitudinal direction L of the body portion 10, the contact area between the body portion 10 and the rubber can be effectively increased, and the pin pull-out resistance can be improved. In particular, when the lateral direction S of the body portion 10 coincides with the tire circumferential direction (traveling direction of the vehicle), the contact end line of the body portion 10 with the road surface is curved by the concave portion 13, so that the noise performance can be improved. Remarkably obtained.
  • the maximum width WB1 at the maximum width position of the body portion 10, the maximum width WP1 of the tip portion 11, and the maximum width WC1 at the most advanced position of the body portion 10 are WB1> WC1> WP1, 0.30 ⁇ WP1. It is preferable that the relationships of / WB1 ⁇ 0.60 and 0.50 ⁇ WC1 / WB1 ⁇ 0.80 are satisfied.
  • WP1 / WB1 if the value of WP1 / WB1 is smaller than 0.30, the performance on ice deteriorates, and conversely, if it is larger than 0.60, the effect of improving noise performance decreases. Further, if the value of WC1 / WB1 is smaller than 0.50, the driving accuracy of the stud pin P deteriorates, and conversely, if it is larger than 0.80, the effect of improving noise performance and pin pull-out resistance deteriorates.
  • the plane including the cross section having the maximum cross-sectional area of the body portion 10 is defined as A
  • the plane including the cross section on the tip side of the plane A and having the minimum cross-sectional area of the body portion 10 is defined as B.
  • the body portion 10 is a point on the contour line of the body portion 10 on the plane B and the distance La between an arbitrary point a on the contour line of the body portion 10 and the central axis X of the body portion 10. It is preferable to have a vertical region V in which the distance Lb between the point b at the position corresponding to a and the central axis X of the body portion 10 is 0 ⁇ (La ⁇ Lb) / La ⁇ 0.1.
  • the fact that the point b is at the position corresponding to the point a means that the phase around the axis of the point b centered on the central axis X and the phase around the axis of the point a coincide with each other.
  • Such a vertical region V constitutes a wall surface extending substantially parallel to the central axis X from the most advanced position of the body portion 10 toward the proximal end side of the body portion 10, and substantially includes the inclined surface 15. There is no area.
  • the rubber comes into uniform contact with the vertical region V along the central axis X of the body portion 10, so that the pin pull-out resistance can be effectively improved.
  • the effect of improving the pin pull-out resistance is reduced.
  • the vertical region V is arranged in the lateral direction S orthogonal to the longitudinal direction L. ..
  • the inclined surface 15 is formed in the longitudinal direction L of the body portion 10 based on the setting of Sb / Sa, but the inclined surface 15 does not exist in the lateral direction S of the body portion 10.
  • the minimum value WB2 and the maximum value WB3 of the dimensions of the body portion 10 measured along the line satisfy the relationship of 1.05 ⁇ WB3 / WB2 ⁇ 1.30.
  • the minimum value WB2 and the maximum value WB3 of the dimensions of the body portion 10 measured along the lateral direction S orthogonal to the longitudinal direction L may satisfy the relationship of 1.10 ⁇ WB3 / WB2 ⁇ 1.25. desirable.
  • FIGS. 4 to 6 show stud pins made of other embodiments of the present invention.
  • the same objects as those in FIGS. 1 to 3 are designated by the same reference numerals, and detailed description of the parts thereof will be omitted.
  • a plurality of inclined surfaces 15 inclined with respect to planes A and B orthogonal to the central axis X of the body portion 10 are formed between the maximum width position and the most advanced position of the body portion 10. ..
  • the inclination angle ⁇ of the inclined surface 15 with respect to the planes A and B orthogonal to the central axis X of the body portion 10 is set in the range of, for example, 30 ° to 65 °.
  • the inclination angles ⁇ of the plurality of inclined surfaces 15 may be the same or different from each other.
  • the inclination angles ⁇ a to ⁇ f of the inclined surfaces 15a to 15f are assumed, all of them can be set to the same value.
  • the inclination angles ⁇ a to ⁇ c of the inclined surfaces 15a to 15c arranged on one side of the body portion 10 in the longitudinal direction L and the inclined surfaces 15d to 15f arranged on the other side of the longitudinal direction L of the body portion 10 are different from each other, or the tilt angles ⁇ b and ⁇ e of the tilted surfaces 15b and 15e arranged on the center side of the body portion 10 in the lateral direction S and both ends of the body portion 10 in the lateral direction S.
  • the tilt angles ⁇ a, ⁇ c, ⁇ d, and ⁇ f of the tilted surfaces 15a, 15c, 15d, and 15f arranged on the side may be different from each other, or the inclined surfaces 15a, arranged on one side of the lateral direction S of the body portion 10.
  • the tilt angles ⁇ a and ⁇ d of 15d and the tilt angles ⁇ c and ⁇ f of the tilted surfaces 15c and 15f arranged on the other side of the lateral direction S of the body portion 10 may be different from each other, or may be on one diagonal of the body portion 10.
  • the inclination angles ⁇ a and ⁇ f of the arranged inclined surfaces 15a and 15f and the inclination angles ⁇ c and ⁇ d of the inclined surfaces 15c and 15d arranged on the other diagonal line of the body portion 10 can be made different from each other.
  • the body portion 10 when the body portion 10 is provided with a plurality of inclined surfaces 15 having different inclination angles ⁇ with respect to the planes A and B orthogonal to the central axis X of the body portion 10 between the maximum width position and the most advanced position, the body portion 10 is provided. Since the area of the portion that is in contact with the road surface of 10 at the same time is reduced, the noise performance can be effectively improved.
  • the body portion 10 has a shape in the longitudinal direction L when viewed in the direction of the central axis X, and the central axis X of the body portion 10 is formed on the outer peripheral surface of the body portion 10.
  • Two concave portions 13 recessed toward the surface and a pair of convex portions 14, 14 located on both sides of each concave portion 13 are formed, and these convex portions 14 are convex toward the lateral direction S orthogonal to the longitudinal direction L.
  • a plurality of inclined surfaces 15 are formed between the maximum width position and the most advanced position of the body portion 10, and the plurality of inclined surfaces 15 are arranged along the lateral direction S.
  • the tip surface of the chip portion 11 has two bulging portions 16 having a curved surface shape and a flat portion 17 arranged around the bulging portion 16.
  • the amount of protrusion of the bulging portion 16 with respect to the flat portion 17 of the chip portion 11 is not particularly limited, but may be set in the range of, for example, 0.1 mm to 0.3 mm.
  • the tip portion 11 has a shape that is elongated along the longitudinal direction L of the body portion 10, but the shape of the tip portion 11 is particularly limited. It's not a thing. However, the shape in which the tip portion 11 is long along the longitudinal direction L of the body portion 10 is suitable for the stud pin P from the viewpoint of on-ice performance, noise performance, and pin pull-out resistance.
  • FIGS. 9 to 10 show stud pins made of still other embodiments of the present invention.
  • the same objects as those in FIGS. 1 to 6 are designated by the same reference numerals, and detailed description of the parts thereof will be omitted.
  • the chip portion 11 has a columnar structure. Even in the stud pin P provided with such a columnar tip portion 11, noise performance and pin pull-out resistance can be improved.
  • FIG. 11 shows an example of the pneumatic tire of the present invention.
  • the pneumatic tire T includes a tread portion 21 extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions 22 and 22 arranged on both sides of the tread portion 21, and these. It includes a pair of bead portions 23, 23 arranged inside the sidewall portion 22 in the tire radial direction.
  • a carcass layer 24 is mounted between the pair of bead portions 23, 23.
  • the carcass layer 24 includes a plurality of reinforcing cords extending in the radial direction of the tire, and is folded back from the inside to the outside of the tire around the bead core 25 arranged in each bead portion 23.
  • a bead filler 26 made of a rubber composition having a triangular cross section is arranged on the outer periphery of the bead core 25.
  • a plurality of belt layers 27 are embedded on the outer peripheral side of the carcass layer 24 in the tread portion 21.
  • These belt layers 27 include a plurality of reinforcing cords that are inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to intersect each other between the layers.
  • the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set to, for example, in the range of 10 ° to 40 °.
  • a steel cord is preferably used as the reinforcing cord of the belt layer 27 preferably used.
  • At least one belt cover layer 28 having reinforcing cords arranged at an angle of, for example, 5 ° or less with respect to the tire circumferential direction is arranged on the outer peripheral side of the belt layer 27 for the purpose of improving high-speed durability.
  • an organic fiber cord such as nylon or aramid is preferably used.
  • the tread portion 21 is formed with a circumferential groove 31 extending in the circumferential direction of the tire, and a plurality of land portions 32 are partitioned by the circumferential groove 31.
  • a plurality of implantation holes 33 for implanting the stud pin P are formed in the land portion 32 of the tread portion 21.
  • the body portion 10 of the stud pin P is inserted into the implant hole 33, and the tip portion 11 is arranged in the tread portion 21 so as to protrude from the tread portion 21.
  • the inner diameter of the implantation hole 33 is slightly smaller than the outer diameter of the stud pin P, and the stud pin P implanted in the implantation hole 33 is firmly held against the tread portion 21.
  • the reinforcing structure of the pneumatic tire T shown in FIG. 11 shows a typical example, but is not limited to this. Further, the tread pattern formed on the tread portion 21 of the pneumatic tire T is not particularly limited.
  • FIG. 12 shows a stud pin arranged in the tread portion of a pneumatic tire.
  • the body portion 10 has a plurality of inclined surfaces having different inclination angles with respect to a plane orthogonal to the central axis of the body portion 10 between the maximum width position and the most advanced position.
  • 15 for example, inclined surfaces 15a to 15f
  • the inclination angle ⁇ of the inclined surfaces 15c and 15f inclined toward the stepping side is larger than the inclination angle ⁇ of the inclined surfaces 15a and 15d inclined toward the kicking side. Larger is preferred.
  • Comparative Examples 1 to 3 and Examples 1 to 11 the cross-sectional area Sa at the maximum width position of the body portion, the cross-sectional areas Sb and Sa / Sb at the most advanced position of the body portion, and the convex portion in the body portion.
  • the inclination angle ⁇ of the inclined surface on the stepping side, the inclination angle ⁇ of the inclined surface on the kicking side, the presence or absence of the bulging portion in the tip portion, and the number of bulging portions in the tip portion are set as shown in Tables 1 and 2.
  • Pin removal resistance Each test tire is attached to a wheel with a rim size of 16 x 6.5J, mounted on a front-wheel drive vehicle with a displacement of 1.4 liters, filled with the specified air pressure of the vehicle, and driven in a predetermined city area on a test course consisting of a dry asphalt road surface. After traveling 20000 km in the mode, the number of dropped stud pins was measured. The evaluation results are shown by an index of 100 in the conventional example using the reciprocal of the measured value. The larger this index value is, the better the pin pull-out resistance is.
  • Pin driving accuracy For each test tire, stud pins were driven into a large number of implant holes formed in the tread portion using a pin driving device, and the number of tires driven with the stud pins tilted was measured. The evaluation results are shown by an index of 100 in the conventional example using the reciprocal of the measured value. The larger this exponential value is, the better the pin driving accuracy is. When the exponential value is 95 or more, the pin driving accuracy is good.
  • Body part 11 Tip part 12 Flange part 13 Concave part 14 Convex part 15 Inclined surface 16 Protruding part 17 Flat part 21 Tread part 22 Side wall part 23 Bead part P Stud pin T Pneumatic tire

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

Provided are: a stud pin with which it is possible to improve noise performance and pin slip-off resistance performance; and a tire comprising said stud pins. This stud pin P has: a body part 10 embedded in a tread part of a tire; a tip part 11 protruding from the distal end side of the body part 10; and a flange part 12 disposed at the proximal end side of the body part 10. The cross sectional area of a flat surface orthogonal to a center axis X of the body part 10 varies along the center axis X of the body part 10. The relation between a cross sectional area Sa at a maximum width position of the body part 10 and a cross sectional area Sb at a most-distal end position of the body part 10 satisfies 0.30≤Sb/Sa≤0.80. In a tire T, the stud pins P are placed in a tread part 21.

Description

スタッドピン及びそれを備えたタイヤStud pins and tires with them
 本発明は、スタッドピン及びそれを備えたタイヤに関し、更に詳しくは、ノイズ性能及び耐ピン抜け性の改善を可能にしたスタッドピン及びそれを備えたタイヤに関する。 The present invention relates to a stud pin and a tire provided with the stud pin, and more particularly to a stud pin capable of improving noise performance and pin pull-out resistance and a tire provided with the stud pin.
 氷雪路面上での走行性能を改善した空気入りタイヤにおいて、トレッド部にスタッドピンが打ち込まれたスタッドタイヤが知られている(例えば、特許文献1参照)。スタッドピンは、タイヤのトレッド部に埋設されるボディ部と、該ボディ部の先端側から突出していて路面と接触するチップ部と、ボディ部の基端側に配置されたフランジ部とを有している。そして、スタッドタイヤの走行時には、主としてスタッドピンのチップ部が氷路面と接触し、そのエッジ効果を発揮することにより、スタッドレスタイヤに比べて優れた氷上性能を発揮することができる。 Among pneumatic tires with improved running performance on ice and snow road surfaces, stud tires in which stud pins are driven into the tread portion are known (see, for example, Patent Document 1). The stud pin has a body portion embedded in the tread portion of the tire, a tip portion protruding from the tip end side of the body portion and in contact with the road surface, and a flange portion arranged on the base end side of the body portion. ing. When the studded tire is running, the tip portion of the studded pin mainly comes into contact with the icy road surface and exerts its edge effect, so that excellent on-ice performance can be exhibited as compared with the studless tire.
 しかしながら、スタッドピンは金属化合物から構成されるため、スタッドタイヤはスタッドレスタイヤに比べてノイズ性能が劣っている。その一方で、スタッドピンを備えていないスタッドレスタイヤは摩耗の進行に伴ってノイズ性能が悪化するが、スタッドタイヤはスタッドピンの摩耗に伴ってノイズ性能が良化する傾向がある。そのため、スタッドタイヤの新品時におけるノイズ性能を改善することが強く求められている。また、スタッドタイヤでは、走行時にスタッドピンが外れることがあり、耐ピン抜け性を改善することが求められている。 However, since stud pins are composed of metal compounds, stud tires are inferior in noise performance to studless tires. On the other hand, the noise performance of a studless tire without a stud pin deteriorates as the wear progresses, but the noise performance of the stud tire tends to improve as the stud pin wears. Therefore, there is a strong demand for improving the noise performance of studded tires when they are new. Further, in a studded tire, the stud pin may come off during running, and it is required to improve the pin pull-out resistance.
国際公開第WO2018/078941号International Publication No. WO2018 / 078941
 本発明の目的は、ノイズ性能及び耐ピン抜け性を改善することを可能にしたスタッドピン及びそれを備えたタイヤを提供することにある。 An object of the present invention is to provide a stud pin capable of improving noise performance and pin pull-out resistance, and a tire provided with the stud pin.
 上記目的を達成するための本発明のスタッドピンは、タイヤのトレッド部に埋設されるボディ部と、該ボディ部の先端側から突出するチップ部と、前記ボディ部の基端側に配置されたフランジ部とを有するスタッドピンにおいて、
 前記ボディ部はその中心軸と直交する平面における断面積が該ボディ部の中心軸に沿って変化しており、前記ボディ部の最大幅位置での断面積Saと前記ボディ部の最先端位置での断面積Sbとが0.30≦Sb/Sa≦0.80の関係を満足することを特徴とするものである。
The stud pin of the present invention for achieving the above object is arranged on the body portion embedded in the tread portion of the tire, the tip portion protruding from the tip end side of the body portion, and the proximal end side of the body portion. In a stud pin with a flange
The cross-sectional area of the body portion in a plane orthogonal to the central axis thereof changes along the central axis of the body portion, and the cross-sectional area Sa at the maximum width position of the body portion and the most advanced position of the body portion. It is characterized in that the cross-sectional area Sb of the above satisfies the relationship of 0.30 ≦ Sb / Sa ≦ 0.80.
 また、上記目的を達成するための本発明のタイヤは、上述のスタッドピンがトレッド部に配設されていることを特徴とするものである。 Further, the tire of the present invention for achieving the above object is characterized in that the above-mentioned stud pin is arranged in the tread portion.
 本発明では、スタッドピンのボディ部はその中心軸と直交する平面における断面積が該ボディ部の中心軸に沿って変化しており、ボディ部の最大幅位置での断面積Saとボディ部の最先端位置での断面積Sbとが0.30≦Sb/Sa≦0.80の関係を満足するので、スタッドピンがタイヤのトレッド部に配設された際に、新品時におけるスタッドピンのボディ部と路面との接触を抑制し、ノイズ性能を改善することができる。また、Sb/Saの値を上記範囲内に設定した場合、トレッド部に植え込まれたスタッドピンが走行時に外れ難くなるため、耐ピン抜け性を改善することが可能になり、しかもスタッドピンの打ち込み精度を良好に維持することができる。 In the present invention, the cross-sectional area of the body portion of the stud pin in a plane orthogonal to the central axis thereof changes along the central axis of the body portion, and the cross-sectional area Sa and the body portion at the maximum width position of the body portion are Since the cross-sectional area Sb at the most advanced position satisfies the relationship of 0.30 ≦ Sb / Sa ≦ 0.80, when the stud pin is arranged on the tread portion of the tire, the body of the stud pin at the time of a new product is used. It is possible to suppress the contact between the portion and the road surface and improve the noise performance. Further, when the value of Sb / Sa is set within the above range, the stud pin implanted in the tread portion is difficult to come off during running, so that the pin pull-out resistance can be improved, and the stud pin can be improved. The driving accuracy can be maintained well.
 本発明において、ボディ部の外周面に、ボディ部の中心軸に向かって窪んだ少なくとも1つの凹部と該凹部の両側に位置する一対の凸部とが形成されていることが好ましい。この場合、ボディ部の外周面に形成された凹部がトレッド部の植え込み穴に対して密着した際にボディ部とゴムとの接触面積が大きくなるため、スタッドピンが良好に保持される。更に、凹部の両側に位置する一対の凸部ではボディ部とゴムとの接触圧が高くなるため、スタッドピンが良好に保持される。これにより、耐ピン抜け性を改善することができる。また、ボディ部の外周面に凹部と凸部を設けた場合、ボディ部が路面に対して同時に接触する部分の面積が減少するため、このような構造はノイズ性能の改善にも寄与する。特に、凹部と凸部をタイヤ周方向(車両の進行方向)に向けて配置した場合、ノイズ性能の改善効果が顕著に得られる。 In the present invention, it is preferable that at least one concave portion recessed toward the central axis of the body portion and a pair of convex portions located on both sides of the concave portion are formed on the outer peripheral surface of the body portion. In this case, when the recess formed on the outer peripheral surface of the body portion is in close contact with the implant hole of the tread portion, the contact area between the body portion and the rubber becomes large, so that the stud pin is well held. Further, since the contact pressure between the body portion and the rubber is high in the pair of convex portions located on both sides of the concave portion, the stud pin is well held. Thereby, the pin pull-out resistance can be improved. Further, when the concave portion and the convex portion are provided on the outer peripheral surface of the body portion, the area of the portion where the body portion comes into contact with the road surface at the same time is reduced, so that such a structure also contributes to the improvement of noise performance. In particular, when the concave portion and the convex portion are arranged toward the tire circumferential direction (traveling direction of the vehicle), the effect of improving the noise performance can be remarkably obtained.
 ボディ部は中心軸方向に見たときの形状が長手方向を有し、上記凸部が長手方向と直交する短手方向に向かって凸となるように配置されていることが好ましい。つまり、凹部がボディ部の長手方向に沿って延在するので、ボディ部とゴムとの接触面積を効果的に増加させ、耐ピン抜け性を改善することができる。特に、ボディ部の短手方向をタイヤ周方向(車両の進行方向)と一致させた場合、ボディ部の路面との接触端線が凹部により湾曲するため、ノイズ性能の改善効果が顕著に得られる。 It is preferable that the body portion has a shape when viewed in the central axis direction has a longitudinal direction, and the convex portion is arranged so as to be convex toward the lateral direction orthogonal to the longitudinal direction. That is, since the recess extends along the longitudinal direction of the body portion, the contact area between the body portion and the rubber can be effectively increased, and the pin pull-out resistance can be improved. In particular, when the lateral direction of the body portion is made to coincide with the tire circumferential direction (traveling direction of the vehicle), the contact end line of the body portion with the road surface is curved by the concave portion, so that the effect of improving noise performance can be remarkably obtained. ..
 ボディ部の最大幅位置での最大幅WB1とチップ部の最大幅WP1とボディ部の最先端位置での最大幅WC1はWB1>WC1>WP1、0.30≦WP1/WB1≦0.60、0.50≦WC1/WB1≦0.80の関係を満足することが好ましい。ボディ部の最大幅位置での最大幅WB1とチップ部の最大幅WP1とボディ部の最先端位置での最大幅WC1を上記関係にすることにより、氷上性能を良好に維持しながら、ノイズ性能及び耐ピン抜け性を改善することができる。 The maximum width WB1 at the maximum width position of the body portion, the maximum width WP1 of the chip portion, and the maximum width WC1 at the most advanced position of the body portion are WB1> WC1> WP1, 0.30≤WP1 / WB1≤0.60, 0. It is preferable to satisfy the relationship of .50 ≦ WC1 / WB1 ≦ 0.80. By making the maximum width WB1 at the maximum width position of the body part, the maximum width WP1 of the chip part, and the maximum width WC1 at the most advanced position of the body part in the above relationship, the noise performance and the noise performance while maintaining good on-ice performance The pin pull-out resistance can be improved.
 ボディ部の断面積が最大となる断面を含む平面をAとし、平面Aよりも先端側であってボディ部の断面積が最少となる断面を含む平面をBとしたとき、ボディ部は、平面Aにおけるボディ部の輪郭線上の任意の点aとボディ部の中心軸との距離Laと、平面Bにおけるボディ部の輪郭線上の点であって点aに対応する位置にある点bとボディ部の中心軸との距離Lbとが0≦(La-Lb)/La≦0.1となる垂直領域を有することが好ましい。このような垂直領域を設けた場合、ボディ部の中心軸に沿って垂直領域に対してゴムが一様に接触するようになるため、耐ピン抜け性を効果的に改善することができる。 When A is a plane including a cross section having the maximum cross-sectional area of the body portion and B is a plane including a cross section on the tip side of the plane A and having the minimum cross-sectional area of the body portion, the body portion is a plane. The distance La between an arbitrary point a on the contour line of the body portion in A and the central axis of the body portion, and a point b and a body portion which are points on the contour line of the body portion on the plane B and are located at positions corresponding to the point a. It is preferable to have a vertical region in which the distance Lb from the central axis of the above is 0 ≦ (La −Lb) / La ≦ 0.1. When such a vertical region is provided, the rubber comes into uniform contact with the vertical region along the central axis of the body portion, so that the pin pull-out resistance can be effectively improved.
 また、ボディ部は中心軸方向に見たときの形状が長手方向を有し、垂直領域が長手方向と直交する短手方向に配置されていることが好ましい。この場合、Sb/Saの設定に基づいてボディ部の長手方向には傾斜面が形成され、ボディ部の短手方向には傾斜面が存在しない構造となる。このようにボディ部の長手方向には傾斜面が存在することで軽量化やノイズ性能を効果的に改善し、ボディ部の短手方向に垂直領域が存在することで耐ピン抜け性を効果的に改善することができる。 Further, it is preferable that the body portion has a longitudinal direction when viewed in the central axis direction, and the vertical region is arranged in the lateral direction orthogonal to the longitudinal direction. In this case, an inclined surface is formed in the longitudinal direction of the body portion based on the setting of Sb / Sa, and the inclined surface does not exist in the lateral direction of the body portion. In this way, the presence of an inclined surface in the longitudinal direction of the body effectively improves weight reduction and noise performance, and the presence of a vertical region in the lateral direction of the body effectively improves pin removal resistance. Can be improved.
 ボディ部は中心軸方向に見たときの形状が長手方向を有し、長手方向と直交する短手方向に沿って測定されるボディ部の寸法の最小値WB2及び最大値WB3が1.05≦WB3/WB2≦1.30の関係を満足することが好ましい。これにより、耐ピン抜け性とノイズ性能をバランス良く改善することができる。 The shape of the body part when viewed in the central axis direction has a longitudinal direction, and the minimum value WB2 and the maximum value WB3 of the dimensions of the body portion measured along the lateral direction orthogonal to the longitudinal direction are 1.05 ≦. It is preferable to satisfy the relationship of WB3 / WB2 ≦ 1.30. As a result, pin removal resistance and noise performance can be improved in a well-balanced manner.
 ボディ部は最大幅位置と最先端位置との間に該ボディ部の中心軸と直交する平面に対する傾斜角度が異なる複数の傾斜面を有することが好ましい。ボディ部の最大幅位置と最先端位置との間に傾斜角度が異なる複数の傾斜面を設けることにより、ボディ部の路面に対して同時に接触する部分の面積が減少するため、ノイズ性能を効果的に改善することができる。 It is preferable that the body portion has a plurality of inclined surfaces having different inclination angles with respect to a plane orthogonal to the central axis of the body portion between the maximum width position and the most advanced position. By providing multiple inclined surfaces with different inclination angles between the maximum width position of the body part and the most advanced position, the area of the part that simultaneously contacts the road surface of the body part is reduced, so noise performance is effective. Can be improved.
 また、ボディ部は中心軸方向に見たときの形状が長手方向を有し、ボディ部の外周面に該ボディ部の中心軸に向かって窪んだ2つの凹部と各凹部の両側に位置する一対の凸部とが形成され、これら凸部が長手方向と直交する短手方向に向かって凸となるように配置され、ボディ部の最大幅位置と最先端位置との間に複数の傾斜面が形成され、複数の傾斜面が短手方向に沿って配置されていることが好ましい。このような構造を採用することにより、耐ピン抜け性とノイズ性能をバランス良く改善することができる。 Further, the shape of the body portion when viewed in the central axis direction has a longitudinal direction, and two recesses recessed toward the central axis of the body portion on the outer peripheral surface of the body portion and a pair located on both sides of each recess. Convex portions are formed, and these convex portions are arranged so as to be convex toward the lateral direction orthogonal to the longitudinal direction, and a plurality of inclined surfaces are formed between the maximum width position and the cutting edge position of the body portion. It is preferably formed and a plurality of inclined surfaces are arranged along the lateral direction. By adopting such a structure, pin removal resistance and noise performance can be improved in a well-balanced manner.
 チップ部の先端面は曲面形状を有する膨出部と該膨出部の周囲に配置された平坦部とを有することが好ましい。チップ部の先端面に曲面形状を有する膨出部を設けることにより、路面接触時のノイズを低減し、更に平坦部を組み合わせることにより、ノイズの周波数の分散効果が得られるので、ノイズ性能を効果的に改善することができる。 It is preferable that the tip surface of the chip portion has a bulging portion having a curved surface shape and a flat portion arranged around the bulging portion. By providing a bulging portion having a curved surface shape on the tip surface of the chip portion, noise at the time of contact with the road surface is reduced, and by combining the flat portion, the noise frequency dispersion effect can be obtained, so that the noise performance is effective. Can be improved.
 上述のように構成されるスタッドピンがトレッド部に配設されたタイヤによれば、ノイズ性能及び耐ピン抜け性を従来よりも改善することができる。 According to the tire in which the stud pins configured as described above are arranged in the tread portion, the noise performance and the pin pull-out resistance can be improved as compared with the conventional tires.
 本発明のタイヤにおいて、ボディ部は最大幅位置と最先端位置との間に該ボディ部の中心軸と直交する平面に対する傾斜角度が異なる複数の傾斜面を有し、踏み込み側に向かって傾斜する傾斜面の傾斜角度が蹴り出し側に向かって傾斜する傾斜面の傾斜角度よりも大きいことが好ましい。このような配置を採用することにより、路面接触時のノイズを低減すると共に、ノイズの周波数の分散効果が高まるので、ノイズ性能を大幅に改善することができる。 In the tire of the present invention, the body portion has a plurality of inclined surfaces having different inclination angles with respect to a plane orthogonal to the central axis of the body portion between the maximum width position and the most advanced position, and is inclined toward the stepping side. It is preferable that the inclination angle of the inclined surface is larger than the inclination angle of the inclined surface inclined toward the kicking side. By adopting such an arrangement, the noise at the time of contact with the road surface is reduced, and the noise frequency dispersion effect is enhanced, so that the noise performance can be significantly improved.
 本発明のタイヤは、空気入りタイヤであることが好ましいが、非空気式タイヤであっても良い。空気入りタイヤの場合、その内部には空気、窒素等の不活性ガス又はその他の気体を充填することができる。 The tire of the present invention is preferably a pneumatic tire, but may be a non-pneumatic tire. In the case of a pneumatic tire, the inside thereof can be filled with an inert gas such as air or nitrogen or other gas.
図1は本発明の実施形態からなるスタッドピンを示す斜視図である。FIG. 1 is a perspective view showing a stud pin according to an embodiment of the present invention. 図2は図1のスタッドピンを示す平面図である。FIG. 2 is a plan view showing the stud pin of FIG. 図3は図1のスタッドピンを示す側面図である。FIG. 3 is a side view showing the stud pin of FIG. 図4は本発明の他の実施形態からなるスタッドピンを示す斜視図である。FIG. 4 is a perspective view showing a stud pin made of another embodiment of the present invention. 図5は図4のスタッドピンを示す平面図である。FIG. 5 is a plan view showing the stud pin of FIG. 図6は図4のスタッドピンを示す側面図である。FIG. 6 is a side view showing the stud pin of FIG. 図7は本発明の更に他の実施形態からなるスタッドピンを示す平面図である。FIG. 7 is a plan view showing a stud pin made of still another embodiment of the present invention. 図8は図7のスタッドピンを示す側面図である。FIG. 8 is a side view showing the stud pin of FIG. 7. 図9は本発明の更に他の実施形態からなるスタッドピンを示す平面図である。FIG. 9 is a plan view showing a stud pin made of still another embodiment of the present invention. 図10は図9のスタッドピンを示す側面図である。FIG. 10 is a side view showing the stud pin of FIG. 図11は本発明の空気入りタイヤの一例を示す子午線断面図である。FIG. 11 is a cross-sectional view taken along the meridian showing an example of the pneumatic tire of the present invention. 図12は空気入りタイヤのトレッド部に配設された状態のスタッドピンを示す平面図である。FIG. 12 is a plan view showing a stud pin arranged in the tread portion of the pneumatic tire.
 以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1~図3は本発明の実施形態からなるスタッドピンを示すものである。 Hereinafter, the configuration of the present invention will be described in detail with reference to the attached drawings. 1 to 3 show stud pins according to an embodiment of the present invention.
 図1~図3に示すように、本実施形態のスタッドピンPは、タイヤのトレッド部に埋設されるボディ部10と、該ボディ部10の先端側から突出していて路面と接触するチップ部11と、ボディ部10の基端側に配置されたフランジ部12を備えている。ボディ部10は、その中心軸Xに沿って延長し、その延長方向の中腹部分において最も膨らんだ構造を有している。ボディ部10の外周面には、ボディ部10の中心軸Xに向かって湾曲しながら窪んだ2つの凹部13,13が形成され、各凹部13の両側の位置にはそれぞれ一対の凸部14,14が形成されている。また、ボディ部10及びフランジ部12は同一の金属材料から一体的に成形されている。チップ部11を構成する金属材料はボディ部10及びフランジ部12を構成する金属材料よりも高硬度であり、チップ部11はボディ部10に対して一体的に加工されている。 As shown in FIGS. 1 to 3, the stud pin P of the present embodiment has a body portion 10 embedded in the tread portion of the tire and a tip portion 11 protruding from the tip end side of the body portion 10 and in contact with the road surface. And a flange portion 12 arranged on the base end side of the body portion 10. The body portion 10 extends along its central axis X and has the most bulging structure in the middle portion in the extending direction. On the outer peripheral surface of the body portion 10, two recesses 13 and 13 recessed while curving toward the central axis X of the body portion 10 are formed, and a pair of convex portions 14 and 13 are formed at positions on both sides of each recess 13. 14 is formed. Further, the body portion 10 and the flange portion 12 are integrally molded from the same metal material. The metal material constituting the tip portion 11 has a higher hardness than the metal material constituting the body portion 10 and the flange portion 12, and the tip portion 11 is integrally processed with the body portion 10.
 上記スタッドピンPにおいて、ボディ部10はその中心軸Xと直交する平面における断面積が該ボディ部10の中心軸Xに沿って変化しており、ボディ部10の最大幅位置での断面積Saとボディ部10の最先端位置での断面積Sbとが0.30≦Sb/Sa≦0.80の関係を満足している。ボディ部10の最大幅位置とは、ボディ部10において中心軸Xと直交する方向の寸法が最大となる位置である。一方、ボディ部10の最先端位置とは、ボディ部10においてチップ部11側の頂面の位置である。ボディ部10は、図2に示すように、最大幅位置において最大幅WB1を有する一方で、最先端位置において最大幅WC1を有している。そして、図3に示すように、ボディ部10の最大幅位置に中心軸Xと直交する平面Aを規定し、ボディ部10の最先端位置に中心軸Xと直交する平面Bを規定したとき、平面Aにおけるボディ部10の断面積Saと平面Bにおけるボディ部10の断面積Sbとが上記関係を満たしている。その結果、ボディ部10において、最大幅位置と最先端位置との間には、ボディ部10の中心軸Xと直交する平面A,Bに対して傾斜する傾斜面15が形成されている。言い換えれば、ボディ部10はその中心軸Xと直交する平面における断面積が最大幅位置から最先端位置に向かって徐々に減少している。図2において、断面積Saはボディ部10の輪郭線Raにより囲まれた領域の面積に相当し、断面積Sbはボディ部10の輪郭線Rbにより囲まれた領域の面積に相当する。 In the stud pin P, the cross-sectional area of the body portion 10 in a plane orthogonal to the central axis X changes along the central axis X of the body portion 10, and the cross-sectional area Sa at the maximum width position of the body portion 10 And the cross-sectional area Sb at the most advanced position of the body portion 10 satisfy the relationship of 0.30 ≦ Sb / Sa ≦ 0.80. The maximum width position of the body portion 10 is a position where the dimension in the direction orthogonal to the central axis X is maximum in the body portion 10. On the other hand, the state-of-the-art position of the body portion 10 is the position of the top surface of the body portion 10 on the chip portion 11 side. As shown in FIG. 2, the body portion 10 has a maximum width WB1 at the maximum width position, and has a maximum width WC1 at the most advanced position. Then, as shown in FIG. 3, when a plane A orthogonal to the central axis X is defined at the maximum width position of the body portion 10 and a plane B orthogonal to the central axis X is defined at the most advanced position of the body portion 10. The cross-sectional area Sa of the body portion 10 on the plane A and the cross-sectional area Sb of the body portion 10 on the plane B satisfy the above relationship. As a result, in the body portion 10, an inclined surface 15 inclined with respect to the planes A and B orthogonal to the central axis X of the body portion 10 is formed between the maximum width position and the most advanced position. In other words, the cross-sectional area of the body portion 10 in the plane orthogonal to the central axis X gradually decreases from the maximum width position toward the most advanced position. In FIG. 2, the cross-sectional area Sa corresponds to the area of the region surrounded by the contour line Ra of the body portion 10, and the cross-sectional area Sb corresponds to the area of the region surrounded by the contour line Rb of the body portion 10.
 このようにスタッドピンPにおいて、ボディ部10はその中心軸Xと直交する平面における断面積が該ボディ部10の中心軸Xに沿って変化しており、ボディ部10の最大幅位置での断面積Saとボディ部10の最先端位置での断面積Sbとが0.30≦Sb/Sa≦0.80の関係を満足するので、スタッドピンPがタイヤのトレッド部に配設された際に、新品時におけるスタッドピンPのボディ部10と路面との接触を抑制し、ノイズ性能を改善することができる。また、Sb/Saの値を上記範囲内に設定した場合、トレッド部に植え込まれたスタッドピンPが走行時に外れ難くなるため、耐ピン抜け性を改善することが可能になり、しかもスタッドピンの打ち込み精度を良好に維持することができる。 As described above, in the stud pin P, the cross-sectional area of the body portion 10 in the plane orthogonal to the central axis X changes along the central axis X of the body portion 10, and the body portion 10 is cut off at the maximum width position. Since the area Sa and the cross-sectional area Sb at the most advanced position of the body portion 10 satisfy the relationship of 0.30 ≦ Sb / Sa ≦ 0.80, when the stud pin P is arranged on the tread portion of the tire, It is possible to suppress the contact between the body portion 10 of the stud pin P and the road surface at the time of a new product, and improve the noise performance. Further, when the value of Sb / Sa is set within the above range, the stud pin P implanted in the tread portion does not easily come off during running, so that the pin pull-out resistance can be improved, and the stud pin can be improved. It is possible to maintain good driving accuracy.
 ここで、Sb/Saの値が0.30よりも小さいとスタッドピンPの打ち込み精度が極端に悪化し、逆に0.80よりも大きいとノイズ性能及び耐ピン抜け性の改善効果が得られない。特に、ボディ部10の最大幅位置での断面積Saとボディ部10の最先端位置での断面積Sbとは0.40≦Sb/Sa≦0.65の関係を満足することが望ましい。 Here, if the value of Sb / Sa is smaller than 0.30, the driving accuracy of the stud pin P is extremely deteriorated, and conversely, if it is larger than 0.80, the effect of improving noise performance and pin removal resistance can be obtained. No. In particular, it is desirable that the cross-sectional area Sa at the maximum width position of the body portion 10 and the cross-sectional area Sb at the most advanced position of the body portion 10 satisfy the relationship of 0.40 ≦ Sb / Sa ≦ 0.65.
 スタッドピンPにおいて、ボディ部10の外周面には、ボディ部10の中心軸Xに向かって窪んだ少なくとも1つの凹部13と該凹部13の両側に位置する一対の凸部14,14とが形成されている。この場合、ボディ部10の外周面に形成された凹部13がトレッド部の植え込み穴に対して密着した際にボディ部10とゴムとの接触面積が大きくなるため、スタッドピンPが良好に保持される。その一方で、凹部13の両側に位置する一対の凸部14,14ではボディ部10とゴムとの接触圧が高くなるため、スタッドピンPが良好に保持される。これにより、耐ピン抜け性を改善することができる。また、ボディ部10の外周面に凹部13と凸部14を設けた場合、ボディ部10が路面に対して同時に接触する部分の面積が減少するため、このような構造はノイズ性能の改善にも寄与する。特に、凹部13と凸部14をタイヤ周方向(車両の進行方向)に向けて配置した場合、ノイズ性能の改善効果が顕著に得られる。なお、ボディ部10の外周面における凹部13の設置数は1つでも、2つでも、それ以上であっても良い。 In the stud pin P, at least one concave portion 13 recessed toward the central axis X of the body portion 10 and a pair of convex portions 14, 14 located on both sides of the concave portion 13 are formed on the outer peripheral surface of the body portion 10. Has been done. In this case, when the recess 13 formed on the outer peripheral surface of the body portion 10 is in close contact with the implant hole of the tread portion, the contact area between the body portion 10 and the rubber becomes large, so that the stud pin P is well held. Ru. On the other hand, in the pair of convex portions 14 and 14 located on both sides of the concave portion 13, the contact pressure between the body portion 10 and the rubber is high, so that the stud pin P is well held. Thereby, the pin pull-out resistance can be improved. Further, when the concave portion 13 and the convex portion 14 are provided on the outer peripheral surface of the body portion 10, the area of the portion where the body portion 10 simultaneously contacts the road surface is reduced, so that such a structure also improves the noise performance. Contribute. In particular, when the concave portion 13 and the convex portion 14 are arranged toward the tire circumferential direction (traveling direction of the vehicle), the effect of improving the noise performance can be remarkably obtained. The number of recesses 13 installed on the outer peripheral surface of the body portion 10 may be one, two, or more.
 ボディ部10の中心軸Xの方向に見たときのボディ部10の形状(図2参照)が長手方向Lを有する場合、凸部14は長手方向Lと直交する短手方向Sに向かって凸となるように配置されていると良い。つまり、凹部13がボディ部10の長手方向Lに沿って延在するので、ボディ部10とゴムとの接触面積を効果的に増加させ、耐ピン抜け性を改善することができる。特に、ボディ部10の短手方向Sをタイヤ周方向(車両の進行方向)と一致させた場合、ボディ部10の路面との接触端線が凹部13により湾曲するため、ノイズ性能の改善効果が顕著に得られる。 When the shape of the body portion 10 (see FIG. 2) when viewed in the direction of the central axis X of the body portion 10 has the longitudinal direction L, the convex portion 14 is convex toward the lateral direction S orthogonal to the longitudinal direction L. It is good if it is arranged so as to be. That is, since the recess 13 extends along the longitudinal direction L of the body portion 10, the contact area between the body portion 10 and the rubber can be effectively increased, and the pin pull-out resistance can be improved. In particular, when the lateral direction S of the body portion 10 coincides with the tire circumferential direction (traveling direction of the vehicle), the contact end line of the body portion 10 with the road surface is curved by the concave portion 13, so that the noise performance can be improved. Remarkably obtained.
 スタッドピンPにおいて、ボディ部10の最大幅位置での最大幅WB1とチップ部11の最大幅WP1とボディ部10の最先端位置での最大幅WC1はWB1>WC1>WP1、0.30≦WP1/WB1≦0.60、0.50≦WC1/WB1≦0.80の関係を満足すると良い。ボディ部10の最大幅位置での最大幅WB1とチップ部11の最大幅WP1とボディ部10の最先端位置での最大幅WC1を上記関係にすることにより、氷上性能を良好に維持しながら、ノイズ性能及び耐ピン抜け性を改善することができる。 In the stud pin P, the maximum width WB1 at the maximum width position of the body portion 10, the maximum width WP1 of the tip portion 11, and the maximum width WC1 at the most advanced position of the body portion 10 are WB1> WC1> WP1, 0.30 ≦ WP1. It is preferable that the relationships of / WB1 ≦ 0.60 and 0.50 ≦ WC1 / WB1 ≦ 0.80 are satisfied. By making the maximum width WB1 at the maximum width position of the body portion 10, the maximum width WP1 of the chip portion 11 and the maximum width WC1 at the most advanced position of the body portion 10 in the above relationship, while maintaining good on-ice performance, Noise performance and pin removal resistance can be improved.
 ここで、WP1/WB1の値が0.30よりも小さいと氷上性能が悪化し、逆に0.60よりも大きいとノイズ性能の改善効果が低下する。また、WC1/WB1の値が0.50よりも小さいとスタッドピンPの打ち込み精度が悪化し、逆に0.80よりも大きいとノイズ性能及び耐ピン抜け性の改善効果が低下する。 Here, if the value of WP1 / WB1 is smaller than 0.30, the performance on ice deteriorates, and conversely, if it is larger than 0.60, the effect of improving noise performance decreases. Further, if the value of WC1 / WB1 is smaller than 0.50, the driving accuracy of the stud pin P deteriorates, and conversely, if it is larger than 0.80, the effect of improving noise performance and pin pull-out resistance deteriorates.
 スタッドピンPにおいて、ボディ部10の断面積が最大となる断面を含む平面をAとし、平面Aよりも先端側であってボディ部10の断面積が最少となる断面を含む平面をBとしたとき、ボディ部10は、平面Aにおけるボディ部10の輪郭線上の任意の点aとボディ部10の中心軸Xとの距離Laと、平面Bにおけるボディ部10の輪郭線上の点であって点aに対応する位置にある点bとボディ部10の中心軸Xとの距離Lbとが0≦(La-Lb)/La≦0.1となる垂直領域Vを有していると良い。点bが点aに対応する位置にあるとは、中心軸Xを中心とする点bの軸廻りの位相と点aの軸廻りの位相とが一致することを意味する。 In the stud pin P, the plane including the cross section having the maximum cross-sectional area of the body portion 10 is defined as A, and the plane including the cross section on the tip side of the plane A and having the minimum cross-sectional area of the body portion 10 is defined as B. At this time, the body portion 10 is a point on the contour line of the body portion 10 on the plane B and the distance La between an arbitrary point a on the contour line of the body portion 10 and the central axis X of the body portion 10. It is preferable to have a vertical region V in which the distance Lb between the point b at the position corresponding to a and the central axis X of the body portion 10 is 0 ≦ (La −Lb) / La ≦ 0.1. The fact that the point b is at the position corresponding to the point a means that the phase around the axis of the point b centered on the central axis X and the phase around the axis of the point a coincide with each other.
 このような垂直領域Vはボディ部10の最先端位置からボディ部10の基端側に向かって中心軸Xに対して概ね平行に延在する壁面を構成し、傾斜面15を実質的に含まない領域である。垂直領域Vを設けた場合、ボディ部10中心軸Xに沿って垂直領域Vに対してゴムが一様に接触するようになるため、耐ピン抜け性を効果的に改善することができる。ここで、(La-Lb)/Laの値が0.1よりも大きい領域では耐ピン抜け性の改善効果が低下する。 Such a vertical region V constitutes a wall surface extending substantially parallel to the central axis X from the most advanced position of the body portion 10 toward the proximal end side of the body portion 10, and substantially includes the inclined surface 15. There is no area. When the vertical region V is provided, the rubber comes into uniform contact with the vertical region V along the central axis X of the body portion 10, so that the pin pull-out resistance can be effectively improved. Here, in the region where the value of (La-Lb) / La is larger than 0.1, the effect of improving the pin pull-out resistance is reduced.
 また、ボディ部10の中心軸Xの方向に見たときのボディ部10の形状が長手方向Lを有する場合、垂直領域Vは長手方向Lと直交する短手方向Sに配置されていると良い。この場合、Sb/Saの設定に基づいてボディ部10の長手方向Lには傾斜面15が形成されるが、ボディ部10の短手方向Sには傾斜面15が存在しない構造となる。このようにボディ部10の長手方向Lには傾斜面15が存在することで軽量化やノイズ性能を効果的に改善することができ、ボディ部10の短手方向Sに垂直領域Vが存在することで耐ピン抜け性を効果的に改善することができる。 Further, when the shape of the body portion 10 when viewed in the direction of the central axis X of the body portion 10 has the longitudinal direction L, it is preferable that the vertical region V is arranged in the lateral direction S orthogonal to the longitudinal direction L. .. In this case, the inclined surface 15 is formed in the longitudinal direction L of the body portion 10 based on the setting of Sb / Sa, but the inclined surface 15 does not exist in the lateral direction S of the body portion 10. As described above, since the inclined surface 15 exists in the longitudinal direction L of the body portion 10, weight reduction and noise performance can be effectively improved, and a vertical region V exists in the lateral direction S of the body portion 10. Therefore, the pin pull-out resistance can be effectively improved.
 スタッドピンPにおいて、ボディ部10の中心軸Xの方向に見たときのボディ部10の形状が長手方向Lを有する場合、図2に示すように、長手方向Lと直交する短手方向Sに沿って測定されるボディ部10の寸法の最小値WB2及び最大値WB3が1.05≦WB3/WB2≦1.30の関係を満足すると良い。これにより、耐ピン抜け性とノイズ性能をバランス良く改善することができる。 In the stud pin P, when the shape of the body portion 10 when viewed in the direction of the central axis X of the body portion 10 has the longitudinal direction L, as shown in FIG. 2, in the lateral direction S orthogonal to the longitudinal direction L. It is preferable that the minimum value WB2 and the maximum value WB3 of the dimensions of the body portion 10 measured along the line satisfy the relationship of 1.05 ≦ WB3 / WB2 ≦ 1.30. As a result, pin removal resistance and noise performance can be improved in a well-balanced manner.
 ここで、WB3/WB2の値が1.05よりも小さいと耐ピン抜け性及びノイズ性能の改善効果が低下し、逆に1.30よりも大きいとボディ部10の形状が歪になるためスタッドピンPの安定した打ち込み作業が困難になる。特に、長手方向Lと直交する短手方向Sに沿って測定されるボディ部10の寸法の最小値WB2及び最大値WB3は1.10≦WB3/WB2≦1.25の関係を満足することが望ましい。 Here, if the value of WB3 / WB2 is smaller than 1.05, the effect of improving pin pull-out resistance and noise performance is lowered, and conversely, if it is larger than 1.30, the shape of the body portion 10 is distorted, so that the stud Stable driving work of pin P becomes difficult. In particular, the minimum value WB2 and the maximum value WB3 of the dimensions of the body portion 10 measured along the lateral direction S orthogonal to the longitudinal direction L may satisfy the relationship of 1.10 ≦ WB3 / WB2 ≦ 1.25. desirable.
 図4~図6は本発明の他の実施形態からなるスタッドピンを示すものである。図4~図6において、図1~図3と同一物には同一符号を付してその部分の詳細な説明は省略する。本実施形態では、ボディ部10の最大幅位置と最先端位置との間に、ボディ部10の中心軸Xと直交する平面A,Bに対して傾斜する複数の傾斜面15が形成されている。ボディ部10の中心軸Xと直交する平面A,Bに対する傾斜面15の傾斜角度θは例えば30°~65°の範囲に設定されている。複数の傾斜面15の傾斜角度θは同一であっても良く、互いに異なっていても良い。 4 to 6 show stud pins made of other embodiments of the present invention. In FIGS. 4 to 6, the same objects as those in FIGS. 1 to 3 are designated by the same reference numerals, and detailed description of the parts thereof will be omitted. In the present embodiment, a plurality of inclined surfaces 15 inclined with respect to planes A and B orthogonal to the central axis X of the body portion 10 are formed between the maximum width position and the most advanced position of the body portion 10. .. The inclination angle θ of the inclined surface 15 with respect to the planes A and B orthogonal to the central axis X of the body portion 10 is set in the range of, for example, 30 ° to 65 °. The inclination angles θ of the plurality of inclined surfaces 15 may be the same or different from each other.
 例えば、傾斜面15a~15fの傾斜角度θa~θfを想定した場合、これら全てを同一の値に設定することができる。他の形態として、ボディ部10の長手方向Lの一方側に配置された傾斜面15a~15cの傾斜角度θa~θcとボディ部10の長手方向Lの他方側に配置された傾斜面15d~15fの傾斜角度θd~θfとを互いに異ならせたり、ボディ部10の短手方向Sの中央側に配置された傾斜面15b,15eの傾斜角度θb,θeとボディ部10の短手方向Sの両端側に配置された傾斜面15a,15c,15d,15fの傾斜角度θa,θc,θd,θfとを互いに異ならせたり、ボディ部10の短手方向Sの一方側に配置された傾斜面15a,15dの傾斜角度θa,θdとボディ部10の短手方向Sの他方側に配置された傾斜面15c,15fの傾斜角度θc,θfとを互いに異ならせたり、ボディ部10の一方の対角線上に配置された傾斜面15a,15fの傾斜角度θa,θfとボディ部10の他方の対角線上に配置された傾斜面15c,15dの傾斜角度θc,θdとを互いに異ならせたりすることができる。 For example, when the inclination angles θa to θf of the inclined surfaces 15a to 15f are assumed, all of them can be set to the same value. As another form, the inclination angles θa to θc of the inclined surfaces 15a to 15c arranged on one side of the body portion 10 in the longitudinal direction L and the inclined surfaces 15d to 15f arranged on the other side of the longitudinal direction L of the body portion 10 The tilt angles θd to θf of the body portion 10 are different from each other, or the tilt angles θb and θe of the tilted surfaces 15b and 15e arranged on the center side of the body portion 10 in the lateral direction S and both ends of the body portion 10 in the lateral direction S. The tilt angles θa, θc, θd, and θf of the tilted surfaces 15a, 15c, 15d, and 15f arranged on the side may be different from each other, or the inclined surfaces 15a, arranged on one side of the lateral direction S of the body portion 10. The tilt angles θa and θd of 15d and the tilt angles θc and θf of the tilted surfaces 15c and 15f arranged on the other side of the lateral direction S of the body portion 10 may be different from each other, or may be on one diagonal of the body portion 10. The inclination angles θa and θf of the arranged inclined surfaces 15a and 15f and the inclination angles θc and θd of the inclined surfaces 15c and 15d arranged on the other diagonal line of the body portion 10 can be made different from each other.
 特に、ボディ部10は最大幅位置と最先端位置との間に該ボディ部10の中心軸Xと直交する平面A,Bに対する傾斜角度θが異なる複数の傾斜面15を設けた場合、ボディ部10の路面に対して同時に接触する部分の面積が減少するため、ノイズ性能を効果的に改善することができる。 In particular, when the body portion 10 is provided with a plurality of inclined surfaces 15 having different inclination angles θ with respect to the planes A and B orthogonal to the central axis X of the body portion 10 between the maximum width position and the most advanced position, the body portion 10 is provided. Since the area of the portion that is in contact with the road surface of 10 at the same time is reduced, the noise performance can be effectively improved.
 また、図4~図6の実施形態では、ボディ部10は中心軸Xの方向に見たときの形状が長手方向Lを有し、ボディ部10の外周面に該ボディ部10の中心軸Xに向かって窪んだ2つの凹部13と各凹部13の両側に位置する一対の凸部14,14とが形成され、これら凸部14が長手方向Lと直交する短手方向Sに向かって凸となるように配置され、ボディ部10の最大幅位置と最先端位置との間に複数の傾斜面15が形成され、複数の傾斜面15が短手方向Sに沿って配置されているが、このような構造を採用することにより、耐ピン抜け性とノイズ性能をバランス良く改善することができる。 Further, in the embodiments of FIGS. 4 to 6, the body portion 10 has a shape in the longitudinal direction L when viewed in the direction of the central axis X, and the central axis X of the body portion 10 is formed on the outer peripheral surface of the body portion 10. Two concave portions 13 recessed toward the surface and a pair of convex portions 14, 14 located on both sides of each concave portion 13 are formed, and these convex portions 14 are convex toward the lateral direction S orthogonal to the longitudinal direction L. A plurality of inclined surfaces 15 are formed between the maximum width position and the most advanced position of the body portion 10, and the plurality of inclined surfaces 15 are arranged along the lateral direction S. By adopting such a structure, pin removal resistance and noise performance can be improved in a well-balanced manner.
 図7~図8は本発明の更に他の実施形態からなるスタッドピンを示すものである。図7~図8において、図1~図6と同一物には同一符号を付してその部分の詳細な説明は省略する。本実施形態において、チップ部11の先端面は曲面形状を有する2つの膨出部16と該膨出部16の周囲に配置された平坦部17とを有している。チップ部11の先端面に曲面形状を有する膨出部16を設けることにより、路面接触時のノイズを低減し、更に平坦部17を組み合わせることにより、ノイズの周波数の分散効果が得られるので、ノイズ性能を効果的に改善することができる。チップ部11の平坦部17に対する膨出部16の突出量は特に限定されるものではないが、例えば0.1mm~0.3mmの範囲に設定すると良い。 7 to 8 show stud pins made of still other embodiments of the present invention. In FIGS. 7 to 8, the same objects as those in FIGS. 1 to 6 are designated by the same reference numerals, and detailed description of the parts thereof will be omitted. In the present embodiment, the tip surface of the chip portion 11 has two bulging portions 16 having a curved surface shape and a flat portion 17 arranged around the bulging portion 16. By providing the bulging portion 16 having a curved surface shape on the tip surface of the chip portion 11, noise at the time of contact with the road surface is reduced, and by further combining the flat portion 17, the noise frequency dispersion effect can be obtained. Performance can be effectively improved. The amount of protrusion of the bulging portion 16 with respect to the flat portion 17 of the chip portion 11 is not particularly limited, but may be set in the range of, for example, 0.1 mm to 0.3 mm.
 上述した図1~図8の各実施形態においては、チップ部11がボディ部10の長手方向Lに沿って長尺となる形状を有しているが、チップ部11の形状は特に限定されるものではない。しかしながら、チップ部11がボディ部10の長手方向Lに沿って長尺となる形状は、氷上性能、ノイズ性能及び耐ピン抜け性の観点からスタッドピンPにおいて好適である。 In each of the above-described embodiments of FIGS. 1 to 8, the tip portion 11 has a shape that is elongated along the longitudinal direction L of the body portion 10, but the shape of the tip portion 11 is particularly limited. It's not a thing. However, the shape in which the tip portion 11 is long along the longitudinal direction L of the body portion 10 is suitable for the stud pin P from the viewpoint of on-ice performance, noise performance, and pin pull-out resistance.
 図9~図10は本発明の更に他の実施形態からなるスタッドピンを示すものである。図9~図10において、図1~図6と同一物には同一符号を付してその部分の詳細な説明は省略する。本実施形態において、チップ部11は円柱状の構造を有している。このような円柱状のチップ部11を備えたスタッドピンPにおいても、ノイズ性能及び耐ピン抜け性を改善することができる。 9 to 10 show stud pins made of still other embodiments of the present invention. In FIGS. 9 to 10, the same objects as those in FIGS. 1 to 6 are designated by the same reference numerals, and detailed description of the parts thereof will be omitted. In the present embodiment, the chip portion 11 has a columnar structure. Even in the stud pin P provided with such a columnar tip portion 11, noise performance and pin pull-out resistance can be improved.
 図11は本発明の空気入りタイヤの一例を示すものである。図11に示すように、空気入りタイヤTは、タイヤ周方向に延在して環状をなすトレッド部21と、該トレッド部21の両側に配置された一対のサイドウォール部22,22と、これらサイドウォール部22のタイヤ径方向内側に配置された一対のビード部23,23とを備えている。 FIG. 11 shows an example of the pneumatic tire of the present invention. As shown in FIG. 11, the pneumatic tire T includes a tread portion 21 extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions 22 and 22 arranged on both sides of the tread portion 21, and these. It includes a pair of bead portions 23, 23 arranged inside the sidewall portion 22 in the tire radial direction.
 一対のビード部23,23間にはカーカス層24が装架されている。このカーカス層24は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部23に配置されたビードコア25の廻りにタイヤ内側から外側へ折り返されている。ビードコア25の外周上には断面三角形状のゴム組成物からなるビードフィラー26が配置されている。 A carcass layer 24 is mounted between the pair of bead portions 23, 23. The carcass layer 24 includes a plurality of reinforcing cords extending in the radial direction of the tire, and is folded back from the inside to the outside of the tire around the bead core 25 arranged in each bead portion 23. A bead filler 26 made of a rubber composition having a triangular cross section is arranged on the outer periphery of the bead core 25.
 一方、トレッド部21におけるカーカス層24の外周側には複数層のベルト層27が埋設されている。これらベルト層27はタイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。ベルト層27において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°~40°の範囲に設定されている。ベルト層27の補強コードとしては、スチールコードが好ましく使用される。ベルト層27の外周側には、高速耐久性の向上を目的として、補強コードをタイヤ周方向に対して例えば5°以下の角度で配列してなる少なくとも1層のベルトカバー層28が配置されている。ベルトカバー層28の補強コードとしては、ナイロンやアラミド等の有機繊維コードが好ましく使用される。 On the other hand, a plurality of belt layers 27 are embedded on the outer peripheral side of the carcass layer 24 in the tread portion 21. These belt layers 27 include a plurality of reinforcing cords that are inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to intersect each other between the layers. In the belt layer 27, the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set to, for example, in the range of 10 ° to 40 °. As the reinforcing cord of the belt layer 27, a steel cord is preferably used. At least one belt cover layer 28 having reinforcing cords arranged at an angle of, for example, 5 ° or less with respect to the tire circumferential direction is arranged on the outer peripheral side of the belt layer 27 for the purpose of improving high-speed durability. There is. As the reinforcing cord of the belt cover layer 28, an organic fiber cord such as nylon or aramid is preferably used.
  上記空気入りタイヤTにおいて、トレッド部21には、タイヤ周方向に延びる周方向溝31が形成されており、これら周方向溝31により複数の陸部32が区画されている。トレッド部21の陸部32には、スタッドピンPを植え込むための複数の植え込み穴33が形成されている。スタッドピンPは、そのボディ部10が植え込み穴33に挿入され、チップ部11がトレッド部21から突き出すようにトレッド部21に配設されている。植え込み穴33の内径はスタッドピンPの外径よりも若干小さくなっており、植え込み穴33に植え込まれたスタッドピンPはトレッド部21に対して強固に保持される。 In the pneumatic tire T, the tread portion 21 is formed with a circumferential groove 31 extending in the circumferential direction of the tire, and a plurality of land portions 32 are partitioned by the circumferential groove 31. A plurality of implantation holes 33 for implanting the stud pin P are formed in the land portion 32 of the tread portion 21. The body portion 10 of the stud pin P is inserted into the implant hole 33, and the tip portion 11 is arranged in the tread portion 21 so as to protrude from the tread portion 21. The inner diameter of the implantation hole 33 is slightly smaller than the outer diameter of the stud pin P, and the stud pin P implanted in the implantation hole 33 is firmly held against the tread portion 21.
 上述のように空気入りタイヤTのトレッド部21に所定の構造を有するスタッドピンPを配設することにより、ノイズ性能及び耐ピン抜け性を改善することが可能となる。 By disposing the stud pin P having a predetermined structure on the tread portion 21 of the pneumatic tire T as described above, it is possible to improve the noise performance and the pin pull-out resistance.
 なお、図11に示す空気入りタイヤTの補強構造は代表的な例を示すものであるが、これに限定されるものではない。また、空気入りタイヤTのトレッド部21に形成されるトレッドパターンも特に限定されるものではない。 The reinforcing structure of the pneumatic tire T shown in FIG. 11 shows a typical example, but is not limited to this. Further, the tread pattern formed on the tread portion 21 of the pneumatic tire T is not particularly limited.
 図12は空気入りタイヤのトレッド部に配設された状態のスタッドピンを示すものである。空気入りタイヤTの回転方向Rが指定されている場合、ボディ部10は最大幅位置と最先端位置との間に該ボディ部10の中心軸と直交する平面に対する傾斜角度が異なる複数の傾斜面15(例えば、傾斜面15a~15f)を有し、踏み込み側に向かって傾斜する傾斜面15c,15fの傾斜角度αが蹴り出し側に向かって傾斜する傾斜面15a,15dの傾斜角度βよりも大きいことが好ましい。このような配置を採用することにより、路面接触時のノイズを低減すると共に、ノイズの周波数の分散効果が高まるので、ノイズ性能を大幅に改善することができる。 FIG. 12 shows a stud pin arranged in the tread portion of a pneumatic tire. When the rotation direction R of the pneumatic tire T is specified, the body portion 10 has a plurality of inclined surfaces having different inclination angles with respect to a plane orthogonal to the central axis of the body portion 10 between the maximum width position and the most advanced position. 15 (for example, inclined surfaces 15a to 15f), the inclination angle α of the inclined surfaces 15c and 15f inclined toward the stepping side is larger than the inclination angle β of the inclined surfaces 15a and 15d inclined toward the kicking side. Larger is preferred. By adopting such an arrangement, the noise at the time of contact with the road surface is reduced, and the noise frequency dispersion effect is enhanced, so that the noise performance can be significantly improved.
 タイヤサイズ205/55R16 94Tである空気入りタイヤにおいて、トレッド部に配設されるスタッドピンの構造だけを異ならせた従来例、比較例1~3及び実施例1~11のタイヤを製作した。 In the pneumatic tire having a tire size of 205 / 55R16 94T, the tires of the conventional examples, Comparative Examples 1 to 3 and Examples 1 to 11 in which only the structure of the stud pin arranged in the tread portion was different were manufactured.
 従来例、比較例1~3及び実施例1~11において、ボディ部の最大幅位置での断面積Sa、ボディ部の最先端位置での断面積Sb、Sa/Sb、ボディ部における凸部の有無、ボディ部における凸部の突出方向、ボディ部における長手方向の有無、距離La、距離Lb、(La-Lb)/La、短手方向のボディ部寸法の最小値WB3、短手方向のボディ部寸法の最大値WB2、WB3/WB2、ボディ部の最大幅位置での最大幅WB1、ボディ部の最先端位置での最大幅WC1、チップ部の最大幅WP1、WP1/WB1、WC1/WB1、踏み込み側の傾斜面の傾斜角度α、蹴り出し側の傾斜面の傾斜角度β、チップ部における膨出部の有無、チップ部における膨出部の個数を表1及び表2のように設定した。 In the conventional example, Comparative Examples 1 to 3 and Examples 1 to 11, the cross-sectional area Sa at the maximum width position of the body portion, the cross-sectional areas Sb and Sa / Sb at the most advanced position of the body portion, and the convex portion in the body portion. Presence / absence, protrusion direction of convex portion in body portion, presence / absence in longitudinal direction in body portion, distance La, distance Lb, (La-Lb) / La, minimum value of body portion dimension in the lateral direction WB3, body in the lateral direction Maximum value of part dimensions WB2, WB3 / WB2, maximum width WB1 at maximum width position of body part, maximum width WC1 at the most advanced position of body part, maximum width WP1 of chip part, WP1 / WB1, WC1 / WB1, The inclination angle α of the inclined surface on the stepping side, the inclination angle β of the inclined surface on the kicking side, the presence or absence of the bulging portion in the tip portion, and the number of bulging portions in the tip portion are set as shown in Tables 1 and 2.
  これら試験タイヤについて、下記試験方法により、ノイズ性能、耐ピン抜け性、ピン打ち込み精度を評価し、その結果を表1及び表2に併せて示した。 The noise performance, pin pull-out resistance, and pin driving accuracy of these test tires were evaluated by the following test methods, and the results are shown in Tables 1 and 2.
 ノイズ性能:
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて排気量1.4リットルの前輪駆動車に装着し、車両指定空気圧を充填し、乾燥したアスファルト路面からなるテストコースにおいて、ピンノイズについて、テストドライバーによる官能評価を行った。評価結果は、従来例を100とする指数にて示した。この指数値が大きいほどノイズ性能が優れていることを意味する。
Noise performance:
Each test tire is mounted on a wheel with a rim size of 16 x 6.5J, mounted on a front-wheel drive vehicle with a displacement of 1.4 liters, filled with vehicle-specified air pressure, and tested for pin noise on a test course consisting of dry asphalt road surface. A sensory evaluation was performed by the driver. The evaluation results are shown by an index of 100 in the conventional example. The larger this index value is, the better the noise performance is.
 耐ピン抜け性:
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて排気量1.4リットルの前輪駆動車に装着し、車両指定空気圧を充填し、乾燥したアスファルト路面からなるテストコースにおいて、所定の市街地走行モードで20000kmの走行を行った後、スタッドピンの脱落本数を計測した。評価結果は、計測値の逆数を用い、従来例を100とする指数にて示した。この指数値が大きいほど耐ピン抜け性が優れていることを意味する。
Pin removal resistance:
Each test tire is attached to a wheel with a rim size of 16 x 6.5J, mounted on a front-wheel drive vehicle with a displacement of 1.4 liters, filled with the specified air pressure of the vehicle, and driven in a predetermined city area on a test course consisting of a dry asphalt road surface. After traveling 20000 km in the mode, the number of dropped stud pins was measured. The evaluation results are shown by an index of 100 in the conventional example using the reciprocal of the measured value. The larger this index value is, the better the pin pull-out resistance is.
 ピン打ち込み精度:
 各試験タイヤについて、トレッド部に形成された多数の植え込み穴に対してピン打ち込み装置を用いてスタッドピンを打ち込み、スタッドピンが傾いた状態で打ち込まれた本数を計測した。評価結果は、計測値の逆数を用い、従来例を100とする指数にて示した。この指数値が大きいほどピン打ち込み精度が優れていることを意味する。指数値が95以上であれば、ピン打ち込み精度が良好である。
Pin driving accuracy:
For each test tire, stud pins were driven into a large number of implant holes formed in the tread portion using a pin driving device, and the number of tires driven with the stud pins tilted was measured. The evaluation results are shown by an index of 100 in the conventional example using the reciprocal of the measured value. The larger this exponential value is, the better the pin driving accuracy is. When the exponential value is 95 or more, the pin driving accuracy is good.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2から判るように、実施例1~11では、従来例との対比において、ノイズ性能及び耐ピン抜け性を共に改善することができた。一方、比較例1では、Sb/Saの値が小さ過ぎるためピン打ち込み精度が著しく悪化していた。また、比較例2,3では、Sb/Saの値が大き過ぎるためノイズ性能及び耐ピン抜け性の改善効果が得られなかった。 As can be seen from Tables 1 and 2, in Examples 1 to 11, both noise performance and pin pull-out resistance could be improved in comparison with the conventional examples. On the other hand, in Comparative Example 1, since the value of Sb / Sa was too small, the pin driving accuracy was significantly deteriorated. Further, in Comparative Examples 2 and 3, since the value of Sb / Sa was too large, the effect of improving the noise performance and the pin pull-out resistance could not be obtained.
 10 ボディ部
 11 チップ部
 12 フランジ部
 13 凹部
 14 凸部
 15 傾斜面
 16 膨出部
 17 平坦部
 21 トレッド部
 22 サイドウォール部
 23 ビード部
 P スタッドピン
 T 空気入りタイヤ
10 Body part 11 Tip part 12 Flange part 13 Concave part 14 Convex part 15 Inclined surface 16 Protruding part 17 Flat part 21 Tread part 22 Side wall part 23 Bead part P Stud pin T Pneumatic tire

Claims (11)

  1.  タイヤのトレッド部に埋設されるボディ部と、該ボディ部の先端側から突出するチップ部と、前記ボディ部の基端側に配置されたフランジ部とを有するスタッドピンにおいて、
     前記ボディ部はその中心軸と直交する平面における断面積が該ボディ部の中心軸に沿って変化しており、前記ボディ部の最大幅位置での断面積Saと前記ボディ部の最先端位置での断面積Sbとが0.30≦Sb/Sa≦0.80の関係を満足することを特徴とするスタッドピン。
    In a stud pin having a body portion embedded in the tread portion of a tire, a tip portion protruding from the tip end side of the body portion, and a flange portion arranged on the proximal end side of the body portion.
    The cross-sectional area of the body portion in a plane orthogonal to the central axis thereof changes along the central axis of the body portion, and the cross-sectional area Sa at the maximum width position of the body portion and the most advanced position of the body portion. A stud pin characterized in that the cross-sectional area Sb of the above satisfies the relationship of 0.30 ≦ Sb / Sa ≦ 0.80.
  2.  前記ボディ部の外周面に、前記ボディ部の中心軸に向かって窪んだ少なくとも1つの凹部と該凹部の両側に位置する一対の凸部とが形成されていることを特徴とする請求項1に記載のスタッドピン。 The first aspect of the present invention is characterized in that at least one concave portion recessed toward the central axis of the body portion and a pair of convex portions located on both sides of the concave portion are formed on the outer peripheral surface of the body portion. Described stud pin.
  3.  前記ボディ部は中心軸方向に見たときの形状が長手方向を有し、前記凸部が前記長手方向と直交する短手方向に向かって凸となるように配置されていることを特徴とする請求項2に記載のスタッドピン。 The body portion is characterized in that the shape when viewed in the central axis direction has a longitudinal direction, and the convex portion is arranged so as to be convex toward the lateral direction orthogonal to the longitudinal direction. The stud pin according to claim 2.
  4.  前記ボディ部の最大幅位置での最大幅WB1と前記チップ部の最大幅WP1と前記ボディ部の最先端位置での最大幅WC1がWB1>WC1>WP1、0.30≦WP1/WB1≦0.60、0.50≦WC1/WB1≦0.80の関係を満足することを特徴とする請求項1~3のいずれかに記載のスタッドピン。 The maximum width WB1 at the maximum width position of the body portion, the maximum width WP1 of the chip portion, and the maximum width WC1 at the most advanced position of the body portion are WB1> WC1> WP1, 0.30 ≦ WP1 / WB1 ≦ 0. 60, The stud pin according to any one of claims 1 to 3, wherein the relationship of 0.50 ≦ WC1 / WB1 ≦ 0.80 is satisfied.
  5.  前記ボディ部の断面積が最大となる断面を含む平面をAとし、前記平面Aよりも先端側であって前記ボディ部の断面積が最少となる断面を含む平面をBとしたとき、前記ボディ部は、前記平面Aにおける前記ボディ部の輪郭線上の任意の点aと前記ボディ部の中心軸との距離Laと、前記平面Bにおける前記ボディ部の輪郭線上の点であって前記点aに対応する位置にある点bと前記ボディ部の中心軸との距離Lbとが0≦(La-Lb)/La≦0.1となる垂直領域を有することを特徴とする請求項1~4のいずれかに記載のスタッドピン。 When A is a plane including a cross section having a maximum cross-sectional area of the body portion, and B is a plane including a cross section on the tip side of the plane A and having a minimum cross-sectional area of the body portion. The portion is a point on the contour line of the body portion in the plane A and a distance La between an arbitrary point a on the contour line of the body portion and the central axis of the body portion, and is at the point a. 13. The stud pin described in either.
  6.  前記ボディ部は中心軸方向に見たときの形状が長手方向を有し、前記垂直領域が前記長手方向と直交する短手方向に配置されていることを特徴とする請求項5に記載のスタッドピン。 The stud according to claim 5, wherein the body portion has a longitudinal direction when viewed in the central axis direction, and the vertical region is arranged in the lateral direction orthogonal to the longitudinal direction. pin.
  7.  前記ボディ部は中心軸方向に見たときの形状が長手方向を有し、前記長手方向と直交する短手方向に沿って測定される前記ボディ部の寸法の最小値WB2及び最大値WB3が1.05≦WB3/WB2≦1.30の関係を満足することを特徴とする請求項1~6のいずれかに記載のスタッドピン。 The shape of the body portion when viewed in the central axis direction has a longitudinal direction, and the minimum value WB2 and the maximum value WB3 of the dimensions of the body portion measured along the lateral direction orthogonal to the longitudinal direction are 1. The stud pin according to any one of claims 1 to 6, wherein the relationship of .05 ≦ WB3 / WB2 ≦ 1.30 is satisfied.
  8.  前記ボディ部は前記最大幅位置と前記最先端位置との間に該ボディ部の中心軸と直交する平面に対する傾斜角度が異なる複数の傾斜面を有することを特徴とする請求項1~7のいずれかに記載のスタッドピン。 Any of claims 1 to 7, wherein the body portion has a plurality of inclined surfaces having different inclination angles with respect to a plane orthogonal to the central axis of the body portion between the maximum width position and the most advanced position. The stud pin described in the crab.
  9.  前記ボディ部は中心軸方向に見たときの形状が長手方向を有し、前記ボディ部の外周面に該ボディ部の中心軸に向かって窪んだ2つの凹部と各凹部の両側に位置する一対の凸部とが形成され、前記凸部が前記長手方向と直交する短手方向に向かって凸となるように配置され、前記ボディ部の前記最大幅位置と前記最先端位置との間に複数の傾斜面が形成され、前記複数の傾斜面が前記短手方向に沿って配置されていることを特徴とする請求項1~8のいずれかに記載のスタッドピン。 The shape of the body portion when viewed in the central axis direction has a longitudinal direction, and two recesses recessed toward the central axis of the body portion on the outer peripheral surface of the body portion and a pair located on both sides of each recess. The convex portion is formed, and the convex portion is arranged so as to be convex toward the lateral direction orthogonal to the longitudinal direction, and a plurality of the convex portions are formed between the maximum width position and the most advanced position of the body portion. The stud pin according to any one of claims 1 to 8, wherein the inclined surface of the above is formed, and the plurality of inclined surfaces are arranged along the lateral direction.
  10.  請求項1~9のいずれかに記載されたスタッドピンがトレッド部に配設されていることを特徴とするタイヤ。 A tire characterized in that the stud pin according to any one of claims 1 to 9 is arranged on the tread portion.
  11.  前記ボディ部は前記最大幅位置と前記最先端位置との間に該ボディ部の中心軸と直交する平面に対する傾斜角度が異なる複数の傾斜面を有し、踏み込み側に向かって傾斜する傾斜面の傾斜角度が蹴り出し側に向かって傾斜する傾斜面の傾斜角度よりも大きいことを特徴とする請求項10に記載のタイヤ。 The body portion has a plurality of inclined surfaces having different inclination angles with respect to a plane orthogonal to the central axis of the body portion between the maximum width position and the most advanced position, and the inclined surface is inclined toward the stepping side. The tire according to claim 10, wherein the inclination angle is larger than the inclination angle of the inclined surface inclined toward the kicking side.
PCT/JP2021/020602 2020-07-29 2021-05-31 Stud pin and tire comprising same WO2022024541A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FI20226187A FI20226187A1 (en) 2020-07-29 2021-05-31 Stud pin and tire including the same
CN202180035416.5A CN115666968A (en) 2020-07-29 2021-05-31 Stud and tire with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-128171 2020-07-29
JP2020128171A JP7056695B2 (en) 2020-07-29 2020-07-29 Stud pins and tires with them

Publications (1)

Publication Number Publication Date
WO2022024541A1 true WO2022024541A1 (en) 2022-02-03

Family

ID=80035378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020602 WO2022024541A1 (en) 2020-07-29 2021-05-31 Stud pin and tire comprising same

Country Status (4)

Country Link
JP (1) JP7056695B2 (en)
CN (1) CN115666968A (en)
FI (1) FI20226187A1 (en)
WO (1) WO2022024541A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529206A (en) * 1975-07-05 1977-01-24 Dunlop Co Ltd Tire stud
JPH0354005A (en) * 1989-07-14 1991-03-08 Neste Oy Spike tire
JP2010095212A (en) * 2008-10-20 2010-04-30 Bridgestone Corp Tire spike
JP2013023111A (en) * 2011-07-22 2013-02-04 Bridgestone Corp Tire stud and studded tire
WO2015087850A1 (en) * 2013-12-09 2015-06-18 横浜ゴム株式会社 Pneumatic tire
JP2018069818A (en) * 2016-10-26 2018-05-10 東洋ゴム工業株式会社 Stud pin and pneumatic tire with stud pin
WO2018158799A1 (en) * 2017-02-28 2018-09-07 横浜ゴム株式会社 Stud pin and studded tire
JP2018187960A (en) * 2017-04-28 2018-11-29 横浜ゴム株式会社 Stud tire
CN110435364A (en) * 2019-09-09 2019-11-12 正新橡胶(中国)有限公司 A kind of tire and its anti-skid stud

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227405A (en) * 1987-03-18 1988-09-21 Agency Of Ind Science & Technol Spike tire
FR2931728B1 (en) * 2008-06-03 2010-07-30 Michelin Soc Tech PNEUMATIC FOR ICE TRUCK
JP6420111B2 (en) * 2014-10-09 2018-11-07 東洋ゴム工業株式会社 Stud pin and stud tire

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529206A (en) * 1975-07-05 1977-01-24 Dunlop Co Ltd Tire stud
JPH0354005A (en) * 1989-07-14 1991-03-08 Neste Oy Spike tire
JP2010095212A (en) * 2008-10-20 2010-04-30 Bridgestone Corp Tire spike
JP2013023111A (en) * 2011-07-22 2013-02-04 Bridgestone Corp Tire stud and studded tire
WO2015087850A1 (en) * 2013-12-09 2015-06-18 横浜ゴム株式会社 Pneumatic tire
JP2018069818A (en) * 2016-10-26 2018-05-10 東洋ゴム工業株式会社 Stud pin and pneumatic tire with stud pin
WO2018158799A1 (en) * 2017-02-28 2018-09-07 横浜ゴム株式会社 Stud pin and studded tire
JP2018187960A (en) * 2017-04-28 2018-11-29 横浜ゴム株式会社 Stud tire
CN110435364A (en) * 2019-09-09 2019-11-12 正新橡胶(中国)有限公司 A kind of tire and its anti-skid stud

Also Published As

Publication number Publication date
JP7056695B2 (en) 2022-04-19
CN115666968A (en) 2023-01-31
FI20226187A1 (en) 2022-12-30
JP2022025387A (en) 2022-02-10

Similar Documents

Publication Publication Date Title
EP1992504A1 (en) Motorcycle tire for off-road traveling
JP6828496B2 (en) Pneumatic tires
JP2003011619A (en) Pneumatic tire
JP2016132358A (en) Pneumatic tire
JP6855800B2 (en) Pneumatic tires
WO2018150742A1 (en) Pneumatic tire
JP6607230B2 (en) Pneumatic tire
WO2022024541A1 (en) Stud pin and tire comprising same
WO2022030610A1 (en) Stud pin and tire comprising same
JP2017140858A (en) Pneumatic tire
JP6816520B2 (en) Pneumatic tires
JPWO2004103738A1 (en) Pneumatic tire
WO2018158799A1 (en) Stud pin and studded tire
JP7035693B2 (en) Pneumatic tires
CN111936324B (en) Stud and studded tyre
CN112638667B (en) Pneumatic tire
WO2020105513A1 (en) Pneumatic tire
JP7063350B2 (en) Stud pins and tires with them
RU2806179C1 (en) Stud and tire containing stud
JP3490943B2 (en) Pneumatic tire
JP2966752B2 (en) Pneumatic tire
WO2021177228A1 (en) Tire
WO2023188542A1 (en) Tire
WO2021177227A1 (en) Tire
JP7428904B2 (en) pneumatic tires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850360

Country of ref document: EP

Kind code of ref document: A1