WO2022030454A1 - 通信制御方法 - Google Patents

通信制御方法 Download PDF

Info

Publication number
WO2022030454A1
WO2022030454A1 PCT/JP2021/028638 JP2021028638W WO2022030454A1 WO 2022030454 A1 WO2022030454 A1 WO 2022030454A1 JP 2021028638 W JP2021028638 W JP 2021028638W WO 2022030454 A1 WO2022030454 A1 WO 2022030454A1
Authority
WO
WIPO (PCT)
Prior art keywords
mbs
entity
user device
rlc
control method
Prior art date
Application number
PCT/JP2021/028638
Other languages
English (en)
French (fr)
Inventor
真人 藤代
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP21854617.4A priority Critical patent/EP4178235A4/en
Priority to CN202180067981.XA priority patent/CN116349290A/zh
Priority to JP2022541541A priority patent/JP7280443B2/ja
Publication of WO2022030454A1 publication Critical patent/WO2022030454A1/ja
Priority to US18/163,655 priority patent/US20230189300A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to a communication control method used in a mobile communication system.
  • NR New Radio
  • RAT Radio Access Technology
  • LTE Long Term Evolution
  • the communication control method is a communication control method used in a mobile communication system that provides a multicast broadcast service (MBS) from a base station to a user device, from the base station to the user device. It has a message for setting the RLC (Radio Link Control) entity of the user apparatus, and the message specifies an operation mode of the RLC entity for an MBS traffic channel for transmitting MBS data. Contains information elements.
  • MBS multicast broadcast service
  • the communication control method is a communication control method used in a mobile communication system that provides a multicast / broadcast service (MBS) from a base station to a user apparatus, and the user apparatus is from the base station.
  • MBS multicast / broadcast service
  • the user apparatus is from the base station.
  • RLC Radio Link Control
  • the communication control method is a communication control method used in a mobile communication system that provides a multicast / broadcast service (MBS) from a base station to a user apparatus, and the user apparatus is from the base station.
  • MBS multicast / broadcast service
  • the PDCP entity performs at least one of the duplicate packet discarding process and the packet reordering process without performing at least one of the decryption process and the header decompression process.
  • the communication control method is a communication control method used in a mobile communication system that provides a multicast / broadcast service (MBS) from a base station to a user device, and the user device is used from the first cell.
  • MBS multicast / broadcast service
  • the user device Upon receiving the MBS data, the user device performs a handover from the first cell to the second cell, and the PDCP (Packet Data Broadcast Multicast) entity of the user device performs the MBS at the time of the handover.
  • the sequence number indicating the MBS data for which the reception has failed is transmitted to the second cell.
  • NR 5G system
  • the purpose of this disclosure is to realize an improved multicast / broadcast service.
  • FIG. 1 is a diagram showing a configuration of a mobile communication system according to an embodiment.
  • This mobile communication system complies with the 5th generation system (5GS: 5th Generation System) of the 3GPP standard.
  • 5GS 5th Generation System
  • 5GS will be described as an example, but an LTE (Long Term Evolution) system may be applied to a mobile communication system at least partially.
  • mobile communication systems include a user device (UE: User Equipment) 100, a 5G radio access network (NG-RAN: Next Generation Radio Access Network) 10, and a 5G core network (5GC: 5G). It has Core Network) 20.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • 5GC 5G core network
  • the UE 100 is a mobile wireless communication device.
  • the UE 100 may be any device as long as it is a device used by the user.
  • the UE 100 may be a mobile phone terminal (including a smartphone), a tablet terminal, a notebook PC, or a communication module (communication card or communication card). (Including a chip set), a sensor or a device provided on the sensor, a vehicle or a device provided on the vehicle (Vehicle UE), a vehicle or a device provided on the vehicle (Arial UE).
  • the NG-RAN 10 includes a base station (called “gNB” in a 5G system) 200.
  • the gNB 200 are connected to each other via the Xn interface, which is an interface between base stations.
  • the gNB 200 manages one or more cells.
  • the gNB 200 performs wireless communication with the UE 100 that has established a connection with its own cell.
  • the gNB 200 has a radio resource management (RRM) function, a routing function for user data (hereinafter, simply referred to as “data”), a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term to indicate the smallest unit of a wireless communication area.
  • the term “cell” is also used to indicate a function or resource for wireless communication with the UE 100.
  • One cell belongs to one carrier frequency.
  • gNB can also connect to EPC (Evolved Packet Core), which is the core network of LTE.
  • EPC Evolved Packet Core
  • LTE base stations can also be connected to 5GC.
  • the LTE base station and gNB can also be connected via an inter-base station interface.
  • 5GC20 includes AMF (Access and Mobility Management Function) and UPF (User Plane Function) 300.
  • the AMF performs various mobility controls and the like for the UE 100.
  • the AMF manages the mobility of the UE 100 by communicating with the UE 100 using NAS (Non-Access Stratum) signaling.
  • UPF controls data transfer.
  • the AMF and UPF are connected to the gNB 200 via the NG interface, which is an interface between the base station and the core network.
  • FIG. 2 is a diagram showing a configuration of a UE 100 (user device) according to an embodiment.
  • the UE 100 includes a receiving unit 110, a transmitting unit 120, and a control unit 130.
  • the receiving unit 110 performs various receptions under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts the radio signal received by the antenna into a baseband signal (received signal) and outputs it to the control unit 130.
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmitter 120 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output by the control unit 130 into a radio signal and transmits it from the antenna.
  • the control unit 130 performs various controls on the UE 100.
  • the control unit 130 includes at least one processor and at least one memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor modulates / demodulates and encodes / decodes the baseband signal.
  • the CPU executes a program stored in the memory to perform various processes.
  • FIG. 3 is a diagram showing the configuration of the gNB 200 (base station) according to the embodiment.
  • the gNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • the transmitter 210 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output by the control unit 230 into a radio signal and transmits it from the antenna.
  • the receiving unit 220 performs various receptions under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver.
  • the receiver converts the radio signal received by the antenna into a baseband signal (received signal) and outputs it to the control unit 230.
  • the control unit 230 performs various controls on the gNB 200.
  • the control unit 230 includes at least one processor and at least one memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU.
  • the baseband processor modulates / demodulates and encodes / decodes the baseband signal.
  • the CPU executes a program stored in the memory to perform various processes.
  • the backhaul communication unit 240 is connected to an adjacent base station via an interface between base stations.
  • the backhaul communication unit 240 is connected to the AMF / UPF 300 via the base station-core network interface.
  • the gNB is composed of a CU (Central Unit) and a DU (Distributed Unit) (that is, the functions are divided), and both units may be connected by an F1 interface.
  • FIG. 4 is a diagram showing a configuration of a protocol stack of a wireless interface of a user plane that handles data.
  • the wireless interface protocol of the user plane includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. It has an SDAP (Service Data Adjustment Protocol) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • SDAP Service Data Adjustment Protocol
  • the PHY layer performs coding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the gNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the gNB 200 via the transport channel.
  • the MAC layer of gNB200 includes a scheduler. The scheduler determines the transport format (transport block size, modulation / coding method (MCS)) of the upper and lower links and the resource block allocated to the UE 100.
  • MCS modulation / coding method
  • the RLC layer transmits data to the receiving RLC layer by using the functions of the MAC layer and the PHY layer. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the gNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the SDAP layer maps the IP flow, which is a unit for performing QoS control by the core network, with the wireless bearer, which is a unit for performing QoS control by AS (Access Stratum).
  • AS Access Stratum
  • FIG. 5 is a diagram showing a configuration of a protocol stack of a wireless interface of a control plane that handles signaling (control signal).
  • the protocol stack of the radio interface of the control plane has an RRC (Radio Resource Control) layer and a NAS (Non-Access Stratum) layer in place of the SDAP layer shown in FIG.
  • RRC signaling for various settings is transmitted between the RRC layer of UE100 and the RRC layer of gNB200.
  • the RRC layer controls logical channels, transport channels, and physical channels in response to the establishment, re-establishment, and release of radio bearers.
  • RRC connection connection between the RRC of the UE 100 and the RRC of the gNB 200
  • the UE 100 is in the RRC connected state.
  • RRC connection no connection between the RRC of the UE 100 and the RRC of the gNB 200
  • the UE 100 is in the RRC idle state.
  • the connection between the RRC of the UE 100 and the RRC of the gNB 200 is suspended, the UE 100 is in the RRC inactive state.
  • the NAS layer located above the RRC layer performs session management, mobility management, etc.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the AMF300.
  • the UE 100 has an application layer and the like in addition to the wireless interface protocol.
  • MBS is a service that broadcasts or multicasts data from NG-RAN10 to UE100, that is, one-to-many (PTM: Point To Multipoint) data transmission.
  • PTM Point To Multipoint
  • MBS may be referred to as MBMS (Multicast Broadcast and Multicast Service).
  • the MBS use cases (service types) include public safety communication, mission-critical communication, V2X (Vehicle to Everything) communication, IPv4 or IPv6 multicast distribution, IPTV, group communication, software distribution, and the like.
  • FIG. 6 is a diagram showing the correspondence between the downlink logical channel (Logical channel) and the transport channel (Transport channel) according to the embodiment.
  • the logical channels used for MBSFN transmission are MTCH (Multicast Traffic Channel) and MCCH (Multicast Control Channel), and the transport channel used for MBSFN transmission is MCH (Multicast Control Channel).
  • MBSFN transmission is mainly designed for multi-cell transmission, and each cell performs synchronous transmission of the same signal (same data) in the same MBSFN subframe in an MBSFN area composed of a plurality of cells.
  • SC-PTM transmission The logical channels used for SC-PTM transmission are SC-MTCH (Single Cell Multicast Traffic Channel) and SC-MCCH (Single Cell Multicast Control Channel), and the transport channels used for SC-PTM transmission are DL-SCH (Downlink). ).
  • SC-PTM transmission is designed primarily for single-cell transmission and performs broadcast or multicast data transmission on a cell-by-cell basis.
  • the physical channels used for SC-PTM transmission are PDCCH (Physical Downlink Control Channel) and PDSCH (Physical Downlink Control Channel), and dynamic resource allocation is possible.
  • MBS may be provided using the SC-PTM transmission method.
  • MBS may be provided using the MBSFN transmission method.
  • MBS may be read as multicast.
  • MBS may be provided by broadcast.
  • MBS data means data transmitted by MBS.
  • the MBS control channel refers to MCCH or SC-MCCH
  • the MBS traffic channel refers to MTCH or SC-MTCH.
  • the network can provide different MBS services for each MBS session.
  • the MBS service is identified by at least one of TMGI (Temporary Mobile Group Identity) and a session identifier, and at least one of these identifiers is called an MBS service identifier.
  • TMGI Temporary Mobile Group Identity
  • Such an MBS service identifier may be referred to as an MBS session identifier or a multicast group identifier.
  • the first embodiment is an embodiment relating to RLC operation for MBS.
  • AM Acknowledged Mode
  • UM Unacknowled Mode
  • TM Transient Mode
  • AM is the only mode that supports the retransmission function by automatic repeat control (ARQ).
  • ARQ automatic repeat control
  • AM is a mode in which retransmission control is performed by performing ACK feedback from the RLC entity on the receiving side to the RLC entity on the transmitting side.
  • the operation mode of the RLC entity is set to UM.
  • a mechanism that makes AM applicable to the NR multicast service can be realized, it is considered that the reliability and flexibility of multicast communication can be improved.
  • FIG. 7 is a diagram showing an example of the operation according to the first embodiment.
  • the UE 100a in the RRC connected state and the UE 100b in the RRC idle state exist in the cell C managed by the gNB 200. It is assumed that the UE 100a and the UE 100b are interested in receiving MBS data belonging to the same MBS service (same MBS session).
  • the gNB 200 sends a message (hereinafter referred to as “setting message”) for setting the RLC entity of the UE 100.
  • the setting message includes an information element (hereinafter referred to as "RLC setting information”) that specifies the operation mode of the RLC entity for the MBS traffic channel that carries the MBS data.
  • the RLC setting information specifies either one of the first mode (that is, AM) in which automatic retransmission control is performed and the second mode in which automatic retransmission control is not performed, as the operation mode of the RLC entity.
  • the second mode is UM or TM, but an example in which the second mode is UM will be mainly described below.
  • gNB200 sends a setting message by broadcasting.
  • Each of the UE 100a in the RRC connected state and the UE 100b in the RRC idle state receives the setting message.
  • the UE 100b in the RRC idle state can also receive the setting message.
  • the setting message may be MBS system information transmitted via a broadcast control channel (BCCH: Broadcast Control Channel).
  • the setting message may be MBS control information transmitted via the MBS control channel.
  • the setting message may be UE individual signaling.
  • the setting message may be an RRC Configuration) message, which is a kind of RRC message.
  • RRC Configuration is a kind of RRC message.
  • Such UE individual signaling and broadcast signaling may be used in combination.
  • the setting contents broadcast in the MBS system information or the MBS control channel may be different from the setting contents in the individual signaling.
  • the UE 100 that receives the individual signaling (specifically, the UE 100a in the RRC connected state) applies the individual signaling with priority over the broadcast signaling. As a result, it is possible to set the specific UE 100 to allow feedback (AM) and the other UE 100 to not allow feedback (UM).
  • the setting message may include an identifier associated with the RLC setting information.
  • This identifier is an identifier for identifying an MBS traffic channel, and is, for example, an MBS service identifier and / or a group RNTI (Radio Network Temporary Identifier). This makes it possible to specify the operation mode of the RLC entity for each MBS traffic channel.
  • an MBS service identifier for example, TMGI
  • TMGI Radio Network Temporary Identifier
  • the setting message may include a plurality of sets of RLC setting information and MBS service identifier.
  • the MBS service identifier # 1 may be associated with the RLC setting information that specifies AM
  • the MBS service identifier # 2 may be associated with the RLC setting information that specifies UM.
  • the UE 100 when the UE 100 is in the RRC connected state, the UE 100 may set the operation mode of the RLC entity according to the RLC setting information included in the setting message.
  • the second mode (UM) may be set regardless of the RLC setting information included in the setting message. Since the UE 100 in the RRC idle state or the RRC inactive state cannot transmit the ACK / NACK feedback (STATUS PDU) to the gNB 200, it is operated in the second mode (UM).
  • the RLC entity associated with the MBS traffic channel operates in AM. Therefore, the UE 100b having the RLC entity of UM needs to be able to process the AM packet (AMD PDU) from the gNB 200. Therefore, the gNB 200 may be limited to the setting in which the sequence number length used in AM is combined with the sequence number length existing in UM. For example, the sequence number length used in AM is 12 bits, which is the maximum sequence number length existing in UM. Alternatively, the sequence number length of the UM packet (UMD PDU) may be extended to 18 bits.
  • the gNB 200 After the operation mode of the RLC entity of each UE 100 is set by the setting message, the gNB 200 transmits MBS data via the MBS traffic channel. Each UE 100 receives this MBS data.
  • FIG. 8 is a diagram showing a specific example of the operation according to the first embodiment.
  • step S101 the gNB 200 transmits a setting message.
  • the setting message is transmitted on the broadcast control channel or the MBS control channel.
  • the UE 100 receives the setting message.
  • step S104 For the MBS traffic channel.
  • AM RLC entity AM RLC entity
  • step S106 the MBS traffic channel To set the UM RLC entity (UM RLC entity).
  • step S106 the gNB 200 transmits MBS data via the MBS traffic channel.
  • the UE 100 receives the MBS data.
  • the RLC entity of the UE 100 processes the packet (AMD PDU) corresponding to the MBS data.
  • the second mode may be a newly defined RLC operation mode.
  • Such an RLC operation mode is an operation mode in which AMD PDU can be received but feedback-related operations (for example, polling for ARQ and Status Reporting) are not performed. If AM is specified by broadcast signaling, the RLC entity of the UE 100 in the RRC idle state or the RRC inactive state may operate in such a new RLC operation mode.
  • the RLC entity on the receiving side performs reception processing using a sliding window that moves according to the reception of the RLC packet. Such a sliding window is controlled by each variable of the RLC entity.
  • Each variable used for such sliding window control is initialized when the RLC entity is established or reestablished.
  • the sequence number corresponding to the initial value is basically "0", and the initial position of the sliding window is determined based on this.
  • the UE 100 can first receive the RLC packet of the sequence number “0” from the gNB 200, there is no problem in handling such a variable.
  • the UE 100 can participate from the middle of the MBS session, and it is uncertain which sequence number the UE 100 receives first. Therefore, the first packet received may be outside the sliding window. In this case, RLC reception processing cannot be performed until the packet enters the sliding window thereafter. Therefore, a burst error may occur at the beginning of MBS reception.
  • FIG. 9 is a diagram showing an RLC operation according to the first embodiment.
  • step S201 the RLC entity of the UE 100 receives the MBS data (RLC packet) from the gNB 200.
  • step S202 the RLC entity of the UE 100 sets the sequence number of the MBS data (RLC packet) first received from the gNB 200 as the initial value of the variable used for the predetermined RLC operation (for example, sliding window control).
  • FIG. 10 is a diagram showing an RLC operation of AM according to the first embodiment.
  • the AM RLC entity of the UE 100 manages a receiving window, which is a kind of sliding window.
  • the AM RLC entity of the UE 100 temporarily stores the packet received in the reception window in the reception buffer, reconstructs it, and then passes it to the upper layer.
  • the AM RLC entity of the UE 100 discards the packet having the sequence number (SN) outside the reception window.
  • the size of the reception window is determined according to the sequence number length (SN length).
  • the variable that determines the starting point of such a reception window is called "RX_Next".
  • the AM RLC entity of the UE 100 sets the sequence number of the MBS data (RLC packet) first received from the gNB 200 as the initial value of the variable “RX_Next”.
  • FIG. 11 is a diagram showing the RLC operation of the UM according to the first embodiment.
  • the UM RLC entity of the UE 100 manages a reconstruction window (Reassembly window), which is a kind of sliding window, and a window used for packet discard (here, referred to as a Discard window).
  • the UM RLC entity of the UE 100 reconstructs (Reassembles) a packet having a sequence number that is in the Entity window and has a sequence number outside the Discard window in the reception buffer, and then passes it to the upper layer. Packets with other sequence numbers are discarded.
  • the variable that determines the end point of such a Reset window is called "RX_Next_Highest".
  • the UM RLC entity of the UE 100 sets the sequence number of the MBS data (RLC packet) first received from the gNB 200 as the initial value of the variable “RX_Next_Highest”.
  • the second embodiment is an embodiment relating to PDCP operation for MBS.
  • the PDCP entity is not used in the LTE multicast / broadcast service. However, it is assumed that the MBS of NR supports handover, and it is desired that the PDCP entity can compensate for the packet loss at the time of handover. Further, when the PDCP entity applies PDCP duplication to MBS, which transmits the same PDCP packet twice in two paths, the PDCP entity is required.
  • the PDCP header compression saves the header (IP header, etc.) of the upper layer of the packet first received by the receiving PDCP entity, and the transmitting PDCP entity removes the header from the second packet and sends and receives.
  • Header compression IP header compression, etc.
  • IP header compression is realized by combining the headers saved in the side PDCP entity and passing them to the higher-level entity. Therefore, since the UE 100 that participated in the MBS session from the middle has not received the first packet, the header decompression (that is, packet reproduction) cannot be performed.
  • a PDCP packet When a PDCP packet is encrypted, it cannot be decrypted (decrypted) without information such as a key and a sequence number derived from a UE identifier or the like.
  • the UE 100 that participates in the MBS session from the middle does not have the information necessary for decryption, so that the decryption cannot be performed.
  • the following PDCP reception operation may be required.
  • -Duplicate packet discarding (Duplicate discounting)
  • a duplicate PDCP packet that is, a plurality of PDCP packets having the same sequence number
  • the receiving PDCP entity passes one of a plurality of PDCP packets having the same sequence number to the upper layer and discards the other PDCP packets.
  • the receiving PDCP entity does not receive the PDCP packets in the order of the sequence number, the PDCP packet needs to be sorted in the order of the sequence number and then passed to the upper layer. However, in the case of the UM bearer, the packet sorting process may not be performed.
  • the receiving PDCP entity that receives the PDCP packet via the plurality of bearers including the bearer of the MBS service performs the PDCP receiving operation for MBS reception. Specifically, in the PDCP reception operation for MBS reception, the receiving PDCP entity performs at least one of the duplicate packet discard processing and the packet reordering processing without performing at least one of the decryption processing and the header decompression processing. .. The receiving PDCP entity may also perform PDCP header removal.
  • FIGS. 12 and 13 are diagrams for explaining the PDCP operation mode according to the second embodiment.
  • the PDCP entity operates in one of three modes of operation.
  • mode A is a mode applied to bearers of user data (for example, unicast data) other than MBS data.
  • the transmitting PDCP entity performs sequence number assignment processing, header compression processing, encryption processing, PDCP header assignment processing, and routing / duplication processing on the packet from the upper layer.
  • the receiving-side PDCP entity performs PDCP header removal processing, decryption processing, packet sorting processing, duplicate packet discarding processing, and header decompression processing on the packet from the transmitting side PDCP entity.
  • Mode B is a mode applied to the bearer of control data such as RRC messages.
  • the transmitting PDCP entity performs sequence number assignment processing, header compression processing, PDCP header assignment processing, and routing / duplication processing for packets from the upper layer.
  • the receiving side PDCP entity performs the PDCP header removal processing and the header decompression processing for the packet from the transmitting side PDCP entity.
  • mode C is a mode applied to the bearer of MBS data (MBS bearer).
  • the transmitting PDCP entity performs sequence number assignment processing, PDCP header assignment processing, and routing / duplication processing for packets from the upper layer.
  • the receiving-side PDCP entity performs PDCP header removal processing, packet sorting processing, and duplicate packet discarding processing on the packet from the transmitting-side PDCP entity.
  • gNB200 sets UE100 so that the PDCP entity of UE100 operates in mode C.
  • the gNB 200 transmits an RRC message for setting a bearer (for example, an RRC Configuration message) to the UE 100.
  • a bearer for example, an RRC Configuration message
  • the gNB 200 includes an information element indicating that the bearer is a bearer for MBS (MBS bearer) in the setting information. For example, in each bearer setting in the RRC message, an information element such as "multicast-bearer ENUM (true) optional" is added.
  • the UE 100 When the UE 100 receives such an RRC message from the gNB 200, it generates a PDCP entity for MBS that operates in mode C.
  • the PDCP entity for MBS performs MBS reception processing on MBS data belonging to the MBS bearer.
  • FIG. 14 is a diagram showing an example of PDCP operation according to the second embodiment.
  • step S301 the PDCP entity of the UE 100 receives the MBS data (PDCP packet) from the gNB 200.
  • the PDCP entity of gNB200 does not perform header compression processing and encryption processing on the PDCP packet belonging to the MBS service (MBS session).
  • step S302 the PDCP entity of the UE 100 performs the PDCP header removal for the received PDCP packet, and then performs the duplicate packet discard processing and / or the packet sorting processing using the reception buffer. However, the PDCP entity of the UE 100 does not perform the header decompression processing and the decryption processing on the received PDCP packet.
  • the UE 100 may perform a handover during MBS reception.
  • the handover means a cell switching operation of the UE 100 in the RRC connected state.
  • each cell that is, a source cell and a target cell
  • the handover provides the same MBS service (same MBS session).
  • the PDCP layer has a function of retransmitting a PDCP packet based on feedback (status report) from the UE 100 to the gNB 200.
  • the packet loss at the time of handover during MBS reception can be complemented by the target cell by the retransmission function of the PDCP layer.
  • FIG. 15 is a diagram showing a handover operation according to the second embodiment.
  • FIG. 15 shows an example in which one gNB 200 manages the source cell C1 and the target cell C2.
  • the UE 100 in the RRC connected state performs handover from the source cell C1 to the target cell C2 while receiving the MBS data from the source cell C1.
  • the sequence number (specifically, the PDCP sequence number) indicating the MBS data (PDCP packet) that failed to be received after the handover. Is transmitted to the target cell C2.
  • the PDCP entity of the UE 100 sets the sequence number of the missing packet to the target cell C2 after the PDCP reestablishment process is completed. Send.
  • the UE 100 may further transmit the MBS service identifier associated with the sequence number of the missing packet to the target cell C2.
  • the PDCP entity of the UE 100 transmits the status report message to the target cell C2 by including the sequence number indicating the MBS data (that is, the missing PDCP packet) that failed to be received in the status report (Status Report) message of the PDCP layer. You may.
  • the gNB 200 When the gNB 200 receives the sequence number of the missing packet from the UE 100 via the target cell C2, the gNB 200 transmits (resends) the missing packet to the UE 100 via the target cell C2 based on the sequence number.
  • the packet loss at the time of handover during MBS reception can be supplemented by the target cell C2 by the retransmission function of the PDCP layer, so that the reliability of MBS reception can be improved.
  • FIG. 16 is a diagram showing another example of the handover operation according to the second embodiment.
  • FIG. 15 shows an example in which the source cell C1 and the target cell C2 are managed by separate gNB200s (gNB200A and gNB200B).
  • the source cell C1 and the target cell C2 asynchronously provide the MBS service. That is, the target cell C2 does not provide the MBS service (MBS session) provided by the target cell C1.
  • MBS session MBS service
  • the gNB 200B that manages the target cell C2 does not hold the missing packet even if it receives the sequence number of the missing packet from the UE 100. Therefore, the gNB 200B notifies the gNB 200A that manages the source cell C1 of the missing sequence number (and the MBS service identifier).
  • the gNB 200A forwards the missing packet (PDCP packet) to the gNB 200B based on the notification from the gNB 200B (data forwarding).
  • the gNB 200B transmits a PDCP packet from the gNB 200A to the UE 100.
  • a program may be provided that causes a computer to execute each process performed by the UE 100 or gNB 200.
  • the program may be recorded on a computer-readable medium.
  • Computer-readable media can be used to install programs on a computer.
  • the computer-readable medium on which the program is recorded may be a non-transient recording medium.
  • the non-transient recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM or a DVD-ROM.
  • a circuit that executes each process performed by the UE 100 or the gNB 200 may be integrated, and at least a part of the UE 100 or the gNB 200 may be configured as a semiconductor integrated circuit (chipset, SoC).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムで用いる通信制御方法は、前記基地局から前記ユーザ装置に対して、前記ユーザ装置のRLC(Radio Link Control)エンティティに関する設定を行うためのメッセージを送信することを有し、前記メッセージは、MBSデータを伝送するMBSトラフィックチャネルに対する前記RLCエンティティの動作モードを指定する情報要素を含む。

Description

通信制御方法
 本発明は、移動通信システムで用いる通信制御方法に関する。
 近年、第5世代(5G)の移動通信システムが注目されている。5Gシステムの無線アクセス技術(RAT:Radio Access Technology)であるNR(New Radio)は、第4世代の無線アクセス技術であるLTE(Long Term Evolution)に比べて、高速・大容量かつ高信頼・低遅延といった特徴を有する。
3GPP技術仕様書「3GPP TS 38.300 V16.2.0 (2020-07)」
 第1の態様に係る通信制御方法は、基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムで用いる通信制御方法であって、前記基地局から前記ユーザ装置に対して、前記ユーザ装置のRLC(Radio Link Control)エンティティに関する設定を行うためのメッセージを送信することを有し、前記メッセージは、MBSデータを伝送するMBSトラフィックチャネルに対する前記RLCエンティティの動作モードを指定する情報要素を含む。
 第2の態様に係る通信制御方法は、基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムで用いる通信制御方法であって、前記ユーザ装置が、前記基地局からMBSデータを受信することと、前記ユーザ装置のRLC(Radio Link Control)エンティティが、前記基地局から最初に受信したMBSデータのシーケンス番号を、所定RLC動作に用いる変数の初期値として設定することとを有する。
 第3の態様に係る通信制御方法は、基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムで用いる通信制御方法であって、前記ユーザ装置が、前記基地局からMBSデータを受信することと、前記ユーザ装置のPDCP(Packet Data Convergence Protocol)エンティティが、前記MBSデータに対するMBS受信処理を行うことと、を有し、前記MBS受信処理を行うことは、前記PDCPエンティティが暗号解除処理及びヘッダ圧縮解除処理の少なくとも一方を行わずに、前記PDCPエンティティが重複パケット破棄処理及びパケット並べ替え処理の少なくとも一方を行うことを含む。
 第4の態様に係る通信制御方法は、基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムで用いる通信制御方法であって、前記ユーザ装置が、第1セルからMBSデータを受信することと、前記ユーザ装置が、前記第1セルから第2セルへのハンドオーバを行うことと、前記ユーザ装置のPDCP(Packet Data Convergence Protocol)エンティティが、前記ハンドオーバの際に前記MBSデータの受信に失敗した場合、受信に失敗したMBSデータを示すシーケンス番号を前記第2セルに送信することとを有する。
実施形態に係る移動通信システムの構成を示す図である。 実施形態に係るUE(ユーザ装置)の構成を示す図である。 実施形態に係るgNB(基地局)の構成を示す図である。 データを取り扱うユーザプレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。 シグナリング(制御信号)を取り扱う制御プレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。 実施形態に係る下りリンクの論理チャネル(Logical channel)とトランスポートチャネル(Transport channel)との対応関係を示す図である。 第1実施形態に係る動作の一例を示す図である。 第1実施形態に係る動作の具体例を示す図である。 第1実施形態に係るRLC動作を示す図である。 第1実施形態に係るAMのRLC動作を示す図である。 第1実施形態に係るUMのRLC動作を示す図である。 第2実施形態に係るPDCP動作モードを説明するための図である。 第2実施形態に係るPDCP動作モードを説明するための図である。 第2実施形態に係るPDCP動作の一例を示す図である。 第2実施形態に係るハンドオーバ動作を示す図である。 第2実施形態に係るハンドオーバ動作の他の例を示す図である。
 5Gシステム(NR)にマルチキャスト・ブロードキャストサービスを導入することが検討されている。NRのマルチキャスト・ブロードキャストサービスは、LTEのマルチキャスト・ブロードキャストサービスよりも改善されたサービスを提供することが望まれる。
 そこで、本開示は、改善されたマルチキャスト・ブロードキャストサービスを実現することを目的とする。
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (移動通信システムの構成)
 まず、実施形態に係る移動通信システムの構成について説明する。図1は、実施形態に係る移動通信システムの構成を示す図である。この移動通信システムは、3GPP規格の第5世代システム(5GS:5th Generation System)に準拠する。以下において、5GSを例に挙げて説明するが、移動通信システムにはLTE(Long Term Evolution)システムが少なくとも部分的に適用されてもよい。
 図1に示すように、移動通信システムは、ユーザ装置(UE:User Equipment)100と、5Gの無線アクセスネットワーク(NG-RAN:Next Generation Radio Access Network)10と、5Gのコアネットワーク(5GC:5G Core Network)20とを有する。
 UE100は、移動可能な無線通信装置である。UE100は、ユーザにより利用される装置であればどのような装置であっても構わないが、例えば、UE100は、携帯電話端末(スマートフォンを含む)やタブレット端末、ノートPC、通信モジュール(通信カード又はチップセットを含む)、センサ若しくはセンサに設けられる装置、車両若しくは車両に設けられる装置(Vehicle UE)、飛行体若しくは飛行体に設けられる装置(Aerial UE)である。
 NG-RAN10は、基地局(5Gシステムにおいて「gNB」と呼ばれる)200を含む。gNB200は、基地局間インターフェイスであるXnインターフェイスを介して相互に接続される。gNB200は、1又は複数のセルを管理する。gNB200は、自セルとの接続を確立したUE100との無線通信を行う。gNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数に属する。
 なお、gNBがLTEのコアネットワークであるEPC(Evolved Packet Core)に接続することもできる。LTEの基地局が5GCに接続することもできる。LTEの基地局とgNBとが基地局間インターフェイスを介して接続されることもできる。
 5GC20は、AMF(Access and Mobility Management Function)及びUPF(User Plane Function)300を含む。AMFは、UE100に対する各種モビリティ制御等を行う。AMFは、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信することにより、UE100のモビリティを管理する。UPFは、データの転送制御を行う。AMF及びUPFは、基地局-コアネットワーク間インターフェイスであるNGインターフェイスを介してgNB200と接続される。
 図2は、実施形態に係るUE100(ユーザ装置)の構成を示す図である。
 図2に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部130は、UE100における各種の制御を行う。制御部130は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)とを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。
 図3は、実施形態に係るgNB200(基地局)の構成を示す図である。
 図3に示すように、gNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
 制御部230は、gNB200における各種の制御を行う。制御部230は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUとを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。
 バックホール通信部240は、基地局間インターフェイスを介して隣接基地局と接続される。バックホール通信部240は、基地局-コアネットワーク間インターフェイスを介してAMF/UPF300と接続される。なお、gNBは、CU(Central Unit)とDU(Distributed Unit)とで構成され(すなわち、機能分割され)、両ユニット間はF1インターフェイスで接続されてもよい。
 図4は、データを取り扱うユーザプレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
 図4に示すように、ユーザプレーンの無線インターフェイスプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、SDAP(Service Data Adaptation Protocol)レイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤとgNB200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤとgNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。gNB200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースブロックを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとgNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 SDAPレイヤは、コアネットワークがQoS制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。なお、RANがEPCに接続される場合は、SDAPが無くてもよい。
 図5は、シグナリング(制御信号)を取り扱う制御プレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
 図5に示すように、制御プレーンの無線インターフェイスのプロトコルスタックは、図4に示したSDAPレイヤに代えて、RRC(Radio Resource Control)レイヤ及びNAS(Non-Access Stratum)レイヤを有する。
 UE100のRRCレイヤとgNB200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとgNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCとgNB200のRRCとの間に接続(RRC接続)がない場合、UE100はRRCアイドル状態にある。UE100のRRCとgNB200のRRCとの間の接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。
 RRCレイヤの上位に位置するNASレイヤは、セッション管理及びモビリティ管理等を行う。UE100のNASレイヤとAMF300のNASレイヤとの間では、NASシグナリングが伝送される。
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
 (MBS)
 次に、実施形態に係るMBSについて説明する。MBSは、NG-RAN10からUE100に対してブロードキャスト又はマルチキャスト、すなわち、1対多(PTM:Point To Multipoint)でのデータ送信を行うサービスである。MBSは、MBMS(Multimedia Broadcast and Multicast Service)と呼ばれてもよい。なお、MBSのユースケース(サービス種別)としては、公安通信、ミッションクリティカル通信、V2X(Vehicle to Everything)通信、IPv4又はIPv6マルチキャスト配信、IPTV、グループ通信、及びソフトウェア配信等がある。
 LTEにおけるMBSの送信方式には、MBSFN(Multicast Broadcast Single Frequency Network)送信及びSC-PTM(Single Cell Point To Multipoint)送信の2種類がある。図6は、実施形態に係る下りリンクの論理チャネル(Logical channel)とトランスポートチャネル(Transport channel)との対応関係を示す図である。
 図6に示すように、MBSFN送信に用いる論理チャネルはMTCH(Multicast Traffic Channel)及びMCCH(Multicast Control Channel)であり、MBSFN送信に用いるトランスポートチャネルはMCH(Multicast Control Channel)である。MBSFN送信は、主にマルチセル送信用に設計されており、複数のセルからなるMBSFNエリアにおいて各セルが同じMBSFNサブフレームで同じ信号(同じデータ)の同期送信を行う。
 SC-PTM送信に用いる論理チャネルはSC-MTCH(Single Cell Multicast Traffic Channel)及びSC-MCCH(Single Cell Multicast Control Channel)であり、SC-PTM送信に用いるトランスポートチャネルはDL-SCH(Downlink Shared Channel)である。SC-PTM送信は、主に単一セル送信用に設計されており、セル単位でブロードキャスト又はマルチキャストでのデータ送信を行う。SC-PTM送信に用いる物理チャネルはPDCCH(Physical Downlink Control Channel)及びPDSCH(Physical Downlink Control Channel)であり、動的なリソース割当が可能になっている。
 以下において、SC-PTM伝送方式を用いてMBSが提供される一例について主として説明するが、MBSFN伝送方式を用いてMBSが提供されてもよい。また、MBSがマルチキャストにより提供される一例について主として説明する。このため、MBSをマルチキャストと読み替えてもよい。但し、MBSがブロードキャストにより提供されてもよい。
 また、以下において、MBSデータとは、MBSにより送信されるデータをいう。MBS制御チャネルとは、MCCH又はSC-MCCHをいい、MBSトラフィックチャネルとは、MTCH又はSC-MTCHをいうものとする。
 ネットワークは、MBSセッションごとに異なるMBSサービスを提供できる。MBSサービスは、TMGI(Temporary Mobile Group Identity)及びセッション識別子のうち少なくとも1つにより識別され、これらの識別子のうち少なくとも1つをMBSサービス識別子と呼ぶ。このようなMBSサービス識別子は、MBSセッション識別子又はマルチキャストグループ識別子と呼ばれてもよい。
 (第1実施形態)
 次に、上述の移動通信システム及びMBSを前提として、第1実施形態について説明する。第1実施形態は、MBS向けのRLC動作に関する実施形態である。
 (1)MBS向けのRLC設定動作
 RLCレイヤの動作モードには、AM(Acknowledged Mode)、UM(Unacknowledged Mode)、及びTM(Transparent Mode)の3つがある。これらのモードのうち、自動再送制御(ARQ:Automatic Repeat reQuest)による再送機能をサポートするモードはAMのみである。AMは、受信側のRLCエンティティから送信側のRLCエンティティに対してACKフィードバックを行うことにより再送制御を行うモードである。
 LTEのマルチキャストサービスにおいて、RLCエンティティの動作モードはUMに設定される。しかしながら、NRのマルチキャストサービスにAMを適用可能とする仕組みを実現できれば、マルチキャスト通信の信頼性及び柔軟性を改善できると考えられる。
 図7は、第1実施形態に係る動作の一例を示す図である。
 図7に示すように、gNB200が管理するセルCに、RRCコネクティッド状態にあるUE100aとRRCアイドル状態にあるUE100bとが存在する。UE100a及びUE100bは、同じMBSサービス(同じMBSセッション)に属するMBSデータの受信に興味があるものとする。
 gNB200は、UE100のRLCエンティティに関する設定を行うためのメッセージ(以下、「設定メッセージ」と呼ぶ)を送信する。設定メッセージは、MBSデータを伝送するMBSトラフィックチャネルに対するRLCエンティティの動作モードを指定する情報要素(以下、「RLC設定情報」と呼ぶ)を含む。
 RLC設定情報は、RLCエンティティの動作モードとして、自動再送制御を行う第1モード(すなわち、AM)及び自動再送制御を行わない第2モードのいずれか一方を指定する。第2モードは、UM又はTMであるが、以下において第2モードがUMである一例について主として説明する。
 例えば、gNB200は、設定メッセージをブロードキャストで送信する。RRCコネクティッド状態にあるUE100a及びRRCアイドル状態にあるUE100bのそれぞれは、設定メッセージを受信する。設定メッセージをブロードキャストで送信することにより、RRCアイドル状態にあるUE100bも設定メッセージを受信可能になる。
 例えば、設定メッセージは、ブロードキャスト制御チャネル(BCCH:Broadcast Control Channel)を介して送信されるMBSシステム情報であってもよい。設定メッセージは、MBS制御チャネルを介して送信されるMBS制御情報であってもよい。
 或いは、設定メッセージは、UE個別シグナリングであってもよい。例えば、設定メッセージは、RRCメッセージの一種であるRRC Reconfiguration)メッセージであってもよい。このようなUE個別シグナリングとブロードキャストシグナリングとが併用されてもよい。
 この場合、MBSシステム情報又はMBS制御チャネル中でブロードキャストされている設定内容と、個別シグナリングでの設定内容とが異なっていてもよい。但し、個別シグナリングを受信するUE100(具体的には、RRCコネクティッド状態にあるUE100a)は、ブロードキャストシグナリングよりも個別シグナリングを優先して適用する。これにより、ある特定のUE100はフィードバック許可(AM)、その他のUE100はフィードバック不可(UM)といった設定を可能とする。
 設定メッセージは、RLC設定情報と対応付けられた識別子を含んでもよい。この識別子は、MBSトラフィックチャネルを特定するための識別子であって、例えば、MBSサービス識別子及び/又はグループRNTI(Radio Network Temporary Identifier)である。これにより、MBSトラフィックチャネルごとにRLCエンティティの動作モードを指定可能になる。以下において、このような識別子としてMBSサービス識別子(例えば、TMGI)を用いる一例について主として説明する。
 設定メッセージは、RLC設定情報及びMBSサービス識別子のセットを複数含んでもよい。例えば、設定メッセージにおいて、MBSサービス識別子#1がAMを指定するRLC設定情報と対応付けられ、MBSサービス識別子#2がUMを指定するRLC設定情報と対応付けられていてもよい。
 第1実施形態において、UE100がRRCコネクティッド状態にある場合、UE100は、設定メッセージに含まれるRLC設定情報に従ってRLCエンティティの動作モードを設定してもよい。UE100は、RRCアイドル状態又はRRCインアクティブ状態にある場合、設定メッセージに含まれるRLC設定情報にかかわらず第2モード(UM)を設定してもよい。RRCアイドル状態又はRRCインアクティブ状態にあるUE100は、ACK/NACKのフィードバック(STATUS PDU)をgNB200に送信できないため、第2モード(UM)で動作させることとしている。
 但し、gNB200において、MBSトラフィックチャネルと対応付けられたRLCエンティティはAMで動作する。このため、UMのRLCエンティティを有するUE100bは、gNB200からのAMのパケット(AMD PDU)を処理できる必要がある。よって、gNB200は、AMで用いるシーケンス番号長を、UMで存在するシーケンス番号長と合わせた設定に限定してもよい。例えば、AMで用いるシーケンス番号長を、UMで存在する最大のシーケンス番号長である12ビットとする。或いは、UMのパケット(UMD PDU)のシーケンス番号長を18ビットに拡張してもよい。
 設定メッセージにより各UE100のRLCエンティティの動作モードが設定された後、gNB200は、MBSトラフィックチャネルを介してMBSデータを送信する。各UE100は、このMBSデータを受信する。
 図8は、第1実施形態に係る動作の具体例を示す図である。
 図8に示すように、ステップS101において、gNB200は、設定メッセージを送信する。ここでは、設定メッセージがブロードキャスト制御チャネル又はMBS制御チャネルで送信されるものとする。UE100は、設定メッセージを受信する。
 設定メッセージを受信したUE100は、自身がRRCコネクティッド状態にあり(ステップS102:YES)、かつ設定メッセージでAMが指定された場合(ステップS103:YES)、ステップS104において、MBSトラフィックチャネルのためにAMのRLCエンティティ(AM RLCエンティティ)を設定する。
 一方、設定メッセージを受信したUE100は、自身がRRCコネクティッド状態ではない(ステップS102:NO)、又は設定メッセージでUMが指定された場合(ステップS103:NO)、ステップS106において、MBSトラフィックチャネルのためにUMのRLCエンティティ(UM RLCエンティティ)を設定する。
 ステップS106において、gNB200は、MBSトラフィックチャネルを介してMBSデータを送信する。UE100は、MBSデータを受信する。ここで、UE100のRLCエンティティは、MBSデータに対応するパケット(AMD PDU)を処理する。
 なお、自動再送制御を行わない第2モードがUMである一例について説明したが、第2モードは、新たに定義されたRLC動作モードであってもよい。このようなRLC動作モードは、AMD PDUを受信できるもののフィードバック関連の動作(例えば、ARQ用のポーリングやStatus Reporting)は行わないという動作モードである。ブロードキャストシグナリングによりAMが指定されている場合、RRCアイドル状態又はRRCインアクティブ状態にあるUE100のRLCエンティティは、このような新たなRLC動作モードで動作してもよい。
 (2)MBS向けのRLC動作
 次に、第1実施形態に係るMBS向けのRLC動作について説明する。受信側のRLCエンティティは、RLCパケットの受信に応じて移動するスライディングウィンドウを用いて受信処理を行う。このようなスライディングウィンドウは、RLCエンティティの各変数により制御される。
 このようなスライディングウィンドウ制御に用いる各変数は、RLCエンティティが確立又は再確立された際に初期化される。初期値に相当するシーケンス番号は基本的に“0”であり、これを基準にスライディングウィンドウの初期位置が決まる。ユニキャスト通信の場合、UE100は、最初にシーケンス番号“0”のRLCパケットをgNB200から受信できるため、このような変数の取り扱いで問題ない。
 しかしながら、MBSの場合、MBSセッションの途中からUE100が参加可能であり、どのシーケンス番号をUE100が最初に受信するか不定である。このため、最初に受信したパケットがスライディングウィンドウ外である場合がある。この場合、その後にパケットがスライディングウィンドウに入るまでRLCの受信処理ができない。よって、MBS受信の最初にバーストエラーが起きる可能性がある。
 そこで、UE100のRLCエンティティは、上述のような変数を、最初に受信したRLCパケットのシーケンス番号に合わせて変更する。図9は、第1実施形態に係るRLC動作を示す図である。
 図9に示すように、ステップS201において、UE100のRLCエンティティは、gNB200からMBSデータ(RLCパケット)を受信する。
 ステップS202において、UE100のRLCエンティティは、gNB200から最初に受信したMBSデータ(RLCパケット)のシーケンス番号を、所定RLC動作(例えば、スライディングウィンドウ制御)に用いる変数の初期値として設定する。
 これにより、最初に受信したパケットがスライディングウィンドウに入ることが保証され、RLCの受信処理が正常に動作する。よって、MBS受信の最初にバーストエラーが起きる可能性を低減できる。
 図10は、第1実施形態に係るAMのRLC動作を示す図である。図10に示すように、UE100のAM RLCエンティティは、スライディングウィンドウの一種である受信ウィンドウ(Reciving window)を管理する。UE100のAM RLCエンティティは、受信ウィンドウ内で受信するパケットを受信バッファ(Reception buffer)に一時的に格納して再構築(Reassemble)したうえで上位レイヤに渡す。UE100のAM RLCエンティティは、受信ウィンドウ外のシーケンス番号(SN)を有するパケットを破棄(Discard)する。受信ウィンドウのサイズは、シーケンス番号長(SN length)に応じて定まる。このような受信ウィンドウの始点を定める変数は“RX_Next”と呼ばれる。UE100のAM RLCエンティティは、gNB200から最初に受信したMBSデータ(RLCパケット)のシーケンス番号を変数“RX_Next”の初期値として設定する。
 図11は、第1実施形態に係るUMのRLC動作を示す図である。図11に示すように、UE100のUM RLCエンティティは、スライディングウィンドウの一種である再構築ウィンドウ(Reassembly window)と、パケット破棄に用いるウィンドウ(ここではDiscard windowと呼ぶ)とを管理する。UE100のUM RLCエンティティは、Reassembly window内であって、かつDiscard window外のシーケンス番号を有するパケットを受信バッファ(Reception buffer)内で再構築(Reassemble)したうえで上位レイヤに渡す。それ以外のシーケンス番号を有するパケットは破棄(Discard)する。このようなReassembly windowの終点を定める変数は“RX_Next_Highest”と呼ばれる。UE100のUM RLCエンティティは、gNB200から最初に受信したMBSデータ(RLCパケット)のシーケンス番号を変数“RX_Next_Highest”の初期値として設定する。
 (第2実施形態)
 次に、第2実施形態について、第1実施形態との相違点を主として説明する。第2実施形態は、MBS向けのPDCP動作に関する実施形態である。
 (1)MBS向けのPDCP動作
 LTEのマルチキャスト・ブロードキャストのサービスにおいてPDCPエンティティは用いられていない。しかしながら、NRのMBSではハンドオーバがサポートされることが想定されており、ハンドオーバ時のパケット損失の補償をPDCPエンティティが実施できることが望まれる。また、PDCPエンティティが2つのパスで同一PDCPパケットを二重に送信するPDCPデュプリケーションをMBSに適用する場合、PDCPエンティティが必要である。
 ここで、マルチキャストの場合、例えばMBSセッションの途中から通信に参加したUE100が次のPDCP受信動作を行うと、パケットを正常に処理できない虞がある。
 ・ヘッダ圧縮解除処理(Header Decompression)
 PDCPのヘッダ圧縮は、最初に受信側PDCPエンティティで受信したパケットの上位レイヤのヘッダ(IPヘッダ等)を保存し、送信側PDCPエンティティが2つ目のパケットからヘッダを除去して送信し、受信側PDCPエンティティで保存してあるヘッダを結合して上位エンティティへ渡すことでヘッダ圧縮(IPヘッダ圧縮等)を実現している。このため、途中からMBSセッションに参加したUE100は最初のパケットを受信していないため、ヘッダ圧縮解除(すなわち、パケット再生)ができない。
 ・暗号解除処理(De-ciphering)
 PDCPパケットが暗号化されている場合、UE識別子等から導かれるキーやシーケンス番号などの情報が無いと暗号解除(復号)ができない。例えば、途中からMBSセッションに参加したUE100は、暗号解除に必要な情報を有していないため、暗号解除ができない。
 一方で、PDCPデュプリケーションのように複数のベアラ(すなわち、複数のデータパス)を1つのPDCPエンティティで終端する場合、次のPDCP受信動作が必要になり得る。
 ・重複パケット破棄処理(Duplicate discarding)
 複数のベアラを介して重複PDCPパケット(すなわち、同一のシーケンス番号を有する複数のPDCPパケット)を受信した場合、重複を避けるためにパケット破棄を行う必要がある。具体的には、受信側PDCPエンティティは、同一のシーケンス番号を有する複数のPDCPパケットのうち1つを残して上位レイヤに渡すとともに他のPDCPパケットを破棄する。
 ・パケット並べ替え処理(Reordering)
 受信側PDCPエンティティは、PDCPパケットをシーケンス番号順に受信しない場合、PDCPパケットをシーケンス番号順に並べ替えたうえで上位レイヤに渡す必要がある。但し、UMベアラの場合、パケット並べ替え処理は行わなくてもよい。
 よって、第2実施形態において、MBSサービスのベアラを含む複数のベアラを介してPDCPパケットを受信する受信側PDCPエンティティは、MBS受信用のPDCP受信動作を行う。具体的には、MBS受信用のPDCP受信動作において、受信側PDCPエンティティは、暗号解除処理及びヘッダ圧縮解除処理の少なくとも一方を行わずに、重複パケット破棄処理及びパケット並べ替え処理の少なくとも一方を行う。受信側PDCPエンティティは、PDCPヘッダ除去も行ってもよい。
 図12及び図13は、第2実施形態に係るPDCP動作モードを説明するための図である。第2実施形態において、PDCPエンティティは、3つの動作モードのうちいずれかで動作する。
 図12に示すように、モードAは、MBSデータ以外のユーザデータ(例えば、ユニキャストデータ)のベアラに適用されるモードである。モードAにおいて、送信側PDCPエンティティは、上位レイヤからのパケットに対して、シーケンス番号付与処理、ヘッダ圧縮処理、暗号化処理、PDCPヘッダ付与処理、及びルーティング/デュプリケーション処理を行う。受信側PDCPエンティティは、送信側PDCPエンティティからのパケットに対して、PDCPヘッダ除去処理、暗号解除処理、パケット並べ替え処理、重複パケット破棄処理、及びヘッダ圧縮解除処理を行う。
 モードBは、RRCメッセージ等の制御データのベアラに適用されるモードである。モードBにおいて、送信側PDCPエンティティは、上位レイヤからのパケットに対して、シーケンス番号付与処理、ヘッダ圧縮処理、PDCPヘッダ付与処理、及びルーティング/デュプリケーション処理を行う。受信側PDCPエンティティは、送信側PDCPエンティティからのパケットに対して、PDCPヘッダ除去処理、及びヘッダ圧縮解除処理を行う。
 図13に示すように、モードCは、MBSデータのベアラ(MBSベアラ)に適用されるモードである。モードCにおいて、送信側PDCPエンティティは、上位レイヤからのパケットに対して、シーケンス番号付与処理、PDCPヘッダ付与処理、及びルーティング/デュプリケーション処理を行う。受信側PDCPエンティティは、送信側PDCPエンティティからのパケットに対して、PDCPヘッダ除去処理、パケット並べ替え処理、及び重複パケット破棄処理を行う。
 MBSのためにgNB200は、UE100のPDCPエンティティがモードCで動作するようにUE100に設定を行う。例えば、gNB200は、ベアラを設定するためのRRCメッセージ(例えば、RRC Reconfigurationメッセージ)をUE100に送信する。
 ここで、gNB200は、当該ベアラがMBS用のベアラ(MBSベアラ)であることを示す情報要素を設定情報に含める。例えば、RRCメッセージ中の各ベアラ設定において、”multicast-bearer ENUM(true) optional”といった情報要素が追加される。
 UE100は、このようなRRCメッセージをgNB200から受信すると、モードCで動作するMBS用のPDCPエンティティを生成する。MBS用のPDCPエンティティは、MBSベアラに属するMBSデータに対してMBS受信処理を行う。
 図14は、第2実施形態に係るPDCP動作の一例を示す図である。
 図14に示すように、ステップS301において、UE100のPDCPエンティティは、gNB200からMBSデータ(PDCPパケット)を受信する。ここで、gNB200のPDCPエンティティは、MBSサービス(MBSセッション)に属するPDCPパケットに対してヘッダ圧縮処理及び暗号化処理を行っていないものとする。
 ステップS302において、UE100のPDCPエンティティは、受信したPDCPパケットに対してPDCPヘッダ除去を行った後、受信バッファを用いて重複パケット破棄処理及び/又はパケット並べ替え処理を行う。但し、UE100のPDCPエンティティは、受信したPDCPパケットに対して、ヘッダ圧縮解除処理及び暗号解除処理を行わない。
 (2)MBS受信中のハンドオーバ時のPDCP動作
 次に、第2実施形態に係るMBS受信中のハンドオーバ時のPDCP動作について説明する。UE100は、MBS受信中にハンドオーバを実行し得る。ハンドオーバとは、RRCコネクティッド状態にあるUE100のセル切替動作をいう。以下において、ハンドオーバ前後の各セル(すなわち、ソースセル及びターゲットセル)が同じMBSサービス(同じMBSセッション)を提供する場合を主として想定する。
 UE100がMBS受信中にハンドオーバを実行すると、ターゲットセルへの接続動作等に起因して、MBSデータのパケット欠損が発生する虞がある。PDCPレイヤは、UE100からgNB200へのフィードバック(status report)に基づくPDCPパケットの再送機能を有する。第2実施形態では、MBS受信中のハンドオーバ時のパケット欠損をPDCPレイヤの再送機能によりターゲットセルで補完可能にする。
 図15は、第2実施形態に係るハンドオーバ動作を示す図である。図15において、ソースセルC1及びターゲットセルC2を1つのgNB200が管理している一例を示している。
 図15に示すように、RRCコネクティッド状態にあるUE100は、ソースセルC1からMBSデータを受信しつつ、ソースセルC1からターゲットセルC2へのハンドオーバを行う。ここで、UE100のPDCPエンティティは、ハンドオーバの際にMBSデータの受信に失敗した場合、ハンドオーバ後において、受信に失敗したMBSデータ(PDCPパケット)を示すシーケンス番号(具体的には、PDCPシーケンス番号)をターゲットセルC2に送信する。
 UE100のPDCPエンティティは、ソースセルC1からハンドオーバコマンドが設定された場合(RRCレイヤがPDCP再確立を要求した場合)、PDCP再確立処理の完了後に、ターゲットセルC2に対して欠損パケットのシーケンス番号を送信する。UE100は、欠損パケットのシーケンス番号と対応付けられたMBSサービス識別子をターゲットセルC2にさらに送信してもよい。UE100のPDCPエンティティは、PDCPレイヤの状態報告(Status Report)メッセージに、受信に失敗したMBSデータ(すなわち、欠損したPDCPパケット)を示すシーケンス番号を含めて、状態報告メッセージをターゲットセルC2に送信してもよい。
 gNB200は、ターゲットセルC2を介してUE100から欠損パケットのシーケンス番号を受信すると、当該シーケンス番号に基づいて、ターゲットセルC2を介して欠損パケットをUE100に送信(再送)する。これにより、MBS受信中のハンドオーバ時のパケット欠損をPDCPレイヤの再送機能によりターゲットセルC2で補完できるため、MBS受信の信頼性を高めることができる。
 図16は、第2実施形態に係るハンドオーバ動作の他の例を示す図である。図15において、ソースセルC1及びターゲットセルC2を別々のgNB200(gNB200A及びgNB200B)が管理している一例を示している。
 図16に示す動作環境において、ソースセルC1及びターゲットセルC2が非同期でMBSサービスを提供しているものとする。すなわち、ターゲットセルC2は、ターゲットセルC1が提供するMBSサービス(MBSセッション)を提供していない。
 このような場合において、ターゲットセルC2を管理するgNB200Bは、UE100から欠損パケットのシーケンス番号を受信しても、当該欠損パケットを保持していない。このため、gNB200Bは、ソースセルC1を管理するgNB200Aに対して、当該欠損シーケンス番号(及びMBSサービス識別子)を通知する。gNB200Aは、gNB200Bからの通知に基づいて当該欠損パケット(PDCPパケット)をgNB200Bに転送する(データフォワーディング)。gNB200Bは、gNB200AからのPDCPパケットをUE100に送信する。
 (その他の実施形態)
 上述の各実施形態は、別個独立に実施する場合に限らず、2以上の実施形態を組み合わせて実施可能である。
 UE100又はgNB200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。
 また、UE100又はgNB200が行う各処理を実行する回路を集積化し、UE100又はgNB200の少なくとも一部を半導体集積回路(チップセット、SoC)として構成してもよい。
 以上、図面を参照して実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 本願は、日本国特許出願第2020-132044号(2020年8月3日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。

Claims (8)

  1.  基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムで用いる通信制御方法であって、
     前記基地局から前記ユーザ装置に対して、前記ユーザ装置のRLC(Radio Link Control)エンティティに関する設定を行うためのメッセージを送信することを有し、
     前記メッセージは、MBSデータを伝送するMBSトラフィックチャネルに対する前記RLCエンティティの動作モードを指定する情報要素を含む
     通信制御方法。
  2.  前記情報要素は、前記RLCエンティティの動作モードとして、自動再送制御を行う第1モード及び前記自動再送制御を行わない第2モードのいずれか一方を指定する
     請求項1に記載の通信制御方法。
  3.  前記メッセージは、前記MBSトラフィックチャネルを特定するための識別子をさらに含み、
     前記情報要素は、前記識別子と対応付けられている
     請求項1又は2に記載の通信制御方法。
  4.  前記ユーザ装置がRRC(Radio Resource Control)コネクティッド状態にある場合、前記情報要素に従って前記RLCエンティティの動作モードを設定することと、
     前記ユーザ装置がRRCアイドル状態又はRRCインアクティブ状態にある場合、前記情報要素にかかわらず前記第2モードを設定することと、をさらに有する
     請求項2に記載の通信制御方法。
  5.  基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムで用いる通信制御方法であって、
     前記ユーザ装置が、前記基地局からMBSデータを受信することと、
     前記ユーザ装置のRLC(Radio Link Control)エンティティが、前記基地局から最初に受信したMBSデータのシーケンス番号を、所定RLC動作に用いる変数の初期値として設定することと、を有する
     通信制御方法。
  6.  基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムで用いる通信制御方法であって、
     前記ユーザ装置が、前記基地局からMBSデータを受信することと、
     前記ユーザ装置のPDCP(Packet Data Convergence Protocol)エンティティが、前記MBSデータに対するMBS受信処理を行うことと、を有し、
     前記MBS受信処理を行うことは、前記PDCPエンティティが暗号解除処理及びヘッダ圧縮解除処理の少なくとも一方を行わずに、前記PDCPエンティティが重複パケット破棄処理及びパケット並べ替え処理の少なくとも一方を行うことを含む
     通信制御方法。
  7.  前記基地局が、ベアラを設定するためのメッセージを前記ユーザ装置に送信することをさらに有し、
     前記メッセージは、前記ベアラがMBSデータ用のMBSベアラであることを示す情報要素を含み、
     前記MBS受信処理を行うことは、前記MBSベアラに属する前記MBSデータに対して前記PDCPエンティティが前記MBS受信処理を行うことを含む
     請求項6に記載の通信制御方法。
  8.  基地局からユーザ装置に対してマルチキャスト・ブロードキャストサービス(MBS)を提供する移動通信システムで用いる通信制御方法であって、
     前記ユーザ装置が、第1セルからMBSデータを受信することと、
     前記ユーザ装置が、前記第1セルから第2セルへのハンドオーバを行うことと、
     前記ユーザ装置のPDCP(Packet Data Convergence Protocol)エンティティが、前記ハンドオーバの際に前記MBSデータの受信に失敗した場合、受信に失敗したMBSデータを示すシーケンス番号を前記第2セルに送信することと、を有する
     通信制御方法。
PCT/JP2021/028638 2020-08-03 2021-08-02 通信制御方法 WO2022030454A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21854617.4A EP4178235A4 (en) 2020-08-03 2021-08-02 COMMUNICATION CONTROL METHOD
CN202180067981.XA CN116349290A (zh) 2020-08-03 2021-08-02 通信控制方法
JP2022541541A JP7280443B2 (ja) 2020-08-03 2021-08-02 通信制御方法、基地局、ユーザ装置及びプロセッサ
US18/163,655 US20230189300A1 (en) 2020-08-03 2023-02-02 Communication control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-132044 2020-08-03
JP2020132044 2020-08-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/163,655 Continuation US20230189300A1 (en) 2020-08-03 2023-02-02 Communication control method

Publications (1)

Publication Number Publication Date
WO2022030454A1 true WO2022030454A1 (ja) 2022-02-10

Family

ID=80117993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028638 WO2022030454A1 (ja) 2020-08-03 2021-08-02 通信制御方法

Country Status (5)

Country Link
US (1) US20230189300A1 (ja)
EP (1) EP4178235A4 (ja)
JP (2) JP7280443B2 (ja)
CN (1) CN116349290A (ja)
WO (1) WO2022030454A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116210241A (zh) * 2020-07-22 2023-06-02 株式会社Kt Mbs数据传输方法及其装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011254507A (ja) * 2011-07-19 2011-12-15 Fujitsu Ltd 移動無線通信システム
JP2020132044A (ja) 2019-02-22 2020-08-31 株式会社ショーワ ステアリング制御装置、ステアリング装置、及び車両

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8694869B2 (en) * 2003-08-21 2014-04-08 QUALCIMM Incorporated Methods for forward error correction coding above a radio link control layer and related apparatus
WO2016163548A1 (ja) * 2015-04-10 2016-10-13 京セラ株式会社 基地局及びユーザ端末
CN113411755B (zh) * 2017-12-28 2022-10-04 华为技术有限公司 一种通信方法、及相关产品
WO2021056154A1 (zh) * 2019-09-23 2021-04-01 Oppo广东移动通信有限公司 一种窗口调整方法及装置、网络设备、终端设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011254507A (ja) * 2011-07-19 2011-12-15 Fujitsu Ltd 移動無線通信システム
JP2020132044A (ja) 2019-02-22 2020-08-31 株式会社ショーワ ステアリング制御装置、ステアリング装置、及び車両

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.300, July 2020 (2020-07-01)
HUAWEI: "RLC SN reset and UM Window for MBMS", 3GPP DRAFT; R2-095510 RLC SN RESET AND UM WINDOW FOR MBMS SFN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Miyazaki; 20091012 - 20091016, 6 October 2009 (2009-10-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050604726 *
HYTERA COMMUNICATIONS CORP.: "Dynamic Configuration of MBSFN areas for MC service", 3GPP DRAFT; R2-1705086_DYNAMIC CONFIGURATION OF MBSFN AREAS FOR MC SERVICE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Hangzhou, China; 20170515 - 20170519, 14 May 2017 (2017-05-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051275564 *
See also references of EP4178235A4

Also Published As

Publication number Publication date
US20230189300A1 (en) 2023-06-15
JPWO2022030454A1 (ja) 2022-02-10
EP4178235A4 (en) 2023-12-27
JP7280443B2 (ja) 2023-05-23
CN116349290A (zh) 2023-06-27
EP4178235A1 (en) 2023-05-10
JP2023100957A (ja) 2023-07-19

Similar Documents

Publication Publication Date Title
JP6553592B2 (ja) 通信制御方法及びユーザ端末
WO2021143868A1 (en) Methods and apparatus of lossless handover for nr multicast services
CN113853808A (zh) 一种多播传输控制方法以及相关设备
WO2022085717A1 (ja) 通信制御方法
WO2022028338A1 (zh) 数据传输方法、终端及网络节点
CN112312575A (zh) 一种通信方法及装置
WO2022030452A1 (ja) 通信制御方法、基地局、及びユーザ装置
US20230189300A1 (en) Communication control method
WO2021143869A1 (en) Uplink feedback and retransmission for new radio (nr) multicast services
US20230337327A1 (en) Communication control method and user equipment
US20230091236A1 (en) Communication control method and user equipment
CN114390447B (zh) 用于多播广播服务的方法和用户设备
CN114982202A (zh) Nr多播服务的多播和单播之间的动态切换
US20230188950A1 (en) Communication control method
US20230254668A1 (en) Communication control method
WO2024034564A1 (ja) 通信方法、集約ユニット、及び分散ユニット
US20240056777A1 (en) Service transmission method, service transmission apparatus, service transmission device, terminal, and storage medium
WO2022085644A1 (ja) 通信制御方法
WO2022085646A1 (ja) 通信制御方法
US20230189299A1 (en) Communication control method
WO2022085573A1 (ja) 通信制御方法
WO2022024945A1 (ja) 通信制御方法
US20240155733A1 (en) Communication control method, base station, and user equipment
WO2024031307A1 (zh) 混合自动重传请求harq反馈方法、装置、设备及介质
CN116095611A (zh) 组播业务的数据传输方法、通信装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541541

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021854617

Country of ref document: EP

Effective date: 20230202

NENP Non-entry into the national phase

Ref country code: DE