WO2022030338A1 - 二酸化炭素固体回収材及びその製造方法 - Google Patents

二酸化炭素固体回収材及びその製造方法 Download PDF

Info

Publication number
WO2022030338A1
WO2022030338A1 PCT/JP2021/027994 JP2021027994W WO2022030338A1 WO 2022030338 A1 WO2022030338 A1 WO 2022030338A1 JP 2021027994 W JP2021027994 W JP 2021027994W WO 2022030338 A1 WO2022030338 A1 WO 2022030338A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
weight
solid
recovery material
sodium
Prior art date
Application number
PCT/JP2021/027994
Other languages
English (en)
French (fr)
Inventor
宗由 坂本
伸哉 志茂
栄一 栗田
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Priority to KR1020237005860A priority Critical patent/KR20230044243A/ko
Priority to US18/040,393 priority patent/US20230277977A1/en
Priority to JP2022541476A priority patent/JPWO2022030338A1/ja
Priority to EP21852264.7A priority patent/EP4194083A1/en
Priority to CN202180057894.6A priority patent/CN116234625A/zh
Publication of WO2022030338A1 publication Critical patent/WO2022030338A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Definitions

  • the present invention has been made in view of the above problems, and an object thereof is that carbon dioxide can be fixed in a low temperature range such as room temperature to 200 ° C., and carbon dioxide can be recovered and fixed by heating at 50 to 200 ° C. It is an object of the present invention to provide a solid carbon dioxide recovery material having excellent recovery performance and a method for producing the same.
  • carbon dioxide is fixed in a temperature range from room temperature to 200 ° C. by supporting sodium ferrite on a porous material or granulating with the porous material under predetermined conditions. Then, carbon dioxide fixed by heating at 50 to 200 ° C. can be recovered with high efficiency.
  • the carbon dioxide solid recovery material according to the present invention is a carbon dioxide solid recovery material containing 1% by weight to 99% by weight of sodium ferrite and 1% by weight to 99% by weight of a porous material.
  • the average particle size is 1 mm to 10 mm
  • the specific surface area is 5 m 2 / g to 1500 m 2 / g
  • the axial ratio of the average major axis diameter to the average minor axis diameter of the sodium ferrite primary particles is 1 to 2. It is characterized by being.
  • the solid carbon dioxide recovery material according to the present invention carbon dioxide can be fixed in a temperature range from room temperature to 200 ° C. and recovered by heating at 50 to 200 ° C., and has excellent fixed recovery performance.
  • the solid carbon dioxide recovery material according to the present invention contains the sodium ferrite in an amount of 1% by weight to 70% by weight, the porous material in an amount of 30% by weight to 99% by weight, and has a specific surface area of 100 m 2 / g to 1500 m 2 /. It is preferably g.
  • the hardness is 5 kgf / mm 2 to 35 kgf / mm 2 and the bulk density is 0.3 g / mL to 0.8 g / mL.
  • the porous material can promote the aggregation of sodium ferrite particles to form a molded product containing a high concentration of sodium ferrite. Therefore, the solid carbon dioxide recovery material according to the present invention containing sodium ferrite and a porous material has an excellent property of adsorbing carbon dioxide in a gas, confining it in the solid, and releasing carbon dioxide by heating. Can be done. Further, when granulating sodium ferrite exceeding 70% by weight and 99% by weight or less using a porous material of 1% by weight or more and less than 30% by weight, if the specific surface area is less than 5 m 2 / g, it is contained in the gas. If the specific surface area exceeds 500 m 2 / g, industrial production becomes difficult due to difficulty in contact with carbon dioxide, which reduces the fixed recovery performance of carbon dioxide.
  • the hardness is preferably 3 kgf / mm 2 to 30 kgf / mm 2
  • the sphericity is preferably 1 to 2.
  • the solid recovery material for carbon dioxide according to the present invention is basic, it becomes easy to catch carbon dioxide which is weakly acidic.
  • a solid and a solid are mixed and the element is moved and reacted without a solvent, so that a solvent as a reaction mother liquor is not used, so that a liquid phase reaction can be carried out. It is possible to suppress waste such as a solvent when used. In particular, in the case of a solid-phase reaction at a low temperature, an extremely high concentration reaction can occur, so that the energy cost can be kept low. Therefore, according to the method for producing a solid carbon dioxide recovery material according to the present invention, carbon dioxide can be fixed in a temperature range of room temperature to 200 ° C., and the fixed carbon dioxide can be recovered by heating at 50 to 200 ° C. with high efficiency. It is possible to produce a carbon dioxide recovery material having excellent fixed recovery performance.
  • the solid carbon dioxide recovery material according to the present embodiment contains 1% by weight to 70% by weight of sodium ferrite and 30% by weight to 99% by weight of a porous material. In the range of the weight%, sodium ferrite can be stably supported on the porous material while maintaining the fixed recovery performance of carbon dioxide originally possessed by sodium ferrite.
  • the carbon dioxide solid recovery material according to the present embodiment has an average particle size of 1 mm to 10 mm and a specific surface area of 100 m 2 / g to 1500 m 2 / g.
  • the average particle size of the solid carbon dioxide recovery material is preferably 2 mm to 8 mm.
  • the specific surface area of the solid recovery material for carbon dioxide is preferably 300 m 2 / g to 1000 m 2 / g.
  • the carbon dioxide solid recovery material according to the present embodiment has an axial ratio (average major axis diameter / average minor axis diameter) of the average major axis diameter to the average minor axis diameter of the primary particles of sodium ferrite being 1 to 2.
  • the axial ratio exceeds 2, the primary particles tend to aggregate with each other, and it becomes difficult to maintain a state in which the dispersibility of sodium ferrite is high.
  • the axial ratio cannot be less than 1.
  • the axial ratio of the primary particles of the solid recovery material of carbon dioxide is preferably 1.1 to 1.9.
  • the carbon dioxide solid recovery material according to the present embodiment preferably has a hardness of 5 kgf / mm 2 to 35 kgf / mm 2 and a bulk density of 0.3 g / mL to 0.8 g / mL.
  • the hardness and bulk density are in the above ranges, when the adsorption tower or the like is filled, it is difficult to break due to gravity or friction due to the flow of exhaust gas, and the gas such as exhaust gas easily flows.
  • the hardness is 6 kgf / mm 2 to 33 kgf / mm 2
  • the bulk density is 0.35 g / mL to 0.70 g / mL.
  • the carbon dioxide solid recovery material according to this embodiment preferably has a powder pH value of 8 to 14.
  • the powder pH value is 8 to 14
  • the solid carbon dioxide recovery material according to the present embodiment is basic, it is easy to catch weakly acidic carbon dioxide.
  • a more preferable powder pH value is 9 to 14.
  • the porous material according to the present embodiment is a porous material selected from activated carbon, porous clay minerals such as zeolite, porous silica and activated alumina.
  • porous clay minerals such as smectite, sepiolite, imogolite, barigolite, kaolin, montmorillonite, bentonite, attapargite, acidic clay, cordierite, and limonite can be used. Since the porous material has excellent adsorptivity, it is possible to support a large amount of sodium ferrite and improve the fixed recovery ability of carbon dioxide.
  • activated carbon has a strong adsorptive power because it has a small pore diameter. Therefore, activated carbon is preferable because it can support a large amount of sodium ferrite and improve the fixed recovery ability of carbon dioxide.
  • the porous material preferably has a porosity of more than 50% and 70% or less.
  • the porosity is 50% or less, the specific surface area of the solid recovery material of carbon dioxide, that is, the contact area with carbon dioxide becomes small, and the absorption rate of carbon dioxide may decrease.
  • the porosity exceeds 70%, the volume ratio of sodium ferrite decreases, and the fixed recovery performance of carbon dioxide deteriorates.
  • the solid carbon dioxide recovery material according to this embodiment can selectively adsorb carbon dioxide from a gas containing carbon dioxide and can be fixed.
  • the adsorption temperature is about 10 ° C. to 200 ° C., which is the room temperature to the exhaust gas outlet temperature. Since no additional heating from the outside is required, the energy cost for adsorption can be kept low (the above is the carbon dioxide fixation process).
  • the solid carbon dioxide recovery material according to the present embodiment desorbs carbon dioxide taken in by the above-mentioned carbon dioxide fixing step at a temperature of 50 to 200 ° C. in a carbon dioxide-free gas atmosphere to release carbon dioxide. It is preferable to collect it. Since the desorption temperature is as low as 200 ° C. or lower, the energy cost for desorption can be kept low (above, carbon dioxide recovery step).
  • the solid carbon dioxide recovery material according to the present embodiment can be obtained by reacting a material containing iron oxide with an alkaline compound containing sodium in the presence of a porous material (support).
  • the compound containing sodium is not particularly limited, but for example, sodium nitrite, sodium sulfate, sodium carbonate, sodium hydrogen carbonate, sodium hydroxide and the like can be used. However, considering industrial use, sodium nitrite, sodium sulfate, etc., which may generate toxic nitrite gas, sulfurous acid gas, etc. during manufacturing should be avoided.
  • the solid-phase reaction is a synthetic method in which a solid and a solid are mixed and the elements are moved and reacted without a solvent. Since no solvent is used as the reaction mother liquor, waste such as the solvent when used for the liquid phase reaction can be suppressed. Further, in the case of a solid-phase reaction at a low temperature, which is also a feature of the present invention, an extremely high concentration reaction can occur, so that the energy cost can be suppressed to a low level. Moreover, since the high reaction concentration and the need for washing are not required, a high yield of the product can be expected.
  • the solid carbon dioxide recovery material according to the present embodiment contains sodium ferrite in an amount of more than 70% by weight and 99% by weight or less, and a porous material of 1% by weight or more and less than 30% by weight.
  • the solid carbon dioxide recovery material according to the present embodiment is a molded product containing a high concentration of sodium ferrite while maintaining the fixed recovery performance of carbon dioxide originally possessed by sodium ferrite. Can be formed.
  • the carbon dioxide solid recovery material according to the present embodiment has an average particle size of 1 mm to 10 mm and a specific surface area of 5 m 2 / g to 500 m 2 / g.
  • the average particle size of the solid carbon dioxide recovery material is preferably 2 mm to 8 mm.
  • the specific surface area of the solid recovery material for carbon dioxide is preferably 30 m 2 / g to 300 m 2 / g.
  • the carbon dioxide solid recovery material according to the present embodiment has an axial ratio (average major axis diameter / average minor axis diameter) of the average major axis diameter to the average minor axis diameter of the primary particles of sodium ferrite being 1 to 2.
  • the axial ratio exceeds 2, the primary particles tend to aggregate with each other, and it becomes difficult to maintain a state in which the dispersibility of sodium ferrite is high.
  • the axial ratio cannot be less than 1.
  • the axial ratio of the primary particles of the solid recovery material of carbon dioxide is preferably 1.1 to 1.9.
  • the carbon dioxide solid recovery material according to the present embodiment preferably has an average primary particle diameter of 0.05 ⁇ m to 1.0 ⁇ m as the primary particles of sodium ferrite. If it is less than 0.05 ⁇ m, industrial production becomes difficult. Further, if it exceeds 1.0 ⁇ m, the carbon dioxide absorption performance becomes low. It is more preferably 0.1 ⁇ m to 0.7 ⁇ m.
  • the carbon dioxide solid recovery material according to the present embodiment preferably has a hardness of 3 kgf / mm 2 to 30 kgf / mm 2 and a sphericity of 1 to 2.
  • a hardness of 3 kgf / mm 2 to 30 kgf / mm 2 and a sphericity of 1 to 2.
  • the shape of the solid recovery material for carbon dioxide is not particularly limited, but a spindle shape, a rectangular parallelepiped shape, a dice shape, a columnar shape, or the like is preferable in addition to the spherical shape.
  • the carbon dioxide solid recovery material according to this embodiment preferably has a powder pH value of 8 to 14.
  • the powder pH value is 8 to 14
  • the solid carbon dioxide recovery material according to the present embodiment becomes basic, and it is easy to catch weakly acidic carbon dioxide.
  • the carbon dioxide solid recovery material according to this embodiment preferably has a molar ratio of Na / Fe of sodium ferrite of 0.7 to 1.3. In the range of the molar ratio, a large amount of sodium ferrite crystal phase can be contained, and the fixed recovery performance of carbon dioxide becomes good.
  • the porous material according to the present embodiment is preferably a porous material selected from activated carbon, aluminosilicate, hydrotalcite, porous clay mineral, porous silica and activated alumina.
  • a porous clay mineral zeolite, smectite, sepiolite, imogolite, varigorskite, kaolin, montmorillonite, bentonite, attapargit, acidic clay, cordierite, limonite and the like can be used. Since the porous material has excellent adsorptivity, it is possible to form a molded product containing a high concentration of sodium ferrite, and it is possible to improve the fixed recovery ability of carbon dioxide.
  • the porous material preferably has a porosity of more than 50% and 70% or less.
  • the porosity is 50% or less, the specific surface area of the solid recovery material of carbon dioxide, that is, the contact area with carbon dioxide becomes small, and the absorption rate of carbon dioxide may decrease.
  • the porosity exceeds 70%, the volume ratio of sodium ferrite decreases, and the fixed recovery performance of carbon dioxide deteriorates.
  • iron oxide and sodium source powder are mixed and pulverized, and calcined to obtain sodium ferrite particle powder, and then the obtained sodium ferrite particle powder and a porous material are mixed.
  • Granulation is performed using a granulator such as a rolling granulator. Then, by firing, a solid recovery material of carbon dioxide can be obtained.
  • steam heating, microwave heating, ultrasonic heating, or the like may be performed for firing.
  • a porous material selected from activated carbon, aluminosilicate, hydrotalcite, porous clay minerals such as zeolite, porous silica and activated alumina can be used.
  • porous clay minerals such as smectite, sepiolite, imogolite, barigolite, kaolin, montmorillonite, bentonite, attapargite, acidic clay, cordierite, and limonite can be used.
  • the content of the porous material is preferably 1% by weight or more and less than 30% by weight. This is because, as described above, the formation of a molded product containing a high concentration of sodium ferrite improves the fixed recovery ability of carbon dioxide.
  • the material containing iron oxide is not particularly limited, but for example, hematite, magnetite, maghemite, goethite and the like can be used.
  • the compound containing sodium is not particularly limited, but for example, sodium nitrite, sodium hydroxide, sodium oxide, sodium carbonate and the like can be used. However, considering industrial use, sodium nitrite, sodium sulfate, etc., which may generate toxic nitrite gas, sulfurous acid gas, etc. during manufacturing should be avoided.
  • the solid-phase reaction is a synthetic method in which a solid and a solid are mixed and the elements are moved and reacted without a solvent. Since no solvent is used as the reaction mother liquor, waste such as the solvent when used for the liquid phase reaction can be suppressed. Further, in the case of a solid-phase reaction at a low temperature, which is also a feature of the present invention, an extremely high concentration reaction can occur, so that the energy cost can be suppressed to a low level. Moreover, since there is no need for the high-concentration reaction or washing, a high yield of the product can be expected.
  • Typical embodiments of the present invention are as follows.
  • composition of the solid carbon dioxide recovery material according to the present invention was identified by the fully automatic multipurpose X-ray diffractometer D8 ADVANCE manufactured by BRUKER after crushing the solid carbon dioxide recovery material in a dairy pot and pelletizing it. It was identified as a ferrite and a porous material.
  • the content of sodium ferrite and the porous material contained in the solid recovery material of carbon dioxide according to the present invention is determined by crushing the solid recovery material of carbon dioxide in a dairy pot, pelletizing it, and then analyzing it by scanning fluorescent X-rays manufactured by Rigaku. Elemental analysis (excluding oxygen) was performed with the apparatus ZSX PrimusII and quantified.
  • the BET specific surface area of the solid carbon dioxide recovery material according to the present invention was measured by the BET method using nitrogen using Multisorb-16 manufactured by QUANTA CHROME.
  • the average value of the crushing hardness of 80 grains was taken as the hardness by the digital force gauge ZP-500N manufactured by Imada.
  • the bulk density of the solid carbon dioxide recovery material according to the present invention was measured according to JISZ2504.
  • the determination of the bulk density of the solid carbon dioxide recovery material according to the present invention was evaluated in the following four stages.
  • the sphericity of the solid carbon dioxide recovery material according to the present invention was evaluated in the following two stages by calculating the ratio of the major axis to the minor axis.
  • Sphericity of 1 or more and less than 2
  • Sphericity of 2 or more
  • the pH value of the solid carbon dioxide recovery material according to the present invention is determined by weighing 5 g of a sample in a 300 ml Erlenmeyer flask, adding 100 ml of boiled pure water, heating and holding the boiled state for about 5 minutes, and then plugging. Allow to cool to room temperature, add water equivalent to weight loss, plug again, shake for 1 minute, allow to stand for 5 minutes, and then measure the pH of the obtained supernatant according to JIS Z8802-7 to obtain. The value was taken as the pH value.
  • the molar ratio of Na / Fe of sodium ferrite contained in the solid recovery material of carbon dioxide according to the present invention is determined by crushing the solid recovery material of carbon dioxide in a dairy pot, pelletizing it, and then using a scanning fluorescent X-ray analyzer manufactured by Rigaku. Elemental analysis (excluding oxygen) was performed with ZSX PrimusII and quantified.
  • the axial ratio of sodium ferrite contained in the carbon dioxide recovery material according to the present invention is the average major axis diameter and average minor axis of the particle diameter of 350 primary particles shown in the micrograph by the Hitachi High-Tech scanning electron microscope S-4800. The diameters were measured and shown as the ratio of the average major axis diameter to the average minor axis diameter (average major axis diameter / average minor axis diameter).
  • the average primary particle size of the sodium ferrite particle powder contained in the carbon dioxide recovery material according to the present invention is shown as the average value of the average minor axis diameter of the average major axis diameter.
  • Example 1 9.0 parts by weight of ferrous chloride tetrahydrate is dissolved in 900 parts by weight of pure water, and granulated activated carbon (Kuraray Kuraraycol 4GG, 4x6 mesh) 10.0 is used as a porous support. A portion by weight was added and immersed for 1 hour. To this, 27 parts by weight of urea dissolved in 100 parts by weight of pure water was added, the temperature was raised to 90 ° C., the mixture was stirred for 3 hours, and then the mixture was stirred for 10 hours while allowing to cool.
  • Kuraray Kuraraycol 4GG, 4x6 mesh granulated activated carbon
  • iron oxide-supported activated carbon was obtained.
  • the obtained iron oxide-supported activated carbon and 1.80 parts by weight of sodium hydroxide were mixed in a solid state, placed in a crucible, and subjected to a solid-phase reaction at 400 ° C. in a nitrogen stream for 16 hours. Then, it was cooled to room temperature and used as a solid recovery material for carbon dioxide.
  • the obtained solid recovery material of carbon dioxide was pulverized and qualitatively determined by X-ray diffraction. As a result, it was sodium ferrite and amorphous carbon.
  • the hardness of the obtained solid recovery material of carbon dioxide was 20 kgf / mm 2 , and the bulk density was 0.48 g / mL. From these results, it is clear that when the carbon dioxide recovery material according to Example 1 is filled in a carbon dioxide adsorption tower or the like, it is not easily broken due to gravity or friction due to the distribution of exhaust gas, and gas such as exhaust gas is easily distributed. be.
  • the hardness of the obtained carbon dioxide recovery material was evaluated in the following three stages. ⁇ : Crushing hardness of 10 kgf / mm 2 or more ⁇ : Crushing hardness of 5 to 10 kgf / mm less than 2 ⁇ : Crushing hardness of less than 5 kgf / mm 2
  • the molar ratio of Na / Fe of sodium ferrite contained in the obtained solid recovery material of carbon dioxide was 1.0, which was almost the same as the charging ratio of the raw materials.
  • FIG. 1 shows a measurement chart with the horizontal axis as the sample temperature.
  • the TG curve was the weight% of the residual sample at each temperature when the initial value was 100% by weight, and the decrease in the sample was considered to be due to the emission of carbon dioxide.
  • the DTG curve is a differential curve of the TG curve, and the temperature at which the maximum value of the DTG curve is taken is regarded as the carbon dioxide desorption temperature.
  • the DTA curve showed a downwardly convex curve, and it was found that the endothermic reaction was carried out at around 114 ° C.
  • the desorption temperature of carbon dioxide was 114 ° C.
  • the desorption amount of carbon dioxide was 10% by weight with respect to the sample solid content, which was excellent fixation of carbon dioxide. It became clear that there was recovery performance.
  • Examples 2-8 The solid recovery materials according to Examples 2 to 8 were obtained in the same manner as in Example 1 except that the types and amounts of the iron raw material and the support were variously changed.
  • Comparative Example 1 9.0 parts by weight of ferrous chloride tetrahydrate was dissolved in 900 parts by weight of pure water and stirred for 1 hour. To this, 27 parts by weight of urea dissolved in 100 parts by weight of pure water was added, the temperature was raised to 90 ° C., the mixture was stirred for 3 hours, then stirred for 10 hours while allowing to cool, washed with filtered water, and washed at 80 ° C. The mixture was dried for 12 hours to obtain iron oxide fine particles. The obtained iron oxide fine particles and 1.80 parts by weight of sodium hydroxide were mixed in a solid state, placed in a crucible, and subjected to a solid phase reaction at 400 ° C. in a nitrogen stream for 16 hours.
  • the obtained powder was pulverized and X-ray diffraction revealed that it was sodium ferrite.
  • fluorescent X-rays revealed that the content of sodium ferrite was 90% by weight.
  • the remaining 10% by weight was maghemite.
  • the obtained powder was suspended in 100 parts by weight of pure water, 10 parts by weight of activated carbon was added thereto as a porous support, and the mixture was stirred for 16 hours, and then water was distilled off while rotating with an evaporator.
  • As a solid recovery material for carbon dioxide As a solid recovery material for carbon dioxide. When the obtained solid recovery material was pulverized and qualitized by X-ray diffraction, it was found to be maghemite, sodium ferrite and amorphous carbon.
  • the average major axis diameter was 0.7 ⁇ m
  • the average minor axis diameter was 0.4 ⁇ m
  • the average primary particle diameter was 0.57 ⁇ m
  • the axial ratio was 1.6. ..
  • the powder pH was relatively high at 13.8. 100 parts by weight of the obtained sodium ferrite particle powder is mixed with 5 parts by weight of powdered activated carbon as a porous material, and tumbled and granulated at 40 rpm with a rolling granulator to obtain a spherical granule having a particle size of 5 mm. Obtained. This was placed in a crucible and sintered in a nitrogen stream at 400 ° C. for 16 hours.
  • the obtained solid recovery material of carbon dioxide was pulverized and qualitatively determined by X-ray diffraction. As a result, it was sodium ferrite and amorphous carbon. In addition, fluorescent X-rays revealed that the content of sodium ferrite was 95%. The porous material was 5%.
  • the BET specific surface area of this solid carbon dioxide recovery material was 54 m 2 / g. The minor axis was 5 mm, the major axis was 5 mm, and the average particle size was 5 mm.
  • the powder pH was 13.
  • the hardness of the obtained solid recovery material of carbon dioxide was 10 kgf / mm 2 , and the sphericity was 1.0. From these results, it is clear that when the carbon dioxide recovery material according to Example 9 is filled in a carbon dioxide adsorption tower or the like, it is not easily broken due to gravity or friction due to the distribution of exhaust gas, and gas such as exhaust gas is easily distributed. be.
  • the hardness of the obtained carbon dioxide recovery material was evaluated in the following three stages. ⁇ : Crushing hardness of 10 kgf / mm 2 or more ⁇ : Crushing hardness of 3 kgf / mm 2 or more and less than 10 kgf / mm 2 ⁇ : Crushing hardness of less than 3 kgf / mm 2
  • the molar ratio of Na / Fe of sodium ferrite contained in the obtained solid recovery material of carbon dioxide was 1.0, which was almost the same as the charging ratio of the raw materials.
  • FIG. 2 shows a measurement chart with the horizontal axis as the sample temperature.
  • the TG curve was the weight% of the residual sample at each temperature when the initial value was 100% by weight, and the decrease in the sample was considered to be due to the emission of carbon dioxide.
  • the DTG curve is a differential curve of the TG curve, and the temperature at which the maximum value of the DTG curve is taken is regarded as the carbon dioxide desorption temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

本開示に係る二酸化炭素の固体回収材は、1重量%~99重量%のナトリウムフェライトと、1重量%~99重量%の多孔質材料とを含む二酸化炭素の固体回収材であって、平均粒径が1mm~10mmであり、比表面積が5m/g~1500m/gであり、前記ナトリウムフェライトの一次粒子の平均短軸径に対する平均長軸径の軸比が1~2である二酸化炭素の固体回収材である。

Description

二酸化炭素固体回収材及びその製造方法
 本発明は、二酸化炭素を固定化する固体回収材及びその製造方法に関し、特に、ナトリウムフェライトを含む固体回収材及びその製造方法に関する。
 従来から、大気中への二酸化炭素の放出量を削減するために、二酸化炭素の回収、貯蔵、及びその回収利用の研究が進められている。二酸化炭素の大規模発生源としては、石炭、重油、天然ガス等を燃料とする火力発電所、製造所のボイラー、及びセメント工場のキルン等が挙げられる。また、その他には、コークスで酸化鉄を還元する製鉄所の高炉、又は、ガソリン、重油、軽油を燃料とする自動車、船舶及び航空機等の輸送機等が挙げられる。
 現在、火力発電所等の大規模施設では、アミン水溶液による二酸化炭素の固定回収が行われている。この方法は、液体による回収材を用いるため、回収材をポンプで移送できるという利点を有する。
 しかしながら、上述の方法では危険物を含む液体を用いるため、ゴミ焼却場等の中小施設での運用が難しく、その結果、二酸化炭素の固定化及び回収はほとんどされていないのが現状である。そのため、固体、特に非危険物の無機材料による二酸化炭素の固体回収材が期待されている。従来の二酸化炭素の固体回収材として、特許文献1及び特許文献2には、ナトリウムフェライトを含有する二酸化炭素回収材が開示されている。中でも層状岩塩構造(三方晶系)のα-ナトリウムフェライトは二酸化炭素とナトリウムがトポケミカル的に反応する。即ち、二酸化炭素との反応中α-ナトリウムフェライトは、Na1-xFeOと炭酸ナトリウムの混合相となる。そのため、該反応速度は高く、且つ該反応による二酸化炭素の吸放出繰り返し性能は優れているとの報告がある。一方、斜方晶系のβ-ナトリウムフェライトはナトリウムと二酸化炭素が反応するため、β-ナトリウムフェライトの結晶相はα-ナトリウムフェライトの結晶相に比べ、二酸化炭素の吸収量が多いことが報告されている。
 一般に、ナトリウムフェライトが二酸化炭素と反応する式としては、気体に水蒸気を含まない場合は、NaFeO+1/2CO→1/2NaCO+1/2Fe、水蒸気を含む場合は、NaFeO+CO+1/2HO→NaHCO+1/2Feである。そのため、ナトリウムフェライトに対して、理論上、最大18~28重量%の二酸化炭素を吸着、脱離できる能力を持つ。
特開2016-3156号公報 特開2017-109198号公報
 特許文献1及び特許文献2に記載の二酸化炭素の固体回収材は、上述の通り、ナトリウムフェライトを含むものであり、低温域において二酸化炭素の吸収性能が比較的良好な固体回収材であると考えられる。しかしながら、未だ、二酸化炭素の固定回収性能がより高い二酸化炭素回収材が求められており、ナトリウムフェライト自体の特性を改善する以外にも、二酸化炭素回収装置に実装される形態での特性をさらに改善する必要がある。具体的に、ナトリウムフェライト粉末は、粉末のままでは作業上扱い難く、特に吸着塔にナトリウムフェライトを充填して用いる場合には、細かい粉末が密集して圧力損失を生じやすいため、所定の担体に担持されたり、所定の形状に造粒されて用いられる。このため、ナトリウムフェライトが担持又は造粒された状態の二酸化炭素回収材の組成や物性も重要となる。
 本発明は、前記問題に鑑みてなされたものであり、その目的は、二酸化炭素を室温から200℃までといった低温の温度範囲で固定でき、50~200℃の加熱で二酸化炭素を回収でき、固定回収性能に優れた二酸化炭素の固体回収材、及びその製造方法を提供することにある。
 前記の目的を達成するために、本発明では、ナトリウムフェライトを所定の条件で多孔質材料に担持させる又は多孔質材料によって造粒させることにより、二酸化炭素を室温から200℃までの温度範囲で固定し、50~200℃の加熱で固定した二酸化炭素を高効率で回収できるようにした。
 具体的に、本発明に係る二酸化炭素の固体回収材は、1重量%~99重量%のナトリウムフェライトと、1重量%~99重量%の多孔質材料とを含む二酸化炭素固体回収材であって、平均粒径が1mm~10mmであり、比表面積が5m/g~1500m/gであり、前記ナトリウムフェライトの一次粒子の平均短軸径に対する平均長軸径の軸比が1~2であることを特徴とする。
 本発明に係る二酸化炭素の固体回収材によると、多孔質材料を用いることで高濃度のナトリウムフェライトを含有する成形体を形成することができる。従って、ナトリウムフェライト及び多孔質材料を含む本発明に係る二酸化炭素の固体回収材は、気体中の二酸化炭素を固定し、固体内に閉じ込め、加熱により、二酸化炭素を回収する優れた性質を持つことができる。また、平均粒径が1~10mmであると、吸着塔などに充填した際に、細かい粉末が密集することに起因する圧力損失を低減することなく、排ガスなどの流通経路を確保することができる。その結果、効率的に二酸化炭素を固定することができる。また、一次粒子の平均短軸径に対する平均長軸径の軸比が1~2と小さく球形に近い形状であるため、分散性が高く、一次粒子が凝集しにくくなり、成形性や加工性を向上できる。これらの特性が相まって、本発明に係る二酸化炭素の固体回収材によると、室温から200℃までの温度範囲で二酸化炭素を固定し、50~200℃の加熱で回収でき、固定回収性能に優れる。
 本発明に係る二酸化炭素の固体回収材は、前記ナトリウムフェライトを1重量%~70重量%含み、前記多孔質材料を30重量%~99重量%含み、比表面積が100m/g~1500m/gであることが好ましい。
 このようにすると、担体としての前記多孔質材料の表面に大量のナトリウムフェライトが担持されることにより、高密度のナトリウムフェライトを含有する成形体を形成することができる。従って、ナトリウムフェライト及び多孔質材料を含む本発明に係る二酸化炭素の固体回収材は、気体中の二酸化炭素を固定し、固体内に閉じ込め、加熱により、二酸化炭素を回収する優れた性質を持つことができる。また、1重量%~70重量%のナトリウムフェライトを30重量%~99重量%の多孔質材料に担持させる場合、比表面積が100m/g未満であると、気体中に含まれる二酸化炭素と接触しにくくなり、二酸化炭素の固定回収性能が低下し、比表面積が1500m/gを超えると、工業的な生産が困難となる。
 この場合、硬度が5kgf/mm~35kgf/mmであり、かさ密度が0.3g/mL~0.8g/mLであることが好ましい。
 このようにすると、吸着塔などに充填したとき、重力や排ガスなどの流通による摩擦などにより、壊れにくく、排ガスなどの気体が流通しやすくなる。
 本発明に係る二酸化炭素の固体回収材は、前記ナトリウムフェライトを70重量%超過99重量%以下含み、前記多孔質材料を1重量%以上30重量%未満含み、比表面積が5m/g~500m/gであることが好ましい。
 このようにすると、前記多孔質材料はナトリウムフェライト粒子の凝集を促進させて、高濃度のナトリウムフェライトを含有する成形体を形成することができる。従って、ナトリウムフェライト及び多孔質材料を含む本発明に係る二酸化炭素の固体回収材は、気体中の二酸化炭素を吸着し、固体内に閉じ込め、加熱により、二酸化炭素を放出する優れた性質を持つことができる。また、70重量%超過99重量%以下のナトリウムフェライトを1重量%以上30重量%未満の多孔質材料を用いて造粒する場合、比表面積が5m/g未満であると、気体中に含まれる二酸化炭素と接触しにくくなり、二酸化炭素の固定回収性能が低下し、比表面積が500m/gを超えると、工業的な生産が困難となる。
 この場合、硬度が3kgf/mm~30kgf/mmであり、球形度が1~2であることが好ましい。
 このようにすると、吸着塔などに充填したとき、重力や排ガスなどの流通による摩擦などにより、壊れにくく、排ガスなどの気体が流通しやすくなる。
 本発明に係る二酸化炭素の固体回収材において、粉体pH値が8~14であることが好ましい。
 このようにすると、本発明に係る二酸化炭素の固体回収材が塩基性であるため、弱酸性である二酸化炭素を捉えやすくなる。
 本発明に係る二酸化炭素の固体回収材において、前記ナトリウムフェライトのNa/Feのモル比が、0.7~1.3であることが好ましい。
 Na/Feのモル比が0.7~1.3であるため、ナトリウムフェライト結晶相を多く含むことができて、二酸化炭素の固定回収性能が良好となる。
 本発明に係る二酸化炭素の固体回収材において、前記多孔質材料が、活性炭、アルミノシリケート、ハイドロタルサイト、多孔質粘土鉱物、多孔質シリカ及び活性アルミナから選ばれた多孔質材料であることが好ましい。
 前記多孔質材料を用いると、高濃度のナトリウムフェライトを含有する成形体を形成することが可能となり、二酸化炭素の固定回収能力を向上させることができる。
 上記本発明に係る二酸化炭素の固体回収材を製造する方法は、酸化鉄を含む材料と、ナトリウムを含むアルカリ化合物を固相反応するステップを含むことを特徴とする。
 本発明に係る二酸化炭素の固体回収材の製造方法では、固体と固体を混合し、溶媒を介さず元素を移動させて反応させることで、反応母液としての溶媒を用いないため、液相反応に用いた場合の溶媒などの廃棄物を抑えることができる。特に、低温での固相反応の場合、極めて高濃度反応となり得るため、エネルギーコストを低く抑えることができる。従って、本発明に係る二酸化炭素の固体回収材の製造方法によると、二酸化炭素を室温から200℃の温度範囲で固定し、50~200℃の加熱で固定した二酸化炭素を高効率で回収でき、優れた固定回収性能を持つ二酸化炭素回収材を製造することができる。
 本発明に係る二酸化炭素の固体回収材によると、室温から200℃までの温度範囲で二酸化炭素を固定し、50~200℃の加熱により高効率で回収でき、優れた二酸化炭素の固定回収性能を持つことができる。
図1は実施例1で得られた二酸化炭素の固体回収材で二酸化炭素を吸収した後、熱重量分析した結果である。 図2は実施例9で得られた二酸化炭素の固体回収材で二酸化炭素を吸収した後、熱重量分析した結果である。
 以下、本発明を実施するための形態を説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用方法又はその用途を制限することを意図するものではない。
(第一実施形態)
 まず、本発明の第一実施形態に係る二酸化炭素の固体回収材について説明する。
 本実施形態に係る二酸化炭素の固体回収材は、1重量%~70重量%のナトリウムフェライトと、30重量%~99重量%の多孔質材料とを含む。前記重量%の範囲の場合、ナトリウムフェライトが本来持っている二酸化炭素の固定回収性能を維持しつつ、ナトリウムフェライトを多孔質材料に安定に担持することができる。
 本実施形態に係る二酸化炭素の固体回収材は、平均粒径が1mm~10mmであり、比表面積が100m/g~1500m/gである。平均粒径が1mm未満である場合には、本実施形態に係る二酸化炭素の固体回収材を吸着塔などに充填すると、粉体間の空隙が小さくなるために吸着塔内における圧力損失が大きくなる。このため、吸着塔内において目詰まりが発生する恐れがある。平均粒径が10mmを超えると、ナトリウムフェライトと二酸化炭素との接触率が低減し二酸化炭素の固定回収性能が低くなる。二酸化炭素の固体回収材の平均粒径は2mm~8mmが好ましい。また、比表面積が100m/g未満であると、気体中に含まれる二酸化炭素と接触しにくくなり、二酸化炭素の固定回収性能が低下する。比表面積が1500m/gを超えると工業的な生産が困難となる。二酸化炭素の固体回収材の比表面積は300m/g~1000m/gが好ましい。
 本実施形態に係る二酸化炭素の固体回収材は、ナトリウムフェライトの一次粒子の平均短軸径に対する平均長軸径の軸比(平均長軸径/平均短軸径)が1~2である。該軸比が2を超えると、一次粒子同士が凝集しやすく、ナトリウムフェライトの分散性が高い状態を維持することが困難となる。また、軸比が1より小さいことはありえない。二酸化炭素の固体回収材の一次粒子の軸比は1.1~1.9が好ましい。
 固体回収材の形状は、特に限定はされないが、球状、紡錘状、直方体状、サイコロ状、及び円柱状などが好ましい。
 本実施形態に係る二酸化炭素の固体回収材は、硬度が5kgf/mm~35kgf/mmであり、かさ密度が0.3g/mL~0.8g/mLであることが好ましい。硬度及びかさ密度が前記範囲の場合、吸着塔などに充填したとき、重力や排ガスなどの流通による摩擦などにより、壊れにくく、排ガスなどの気体が流通しやすくなる。より好ましくは硬度が6kgf/mm~33kgf/mmであり、かさ密度が0.35g/mL~0.70g/mLである。
 本実施形態に係る二酸化炭素の固体回収材は、粉体pH値が8~14であることが好ましい。粉体pH値が8~14であると、本実施形態に係る二酸化炭素の固体回収材が塩基性であるため、弱酸性である二酸化炭素を捉えやすい。より好ましい粉体pH値は9~14である。
 本実施形態に係る二酸化炭素の固体回収材は、前記ナトリウムフェライトのNa/Feのモル比が、0.7~1.3であることが好ましい。前記モル比の範囲の場合、ナトリウムフェライト結晶相を多く含むことができて、二酸化炭素の固定回収性能が良好となる。
 本実施形態に係る多孔質材料は、活性炭、ゼオライトなどの多孔質粘土鉱物、多孔質シリカ及び活性アルミナから選ばれた多孔質材料である。多孔質粘土鉱物はゼオライトのほかにスメクタイト、セピオライト、イモゴライト、バリゴルスカイト、カオリン、モンモリロナイト、ベントナイト、アタパルジャイト、酸性白土、コージェライト、リモナイト等を利用できる。前記多孔質材料は優れた吸着性を持つため、大量のナトリウムフェライトを担持することが可能となり、二酸化炭素の固定回収能力を向上させることができる。特に、活性炭は細孔径が小さいため、強い吸着力を有する。そのため、活性炭は大量のナトリウムフェライトを担持して、二酸化炭素の固定回収能力を向上させることができ、好ましい。
 前記多孔質材料としては、気孔率が50%超過70%以下であることが好ましい。気孔率が50%以下であると、二酸化炭素の固体回収材の比表面積、すなわち二酸化炭素との接触面積が小さくなり、二酸化炭素の吸収速度が低下する恐れがある。気孔率が70%を超えると、ナトリウムフェライトの体積比率が少なくなり、二酸化炭素の固定回収性能が低下する。
 本実施形態に係る二酸化炭素の固体回収材は、二酸化炭素を含む気体中から二酸化炭素を選択的に吸着でき、固定できる。前記吸着温度は、室温~排ガス出口温度の10℃~200℃程度である。外部からの追加加熱が必要ないことにより、吸着にかかるエネルギーコストが低く抑えられる(以上、二酸化炭素固定工程)。
 本実施形態に係る二酸化炭素の固体回収材は、上述の二酸化炭素の固定工程で取り込んだ二酸化炭素を、二酸化炭素を含まないガス雰囲気下で、50~200℃の温度で脱離し、二酸化炭素を回収することが好ましい。脱離温度が200℃以下と低いことにより、脱離にかかるエネルギーコストが低く抑えられる(以上、二酸化炭素回収工程)。
 次に、本発明の第一実施形態に係る二酸化炭素の固体回収材の製造方法について説明する。
 本実施形態に係る二酸化炭素の固体回収材は、多孔質材料(支持体)の存在下で、酸化鉄を含む材料と、ナトリウムを含むアルカリ化合物を反応することで得ることができる。
 多孔質材料(支持体)の存在下で、酸化鉄を含む材料と、ナトリウムを含むアルカリ化合物とを反応させた場合、支持体表面上に大量のナトリウムフェライトを担持する傾向にあった。そのため、二酸化炭素の固定回収性能が向上することとなり、二酸化炭素の固体回収材として好ましい。また、固相反応の特徴として、ナトリウムフェライトの結晶成長が等方向になりやすいため、一次粒子の軸比が抑えられる傾向であった。
 具体的な製造方法として、酸化鉄とナトリウム源粉体とを混合し、さらに、多孔質材料を混合して、多孔質材料表面に酸化鉄とナトリウム源粉体の混合物を添着して、焼成することで本実施形態に係る二酸化炭素の固体回収材を得ることができる。必要により、造粒を行っても良い。また、焼成は、通常の焼成のほかに、水蒸気加熱、マイクロ波加熱、超音波加熱等を行ってもよい。
 ほかの製造例として、i)ナトリウム源水溶液を多孔質材料に吸着させ、そのまま乾燥し、酸化鉄を加えて固相合成する。ii)酸化鉄水スラリーを多孔質材料に吸着させ、そのまま乾燥し、ナトリウム源粉体を加えて固相合成する。iii)酸化鉄とナトリウム源粉体を固相反応させ、これを、多孔質材料に添着する。iv)酸化鉄とナトリウム源を湿式で反応し、さらに湿式で多孔質材料に添着して、乾燥する。以上のi)~iv)などの方法も用いることができる。
 支持体としては、例えば、活性炭、ゼオライト等の多孔質粘土鉱物、多孔質シリカ及び活性アルミナから選ばれた多孔質材料を用いることができる。多孔質粘土鉱物はゼオライトのほかにスメクタイト、セピオライト、イモゴライト、バリゴルスカイト、カオリン、モンモリロナイト、ベントナイト、アタパルジャイト、酸性白土、コージェライト、リモナイト等を利用できる。多孔質材料の含有量は、30重量%~99重量%であることが好ましい。上述したように、ナトリウムフェライトを大量に担持することにより、二酸化炭素の固定回収能力を向上させるからである。
 酸化鉄を含む材料としては、特に限定はされないが、例えば、塩化第一鉄4水和物、塩化鉄(III)六水和物、及び硫酸鉄(II)七水和物などを用いることができる。
 ナトリウムを含む化合物としては、特に限定はされないが、例えば、亜硝酸ナトリウム、硫酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、及び水酸化ナトリウム等を用いることができる。ただし、工業的な利用を考えた場合、製造時に有毒な亜硝酸ガス、亜硫酸ガス等を発生させる恐れのある亜硝酸ナトリウム、硫酸ナトリウム等は避けるべきである。
 一般に固相反応は、固体と固体を混合し、溶媒を介さず元素を移動させて反応させる合成方法である。反応母液としての溶媒を用いないため、液相反応に用いた場合の溶媒などの廃棄物が抑えられる。また、本発明の特徴でもある低温での固相反応の場合、極めて高濃度反応となり得るため、エネルギーコストも低く抑えられる。また、前記高反応濃度や洗浄の必要性がないため、生成物の高収率が期待できる。
(第二実施形態)
 次に、本発明の第二実施形態に係る二酸化炭素の固体回収材について説明する。
 本実施形態に係る二酸化炭素の固体回収材は、70重量%超過99重量%以下のナトリウムフェライトと、1重量%以上30重量%未満の多孔質材料とを含む。前記重量%の範囲の場合、本実施形態に係る二酸化炭素の固体回収材は、ナトリウムフェライトが本来持っている二酸化炭素の固定回収性能を維持しつつ、高濃度のナトリウムフェライトを含有する成形体を形成することができる。
 本実施形態に係る二酸化炭素の固体回収材は、平均粒径が1mm~10mmであり、比表面積が5m/g~500m/gである。平均粒径が1mm未満である場合には、本実施形態に係る二酸化炭素の固体回収材を吸着塔などに充填すると、粉体間の空隙が小さくなるために吸着塔内における圧力損失が大きくなる。このため、吸着塔内において目詰まりが発生する恐れがある。平均粒径が10mmを超えると、ナトリウムフェライトと二酸化炭素の接触率が低減し二酸化炭素の固定回収性能が低くなる。二酸化炭素の固体回収材の平均粒径は、2mm~8mmであることが好ましい。また、比表面積が5m/g未満であると、気体中に含まれる二酸化炭素と接触しにくくなり、二酸化炭素の固定回収性能が低下する。比表面積が500m/gを超えると工業的な生産が困難となる。二酸化炭素の固体回収材の比表面積は、30m/g~300m/gが好ましい。
 本実施形態に係る二酸化炭素の固体回収材は、ナトリウムフェライトの一次粒子の平均短軸径に対する平均長軸径の軸比(平均長軸径/平均短軸径)が1~2である。該軸比が2を超えると、一次粒子同士が凝集しやすく、ナトリウムフェライトの分散性が高い状態を維持することが困難となる。また、軸比が1より小さいことはありえない。二酸化炭素の固体回収材の一次粒子の軸比は1.1~1.9が好ましい。
 本実施形態に係る二酸化炭素の固体回収材は、ナトリウムフェライトの一次粒子の平均一次粒子径が0.05μm~1.0μmであることが好ましい。0.05μm未満であれば、工業的な生産が困難となる。また、1.0μmを超えると、二酸化炭素の吸収性能が低くなる。より好ましくは0.1μm~0.7μmである。
 本実施形態に係る二酸化炭素の固体回収材は、硬度が3kgf/mm~30kgf/mmであり、球形度が1~2であることが好ましい。前記硬度及び球形度の範囲の場合、本実施形態に係る二酸化炭素回収材を吸着塔などに充填したとき、重力や排ガスなどの流通による摩擦などにより、壊れにくく、排ガスなどの気体が流通しやすくなる。
 前記二酸化炭素の固体回収材の形状は、特に限定はないが、球状以外にも、紡錘状、直方体状、サイコロ状、円柱状などが好ましい。
 本実施形態に係る二酸化炭素の固体回収材は、粉体pH値が8~14であることが好ましい。粉体pH値が8~14であると、本実施形態に係る二酸化炭素の固体回収材が塩基性となり、弱酸性である二酸化炭素を捉えやすい。
 本実施形態に係る二酸化炭素の固体回収材は、ナトリウムフェライトのNa/Feのモル比が0.7~1.3であることが好ましい。前記モル比の範囲の場合、ナトリウムフェライト結晶相を多く含むことができて、二酸化炭素の固定回収性能が良好となる。
 本実施形態に係る多孔質材料は、活性炭、アルミノシリケート、ハイドロタルサイト、多孔質粘土鉱物、多孔質シリカ及び活性アルミナから選ばれた多孔質材料であることが好ましい。多孔質粘土鉱物はゼオライト、スメクタイト、セピオライト、イモゴライト、バリゴルスカイト、カオリン、モンモリロナイト、ベントナイト、アタパルジャイト、酸性白土、コージェライト、リモナイト等を利用できる。前記多孔質材料は優れた吸着性を持つため、高濃度のナトリウムフェライトを含有する成形体を形成することが可能となり、二酸化炭素の固定回収能力を向上させることができる。
 前記多孔質材料としては、気孔率が50%超過70%以下であることが好ましい。気孔率が50%以下であると、二酸化炭素の固体回収材の比表面積、すなわち二酸化炭素との接触面積が小さくなり、二酸化炭素の吸収速度が低下する恐れがある。気孔率が70%を超えると、ナトリウムフェライトの体積比率が少なくなり、二酸化炭素の固定回収性能が低下する。
 本実施形態に係る二酸化炭素の固体回収材は、二酸化炭素を含む気体中から二酸化炭素を選択的に吸着でき、固定できる。前記吸着温度は、室温~排ガス出口温度の10℃~200℃程度である。外部からの追加加熱が必要ないことにより、吸着にかかるエネルギーコストが低く抑えられる(以上、二酸化炭素固定工程)。
 本実施形態に係る二酸化炭素の固体回収材は、上述の二酸化炭素の固定工程で取り込んだ二酸化炭素を、二酸化炭素を含まないガス雰囲気下で、50~200℃の温度で脱離し、二酸化炭素を回収することが好ましい。脱離温度が200℃以下と低いことにより、脱離にかかるエネルギーコストが低く抑えられる(以上、二酸化炭素回収工程)。
 次に、本発明の第二実施形態に係る二酸化炭素の固体回収材の製造方法について説明する。
 本実施形態に係る二酸化炭素の固体回収材は、多孔質材料(支持体)の存在下で、酸化鉄を含む材料と、ナトリウムを含むアルカリ化合物とを反応することで得ることができる。
 多孔質材料(支持体)の存在下で、酸化鉄を含む材料と、ナトリウムを含むアルカリ化合物とを反応させた場合、高濃度のナトリウムフェライトを含有する球形に近い成形体を形成する傾向にあった。そのため、二酸化炭素の固定回収性能が向上することとなり、二酸化炭素の固体回収材として好ましい。また、固相反応の特徴として、ナトリウムフェライトの結晶成長が等方向になりやすいため、一次粒子の軸比が抑えられる傾向であった。
 具体的な製造方法として、まず、酸化鉄とナトリウム源粉体とを混合粉砕し、焼成することでナトリウムフェライト粒子粉末を得た後に、得られたナトリウムフェライト粒子粉末と多孔質材料とを混合し、転動造粒機等の造粒機を利用して造粒する。その後、焼成することにより二酸化炭素の固体回収材を得ることができる。焼成は、通常の焼成のほかに、水蒸気加熱、マイクロ波加熱、超音波加熱等を行ってもよい。
 支持体としては、例えば、活性炭、アルミノシリケート、ハイドロタルサイト、ゼオライト等の多孔質粘土鉱物、多孔質シリカ及び活性アルミナから選ばれた多孔質材料を用いることができる。多孔質粘土鉱物はゼオライトのほかにスメクタイト、セピオライト、イモゴライト、バリゴルスカイト、カオリン、モンモリロナイト、ベントナイト、アタパルジャイト、酸性白土、コージェライト、リモナイト等を利用できる。多孔質材料の含有量は、1重量%以上30重量%未満であることが好ましい。上述したように、高濃度のナトリウムフェライトを含有する成形体が形成されることにより、二酸化炭素の固定回収能力を向上させるからである。
 酸化鉄を含む材料としては、特に限定はされないが、例えば、ヘマタイト、マグネタイト、マグへマイト、ゲータイトなどを用いることができる。
 ナトリウムを含む化合物としては、特に限定はされないが、例えば、亜硝酸ナトリウム、水酸化ナトリウム、酸化ナトリウム、炭酸ナトリウムなどを用いることができる。ただし、工業的な利用を考えた場合、製造時に有毒な亜硝酸ガス、亜硫酸ガスなどを発生させる恐れのある亜硝酸ナトリウム、硫酸ナトリウムなどは避けるべきである。
 一般に、固相反応は、固体と固体を混合し、溶媒を介さず元素を移動させて反応させる合成方法である。反応母液としての溶媒を用いないため、液相反応に用いた場合の溶媒などの廃棄物が抑えられる。また、本発明の特徴でもある低温での固相反応の場合、極めて高濃度反応となり得るため、エネルギーコストも低く抑えられる。また、前記高濃度反応や洗浄の必要性がないため、生成物の高収率が期待できる。
 本発明の代表的な実施の形態は、次の通りである。
 本発明に係る二酸化炭素の固体回収材の組成は、二酸化炭素の固体回収材を乳鉢で粉砕し、ペレット化した後、BRUKER製全自動多目的X線回折装置D8 ADVANCEによって同定したところ、α-ナトリウムフェライトと多孔質材料であることが同定された。
 本発明に係る二酸化炭素の固体回収材に含まれるナトリウムフェライト、及び多孔質材料の含有量は、二酸化炭素の固体回収材を乳鉢で粉砕し、ペレット化した後、リガク製走査型蛍光X線分析装置ZSX PrimusIIで元素分析(但し、酸素は除く)を行い、定量した。
 本発明に係る二酸化炭素の固体回収材の平均粒径は、ノギスを用い、80粒の長軸と短軸を測定し、その平均値を平均粒径とした。
 本発明に係る二酸化炭素の固体回収材のBET比表面積は、QUANTA CHROME製マルチソーブ-16を用い、窒素を用いたBET法により測定した。
 本発明に係る二酸化炭素の固体回収材の硬度は、イマダ製デジタルフォースゲージZP-500Nにより、80粒の圧壊硬度の平均値を硬度とした。
 本発明に係る二酸化炭素の固体回収材のかさ密度は、JISZ2504に従い、測定した。
 本発明に係る二酸化炭素の固体回収材のかさ密度の判定は、下記4段階で評価した。
 ◎:かさ密度が、0.3~0.5g/mL未満のもの
 ○:かさ密度が、0.5~0.8g/mLのもの
 △:かさ密度が、0.8超~2g/mL未満のもの
 ×:かさ密度が、0.3g/mL未満、2g/mL以上のもの
 本発明に係る二酸化炭素の固体回収材の球形度は、長軸/短軸の比を算出し、下記2段階で評価した。
 〇:球形度が1以上2未満のもの
 ×:球形度が2以上のもの
 本発明に係る二酸化炭素の固体回収材のpH値は、試料5gを300mlの三角フラスコに秤取り、煮沸した純水100mlを加え、加熱して煮沸状態を約5分間保持した後、栓をして常温まで放冷し、減量に相当する水を加えて再び栓をして1分間振り混ぜ、5分間静置した後、得られた上澄み液のpHをJIS Z8802-7に従って測定し、得られた値をpH値とした。
 本発明に係る二酸化炭素の固体回収材に含まれるナトリウムフェライトのNa/Feのモル比は、二酸化炭素の固体回収材を乳鉢で粉砕し、ペレット化した後、リガク製走査型蛍光X線分析装置ZSX PrimusIIで元素分析(但し、酸素は除く)を行い、定量した。
 本発明に係る二酸化炭素回収材に含まれるナトリウムフェライトの軸比は、日立ハイテク製走査型電子顕微鏡S-4800による顕微鏡写真に示される一次粒子350個の粒子径の平均長軸径と平均短軸径をそれぞれ測定し、前記平均長軸径の平均短軸径に対する比(平均長軸径/平均短軸径)として示した。
 本発明に係る二酸化炭素回収材に含まれるナトリウムフェライト粒子粉末の平均一次粒径は、前記平均長軸径の平均短軸径の平均値として示した。
 本発明に係る二酸化炭素回収材の二酸化炭素の固定回収能力を調べるために、試料1.00重量部を燃焼ボートに乗せて、入口と出口の配管を付けたアクリルパイプに入れ、入口から、湿度20~100%の範囲内、二酸化炭素濃度1~100vol%の範囲内に調整した(二酸化炭素+窒素)混合気体を500mL/minを導入して、2時間後の二酸化炭素の吸着量を日立ハイテク製示差熱熱重量同時測定装置STA7000にて、室温から200℃まで昇温し、その熱減量から、二酸化炭素の固定回収量を求めた。
<二酸化炭素固体回収材の製造方法>
[実験例1]
実施例1
 塩化第一鉄4水和物9.0重量部を純水900重量部に溶解し、これに、多孔質支持体として、造粒活性炭(クラレ製クラレコール4GG、4×6メッシュ)10.0重量部を添加して、1時間浸漬した。これに、100重量部の純水に溶解した尿素27重量部を添加し、90℃に昇温して、3時間攪拌し、その後、放冷しながら、10時間攪拌した。その後、目開き1mmの篩に通し、篩の上に残った固形物を80℃で12時間乾燥させて、酸化鉄担持活性炭を得た。得られた酸化鉄担持活性炭と水酸化ナトリウム1.80重量部を固体で混合し、これを、るつぼに入れて、窒素気流中400℃で16時間固相反応させた。その後、室温まで冷却し、二酸化炭素の固体回収材とした。得られた二酸化炭素の固体回収材を粉砕し、X線回折により、定性したところ、ナトリウムフェライトとアモルファスカーボンであった。また、蛍光X線により、ナトリウムフェライトの含有量は33%であることが分かった。多孔質材料は67%であった。この二酸化炭素の固体回収材のBET比表面積は678m/gであった。短軸が4mm、長軸が8mm、平均粒径は6mmであった。粉体pHは、13であった。
 得られた二酸化炭素の固体回収材の硬度は20kgf/mmであり、かさ密度は0.48g/mLであった。これらの結果から実施例1に係る二酸化炭素回収材を二酸化炭素吸着塔などに充填したとき、重力や排ガスなどの流通による摩擦などにより、壊れにくく、排ガスなどの気体が流通しやすいことは明白である。なお、得られた二酸化炭素回収材の硬度の判定は、下記3段階で評価した。
 ○:圧壊硬度が、10kgf/mm以上のもの
 △:圧壊硬度が、5~10kgf/mm未満のもの
 ×:圧壊硬度が、5kgf/mm未満のもの
 得られた二酸化炭素の固体回収材に含まれるナトリウムフェライトのNa/Feのモル比は1.0で原料の仕込み比とほぼ同等であった。
 得られた二酸化炭素の固体回収材の二酸化炭素の固定回収性能を調べるために、試料1.00重量部をNo.2燃焼ボート(12×60×9mm)に乗せ、モデル燃焼排ガス500mL/minに2時間通気した。一般に、大気中で燃料を燃やしたときの排ガスは最大、窒素80vol%、二酸化炭素20vol%、相対湿度RH80~100%で構成される。そのため、室温25℃にて、窒素400mL/minと二酸化炭素100mL/minを混合し、これを水中にバブリングして、二酸化炭素20vol%、相対湿度RH80%のモデル排ガスとした。
 通気後の試料を10mg秤量し、熱重量測定装置(TG)により、乾燥空気300mL/minで通気しながら、200℃まで10℃/minで昇温して、試料に吸着された二酸化炭素の脱離温度と脱離量を測定した。横軸を試料温度とした測定チャートを図1に示す。TG曲線は初期を100重量%としたときの各温度における残存試料の重量%であり、試料の減少量を二酸化炭素の放出によるものとみなした。DTG曲線はTG曲線の微分曲線であり、DTG曲線の最大値をとる温度を二酸化炭素の脱離温度とみなした。DTA曲線は下に凸となる曲線を示し、吸熱反応が114℃付近で行われていることがわかった。これをNaHCOの熱分解とみなして定量化したところ、二酸化炭素の脱離温度は114℃で、二酸化炭素の脱離量は試料固形分に対し10重量%であり、優れた二酸化炭素の固定回収性能があることが明らかとなった。
 さらに、通気後の試料を再調製し、重量を測定したところ、1.15重量部であり、15重量%の質量の増量が確認された。この試料の表面のX線回折を測定したところ、85重量%のNa1-xFeOと15重量%のNaHCOが確認され、ナトリウムフェライト成分に二酸化炭素が固定化されていることが分かった。さらにこの試料を電気炉にて120℃で1時間加熱し、重量を測定したところ、1.05重量部であり、このサイクルで0.10重量部(二酸化炭素の固体回収材に対して10重量%)の二酸化炭素を吸脱着できることが分かった。この試料の表面のX線回折を測定したところ、90重量%のNaFeOと10重量%のNaCOが確認された。さらに、この試料に上述と同様に、二酸化炭素を接触させると、1.15重量部に増量し、加熱すると1.05重量部に減量して0.10重量部(二酸化炭素の固体回収材に対して10重量%)の二酸化炭素を吸脱着できた。この操作を10回繰り返し、質量の増量と減量に変化がないことを確認した。このことにより、実施例1に係る二酸化炭素の固体回収材は、優れた二酸化炭素の固定回収性能、特に、繰り返し性に優れていることが明らかとなった。
実施例2~8
 鉄原料と支持体の種類と量を種々変化させた以外は前記実施例1と同様にして、実施例2~8に係る固体回収材を得た。
 これらの実施例における製造条件を表1に、得られた二酸化炭素の固体回収材の諸特性を表2に、効果を表3に記した。
比較例1
 塩化第一鉄4水和物9.0重量部を純水900重量部に溶解し、1時間攪拌した。これに、100重量部の純水に溶解した尿素27重量部を添加し、90℃に昇温して、3時間攪拌し、その後、放冷しながら、10時間攪拌、ろ過水洗し、80℃にて12時間乾燥させ、酸化鉄微粒子を得た。得られた酸化鉄微粒子と水酸化ナトリウム1.80重量部を固体で混合し、これを、るつぼに入れて、窒素気流中400℃で16時間固相反応させた。得られた粉体を粉砕し、X線回折により、ナトリウムフェライトであることが判明した。また、蛍光X線により、ナトリウムフェライトの含有量は90重量%であることが分かった。残りの10重量%は、マグヘマイトであった。得られた粉体を100重量部の純水に懸濁し、これに、多孔質支持体として、活性炭10重量部を添加して、16時間攪拌した後、エバポレーターで回転しながら水分を留去して、二酸化炭素の固体回収材とした。得られた固体回収材を粉砕し、X線回折により、定性したところ、マグヘマイトとナトリウムフェライトとアモルファスカーボンであった。また、蛍光X線により、マグヘマイトとナトリウムフェライトの含有量は33%であることが分かった。多孔質材料は67%であった。この二酸化炭素の固体回収材のBET比表面積は700m/gであった。短軸が4mm、長軸が8mm、平均粒径は6mmであった。また、実施例と同様にして二酸化炭素の固定回収性能を調べたところ、200℃まで昇温したが、二酸化炭素の脱離は確認できなかった。
 この比較例の製造条件を表1に、得られた二酸化炭素の固体回収材の諸特性を表2に、効果を表3に記した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[実験例2]
実施例9
 酸化鉄微粒子1(戸田工業製100ED、ヘマタイト、比表面積11m/g)を100重量部とし、それに対しナトリウム原料の亜硝酸ナトリウム粒子粉末をNa/Fe=1.0(モル比)となるように秤量し、サンプルミルにて混合粉砕した。この混合粉砕物をるつぼに入れ、400℃にて16時間焼成させた。その後、室温まで冷却し、サンプルミルにて粉砕することにより、ナトリウムフェライト粒子粉末を得た。得られたナトリウムフェライト粒子粉末のBET比表面積は4.0m/gであった。走査型電子顕微鏡による一次粒子の定量化により、平均長軸径は0.7μm、平均短軸径は0.4μm、平均一次粒子径は0.57μmであり、軸比は1.6であった。粉体pHは13.8と比較的高かった。得られたナトリウムフェライト粒子粉末100重量部に多孔質材料として粉末活性炭5重量部を混合し、転動造粒機にて、40rpmで転動造粒し、粒径5mmの球形の造粒体を得た。これをるつぼに入れて窒素気流中400℃で16時間焼結させた。その後、室温まで冷却し、二酸化炭素の固体回収材とした。得られた二酸化炭素の固体回収材を粉砕し、X線回折により、定性したところ、ナトリウムフェライトとアモルファスカーボンであった。また、蛍光X線により、ナトリウムフェライトの含有量は95%であることが分かった。多孔質材料は5%であった。この二酸化炭素の固体回収材のBET比表面積は54m/gであった。短軸が5mm、長軸が5mm、平均粒径は5mmであった。粉体pHは13であった。
 得られた二酸化炭素の固体回収材の硬度は10kgf/mmであり、球形度は1.0であった。これらの結果から実施例9に係る二酸化炭素回収材を二酸化炭素吸着塔などに充填したとき、重力や排ガスなどの流通による摩擦などにより、壊れにくく、排ガスなどの気体が流通しやすいことは明白である。なお、得られた二酸化炭素回収材の硬度の判定は、下記3段階で評価した。
 〇:圧壊硬度が、10kgf/mm以上のもの
 △:圧壊硬度が、3kgf/mm以上10kgf/mm未満のもの
 ×:圧壊硬度が、3kgf/mm未満のもの
 得られた二酸化炭素の固体回収材に含まれるナトリウムフェライトのNa/Feのモル比は、1.0で原料の仕込み比とほぼ同等であった。
 得られた二酸化炭素の固体回収材の二酸化炭素の固定回収性能を調べるために、試料1.00重量部をNo.2燃焼ボート(12×60×9mm)に乗せ、モデル燃焼排ガス500mL/minに2時間通気した。一般に、大気中で燃料を燃やしたときの排ガスは最大、窒素80vol%、二酸化炭素20vol%、相対湿度RH80~100%で構成される。そのため、室温25℃にて、窒素400mL/minと二酸化炭素100mL/minを混合し、これを水中にバブリングして、二酸化炭素20vol%、相対湿度RH80%のモデル排ガスとした。
 通気後の試料を10mg秤量し、熱重量測定装置(TG)により、乾燥空気300mL/minで通気しながら、200℃まで10℃/minで昇温して、試料に吸着された二酸化炭素の脱離温度と脱離量を測定した。横軸を試料温度とした測定チャートを図2に示す。TG曲線は初期を100重量%としたときの各温度における残存試料の重量%であり、試料の減少量を二酸化炭素の放出によるものとみなした。DTG曲線はTG曲線の微分曲線であり、DTG曲線の最大値をとる温度を二酸化炭素の脱離温度とみなした。DTA曲線は下に凸となる曲線を示し、吸熱反応が114℃付近で行われていることがわかった。これをNaHCOの熱分解とみなして定量化したところ、二酸化炭素の脱離温度は114℃で、二酸化炭素の脱離量は試料固形分に対し17重量%であり、優れた二酸化炭素の固定回収性能があることが明らかとなった。
 さらに、通気後の試料を再調製し、重量を測定したところ、1.27重量部であり、27重量%の質量の増量が確認された。この試料の表面のX線回折を測定したところ、79重量%のNa1-xFeOと21重量%のNaHCOが確認され、ナトリウムフェライト成分に二酸化炭素が固定化されていることが分かった。さらにこの試料を電気炉にて120℃で1時間加熱し、重量を測定したところ、1.10重量部であり、このサイクルで0.17重量部(二酸化炭素の固体回収材に対して17重量%)の二酸化炭素を吸脱着できることが分かった。この試料の表面のX線回折を測定したところ、90重量%のNa1-xFeOと10重量%のNaCOが確認された。さらに、この試料に前述と同様に、二酸化炭素を接触させると、1.27重量部に増量し、加熱すると1.10重量部に減量して0.17重量部(二酸化炭素の固体回収材に対して17重量%)の二酸化炭素を吸脱着できた。この操作を10回繰り返し、質量の増量と減量に変化がないことを確認した。このことにより、実施例9に係る二酸化炭素の固体回収材は、優れた二酸化炭素の固定回収性能、特に、繰り返し性に優れていることが明らかとなった。
 実施例10~16
 鉄原料と支持体の種類と量を種々変化させた以外は前記実施例9と同様にして、実施例10~16に係る固体回収材を得た。
 これらの実施例における製造条件を表4に、得られた二酸化炭素の固体回収材の諸特性を表5に、効果を表6に記した。
 比較例2
 実施例9で得られたナトリウムフェライト粒子粉末100重量部を、1%カルボキシメチルセルロース水溶液を少量加えながら転動造粒機にて、40rpmで造粒し、これをるつぼに入れて窒素気流中400℃で16時間固相反応させた。その後、室温まで冷却し、二酸化炭素の固体回収材とした。得られた二酸化炭素の固体回収材を粉砕し、X線回折により、定性したところ、ナトリウムフェライトであった。また、蛍光X線により、ナトリウムフェライトの含有量は100%であることが分かった。この二酸化炭素の固体回収材のBET比表面積は4m/gであった。短軸が4mm、長軸が9mm、平均粒径は6.5mmであった。粉体pHは、10であった。
 得られた二酸化炭素の固体回収材の硬度は、1kgf/mmであり、判定は×であった。また、球形度は2.3であり、判定は×であった。これらの結果から二酸化炭素回収材を二酸化炭素吸着塔などに充填したとき、重力や排ガスなどの流通による摩擦などにより、壊れやすく、形状が不ぞろいなため、充填しにくいことは明白である。
 この比較例の製造条件を表4に、得られた二酸化炭素の固体回収材の諸特性を表5に、効果を表6に記した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 以上のように、本発明に係る二酸化炭素の固体回収材は、二酸化炭素の吸着、回収に優れることは明白である。また、前記固体回収材は、硬度が高く、球形度が高い又はかさ密度が小さいため、そのまま二酸化炭素吸着塔に充填できる。

 

Claims (9)

  1.  1重量%~99重量%のナトリウムフェライトと、1重量%~99重量%の多孔質材料とを含む二酸化炭素固体回収材であって、平均粒径が1mm~10mmであり、比表面積が5m/g~1500m/gであり、
     前記ナトリウムフェライトの一次粒子の平均短軸径に対する平均長軸径の軸比が1~2である、二酸化炭素固体回収材。
  2.  前記ナトリウムフェライトを1重量%~70重量%含み、前記多孔質材料を30重量%~99重量%含み、比表面積が100m/g~1500m/gである、請求項1に記載の二酸化炭素固体回収材。
  3.  硬度が5kgf/mm~35kgf/mmであり、かさ密度が0.3g/mL~0.8g/mLである、請求項2に記載の二酸化炭素固体回収材。
  4.  前記ナトリウムフェライトを70重量%超過99重量%以下含み、前記多孔質材料を1重量%以上30重量%未満含み、比表面積が5m/g~500m/gである、請求項1に記載の二酸化炭素固体回収材。
  5.  硬度が3kgf/mm~30kgf/mmであり、球形度が1~2である、請求項4に記載の二酸化炭素固体回収材。
  6.  粉体pH値が8~14である、請求項1~5のいずれか1項に記載の二酸化炭素固体回収材。
  7.  前記ナトリウムフェライトのNa/Feのモル比が、0.7~1.3である、請求項1~6のいずれか1項に記載の二酸化炭素固体回収材。
  8.  前記多孔質材料が、活性炭、アルミノシリケート、ハイドロタルサイト、多孔質粘土鉱物、多孔質シリカ及び活性アルミナから選ばれた多孔質材料である、請求項1~7のいずれか1項に記載の二酸化炭素固体回収材。
  9.  酸化鉄を含む材料と、ナトリウムを含むアルカリ化合物とを固相反応するステップを含む、請求項1~8のいずれか1項に記載の二酸化炭素固体回収材の製造方法。

     
PCT/JP2021/027994 2020-08-04 2021-07-29 二酸化炭素固体回収材及びその製造方法 WO2022030338A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237005860A KR20230044243A (ko) 2020-08-04 2021-07-29 이산화탄소 고체 회수재 및 그 제조방법
US18/040,393 US20230277977A1 (en) 2020-08-04 2021-07-29 Solid recovery material for carbon dioxide and method for producing same
JP2022541476A JPWO2022030338A1 (ja) 2020-08-04 2021-07-29
EP21852264.7A EP4194083A1 (en) 2020-08-04 2021-07-29 Solid recovery material for carbon dioxide and method for producing same
CN202180057894.6A CN116234625A (zh) 2020-08-04 2021-07-29 二氧化碳固体回收材料及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020132136 2020-08-04
JP2020-132136 2020-08-04
JP2020181617 2020-10-29
JP2020-181617 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022030338A1 true WO2022030338A1 (ja) 2022-02-10

Family

ID=80120051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027994 WO2022030338A1 (ja) 2020-08-04 2021-07-29 二酸化炭素固体回収材及びその製造方法

Country Status (6)

Country Link
US (1) US20230277977A1 (ja)
EP (1) EP4194083A1 (ja)
JP (1) JPWO2022030338A1 (ja)
KR (1) KR20230044243A (ja)
CN (1) CN116234625A (ja)
WO (1) WO2022030338A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259929A1 (ja) * 2021-06-07 2022-12-15 戸田工業株式会社 二酸化炭素の固体回収材及びその製造方法
JP7248202B1 (ja) * 2022-10-18 2023-03-29 住友電気工業株式会社 二酸化炭素吸収モジュール、二酸化炭素吸収塔、二酸化炭素吸収装置及び二酸化炭素吸収方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237923A (ja) * 1994-01-07 1995-09-12 Japan Synthetic Rubber Co Ltd フェライト含有中空粒子
JP2010063989A (ja) * 2008-09-10 2010-03-25 Jfe Engineering Corp 揮発性有機化合物の除去・回収方法
JP2016003156A (ja) 2014-06-16 2016-01-12 国立大学法人埼玉大学 α−ナトリウムフェライト類の製造方法
JP2017109198A (ja) 2015-12-14 2017-06-22 シャープ株式会社 二酸化炭素吸収材、ペレットおよびフィルタ
WO2021117623A1 (ja) * 2019-12-10 2021-06-17 戸田工業株式会社 ナトリウムフェライト粒子粉末及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237923A (ja) * 1994-01-07 1995-09-12 Japan Synthetic Rubber Co Ltd フェライト含有中空粒子
JP2010063989A (ja) * 2008-09-10 2010-03-25 Jfe Engineering Corp 揮発性有機化合物の除去・回収方法
JP2016003156A (ja) 2014-06-16 2016-01-12 国立大学法人埼玉大学 α−ナトリウムフェライト類の製造方法
JP2017109198A (ja) 2015-12-14 2017-06-22 シャープ株式会社 二酸化炭素吸収材、ペレットおよびフィルタ
WO2021117623A1 (ja) * 2019-12-10 2021-06-17 戸田工業株式会社 ナトリウムフェライト粒子粉末及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259929A1 (ja) * 2021-06-07 2022-12-15 戸田工業株式会社 二酸化炭素の固体回収材及びその製造方法
JP7248202B1 (ja) * 2022-10-18 2023-03-29 住友電気工業株式会社 二酸化炭素吸収モジュール、二酸化炭素吸収塔、二酸化炭素吸収装置及び二酸化炭素吸収方法

Also Published As

Publication number Publication date
KR20230044243A (ko) 2023-04-03
US20230277977A1 (en) 2023-09-07
CN116234625A (zh) 2023-06-06
JPWO2022030338A1 (ja) 2022-02-10
EP4194083A1 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
Azimi et al. Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents
WO2022030338A1 (ja) 二酸化炭素固体回収材及びその製造方法
Guo et al. Structure-performance relationships of magnesium-based CO2 adsorbents prepared with different methods
WO2021117623A1 (ja) ナトリウムフェライト粒子粉末及びその製造方法
US9114359B2 (en) Method for producing sorbents for CO2 capture under high temperatures
Yu et al. Hydrothermal preparation of calcium–aluminum carbonate sorbent for high-temperature CO2 capture in fixed-bed reactor
WO2002087307A2 (en) Adsorbents for use in regenerable adsorbent fractionators and methods of making the same
US5866503A (en) Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas
Foo et al. Insights and utility of cycling-induced thermal deformation of calcium-based microporous material as post-combustion CO2 sorbents
Karami et al. Study of Al2O3 addition to synthetic Ca‐based sorbents for CO2 sorption capacity and stability in cyclic operations
Dambrauskas et al. Effect of intercalated metal ions on the specific surface area and porosity of dibasic calcium silicate hydrate
Petrovic et al. Biomass combustion fly ash-derived nanoporous zeolites for post-combustion carbon capture
JP2022153182A (ja) ナトリウムフェライト粒子粉末及びその製造方法
JP6383188B2 (ja) α−ナトリウムフェライト類の製造方法
JP2007203215A (ja) 二酸化炭素の吸着システム及び脱着・回収システム
WO2023243427A1 (ja) 複合酸化鉄粒子粉末及びその製造方法
JP2022153179A (ja) ナトリウムフェライト粒子粉末及びその製造方法
WO2022259929A1 (ja) 二酸化炭素の固体回収材及びその製造方法
JP2022115438A (ja) ナトリウムフェライト粒子粉末及びその製造方法
JP7312071B2 (ja) 還元剤
JP2022177580A (ja) ナトリウムフェライト粒子粉末及びその製造方法
JP2022153180A (ja) ナトリウムフェライト粒子粉末及びその製造方法
JP2022153181A (ja) ナトリウムフェライト粒子粉末及びその製造方法
JP2022184164A (ja) ナトリウムフェライト粒子粉末及びその製造方法
JP2022184165A (ja) ナトリウムフェライト粒子粉末及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541476

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237005860

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021852264

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE