WO2022030266A1 - Method for manufacturing optically anisotropic layer - Google Patents

Method for manufacturing optically anisotropic layer Download PDF

Info

Publication number
WO2022030266A1
WO2022030266A1 PCT/JP2021/027346 JP2021027346W WO2022030266A1 WO 2022030266 A1 WO2022030266 A1 WO 2022030266A1 JP 2021027346 W JP2021027346 W JP 2021027346W WO 2022030266 A1 WO2022030266 A1 WO 2022030266A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal compound
optically anisotropic
anisotropic layer
composition layer
Prior art date
Application number
PCT/JP2021/027346
Other languages
French (fr)
Japanese (ja)
Inventor
勇太 高橋
慎平 吉田
啓祐 小玉
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020237003823A priority Critical patent/KR20230031360A/en
Priority to JP2022541436A priority patent/JP7480306B2/en
Priority to CN202180057967.1A priority patent/CN116113858A/en
Publication of WO2022030266A1 publication Critical patent/WO2022030266A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a method for manufacturing an optically anisotropic layer.
  • the retardation layer having refractive index anisotropy (optical anisotropy layer) is applied to various applications such as an antireflection film of a display device and an optical compensation film of a liquid crystal display device.
  • optically anisotropic layer as described in Patent Document 1, a laminated optical anisotropic layer composed of a plurality of layers is disclosed.
  • the present invention provides a simple method for producing an optically anisotropic layer having a plurality of regions in which the orientation state of the liquid crystal compound is fixed and the orientation state of the liquid crystal compound is different along the thickness direction. That is the issue.
  • Step 1 of forming a composition layer containing a liquid crystal compound having a polymerizable group and Step 2 in which the composition layer is heat-treated to orient the liquid crystal compound in the composition layer, and After the step 2, the composition layer is irradiated with light for 50 seconds or less and at 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more.
  • step 3 the composition layer is heat-treated at a temperature higher than that at the time of light irradiation, and step 4 After the step 4, the composition layer is subjected to a curing treatment to form an optically anisotropic layer having a plurality of regions having different orientation states of the liquid crystal compounds along the thickness direction. Manufacturing method of anisotropic layer.
  • the composition layer contains a photosensitive material selected from the group consisting of a photopolymerization initiator and a photosensitizer.
  • the method for producing an optically anisotropic layer according to (1) wherein the molar extinction coefficient of the photosensitive material at the wavelength of light irradiation in step 3 is 5000 L / (mol ⁇ cm) or less.
  • the composition layer contains a chiral agent and contains The method for producing an optically anisotropic layer according to (1) or (2), wherein the chiral agent contains a photosensitive chiral agent whose spiral-inducing force is changed by light irradiation.
  • the present invention it is possible to provide a simple method for producing an optically anisotropic layer having a plurality of regions in which the orientation state of the liquid crystal compound is fixed and the orientation state of the liquid crystal compound is different along the thickness direction.
  • composition layer for demonstrating an example of the step 1A of the 1st Embodiment of the manufacturing method of the optically anisotropic layer of this invention. It is sectional drawing of the composition layer for demonstrating an example of the step 3A of the 1st Embodiment of the manufacturing method of the optically anisotropic layer of this invention. It is sectional drawing of the composition layer for demonstrating an example of the case where the step 4A of the 1st Embodiment of the manufacturing method of the optically anisotropic layer of this invention is carried out.
  • the slow axis is defined at 550 nm unless otherwise specified.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation at wavelength ⁇ and retardation in the thickness direction, respectively. Unless otherwise specified, the wavelength ⁇ is 550 nm.
  • the values of the average refractive index of the main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethylmethacrylate (1.49), And polystyrene (1.59).
  • light means active light or radiation, for example, the emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excima laser, extreme ultraviolet rays (EUV light: Extreme Ultraviolet), X-rays, ultraviolet rays, and the like. And electron beam (EB: Electron Beam) and the like. Of these, ultraviolet rays are preferable.
  • visible light refers to light having a diameter of 380 to 780 nm. Further, in the present specification, unless otherwise specified, the measurement wavelength is 550 nm.
  • the twist angle is preferably more than 0 ° and less than 360 °.
  • the cholesteric liquid crystal phase which will be described later, is a phase in which the liquid crystal compound has a periodic structure in which the liquid crystal compound is spirally oriented, and the twist angle is 360 ° or more.
  • a feature of the method for producing an optically anisotropic layer of the present invention is that a predetermined step is carried out.
  • the liquid crystal compound in the composition layer is oriented.
  • the oxygen concentration is low in a part of the region of the composition layer formed on the substrate side, and the oxygen concentration is high in the other region on the surface side opposite to the substrate side. Therefore, when such a composition layer is irradiated with light under predetermined conditions, the polymerization of the liquid crystal compound does not easily proceed in the region where the oxygen concentration is high, whereas in the region where the oxygen concentration is low, it is difficult to proceed. , Polymerization of the liquid crystal compound is easy to proceed.
  • the orientation state of the liquid crystal compound is fixed. Then, during the heat treatment carried out after light irradiation, the orientation state of the liquid crystal compound does not change in the region where the polymerization of the liquid crystal compound has progressed, but the orientation state of the liquid crystal compound has not changed in the region where the polymerization of the liquid crystal compound has been difficult to proceed. Is changed, and the changed orientation state during the curing process is fixed. As a result, an optically anisotropic layer having a plurality of regions having different orientation states of the fixed liquid crystal compounds along the thickness direction is produced.
  • the method for producing an optically anisotropic layer of the present invention is Step 1 of forming a composition layer containing a liquid crystal compound having a polymerizable group, and Step 2 in which the composition layer is heat-treated to orient the liquid crystal compound in the composition layer, and After the step 2, the composition layer is irradiated with light for 50 seconds or less and at 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more.
  • the composition layer is heat-treated at a temperature higher than that at the time of light irradiation, and step 4
  • the composition layer is subjected to a curing treatment to form an optically anisotropic layer having a plurality of regions having different orientation states of the liquid crystal compounds along the thickness direction.
  • the orientation state of the liquid crystal compound is fixed.
  • regions in which the orientation states of the liquid crystal compounds are different for example, an embodiment in which the spiral pitches of the cholesteric liquid crystal phases in a plurality of regions are different from each other, and the liquid crystal compound with respect to the layer surface of the plurality of regions.
  • the orientation of the two regions is different, and one of the two regions is a region in which the liquid crystal compound exhibits an isotropic phase, and the other region is the orientation in which the liquid crystal compound is oriented.
  • An embodiment in which the state is fixed is mentioned.
  • each preferred embodiment of the method for producing an optically anisotropic layer of the present invention will be described in detail.
  • the first embodiment of the method for producing an optically anisotropic layer of the present invention comprises the following steps 1A to 5A.
  • an optically anisotropic layer having a region in which the alignment state of the liquid crystal compound twisted and oriented along a spiral axis extending along the thickness direction is fixed is formed.
  • Step 1A Forming a composition layer containing at least a photosensitive chiral agent whose spiral-inducing force changes by light irradiation and a liquid crystal compound having a polymerizable group
  • Step 2A Heat-treating the composition layer.
  • Step 3A to orient the liquid crystal compound in the composition layer After step 2A, the composition layer is irradiated with light for 50 seconds or less under the condition of an oxygen concentration of 1% by volume or more, and Step 4A performed at 300 mJ / cm 2 or less: After step 3A, the composition layer is heat-treated at a temperature higher than that at the time of light irradiation Step 5A: After step 4A, the composition layer is cured. A step of forming an optically anisotropic layer having a plurality of regions having different orientation states of the liquid crystal compound along the thickness direction. As will be described later, in the first embodiment, the optically anisotropic layer having the above characteristics is produced.
  • the total content of the chiral agent (total content of all chiral agents) in the composition layer is preferably 5.0% by mass or less with respect to the total mass of the liquid crystal compound.
  • Step 1A is a step of forming a composition layer containing at least a photosensitive chiral agent whose spiral-inducing force is changed by light irradiation and a liquid crystal compound having a polymerizable group.
  • a composition layer to be subjected to a light irradiation treatment described later is formed.
  • the materials used in this step will be described in detail, and then the procedure of the step will be described in detail.
  • the composition layer of step 1A contains a chiral agent containing at least a photosensitive chiral agent whose spiral-inducing force is changed by light irradiation.
  • a photosensitive chiral agent whose spiral-inducing force changes by light irradiation will be described in detail.
  • the spiral-inducing force (HTP) of the chiral agent is a factor indicating the spiral orientation ability represented by the following formula (A).
  • HTP 1 / (length of spiral pitch (unit: ⁇ m) ⁇ concentration of chiral agent to liquid crystal compound (mass%)) [ ⁇ m -1 ]
  • the photosensitive chiral agent whose spiral-inducing force changes by light irradiation may be liquid crystal or non-liquid crystal.
  • the chiral agent A generally contains an asymmetric carbon atom in many cases.
  • the chiral agent A may be an axial asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom.
  • the chiral agent A may be a chiral agent whose spiral-inducing force is increased by light irradiation, or may be a chiral agent whose spiral-inducing force is decreased. Of these, a chiral agent whose spiral-inducing force is reduced by light irradiation is preferable.
  • "increase and decrease of spiral-inducing force” means increase / decrease when the initial spiral direction (before light irradiation) of chiral agent A is "positive".
  • Examples of the chiral agent A include so-called photoreactive chiral agents.
  • the photoreactive chiral agent is a compound having a chiral portion and a photoreactive portion whose structure is changed by light irradiation, and for example, a compound that greatly changes the torsional force of the liquid crystal compound according to the irradiation amount.
  • Examples of photochemical compounds whose structure changes due to light irradiation are photochromic compounds (Kingo Uchida, Masahiro Irie, Chemical Industry, vol.64, 640p, 1999, Kingo Uchida, Masahiro Irie, Fine Chemicals, vol.28 (9), 15p. , 1999) and the like.
  • the structural change means decomposition, addition reaction, isomerization, racemization, [2 + 2] photocyclization, dimerization reaction, etc. caused by light irradiation to the photochemical reaction site, and the structural change is irreversible.
  • the chiral site include Hiroyuki Nohira, Review of Chemistry, No. 22. Chemistry of liquid crystal, 73p: Asymmetric carbon described in 1994 and the like correspond to this.
  • Examples of the chiral agent A include photoreactive chiral agents described in paragraphs 0044 to 0047 of JP-A-2001-159709, optically active compounds described in paragraphs 0019 to 0043 of JP-A-2002-179669, and JP-A.
  • optically active compound described The optically active compound described, the optically active compound described in paragraphs 0015 to 0044 of JP-A-2002-302487, the optically active polyester described in paragraphs 0015 to 0050 of JP-A-2002-338668, JP-A-2003-055315.
  • the optically active compounds described in paragraphs 0012 to 0053 of WO2018 / 194157A and the optically active compounds described in paragraphs 0020 to 0049 of JP-A-2002-179682 can be mentioned.
  • the chiral agent A is preferably a compound having at least a photoisomerization site, and more preferably the photoisomerization site has a photoisomerizable double bond.
  • the photoisomerization site having a double bond capable of photoisomerization is a stilbene site, a chalcone site, an azobenzene site or a stilbene site in that photoisomerization is likely to occur and the difference in spiral induced force before and after light irradiation is large.
  • the stilbene moiety is preferred, and the cinnamoyl moiety, chalcone moiety or stilbene moiety is more preferred in that the absorption of visible light is small.
  • the photoisomerization site corresponds to the photoreaction site whose structure is changed by the above-mentioned light irradiation.
  • the chiral agent A has a trans-type photoisomerizable double bond in that the initial spiral-inducing force (before light irradiation) is high and the amount of change in the spiral-inducing force due to light irradiation is more excellent. It is preferable to do. Further, the chiral agent A has a cis-type photoisomerizable double bond in that the initial spiral-inducing force (before light irradiation) is low and the amount of change in the spiral-inducing force due to light irradiation is more excellent. It is preferable to do.
  • the chiral agent A preferably has any one of a binaphthyl partial structure, an isosorbide partial structure (a partial structure derived from isosorbide), and an isomannide partial structure (a partial structure derived from isosorbide). ..
  • the binaphthyl partial structure, the isosorbide partial structure, and the isosorbide partial structure are intended to have the following structures, respectively.
  • the part of the binaphthyl substructure where the solid line and the broken line are parallel represents a single bond or a double bond. In the structure shown below, * represents the bonding position.
  • the chiral agent A may have a polymerizable group.
  • the type of the polymerizable group is not particularly limited, and a functional group capable of an addition polymerization reaction is preferable, a polymerizable ethylenically unsaturated group or a ring-polymerizable group is more preferable, and a (meth) acryloyl group, a vinyl group, a styryl group, etc. Alternatively, an allyl group is more preferred.
  • Equation (C) R-L-R R represents a group each independently having at least one site selected from the group consisting of a cinnamoyl site, a chalcone site, an azobenzene site, and a stilbene site.
  • L is a divalent linking group formed by removing two hydrogen atoms from the structure represented by the formula (D) (a divalent link formed by removing two hydrogen atoms from the above binaphthyl partial structure).
  • a divalent linking group represented by the formula (E) (a divalent linking group composed of the isosorbide partial structure), or a divalent linking group represented by the formula (F) (the isomannide partial structure).
  • Step 1A at least the above-mentioned chiral agent A is used.
  • Step 1A may be an embodiment in which two or more kinds of chiral agents A are used, or a chiral agent whose spiral inducing force does not change by irradiation with at least one kind of chiral agent A and at least one kind of light (hereinafter, simply "chiral agent").
  • B a chiral agent whose spiral inducing force does not change by irradiation with at least one kind of chiral agent A and at least one kind of light
  • B a chiral agent whose spiral inducing force does not change by irradiation with at least one kind of chiral agent A and at least one kind of light (hereinafter, simply "chiral agent"). B ”) may be used.
  • the chiral agent B may be liquid crystal or non-liquid crystal.
  • the chiral agent B generally contains an asymmetric carbon atom in many cases.
  • the chiral agent B may be an axial
  • Examples of the type of the polymerizable group include the polymerizable group that the chiral agent A may have.
  • the chiral agent B a known chiral agent can be used.
  • the chiral agent B is preferably a chiral agent that induces a spiral in the opposite direction to the above-mentioned chiral agent A. That is, for example, when the spiral induced by the chiral agent A is in the right direction, the helix induced by the chiral agent B is in the left direction.
  • the molar extinction coefficient of the chiral agent A and the chiral agent B is not particularly limited, but the molar extinction coefficient at the wavelength of the light irradiated in step 3A described later (for example, 365 nm) is 100 to 100,000 L / (mol ⁇ cm). It is preferably 500 to 50,000 L / (mol ⁇ cm), and more preferably 500 to 50,000 L / (mol ⁇ cm).
  • the contents of the chiral agent A and the chiral agent B in the composition layer can be appropriately set according to the characteristics (for example, retardation and wavelength dispersion) of the optically anisotropic layer to be formed. Since the twist angle of the liquid crystal compound in the optically anisotropic layer largely depends on the types of the chiral auxiliary A and the chiral agent B and their addition concentrations, it is possible to control the orientation state of the liquid crystal compound by adjusting these. can.
  • the total content of the chiral agent (total content of all chiral agents) in the composition layer is not particularly limited, but the total mass of the liquid crystal compound is easy to control in that the orientation state of the liquid crystal compound is easily controlled.
  • the total mass of the liquid crystal compound is easy to control in that the orientation state of the liquid crystal compound is easily controlled.
  • 5.0% by mass or less is preferable, 4.0% by mass or less is more preferable, and 2.0% by mass or less is further preferable.
  • the lower limit is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, still more preferably 0.05% by mass.
  • the content of the chiral agent A in the chiral agent is not particularly limited, but is preferably 5 to 95% by mass, preferably 10 to 90% by mass, based on the total mass of the chiral agent, in that the orientation state of the liquid crystal compound can be easily controlled. Is more preferable.
  • the composition layer of step 1A contains a liquid crystal compound having a polymerizable group.
  • the type of the liquid crystal compound is not particularly limited. Generally, a liquid crystal compound can be classified into a rod-shaped type (rod-shaped liquid crystal compound) and a disk-shaped type (discotic liquid crystal compound) according to its shape. Further, the liquid crystal compound can be classified into a small molecule type and a high molecular type.
  • a polymer generally refers to a molecule having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992).
  • any liquid crystal compound can be used, but it is preferable to use a rod-shaped liquid crystal compound or a discotic liquid crystal compound, and it is more preferable to use a rod-shaped liquid crystal compound.
  • Two or more kinds of rod-shaped liquid crystal compounds, two or more kinds of discotic liquid crystal compounds, or a mixture of a rod-shaped liquid crystal compound and a discotic liquid crystal compound may be used.
  • the rod-shaped liquid crystal compound for example, those described in claim 1 of JP-A No. 11-513019 and paragraphs 0026 to 0098 of JP-A-2005-289980 can be preferably used.
  • the discotic liquid crystal compound for example, those described in paragraphs 0020 to 0067 of JP-A-2007-108732 and paragraphs 0013 to 0108 of JP-A-2010-244033 can be preferably used.
  • the type of the polymerizable group of the liquid crystal compound is not particularly limited, a functional group capable of an addition polymerization reaction is preferable, a polymerizable ethylenically unsaturated group or a ring-polymerizable group is more preferable, and a (meth) acryloyl group or a vinyl group is preferable. , Styryl group, or allyl group is more preferable.
  • the optically anisotropic layer produced in the present invention is a layer formed by fixing a liquid crystal compound having a polymerizable group (a rod-shaped liquid crystal compound having a polymerizable group or a discotic liquid crystal compound) by polymerization or the like. Yes, it is no longer necessary to show liquid crystallinity after forming a layer.
  • the content of the liquid crystal compound in the composition layer is not particularly limited, but is preferably 60% by mass or more, preferably 70% by mass or more, based on the total mass of the composition layer, from the viewpoint of easy control of the orientation state of the liquid crystal compound. More preferred.
  • the upper limit is not particularly limited, but is preferably 99% by mass or less, and more preferably 97% by mass or less.
  • the composition layer may contain components other than the chiral agent and the liquid crystal compound.
  • the composition layer may contain a polymerization initiator.
  • the polymerization initiator include known polymerization initiators, photopolymerization initiators and thermal polymerization initiators, and photopolymerization initiators are preferable.
  • a polymerization initiator that is sensitive to the light irradiated in step 5A described later is preferable.
  • the polymerization initiator has a molar extinction coefficient that is the largest of the wavelengths of the light irradiated in step 3A, which is 0.1 times or less the molar extinction coefficient of the maximum wavelength of the light that is irradiated in step 5A. Is preferable.
  • the molar extinction coefficient at the wavelength of light irradiation in the step 3A of the polymerization initiator is preferably 5000 L / (mol ⁇ cm) or less, and 4000 L / (mol ⁇ cm) in that a predetermined optically anisotropic layer is easily formed. ) Or less is more preferable, and 3000 L / (mol ⁇ cm) or less is further preferable.
  • the lower limit is not particularly limited, and is preferably 0 L / (mol ⁇ cm), but is often 30 L / (mol ⁇ cm) or more.
  • the content of the polymerization initiator in the composition layer is not particularly limited, but is preferably 0.01 to 20% by mass, more preferably 0.5 to 10% by mass, based on the total mass of the composition layer.
  • the composition layer may contain a photosensitizer.
  • the type of the photosensitizer is not particularly limited, and examples thereof include known photosensitizers.
  • the molar extinction coefficient at the wavelength of light irradiation in step 3A of the photosensitizer is preferably 5000 L / (mol ⁇ cm) or less, 4800 L / (mol ⁇ ⁇ , in that a predetermined optically anisotropic layer is easily formed. cm) or less is more preferable, and 4500 L / (mol ⁇ cm) or less is further preferable.
  • the lower limit is not particularly limited, and is preferably 0 L / (mol ⁇ cm), but is often 30 L / (mol ⁇ cm) or more.
  • the content of the photosensitizer in the composition layer is not particularly limited, but is preferably 0.01 to 20% by mass, more preferably 0.5 to 10% by mass, based on the total mass of the composition layer.
  • the composition layer may contain a polymerizable monomer different from the liquid crystal compound having a polymerizable group.
  • the polymerizable monomer include a radically polymerizable compound and a cationically polymerizable compound, and a polyfunctional radically polymerizable monomer is preferable.
  • the polymerizable monomer include the polymerizable monomers described in paragraphs 0018 to 0020 in JP-A-2002-296423.
  • the content of the polymerizable monomer in the composition layer is not particularly limited, but is preferably 1 to 50% by mass, more preferably 5 to 30% by mass, based on the total mass of the liquid crystal compound.
  • the composition layer may contain a surfactant.
  • the surfactant include conventionally known compounds, but fluorine-based compounds are preferable. Specific examples thereof include the compounds described in paragraphs 0028 to 0056 of JP-A-2001-330725 and the compounds described in paragraphs 0069 to 0126 of Japanese Patent Application Laid-Open No. 2003-295212.
  • the composition layer may contain a polymer.
  • the polymer include cellulose esters.
  • examples of the cellulose ester include those described in paragraph 0178 in JP-A-2000-155216.
  • the content of the polymer in the composition layer is not particularly limited, but is preferably 0.1 to 10% by mass, more preferably 0.1 to 8% by mass, based on the total mass of the liquid crystal compound.
  • composition layer may contain an additive (orientation control agent) that promotes horizontal orientation or vertical orientation in order to bring the liquid crystal compound into a horizontal or vertical orientation state.
  • additive orientation control agent
  • the substrate is a plate that supports the composition layer.
  • a transparent substrate is preferable.
  • the transparent substrate is intended to be a substrate having a visible light transmittance of 60% or more, and the transmittance is preferably 80% or more, more preferably 90% or more.
  • the retardation value (Rth (550)) in the thickness direction at a wavelength of 550 nm of the substrate is not particularly limited, but is preferably ⁇ 110 to 110 nm, and more preferably ⁇ 80 to 80 nm.
  • the in-plane retardation value (Re (550)) at a wavelength of 550 nm of the substrate is not particularly limited, but is preferably 0 to 50 nm, more preferably 0 to 30 nm, still more preferably 0 to 10 nm.
  • the material for forming the substrate a polymer having excellent optical performance transparency, mechanical strength, thermal stability, moisture shielding property, isotropic property and the like is preferable.
  • the polymer film that can be used as a substrate include cellulose acylate films (for example, cellulose triacetate film (refractive index 1.48), cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film).
  • Polyolefin films such as polyethylene and polypropylene, polyester films such as polyethylene terephthalate and polyethylene naphthalate, polyether sulfone films, polyacrylic films such as polymethylmethacrylate, polyurethane films, polycarbonate films, polysulfone films, polyether films, polymethylpentene films. , Polyether ketone film, (meth) acrylic nitrile film, and polymer film having an alicyclic structure (Norbornen-based resin (Arton: trade name, JSR), amorphous polyolefin (Zeonex: trade name, Nippon Zeon) Company)).
  • the material of the polymer film triacetyl cellulose, polyethylene terephthalate, or a polymer having an alicyclic structure is preferable, and triacetyl cellulose is more preferable.
  • the substrate may contain various additives (for example, an optical anisotropy adjuster, a wavelength dispersion adjuster, fine particles, a plasticizer, an ultraviolet inhibitor, a deterioration inhibitor, a release agent, etc.).
  • additives for example, an optical anisotropy adjuster, a wavelength dispersion adjuster, fine particles, a plasticizer, an ultraviolet inhibitor, a deterioration inhibitor, a release agent, etc.
  • the thickness of the substrate is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 10 to 100 ⁇ m, and even more preferably 20 to 90 ⁇ m.
  • the substrate may be made of a plurality of laminated sheets.
  • the substrate may be subjected to surface treatment (eg, glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment, flame treatment) on the surface of the substrate in order to improve adhesion to a layer provided on the substrate.
  • an adhesive layer undercoat layer
  • the substrate is solidified with inorganic particles having an average particle size of about 10 to 100 nm.
  • a polymer layer mixed by mass ratio of 5 to 40% by mass may be arranged on one side of the substrate.
  • the substrate may be a so-called temporary support. That is, after carrying out the production method of the present invention, the substrate may be peeled off from the optically anisotropic layer.
  • the surface of the substrate may be directly subjected to the rubbing treatment. That is, a substrate that has been subjected to a rubbing treatment may be used.
  • the direction of the rubbing treatment is not particularly limited, and the optimum direction is appropriately selected according to the direction in which the liquid crystal compound is desired to be oriented.
  • a processing method widely adopted as a liquid crystal alignment processing step of an LCD (liquid crystal display) can be applied. That is, a method of obtaining orientation by rubbing the surface of the substrate in a certain direction with paper, gauze, felt, rubber, nylon fiber, polyester fiber, or the like can be used.
  • the alignment film may be arranged on the substrate.
  • the alignment film can be a rubbing treatment of an organic compound (preferably a polymer), an oblique deposition of an inorganic compound, the formation of a layer with microgrooves, or an organic compound (eg, ⁇ -tricosan) by the Langmuir-Blojet method (LB film). It can be formed by means such as accumulation of acid (acid, dioctadecylmethylammonium chloride, methyl stearylate). Further, an alignment film in which an alignment function is generated by applying an electric field, applying a magnetic field, or irradiating with light (preferably polarized light) is also known. The alignment film is preferably formed by a polymer rubbing treatment.
  • Examples of the polymer contained in the alignment film include the methacrylate-based copolymer, the styrene-based copolymer, the polyolefin, the polyvinyl alcohol and the modified polyvinyl alcohol, and poly (N-) described in paragraph 0022 of JP-A-8-338913.
  • Methylolacrylamide methacrylate-based copolymer, the styrene-based copolymer, the polyolefin, the polyvinyl alcohol and the modified polyvinyl alcohol, and poly (N-) described in paragraph 0022 of JP-A-8-338913.
  • Methylolacrylamide methylolacrylamide
  • polyester polyimide
  • vinyl acetate copolymer polymer
  • carboxymethyl cellulose and polycarbonate.
  • a silane coupling agent can also be used as a polymer.
  • water-soluble polymers eg, poly (N-methylolacrylamide), carboxymethyl cellulose, gelatin, polyvinyl alcohol, modified polyvinyl alcohol
  • gelatin, polyvinyl alcohol or modified polyvinyl alcohol are more preferable
  • polyvinyl alcohol or modified polyvinyl alcohol is more preferable. Is even more preferable.
  • the alignment film is subjected to heat-drying (cross-linking) and rubbing treatment after applying a solution containing the polymer as an alignment film-forming material and an arbitrary additive (for example, a cross-linking agent) onto the substrate. It can be formed by.
  • step 1A a composition layer containing the above-mentioned components is formed, but the procedure is not particularly limited.
  • a method of applying a composition containing the above-mentioned chiral agent and a liquid crystal compound having a polymerizable group onto a substrate and subjecting it to a drying treatment as necessary hereinafter, also simply referred to as “coating method”
  • a method of separately forming a composition layer and transferring it onto a substrate can be mentioned.
  • the coating method is preferable from the viewpoint of productivity.
  • the coating method will be described in detail.
  • the composition used in the coating method includes the above-mentioned chiral agent, a liquid crystal compound having a polymerizable group, and other components used as necessary (for example, a polymerization initiator, a polymerizable monomer, a surfactant). , And polymers, etc.).
  • the content of each component in the composition is preferably adjusted to be the content of each component in the composition layer described above.
  • the coating method is not particularly limited, and examples thereof include a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method. If necessary, after the composition is applied, a treatment for drying the coating film applied on the substrate may be carried out. By carrying out the drying treatment, the solvent can be removed from the coating film.
  • the film thickness of the coating film is not particularly limited, but is preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 15 ⁇ m, and even more preferably 0.5 to 10 ⁇ m.
  • Step 2A is a step of subjecting the composition layer to heat treatment to orient the liquid crystal compound in the composition layer.
  • the liquid crystal compound in the composition layer is in a predetermined orientation state.
  • the heat treatment conditions the optimum conditions are selected according to the liquid crystal compound used. Among them, the heating temperature is often 25 to 250 ° C, more often 40 to 150 ° C, and even more often 50 to 130 ° C.
  • the heating time is often 0.1 to 60 minutes, and more often 0.2 to 5 minutes.
  • the orientation state of the liquid crystal compound obtained in step 2A changes depending on the spiral-inducing force of the chiral agent described above. For example, as will be described later, a first region in which the orientation state of the liquid crystal compound twisted and oriented along a spiral axis extending along the thickness direction is fixed, and a first region in which the orientation state of the homogenius-oriented liquid crystal compound is fixed are fixed.
  • the absolute value of the weighted average spiral inducing force of the chiral agent in the composition layer formed in step 1A is 0.0.
  • the liquid crystal compound in the composition is homogenically oriented or the liquid crystal compound in the composition layer. Is twisted along a spiral axis extending along the thickness direction.
  • the weighted average spiral-inducing force of the chiral agent is the spiral-inducing force of each chiral agent and the composition of each chiral agent when two or more kinds of chiral agents are contained in the composition. It represents the total value of the product of the concentration (% by mass) in the layer divided by the total concentration (% by mass) of the chiral auxiliary in the composition layer.
  • chiral agent X and chiral agent Y it is represented by the following formula (B).
  • the spiral-inducing force is a positive value.
  • the spiral-inducing force is a negative value. That is, for example, in the case of a chiral agent having a spiral induced force of 10 ⁇ m -1 , when the spiral direction of the spiral induced by the chiral agent is right-handed, the spiral induced force is expressed as 10 ⁇ m -1 . On the other hand, when the spiral direction of the spiral induced by the chiral agent is left-handed, the spiral-induced force is expressed as -10 ⁇ m -1 .
  • FIG. 1 is a schematic cross-sectional view of the substrate 10 and the composition layer 12.
  • the composition layer 12 shown in FIG. 1 contains the chiral agent A and the chiral agent B at the same concentration, the spiral direction induced by the chiral agent A is left-handed, and the chiral agent B induces the chiral agent B. It is assumed that the spiral direction is right-handed.
  • the absolute value of the spiral-inducing force of the chiral agent A and the absolute value of the spiral-inducing force of the chiral agent B are assumed to be the same.
  • the homogenic orientation means that the molecular axis of the liquid crystal compound (for example, the major axis in the case of a rod-shaped liquid crystal compound) is arranged horizontally and in the same orientation with respect to the surface of the composition layer. It refers to the state (optical uniaxiality).
  • the term “horizontal” does not require that the liquid crystal compound be strictly horizontal, but means that the average molecular axis of the liquid crystal compound in the composition layer is oriented at an inclination angle of less than 20 degrees with the surface of the composition layer. It shall be.
  • the same direction does not require that the directions are exactly the same, and when the directions of the slow phase axes are measured at arbitrary 20 positions in the plane, the slow phase axes at 20 points are measured. It is assumed that the maximum difference between the slow-phase axis directions among the two directions (the difference between the two slow-phase axis directions having the maximum difference among the 20 slow-phase axis directions) is less than 10 °. ..
  • the mode in which the liquid crystal compound LC is homogenically oriented is described in FIG. 1, it is not limited to this mode as long as the liquid crystal compound is in a predetermined orientation state, and for example, the composition is described in detail later.
  • the liquid crystal compound may be twist-oriented along a spiral axis extending along the thickness direction of the material layer.
  • Step 3A is a step of irradiating the composition layer with light for 50 seconds or less and 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more after the step 2A.
  • the mechanism of this process will be described with reference to the drawings.
  • step 3A under the condition that the oxygen concentration is 1% by volume or more, light is irradiated from the direction opposite to the composition layer 12 side of the substrate 10 (the direction of the white arrow in FIG. 2). I do.
  • the light irradiation is carried out from the substrate 10 side in FIG. 2, it may be carried out from the composition layer 12 side.
  • the surface of the upper region 12B is on the air side, so that the upper region 12B
  • the oxygen concentration in the lower region 12A is high, and the oxygen concentration in the lower region 12A is low. Therefore, when the composition layer 12 is irradiated with light, the polymerization of the liquid crystal compound easily proceeds in the lower region 12A, and the orientation state of the liquid crystal compound is fixed.
  • the chiral agent A is also present in the lower region 12A, and the chiral agent A is also exposed to light, and the spiral inducing force changes.
  • the alignment state of the liquid crystal compound is fixed in the lower region 12A, even if the step 4A of heat-treating the light-irradiated composition layer, which will be described later, is performed, the orientation state of the liquid crystal compound remains. No change occurs.
  • the oxygen concentration is high in the upper region 12B, even if light irradiation is performed, the polymerization of the liquid crystal compound is inhibited by the oxygen, and the polymerization is difficult to proceed.
  • step 4A described later the orientation state of the liquid crystal compound changes along the changed spiral-induced force. That is, by carrying out step 3A, the fixation of the orientation state of the liquid crystal compound is likely to proceed in the substrate-side region (lower region) of the composition layer. Further, in the region opposite to the substrate side (upper region) of the composition layer, the fixation of the orientation state of the liquid crystal compound is difficult to proceed, and the spiral inducing force changes according to the exposed chiral agent A. Will be.
  • Step 3A is carried out under the condition that the oxygen concentration is 1% by volume or more.
  • the oxygen concentration is preferably 2% by volume or more, more preferably 5% by volume or more, in that regions having different orientation states of the liquid crystal compounds are likely to be formed in the optically anisotropic layer.
  • the upper limit is not particularly limited, but 100% by volume can be mentioned.
  • the light irradiation time in the step 3A is 50 seconds or less, and is preferably 30 seconds or less, more preferably 10 seconds or less, from the viewpoint of easy formation of a predetermined optically anisotropic layer and productivity.
  • the lower limit is not particularly limited, but from the viewpoint of curing the liquid crystal compound, 0.1 seconds or more is preferable, and 0.2 seconds or more is more preferable.
  • the irradiation amount of light irradiation in step 3A is 300 mJ / cm 2 or less, preferably 250 mJ / cm 2 or less, and 200 mJ / cm 2 or less from the viewpoint of easy formation of a predetermined optically anisotropic layer and productivity. Is more preferable.
  • the lower limit is not particularly limited, but from the viewpoint of curing the liquid crystal compound, 1 mJ / cm 2 or more is preferable, and 5 mJ / cm 2 or more is more preferable. If the time and amount of light irradiation do not meet the above requirements, the predetermined optically anisotropic layer cannot be formed.
  • the light irradiation in step 3A in the first embodiment is preferably carried out at 15 to 70 ° C. (preferably 25 to 50 ° C.).
  • the light used for light irradiation may be any light that is exposed to the chiral agent A. That is, the light used for light irradiation is not particularly limited as long as it is an active ray or radiation that changes the spiral-inducing force of the chiral agent A. Examples include ultraviolet rays, X-rays, ultraviolet rays, and electron beams. Of these, ultraviolet rays are preferable.
  • Step 4A is a step of subjecting the composition layer to a heat treatment at a temperature higher than that at the time of light irradiation after the step 3A.
  • the orientation state of the liquid crystal compound changes in the region where the spiral-inducing force of the chiral agent A in the composition layer irradiated with light changes.
  • the composition layer after step 3A is heat-treated at a temperature higher than that at the time of irradiation to orient the liquid crystal compound in the composition layer not fixed in step 3A. It is a process to make it. In the following, the mechanism of this process will be described with reference to the drawings.
  • step 3A when step 3A is carried out on the composition layer 12 shown in FIG. 1, the orientation state of the liquid crystal compound is fixed in the lower region 12A, whereas the orientation state of the liquid crystal compound is fixed in the upper region 12B.
  • the polymerization is difficult to proceed, and the orientation of the liquid crystal compound is not fixed.
  • the spiral-inducing force of the chiral agent A changes.
  • the force for twisting the liquid crystal compound changes in the upper region 12B as compared with the state before light irradiation. This point will be described in more detail.
  • the chiral agent A and the chiral agent B are present in the composition layer 12 shown in FIG.
  • the spiral direction induced by the chiral agent A is left-handed, and the chiral agent B causes the composition layer 12.
  • the induced spiral direction is right-handed.
  • the absolute value of the spiral-inducing force of the chiral agent A and the absolute value of the spiral-inducing force of the chiral agent B are the same. Therefore, the weighted average spiral inducing force of the chiral agent in the composition layer before light irradiation is 0.
  • the vertical axis represents “the spiral-inducing force of the chiral agent ( ⁇ m -1 ) ⁇ the concentration of the chiral agent (mass%)”, and the farther the value is from zero, the larger the spiral-inducing force.
  • the relationship between the chiral agent A and the chiral agent B in the composition layer before light irradiation corresponds to the time when the light irradiation amount is 0, and "the spiral inducing force of the chiral agent A ( ⁇ m -1 ) ⁇ ".
  • the absolute value of "concentration of chiral agent A (% by mass)” and “spiral inducing force of chiral agent B ( ⁇ m -1 ) x concentration of chiral agent B (% by mass)” correspond to the same state. That is, the spiral-inducing forces of both the chiral agent A that induces left-handed winding and the chiral agent B that induces right-handed winding are canceled out.
  • the composition layer 12 after the step 3A in which such a change in the weighted average spiral inducing force is generated is heat-treated to promote the reorientation of the liquid crystal compound, as shown in FIG. 3, the upper side is shown.
  • the liquid crystal compound LC is twist-oriented along a spiral axis extending along the thickness direction of the composition layer 12.
  • the polymerization of the liquid crystal compound proceeds during the step 3A and the orientation state of the liquid crystal compound is fixed, so that the reorientation of the liquid crystal compound is not possible. Does not progress.
  • step 4A a plurality of regions having different orientation states of the liquid crystal compounds are formed along the thickness direction of the composition layer.
  • chiral agent A a chiral agent whose spiral-inducing force is increased by light irradiation may be used.
  • the spiral-inducing force induced by the chiral agent A increases due to light irradiation, and the liquid crystal compound is twisted or oriented in the swirling direction induced by the chiral agent A.
  • FIGS. 4 and 5 above the mode in which the chiral agent A and the chiral agent B are used in combination has been described, but the mode is not limited to this mode. For example, it may be an embodiment in which two kinds of chiral agents A are used.
  • the chiral agent A1 that induces left-handed winding and the chiral agent A2 that induces right-handed winding may be used in combination.
  • the chiral agents A1 and A2 may be chiral agents whose spiral-inducing force increases or may be chiral agents whose spiral-inducing force decreases, respectively.
  • a chiral agent that induces left-handed winding and whose spiral-inducing force increases by light irradiation and a chiral agent that induces right-handed winding and whose spiral-inducing force decreases by light irradiation are used in combination. You may.
  • the heat treatment is carried out at a temperature higher than that at the time of light irradiation.
  • the difference between the temperature of the heat treatment and the temperature at the time of light irradiation is preferably 5 ° C. or higher, more preferably 10 to 110 ° C., and even more preferably 20 to 110 ° C.
  • the temperature of the heat treatment is preferably higher than the temperature at the time of light irradiation, and is preferably a temperature at which the unfixed liquid crystal compound in the composition layer is oriented, and more specifically, it is often 35 to 250 ° C. More often, the temperature is 50 to 150 ° C., more often, the temperature is more than 50 ° C. and 150 ° C. or lower, and 60 to 130 ° C. is particularly common.
  • the heating time is often 0.01 to 60 minutes, and more often 0.03 to 5 minutes.
  • the absolute value of the weighted average spiral-inducing force of the chiral agent in the composition layer after light irradiation is not particularly limited, but the weighted average spiral-inducing force of the chiral agent in the composition layer after light irradiation and before light irradiation.
  • the absolute value of the difference from the weighted average spiral inducing force is preferably 0.05 ⁇ m -1 or more, more preferably 0.05 to 10.0 ⁇ m -1 , and even more preferably 0.1 to 10.0 ⁇ m -1 .
  • Step 5A is a step of subjecting the composition layer to a curing treatment after step 4A to form an optically anisotropic layer having a plurality of regions having different orientation states of the liquid crystal compounds along the thickness direction.
  • the orientation state of the liquid crystal compound in the composition layer is fixed, and as a result, a predetermined optically anisotropic layer is formed.
  • the composition layer 12 shown in FIG. 3 described above is cured, the alignment state of the liquid crystal compound twisted and oriented along the spiral axis extending along the thickness direction is fixed.
  • An optically anisotropic layer having a first region thereof and a second region formed by fixing the orientation state of the homogenically oriented liquid crystal compound along the thickness direction is formed.
  • the method of the curing treatment is not particularly limited, and examples thereof include a photo-curing treatment and a thermosetting treatment.
  • the light irradiation treatment is preferable, and the ultraviolet irradiation treatment is more preferable.
  • a light source such as an ultraviolet lamp is used for ultraviolet irradiation.
  • the irradiation amount of light (for example, ultraviolet rays) is not particularly limited, but is generally preferably about 100 to 800 mJ / cm 2 .
  • the atmosphere at the time of light irradiation is not particularly limited, and light irradiation may be carried out under air, or light irradiation may be carried out under an inert atmosphere. In particular, light irradiation is preferably carried out at an oxygen concentration of less than 1% by volume.
  • the temperature conditions at the time of photocuring are not particularly limited as long as the temperature is such that the orientation state of the liquid crystal compound in step 4A is maintained, and the temperature and light of the heat treatment in step 4A are sufficient.
  • the difference from the temperature at the time of the curing treatment is preferably 100 ° C. or less, more preferably 80 ° C. or less. It is preferable that the temperature of the heat treatment in step 4A and the temperature of the photohardening treatment are the same, or the temperature of the photohardening treatment is lower.
  • the orientation state of the liquid crystal compound is fixed.
  • the "fixed" state is the most typical and preferable state in which the orientation of the liquid crystal compound is maintained. It is not limited to this, and specifically, in the temperature range of 0 to 50 ° C., and more severely, -30 to 70 ° C., the layer has no fluidity and is oriented by an external field or an external force. It is more preferable that the fixed orientation morphology can be kept stable without causing a change. In the optically anisotropic layer, it is no longer necessary for the composition in the layer to finally exhibit liquid crystallinity.
  • the thickness of the optically anisotropic layer is not particularly limited, but is preferably 0.05 to 10 ⁇ m, more preferably 0.1 to 8.0 ⁇ m, and even more preferably 0.2 to 6.0 ⁇ m.
  • An optically anisotropic layer having a second region formed by fixing the compound along the thickness direction is produced, but the present invention is not limited to the above embodiment.
  • the twisting orientation of the liquid crystal compound may be a left twist. That is, the direction of the twist orientation of the liquid crystal compound may be a left twist (counterclockwise twist) or a right twist (clockwise twist).
  • the orientation state of the liquid crystal compound in the second region may be an orientation other than the homogenius orientation, and when the liquid crystal compound is a rod-shaped liquid crystal compound, the orientation state thereof is, for example, a nematic orientation (nematic phase).
  • nematic orientation nematic phase
  • smectic orientation state forming smectic phase
  • cholesteric orientation state forming cholesteric phase
  • hybrid orientation hybrid orientation.
  • examples of the orientation state include nematic orientation, columnar orientation (a state in which a columnar phase is formed), and cholesteric orientation.
  • a known method can be mentioned. For example, a method of observing the cross section of the optically anisotropic layer with a polarizing microscope to identify the orientation state of the liquid crystal compound can be mentioned.
  • the optically anisotropic layer has regions in which the orientation states of the two liquid crystal compounds are different, but the present invention is not limited to the above embodiment, and the optically anisotropic layer is not limited to the above embodiment. It may have three or more regions in which the orientation state of the liquid crystal compound is different.
  • the optically anisotropic layer has regions having different orientation states of the two liquid crystal compounds, the ratio of the thickness of the thick region of the two regions to the thickness of the thin region of the two regions is particularly high. Although not limited, it is preferably 1 to 9 or less, and more preferably 1 to 4 or less. When the thicknesses of the two regions are the same, the above ratio is 1.
  • the optically anisotropic layer in the first embodiment has a first region in which the orientation state of the liquid crystal compound twisted and oriented along a spiral axis extending along the thickness direction is fixed, and a spiral extending along the thickness direction.
  • the optically anisotropic layer may have a second region along the axis, which is formed by fixing the orientation state of the twist-oriented liquid crystal compound at a twist angle different from that of the first region, along the thickness direction.
  • the spiral-inducing force changed in the region in the composition layer having a high oxygen concentration (upper region 120B in FIG. 7), and after performing step 5A, as a result, the angle of the twist angle of the liquid crystal compound was changed. Different regions can be formed.
  • the optical characteristics in the optically anisotropic layer in the first embodiment are not particularly limited, and the optimum value is selected according to the application.
  • the first region in which the orientation state of the liquid crystal compound twisted and oriented along the spiral axis extending along the thickness direction is fixed and the orientation state of the anisotropically oriented liquid crystal compound, which are produced by the above-mentioned procedure, and the orientation state of the anisotropically oriented liquid crystal compound are described below.
  • the case of an optically anisotropic layer having a second region formed by fixing the above in the thickness direction will be described in detail.
  • the optically anisotropic layer can be suitably applied to a circular polarizing plate. Therefore, it is preferable that the first region satisfies the following formula (1A-1). Equation (1A-1) 100 nm ⁇ ⁇ n1d1 ⁇ 240 nm Among them, it is more preferable to satisfy the formula (1A-2), and it is further preferable to satisfy the formula (1A-3). Equation (1A-2) 120 nm ⁇ ⁇ n 1d1 ⁇ 220 nm Equation (1A-3) 140 nm ⁇ ⁇ n 1d1 ⁇ 200 nm
  • the absolute value of the twist angle of the liquid crystal compound in the first region is not particularly limited, but 50 to 110 ° is preferable, and 60 to 100 ° is more preferable, in that the optically anisotropic layer can be suitably applied to the circular polarizing plate.
  • the twisting orientation of the liquid crystal compound means that one surface of the first region (the surface on the substrate 10 side in FIG. 3) to the other surface (the substrate in FIG. 3) is oriented with the thickness direction of the first region as the axis. It is intended that the liquid crystal compound up to (the surface opposite to the 10 side) is twisted.
  • the twist angle is the angle formed by the molecular axis of the liquid crystal compound on one surface of the first region (long axis in the case of a rod-shaped liquid crystal compound) and the molecular axis of the liquid crystal compound on the other surface of the first region. Means.
  • the twist angle is measured by using Axoscan of Axometrics and using the device analysis software of Axoschan.
  • the optically anisotropic layer is suitably applied to the circular polarizing plate.
  • the second region satisfies the following formula (2A-1). Equation (2A-1) 100 nm ⁇ ⁇ n2d2 ⁇ 240 nm Among them, it is more preferable to satisfy the formula (2A-2), and it is further preferable to satisfy the formula (2A-3). Equation (2A-2) 120 nm ⁇ ⁇ n 2d 2 ⁇ 220 nm Equation (2A-3) 140 nm ⁇ ⁇ n 2d2 ⁇ 200 nm
  • the second region is a region formed by fixing the orientation state of the homogenically oriented liquid crystal compound.
  • the definition of homogenius orientation is as described above.
  • ⁇ n1d1 and ⁇ n2d2 are not particularly limited, -50 to 50 nm is preferable, and -30 to 30 nm is more preferable in that the optically anisotropic layer can be suitably applied to a circular polarizing plate.
  • two regions are included in the optically anisotropic layer according to the first embodiment, in which the orientation state of the liquid crystal compound twisted and oriented along the spiral axis extending along the thickness direction is fixed, and one region is defined as a region.
  • a and the other region are the region B, when the thickness of the region A is dA and the refractive index anisotropic layer of the region A measured at a wavelength of 550 nm is ⁇ A, the region A is a circular optically anisotropic layer. It is preferable to satisfy the following formula (3A-1) in that it can be suitably applied to a polarizing plate.
  • Equation (3A-1) 205 nm ⁇ ⁇ nAdA ⁇ 345 nm Among them, it is more preferable to satisfy the formula (3A-2), and it is further preferable to satisfy the formula (3A-3).
  • Equation (3A-2) 225 nm ⁇ ⁇ nAdA ⁇ 325 nm
  • Equation (3A-3) 245 nm ⁇ ⁇ nAdA ⁇ 305 nm
  • the absolute value of the twist angle of the liquid crystal compound in the region A is not particularly limited, but it is preferably more than 0 ° and 60 ° or less, more preferably 10 to 50 °, in that the optically anisotropic layer can be suitably applied to the circular polarizing plate. ..
  • the region B can be suitably applied to the circularly polarizing plate. It is preferable to satisfy 4A-1). Equation (4A-1) 70 nm ⁇ ⁇ nB dB ⁇ 210 nm Among them, it is more preferable to satisfy the formula (4A-2), and it is further preferable to satisfy the formula (4A-3). Equation (4A-2) 90 nm ⁇ ⁇ nB dB ⁇ 190 nm Equation (4A-3) 110 nm ⁇ ⁇ nB dB ⁇ 170 nm
  • the absolute value of the twist angle of the liquid crystal compound in the region B is not particularly limited, but 50 to 110 ° is preferable, and 60 to 100 ° is more preferable, in that the optically anisotropic layer can be suitably applied to the circular polarizing plate.
  • the region where the optically anisotropic layer formed in the first embodiment of the method for producing an optically anisotropic layer of the present invention differs in the orientation state of the liquid crystal compound along the thickness direction is 2
  • the two regions are referred to as region X and region Y
  • the slow axis on the surface of the region X on the region Y side and the slow axis on the surface of the region Y on the region X side are parallel. In many cases.
  • optical properties in the optically anisotropic layer in the first embodiment are not limited to those described above, and for example, when the optically anisotropic layer has two regions in which the orientation state of the liquid crystal compound is different along the thickness direction.
  • the two regions satisfy the optical characteristics (relationship between the twist angle of the liquid crystal compound, ⁇ nd, ReB, and the slow axis) of the first optically anisotropic layer and the second optically anisotropic layer described in Patent No. 5960743, respectively. Is preferable.
  • the two regions are the first optically anisotropic layer and the second optically anisotropic layer described in Patent No. 5753922. It is preferable to satisfy the optical characteristics (relationship between the twist angle of the liquid crystal compound, ⁇ n1d1, ⁇ n2d2, and the slow axis).
  • the optically anisotropic layer in the first embodiment preferably exhibits reverse wavelength dispersibility. That is, Re (450), which is an in-plane retardation measured at a wavelength of 450 nm of the optically anisotropic layer, and Re (550), which is an in-plane retardation measured at a wavelength of 550 nm of the optically anisotropic layer, are optically anisotropic. It is preferable that Re (650), which is the in-plane retardation measured at a layer wavelength of 650 nm, has a relationship of Re (450) ⁇ Re (550) ⁇ Re (650).
  • the optical characteristics of the optically anisotropic layer in the first embodiment are not particularly limited, but it is preferable that the optical anisotropic layer functions as a ⁇ / 4 plate.
  • the ⁇ / 4 plate is a plate having a function of converting linearly polarized light of a specific wavelength into circularly polarized light (or converting circularly polarized light into linearly polarized light), and the in-plane retardation Re ( ⁇ ) at a specific wavelength of ⁇ nm is Re.
  • a plate (optically anisotropic layer) that satisfies ( ⁇ ) ⁇ / 4.
  • This equation may be achieved at any wavelength in the visible light region (eg, 550 nm), but the in-plane retardation Re (550) at a wavelength of 550 nm satisfies the relationship 110 nm ⁇ Re (550) ⁇ 180 nm. Is preferable.
  • the second embodiment of the method for producing an optically anisotropic layer of the present invention comprises the following steps 1B to 5B.
  • an optically anisotropic layer having a region formed by fixing the cholesteric liquid crystal phase is formed.
  • Step 1B Forming a composition layer containing at least a photosensitive chiral agent whose spiral-inducing force changes by light irradiation and a liquid crystal compound having a polymerizable group
  • Step 2B Heat-treating the composition layer.
  • Step 3B to form a cholesteric liquid crystal phase by orienting the liquid crystal compound in the composition layer After step 2B, light is applied to the composition layer under the condition of an oxygen concentration of 1% by volume or more.
  • the total content of the chiral agent (total content of all chiral agents) in the composition layer is more than 5.0% by mass with respect to the total mass of the liquid crystal compound. Is preferable.
  • the difference between the first embodiment and the second embodiment is mainly in the content of the chiral agent.
  • Step 1B is a step of forming a composition layer containing at least a photosensitive chiral agent whose spiral-inducing force is changed by light irradiation and a liquid crystal compound having a polymerizable group.
  • a composition layer to be subjected to a light irradiation treatment described later is formed.
  • the chiral agent (chiral agent A and chiral agent B) and the liquid crystal compound contained in the composition layer are as described in step 1A.
  • the composition layer may contain other components other than the chiral agent and the liquid crystal compound.
  • a chiral agent is contained in the composition layer so that the cholesteric liquid crystal phase is formed in step 2B described later.
  • the total content of the chiral agent (total content of all chiral agents) in the composition layer is not particularly limited, but the total mass of the liquid crystal compound is easy to control in that the orientation state of the liquid crystal compound is easily controlled.
  • more than 5.0% by mass is preferable, 5.5% by mass or more is more preferable, and 6.0% by mass or more is further preferable.
  • the upper limit is not particularly limited, but is preferably 25% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less.
  • the content of the chiral agent A in the chiral agent is not particularly limited, but is preferably 5 to 95% by mass, preferably 10 to 90% by mass, based on the total mass of the chiral agent, in that the orientation state of the liquid crystal compound can be easily controlled. Is more preferable.
  • the absolute value of the spiral-inducing force of the chiral agent in the composition layer formed in step 1B is preferably 10 ⁇ m -1 or more, more preferably 15 ⁇ m -1 or more, still more preferably 20 ⁇ m -1 or more.
  • the upper limit is not particularly limited, but in many cases it is 250 ⁇ m -1 or less, and in many cases it is 200 ⁇ m -1 or less.
  • the absolute value of the weighted average spiral inducing force of the chiral agents in the composition layer formed in step 1B is preferably within the above range.
  • the liquid crystal compound in the composition is cholesterically oriented by the step 2B.
  • the definition of the weighted average spiral induced force is as described above.
  • Examples of the method for forming the composition layer in step 1B include the same forming method as the method for forming the composition layer in step 1A described above.
  • Step 2B is a step of heat-treating the composition layer to orient the liquid crystal compound in the composition layer to form a cholesteric liquid crystal phase.
  • the liquid crystal compound in the composition layer is in a predetermined orientation state.
  • the heat treatment conditions the optimum conditions are selected according to the liquid crystal compound used. Among them, the heating temperature is often 25 to 250 ° C, more often 40 to 150 ° C, and even more often 50 to 130 ° C.
  • the heating time is often 0.1 to 60 minutes, and more often 0.2 to 5 minutes.
  • Step 3B is a step of irradiating the composition layer with light for 50 seconds or less and 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more after the step 2B.
  • the embodiment shown in FIG. 8 corresponds to the embodiment in which the liquid crystal compound forms a cholesteric liquid crystal phase.
  • step 3B under the condition that the oxygen concentration is 1% by volume or more, light is irradiated from the direction opposite to the composition layer 220 side of the substrate 10 (the direction of the white arrow in FIG. 8). I do. Although the light irradiation is carried out from the substrate 10 side in FIG.
  • the composition layer 220 side it may be carried out from the composition layer 220 side.
  • the surface of the upper region 220B is on the air side, so that the upper region 220B
  • the oxygen concentration in the lower region 220A is high, and the oxygen concentration in the lower region 220A is low. Therefore, when the composition layer 220 is irradiated with light, the polymerization of the liquid crystal compound easily proceeds in the lower region 220A, and the orientation state of the liquid crystal compound is fixed.
  • the chiral agent A is also present in the lower region 220A, and the chiral agent A is also exposed to light, and the spiral inducing force changes.
  • the orientation state of the liquid crystal compound is fixed in the lower region 220A, even if step 4B of heat-treating the light-irradiated composition layer, which will be described later, is performed, the orientation state of the liquid crystal compound remains. No change occurs.
  • the oxygen concentration is high in the upper region 220B, even if light irradiation is performed, the polymerization of the liquid crystal compound is inhibited by the oxygen, and the polymerization is difficult to proceed.
  • step 4B described later the orientation state of the liquid crystal compound changes along the changed spiral-induced force. That is, by carrying out step 3B, the fixation of the orientation state of the liquid crystal compound is likely to proceed in the substrate-side region (lower region) of the composition layer. Further, in the region opposite to the substrate side (upper region) of the composition layer, the fixation of the orientation state of the liquid crystal compound is difficult to proceed, and the spiral inducing force changes according to the exposed chiral agent A. Will be.
  • step 3B The various conditions of light irradiation (oxygen concentration, irradiation time, irradiation amount, etc.) in step 3B are the same as the various conditions of light irradiation in step 3A described above.
  • Step 4B is a step of subjecting the composition layer to a heat treatment at a temperature higher than that at the time of light irradiation after the step 3B.
  • the orientation state of the liquid crystal compound changes in the region where the spiral-inducing force of the chiral agent A in the composition layer irradiated with light changes.
  • the composition layer after step 3B is heat-treated at a temperature higher than that at the time of irradiation to orient the liquid crystal compound in the composition layer not fixed in step 3B. It is a process to make it.
  • the mechanism of this process will be described with reference to the drawings.
  • step 3B when step 3B is carried out on the composition layer 220 shown in FIG. 8, the orientation state of the liquid crystal compound is fixed in the lower region 220A, whereas the orientation state of the liquid crystal compound is fixed in the upper region 220B.
  • the polymerization is difficult to proceed, and the orientation of the liquid crystal compound is not fixed.
  • the spiral-inducing force of the chiral agent A changes in the upper region 220B.
  • the force for twisting the liquid crystal compound changes in the upper region 220B as compared with the state before light irradiation. This point will be described in more detail.
  • the composition layer 220 contains the chiral agent A whose induced spiral direction is left-handed and whose spiral-inducing force is reduced by light irradiation will be described in detail.
  • the spiral inducing force of the chiral agent A decreases depending on the amount of light irradiation as shown in FIG. 10
  • the spiral inducing force of the chiral agent in the upper region 220B is small.
  • the composition layer 220 after the step 3B in which such a change in the spiral inducing force is generated is heat-treated to promote the reorientation of the liquid crystal compound, as shown in FIG.
  • the upper region 220B In the spiral pitch of the cholesteric liquid crystal layer becomes large.
  • the polymerization of the liquid crystal compound proceeds during step 3B and the orientation state of the liquid crystal compound is fixed, so that the reorientation of the liquid crystal compound is not possible. Does not progress.
  • step 4B a plurality of cholesteric liquid crystal phases having different spiral pitches are formed along the thickness direction of the composition layer.
  • chiral agent A a chiral agent whose spiral-inducing force is increased by light irradiation may be used.
  • FIGS. 8 and 9 an embodiment in which the chiral agent induced as the chiral agent A has a left-handed spiral direction has been described, but the present invention is not limited to this embodiment.
  • a chiral agent whose spiral direction induced as the chiral agent A is right-handed may be used.
  • FIGS. 8 and 9 the embodiment in which only one kind of chiral agent A is used has been described, but the embodiment is not limited to this embodiment. For example, it may be an embodiment in which two kinds of chiral agents A are used, or an embodiment in which the chiral agent A and the chiral agent B are used in combination.
  • the heat treatment is carried out at a temperature higher than that at the time of light irradiation.
  • the difference between the temperature of the heat treatment and the temperature at the time of light irradiation is preferably 5 ° C. or higher, more preferably 10 to 110 ° C., and even more preferably 20 to 110 ° C.
  • the temperature of the heat treatment is higher than the temperature at the time of light irradiation, and is preferably a temperature at which the non-fixed liquid crystal compound in the composition layer is oriented, and more specifically, it is often 40 to 250 ° C. More often, the temperature is 50 to 150 ° C., more often, the temperature is more than 50 ° C. and 150 ° C. or lower, and 60 to 130 ° C. is particularly common.
  • the heating time is often 0.01 to 60 minutes, and more often 0.03 to 5 minutes.
  • the absolute value of the spiral-inducing force of the chiral agent in the composition layer after light irradiation is not particularly limited, but the spiral-inducing force of the chiral agent in the composition layer after light irradiation and the spiral-inducing force before light irradiation are used.
  • the absolute value of the difference is preferably 0.05 ⁇ m -1 or more, more preferably 0.05 to 10.0 ⁇ m -1 , and even more preferably 0.1 to 10.0 ⁇ m -1 .
  • the absolute value of the difference between the weighted average spiral-inducing force of the chiral agents in the composition layer after light irradiation and the weighted average spiral-inducing force before light irradiation is preferable, 0.05 to 10.0 ⁇ m -1 is more preferable, and 0.1 to 10.0 ⁇ m -1 is even more preferable.
  • Step 5B is a step of subjecting the composition layer to a curing treatment after step 4B to form an optically anisotropic layer having a plurality of regions having different orientation states of the liquid crystal compounds along the thickness direction.
  • the orientation state of the liquid crystal compound in the composition layer is fixed, and as a result, a predetermined optically anisotropic layer is formed.
  • the optically anisotropic layer is formed by fixing the cholesteric liquid crystal phase, and has a plurality of regions in which the spiral pitch of the cholesteric liquid crystal phase is different along the thickness direction. Layers are formed. The length of the spiral pitch in each region formed is often constant.
  • this step it is an optically anisotropic layer in which the cholesteric liquid crystal phase is fixed, and has a plurality of regions in which the spiral pitch of the cholesteric liquid crystal phase is different along the thickness direction, and each region.
  • An optically anisotropic layer having a constant spiral pitch can be formed.
  • Examples of the curing treatment method in step 5B include the curing treatment method in step 5A.
  • the thickness of the optically anisotropic layer is not particularly limited, but is preferably 0.05 to 10 ⁇ m, more preferably 0.1 to 8.0 ⁇ m, and even more preferably 0.2 to 6.0 ⁇ m.
  • the optically anisotropic layer formed by the above method which is formed by fixing the cholesteric liquid crystal phase and has a plurality of regions having different spiral pitches of the cholesteric liquid crystal phase along the thickness direction.
  • the selective reflection center wavelength derived from the cholesteric liquid crystal phase in each region is different.
  • the optically anisotropic layer has an optical difference having a region in which a cholesteric liquid crystal phase that reflects blue light is fixed and a region in which a cholesteric liquid crystal phase that reflects green light is fixed along the thickness direction.
  • the selective reflection center wavelength is defined as the half-value transmittance expressed by the following formula, where T min (%) is the minimum value of the transmittance of the target object (member): T 1 . It refers to the average value of two wavelengths indicating / 2 (%).
  • T 1/2 100- (100-T min ) ⁇ 2
  • the light in the wavelength range of 420 nm or more and less than 500 nm is blue light (B light)
  • the light in the wavelength range of 500 nm or more and less than 600 nm is green light (G light)
  • the light has a wavelength of 600 nm or more and less than 700 nm.
  • the light in the region is red light (R light).
  • the optically anisotropic layer has regions in which the orientation states of the two liquid crystal compounds are different, but the present invention is not limited to the above embodiment, and the optically anisotropic layer is not limited to the above embodiment. It may have three or more regions in which the orientation state of the liquid crystal compound is different. As described above, the optically anisotropic layer having three or more regions having different liquid crystal compound orientation states can be formed, for example, by changing the conditions of step 3B and performing the process a plurality of times.
  • the optically anisotropic layer as described above includes, for example, a region in which the cholesteric liquid crystal phase that reflects blue light is fixed and a region in which the cholesteric liquid crystal phase that reflects green light is fixed along the thickness direction. And an optically anisotropic layer having a region formed by fixing a cholesteric liquid crystal phase that reflects red light.
  • the third embodiment of the method for producing an optically anisotropic layer of the present invention comprises the following steps 1C to 5C.
  • the optically anisotropic layer has a region in which the orientation direction of the liquid crystal compound is inclined or perpendicular to the layer surface and the orientation state of the liquid crystal compound is fixed. It is formed.
  • Step 1C Forming a composition layer containing a photosensitive compound whose polarity changes by light irradiation and a liquid crystal compound having a polymerizable group
  • Step 2C The composition layer is heat-treated to be contained in the composition layer.
  • Step 3C for orienting the liquid crystal compound After step 2C, the composition layer is irradiated with light for 50 seconds or less and at 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more.
  • Step 4C After step 3C, the composition layer is heat-treated at a temperature higher than that at the time of light irradiation.
  • Step 5C After step 4C, the composition layer is cured and the orientation state of the liquid crystal compound is applied. Step of forming an optically anisotropic layer having a plurality of regions having different regions along the thickness direction
  • a photosensitive compound whose polarity is changed by light irradiation is used.
  • Step 1C is a step of forming a composition layer containing a photosensitive compound whose polarity changes with light irradiation and a liquid crystal compound having a polymerizable group.
  • a composition layer to be subjected to a light irradiation treatment described later is formed.
  • the liquid crystal compound contained in the composition layer is as described in step 1A.
  • the composition layer may contain other components as described in the above-mentioned step 1A.
  • the composition layer of step 1C contains a photosensitive compound whose polarity changes with light irradiation (hereinafter, also referred to as “specific photosensitive compound”).
  • the photosensitive compound whose polarity changes by light irradiation is a compound whose polarity changes before and after light irradiation.
  • the composition layer containing such a specific photosensitive compound is irradiated with light in step 1C, the polarity of the specific compound changes in the region on the air side in the composition layer, and step 4C
  • the orientation direction of the liquid crystal compound becomes inclined or perpendicular to the layer surface as the polarity changes.
  • the change in the polarity of the specific photosensitive compound may be a change that makes the specific photosensitive compound hydrophilic or a change that makes the specific photosensitive compound hydrophobic.
  • the change of hydrophilicity is preferable from the viewpoint that the orientation state of the liquid crystal compound can be easily formed in which the orientation direction of the liquid crystal compound is inclined or perpendicular to the layer surface.
  • the specific photosensitive compound that becomes hydrophilic by light irradiation a compound having a group that produces a hydrophilic group by light irradiation is preferable.
  • the type of the hydrophilic group is not particularly limited and may be any of a cationic group, an anionic group and a nonionic group, and more specifically, a carboxylic acid group, a sulfonic acid group and a phosphonic acid group. Examples thereof include an amino group, an ammonium group, an amide group, a thiol group, and a hydroxy group.
  • the specific photosensitive compound preferably has a fluorine atom or a silicon atom.
  • the specific photosensitive compound has the above-mentioned atoms, the specific photosensitive compound is likely to be unevenly distributed near the surface of the composition layer, and a desired optically anisotropic layer is likely to be formed.
  • a compound represented by the formula (X) is preferable.
  • T represents an n + m-valent aromatic hydrocarbon group.
  • Sp represents a single bond or a divalent linking group.
  • Hb represents a fluorine-substituted alkyl group having 4 to 30 carbon atoms.
  • m represents an integer from 1 to 4 and represents n represents an integer from 1 to 4 and represents A represents a group represented by the following formula (Y).
  • R 1 to R 5 independently represent a hydrogen atom or a monovalent substituent. * Represents a binding site.
  • the formula (X) when a plurality of the above Sp, the above Hb, or the above A are present, the plurality of Sps, the plurality of Hbs, or the plurality of A's are each present. It may be the same or different.
  • T represents an n + m-valent aromatic hydrocarbon group.
  • the aromatic hydrocarbon group is not particularly limited as long as it is a group obtained by removing n + m hydrogen atoms from the aromatic hydrocarbon ring, but the number of carbon atoms is preferably 6 to 22, and more preferably 6 to 14. It is preferably 6 to 10, and more preferably 6 to 10.
  • the aromatic hydrocarbon group is particularly preferably a benzene ring.
  • substituents examples include an alkyl group (for example, an alkyl group having 1 to 8 carbon atoms), an alkoxy group (for example, an alkoxy group having 1 to 8 carbon atoms), and a halogen atom (for example, a fluorine atom, a chlorine atom and a bromine atom). , And an iodine atom), a cyano group, and an acyloxy group (eg, an acetoxy group).
  • Sp represents a single bond or a divalent linking group, and is preferably a divalent linking group.
  • the divalent linking group is not particularly limited, but is a linear or branched alkylene group (preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, still more preferably 1 to 6 carbon atoms). Chain or branched alkenylene groups (preferably 2 to 20, more preferably 2 to 10, more preferably 2 to 6 carbons), straight or branched alkinylene groups (preferably 2 to 20, carbons 2-20, More preferably 2 to 10 carbon atoms, still more preferably 2 to 6 carbon atoms), or a group in which one or more -CH 2 -is substituted with the "divalent organic group" shown below.
  • divalent organic group selected from the group consisting of.
  • divalent organic group one or two or more -CH 2 -are substituted with the "divalent organic group" shown below from the viewpoint of further improving the solubility, and the number of carbon atoms is 1. ⁇ 10 alkylene groups are preferred.
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Hb represents a fluorine-substituted alkyl group having 4 to 30 carbon atoms. Hb preferably has 4 to 20 carbon atoms, and more preferably 4 to 10 carbon atoms.
  • the fluorine-substituted alkyl group may be a perfluoroalkyl group in which all hydrogen atoms are substituted with fluorine atoms, or a fluoroalkyl group in which a part of hydrogen atoms is substituted with fluorine atoms. good.
  • the fluorine-substituted alkyl group may be chain-shaped, branched or cyclic, but is preferably chain-shaped or branched, and more preferably chain-shaped.
  • As the fluorine-substituted alkyl group a structure that is a perfluoroalkyl group is preferable.
  • q is preferably 0 to 6, more preferably 0 to 4, and even more preferably 0 to 3.
  • r is preferably 1 to 6, more preferably 1 to 4, and even more preferably 1 to 3. Further, the total number of carbon atoms in the portions other than the perfluoro group is preferably 10 or less.
  • n and m each independently represent an integer of 1 to 4. From the viewpoint of further progress of hydrophilization, n is preferably 2 or more. m is preferably 1 to 3, and more preferably 2.
  • A represents a group represented by the above formula (Y).
  • the formula (Y) will be described.
  • R 1 to R 5 independently represent a hydrogen atom or a monovalent substituent.
  • the monovalent substituent represented by R 1 to R 5 is not particularly limited.
  • Examples of the monovalent substituent represented by R 1 to R 4 include a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom), a hydroxyl group, a cyano group, and a substituted or unsubstituted amino group (for example).
  • a halogen atom for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom
  • a hydroxyl group for example, a cyano group, and a substituted or unsubstituted amino group (for example).
  • -N ( RA ) 2 the two RAs independently represent a hydrogen atom or a monovalent organic group (for example, an alkyl group having 1 to 5 carbon atoms as a monovalent organic group).
  • An alkoxy group having 1 to 8 carbon atoms for example, a methoxy group and an ethoxy group
  • RC RB is hydrogen
  • It represents an atomic or monovalent organic group (as a monovalent organic group, for example, an alkyl group having 1 to 5 carbon atoms)
  • RC is a monovalent organic group (as a monovalent organic group, for example, carbon).
  • Represents an alkyl group of number 1-5)) or -C ( O) N ( RD ) 2 (two RDs are independent hydrogen atoms or monovalent organic groups (eg, carbon number).
  • the above Sp A and the above Hb A are synonymous with Sp and Hb of the above formula (X), respectively, and the preferred embodiments thereof are also the same.
  • the formula (Y) when a plurality of R 1 to R 4 represent ⁇ Sp A ⁇ Hb A , the plurality of Sp As and the plurality of Hb A are the same. May also be different.
  • R 1 to R 4 are independent from each other in that the decomposition rate of the compound represented by the formula (X) by exposure is accelerated, the hydrophilicity is further promoted, and / or the orientation is further enhanced.
  • -OCH 3 or Sp A -Hb A More preferably, -OCH 3 or Sp A -Hb A.
  • OCH 3 since ether oxygen is contained in the structure (in particular, the position bonded to the benzene ring in the formula (Y) is the ether oxygen), it is represented by the formula (X) by exposure. The decomposition rate of the compound is faster, and the hydrophilization tends to proceed more.
  • -Sp A -Hb A the orientation tends to be further enhanced by the presence of Hb A.
  • R 1 to R 4 are independently of -OCH. It is preferably 3 or Sp B ⁇ Hb B , and more preferably R 2 and R 3 are independently ⁇ OCH 3 or Sp B ⁇ Hb B , respectively.
  • Sp B represents an alkylene group having 1 to 10 carbon atoms in which —CH 2 ⁇ is substituted with —O ⁇ .
  • ether oxygen is contained in the terminal on the side opposite to the side bonded to Hb B in Sp B (in other words, the terminal on the side connected to the benzene ring of the formula (Y)).
  • the effect of accelerating the decomposition rate is obtained more remarkably, and hydrophilization progresses more.
  • —CH 2 ⁇ in the alkylene group is substituted with a plurality of —O—s, it is preferable that —O—s are not adjacent to each other.
  • the alkylene group is more preferably 1 to 7 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 4 carbon atoms.
  • the alkylene group may be linear or branched, but is preferably linear.
  • the above Hb B represents a fluorine-substituted alkyl group having 4 to 30 carbon atoms.
  • the preferred embodiment of the above Hb B is the same as that of the above-mentioned Hb of the formula (X).
  • the formula (Y) when a plurality of R 1 to R 4 represent ⁇ Sp B ⁇ Hb B , the plurality of Sp Bs and the plurality of Hb Bs are the same. May be different.
  • R 1 to R 4 are-from the viewpoint that the decomposition rate of the compound represented by the formula (X) by exposure is accelerated, the hydrophilicity is further promoted, and the orientation is further enhanced.
  • Sp B -Hb B is preferable, and it is more preferable that both R 2 and R 3 are -Sp B -Hb B.
  • a structure represented by the following formula (Z) is preferable. Equation (Z) (C p F 2p + 1 )-(CH 2 ) q -O- (CH 2 ) r -O- *
  • p is preferably 4 to 30, more preferably 4 to 20, and even more preferably 4 to 10.
  • q is preferably 0 to 5, more preferably 0 to 4, and even more preferably 0 to 3.
  • r is preferably 1 to 5, more preferably 1 to 4, and even more preferably 1 to 3.
  • R 5 is preferably a hydrogen atom, a methyl group, an ethyl group, or an aromatic group.
  • the aromatic group is not particularly limited, but is preferably 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms, and even more preferably a phenyl group.
  • R 5 is preferably a methyl group, an ethyl group, or an aromatic group, and an ethyl group is preferable, because the decomposition rate of the compound represented by the formula (X) by exposure is accelerated and the hydrophilicity is further promoted.
  • an aromatic group is more preferable, and an aromatic group is even more preferable.
  • the compound represented by the above formula (X) may have a molecular structure having symmetry or may not have symmetry.
  • the symmetry here means any of point symmetry, line symmetry, and rotational symmetry, and asymmetry does not correspond to any of point symmetry, line symmetry, and rotational symmetry. Means things.
  • the content of the specific photosensitive compound in the composition layer can be appropriately set according to the characteristics (for example, retardation and wavelength dispersion) of the optically anisotropic layer to be formed.
  • the content of the specific photosensitive compound is preferably 0.01 to 10% by mass with respect to the total mass of the liquid crystal compound in that an optically anisotropic layer having a predetermined structure is more easily formed. More preferably, it is 05 to 5% by mass.
  • a composition layer containing the above-mentioned components is formed, but the procedure is not particularly limited.
  • a method of applying a composition containing the above-mentioned specific photosensitive compound and a liquid crystal compound having a polymerizable group onto a substrate and subjecting it to a drying treatment as necessary hereinafter, also simply referred to as “coating method”.
  • a method of separately forming a composition layer and transferring it onto a substrate can be mentioned.
  • the coating method is preferable from the viewpoint of productivity.
  • the coating method will be described in detail.
  • the composition used in the coating method includes the above-mentioned specific photosensitive compound, a liquid crystal compound having a polymerizable group, and other components used as necessary (for example, a polymerization initiator, a polymerizable monomer, and a surfactant). Activators, polymers, etc.) are included.
  • the content of each component in the composition is preferably adjusted to be the content of each component in the composition layer described above.
  • the coating method is not particularly limited, and examples thereof include a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method. If necessary, after the composition is applied, a treatment for drying the coating film applied on the substrate may be carried out. By carrying out the drying treatment, the solvent can be removed from the coating film.
  • the film thickness of the coating film is not particularly limited, but is preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 15 ⁇ m, and even more preferably 0.5 to 10 ⁇ m.
  • Step 2C is a step of heat-treating the composition layer to orient the liquid crystal compound in the composition layer.
  • the liquid crystal compound in the composition layer is in a predetermined orientation state.
  • the liquid crystal compound is homogenically oriented in the composition.
  • the heat treatment conditions the optimum conditions are selected according to the liquid crystal compound used. Among them, the heating temperature is often 25 to 250 ° C, more often 40 to 150 ° C, and even more often 50 to 130 ° C.
  • the heating time is often 0.1 to 60 minutes, and more often 0.2 to 5 minutes.
  • Step 3C is a step of irradiating the composition layer with light for 50 seconds or less and 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more after the step 2C.
  • the mechanism of this process will be described with reference to the drawings.
  • the composition layer contains a compound that becomes hydrophilic by light irradiation will be described as an example.
  • the liquid crystal compound LC is homogenically oriented. As shown in FIG.
  • step 3C under the condition that the oxygen concentration is 1% by volume or more, light is irradiated from the direction opposite to the composition layer 320 side of the substrate 10 (the direction of the white arrow in FIG. 11). I do. Although the light irradiation is carried out from the substrate 10 side in FIG. 11, it may be carried out from the composition layer 320 side. At that time, when the lower region 320A on the substrate 10 side of the composition layer 320 and the upper region 320B on the opposite side to the substrate 10 side are compared, the surface of the upper region 320B is on the air side, so that the upper region 320B The oxygen concentration in the lower region 320A is high, and the oxygen concentration in the lower region 320A is low.
  • the composition layer 320 when the composition layer 320 is irradiated with light, the polymerization of the liquid crystal compound easily proceeds in the lower region 320A, and the orientation state of the liquid crystal compound is fixed.
  • the specific photosensitive compound is also present in the lower region 320A, and the specific photosensitive compound is also exposed to light, and hydrophilicization progresses.
  • the alignment state of the liquid crystal compound is fixed in the lower region 320A, even if the step 4C in which the light-irradiated composition layer is heat-treated, which will be described later, the orientation state of the liquid crystal compound remains. No change occurs.
  • step 4C described later the orientation state of the liquid crystal compound changes due to the influence of the changed polarity. That is, by carrying out step 3C, the fixation of the orientation state of the liquid crystal compound is likely to proceed in the substrate-side region (lower region) of the composition layer. Further, in the region opposite to the substrate side (upper region) of the composition layer, it is difficult to fix the orientation state of the liquid crystal compound, and the polarity is changed according to the exposed specific photosensitive compound. Become.
  • step 3C oxygen concentration, irradiation time, irradiation amount, etc.
  • oxygen concentration, irradiation time, irradiation amount, etc. are the same as the various conditions of light irradiation in step 3A described above.
  • Step 4C is a step of subjecting the composition layer to a heat treatment at a temperature higher than that at the time of light irradiation after the step 3C.
  • the orientation state of the liquid crystal compound changes in the region where the polarity is changed by the specific photosensitive compound in the composition layer irradiated with light.
  • the composition layer after step 3C is heat-treated at a temperature higher than that at the time of irradiation to orient the liquid crystal compound in the composition layer not fixed in step 3C. It is a process to make it.
  • the mechanism of this process will be described with reference to the drawings.
  • step 3C when step 3C is carried out on the composition layer 320 shown in FIG. 11, the orientation state of the liquid crystal compound is fixed in the lower region 320A, whereas the orientation state of the liquid crystal compound is fixed in the upper region 320B.
  • the polymerization is difficult to proceed, and the orientation of the liquid crystal compound is not fixed.
  • the specific photosensitive compound is exposed to light and becomes hydrophilic.
  • the orientation direction of the liquid crystal compound is affected in the upper region 320B as compared with the state before light irradiation. This point will be described in more detail.
  • the composition layer contains a specific photosensitive compound that becomes hydrophilic by light irradiation
  • the composition layer contains a specific photosensitive compound that is hydrophilized by light irradiation
  • step 4C when step 4C is carried out, the liquid crystal compound is vertically oriented (homeotropic orientation) in the upper region 320B.
  • the specific photosensitive compound when the specific photosensitive compound is present near the surface of the composition layer, the liquid crystal compound tends to be vertically oriented.
  • step 3C the polymerization of the liquid crystal compound proceeds during step 3C and the orientation state of the liquid crystal compound is fixed, so that the reorientation of the liquid crystal compound occurs. Does not progress.
  • step 4C a region containing a liquid crystal compound whose orientation direction is inclined or perpendicular to the layer surface is formed.
  • the present invention is not limited to this embodiment.
  • the liquid crystal compound may be inclined or oriented.
  • the heat treatment is carried out at a temperature higher than that at the time of light irradiation.
  • the difference between the temperature of the heat treatment and the temperature at the time of light irradiation is preferably 5 ° C. or higher, more preferably 10 to 110 ° C., and even more preferably 20 to 110 ° C.
  • the temperature of the heat treatment is higher than the temperature at the time of light irradiation, and is preferably a temperature at which the non-fixed liquid crystal compound in the composition layer is oriented, and more specifically, it is often 40 to 250 ° C. More often, the temperature is 50 to 150 ° C., more often, the temperature is more than 50 ° C. and 150 ° C. or lower, and 60 to 130 ° C. is particularly common.
  • the heating time is often 0.01 to 60 minutes, and more often 0.03 to 5 minutes.
  • Step 5C is a step of subjecting the composition layer to a curing treatment after step 4C to form an optically anisotropic layer having a plurality of regions having different orientation states of the liquid crystal compounds along the thickness direction.
  • the orientation state of the liquid crystal compound in the composition layer is fixed, and as a result, a predetermined optically anisotropic layer is formed.
  • an optically anisotropic layer having a plurality of regions having different inclination angles in the orientation direction of the liquid crystal compound with respect to the layer surface is formed along the thickness direction.
  • An optically anisotropic layer having a region having a fixed orientation state can be formed.
  • Examples of the curing treatment method in step 5C include the curing treatment method in step 5A.
  • the thickness of the optically anisotropic layer is not particularly limited, but is preferably 0.05 to 10 ⁇ m, more preferably 0.1 to 8.0 ⁇ m, and even more preferably 0.2 to 6.0 ⁇ m.
  • the optical characteristics in the optically anisotropic layer in the third embodiment are not particularly limited, and the optimum value is selected according to the application.
  • a first region in which the orientation state of the homeotropically oriented liquid crystal compound is fixed and a second region in which the orientation state of the anisotropically oriented liquid crystal compound is fixed, which are produced by the above procedure, are defined.
  • the case of the optically anisotropic layer having along the thickness direction will be described in detail.
  • the optically anisotropic layer is suitable for a circular polarizing plate.
  • the first region preferably satisfies the following formula (1C-1) in that it can be applied and that light leakage in an oblique direction can be reduced when it is applied as an optical compensation plate of a liquid crystal display device. Equation (1C-1) 0 nm ⁇ ⁇ n 1d1 ⁇ 30 nm Above all, it is more preferable to satisfy the formula (1C-2).
  • Equation (1C-2) 0 nm ⁇ ⁇ n 1d1 ⁇ 20 nm
  • the retardation in the thickness direction at a wavelength of 550 nm in the first region of the optically anisotropic layer is preferably ⁇ 150 to ⁇ 20 nm, more preferably ⁇ 120 to ⁇ 20 nm.
  • the optically anisotropic layer is a circular polarizing plate. It is preferable that the second region satisfies the following formula (2C-1) in that it can be suitably applied and that it can be suitably applied to the optical compensation plate of the liquid crystal display device. That is, the in-plane retardation at a wavelength of 550 nm in the second region is preferably 100 to 180 nm.
  • Equation (2C-1) 100 nm ⁇ ⁇ n 2d2 ⁇ 180 nm Above all, it is more preferable to satisfy the formula (2C-2).
  • Equation (2C-2) 110 nm ⁇ ⁇ n 2d2 ⁇ 170 nm
  • the refractive index anisotropy ⁇ n2 means the refractive index anisotropy in the first region.
  • the optically anisotropic layer in the third embodiment preferably exhibits reverse wavelength dispersibility. That is, Re (450), which is an in-plane retardation measured at a wavelength of 450 nm of the optically anisotropic layer, and Re (550), which is an in-plane retardation measured at a wavelength of 550 nm of the optically anisotropic layer, are optically anisotropic. It is preferable that Re (650), which is the in-plane retardation measured at a wavelength of 650 nm of the layer, has a relationship of Re (450) ⁇ Re (550) ⁇ Re (650).
  • the optical characteristics of the optically anisotropic layer in the third embodiment are not particularly limited, but it is preferable that the optical anisotropic layer functions as a ⁇ / 4 plate or as an optical compensation plate of a liquid crystal display device.
  • the ⁇ / 4 plate is a plate having a function of converting linearly polarized light of a specific wavelength into circularly polarized light (or converting circularly polarized light into linearly polarized light), and the in-plane retardation Re ( ⁇ ) at a specific wavelength of ⁇ nm is Re.
  • a plate (optically anisotropic layer) that satisfies ( ⁇ ) ⁇ / 4.
  • This equation may be achieved at any wavelength in the visible light region (eg, 550 nm), but the in-plane retardation Re (550) at a wavelength of 550 nm satisfies the relationship of 100 nm ⁇ Re (550) ⁇ 180 nm. Is preferable.
  • the fourth embodiment of the method for producing an optically anisotropic layer of the present invention comprises the following steps 1D to 5D.
  • the region in which the oriented state in which the liquid crystal compound is oriented (for example, the horizontally oriented state) is fixed and the state in which the liquid crystal compound is not oriented (isotropic of the liquid crystal compound)
  • An optically anisotropic layer having a region formed by fixing the phase) along the thickness direction is formed.
  • Step 1D Forming a composition layer containing a liquid crystal compound having a polymerizable group
  • Step 2D A process of heat-treating the composition layer to orient the liquid crystal compound in the composition layer
  • Step 3D After step 2D
  • Step 4D After step 3D, the composition layer is irradiated with light for 50 seconds or less and 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more.
  • the heat treatment is performed at a temperature higher than that at the time of light irradiation and at a temperature at which the liquid crystal compound becomes an isotropic phase or higher.
  • Step of forming an optically anisotropic layer having a plurality of different regions along the thickness direction The procedure of each of the above steps will be described in detail below.
  • Step 1D is a step of forming a composition layer containing a liquid crystal compound having a polymerizable group. By carrying out this step, a composition layer to be subjected to a light irradiation treatment described later is formed.
  • the liquid crystal compound contained in the composition layer is as described in step 1A. Further, as described in the above-mentioned step 1A, the composition layer may contain other components other than the liquid crystal compound.
  • a composition layer containing the above-mentioned components is formed, but the procedure is not particularly limited.
  • a method of applying the above-mentioned composition containing a liquid crystal compound having a polymerizable group onto a substrate and subjecting it to a drying treatment as necessary hereinafter, also simply referred to as “coating method”
  • coating method examples thereof include a method of forming a layer and transferring it onto a substrate.
  • the coating method is preferable from the viewpoint of productivity.
  • the coating method will be described in detail.
  • the composition used in the coating method includes the above-mentioned liquid crystal compounds having a polymerizable group, and other components used as necessary (for example, a polymerization initiator, a polymerizable monomer, a surfactant, and the like. , Polymers, etc.) are included.
  • the content of each component in the composition is preferably adjusted to be the content of each component in the composition layer described above.
  • the coating method is not particularly limited, and examples thereof include a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method. If necessary, after the composition is applied, a treatment for drying the coating film applied on the substrate may be carried out. By carrying out the drying treatment, the solvent can be removed from the coating film.
  • the film thickness of the coating film is not particularly limited, but is preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 15 ⁇ m, and even more preferably 0.5 to 10 ⁇ m.
  • Step 2D is a step of heat-treating the composition layer to orient the liquid crystal compound in the composition layer.
  • the liquid crystal compound in the composition layer is in a predetermined orientation state.
  • the liquid crystal compound is homogenically oriented in the composition.
  • the heat treatment conditions the optimum conditions are selected according to the liquid crystal compound used. Among them, the heating temperature is often 25 to 250 ° C, more often 40 to 150 ° C, and even more often 50 to 130 ° C.
  • the heating time is often 0.1 to 60 minutes, and more often 0.2 to 5 minutes.
  • Step 3D is a step of irradiating the composition layer with light for 50 seconds or less and 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more after the step 2D.
  • the mechanism of this process will be described with reference to the drawings.
  • the liquid crystal compound LC is homogenically oriented in the composition layer.
  • step 3D under the condition that the oxygen concentration is 1% by volume or more, light is irradiated from the direction opposite to the composition layer 420 side of the substrate 10 (the direction of the white arrow in FIG. 13). I do. Although the light irradiation is carried out from the substrate 10 side in FIG.
  • the composition layer 420 may be carried out from the composition layer 420 side.
  • the surface of the upper region 420B is on the air side, so that the upper region 420B
  • the oxygen concentration in the lower region 420A is high, and the oxygen concentration in the lower region 420A is low. Therefore, when the composition layer 420 is irradiated with light, the polymerization of the liquid crystal compound easily proceeds in the lower region 420A, and the orientation state of the liquid crystal compound is fixed.
  • the orientation state of the liquid crystal compound does not change.
  • the oxygen concentration is high in the upper region 420B, even if light irradiation is performed, the polymerization of the liquid crystal compound is inhibited by the oxygen, and the polymerization is difficult to proceed. Therefore, when the step 4D described later is carried out, the orientation state of the liquid crystal compound changes. That is, by carrying out the step 3D, the fixation of the orientation state of the liquid crystal compound is likely to proceed in the substrate-side region (lower region) of the composition layer. Further, in the region opposite to the substrate side (upper region) of the composition layer, it is difficult to fix the orientation state of the liquid crystal compound, and the orientation state of the liquid crystal compound is changed by the step 4D described later.
  • step 3D oxygen concentration, irradiation time, irradiation amount, etc.
  • oxygen concentration, irradiation time, irradiation amount, etc. are the same as the various conditions of light irradiation in step 3A described above.
  • the step 4D is a step of subjecting the composition layer to a heat treatment after the step 3D at a temperature higher than that at the time of light irradiation and at a temperature higher than the temperature at which the liquid crystal compound becomes an isotropic phase.
  • the liquid crystal compound exhibits an isotropic phase in the upper region where the orientation state of the liquid crystal compound in the composition layer is not fixed.
  • step 3D when step 3D is performed on the composition layer 420 shown in FIG. 13, the orientation state of the liquid crystal compound is fixed in the lower region 420A, whereas the orientation state of the liquid crystal compound is fixed in the upper region 420B.
  • the polymerization is difficult to proceed, and the orientation of the liquid crystal compound is not fixed. Therefore, when step 4D is carried out, as shown in FIG. 14, since the polymerization of the liquid crystal compound has not progressed in the upper region 420B, the orientation state of the liquid crystal compound is broken and the phase becomes isotropic.
  • the polymerization of the liquid crystal compound proceeds during the step 3D and the orientation state of the liquid crystal compound is fixed, so that the reorientation of the liquid crystal compound occurs. Does not progress.
  • step 4D a region in which the alignment state (for example, the horizontal alignment state) of the liquid crystal compound is fixed along the thickness direction and a state in which the liquid crystal compound is not oriented (liquid crystal compound).
  • An optically anisotropic layer having a region formed by fixing the isotropic phase of the above is formed.
  • the heat treatment is carried out at a temperature higher than the temperature at the time of light irradiation and at a temperature higher than the temperature at which the liquid crystal compound becomes an isotropic phase.
  • the difference between the temperature of the heat treatment and the temperature at the time of light irradiation is preferably 5 ° C. or higher, more preferably 10 to 110 ° C., and even more preferably 20 to 110 ° C.
  • the temperature of the heat treatment is preferably higher than the temperature at the time of light irradiation, and is preferably a temperature in which the non-fixed liquid crystal compound in the composition layer is an isotropic phase, and more specifically, in the case of 40 to 250 ° C.
  • the temperature is 50 to 150 ° C., more often, more than 50 ° C. and 150 ° C. or lower, and 60 to 130 ° C. is particularly common.
  • the heating time is often 0.01 to 60 minutes, and more often 0.03 to 5 minutes.
  • Step 5D is a step of subjecting the composition layer to a curing treatment after step 4D to form an optically anisotropic layer having a plurality of regions having different orientation states of the liquid crystal compounds along the thickness direction.
  • the orientation state of the liquid crystal compound in the composition layer is fixed, and as a result, a predetermined optically anisotropic layer is formed.
  • Examples of the curing treatment method in step 5D include the curing treatment method in step 5A.
  • the thickness of the optically anisotropic layer is not particularly limited, but is preferably 0.05 to 10 ⁇ m, more preferably 0.1 to 8.0 ⁇ m, and even more preferably 0.2 to 6.0 ⁇ m.
  • a region in which the orientation state of the horizontally oriented liquid crystal compound is fixed and a region in which the liquid crystal compound exhibits an isotropic phase are fixed along the thickness direction.
  • the embodiment of the optically anisotropic layer having the above is described, the present invention is not limited to this embodiment as long as the liquid crystal compound contains a region in which the state of exhibiting an isotropic phase is fixed.
  • the orientation state of the liquid crystal compound is, for example, nematic orientation (state in which a nematic phase is formed) or smectic orientation (formation of a smectic phase).
  • orientation state examples include nematic orientation, columnar orientation (a state in which a columnar phase is formed), and cholesteric orientation. More specifically, an optical difference having a region in which the orientation state of the liquid crystal compound vertically oriented is fixed along the thickness direction and a region in which the state in which the liquid crystal compound exhibits an isotropic phase is fixed. A square layer may be formed.
  • an optically anisotropic layer having a region formed by fixing a cholesteric liquid crystal phase formed by using a liquid crystal compound and a region formed by fixing a state in which the liquid crystal compound exhibits an isotropic phase along the thickness direction. May be formed.
  • the optical characteristics of the optically anisotropic layer in the fourth embodiment are not particularly limited, but it is preferable that the optical anisotropic layer functions as a ⁇ / 4 plate.
  • the ⁇ / 4 plate is a plate having a function of converting linearly polarized light of a specific wavelength into circularly polarized light (or converting circularly polarized light into linearly polarized light), and the in-plane retardation Re ( ⁇ ) at a specific wavelength of ⁇ nm is Re.
  • a plate (optically anisotropic layer) that satisfies ( ⁇ ) ⁇ / 4.
  • This equation may be achieved at any wavelength in the visible light region (eg, 550 nm), but the in-plane retardation Re (550) at a wavelength of 550 nm satisfies the relationship 110 nm ⁇ Re (550) ⁇ 180 nm. Is preferable.
  • the optically anisotropic layer can be combined with various members.
  • the optically anisotropic layer may be combined with another optically anisotropic layer. That is, as shown in FIG. 15, a laminate 24 including the substrate 10, the optically anisotropic layer 20 manufactured by the above-mentioned manufacturing method, and another optically anisotropic layer 22 may be manufactured.
  • the laminated body 24 shown in FIG. 15 includes the substrate 10, the laminated body may not include the substrate.
  • the other optically anisotropic layer is not particularly limited, and examples thereof include A plates (positive A plate and negative A plate) and C plates (positive C plate and negative C plate).
  • the C plate is preferable because it can be easily applied to various uses (for example, a circular polarizing plate) described later.
  • the range of the absolute value of the retardation in the thickness direction at the wavelength of 550 nm of the C plate is not particularly limited, but is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • a plate and C plate are defined as follows. There are two types of A plates, a positive A plate (positive A plate) and a negative A plate (negative A plate), and the slow axis direction in the film plane (the direction in which the refractive index in the plane is maximized). ) Is nx, the refractive index in the direction orthogonal to the slow axis in the plane is ny, and the refractive index in the thickness direction is nz, the positive A plate satisfies the relationship of the equation (A1). The negative A plate satisfies the relation of the formula (A2). The positive A plate shows a positive value for Rth, and the negative A plate shows a negative value for Rth.
  • Equation (A1) nx> ny ⁇ nz Equation (A2) ny ⁇ nx ⁇ nz
  • includes not only the case where both are completely the same, but also the case where both are substantially the same. “Substantially the same” means, for example, “ny ⁇ nz” when (ny-nz) ⁇ d (where d is the thickness of the film) is -10 to 10 nm, preferably -5 to 5 nm. In the case where (nx-nz) ⁇ d is ⁇ 10 to 10 nm, preferably ⁇ 5 to 5 nm, it is also included in “nx ⁇ nz”.
  • C plates There are two types of C plates, a positive C plate (positive C plate) and a negative C plate (negative C plate).
  • the positive C plate satisfies the relationship of the formula (C1)
  • the negative C plate is It satisfies the relationship of the equation (C2).
  • the positive C plate shows a negative value for Rth
  • the negative C plate shows a positive value for Rth.
  • Equation (C1) nz> nx ⁇ ny Equation (C2) nz ⁇ nx ⁇ ny
  • includes not only the case where both are completely the same, but also the case where both are substantially the same.
  • substantially the same means, for example, that (nx-ny) x d (where d is the thickness of the film) is included in "nx ⁇ ny" even when it is 0 to 10 nm, preferably 0 to 5 nm. Is done.
  • the method for producing the above-mentioned laminate is not particularly limited, and a known method can be mentioned.
  • a method of laminating an optically anisotropic layer obtained by the production method of the present invention and another optically anisotropic layer (for example, a C plate) to obtain a laminated body can be mentioned.
  • another separately prepared optically anisotropic layer may be bonded onto the optically anisotropic layer obtained by the manufacturing method of the present invention, or the optics obtained by the manufacturing method of the present invention may be bonded.
  • a composition for forming another optically anisotropic layer may be applied onto the anisotropic layer to form another optically anisotropic layer.
  • the optically anisotropic layer obtained by the production method of the present invention may be combined with a polarizing element. That is, as shown in FIG. 16, the optically anisotropic layer 28 with a splitter may be manufactured, which includes the substrate 10, the optically anisotropic layer 20 manufactured by the above-mentioned manufacturing method, and the polarizing element 26. .. In FIG. 16, the polarizing element 26 is arranged on the substrate 10, but the present invention is not limited to this, and the polarizing element 26 may be arranged on the optically anisotropic layer 20. Further, although the optically anisotropic layer 28 with a polarizing element shown in FIG. 16 includes the substrate 10, the substrate may not be included in the optically anisotropic layer with a polarizing element.
  • the positional relationship when laminating the optically anisotropic layer and the polarizing element is not particularly limited, but the optically anisotropic layer fixes the orientation state of the liquid crystal compound twist-oriented along the spiral axis extending along the thickness direction.
  • the first region formed by the The absolute value of the angle formed with is preferably 5 to 25 °, more preferably 10 to 20 °, in that the optically anisotropic layer can be suitably applied to a circular polarizing plate or the like.
  • the twist angle of the liquid crystal compound in the first region is also negative, and the twist angle of the liquid crystal compound in the first region is also negative.
  • the twist angle of the liquid crystal compound in the first region is also positive.
  • the rotation angle of the in-plane slow-phase axis is a clock with reference to the absorber absorption axis when visually recognized from the splitter side.
  • the case of rotation means the case where the angle formed by the in-plane slow-phase axis and the stator is positive, which means that the in-plane slow-phase axis is based on the absorption axis of the polarizing element when visually recognized from the splitter side. It means that the rotation angle of is counterclockwise.
  • twist angle of the liquid crystal compound it is negative and counterclockwise when the orientation direction of the liquid crystal compound on the back side is clockwise (clockwise) with respect to the orientation direction of the liquid crystal compound on the front side (front side).
  • the time of (counterclockwise) is expressed as positive.
  • the polarizing element may be any member as long as it has a function of converting natural light into specific linear polarization, and examples thereof include an absorption type polarizing element.
  • the type of the polarizing element is not particularly limited, and a commonly used polarizing element can be used. Examples thereof include an iodine-based polarizing element, a dye-based polarizing element using a dichroic dye, and a polyene-based polarizing element.
  • Iodine-based and dye-based polarizing elements are generally produced by adsorbing iodine or a dichroic dye on polyvinyl alcohol and stretching it.
  • a protective film may be arranged on one side or both sides of the polarizing element.
  • the method for producing the optically anisotropic layer with a polarizing element is not particularly limited, and a known method can be mentioned.
  • a method of laminating an optically anisotropic layer obtained by the production method of the present invention and a polarizing element to obtain an optically anisotropic layer with a polarizing element can be mentioned.
  • the above-mentioned laminate and the polarizing element may be laminated to produce a laminate with a polarizing element. good.
  • the optically anisotropic layer can be applied to various applications.
  • the optically anisotropic layer can be suitably applied to a circular polarizing plate, and the optically anisotropic layer with a polarizing element can also be used as a circular polarizing plate.
  • Circular polarizing plates having the above configuration are used for antireflection applications of image display devices such as liquid crystal displays (LCDs), plasma display panels (PDPs), electroluminescence displays (ELDs), and cathode tube display devices (CRTs). It is preferably used and can improve the contrast ratio of the display light.
  • LCDs liquid crystal displays
  • PDPs plasma display panels
  • ELDs electroluminescence displays
  • CRTs cathode tube display devices
  • the external light is linearly polarized by the polarizing film, and then passes through the optically anisotropic layer to be circularly polarized.
  • the circularly polarized state is inverted, and when it passes through the optically anisotropic layer again, it becomes linearly polarized light tilted by 90 ° from the time of incident, reaches the polarizing film, and is absorbed.
  • the influence of external light can be suppressed.
  • the above-mentioned optically anisotropic layer with a polarizing element or the laminated body with a polarizing element is preferably applied to an organic EL display device. That is, it is preferable that the optically anisotropic layer with a polarizing element or the laminate with a polarizing element is arranged on the organic EL panel of the organic EL display device and applied to antireflection applications.
  • the organic EL panel is a member in which a plurality of organic compound thin films including a light emitting layer or a light emitting layer are formed between a pair of electrodes of an anode and a cathode, and is a hole injection layer, a hole transport layer, and an electron injection layer in addition to the light emitting layer.
  • An electron transport layer, a protective layer, and the like may be provided, and each of these layers may have other functions.
  • Various materials can be used to form each layer.
  • the optically anisotropic layer can be suitably applied to an optical compensation plate of a liquid crystal display device, and the optically anisotropic layer with a polarizing element can also be used as an optical compensation plate of a liquid crystal display device.
  • the liquid crystal cell used in the liquid crystal display device is a VA (Vertical Element) mode, an OCB (Optically Compensated Bend) mode, an IPS (In-Plane-Switching) mode, an FFS (Fringe-Field-Switching) mode, or a TN (Fringe-Field-Switching) mode.
  • VA Vertical Element
  • OCB Optically Compensated Bend
  • IPS In-Plane-Switching
  • FFS Frringe-Field-Switching
  • TN Fe-Field-Switching
  • the Twisted Nematic) mode is preferred, but is not limited to these.
  • the optically anisotropic layer with a polarizing element is used as an optical compensation plate for a liquid crystal display in IPS mode or FFS mode
  • the optically anisotropic layer is a homogenically oriented (horizontally oriented) liquid crystal as shown in FIG. It is preferable to have a region in which the orientation state of the compound is fixed and a region in which the orientation state of the homeotropic oriented (vertically oriented) liquid crystal compound is fixed. In this case, it is preferable that the angle formed by the in-plane slow phase axis of the region formed by fixing the orientation state of the homogeneously oriented (horizontally oriented) liquid crystal compound and the absorption axis of the polarizing element is orthogonal or parallel, and specifically.
  • the angle between the in-plane slow phase axis of the region where the alignment state of the homogenically oriented (horizontally oriented) liquid crystal compound is fixed and the absorption axis of the polarizing element is 0 to 5 ° or 85 to 95 °. Is more preferable.
  • the "in-plane slow phase axis" of the region in which the alignment state of the liquid crystal compound oriented in homogenius (horizontal orientation) is fixed is the region in which the orientation state of the liquid crystal compound in homogenius orientation (horizontal orientation) is fixed. It means the direction in which the refractive index is maximum in the plane, and the "absorption axis" of the substituent means the direction in which the absorbance is highest.
  • the orientation state of the polarizing element and the homeotropic oriented (vertically oriented) liquid crystal compound is fixed.
  • a region a region formed by fixing the orientation state of the liquid crystal compound homogenically oriented (horizontally oriented), and an orientation state of the liquid crystal compound arranged in the order of the liquid crystal cell, or a substituent and a homogenius oriented (horizontally oriented) liquid crystal compound. It is preferable that the region is fixed, the region formed by fixing the orientation state of the homeotropic oriented (vertically oriented) liquid crystal compound, and the liquid crystal cell are arranged in this order.
  • Example 1> Preparation of Cellulose Achillate Film (Substrate)
  • the following composition was put into a mixing tank, stirred, and further heated at 90 ° C. for 10 minutes. Then, the obtained composition was filtered through a filter paper having an average pore diameter of 34 ⁇ m and a sintered metal filter having an average pore diameter of 10 ⁇ m to prepare a dope.
  • the solid content concentration of the dope is 23.5% by mass
  • the amount of the plasticizer added is the ratio to the cellulose acylate
  • Cellulose acylate dope ⁇ Cellulose acylate (acetyl substitution degree 2.86, viscosity average polymerization degree 310) 100 parts by mass sugar ester compound 1 (represented by chemical formula (S4)) 6.0 parts by mass sugar ester compound 2 (represented by chemical formula (S5)) 2.0 parts by mass silica particle dispersion (AEROSIL R972, Nippon Aerosil Co., Ltd.) Made) 0.1 part by mass solvent (methylene chloride / methanol / butanol) ⁇
  • the dope prepared above was cast using a drum film forming machine.
  • the dope was cast from the die so that it was in contact with the metal support cooled to 0 ° C., and then the resulting web (film) was stripped.
  • the drum was made of SUS.
  • the web (film) obtained by casting from the drum After peeling the web (film) obtained by casting from the drum, it is dried in the tenter device for 20 minutes using a tenter device that clips and conveys both ends of the web at 30 to 40 ° C. during film transfer. did. Subsequently, the web was rolled and then dried by zone heating. The resulting web was knurled and then rolled up.
  • the film thickness of the obtained cellulose acylate film was 40 ⁇ m
  • the in-plane retardation Re (550) at a wavelength of 550 nm was 1 nm
  • the thickness direction retardation Rth (550) at a wavelength of 550 nm was 26 nm.
  • the cellulose acylate film produced above was continuously subjected to a rubbing treatment.
  • the longitudinal direction of the long film and the conveying direction were parallel, and the angle between the longitudinal direction of the film (transporting direction) and the rotation axis of the rubbing roller was set to 80 °.
  • the longitudinal direction (conveyance direction) of the film is 90 ° and the clockwise direction is expressed as a positive value with respect to the film width hand direction (0 °) when observed from the film side
  • the rotation axis of the rubbing roller is 10 °. be.
  • the position of the rotation axis of the rubbing roller is a position rotated by 80 ° counterclockwise with respect to the longitudinal direction of the film.
  • a composition for forming an optically anisotropic layer (1) containing a rod-shaped liquid crystal compound having the following composition is applied using a Gieser coating machine to compose the composition.
  • a material layer was formed (corresponding to step 1A).
  • the absolute value of the weighted average spiral inducing force of the chiral agent in the composition layer in step 1A was 0.0 ⁇ m -1 .
  • the obtained composition layer was heated at 80 ° C. for 60 seconds (corresponding to step 2A). By this heating, the rod-shaped liquid crystal compound of the composition layer was oriented in a predetermined direction.
  • the composition layer was irradiated with ultraviolet rays for 5 seconds using a 365 nm LED lamp (manufactured by Acroedge Co., Ltd.) at 40 ° C. under oxygen-containing air (oxygen concentration: about 20% by volume) (irradiation amount:). 13 mJ / cm 2 ) (corresponding to step 3A). Subsequently, the obtained composition layer was heated at 80 ° C. for 10 seconds (corresponding to step 4A). After that, nitrogen purging was performed to irradiate the composition layer with ultraviolet rays using a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 80 ° C.
  • a metal halide lamp manufactured by Eye Graphics Co., Ltd.
  • the molar extinction coefficient of the left-handed twist chiral agent (L1) at 365 nm in the composition for forming an optically anisotropic layer (1) is 40 L / (mol ⁇ cm), and the HTP of this chiral agent is light of 365 nm. Even after irradiation (13 mJ / cm 2 ), there was no change compared to before irradiation.
  • the molar extinction coefficient of the right-handed chiral agent (R1) at 365 nm is 38,450 L / (mol ⁇ cm), and the HTP of this chiral agent is compared with that before irradiation when irradiated with light of 365 nm (13 mJ / cm 2 ). It decreased by 35 ⁇ m -1 .
  • the molar extinction coefficient of the photopolymerization initiator (Irgacure819) at 365 nm was 860 L / (mol ⁇ cm).
  • Rod-shaped liquid crystal compound (A) (hereinafter, a mixture of compounds)
  • Polymer (A) (In the formula, the numerical value described in each repeating unit represents the content (mass%) of each repeating unit with respect to all repeating units).
  • Polymer (B) (In the formula, the numerical value described in each repeating unit represents the content (mass%) of each repeating unit with respect to all repeating units).
  • the optical film (F-1) produced above was cut in parallel with the rubbing direction, and the optically anisotropic layer was observed from the cross-sectional direction with a polarizing microscope.
  • the thickness of the optically anisotropic layer is 2.7 ⁇ m
  • the region (second region) of the thickness (d2) of 1.3 ⁇ m on the substrate side of the optically anisotropic layer is a homogeneous orientation without a twist angle, and is optically anisotropic.
  • the liquid crystal compound was twist-oriented in the region (first region) having a thickness (d1) of 1.4 ⁇ m on the air side (opposite side of the substrate) of the sex layer.
  • the optical characteristics of the optical film (F-1) were determined using Axoscan of Axometrics and analysis software (Multi-Layer Analysis) of the same company.
  • the product ( ⁇ n2d1) of ⁇ n2 and the thickness d2 at a wavelength of 550 nm in the second region is 173 nm
  • the twist angle of the liquid crystal compound is 0 °
  • the orientation axis angle of the liquid crystal compound with respect to the longitudinal direction of the film is ⁇ 10 on the side in contact with the substrate. °
  • the side in contact with the first region was -10 °.
  • the product ( ⁇ n1d1) of ⁇ n1 and the thickness d1 at a wavelength of 550 nm in the first region is 184 nm
  • the twist angle of the liquid crystal compound is 75 °
  • the orientation axis angle of the liquid crystal compound with respect to the longitudinal direction of the film is in the second region.
  • the contact side was ⁇ 10 ° and the air side was ⁇ 85 °.
  • the orientation axis angle of the liquid crystal compound contained in the optically anisotropic layer is 0 ° with respect to the longitudinal direction of the film, and the film is observed from the surface side of the optically anisotropic layer in a clockwise direction (clockwise). Time is shown as negative, and counterclockwise (counterclockwise) is shown as positive.
  • the substrate is observed from the surface side of the optically anisotropic layer, and the liquid crystal on the substrate side (back side) is based on the orientation direction of the liquid crystal compound on the surface side (front side).
  • the orientation direction of the compound is clockwise (clockwise), it is expressed as negative, and when it is counterclockwise (counterclockwise), it is expressed as positive.
  • a polyvinyl alcohol (PVA) film having a thickness of 80 ⁇ m was immersed in an iodine aqueous solution having an iodine concentration of 0.05% by mass at 30 ° C. for 60 seconds for staining.
  • the obtained film was longitudinally stretched to 5 times the original length while immersed in a boric acid aqueous solution having a boric acid concentration of 4% by mass for 60 seconds, and then dried at 50 ° C. for 4 minutes.
  • a polarizing element having a thickness of 20 ⁇ m was obtained.
  • a commercially available cellulose acylate film Fujitac TG40UL (manufactured by FUJIFILM Corporation) is prepared, immersed in a sodium hydroxide aqueous solution at 55 ° C. at 1.5 mol / liter, and then sufficiently sodium hydroxide is added with water. Rinse off. Then, the film obtained in a dilute aqueous sulfuric acid solution at 0.005 mol / liter at 35 ° C. was immersed for 1 minute, and then immersed in water to thoroughly wash away the dilute aqueous sulfuric acid solution. Finally, the obtained film was sufficiently dried at 120 ° C. to prepare a polarizing element protective film whose surface was saponified.
  • the above-mentioned optical film (F-1) is saponified, and the above-mentioned polarizing element and the above-mentioned polarization are applied to the substrate surface contained in the optical film (F-1).
  • the child protective film was continuously bonded using a polyvinyl alcohol-based adhesive to prepare a long circular polarizing plate (P-1). That is, the circularly polarizing plate (P-1) had a polarizing element protective film, a polarizing element, a substrate, and an optically anisotropic layer in this order.
  • the absorption axis of the polarizing element coincides with the longitudinal direction of the circular polarizing plate, and the rotation angle of the in-plane slow phase axis of the second region with respect to the absorption axis of the polarizing element is 10 ° with respect to the absorption axis of the substituent.
  • the rotation angle of the in-plane retarding axis on the surface of the surface opposite to the second region side of the first region was 85 °.
  • the rotation angle of the in-plane slow-phase axis is set to 0 ° with respect to the longitudinal direction of the circularly polarizing plate by observing the optically anisotropic layer from the substituent side, and is positive and clockwise in the counterclockwise direction. It is represented by a negative angle value.
  • Example 2 (Alkaline saponification treatment) After passing the above-mentioned cellulose acylate film through a dielectric heating roll having a temperature of 60 ° C. and raising the film surface temperature to 40 ° C., an alkaline solution having the composition shown below is applied to the band surface of the film using a bar coater. The film was applied at a coating amount of 14 ml / m 2 and conveyed under a steam-type far-infrared heater manufactured by Noritake Co., Ltd. Limited, which was heated to 110 ° C. for 10 seconds. Subsequently, 3 ml / m 2 of pure water was subsequently applied using a bar coater.
  • the film was transported to a drying zone at 70 ° C. for 10 seconds and dried to prepare a cellulose acylate film treated with alkali saponification.
  • the alignment film coating solution having the following composition was continuously applied to the surface of the cellulose acylate film subjected to the alkali saponification treatment with a # 14 wire bar. It was dried with warm air at 60 ° C. for 60 seconds and further with warm air at 100 ° C. for 120 seconds.
  • Alignment film coating liquid ⁇ 28 parts by mass of modified polyvinyl alcohol shown below Citric acid ester (AS3, manufactured by Sankyo Chemical Co., Ltd.) 1.2 parts by mass Photopolymerization initiator (Irgacure2959, manufactured by BASF) 0.84 parts by mass Glutaraldehyde 2.8 parts by mass 699 parts by mass of water 226 parts by mass of methanol ⁇
  • the alignment film prepared above was continuously subjected to a rubbing treatment.
  • the longitudinal direction of the long film and the conveying direction are parallel, and the angle between the longitudinal direction of the film (transporting direction) and the rotation axis of the rubbing roller is 45 °.
  • the longitudinal direction (conveyance direction) of the film is 90 ° and the clockwise direction is expressed as a positive value with respect to the film width hand direction (0 °) when observed from the film side
  • the rotation axis of the rubbing roller is 135 °. be.
  • the position of the rotation axis of the rubbing roller is a position rotated by 45 ° counterclockwise with respect to the longitudinal direction of the film.
  • the composition (2) for forming an optically anisotropic layer containing a rod-shaped liquid crystal compound having the following composition is applied using a Gieser coating machine to obtain a composition.
  • a layer was formed (corresponding to step 1C).
  • the obtained composition layer was heated at 120 ° C. for 80 seconds (corresponding to step 2C).
  • the rod-shaped liquid crystal compound of the composition layer was oriented in a predetermined direction.
  • the composition layer was irradiated with ultraviolet rays for 5 seconds using a 365 nm LED lamp (manufactured by Acroedge Co., Ltd.) at 40 ° C.
  • composition for forming an optically anisotropic layer (2) ⁇ 20 parts by mass of the above rod-shaped liquid crystal compound (A) 40 parts by mass of the following rod-shaped liquid crystal compound (D) 40 parts by mass of the following rod-shaped liquid crystal compound (E) 40 parts by mass of ethylene oxide-modified trimethyla propantriacrylate (V # 360, Osaka Organic Chemistry) Co., Ltd.) 4 parts by mass Photopolymerization initiator (Irgacure819, manufactured by BASF) 3 parts by mass The above polymer (A) 0.08 parts by mass The following photosensitive compound (A) 0.4 parts by mass The following ionic compound (A) 3.0 parts by mass Methyl ethyl ketone 156 parts by mass ⁇
  • the photosensitive compound (A) in the composition for forming an optically anisotropic layer (2) is a decomposition product (A) having a hydrophilic carboxyl group when irradiated with light of 365 nm (30 mJ / cm 2 ). Arose.
  • the optical film (F-2) produced above was cut in parallel with the rubbing direction, and the optically anisotropic layer was observed from the cross-sectional direction with a polarizing microscope.
  • the thickness of the optically anisotropic layer is 4.3 ⁇ m
  • the region (second region) having a thickness of 3.0 ⁇ m on the substrate side of the optically anisotropic layer is homogeneously oriented
  • the air side (substrate) of the optically anisotropic layer is
  • the liquid crystal compound was homeotropically oriented in the region (first region) having a thickness of 1.3 ⁇ m (on the opposite side).
  • the optical characteristics of the optical film (F-2) were determined using Axoscan of Axometrics and analysis software (Multi-Layer Analysis) of the same company.
  • the in-plane retardation ( ⁇ n2d2) at a wavelength of 550 nm in the second region was 140 nm, and the angle of the in-plane slow phase axis with respect to the longitudinal direction of the film was ⁇ 45 °.
  • the in-plane retardation ( ⁇ n1d1) at a wavelength of 550 nm in the first region was 0 nm, and the retardation in the thickness direction at a wavelength of 550 nm in the first region was ⁇ 60 nm.
  • the angle of the in-plane slow-phase axis is 0 ° with respect to the longitudinal direction of the film, and the substrate is observed from the surface side of the optically anisotropic layer. Clockwise (clockwise) is negative and counterclockwise. The time of (counterclockwise) is expressed as positive.
  • Example 2 (Making a circular polarizing plate)
  • the optical film (F-2) produced above is sacrificed, and the above-mentioned polarizing element and the above-mentioned polarizing element protection film are polyvinyl-coated on the substrate surface contained in the optical film (F-2).
  • a long circular polarizing plate (P-2) was prepared by continuously laminating them using an alcohol-based adhesive. That is, the circularly polarizing plate (P-2) had a polarizing element protective film, a polarizing element, a substrate, and an optically anisotropic layer in this order.
  • the absorption axis of the polarizing element coincided with the longitudinal direction of the circular polarizing plate, and the rotation angle of the in-plane slow-phase axis of the second region with respect to the absorption axis of the polarizing element was 45 °.
  • the rotation angle of the in-plane slow-phase axis is set to 0 ° with respect to the longitudinal direction of the circularly polarizing plate by observing the optically anisotropic layer from the substituent side, and is positive and clockwise in the counterclockwise direction. It is represented by a negative angle value.
  • Example 3 (Formation of optically anisotropic layer)
  • the cellulose acylate film produced in Example 1 was continuously subjected to a rubbing treatment.
  • the longitudinal direction of the long film and the conveying direction were parallel, and the angle between the longitudinal direction of the film (transporting direction) and the rotation axis of the rubbing roller was 45 °.
  • the longitudinal direction (conveyance direction) of the film is 90 ° and the counterclockwise direction is represented by a positive value with respect to the width direction of the cellulose acylate film as a reference (0 °) when observed from the cellulose acylate film side
  • the axis of rotation of the rubbing roller was 135 °.
  • the position of the rotation axis of the rubbing roller was a position rotated 45 ° clockwise with respect to the longitudinal direction of the cellulose acylate film.
  • the composition for forming an optically anisotropic layer (3) containing a rod-shaped liquid crystal compound having the following composition is applied using a Gieser coating machine to form a composition layer.
  • the obtained composition layer was heated at 80 ° C. for 60 seconds (corresponding to step 2D).
  • the rod-shaped liquid crystal compound of the composition layer was oriented in a predetermined direction.
  • the composition layer was irradiated with ultraviolet rays for 5 seconds using a 365 nm LED lamp (manufactured by Acroedge Co., Ltd.) at 40 ° C.
  • the molar extinction coefficient of the photopolymerization initiator (Irgacure907) at 365 nm was 140 L / (mol ⁇ cm).
  • composition for forming an optically anisotropic layer (3) ⁇ 80 parts by mass of the above-mentioned rod-shaped liquid crystal compound (A) 10 parts by mass of the above-mentioned polymerizable compound (C) 10 parts by mass of the above polymerizable compound (C) 10 parts by mass of ethylene oxide-modified trimethyl propanetriacrylate (V # 360, Osaka Organic Chemistry) (Manufactured by Co., Ltd.) 4 parts by mass Photopolymerization initiator (Irgacure907, manufactured by BASF) 3 parts by mass The above polymer (A) 0.08 parts by mass The above polymer (B) 0.50 parts by mass Methylisobutylketone 116 parts by mass Propion 40 parts by mass of ethyl acid acid ⁇
  • the optical film (F-3) produced above was cut in parallel with the rubbing direction, and the optically anisotropic layer was observed from the cross-sectional direction with a polarizing microscope.
  • the thickness of the optically anisotropic layer is 2.7 ⁇ m
  • the region (second region) having a thickness of 1.1 ⁇ m on the substrate side of the optically anisotropic layer is homogeneously oriented
  • the air side (substrate) of the optically anisotropic layer is
  • the liquid crystal compound was in an isotropic state (isotropic phase) in the region (first region) having a thickness of 1.6 ⁇ m (on the opposite side).
  • the optical characteristics of the optical film (F-3) were determined using Axoscan of Axometrics and analysis software (Multi-Layer Analysis) of the same company.
  • the in-plane retardation ( ⁇ n2d2) at a wavelength of 550 nm in the second region was 140 nm, and the in-plane slow phase axis was ⁇ 45 °.
  • the in-plane retardation ( ⁇ n1d1) at a wavelength of 550 nm in the first region was 0 nm, and the retardation in the thickness direction was 0 nm.
  • the angle of the in-plane slow-phase axis is 0 ° with respect to the longitudinal direction of the film, and the substrate is observed from the surface side of the optically anisotropic layer. Clockwise (clockwise) is negative and counterclockwise. The time of (counterclockwise) is expressed as positive.
  • Example 3 (Making a circular polarizing plate)
  • the optical film (F-3) produced above is sacrificed, and the above-mentioned polarizing element and the above-mentioned polarizing element protection film are polyvinyl-coated on the substrate surface contained in the optical film (F-3).
  • a long circular polarizing plate (P-3) was prepared by continuously laminating them using an alcohol-based adhesive. That is, the circularly polarizing plate (P-3) had a polarizing element protective film, a polarizing element, a substrate, and an optically anisotropic layer in this order.
  • the absorption axis of the polarizing element coincided with the longitudinal direction of the circular polarizing plate, and the rotation angle of the in-plane slow-phase axis of the second region with respect to the absorption axis of the polarizing element was 45 °.
  • the rotation angle of the in-plane slow-phase axis is set to 0 ° with respect to the longitudinal direction of the circularly polarizing plate by observing the optically anisotropic layer from the substituent side, and is positive and clockwise in the counterclockwise direction. It is represented by a negative angle value.
  • Example 4 (Formation of optically anisotropic layer)
  • the cellulose acylate film produced in Example 1 was continuously subjected to a rubbing treatment. At this time, the longitudinal direction of the long film and the conveying direction were parallel, and the angle between the longitudinal direction of the film (transporting direction) and the rotation axis of the rubbing roller was 90 °.
  • the composition for forming an optically anisotropic layer (4) containing a rod-shaped liquid crystal compound having the following composition is applied using a Gieser coating machine to form a composition layer.
  • the absolute value of the weighted average spiral inducing force of the chiral agent in the composition layer in step 1B was 31 ⁇ m -1 .
  • the obtained composition layer was heated at 100 ° C. for 80 seconds (corresponding to step 2B). By this heating, the rod-shaped liquid crystal compound of the composition layer was oriented in a predetermined direction.
  • the composition layer was irradiated with ultraviolet rays for 10 seconds using a 365 nm LED lamp (manufactured by Acroedge Co., Ltd.) at 40 ° C. under oxygen-containing air (oxygen concentration: about 20% by volume) (irradiation amount:). 100 mJ / cm 2 ) (corresponding to step 3B). Subsequently, the obtained composition layer was heated at 90 ° C. for 10 seconds (corresponding to step 4B). After that, nitrogen purging was performed to irradiate the composition layer with ultraviolet rays using a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 55 ° C.
  • a metal halide lamp manufactured by Eye Graphics Co., Ltd.
  • the molar extinction coefficient of the sensitizer (Kayacure DETX) at 365 nm was 4200 L / (mol ⁇ cm).
  • ⁇ Composition for forming an optically anisotropic layer (4) 80 parts by mass of the above-mentioned rod-shaped liquid crystal compound (A) 10 parts by mass of the above-mentioned rod-shaped liquid crystal compound (C) 10 parts by mass of the above-mentioned rod-shaped liquid crystal compound (C) Ethylene oxide-modified trimethylolpropane triacrylate (V # 360, Osaka Organic Chemistry (V # 360, Osaka Organic Chemistry) (Manufactured by Co., Ltd.) 4 parts by mass Photopolymerization initiator (Irgacure907, manufactured by BASF) 3 parts by mass Sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass Right-handed twist chiral agent (R1) 11 mass Part
  • the above polymer (B) 0.5 parts by mass Methyl isobutyl ketone 117 parts by mass Eth
  • the optical film (F-4) produced above was cut in parallel with the rubbing direction, and the optically anisotropic layer was observed from the cross-sectional direction by SEM.
  • the thickness of the optically anisotropic layer is 3.6 ⁇ m, and the region having a thickness of 1.8 ⁇ m on the substrate side of the optically anisotropic layer (second region) and the air side of the optically anisotropic layer (opposite to the substrate). It has a region (first region) with a thickness of 1.8 ⁇ m, and the second region and the first region have cholesteric orientations with different spiral pitches.
  • the spectral reflectance characteristics of the optical film (F-4) were determined using an integrated reflectance meter. It was confirmed that the two-band cholesteric liquid crystal film has a reflection band centered on 450 nm derived from the second region and a reflection band centered on 650 nm derived from the first region.
  • Example 1 ⁇ Comparative Example 1>
  • the irradiation with the 365 nm LED lamp was carried out under nitrogen purge (oxygen concentration 100% by volume ppm) instead of being carried out under oxygen-containing air (oxygen concentration: about 20% by volume).
  • An optical film (C-1) was produced in the same manner as in the method for producing an optical film (F-1) according to the same procedure as in Example 1. That is, in Comparative Example 1, step 3A was not carried out.
  • step 3A was not carried out.
  • the cross section of the optically anisotropic layer was observed according to the same procedure as in Example 1, the homogeneous orientation was formed over the entire thickness direction of the obtained optically anisotropic layer, which is desired by the present invention. No effect was obtained.
  • Example 2 In Example 1 described above, an optical film (except that after irradiation with a 365 nm LED lamp at 40 ° C., UV irradiation was performed at 40 ° C. using a metal halide lamp without heating to 80 ° C. An optical film (C-2) was produced in the same manner as in the production method of F-1). That is, in Comparative Example 2, step 4A was not carried out.
  • step 4A step 4A was not carried out.
  • the cross section of the optically anisotropic layer was observed according to the same procedure as in Example 1, the homogeneous orientation was formed over the entire thickness direction of the obtained optically anisotropic layer, which is desired by the present invention. No effect was obtained.
  • the irradiation conditions in the step 3A are the same as the method for producing the optical film (F-1) except that the irradiation with the 365 nm LED lamp is changed to 100 seconds (irradiation amount: 13 mJ / cm 2 ).
  • An optical film (C-3) was produced. That is, in Comparative Example 3, the irradiation amount was the same as that in Example 1, but the irradiation time was lengthened.
  • the cross section of the optically anisotropic layer was observed according to the same procedure as in Example 1, the twisted orientation was formed over the entire thickness direction of the obtained optically anisotropic layer, which is desired by the present invention. No effect was obtained.
  • in-plane retardation indicates in-plane retardation at each wavelength of the optically anisotropic layer.
  • the phase difference of the optically anisotropic layer in each embodiment shows anti-wavelength dispersibility, and when this optically anisotropic layer is used in an organic EL display device, coloring and reflection occur. It was confirmed that it was suppressed.
  • the rotation angle of the in-plane slow-phase axis of the second region with respect to the polarizing element absorption axis is 100 °, and the in-plane delay of the surface of the surface opposite to the second region side of the first region with respect to the polarizing element absorption axis.
  • the rotation angle of the phase axis was 175 °.
  • the rotation angle of the in-plane slow-phase axis is set to 0 ° with respect to the absorption axis direction of the substituent by observing the optically anisotropic layer from the splitter side, and is positive and clockwise in the counterclockwise direction. It is represented by a negative angle value.
  • a semi-transmissive liquid crystal display device 1 in VA mode was manufactured as follows. Polyimide was used for the alignment film of the liquid crystal cell, the cell gap of the transmissive part was 4.0 ⁇ m, and the cell gap of the reflective part was 2.0 ⁇ m. A nematic liquid crystal having a negative dielectric anisotropy was injected into this space. When no voltage was applied to the upper and lower substrates of this liquid crystal cell, the nematic liquid crystal was vertically oriented. Further, when a voltage was applied, protrusions were formed on the cell substrate so that the nematic liquid crystal was tilted in two directions in which the orientations differed by 180 °.
  • the in-plane retardation at a wavelength of 550 nm when a voltage is applied to the liquid crystal cell and displayed in white is 280 nm in the transmitting portion and 140 nm in the reflecting portion, and the in-plane retardation at a wavelength of 550 nm when displaying in black without application is
  • the transmissive part was 0 nm and the reflective part was 0 nm.
  • the circular polarizing plate (P-1) and the circular polarizing plate (P-4) produced above are attached to a liquid crystal cell composed of the upper and lower substrates and a liquid crystal layer sandwiched between the substrates to display a semi-transmissive liquid crystal display.
  • the device 1 was manufactured.
  • the circularly polarizing plate (P-1), the liquid crystal cell, the circularly polarizing plate (P-4), and the backlight were arranged in this order from the observer side.
  • the circularly polarizing plate (P-1) is in this order from the observer side, and the polarizing element and the optical film (F-1) are in this order, and the circularly polarizing plate (P-4) is the optical film (P-4) from the observer side.
  • the F-1) and the polarizing elements are arranged in this order, and the angle formed by the absorption axis of each of the polarizing plates included in the circularly polarizing plate (P-1) and the circularly polarizing plate (P-4) is 90 °. Arranged so as to be.
  • the rotation angle in the direction in which the long axis of the nematic liquid crystal was projected onto the cell substrate was 45 °.
  • the rotation angle in the projected direction is set to 0 ° with respect to the absorption axis direction of the polarizing element by observing the liquid crystal cell from the circular polarizing plate (P-1) side, and counterclockwise. It is represented by a positive angle value in the clockwise direction and a negative angle value in the clockwise direction.
  • An optically anisotropic layer H made of a discotic liquid crystal compound is formed on an alignment film on a cellulose acylate film in the same manner as in the method described in Example 1 or Example 25 of Patent 6770649.
  • an optically anisotropic layer Q made of a rod-shaped liquid crystal compound was produced.
  • the thickness and rubbing angle of the coating layer were adjusted so as to have the following retardation and the slow axis angle.
  • the in-plane retardation of the optically anisotropic layer H at a wavelength of 550 nm was 280 nm
  • the in-plane retardation of the optically anisotropic layer Q at a wavelength of 550 nm was 120 nm.
  • the optically anisotropic layer Q, the optically anisotropic layer H, the above-mentioned polarizing element, and the above-mentioned polarizing element protective film are bonded together using an adhesive so as to be in this order, and a circular polarizing plate (P-) is attached. 5) was produced.
  • the cellulose acylate film and the alignment film were separated from the optically anisotropic layer H and the optically anisotropic layer Q so as not to be included in the circularly polarizing plate.
  • the rotation angle of the in-plane slow-phase axis of the optically anisotropic layer H with respect to the absorption axis of the polarizing element is ⁇ 75 °
  • the rotation of the in-plane slow-phase axis of the optically anisotropic layer Q with respect to the absorption axis of the polarizing element is ⁇ 75 °. They were pasted together so that the angle was -15 °.
  • the rotation angle of the in-plane slow-phase axis is set to 0 ° with respect to the absorption axis direction of the substituent by observing the optically anisotropic layer from the splitter side, and is positive and clockwise in the counterclockwise direction. It is represented by a negative angle value.
  • An ECB mode semi-transmissive liquid crystal display device 2 was manufactured as follows.
  • the alignment film of the liquid crystal cell was polyimide, and the rubbing direction was set so that the top and bottom were parallel.
  • the cell gap of the transmissive part was 4.0 ⁇ m and the cell gap of the reflective part was 2.0 ⁇ m, and a nematic liquid crystal having a positive dielectric anisotropy was injected into this gap.
  • the in-plane retardation at a wavelength of 550 nm when a voltage is applied to this liquid crystal cell is as follows: a transmissive part at white display is 280 nm, a reflective part at white display is 140 nm, a transmissive part at black display is 40 nm, and a reflective part at black display. was 20 nm. Further, when the nematic liquid crystal sandwiched between the upper and lower substrates was tilted by applying a voltage, the direction in which the long axis of the nematic liquid crystal was projected onto the cell substrate (in-plane slow phase axis) coincided with the rubbing direction.
  • the circular polarizing plate (P-1) and the circular polarizing plate (P-5) produced above are attached to a liquid crystal cell composed of the upper and lower substrates and a liquid crystal layer sandwiched between the substrates to display a semi-transmissive liquid crystal display.
  • the device 2 was manufactured.
  • the circularly polarizing plate (P-5), the liquid crystal cell, the circularly polarizing plate (P-1), and the backlight were arranged in this order from the observer side.
  • the splitter, the optically anisotropic layer H, and the optically anisotropic layer Q are in this order from the observer side, and the circularly polarizing plate (P-1) is the observer.
  • the optical film (F-1) and the polarizing element were arranged in this order. Further, the angle formed by the absorption axes of the polarizing plates included in the circular polarizing plate (P-5) and the circular polarizing plate (P-1) is set to 90 °, and the rubbing direction is applied to the alignment film of the liquid crystal cell. And the optically anisotropic layer Q contained in the circularly polarizing plate (P-5) were arranged so that the angle formed by the in-plane slow phase axial direction was 0 °.
  • the applied voltage was adjusted for the transmissive portion and the reflective portion of the VA mode semi-transmissive liquid crystal display device 1 and the ECB mode liquid crystal display device 2 produced above, and the visibility of the black display and the white display was visually evaluated. It was confirmed that the optically anisotropic layer of this example can be suitably used for the liquid crystal display device, showing good white / black contrast in any of the display devices.
  • Example 5 (Formation of optically anisotropic layer)
  • the alignment film prepared in Example 2 was continuously subjected to a rubbing treatment. At this time, the longitudinal direction of the long film and the conveying direction are parallel, and the angle between the longitudinal direction of the film (transporting direction) and the rotation axis of the rubbing roller is 90 °.
  • the composition (5) for forming an optically anisotropic layer containing a rod-shaped liquid crystal compound having the following composition is applied using a Gieser coating machine to obtain a composition.
  • a layer was formed (corresponding to step 1C).
  • the obtained composition layer was heated at 120 ° C. for 80 seconds (corresponding to step 2C).
  • the rod-shaped liquid crystal compound of the composition layer was oriented in a predetermined direction.
  • the composition layer was irradiated with ultraviolet rays for 5 seconds using a 365 nm LED lamp (manufactured by Acroedge Co., Ltd.) at 40 ° C.
  • the optical film (F-5) produced above was cut in parallel with the rubbing direction, and the optically anisotropic layer was observed from the cross-sectional direction with a polarizing microscope.
  • the thickness of the optically anisotropic layer is 4.3 ⁇ m, and the region (second region) having a thickness of 2.4 ⁇ m on the substrate side of the optically anisotropic layer is homogenously oriented, and the air side (substrate) of the optically anisotropic layer.
  • the liquid crystal compound was homeotropically oriented in the region (first region) having a thickness of 1.9 ⁇ m (on the opposite side).
  • the optical characteristics of the optical film (F-5) were determined using Axoscan of Axometrics and analysis software (Multi-Layer Analysis) of the same company.
  • the in-plane retardation ( ⁇ n2d2) at a wavelength of 550 nm in the second region was 130 nm, and the angle of the in-plane slow phase axis with respect to the longitudinal direction of the film was 0 °.
  • the in-plane retardation ( ⁇ n1d1) at a wavelength of 550 nm in the first region was 0 nm, and the retardation in the thickness direction at a wavelength of 550 nm in the first region was ⁇ 100 nm.
  • the angle of the in-plane slow phase axis is 0 ° with respect to the longitudinal direction of the film.
  • the optical film (F-5) produced above is sacinified, and the above-mentioned polarizing element and the above-mentioned polarizing element protective film are applied to the optically anisotropic layer surface contained in the optical film (F-5) with a polyvinyl alcohol-based adhesive.
  • a long polarizing plate (P-6) was prepared by continuously laminating with each other. That is, the polarizing plate (P-6) had a polarizing element protective film, a polarizing element, an optically anisotropic layer, and a substrate in this order.
  • the absorption axis of the polarizing element coincided with the longitudinal direction of the polarizing plate, and the rotation angle of the in-plane slow-phase axis of the second region with respect to the absorption axis of the polarizing element was 0 °.
  • the rotation angle of the in-plane slow-phase axis is set to 0 ° with respect to the longitudinal direction of the polarizing plate by observing the optically anisotropic layer from the splitter side.
  • the polarizing plate (P-6) produced above was obtained by peeling off the polarizing plate on the front side from a commercially available liquid crystal display device (iPad (registered trademark), manufactured by Apple) (a liquid crystal display device including a liquid crystal cell in FFS mode). Attach with a 20 ⁇ m acrylic adhesive so that the optical film side is arranged on the liquid crystal cell side and the absorption axis of the polarizing element is orthogonal to the absorption axis of the polarizing element in the polarizing plate on the backlight side.
  • iPad registered trademark
  • a liquid crystal display device 3 was manufactured.
  • Substrate 12 120, 220, 320, 420 Composition layer 12A, 120A, 220A, 320A, 420A Lower region 12B, 120B, 220B, 320B, 420B Upper region 20
  • Optical anisotropy layer 22 Other optical anisotropy Layer 24
  • Laminated body 26 Polarizer 28

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention provides a convenient method for manufacturing an optically anisotropic layer in which the alignment condition of a liquid crystal compound is fixed, said optically anisotropic layer having, along the thickness direction, a plurality of regions with different liquid crystal compound alignment conditions. This method for manufacturing an optically anisotropic layer has: a step 1 in which a composition layer that includes a liquid crystal compound having a polymerizable group is formed; a step 2 in which the composition layer is subjected to a heating treatment to cause alignment of the liquid crystal compound within the composition layer; a step 3 in which, after step 2, the composition layer is photoirradiated for 50 seconds or less and at 300 mJ/cm2 or less, under conditions in which the oxygen concentration is 1 vol% or greater; a step 4 in which, after step 3, the composition layer is subjected to a heating treatment at a higher temperature than during the photoirradiation; and a step 5 in which, after step 4, the composition layer is subjected to a curing treatment to form an optically anisotropic layer having, along the thickness direction, a plurality of regions with different liquid crystal compound alignment conditions.

Description

光学異方性層の製造方法Method for manufacturing an optically anisotropic layer
 本発明は、光学異方性層の製造方法に関する。 The present invention relates to a method for manufacturing an optically anisotropic layer.
 屈折率異方性を持つ位相差層(光学異方性層)は、表示装置の反射防止膜、および、液晶表示装置の光学補償フィルムなど種々の用途に適用されている。
 光学異方性層としては、特許文献1に記載されるように複数の層からなる積層型の光学異方性層が開示されている。
The retardation layer having refractive index anisotropy (optical anisotropy layer) is applied to various applications such as an antireflection film of a display device and an optical compensation film of a liquid crystal display device.
As the optically anisotropic layer, as described in Patent Document 1, a laminated optical anisotropic layer composed of a plurality of layers is disclosed.
特許第5960743号公報Japanese Patent No. 5960743
 従来、特許文献1に記載されるような光学異方性層を製造する際には、積層する光学異方性層を1層毎に、塗布により形成するため、生産性が低く、コストが高くなるという課題があった。
 また、塗布を繰り返す際に、塗布液のはじきが生じ、所望の光学異方性層を形成できない場合もあった。
Conventionally, when an optically anisotropic layer as described in Patent Document 1 is manufactured, the optically anisotropic layer to be laminated is formed by coating for each layer, so that the productivity is low and the cost is high. There was a problem of becoming.
In addition, when the coating is repeated, the coating liquid may be repelled and a desired optically anisotropic layer may not be formed.
 本発明は、上記実情に鑑みて、液晶化合物の配向状態が固定されており、液晶化合物の配向状態が異なる領域を厚み方向に沿って複数有する光学異方性層の簡便な製造方法を提供することを課題とする。 In view of the above circumstances, the present invention provides a simple method for producing an optically anisotropic layer having a plurality of regions in which the orientation state of the liquid crystal compound is fixed and the orientation state of the liquid crystal compound is different along the thickness direction. That is the issue.
 本発明者らは、従来技術の問題点について鋭意検討した結果以下の構成により上記課題を解決できることを見出した。 As a result of diligent studies on the problems of the prior art, the present inventors have found that the above problems can be solved by the following configuration.
(1) 重合性基を有する液晶化合物を含む組成物層を形成する工程1と、
 組成物層に加熱処理を施して、組成物層中の液晶化合物を配向させる工程2と、
 工程2の後、酸素濃度1体積%以上の条件下にて、組成物層に対して、光照射を50秒間以下、かつ、300mJ/cm2以下で行う工程3と、
 工程3の後、組成物層に、光照射時より高い温度で加熱処理を施す工程4と、
 工程4の後、組成物層に対して硬化処理を施して、液晶化合物の配向状態が異なる領域を厚み方向に沿って複数有する光学異方性層を形成する工程5と、を有する、光学異方性層の製造方法。
(2) 組成物層が光重合開始剤および光増感剤からなる群から選択される感光材料を含み、
 工程3における光照射の波長における感光材料のモル吸光係数が5000L/(mol・cm)以下である、(1)に記載の光学異方性層の製造方法。
(3) 組成物層が、キラル剤を含み、
 キラル剤が、光照射により螺旋誘起力が変化する感光性キラル剤を含む、(1)または(2)に記載の光学異方性層の製造方法。
(4) 液晶化合物の全質量に対する、キラル剤の合計含有量が、5.0質量%以下である、(3)に記載の光学異方性層の製造方法。
(5) 液晶化合物の全質量に対する、キラル剤の合計含有量が、5.0質量%超である、(3)に記載の光学異方性層の製造方法。
(6) 組成物層が、光照射により極性が変化する感光性化合物を含む、(1)または(2)に記載の光学異方性層の製造方法。
(7) 感光性化合物が、光照射により親水化する感光性化合物である、(6)に記載の光学異方性層の製造方法。
(8) 工程4における加熱処理の温度が、液晶化合物が等方相となる温度以上である、(1)または(2)に記載の光学異方性層の製造方法。
(1) Step 1 of forming a composition layer containing a liquid crystal compound having a polymerizable group, and
Step 2 in which the composition layer is heat-treated to orient the liquid crystal compound in the composition layer, and
After the step 2, the composition layer is irradiated with light for 50 seconds or less and at 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more.
After step 3, the composition layer is heat-treated at a temperature higher than that at the time of light irradiation, and step 4
After the step 4, the composition layer is subjected to a curing treatment to form an optically anisotropic layer having a plurality of regions having different orientation states of the liquid crystal compounds along the thickness direction. Manufacturing method of anisotropic layer.
(2) The composition layer contains a photosensitive material selected from the group consisting of a photopolymerization initiator and a photosensitizer.
The method for producing an optically anisotropic layer according to (1), wherein the molar extinction coefficient of the photosensitive material at the wavelength of light irradiation in step 3 is 5000 L / (mol · cm) or less.
(3) The composition layer contains a chiral agent and contains
The method for producing an optically anisotropic layer according to (1) or (2), wherein the chiral agent contains a photosensitive chiral agent whose spiral-inducing force is changed by light irradiation.
(4) The method for producing an optically anisotropic layer according to (3), wherein the total content of the chiral agent with respect to the total mass of the liquid crystal compound is 5.0% by mass or less.
(5) The method for producing an optically anisotropic layer according to (3), wherein the total content of the chiral agent with respect to the total mass of the liquid crystal compound is more than 5.0% by mass.
(6) The method for producing an optically anisotropic layer according to (1) or (2), wherein the composition layer contains a photosensitive compound whose polarity changes with light irradiation.
(7) The method for producing an optically anisotropic layer according to (6), wherein the photosensitive compound is a photosensitive compound that becomes hydrophilic by light irradiation.
(8) The method for producing an optically anisotropic layer according to (1) or (2), wherein the temperature of the heat treatment in step 4 is equal to or higher than the temperature at which the liquid crystal compound becomes an isotropic phase.
 本発明によれば、液晶化合物の配向状態が固定されており、液晶化合物の配向状態が異なる領域を厚み方向に沿って複数有する光学異方性層の簡便な製造方法を提供できる。 According to the present invention, it is possible to provide a simple method for producing an optically anisotropic layer having a plurality of regions in which the orientation state of the liquid crystal compound is fixed and the orientation state of the liquid crystal compound is different along the thickness direction.
本発明の光学異方性層の製造方法の第1実施態様の工程1Aの一例を説明するための組成物層の断面図である。It is sectional drawing of the composition layer for demonstrating an example of the step 1A of the 1st Embodiment of the manufacturing method of the optically anisotropic layer of this invention. 本発明の光学異方性層の製造方法の第1実施態様の工程3Aの一例を説明するための組成物層の断面図である。It is sectional drawing of the composition layer for demonstrating an example of the step 3A of the 1st Embodiment of the manufacturing method of the optically anisotropic layer of this invention. 本発明の光学異方性層の製造方法の第1実施態様の工程4Aを実施した場合の一例を説明するための組成物層の断面図である。It is sectional drawing of the composition layer for demonstrating an example of the case where the step 4A of the 1st Embodiment of the manufacturing method of the optically anisotropic layer of this invention is carried out. キラル剤Aおよびキラル剤Bの各々について、螺旋誘起力(HTP:Helical Twisting Power)(μm-1)×濃度(質量%)と光照射量(mJ/cm2)との関係をプロットしたグラフの模式図である。In the graph plotting the relationship between the spiral inducing force (HTP: Helical Twisting Power) (μm -1 ) × concentration (mass%) and the light irradiation dose (mJ / cm 2 ) for each of the chiral auxiliary A and the chiral agent B. It is a schematic diagram. キラル剤Aおよびキラル剤Bを併用した系において、加重平均螺旋誘起力(μm-1)と光照射量(mJ/cm2)との関係をプロットしたグラフの模式図である。It is a schematic diagram of the graph which plotted the relationship between the weighted average spiral induction force (μm -1 ) and the light irradiation dose (mJ / cm 2 ) in the system which used the chiral agent A and the chiral agent B in combination. 本発明の光学異方性層の製造方法の第1実施態様の工程1Aの他の例を説明するための組成物層の断面図である。It is sectional drawing of the composition layer for demonstrating another example of step 1A of 1st Embodiment of the manufacturing method of an optically anisotropic layer of this invention. 本発明の光学異方性層の製造方法の第1実施態様の工程4Aを実施した場合の他の例を説明するための組成物層の断面図である。It is sectional drawing of the composition layer for demonstrating another example when the step 4A of the 1st Embodiment of the manufacturing method of the optically anisotropic layer of this invention is carried out. 本発明の光学異方性層の製造方法の第2実施態様の工程3Bの一例を説明するための組成物層の断面図である。It is sectional drawing of the composition layer for demonstrating an example of the step 3B of the 2nd Embodiment of the manufacturing method of the optically anisotropic layer of this invention. 本発明の光学異方性層の製造方法の第2実施態様の工程4Bの一例を説明するための組成物層の断面図である。It is sectional drawing of the composition layer for demonstrating an example of the step 4B of the 2nd Embodiment of the manufacturing method of the optically anisotropic layer of this invention. キラル剤Aについて、螺旋誘起力(μm-1)と光照射量(mJ/cm2)との関係をプロットしたグラフの模式図である。It is a schematic diagram of the graph plotting the relationship between the spiral inducing force (μm -1 ) and the light irradiation amount (mJ / cm 2 ) for the chiral auxiliary A. 本発明の光学異方性層の製造方法の第3実施態様の工程3Cの一例を説明するための組成物層の断面図である。It is sectional drawing of the composition layer for demonstrating an example of the process 3C of the 3rd Embodiment of the manufacturing method of the optically anisotropic layer of this invention. 本発明の光学異方性層の製造方法の第3実施態様の工程4Cの一例を説明するための組成物層の断面図である。It is sectional drawing of the composition layer for demonstrating an example of the step 4C of the 3rd Embodiment of the manufacturing method of the optically anisotropic layer of this invention. 本発明の光学異方性層の製造方法の第4実施態様の工程3Dの一例を説明するための組成物層の断面図である。It is sectional drawing of the composition layer for demonstrating an example of the process 3D of 4th Embodiment of the manufacturing method of the optically anisotropic layer of this invention. 本発明の光学異方性層の製造方法の第4実施態様の工程4Dの一例を説明するための組成物層の断面図である。It is sectional drawing of the composition layer for demonstrating an example of the process 4D of 4th Embodiment of the manufacturing method of the optically anisotropic layer of this invention. 本発明の積層体の一実施態様を表す断面図である。It is sectional drawing which shows one Embodiment of the laminated body of this invention. 本発明の偏光子付き光学異方性層の一実施態様を表す断面図である。It is sectional drawing which shows one Embodiment of the optically anisotropic layer with a polarizing element of this invention.
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。まず、本明細書で用いられる用語について説明する。 Hereinafter, the present invention will be described in detail. The numerical range represented by using "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value. First, the terms used in the present specification will be described.
 遅相軸は、特別な断りがなければ、550nmにおける定義である。 The slow axis is defined at 550 nm unless otherwise specified.
 本発明において、Re(λ)およびRth(λ)は各々、波長λにおける面内のレタデーションおよび厚み方向のレタデーションを表す。特に記載がないときは、波長λは、550nmとする。
 本発明において、Re(λ)およびRth(λ)はAxoScan(Axometrics社製)において、波長λで測定した値である。AxoScanにて平均屈折率((nx+ny+nz)/3)と膜厚(d(μm))を入力することにより、
 遅相軸方向(°)
 Re(λ)=R0(λ)
 Rth(λ)=((nx+ny)/2-nz)×d
が算出される。
 なお、R0(λ)は、AxoScanで算出される数値として表示されるものであるが、Re(λ)を意味している。
In the present invention, Re (λ) and Rth (λ) represent in-plane retardation at wavelength λ and retardation in the thickness direction, respectively. Unless otherwise specified, the wavelength λ is 550 nm.
In the present invention, Re (λ) and Rth (λ) are values measured at a wavelength λ in AxoScan (manufactured by Axometrics). By inputting the average refractive index ((nx + ny + nz) / 3) and film thickness (d (μm)) in AxoScan,
Slow phase axial direction (°)
Re (λ) = R0 (λ)
Rth (λ) = ((nx + ny) /2-nz) × d
Is calculated.
Although R0 (λ) is displayed as a numerical value calculated by AxoScan, it means Re (λ).
 本明細書において、屈折率nx、ny、および、nzは、アッベ屈折計(NAR-4T、アタゴ(株)製)を使用し、光源にナトリウムランプ(λ=589nm)を用いて測定する。また、波長依存性を測定する場合は、多波長アッベ屈折計DR-M2(アタゴ(株)製)にて、干渉フィルターとの組み合わせで測定できる。
 また、ポリマーハンドブック(JOHN WILEY&SONS,INC)、および、各種光学フィルムのカタログの値を使用できる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、および、ポリスチレン(1.59)。
In the present specification, the refractive indexes nx, ny, and nz are measured by using an Abbe refractometer (NAR-4T, manufactured by Atago Co., Ltd.) and using a sodium lamp (λ = 589 nm) as a light source. Further, when measuring the wavelength dependence, it can be measured with a multi-wavelength Abbe refractometer DR-M2 (manufactured by Atago Co., Ltd.) in combination with an interference filter.
In addition, the values in the Polymer Handbook (JOHN WILEY & SONS, INC) and the catalogs of various optical films can be used. The values of the average refractive index of the main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethylmethacrylate (1.49), And polystyrene (1.59).
 本明細書中における「光」とは、活性光線または放射線を意味し、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光:Extreme Ultraviolet)、X線、紫外線、および電子線(EB:Electron Beam)などを意味する。なかでも、紫外線が好ましい。 The term "light" as used herein means active light or radiation, for example, the emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excima laser, extreme ultraviolet rays (EUV light: Extreme Ultraviolet), X-rays, ultraviolet rays, and the like. And electron beam (EB: Electron Beam) and the like. Of these, ultraviolet rays are preferable.
 本明細書では、「可視光」とは、380~780nmの光のことをいう。また、本明細書では、測定波長について特に付記がない場合は、測定波長は550nmである。
 本明細書において、光学異方性層中において液晶化合物が捩れ配向している場合、その捩れ角は0°超360°未満であることが好ましい。なお、後述するコレステリック液晶相は、液晶化合物が螺旋状に配向した周期構造を有する相であり、捩れ角は360°以上である。
As used herein, "visible light" refers to light having a diameter of 380 to 780 nm. Further, in the present specification, unless otherwise specified, the measurement wavelength is 550 nm.
In the present specification, when the liquid crystal compound is twist-oriented in the optically anisotropic layer, the twist angle is preferably more than 0 ° and less than 360 °. The cholesteric liquid crystal phase, which will be described later, is a phase in which the liquid crystal compound has a periodic structure in which the liquid crystal compound is spirally oriented, and the twist angle is 360 ° or more.
 本発明の光学異方性層の製造方法の特徴点としては、所定の工程を実施している点が挙げられる。
 後段で詳述するように、本発明においては、まず、組成物層中の液晶化合物を配向させる。形成される組成物層の基板側の一部の領域においては酸素濃度が低く、基板側とは反対側の表面側の他の領域においては酸素濃度が高い。そのため、このような組成物層に対して、所定の条件にて光照射を行うと酸素濃度が高い領域においては、液晶化合物の重合が進行しにくいのに対して、酸素濃度が低い領域においては、液晶化合物の重合が進行しやすい。液晶化合物の重合が進行しやすい領域においては、液晶化合物の配向状態が固定される。そして、光照射後に実施する加熱処理の際に、液晶化合物の重合が進行した領域においては液晶化合物の配向状態は変化しないが、液晶化合物の重合が進行しにくかった領域においては液晶化合物の配向状態が変化し、硬化処理の際に変化した配向状態が固定される。結果として、固定された液晶化合物の配向状態が異なる領域を厚み方向に沿って複数有する光学異方性層が製造される。
A feature of the method for producing an optically anisotropic layer of the present invention is that a predetermined step is carried out.
As will be described in detail later, in the present invention, first, the liquid crystal compound in the composition layer is oriented. The oxygen concentration is low in a part of the region of the composition layer formed on the substrate side, and the oxygen concentration is high in the other region on the surface side opposite to the substrate side. Therefore, when such a composition layer is irradiated with light under predetermined conditions, the polymerization of the liquid crystal compound does not easily proceed in the region where the oxygen concentration is high, whereas in the region where the oxygen concentration is low, it is difficult to proceed. , Polymerization of the liquid crystal compound is easy to proceed. In the region where the polymerization of the liquid crystal compound is likely to proceed, the orientation state of the liquid crystal compound is fixed. Then, during the heat treatment carried out after light irradiation, the orientation state of the liquid crystal compound does not change in the region where the polymerization of the liquid crystal compound has progressed, but the orientation state of the liquid crystal compound has not changed in the region where the polymerization of the liquid crystal compound has been difficult to proceed. Is changed, and the changed orientation state during the curing process is fixed. As a result, an optically anisotropic layer having a plurality of regions having different orientation states of the fixed liquid crystal compounds along the thickness direction is produced.
 本発明の光学異方性層の製造方法は、
 重合性基を有する液晶化合物を含む組成物層を形成する工程1と、
 組成物層に加熱処理を施して、組成物層中の液晶化合物を配向させる工程2と、
 工程2の後、酸素濃度1体積%以上の条件下にて、組成物層に対して、光照射を50秒間以下、かつ、300mJ/cm2以下で行う工程3と、
 工程3の後、組成物層に、光照射時より高い温度で加熱処理を施す工程4と、
 工程4の後、組成物層に対して硬化処理を施して、液晶化合物の配向状態が異なる領域を厚み方向に沿って複数有する光学異方性層を形成する工程5と、を有する。
 なお、上記工程5を実施することにより、液晶化合物の配向状態が固定化される。
 後述するように、液晶化合物の配向状態が異なる領域を有する態様としては、後述するように、例えば、複数の領域のコレステリック液晶相の螺旋ピッチが互いに異なる態様、複数の領域の層表面に対する液晶化合物の配向方向の傾斜角が異なる態様、および、2つの領域のうち一方の領域が液晶化合物が等方相を示す状態を固定してなる領域で、他方の領域が液晶化合物が配向している配向状態を固定してなる領域である態様が挙げられる。
 以下では、本発明の光学異方性層の製造方法の好適な態様毎に詳述する。
The method for producing an optically anisotropic layer of the present invention is
Step 1 of forming a composition layer containing a liquid crystal compound having a polymerizable group, and
Step 2 in which the composition layer is heat-treated to orient the liquid crystal compound in the composition layer, and
After the step 2, the composition layer is irradiated with light for 50 seconds or less and at 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more.
After step 3, the composition layer is heat-treated at a temperature higher than that at the time of light irradiation, and step 4
After the step 4, the composition layer is subjected to a curing treatment to form an optically anisotropic layer having a plurality of regions having different orientation states of the liquid crystal compounds along the thickness direction.
By carrying out the above step 5, the orientation state of the liquid crystal compound is fixed.
As will be described later, as an embodiment having regions in which the orientation states of the liquid crystal compounds are different, for example, an embodiment in which the spiral pitches of the cholesteric liquid crystal phases in a plurality of regions are different from each other, and the liquid crystal compound with respect to the layer surface of the plurality of regions. The orientation of the two regions is different, and one of the two regions is a region in which the liquid crystal compound exhibits an isotropic phase, and the other region is the orientation in which the liquid crystal compound is oriented. An embodiment in which the state is fixed is mentioned.
Hereinafter, each preferred embodiment of the method for producing an optically anisotropic layer of the present invention will be described in detail.
<<第1実施態様>>
 本発明の光学異方性層の製造方法の第1実施態様は、以下の工程1A~5Aを有する。後述するように、第1実施態様においては、厚み方向に沿って延びる螺旋軸に沿って捩れ配向した液晶化合物の配向状態を固定してなる領域を有する光学異方性層が形成される。
工程1A:光照射により螺旋誘起力が変化する感光性キラル剤を少なくとも含むキラル剤、および、重合性基を有する液晶化合物を含む組成物層を形成する工程
工程2A:組成物層に加熱処理を施して、組成物層中の液晶化合物を配向させる工程
工程3A:工程2Aの後、酸素濃度1体積%以上の条件下にて、組成物層に対して、光照射を50秒間以下、かつ、300mJ/cm2以下で行う工程
工程4A:工程3Aの後、組成物層に、光照射時より高い温度で加熱処理を施す工程
工程5A:工程4Aの後、組成物層に対して硬化処理を施して、液晶化合物の配向状態が異なる領域を厚み方向に沿って複数有する光学異方性層を形成する工程
 後述するように、第1実施態様において、上記特性の光学異方性層を製造するためには、組成物層中におけるキラル剤の合計含有量(全てのキラル剤の総含有量)は、液晶化合物の全質量に対して、5.0質量%以下であることが好ましい。
 以下、上記各工程の手順について詳述する。
<< First Embodiment >>
The first embodiment of the method for producing an optically anisotropic layer of the present invention comprises the following steps 1A to 5A. As will be described later, in the first embodiment, an optically anisotropic layer having a region in which the alignment state of the liquid crystal compound twisted and oriented along a spiral axis extending along the thickness direction is fixed is formed.
Step 1A: Forming a composition layer containing at least a photosensitive chiral agent whose spiral-inducing force changes by light irradiation and a liquid crystal compound having a polymerizable group Step 2A: Heat-treating the composition layer. Step 3A to orient the liquid crystal compound in the composition layer: After step 2A, the composition layer is irradiated with light for 50 seconds or less under the condition of an oxygen concentration of 1% by volume or more, and Step 4A performed at 300 mJ / cm 2 or less: After step 3A, the composition layer is heat-treated at a temperature higher than that at the time of light irradiation Step 5A: After step 4A, the composition layer is cured. A step of forming an optically anisotropic layer having a plurality of regions having different orientation states of the liquid crystal compound along the thickness direction. As will be described later, in the first embodiment, the optically anisotropic layer having the above characteristics is produced. Therefore, the total content of the chiral agent (total content of all chiral agents) in the composition layer is preferably 5.0% by mass or less with respect to the total mass of the liquid crystal compound.
Hereinafter, the procedure of each of the above steps will be described in detail.
<工程1A>
 工程1Aは、光照射により螺旋誘起力が変化する感光性キラル剤を少なくとも含むキラル剤、および、重合性基を有する液晶化合物を含む組成物層を形成する工程である。本工程を実施することにより、後述する光照射処理が施される組成物層が形成される。
 以下では、まず、本工程で使用される材料について詳述し、その後、工程の手順について詳述する。
<Step 1A>
Step 1A is a step of forming a composition layer containing at least a photosensitive chiral agent whose spiral-inducing force is changed by light irradiation and a liquid crystal compound having a polymerizable group. By carrying out this step, a composition layer to be subjected to a light irradiation treatment described later is formed.
In the following, first, the materials used in this step will be described in detail, and then the procedure of the step will be described in detail.
(キラル剤)
 工程1Aの組成物層は、光照射により螺旋誘起力が変化する感光性キラル剤を少なくとも含むキラル剤を含む。まず、光照射により螺旋誘起力が変化する感光性キラル剤について詳述する。
 なお、キラル剤の螺旋誘起力(HTP)は、下記式(A)で表される螺旋配向能力を示すファクターである。
 式(A) HTP=1/(螺旋ピッチの長さ(単位:μm)×液晶化合物に対するキラル剤の濃度(質量%))[μm-1
 螺旋ピッチの長さとは、コレステリック液晶相の螺旋構造のピッチP(=螺旋の周期)の長さをいい、液晶便覧(丸善株式会社出版)の196ページに記載の方法で測定できる。
(Chiral agent)
The composition layer of step 1A contains a chiral agent containing at least a photosensitive chiral agent whose spiral-inducing force is changed by light irradiation. First, a photosensitive chiral agent whose spiral-inducing force changes by light irradiation will be described in detail.
The spiral-inducing force (HTP) of the chiral agent is a factor indicating the spiral orientation ability represented by the following formula (A).
Formula (A) HTP = 1 / (length of spiral pitch (unit: μm) × concentration of chiral agent to liquid crystal compound (mass%)) [μm -1 ]
The length of the spiral pitch means the length of the pitch P (= spiral period) of the spiral structure of the cholesteric liquid crystal phase, and can be measured by the method described on page 196 of the Liquid Crystal Handbook (published by Maruzen Co., Ltd.).
 光照射により螺旋誘起力が変化する感光性キラル剤(以下、単に「キラル剤A」ともいう。)は、液晶性であっても、非液晶性であってもよい。キラル剤Aは、一般に不斉炭素原子を含む場合が多い。なお、キラル剤Aは、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物であってもよい。 The photosensitive chiral agent whose spiral-inducing force changes by light irradiation (hereinafter, also simply referred to as “chiral agent A”) may be liquid crystal or non-liquid crystal. The chiral agent A generally contains an asymmetric carbon atom in many cases. The chiral agent A may be an axial asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom.
 キラル剤Aは、光照射によって螺旋誘起力が増加するキラル剤であってもよいし、減少するキラル剤であってもよい。なかでも、光照射により螺旋誘起力が減少するキラル剤であることが好ましい。
 なお、本明細書において「螺旋誘起力の増加および減少」とは、キラル剤Aの初期(光照射前)の螺旋方向を「正」としたときの増減を表す。したがって、光照射により螺旋誘起力が減少し続け、0を超えて螺旋方向が「負」となった場合(つまり、初期(光照射前)の螺旋方向とは逆の螺旋方向の螺旋を誘起する場合)にも、「螺旋誘起力が減少するキラル剤」に該当する。
The chiral agent A may be a chiral agent whose spiral-inducing force is increased by light irradiation, or may be a chiral agent whose spiral-inducing force is decreased. Of these, a chiral agent whose spiral-inducing force is reduced by light irradiation is preferable.
In addition, in this specification, "increase and decrease of spiral-inducing force" means increase / decrease when the initial spiral direction (before light irradiation) of chiral agent A is "positive". Therefore, when the spiral-inducing force continues to decrease due to light irradiation and the spiral direction becomes "negative" beyond 0 (that is, it induces a spiral in the spiral direction opposite to the initial (before light irradiation) spiral direction). (Case) also falls under the category of "chiral agent with reduced spiral-inducing force".
 キラル剤Aとしては、いわゆる光反応型キラル剤が挙げられる。光反応型キラル剤とは、キラル部位と光照射によって構造変化する光反応部位を有し、例えば、照射量に応じて液晶化合物の捩れ力を大きく変化させる化合物である。
 光照射によって構造変化する光反応部位の例としては、フォトクロミック化合物(内田欣吾、入江正浩、化学工業、vol.64、640p,1999、内田欣吾、入江正浩、ファインケミカル、vol.28(9)、15p,1999)などが挙げられる。また、上記構造変化とは、光反応部位への光照射により生ずる、分解、付加反応、異性化、ラセミ化、[2+2]光環化および2量化反応などを意味し、上記構造変化は不可逆的であってもよい。また、キラル部位としては、例えば、野平博之、化学総説、No.22液晶の化学、73p:1994に記載の不斉炭素などが相当する。
Examples of the chiral agent A include so-called photoreactive chiral agents. The photoreactive chiral agent is a compound having a chiral portion and a photoreactive portion whose structure is changed by light irradiation, and for example, a compound that greatly changes the torsional force of the liquid crystal compound according to the irradiation amount.
Examples of photochemical compounds whose structure changes due to light irradiation are photochromic compounds (Kingo Uchida, Masahiro Irie, Chemical Industry, vol.64, 640p, 1999, Kingo Uchida, Masahiro Irie, Fine Chemicals, vol.28 (9), 15p. , 1999) and the like. Further, the structural change means decomposition, addition reaction, isomerization, racemization, [2 + 2] photocyclization, dimerization reaction, etc. caused by light irradiation to the photochemical reaction site, and the structural change is irreversible. There may be. Examples of the chiral site include Hiroyuki Nohira, Review of Chemistry, No. 22. Chemistry of liquid crystal, 73p: Asymmetric carbon described in 1994 and the like correspond to this.
 キラル剤Aとしては、例えば、特開2001-159709号公報の段落0044~0047に記載の光反応型キラル剤、特開2002-179669号公報の段落0019~0043に記載の光学活性化合物、特開2002-179633号公報の段落0020~0044に記載の光学活性化合物、特開2002-179670号公報の段落0016~0040に記載の光学活性化合物、特開2002-179668号公報の段落0017~0050に記載の光学活性化合物、特開2002-180051号公報の段落0018~0044に記載の光学活性化合物、特開2002-338575号公報の段落0016~0055に記載の光学活性イソソルビド誘導体、特開2002-080478号公報の段落0023~0032に記載の光反応型光学活性化合物、特開2002-080851号公報の段落0019~0029に記載の光反応型カイラル剤、特開2002-179681号公報の段落0022~0049に記載の光学活性化合物、特開2002-302487号公報の段落0015~0044に記載の光学活性化合物、特開2002-338668号公報の段落0015~0050に記載の光学活性ポリエステル、特開2003-055315号公報の段落0019~0041に記載のビナフトール誘導体、特開2003-073381号公報の段落0008~0043に記載の光学活性フルギド化合物、特開2003-306490号公報の段落0015~0057に記載の光学活性イソソルビド誘導体、特開2003-306491号公報の段落0015~0041に記載の光学活性イソソルビド誘導体、特開2003-313187号公報の段落0015~0049に記載の光学活性イソソルビド誘導体、特開2003-313188号公報の段落0015~0057に記載の光学活性イソマンニド誘導体、特開2003-313189号公報の段落0015~0049に記載の光学活性イソソルビド誘導体、特開2003-313292号公報の段落0015~0052に記載の光学活性ポリエステル/アミド、WO2018/194157号公報の段落0012~0053に記載の光学活性化合物、および、特開2002-179682号公報の段落0020~0049に記載の光学活性化合物などが挙げられる。 Examples of the chiral agent A include photoreactive chiral agents described in paragraphs 0044 to 0047 of JP-A-2001-159709, optically active compounds described in paragraphs 0019 to 0043 of JP-A-2002-179669, and JP-A. The optically active compounds described in paragraphs 0020 to 0044 of JP-A-2002-179633, the optically active compounds described in paragraphs 0016 to 0040 of JP-A-2002-179670, and paragraphs 0017 to 0050 of JP-A-2002-179668. The optically active compound of JP-A-2002-180051, the optically active compound described in JP-A-2002-138575, paragraphs 0016 to 0055 of JP-A-2002-338575, and the optically active isosorbide derivative of JP-A-2002-080478. The photoreactive optically active compounds described in paragraphs 0023 to 0032 of JP-A, the photoreactive chiral agents described in paragraphs 0019 to 0029 of JP-A-2002-08851, paragraphs 0022-0049 of JP-A-2002-179681. The optically active compound described, the optically active compound described in paragraphs 0015 to 0044 of JP-A-2002-302487, the optically active polyester described in paragraphs 0015 to 0050 of JP-A-2002-338668, JP-A-2003-055315. The binaphthol derivative described in paragraphs 0019 to 0041 of JP-A, the optically active flugide compound described in paragraphs 0008 to 0043 of JP-A-2003-073831, and the optically active isosorbide described in paragraphs 0015 to 0057 of JP-A-2003-306490. Derivatives, optically active isosorbide derivatives described in JP-A-2003-306491, paragraphs 0015 to 0041, optically active isosorbide derivatives described in JP-A-2003-313187, paragraphs 0015 to 0049, JP-A-2003-313188. The optically active isomannide derivative described in paragraphs 0015 to 0057, the optically active isosorbide derivative described in paragraphs 0015 to 0049 of JP-A-2003-313189, and the optically active polyester described in paragraphs 0015 to 0052 of JP-A-2003-313292. / Amid, the optically active compounds described in paragraphs 0012 to 0053 of WO2018 / 194157A, and the optically active compounds described in paragraphs 0020 to 0049 of JP-A-2002-179682 can be mentioned.
 キラル剤Aとしては、なかでも、光異性化部位を少なくとも有する化合物が好ましく、光異性化部位は光異性化可能な二重結合を有することがより好ましい。上記光異性化可能な二重結合を有する光異性化部位としては、光異性化が起こりやすく、かつ、光照射前後の螺旋誘起力差が大きいという点で、シンナモイル部位、カルコン部位、アゾベンゼン部位またはスチルベン部位が好ましく、さらに可視光の吸収が小さいという点で、シンナモイル部位、カルコン部位またはスチルベン部位がより好ましい。なお、光異性化部位は、上述した光照射によって構造変化する光反応部位に該当する。 The chiral agent A is preferably a compound having at least a photoisomerization site, and more preferably the photoisomerization site has a photoisomerizable double bond. The photoisomerization site having a double bond capable of photoisomerization is a stilbene site, a chalcone site, an azobenzene site or a stilbene site in that photoisomerization is likely to occur and the difference in spiral induced force before and after light irradiation is large. The stilbene moiety is preferred, and the cinnamoyl moiety, chalcone moiety or stilbene moiety is more preferred in that the absorption of visible light is small. The photoisomerization site corresponds to the photoreaction site whose structure is changed by the above-mentioned light irradiation.
 また、キラル剤Aは、初期(光照射前)の螺旋誘起力が高く、かつ、光照射による螺旋誘起力の変化量がより優れる点で、トランス型の光異性化可能な二重結合を有していることが好ましい。
 また、キラル剤Aは、初期(光照射前)の螺旋誘起力が低く、かつ、光照射による螺旋誘起力の変化量がより優れる点で、シス型の光異性化可能な二重結合を有していることが好ましい。
Further, the chiral agent A has a trans-type photoisomerizable double bond in that the initial spiral-inducing force (before light irradiation) is high and the amount of change in the spiral-inducing force due to light irradiation is more excellent. It is preferable to do.
Further, the chiral agent A has a cis-type photoisomerizable double bond in that the initial spiral-inducing force (before light irradiation) is low and the amount of change in the spiral-inducing force due to light irradiation is more excellent. It is preferable to do.
 キラル剤Aは、ビナフチル部分構造、イソソルビド部分構造(イソソルビドに由来する部分構造)、および、イソマンニド部分構造(イソマンニドに由来する部分構造)から選ばれるいずれかの部分構造を有していることが好ましい。なお、ビナフチル部分構造、イソソルビド部分構造、および、イソマンニド部分構造とは、各々以下の構造を意図する。
 ビナフチル部分構造中の実線と破線が平行している部分は、一重結合または二重結合を表す。なお、以下に示す構造において、*は、結合位置を表す。
The chiral agent A preferably has any one of a binaphthyl partial structure, an isosorbide partial structure (a partial structure derived from isosorbide), and an isomannide partial structure (a partial structure derived from isosorbide). .. The binaphthyl partial structure, the isosorbide partial structure, and the isosorbide partial structure are intended to have the following structures, respectively.
The part of the binaphthyl substructure where the solid line and the broken line are parallel represents a single bond or a double bond. In the structure shown below, * represents the bonding position.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 キラル剤Aは、重合性基を有していてもよい。重合性基の種類は特に制限されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基または環重合性基がより好ましく、(メタ)アクリロイル基、ビニル基、スチリル基、または、アリル基がさらに好ましい。 The chiral agent A may have a polymerizable group. The type of the polymerizable group is not particularly limited, and a functional group capable of an addition polymerization reaction is preferable, a polymerizable ethylenically unsaturated group or a ring-polymerizable group is more preferable, and a (meth) acryloyl group, a vinyl group, a styryl group, etc. Alternatively, an allyl group is more preferred.
 キラル剤Aとしては、式(C)で表される化合物が好ましい。
 式(C)  R-L-R
 Rは、それぞれ独立に、シンナモイル部位、カルコン部位、アゾベンゼン部位、および、スチルベン部位からなる群から選択される少なくとも1つの部位を有する基を表す。
 Lは、式(D)で表される構造から2個の水素原子を除いた形成される2価の連結基(上記ビナフチル部分構造から2個の水素原子を除いて形成される2価の連結基)、式(E)で表される2価の連結基(上記イソソルビド部分構造からなる2価の連結基)、または、式(F)で表される2価の連結基(上記イソマンニド部分構造からなる2価の連結基)を表す。
 式(E)および式(F)中、*は結合位置を表す。
As the chiral agent A, a compound represented by the formula (C) is preferable.
Equation (C) R-L-R
R represents a group each independently having at least one site selected from the group consisting of a cinnamoyl site, a chalcone site, an azobenzene site, and a stilbene site.
L is a divalent linking group formed by removing two hydrogen atoms from the structure represented by the formula (D) (a divalent link formed by removing two hydrogen atoms from the above binaphthyl partial structure). Group), a divalent linking group represented by the formula (E) (a divalent linking group composed of the isosorbide partial structure), or a divalent linking group represented by the formula (F) (the isomannide partial structure). Represents a divalent linking group consisting of.
In the formula (E) and the formula (F), * represents the bonding position.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 工程1Aにおいては、上述したキラル剤Aが少なくともが用いられる。工程1Aは、キラル剤Aを2種以上用いる態様であってもよいし、少なくとも1種のキラル剤Aと少なくとも1種の光照射により螺旋誘起力が変化しないキラル剤(以下、単に「キラル剤B」ともいう。)とを用いる態様であってもよい。
 キラル剤Bは、液晶性であっても、非液晶性であってもよい。キラル剤Bは、一般に不斉炭素原子を含む場合が多い。なお、キラル剤Bは、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物であってもよい。
 キラル剤Bは重合性基を有していてもよい。重合性基の種類としては、キラル剤Aが有していてもよい重合性基が挙げられる。
 キラル剤Bとしては、公知のキラル剤を使用できる。
 キラル剤Bは、上述したキラル剤Aと逆向きの螺旋を誘起するキラル剤であることが好ましい。つまり、例えば、キラル剤Aにより誘起する螺旋が右方向の場合には、キラル剤Bにより誘起する螺旋は左方向となる。
In step 1A, at least the above-mentioned chiral agent A is used. Step 1A may be an embodiment in which two or more kinds of chiral agents A are used, or a chiral agent whose spiral inducing force does not change by irradiation with at least one kind of chiral agent A and at least one kind of light (hereinafter, simply "chiral agent"). B ”) may be used.
The chiral agent B may be liquid crystal or non-liquid crystal. The chiral agent B generally contains an asymmetric carbon atom in many cases. The chiral agent B may be an axial asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom.
The chiral agent B may have a polymerizable group. Examples of the type of the polymerizable group include the polymerizable group that the chiral agent A may have.
As the chiral agent B, a known chiral agent can be used.
The chiral agent B is preferably a chiral agent that induces a spiral in the opposite direction to the above-mentioned chiral agent A. That is, for example, when the spiral induced by the chiral agent A is in the right direction, the helix induced by the chiral agent B is in the left direction.
 キラル剤Aおよびキラル剤Bのモル吸光係数は特に制限されないが、後述する工程3Aで照射される光の波長(例えば、365nm)におけるモル吸光係数は100~100,000L/(mol・cm)が好ましく、500~50,000L/(mol・cm)がより好ましい。 The molar extinction coefficient of the chiral agent A and the chiral agent B is not particularly limited, but the molar extinction coefficient at the wavelength of the light irradiated in step 3A described later (for example, 365 nm) is 100 to 100,000 L / (mol · cm). It is preferably 500 to 50,000 L / (mol · cm), and more preferably 500 to 50,000 L / (mol · cm).
 組成物層中のキラル剤Aおよびキラル剤Bの各含有量は、形成しようとする光学異方性層の特性(例えば、レタデーションや波長分散)に応じて適宜設定され得る。なお、光学異方性層中の液晶化合物の捩れ角はキラル剤Aおよびキラル剤Bの種類およびその添加濃度に大きく依存するため、これらを調節することによって液晶化合物の配向状態を制御することができる。 The contents of the chiral agent A and the chiral agent B in the composition layer can be appropriately set according to the characteristics (for example, retardation and wavelength dispersion) of the optically anisotropic layer to be formed. Since the twist angle of the liquid crystal compound in the optically anisotropic layer largely depends on the types of the chiral auxiliary A and the chiral agent B and their addition concentrations, it is possible to control the orientation state of the liquid crystal compound by adjusting these. can.
 第1実施態様において、組成物層中におけるキラル剤の合計含有量(全てのキラル剤の総含有量)は特に制限されないが、液晶化合物の配向状態を制御しやすい点で、液晶化合物の全質量に対して、5.0質量%以下が好ましく、4.0質量%以下がより好ましく、2.0質量%以下がさらに好ましい。下限は特に制限されないが、0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%がさらに好ましい。 In the first embodiment, the total content of the chiral agent (total content of all chiral agents) in the composition layer is not particularly limited, but the total mass of the liquid crystal compound is easy to control in that the orientation state of the liquid crystal compound is easily controlled. On the other hand, 5.0% by mass or less is preferable, 4.0% by mass or less is more preferable, and 2.0% by mass or less is further preferable. The lower limit is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, still more preferably 0.05% by mass.
 キラル剤中におけるキラル剤Aの含有量は特に制限されないが、液晶化合物の配向状態を制御しやすい点で、キラル剤の全質量に対して、5~95質量%が好ましく、10~90質量%がより好ましい。 The content of the chiral agent A in the chiral agent is not particularly limited, but is preferably 5 to 95% by mass, preferably 10 to 90% by mass, based on the total mass of the chiral agent, in that the orientation state of the liquid crystal compound can be easily controlled. Is more preferable.
(液晶化合物)
 工程1Aの組成物層は、重合性基を有する液晶化合物を含む。
 液晶化合物の種類については、特に制限されない。一般的に、液晶化合物はその形状から、棒状タイプ(棒状液晶化合物)と円盤状タイプ(ディスコティック液晶化合物)とに分類できる。さらに、液晶化合物は、低分子タイプと高分子タイプとの分類できる。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男著,2頁,岩波書店,1992)。本発明では、いずれの液晶化合物を用いることもできるが、棒状液晶化合物またはディスコティック液晶化合物を用いるのが好ましく、棒状液晶化合物を用いるのがより好ましい。2種以上の棒状液晶化合物、2種以上のディスコティック液晶化合物、または、棒状液晶化合物とディスコティック液晶化合物との混合物を用いてもよい。
 なお、棒状液晶化合物としては、例えば、特表平11-513019号公報の請求項1や特開2005-289980号公報の段落0026~0098に記載のものを好ましく用いることができる。
 ディスコティック液晶化合物としては、例えば、特開2007-108732号公報の段落0020~0067や特開2010-244038号公報の段落0013~0108に記載のものを好ましく用いることができる。
(Liquid crystal compound)
The composition layer of step 1A contains a liquid crystal compound having a polymerizable group.
The type of the liquid crystal compound is not particularly limited. Generally, a liquid crystal compound can be classified into a rod-shaped type (rod-shaped liquid crystal compound) and a disk-shaped type (discotic liquid crystal compound) according to its shape. Further, the liquid crystal compound can be classified into a small molecule type and a high molecular type. A polymer generally refers to a molecule having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992). In the present invention, any liquid crystal compound can be used, but it is preferable to use a rod-shaped liquid crystal compound or a discotic liquid crystal compound, and it is more preferable to use a rod-shaped liquid crystal compound. Two or more kinds of rod-shaped liquid crystal compounds, two or more kinds of discotic liquid crystal compounds, or a mixture of a rod-shaped liquid crystal compound and a discotic liquid crystal compound may be used.
As the rod-shaped liquid crystal compound, for example, those described in claim 1 of JP-A No. 11-513019 and paragraphs 0026 to 0098 of JP-A-2005-289980 can be preferably used.
As the discotic liquid crystal compound, for example, those described in paragraphs 0020 to 0067 of JP-A-2007-108732 and paragraphs 0013 to 0108 of JP-A-2010-244033 can be preferably used.
 液晶化合物が有する重合性基の種類は特に制限されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基または環重合性基がより好ましく、(メタ)アクリロイル基、ビニル基、スチリル基、または、アリル基がさらに好ましい。 The type of the polymerizable group of the liquid crystal compound is not particularly limited, a functional group capable of an addition polymerization reaction is preferable, a polymerizable ethylenically unsaturated group or a ring-polymerizable group is more preferable, and a (meth) acryloyl group or a vinyl group is preferable. , Styryl group, or allyl group is more preferable.
 なお、本発明にて製造される光学異方性層は、重合性基を有する液晶化合物(重合性基を有する棒状液晶化合物またはディスコティック液晶化合物)が重合などによって固定されて形成された層であり、層となった後はもはや液晶性を示す必要はない。 The optically anisotropic layer produced in the present invention is a layer formed by fixing a liquid crystal compound having a polymerizable group (a rod-shaped liquid crystal compound having a polymerizable group or a discotic liquid crystal compound) by polymerization or the like. Yes, it is no longer necessary to show liquid crystallinity after forming a layer.
 組成物層中における液晶化合物の含有量は特に制限されないが、液晶化合物の配向状態を制御しやすい点で、組成物層の全質量に対して、60質量%以上が好ましく、70質量%以上がより好ましい。上限は特に制限されないが、99質量%以下が好ましく、97質量%以下がより好ましい。 The content of the liquid crystal compound in the composition layer is not particularly limited, but is preferably 60% by mass or more, preferably 70% by mass or more, based on the total mass of the composition layer, from the viewpoint of easy control of the orientation state of the liquid crystal compound. More preferred. The upper limit is not particularly limited, but is preferably 99% by mass or less, and more preferably 97% by mass or less.
(その他の成分)
 組成物層は、上記キラル剤および液晶化合物以外の他の成分を含んでいてもよい。
 例えば、組成物層は、重合開始剤を含んでいてもよい。組成物層が重合開始剤を含む場合、より効率的に重合性基を有する液晶化合物の重合が進行する。
 重合開始剤としては公知の重合開始剤が挙げられ、光重合開始剤、および、熱重合開始剤が挙げられ、光重合開始剤が好ましい。特に、後述する工程5Aにおいて照射される光に感光する重合開始剤が好ましい。
(Other ingredients)
The composition layer may contain components other than the chiral agent and the liquid crystal compound.
For example, the composition layer may contain a polymerization initiator. When the composition layer contains a polymerization initiator, the polymerization of the liquid crystal compound having a polymerizable group proceeds more efficiently.
Examples of the polymerization initiator include known polymerization initiators, photopolymerization initiators and thermal polymerization initiators, and photopolymerization initiators are preferable. In particular, a polymerization initiator that is sensitive to the light irradiated in step 5A described later is preferable.
 重合開始剤は、工程3Aにおいて照射される光の波長のうち最大となるモル吸光係数が、工程5Aにおいて照射される光の波長のうち最大となるモル吸光係数に対して、0.1倍以下であることが好ましい。
 また、重合開始剤の工程3Aにおける光照射の波長におけるモル吸光係数は、所定の光学異方性層が形成されやすい点で、5000L/(mol・cm)以下が好ましく、4000L/(mol・cm)以下がより好ましく、3000L/(mol・cm)以下がさらに好ましい。下限は特に制限されず、0L/(mol・cm)が好ましいが、30L/(mol・cm)以上の場合が多い。
 組成物層中における重合開始剤の含有量は特に制限されないが、組成物層の全質量に対して、0.01~20質量%が好ましく、0.5~10質量%がより好ましい。
The polymerization initiator has a molar extinction coefficient that is the largest of the wavelengths of the light irradiated in step 3A, which is 0.1 times or less the molar extinction coefficient of the maximum wavelength of the light that is irradiated in step 5A. Is preferable.
Further, the molar extinction coefficient at the wavelength of light irradiation in the step 3A of the polymerization initiator is preferably 5000 L / (mol · cm) or less, and 4000 L / (mol · cm) in that a predetermined optically anisotropic layer is easily formed. ) Or less is more preferable, and 3000 L / (mol · cm) or less is further preferable. The lower limit is not particularly limited, and is preferably 0 L / (mol · cm), but is often 30 L / (mol · cm) or more.
The content of the polymerization initiator in the composition layer is not particularly limited, but is preferably 0.01 to 20% by mass, more preferably 0.5 to 10% by mass, based on the total mass of the composition layer.
 組成物層は、光増感剤を含んでいてもよい。
 光増感剤の種類は特に制限されず、公知の光増感剤が挙げられる。
 なお、光増感剤の工程3Aにおける光照射の波長におけるモル吸光係数は、所定の光学異方性層が形成されやすい点で、5000L/(mol・cm)以下が好ましく、4800L/(mol・cm)以下がより好ましく、4500L/(mol・cm)以下がさらに好ましい。下限は特に制限されず、0L/(mol・cm)が好ましいが、30L/(mol・cm)以上の場合が多い。
 組成物層中における光増感剤の含有量は特に制限されないが、組成物層の全質量に対して、0.01~20質量%が好ましく、0.5~10質量%がより好ましい。
The composition layer may contain a photosensitizer.
The type of the photosensitizer is not particularly limited, and examples thereof include known photosensitizers.
The molar extinction coefficient at the wavelength of light irradiation in step 3A of the photosensitizer is preferably 5000 L / (mol · cm) or less, 4800 L / (mol · ·, in that a predetermined optically anisotropic layer is easily formed. cm) or less is more preferable, and 4500 L / (mol · cm) or less is further preferable. The lower limit is not particularly limited, and is preferably 0 L / (mol · cm), but is often 30 L / (mol · cm) or more.
The content of the photosensitizer in the composition layer is not particularly limited, but is preferably 0.01 to 20% by mass, more preferably 0.5 to 10% by mass, based on the total mass of the composition layer.
 組成物層は、重合性基を有する液晶化合物とは異なる重合性モノマーを含んでいてもよい。重合性モノマーとしては、ラジカル重合性化合物、および、カチオン重合性化合物が挙げられ、多官能性ラジカル重合性モノマーが好ましい。重合性モノマーとしては、例えば、特開2002-296423号公報中の段落0018~0020に記載の重合性モノマーが挙げられる。
 組成物層中の重合性モノマーの含有量は特に制限されないが、液晶化合物全質量に対して、1~50質量%が好ましく、5~30質量%がより好ましい。
The composition layer may contain a polymerizable monomer different from the liquid crystal compound having a polymerizable group. Examples of the polymerizable monomer include a radically polymerizable compound and a cationically polymerizable compound, and a polyfunctional radically polymerizable monomer is preferable. Examples of the polymerizable monomer include the polymerizable monomers described in paragraphs 0018 to 0020 in JP-A-2002-296423.
The content of the polymerizable monomer in the composition layer is not particularly limited, but is preferably 1 to 50% by mass, more preferably 5 to 30% by mass, based on the total mass of the liquid crystal compound.
 組成物層は、界面活性剤を含んでいてもよい。界面活性剤としては、従来公知の化合物が挙げられるが、フッ素系化合物が好ましい。具体的には、例えば、特開2001-330725号公報中の段落0028~0056に記載の化合物、および、特願2003-295212号公報中の段落0069~0126に記載の化合物が挙げられる。 The composition layer may contain a surfactant. Examples of the surfactant include conventionally known compounds, but fluorine-based compounds are preferable. Specific examples thereof include the compounds described in paragraphs 0028 to 0056 of JP-A-2001-330725 and the compounds described in paragraphs 0069 to 0126 of Japanese Patent Application Laid-Open No. 2003-295212.
 組成物層は、ポリマーを含んでいてもよい。ポリマーとしては、セルロースエステルが挙げられる。セルロースエステルとしては、特開2000-155216号公報中の段落0178に記載のものが挙げられる。
 組成物層中のポリマーの含有量は特に制限されないが、液晶化合物全質量に対して、0.1~10質量%が好ましく、0.1~8質量%がより好ましい。
The composition layer may contain a polymer. Examples of the polymer include cellulose esters. Examples of the cellulose ester include those described in paragraph 0178 in JP-A-2000-155216.
The content of the polymer in the composition layer is not particularly limited, but is preferably 0.1 to 10% by mass, more preferably 0.1 to 8% by mass, based on the total mass of the liquid crystal compound.
 組成物層は、上記以外にも、液晶化合物を水平配向状態または垂直配向状態とするために、水平配向または垂直配向を促進する添加剤(配向制御剤)を含んでいてもよい。 In addition to the above, the composition layer may contain an additive (orientation control agent) that promotes horizontal orientation or vertical orientation in order to bring the liquid crystal compound into a horizontal or vertical orientation state.
(基板)
 後述するように、組成物層を形成する際には、基板上に組成物層を形成することが好ましい。
 基板は、組成物層を支持する板である。
 基板としては、透明基板が好ましい。なお、透明基板とは、可視光の透過率が60%以上である基板を意図し、その透過率は80%以上が好ましく、90%以上がより好ましい。
(substrate)
As will be described later, when forming the composition layer, it is preferable to form the composition layer on the substrate.
The substrate is a plate that supports the composition layer.
As the substrate, a transparent substrate is preferable. The transparent substrate is intended to be a substrate having a visible light transmittance of 60% or more, and the transmittance is preferably 80% or more, more preferably 90% or more.
 基板の波長550nmにおける厚み方向のレタデーション値(Rth(550))は特に制限されないが、-110~110nmが好ましく、-80~80nmがより好ましい。
 基板の波長550nmにおける面内のレタデーション値(Re(550))は特に制限されないが、0~50nmが好ましく、0~30nmがより好ましく、0~10nmがさらに好ましい。
The retardation value (Rth (550)) in the thickness direction at a wavelength of 550 nm of the substrate is not particularly limited, but is preferably −110 to 110 nm, and more preferably −80 to 80 nm.
The in-plane retardation value (Re (550)) at a wavelength of 550 nm of the substrate is not particularly limited, but is preferably 0 to 50 nm, more preferably 0 to 30 nm, still more preferably 0 to 10 nm.
 基板を形成する材料としては、光学性能透明性、機械的強度、熱安定性、水分遮蔽性、および、等方性などに優れるポリマーが好ましい。
 基板として用いることのできるポリマーフィルムとしては、例えば、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリエチレンおよびポリプロピレンなどのポリオレフィンフィルム、ポリエチレンテレフタレートおよびポリエチレンナフタレートなどのポリエステルフィルム、ポリエーテルスルホンフィルム、ポリメチルメタクリレートなどのポリアクリルフィルム、ポリウレタンフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルム、並びに、脂環式構造を有するポリマーのフィルム(ノルボルネン系樹脂(アートン:商品名、JSR社製、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製)))が挙げられる。
 なかでも、ポリマーフィルムの材料としては、トリアセチルセルロース、ポリエチレンテレフタレート、または、脂環式構造を有するポリマーが好ましく、トリアセチルセルロースがより好ましい。
As the material for forming the substrate, a polymer having excellent optical performance transparency, mechanical strength, thermal stability, moisture shielding property, isotropic property and the like is preferable.
Examples of the polymer film that can be used as a substrate include cellulose acylate films (for example, cellulose triacetate film (refractive index 1.48), cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film). Polyolefin films such as polyethylene and polypropylene, polyester films such as polyethylene terephthalate and polyethylene naphthalate, polyether sulfone films, polyacrylic films such as polymethylmethacrylate, polyurethane films, polycarbonate films, polysulfone films, polyether films, polymethylpentene films. , Polyether ketone film, (meth) acrylic nitrile film, and polymer film having an alicyclic structure (Norbornen-based resin (Arton: trade name, JSR), amorphous polyolefin (Zeonex: trade name, Nippon Zeon) Company))).
Among them, as the material of the polymer film, triacetyl cellulose, polyethylene terephthalate, or a polymer having an alicyclic structure is preferable, and triacetyl cellulose is more preferable.
 基板には、種々の添加剤(例えば、光学的異方性調整剤、波長分散調整剤、微粒子、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、など)が含まれていてもよい。 The substrate may contain various additives (for example, an optical anisotropy adjuster, a wavelength dispersion adjuster, fine particles, a plasticizer, an ultraviolet inhibitor, a deterioration inhibitor, a release agent, etc.).
 基板の厚みは特に制限されないが、10~200μmが好ましく、10~100μmがより好ましく、20~90μmがさらに好ましい。また、基板は複数枚の積層からなっていてもよい。基板はその上に設けられる層との接着を改善するため、基板の表面に表面処理(例えば、グロー放電処理、コロナ放電処理、紫外線(UV)処理、火炎処理)を実施してもよい。
 また、基板の上に、接着層(下塗り層)を設けてもよい。
 また、基板には、搬送工程でのすべり性を付与したり、巻き取った後の裏面と表面の貼り付きを防止したりするために、平均粒径が10~100nm程度の無機粒子を固形分質量比で5~40質量%混合したポリマー層を基板の片側に配置してもよい。
The thickness of the substrate is not particularly limited, but is preferably 10 to 200 μm, more preferably 10 to 100 μm, and even more preferably 20 to 90 μm. Further, the substrate may be made of a plurality of laminated sheets. The substrate may be subjected to surface treatment (eg, glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment, flame treatment) on the surface of the substrate in order to improve adhesion to a layer provided on the substrate.
Further, an adhesive layer (undercoat layer) may be provided on the substrate.
In addition, in order to impart slipperiness in the transport process and prevent sticking between the back surface and the front surface after winding, the substrate is solidified with inorganic particles having an average particle size of about 10 to 100 nm. A polymer layer mixed by mass ratio of 5 to 40% by mass may be arranged on one side of the substrate.
 基板は、いわゆる仮支持体であってもよい。つまり、本発明の製造方法を実施した後、基板を光学異方性層から剥離してもよい。 The substrate may be a so-called temporary support. That is, after carrying out the production method of the present invention, the substrate may be peeled off from the optically anisotropic layer.
 また、基板の表面に直接ラビング処理を施してもよい。つまり、ラビング処理が施された基板を用いてもよい。ラビング処理の方向は特に制限されず、液晶化合物を配向させたい方向に応じて、適宜、最適な方向が選択される。
 ラビング処理は、LCD(liquid crystal display)の液晶配向処理工程として広く採用されている処理方法を適用できる。即ち、基板の表面を、紙、ガーゼ、フェルト、ゴム、ナイロン繊維、または、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法を用いることができる。
Further, the surface of the substrate may be directly subjected to the rubbing treatment. That is, a substrate that has been subjected to a rubbing treatment may be used. The direction of the rubbing treatment is not particularly limited, and the optimum direction is appropriately selected according to the direction in which the liquid crystal compound is desired to be oriented.
As the rubbing process, a processing method widely adopted as a liquid crystal alignment processing step of an LCD (liquid crystal display) can be applied. That is, a method of obtaining orientation by rubbing the surface of the substrate in a certain direction with paper, gauze, felt, rubber, nylon fiber, polyester fiber, or the like can be used.
 基板上には、配向膜が配置されていてもよい。
 配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、または、ラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で形成できる。
 さらに、電場の付与、磁場の付与、または、光照射(好ましくは偏光)により、配向機能が生じる配向膜も知られている。
 配向膜は、ポリマーのラビング処理により形成することが好ましい。
An alignment film may be arranged on the substrate.
The alignment film can be a rubbing treatment of an organic compound (preferably a polymer), an oblique deposition of an inorganic compound, the formation of a layer with microgrooves, or an organic compound (eg, ω-tricosan) by the Langmuir-Blojet method (LB film). It can be formed by means such as accumulation of acid (acid, dioctadecylmethylammonium chloride, methyl stearylate).
Further, an alignment film in which an alignment function is generated by applying an electric field, applying a magnetic field, or irradiating with light (preferably polarized light) is also known.
The alignment film is preferably formed by a polymer rubbing treatment.
 配向膜に含まれるポリマーとしては、例えば、特開平8-338913号公報中の段落0022に記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコールおよび変性ポリビニルアルコール、ポリ(N-メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、並びに、ポリカーボネートが挙げられる。また、シランカップリング剤をポリマーとして用いることもできる。
 なかでも、水溶性ポリマー(例、ポリ(N-メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコールまたは変性ポリビニルアルコールがより好ましく、ポリビニルアルコールまたは変性ポリビニルアルコールがさらに好ましい。
Examples of the polymer contained in the alignment film include the methacrylate-based copolymer, the styrene-based copolymer, the polyolefin, the polyvinyl alcohol and the modified polyvinyl alcohol, and poly (N-) described in paragraph 0022 of JP-A-8-338913. Methylolacrylamide), polyester, polyimide, vinyl acetate copolymer, carboxymethyl cellulose, and polycarbonate. Further, a silane coupling agent can also be used as a polymer.
Among them, water-soluble polymers (eg, poly (N-methylolacrylamide), carboxymethyl cellulose, gelatin, polyvinyl alcohol, modified polyvinyl alcohol) are preferable, gelatin, polyvinyl alcohol or modified polyvinyl alcohol are more preferable, and polyvinyl alcohol or modified polyvinyl alcohol is more preferable. Is even more preferable.
 上述したように、配向膜は、配向膜形成材料である上記ポリマーおよび任意の添加剤(例えば、架橋剤)を含む溶液を基板上に塗布した後、加熱乾燥(架橋させ)し、ラビング処理することにより形成できる。 As described above, the alignment film is subjected to heat-drying (cross-linking) and rubbing treatment after applying a solution containing the polymer as an alignment film-forming material and an arbitrary additive (for example, a cross-linking agent) onto the substrate. It can be formed by.
(工程1Aの手順)
 工程1Aでは、上述した成分を含む組成物層を形成するが、その手順は特に制限されない。例えば、上述したキラル剤および重合性基を有する液晶化合物を含む組成物を基板上に塗布して、必要に応じて乾燥処理を施す方法(以下、単に「塗布方法」ともいう。)、および、別途組成物層を形成して基板上に転写する方法が挙げられる。なかでも、生産性の点からは、塗布方法が好ましい。
 以下、塗布方法について詳述する。
(Procedure of step 1A)
In step 1A, a composition layer containing the above-mentioned components is formed, but the procedure is not particularly limited. For example, a method of applying a composition containing the above-mentioned chiral agent and a liquid crystal compound having a polymerizable group onto a substrate and subjecting it to a drying treatment as necessary (hereinafter, also simply referred to as “coating method”), and A method of separately forming a composition layer and transferring it onto a substrate can be mentioned. Above all, the coating method is preferable from the viewpoint of productivity.
Hereinafter, the coating method will be described in detail.
 塗布方法で使用される組成物には、上述したキラル剤、重合性基を有する液晶化合物、および、その他必要に応じて用いられる他の成分(例えば、重合開始剤、重合性モノマー、界面活性剤、および、ポリマーなど)が含まれる。
 組成物中の各成分の含有量は、上述した組成物層中の各成分の含有量となるように調整されることが好ましい。
The composition used in the coating method includes the above-mentioned chiral agent, a liquid crystal compound having a polymerizable group, and other components used as necessary (for example, a polymerization initiator, a polymerizable monomer, a surfactant). , And polymers, etc.).
The content of each component in the composition is preferably adjusted to be the content of each component in the composition layer described above.
 塗布方法は特に制限されず、例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、および、ダイコーティング法が挙げられる。
 なお、必要に応じて、組成物の塗布後に、基板上に塗布された塗膜を乾燥する処理を実施してもよい。乾燥処理を実施することにより、塗膜から溶媒を除去できる。
The coating method is not particularly limited, and examples thereof include a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method.
If necessary, after the composition is applied, a treatment for drying the coating film applied on the substrate may be carried out. By carrying out the drying treatment, the solvent can be removed from the coating film.
 塗膜の膜厚は特に制限されないが、0.1~20μmが好ましく、0.2~15μmがより好ましく、0.5~10μmがさらに好ましい。 The film thickness of the coating film is not particularly limited, but is preferably 0.1 to 20 μm, more preferably 0.2 to 15 μm, and even more preferably 0.5 to 10 μm.
<工程2A>
 工程2Aは、組成物層に加熱処理を施して、組成物層中の液晶化合物を配向させる工程である。本工程を実施することにより、組成物層中の液晶化合物が所定の配向状態となる。
 加熱処理の条件としては、使用される液晶化合物に応じて最適な条件が選択される。
 なかでも、加熱温度としては、25~250℃の場合が多く、40~150℃の場合がより多く、50~130℃の場合がさらに多い。
 加熱時間としては、0.1~60分間の場合が多く、0.2~5分間の場合がより多い。
<Step 2A>
Step 2A is a step of subjecting the composition layer to heat treatment to orient the liquid crystal compound in the composition layer. By carrying out this step, the liquid crystal compound in the composition layer is in a predetermined orientation state.
As the heat treatment conditions, the optimum conditions are selected according to the liquid crystal compound used.
Among them, the heating temperature is often 25 to 250 ° C, more often 40 to 150 ° C, and even more often 50 to 130 ° C.
The heating time is often 0.1 to 60 minutes, and more often 0.2 to 5 minutes.
 工程2Aによって得られる液晶化合物の配向状態は、上述したキラル剤の螺旋誘起力に応じて変わる。
 例えば、後述するように、厚み方向に沿って延びる螺旋軸に沿って捩れ配向した液晶化合物の配向状態を固定してなる第1領域と、ホモジニアス配向した液晶化合物の配向状態を固定してなる第2領域とを、厚み方向に沿って有する光学異方性層を形成するためには、工程1Aにより形成される組成物層中のキラル剤の加重平均螺旋誘起力の絶対値は、0.0~1.9μm-1であることが好ましく、0.0~1.5μm-1であることがより好ましく、0.0~1.0μm-1であることがさらに好ましく、0.0~0.5μm-1であることが特に好ましく、0.0~0.02μm-1であることがより特に好ましく、ゼロが最も好ましい。
 組成物層中のキラル剤の加重平均螺旋誘起力の絶対値が上記範囲である場合、工程2Aを実施すると、組成物中の液晶化合物は、ホモジニアス配向しているか、組成物層中の液晶化合物が厚み方向に沿って延びる螺旋軸に沿って捩れ配向している。
The orientation state of the liquid crystal compound obtained in step 2A changes depending on the spiral-inducing force of the chiral agent described above.
For example, as will be described later, a first region in which the orientation state of the liquid crystal compound twisted and oriented along a spiral axis extending along the thickness direction is fixed, and a first region in which the orientation state of the homogenius-oriented liquid crystal compound is fixed are fixed. In order to form an optically anisotropic layer having two regions along the thickness direction, the absolute value of the weighted average spiral inducing force of the chiral agent in the composition layer formed in step 1A is 0.0. It is preferably ~ 1.9 μm -1 , more preferably 0.0 to 1.5 μm -1 , further preferably 0.0 to 1.0 μm -1 , and 0.0 to 0. It is particularly preferably 5 μm -1 , more preferably 0.0 to 0.02 μm -1 , and most preferably zero.
When the absolute value of the weighted average spiral inducing force of the chiral agent in the composition layer is in the above range, when step 2A is carried out, the liquid crystal compound in the composition is homogenically oriented or the liquid crystal compound in the composition layer. Is twisted along a spiral axis extending along the thickness direction.
 なお、キラル剤の加重平均螺旋誘起力とは、組成物中に2種以上のキラル剤が含まれる場合に、組成物層中に含まれる各キラル剤の螺旋誘起力と各キラル剤の組成物層中における濃度(質量%)との積を組成物層中におけるキラル剤の合計濃度(質量%)で除した値の合計値を表す。例えば、2種類のキラル剤(キラル剤Xおよびキラル剤Y)を併用した場合、下記式(B)により表される。
 式(B) 加重平均螺旋誘起力(μm-1)=(キラル剤Xの螺旋誘起力(μm-1)×組成物層中におけるキラル剤Xの濃度(質量%)+キラル剤Yの螺旋誘起力(μm-1)×組成物層中におけるキラル剤Yの濃度(質量%))/(組成物層中におけるキラル剤Xの濃度(質量%)+組成物層中におけるキラル剤Yの濃度(質量%))
 ただし、上記式(B)において、キラル剤の螺旋方向が右巻きの場合、その螺旋誘起力は正の値とする。また、キラル剤の螺旋方向が左巻きの場合、その螺旋誘起力は負の値とする。つまり、例えば、螺旋誘起力が10μm-1のキラル剤の場合、上記キラル剤により誘起される螺旋の螺旋方向が右巻きであるときは、螺旋誘起力を10μm-1として表す。一方、上記キラル剤により誘起される螺旋の螺旋方向が左巻きであるときは、螺旋誘起力を-10μm-1として表す。
The weighted average spiral-inducing force of the chiral agent is the spiral-inducing force of each chiral agent and the composition of each chiral agent when two or more kinds of chiral agents are contained in the composition. It represents the total value of the product of the concentration (% by mass) in the layer divided by the total concentration (% by mass) of the chiral auxiliary in the composition layer. For example, when two kinds of chiral agents (chiral agent X and chiral agent Y) are used in combination, it is represented by the following formula (B).
Equation (B) Weighted average spiral-inducing force (μm -1 ) = (Spiral-inducing force of chiral agent X (μm -1 ) × Concentration of chiral agent X in composition layer (mass%) + Spiral induction of chiral agent Y Force (μm -1 ) × concentration of chiral agent Y in the composition layer (% by mass)) / (concentration of chiral agent X in the composition layer (% by mass) + concentration of chiral agent Y in the composition layer (% by mass) mass%))
However, in the above formula (B), when the spiral direction of the chiral auxiliary is right-handed, the spiral-inducing force is a positive value. When the spiral direction of the chiral auxiliary is left-handed, the spiral-inducing force is a negative value. That is, for example, in the case of a chiral agent having a spiral induced force of 10 μm -1 , when the spiral direction of the spiral induced by the chiral agent is right-handed, the spiral induced force is expressed as 10 μm -1 . On the other hand, when the spiral direction of the spiral induced by the chiral agent is left-handed, the spiral-induced force is expressed as -10 μm -1 .
 工程1Aにより形成される組成物層中のキラル剤の加重平均螺旋誘起力の絶対値が0である場合には、図1に示すように、基板10上に、液晶化合物LCがホモジニアス配向した組成物層12が形成される。なお、図1は、基板10と組成物層12との断面の概略図である。なお、図1に示す組成物層12にはキラル剤Aとキラル剤Bとが同濃度で存在しており、キラル剤Aにより誘起される螺旋方向が左巻きであり、キラル剤Bにより誘起される螺旋方向が右巻きであるとする。また、キラル剤Aの螺旋誘起力の絶対値と、キラル剤Bの螺旋誘起力の絶対値は同じとする。
 本明細書において、ホモジニアス配向とは、液晶化合物の分子軸(例えば、棒状液晶化合物の場合には長軸が該当)が組成物層表面に対して水平に、かつ、同一方位に配列している状態(光学的一軸性)をいう。
 ここで、水平とは、厳密に水平であることを要求するものでなく、組成物層内の液晶化合物の平均分子軸が組成物層の表面とのなす傾斜角が20度未満の配向を意味するものとする。
 また、同一方位とは、厳密に同一方位であることを要求するものでなく、面内の任意の20か所の位置で遅相軸の方位を測定したとき、20か所での遅相軸の方位のうちの遅相軸方位の最大差(20個の遅相軸方位のうち、差が最大となる2つの遅相軸方位の差)が10°未満であることを意味するものとする。
When the absolute value of the weighted average spiral inducing force of the chiral agent in the composition layer formed by step 1A is 0, the composition in which the liquid crystal compound LC is homogenically oriented on the substrate 10 as shown in FIG. The material layer 12 is formed. Note that FIG. 1 is a schematic cross-sectional view of the substrate 10 and the composition layer 12. The composition layer 12 shown in FIG. 1 contains the chiral agent A and the chiral agent B at the same concentration, the spiral direction induced by the chiral agent A is left-handed, and the chiral agent B induces the chiral agent B. It is assumed that the spiral direction is right-handed. Further, the absolute value of the spiral-inducing force of the chiral agent A and the absolute value of the spiral-inducing force of the chiral agent B are assumed to be the same.
In the present specification, the homogenic orientation means that the molecular axis of the liquid crystal compound (for example, the major axis in the case of a rod-shaped liquid crystal compound) is arranged horizontally and in the same orientation with respect to the surface of the composition layer. It refers to the state (optical uniaxiality).
Here, the term "horizontal" does not require that the liquid crystal compound be strictly horizontal, but means that the average molecular axis of the liquid crystal compound in the composition layer is oriented at an inclination angle of less than 20 degrees with the surface of the composition layer. It shall be.
Further, the same direction does not require that the directions are exactly the same, and when the directions of the slow phase axes are measured at arbitrary 20 positions in the plane, the slow phase axes at 20 points are measured. It is assumed that the maximum difference between the slow-phase axis directions among the two directions (the difference between the two slow-phase axis directions having the maximum difference among the 20 slow-phase axis directions) is less than 10 °. ..
 なお、図1においては液晶化合物LCがホモジニアス配向した態様について述べたが、液晶化合物が所定の配向状態となっていればこの態様には制限されず、例えば、後段で詳述するように、組成物層の厚み方向に沿って延びる螺旋軸に沿って液晶化合物が捩れ配向した態様であってもよい。 In addition, although the mode in which the liquid crystal compound LC is homogenically oriented is described in FIG. 1, it is not limited to this mode as long as the liquid crystal compound is in a predetermined orientation state, and for example, the composition is described in detail later. The liquid crystal compound may be twist-oriented along a spiral axis extending along the thickness direction of the material layer.
<工程3A>
 工程3Aは、工程2Aの後、酸素濃度1体積%以上の条件下にて、組成物層に対して、光照射を50秒間以下、かつ、300mJ/cm2以下で行う工程である。以下では、図面を用いて本工程の機構を説明する。なお、以下では図1に示した組成物層12に対して工程3Aを実施した例を代表例として説明する。
 図2に示すように、工程3Aでは酸素濃度1体積%以上の条件下にて、基板10の組成物層12側とは反対側の方向(図2中の白抜き矢印の方向)から光照射を行う。なお、図2では光照射は基板10側から実施されているが、組成物層12側から実施されてもよい。
 その際、組成物層12の基板10側の下側領域12Aと、基板10側とは反対側の上側領域12Bとを比較すると、上側領域12Bの表面のほうが空気側にあるため、上側領域12B中の酸素濃度が高く、下側領域12A中の酸素濃度は低い。そのため、組成物層12に対して光照射がなされると、下側領域12Aにおいては液晶化合物の重合が進行しやすく、液晶化合物の配向状態が固定される。なお、下側領域12Aにおいてもキラル剤Aが存在しており、キラル剤Aも感光し、螺旋誘起力が変化する。しかしながら、下側領域12Aでは液晶化合物の配向状態が固定されているため、後述する、光照射された組成物層に対して加熱処理を施す工程4Aを実施しても、液晶化合物の配向状態の変化は生じない。
 また、上側領域12Bにおいては酸素濃度が高いため、光照射がなされても、液晶化合物の重合が酸素により阻害され、重合が進行しにくい。そして、上側領域12Bにおいてもキラル剤Aが存在しているため、キラル剤Aが感光し、螺旋誘起力が変化する。そのため、後述する工程4Aを実施すると、変化した螺旋誘起力に沿って液晶化合物の配向状態が変化する。
 つまり、工程3Aを実施することにより、組成物層の基板側の領域(下側領域)においては液晶化合物の配向状態の固定化が進行しやすい。また、組成物層の基板側と反対側の領域(上側領域)においては、液晶化合物の配向状態の固定化は進行しづらく、かつ、感光したキラル剤Aに応じて螺旋誘起力が変化した状態となる。
<Process 3A>
Step 3A is a step of irradiating the composition layer with light for 50 seconds or less and 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more after the step 2A. Hereinafter, the mechanism of this process will be described with reference to the drawings. In the following, an example in which step 3A is performed on the composition layer 12 shown in FIG. 1 will be described as a representative example.
As shown in FIG. 2, in step 3A, under the condition that the oxygen concentration is 1% by volume or more, light is irradiated from the direction opposite to the composition layer 12 side of the substrate 10 (the direction of the white arrow in FIG. 2). I do. Although the light irradiation is carried out from the substrate 10 side in FIG. 2, it may be carried out from the composition layer 12 side.
At that time, when the lower region 12A on the substrate 10 side of the composition layer 12 and the upper region 12B on the opposite side to the substrate 10 side are compared, the surface of the upper region 12B is on the air side, so that the upper region 12B The oxygen concentration in the lower region 12A is high, and the oxygen concentration in the lower region 12A is low. Therefore, when the composition layer 12 is irradiated with light, the polymerization of the liquid crystal compound easily proceeds in the lower region 12A, and the orientation state of the liquid crystal compound is fixed. The chiral agent A is also present in the lower region 12A, and the chiral agent A is also exposed to light, and the spiral inducing force changes. However, since the alignment state of the liquid crystal compound is fixed in the lower region 12A, even if the step 4A of heat-treating the light-irradiated composition layer, which will be described later, is performed, the orientation state of the liquid crystal compound remains. No change occurs.
Further, since the oxygen concentration is high in the upper region 12B, even if light irradiation is performed, the polymerization of the liquid crystal compound is inhibited by the oxygen, and the polymerization is difficult to proceed. Since the chiral agent A is also present in the upper region 12B, the chiral agent A is exposed to light and the spiral inducing force changes. Therefore, when step 4A described later is carried out, the orientation state of the liquid crystal compound changes along the changed spiral-induced force.
That is, by carrying out step 3A, the fixation of the orientation state of the liquid crystal compound is likely to proceed in the substrate-side region (lower region) of the composition layer. Further, in the region opposite to the substrate side (upper region) of the composition layer, the fixation of the orientation state of the liquid crystal compound is difficult to proceed, and the spiral inducing force changes according to the exposed chiral agent A. Will be.
 工程3Aは、酸素濃度1体積%以上の条件下にて実施される。なかでも、光学異方性層中において液晶化合物の配向状態が異なる領域が形成しやすい点で、酸素濃度は2体積%以上が好ましく、5体積%以上がより好ましい。上限は特に制限されないが、100体積%が挙げられる。 Step 3A is carried out under the condition that the oxygen concentration is 1% by volume or more. Among them, the oxygen concentration is preferably 2% by volume or more, more preferably 5% by volume or more, in that regions having different orientation states of the liquid crystal compounds are likely to be formed in the optically anisotropic layer. The upper limit is not particularly limited, but 100% by volume can be mentioned.
 工程3Aにおける光照射の時間は、50秒間以下であり、所定の光学異方性層が形成されやすい点および生産性の点から、30秒間以下が好ましく、10秒間以下がより好ましい。下限は特に制限されないが、液晶化合物の硬化の点から、0.1秒間以上が好ましく、0.2秒間以上がより好ましい。
 工程3Aにおける光照射の照射量は、300mJ/cm2以下であり、所定の光学異方性層が形成されやすい点および生産性の点から、250mJ/cm2以下が好ましく、200mJ/cm2以下がより好ましい。下限は特に制限されないが、液晶化合物の硬化の点から、1mJ/cm2以上が好ましく、5mJ/cm2以上がより好ましい。
 光照射の時間および照射量が上記要件を満たさない場合、所定の光学異方性層が形成できない。
 なお、第1実施態様における工程3Aでの光照射は、15~70℃(好ましくは、25~50℃)にて実施されることが好ましい。
The light irradiation time in the step 3A is 50 seconds or less, and is preferably 30 seconds or less, more preferably 10 seconds or less, from the viewpoint of easy formation of a predetermined optically anisotropic layer and productivity. The lower limit is not particularly limited, but from the viewpoint of curing the liquid crystal compound, 0.1 seconds or more is preferable, and 0.2 seconds or more is more preferable.
The irradiation amount of light irradiation in step 3A is 300 mJ / cm 2 or less, preferably 250 mJ / cm 2 or less, and 200 mJ / cm 2 or less from the viewpoint of easy formation of a predetermined optically anisotropic layer and productivity. Is more preferable. The lower limit is not particularly limited, but from the viewpoint of curing the liquid crystal compound, 1 mJ / cm 2 or more is preferable, and 5 mJ / cm 2 or more is more preferable.
If the time and amount of light irradiation do not meet the above requirements, the predetermined optically anisotropic layer cannot be formed.
The light irradiation in step 3A in the first embodiment is preferably carried out at 15 to 70 ° C. (preferably 25 to 50 ° C.).
 光照射に使用される光は、キラル剤Aが感光する光であればよい。つまり、光照射に使用される光は、キラル剤Aの螺旋誘起力を変化させる活性光線または放射線であれば特に制限されず、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線、X線、紫外線、および、電子線が挙げられる。なかでも、紫外線が好ましい。 The light used for light irradiation may be any light that is exposed to the chiral agent A. That is, the light used for light irradiation is not particularly limited as long as it is an active ray or radiation that changes the spiral-inducing force of the chiral agent A. Examples include ultraviolet rays, X-rays, ultraviolet rays, and electron beams. Of these, ultraviolet rays are preferable.
<工程4A>
 工程4Aは、工程3Aの後、組成物層に、光照射時より高い温度で加熱処理を施す工程である。本工程を実施することにより、光照射が施された組成物層中のキラル剤Aの螺旋誘起力が変化した領域において、液晶化合物の配向状態が変化する。より具体的には、本工程は、工程3Aの後の組成物層に対して、照射時より高い温度で加熱処理を施して、工程3Aで固定されていない組成物層中の液晶化合物を配向させる工程である。
 以下では、図面を用いて本工程の機構を説明する。
<Step 4A>
Step 4A is a step of subjecting the composition layer to a heat treatment at a temperature higher than that at the time of light irradiation after the step 3A. By carrying out this step, the orientation state of the liquid crystal compound changes in the region where the spiral-inducing force of the chiral agent A in the composition layer irradiated with light changes. More specifically, in this step, the composition layer after step 3A is heat-treated at a temperature higher than that at the time of irradiation to orient the liquid crystal compound in the composition layer not fixed in step 3A. It is a process to make it.
In the following, the mechanism of this process will be described with reference to the drawings.
 上述したように、図1に示した組成物層12に対して工程3Aを実施すると、下側領域12Aにおいては液晶化合物の配向状態が固定されるのに対して、上側領域12Bでは液晶化合物の重合は進行しづらく、液晶化合物の配向状態が固定されていない。また、上側領域12Bにおいてはキラル剤Aの螺旋誘起力が変化している。このようなキラル剤Aの螺旋誘起力の変化が生じると、光照射前の状態と比較すると、上側領域12Bにおいて液晶化合物を捩じる力が変化している。この点をより詳細に説明する。
 上述したように、図1に示す組成物層12にはキラル剤Aとキラル剤Bとが同濃度で存在しており、キラル剤Aにより誘起される螺旋方向が左巻きであり、キラル剤Bにより誘起される螺旋方向が右巻きである。また、キラル剤Aの螺旋誘起力の絶対値と、キラル剤Bの螺旋誘起力の絶対値は同じである。よって、光照射を行う前の組成物層中のキラル剤の加重平均螺旋誘起力は0である。
 上記の態様を図4に示す。図4においては、縦軸が「キラル剤の螺旋誘起力(μm-1)×キラル剤の濃度(質量%)」を表し、その値がゼロから離れるほど、螺旋誘起力が大きくなる。まず、光照射を行う前の組成物層中のキラル剤Aとキラル剤Bとの関係は、光照射量が0の時点に該当し、「キラル剤Aの螺旋誘起力(μm-1)×キラル剤Aの濃度(質量%)」の絶対値と、「キラル剤Bの螺旋誘起力(μm-1)×キラル剤Bの濃度(質量%)」の絶対値とが等しい状態に該当する。つまり、左巻きを誘起するキラル剤Aと右巻きを誘起するキラル剤Bとの両者の螺旋誘起力は相殺されている。
 このような状態の上側領域12Bにおいて光照射が行われ、図4に示すように、光照射量によってキラル剤Aの螺旋誘起力が減少する場合、図5に示すように、上側領域12Bにおけるキラル剤の加重平均螺旋誘起力は大きくなり、右巻きの螺旋誘起力が強くなる。つまり、液晶化合物の螺旋を誘起する螺旋誘起力は、照射量が大きいほど、キラル剤Bが誘起する螺旋の方向(+)に螺旋誘起力が大きくなる。
 そのため、このような加重平均螺旋誘起力の変化が生じている工程3A後の組成物層12に対して、加熱処理を施して液晶化合物の再配向を促すと、図3に示すように、上側領域12Bにおいては、組成物層12の厚み方向に沿って延びる螺旋軸に沿って液晶化合物LCが捩れ配向する。
 一方で、上述したように、組成物層12の下側領域12Aにおいては工程3Aの際に液晶化合物の重合が進行して液晶化合物の配向状態が固定されているため、液晶化合物の再配向は進行しない。
 上記のように、工程4Aを実施することにより、組成物層の厚み方向に沿って、液晶化合物の配向状態が異なる領域が複数形成される。
As described above, when step 3A is carried out on the composition layer 12 shown in FIG. 1, the orientation state of the liquid crystal compound is fixed in the lower region 12A, whereas the orientation state of the liquid crystal compound is fixed in the upper region 12B. The polymerization is difficult to proceed, and the orientation of the liquid crystal compound is not fixed. Further, in the upper region 12B, the spiral-inducing force of the chiral agent A changes. When such a change in the spiral-inducing force of the chiral agent A occurs, the force for twisting the liquid crystal compound changes in the upper region 12B as compared with the state before light irradiation. This point will be described in more detail.
As described above, the chiral agent A and the chiral agent B are present in the composition layer 12 shown in FIG. 1 at the same concentration, the spiral direction induced by the chiral agent A is left-handed, and the chiral agent B causes the composition layer 12. The induced spiral direction is right-handed. Further, the absolute value of the spiral-inducing force of the chiral agent A and the absolute value of the spiral-inducing force of the chiral agent B are the same. Therefore, the weighted average spiral inducing force of the chiral agent in the composition layer before light irradiation is 0.
The above aspect is shown in FIG. In FIG. 4, the vertical axis represents “the spiral-inducing force of the chiral agent (μm -1 ) × the concentration of the chiral agent (mass%)”, and the farther the value is from zero, the larger the spiral-inducing force. First, the relationship between the chiral agent A and the chiral agent B in the composition layer before light irradiation corresponds to the time when the light irradiation amount is 0, and "the spiral inducing force of the chiral agent A (μm -1 ) ×". The absolute value of "concentration of chiral agent A (% by mass)" and "spiral inducing force of chiral agent B (μm -1 ) x concentration of chiral agent B (% by mass)" correspond to the same state. That is, the spiral-inducing forces of both the chiral agent A that induces left-handed winding and the chiral agent B that induces right-handed winding are canceled out.
When light irradiation is performed in the upper region 12B in such a state and the spiral inducing force of the chiral agent A is reduced by the light irradiation amount as shown in FIG. 4, the chiral in the upper region 12B is shown in FIG. The weighted average spiral-inducing force of the agent increases, and the right-handed spiral-inducing force becomes stronger. That is, as for the spiral-inducing force that induces the spiral of the liquid crystal compound, the larger the irradiation dose, the larger the spiral-inducing force in the direction (+) of the spiral induced by the chiral agent B.
Therefore, when the composition layer 12 after the step 3A in which such a change in the weighted average spiral inducing force is generated is heat-treated to promote the reorientation of the liquid crystal compound, as shown in FIG. 3, the upper side is shown. In the region 12B, the liquid crystal compound LC is twist-oriented along a spiral axis extending along the thickness direction of the composition layer 12.
On the other hand, as described above, in the lower region 12A of the composition layer 12, the polymerization of the liquid crystal compound proceeds during the step 3A and the orientation state of the liquid crystal compound is fixed, so that the reorientation of the liquid crystal compound is not possible. Does not progress.
As described above, by carrying out step 4A, a plurality of regions having different orientation states of the liquid crystal compounds are formed along the thickness direction of the composition layer.
 なお、上記図4および5においては、キラル剤Aとして光照射により螺旋誘起力が減少するキラル剤を用いた態様について説明したが、この態様には制限されない。例えば、キラル剤Aとして光照射により螺旋誘起力が増加するキラル剤を用いてもよい。その場合、光照射によりキラル剤Aの誘起する螺旋誘起力が大きくなり、キラル剤Aの誘起する旋回方向に液晶化合物が捩れ配向することになる。
 また、上記図4および5においては、キラル剤Aとキラル剤Bとを併用する態様について説明したが、この態様には制限されない。例えば、2種のキラル剤Aを用いる態様であってもよい。具体的には、左巻きを誘起するキラル剤A1と、右巻きを誘起するキラル剤A2とを併用する態様であってもよい。キラル剤A1およびA2は、それぞれ独立に、螺旋誘起力が増加するキラル剤であってもよいし、螺旋誘起力が減少するキラル剤であってもよい。例えば、左巻きを誘起するキラル剤であって、光照射により螺旋誘起力が増加するキラル剤と、右巻きを誘起するキラル剤であって、光照射により螺旋誘起力が減少するキラル剤とを併用してもよい。
In addition, in FIGS. For example, as the chiral agent A, a chiral agent whose spiral-inducing force is increased by light irradiation may be used. In that case, the spiral-inducing force induced by the chiral agent A increases due to light irradiation, and the liquid crystal compound is twisted or oriented in the swirling direction induced by the chiral agent A.
Further, in FIGS. 4 and 5 above, the mode in which the chiral agent A and the chiral agent B are used in combination has been described, but the mode is not limited to this mode. For example, it may be an embodiment in which two kinds of chiral agents A are used. Specifically, the chiral agent A1 that induces left-handed winding and the chiral agent A2 that induces right-handed winding may be used in combination. The chiral agents A1 and A2 may be chiral agents whose spiral-inducing force increases or may be chiral agents whose spiral-inducing force decreases, respectively. For example, a chiral agent that induces left-handed winding and whose spiral-inducing force increases by light irradiation and a chiral agent that induces right-handed winding and whose spiral-inducing force decreases by light irradiation are used in combination. You may.
 加熱処理は、光照射時より高い温度で実施する。
 加熱処理の温度と、光照射時の温度との差は、5℃以上が好ましく、10~110℃がより好ましく、20~110℃がより好ましい。
The heat treatment is carried out at a temperature higher than that at the time of light irradiation.
The difference between the temperature of the heat treatment and the temperature at the time of light irradiation is preferably 5 ° C. or higher, more preferably 10 to 110 ° C., and even more preferably 20 to 110 ° C.
 加熱処理の温度は、光照射時の温度より高く、組成物層中の固定されていない液晶化合物を配向させる温度であることが好ましく、より具体的には、35~250℃の場合が多く、50~150℃の場合がより多く、50℃超150℃以下の場合がさらに多く、60~130℃の場合が特に多い。
 加熱時間としては、0.01~60分間の場合が多く、0.03~5分間の場合がより多い。
The temperature of the heat treatment is preferably higher than the temperature at the time of light irradiation, and is preferably a temperature at which the unfixed liquid crystal compound in the composition layer is oriented, and more specifically, it is often 35 to 250 ° C. More often, the temperature is 50 to 150 ° C., more often, the temperature is more than 50 ° C. and 150 ° C. or lower, and 60 to 130 ° C. is particularly common.
The heating time is often 0.01 to 60 minutes, and more often 0.03 to 5 minutes.
 また、光照射後の組成物層中のキラル剤の加重平均螺旋誘起力の絶対値は特に制限されないが、光照射後の組成物層中のキラル剤の加重平均螺旋誘起力と光照射前の加重平均螺旋誘起力との差の絶対値が、0.05μm-1以上が好ましく、0.05~10.0μm-1がより好ましく、0.1~10.0μm-1がさらに好ましい。 The absolute value of the weighted average spiral-inducing force of the chiral agent in the composition layer after light irradiation is not particularly limited, but the weighted average spiral-inducing force of the chiral agent in the composition layer after light irradiation and before light irradiation. The absolute value of the difference from the weighted average spiral inducing force is preferably 0.05 μm -1 or more, more preferably 0.05 to 10.0 μm -1 , and even more preferably 0.1 to 10.0 μm -1 .
<工程5A>
 工程5Aは、工程4Aの後、組成物層に対して硬化処理を施して、液晶化合物の配向状態が異なる領域を厚み方向に沿って複数有する光学異方性層を形成する工程である。本工程を実施することにより、組成物層中の液晶化合物の配向状態が固定され、結果として所定の光学異方性層が形成される。なお、例えば、上述した図3に示す組成物層12に対して硬化処理が施された場合には、厚み方向に沿って延びる螺旋軸に沿って捩れ配向した液晶化合物の配向状態を固定してなる第1領域と、ホモジニアス配向した液晶化合物の配向状態を固定してなる第2領域とを、厚み方向に沿って有する光学異方性層が形成される。
<Process 5A>
Step 5A is a step of subjecting the composition layer to a curing treatment after step 4A to form an optically anisotropic layer having a plurality of regions having different orientation states of the liquid crystal compounds along the thickness direction. By carrying out this step, the orientation state of the liquid crystal compound in the composition layer is fixed, and as a result, a predetermined optically anisotropic layer is formed. For example, when the composition layer 12 shown in FIG. 3 described above is cured, the alignment state of the liquid crystal compound twisted and oriented along the spiral axis extending along the thickness direction is fixed. An optically anisotropic layer having a first region thereof and a second region formed by fixing the orientation state of the homogenically oriented liquid crystal compound along the thickness direction is formed.
 硬化処理の方法は特に制限されず、光硬化処理および熱硬化処理が挙げられる。なかでも、光照射処理が好ましく、紫外線照射処理がより好ましい。
 紫外線照射には、紫外線ランプなどの光源が利用される。
 光(例えば、紫外線)の照射量は特に制限されないが、一般的には、100~800mJ/cm2程度が好ましい。
 光照射の際の雰囲気は特に制限されず、光照射は空気下で実施されてもよいし、光照射は不活性雰囲気下で実施されてもよい。特に、光照射は、酸素濃度1体積%未満で実施されることが好ましい。
The method of the curing treatment is not particularly limited, and examples thereof include a photo-curing treatment and a thermosetting treatment. Among them, the light irradiation treatment is preferable, and the ultraviolet irradiation treatment is more preferable.
A light source such as an ultraviolet lamp is used for ultraviolet irradiation.
The irradiation amount of light (for example, ultraviolet rays) is not particularly limited, but is generally preferably about 100 to 800 mJ / cm 2 .
The atmosphere at the time of light irradiation is not particularly limited, and light irradiation may be carried out under air, or light irradiation may be carried out under an inert atmosphere. In particular, light irradiation is preferably carried out at an oxygen concentration of less than 1% by volume.
 硬化処理として光硬化処理を実施した場合、光硬化時の温度条件は特に制限されず、工程4Aの液晶化合物の配向状態が保持される温度であればよく、工程4Aの加熱処理の温度と光硬化処理の際の温度との差は、100℃以内が好ましく、80℃以内がより好ましい。
 なお、工程4Aの加熱処理の温度と光硬化処理の際の温度とは同じであるか、または、光硬化処理の際の温度のほうがより低い温度であることが好ましい。
When the photocuring treatment is performed as the curing treatment, the temperature conditions at the time of photocuring are not particularly limited as long as the temperature is such that the orientation state of the liquid crystal compound in step 4A is maintained, and the temperature and light of the heat treatment in step 4A are sufficient. The difference from the temperature at the time of the curing treatment is preferably 100 ° C. or less, more preferably 80 ° C. or less.
It is preferable that the temperature of the heat treatment in step 4A and the temperature of the photohardening treatment are the same, or the temperature of the photohardening treatment is lower.
 硬化処理を実施して得られる光学異方性層では、液晶化合物の配向状態が固定されている。
 なお、本明細書において、「固定した」状態は、液晶化合物の配向が保持された状態が最も典型的、且つ、好ましい態様である。それだけには制限されず、具体的には、通常0~50℃、より過酷な条件下では-30~70℃の温度範囲において、層に流動性が無く、また、外場もしくは外力によって配向形態に変化を生じさせることなく、固定された配向形態を安定に保ち続けることができる状態であることがより好ましい。
 なお、光学異方性層においては、最終的に層中の組成物がもはや液晶性を示す必要はない。
In the optically anisotropic layer obtained by carrying out the curing treatment, the orientation state of the liquid crystal compound is fixed.
In the present specification, the "fixed" state is the most typical and preferable state in which the orientation of the liquid crystal compound is maintained. It is not limited to this, and specifically, in the temperature range of 0 to 50 ° C., and more severely, -30 to 70 ° C., the layer has no fluidity and is oriented by an external field or an external force. It is more preferable that the fixed orientation morphology can be kept stable without causing a change.
In the optically anisotropic layer, it is no longer necessary for the composition in the layer to finally exhibit liquid crystallinity.
 光学異方性層の厚みは特に制限されないが、0.05~10μmが好ましく、0.1~8.0μmがより好ましく、0.2~6.0μmがさらに好ましい。 The thickness of the optically anisotropic layer is not particularly limited, but is preferably 0.05 to 10 μm, more preferably 0.1 to 8.0 μm, and even more preferably 0.2 to 6.0 μm.
 上述した図3に示す態様においては、厚み方向に沿って延びる螺旋軸に沿って右回りに捩れ配向した液晶化合物の配向状態を固定してなる第1領域と、ホモジニアス配向した液晶化合物の配向状態を固定してなる第2領域とを、厚み方向に沿って有する光学異方性層が作製されるが、本発明は上記態様に制限されない。
 例えば、液晶化合物の捩れ配向は、左捩じれであってもよい。つまり、液晶化合物の捩れ配向の向きは左捩じれ(反時計回りの捩れ)であっても、右捩れ(時計回りの捩れ)であってもよい。
 また、上記第2領域における液晶化合物の配向状態としては、ホモジニアス配向以外の配向であってもよく、液晶化合物が棒状液晶化合物である場合、その配向状態としては、例えば、ネマチック配向(ネマチック相を形成している状態)、スメクチック配向(スメクチック相を形成している状態)、コレステリック配向(コレステリック相を形成している状態)、および、ハイブリッド配向が挙げられる。液晶化合物がディスコティック液晶化合物である場合、その配向状態としては、ネマチック配向、カラムナー配向(カラムナー相を形成している状態)、および、コレステリック配向が挙げられる。
 なお、液晶化合物の配向状態の特定方法としては、公知の方法が挙げられる。例えば、光学異方性層の断面を偏光顕微鏡にて観察して、液晶化合物の配向状態を特定する方法が挙げられる。
In the embodiment shown in FIG. 3 described above, the first region in which the alignment state of the liquid crystal compound twisted clockwise along the spiral axis extending along the thickness direction is fixed and the orientation state of the anisotropically oriented liquid crystal compound are fixed. An optically anisotropic layer having a second region formed by fixing the compound along the thickness direction is produced, but the present invention is not limited to the above embodiment.
For example, the twisting orientation of the liquid crystal compound may be a left twist. That is, the direction of the twist orientation of the liquid crystal compound may be a left twist (counterclockwise twist) or a right twist (clockwise twist).
Further, the orientation state of the liquid crystal compound in the second region may be an orientation other than the homogenius orientation, and when the liquid crystal compound is a rod-shaped liquid crystal compound, the orientation state thereof is, for example, a nematic orientation (nematic phase). (Forming state), smectic orientation (state forming smectic phase), cholesteric orientation (state forming cholesteric phase), and hybrid orientation. When the liquid crystal compound is a discotic liquid crystal compound, examples of the orientation state include nematic orientation, columnar orientation (a state in which a columnar phase is formed), and cholesteric orientation.
As a method for specifying the orientation state of the liquid crystal compound, a known method can be mentioned. For example, a method of observing the cross section of the optically anisotropic layer with a polarizing microscope to identify the orientation state of the liquid crystal compound can be mentioned.
 また、図3に示す態様においては、光学異方性層は2つの液晶化合物の配向状態の異なる領域を有していたが、本発明は上記態様に制限されず、光学異方性層は、液晶化合物の配向状態が異なる領域を3つ以上有していてもよい。
 光学異方性層が2つの液晶化合物の配向状態の異なる領域を有する場合、2つの領域のうちの厚みの薄い領域の厚みに対する、2つ領域のうちの厚みの厚い領域の厚みの比は特に制限されないが、1超9以下が好ましく、1超4以下がより好ましい。
 なお、2つの領域の厚みが同じ場合は、上記比は1となる。
Further, in the embodiment shown in FIG. 3, the optically anisotropic layer has regions in which the orientation states of the two liquid crystal compounds are different, but the present invention is not limited to the above embodiment, and the optically anisotropic layer is not limited to the above embodiment. It may have three or more regions in which the orientation state of the liquid crystal compound is different.
When the optically anisotropic layer has regions having different orientation states of the two liquid crystal compounds, the ratio of the thickness of the thick region of the two regions to the thickness of the thin region of the two regions is particularly high. Although not limited, it is preferably 1 to 9 or less, and more preferably 1 to 4 or less.
When the thicknesses of the two regions are the same, the above ratio is 1.
 また、第1実施態様における光学異方性層は、厚み方向に沿って延びる螺旋軸に沿って捩れ配向した液晶化合物の配向状態を固定してなる第1領域と、厚み方向に沿って延びる螺旋軸に沿って第1領域とは異なる捩れ角度で、捩れ配向した液晶化合物の配向状態を固定してなる第2領域とを、厚み方向に沿って有する光学異方性層であってもよい。
 上記のような、液晶化合物の捩れ角の角度が異なる領域を形成する方法としては、例えば、上述した工程1Aにより形成される組成物層中のキラル剤の加重平均螺旋誘起力の絶対値を大きく(例えば、0μm-1超)する方法が挙げられる。工程1Aにより形成される組成物層中のキラル剤の加重平均螺旋誘起力の絶対値が大きい場合、まず、図6に示すように、工程2が実施された組成物層120中において、厚み方向に沿って延びる螺旋軸に沿って液晶化合物が捩れ配向している。このような組成物層に対して、上述した工程を実施すると、酸素濃度が低い組成物層中の領域(図7中の下側領域120A)においては液晶化合物の捩れ配向がそのまま固定されるのに対して、酸素濃度が高い組成物層中の領域(図7中の上側領域120B)において螺旋誘起力が変化して、工程5Aを実施した後に、結果として、液晶化合物の捩れ角の角度が異なる領域を形成することができる。
Further, the optically anisotropic layer in the first embodiment has a first region in which the orientation state of the liquid crystal compound twisted and oriented along a spiral axis extending along the thickness direction is fixed, and a spiral extending along the thickness direction. The optically anisotropic layer may have a second region along the axis, which is formed by fixing the orientation state of the twist-oriented liquid crystal compound at a twist angle different from that of the first region, along the thickness direction.
As a method for forming a region having a different twist angle of the liquid crystal compound as described above, for example, the absolute value of the weighted average spiral inducing force of the chiral agent in the composition layer formed by the above-mentioned step 1A is increased. (For example, more than 0 μm -1 ) can be mentioned. When the absolute value of the weighted average spiral inducing force of the chiral agent in the composition layer formed by step 1A is large, first, as shown in FIG. 6, in the composition layer 120 in which step 2 is carried out, the thickness direction The liquid crystal compound is twisted and oriented along a spiral axis extending along the axis. When the above-mentioned steps are carried out on such a composition layer, the torsional orientation of the liquid crystal compound is fixed as it is in the region in the composition layer having a low oxygen concentration (lower region 120A in FIG. 7). On the other hand, the spiral-inducing force changed in the region in the composition layer having a high oxygen concentration (upper region 120B in FIG. 7), and after performing step 5A, as a result, the angle of the twist angle of the liquid crystal compound was changed. Different regions can be formed.
 第1実施態様における光学異方性層中の光学特性は特に制限されず、用途に応じて最適な値が選択される。以下、一例として、上述した手順によって作製される、厚み方向に沿って延びる螺旋軸に沿って捩れ配向した液晶化合物の配向状態を固定してなる第1領域と、ホモジニアス配向した液晶化合物の配向状態を固定してなる第2領域とを、厚み方向に沿って有する光学異方性層の場合について詳述する。
 上記光学異方性層の第1領域の厚みをd1、波長550nmで測定した第1領域の屈折率異方性をΔn1とした場合、光学異方性層を円偏光板に好適に適用できる点で、第1領域は以下の式(1A-1)を満たすことが好ましい。
 式(1A-1) 100nm≦Δn1d1≦240nm
 なかでも、式(1A-2)を満たすことがより好ましく、式(1A-3)を満たすことがさらに好ましい。
 式(1A-2) 120nm≦Δn1d1≦220nm
 式(1A-3) 140nm≦Δn1d1≦200nm
The optical characteristics in the optically anisotropic layer in the first embodiment are not particularly limited, and the optimum value is selected according to the application. Hereinafter, as an example, the first region in which the orientation state of the liquid crystal compound twisted and oriented along the spiral axis extending along the thickness direction is fixed and the orientation state of the anisotropically oriented liquid crystal compound, which are produced by the above-mentioned procedure, and the orientation state of the anisotropically oriented liquid crystal compound are described below. The case of an optically anisotropic layer having a second region formed by fixing the above in the thickness direction will be described in detail.
When the thickness of the first region of the optically anisotropic layer is d1 and the refractive index anisotropy of the first region measured at a wavelength of 550 nm is Δn1, the optically anisotropic layer can be suitably applied to a circular polarizing plate. Therefore, it is preferable that the first region satisfies the following formula (1A-1).
Equation (1A-1) 100 nm ≦ Δn1d1 ≦ 240 nm
Among them, it is more preferable to satisfy the formula (1A-2), and it is further preferable to satisfy the formula (1A-3).
Equation (1A-2) 120 nm ≤ Δn 1d1 ≤ 220 nm
Equation (1A-3) 140 nm ≤ Δn 1d1 ≤ 200 nm
 第1領域における液晶化合物の捩れ角の絶対値は特に制限されないが、光学異方性層を円偏光板に好適に適用できる点で、50~110°が好ましく、60~100°がより好ましい。
 なお、まず、液晶化合物が捩れ配向するとは、第1領域の厚み方向を軸として、第1領域の一方の表面(図3中の基板10側の表面)から他方の表面(図3中の基板10側とは反対側の表面)までの液晶化合物が捩れることを意図する。よって、上記捩れ角は、第1領域の一方の表面における液晶化合物の分子軸(棒状液晶化合物の場合には長軸)と、第1領域の他方の表面における液晶化合物の分子軸とのなす角度を意味する。
 捩れ角の測定方法は、Axometrics社のAxoscanを用い同社の装置解析ソフトウェアを用いて測定する。
The absolute value of the twist angle of the liquid crystal compound in the first region is not particularly limited, but 50 to 110 ° is preferable, and 60 to 100 ° is more preferable, in that the optically anisotropic layer can be suitably applied to the circular polarizing plate.
First, the twisting orientation of the liquid crystal compound means that one surface of the first region (the surface on the substrate 10 side in FIG. 3) to the other surface (the substrate in FIG. 3) is oriented with the thickness direction of the first region as the axis. It is intended that the liquid crystal compound up to (the surface opposite to the 10 side) is twisted. Therefore, the twist angle is the angle formed by the molecular axis of the liquid crystal compound on one surface of the first region (long axis in the case of a rod-shaped liquid crystal compound) and the molecular axis of the liquid crystal compound on the other surface of the first region. Means.
The twist angle is measured by using Axoscan of Axometrics and using the device analysis software of Axoschan.
 また、上記光学異方性層の第2領域の厚みをd2、波長550nmで測定した第2領域の屈折率異方性をΔn2とした場合、光学異方性層を円偏光板に好適に適用できる点で、第2領域は以下の式(2A-1)を満たすことが好ましい。
 式(2A-1) 100nm≦Δn2d2≦240nm
 なかでも、式(2A-2)を満たすことがより好ましく、式(2A-3)を満たすことがさらに好ましい。
 式(2A-2) 120nm≦Δn2d2≦220nm
 式(2A-3) 140nm≦Δn2d2≦200nm
Further, when the thickness of the second region of the optically anisotropic layer is d2 and the refractive index anisotropy of the second region measured at a wavelength of 550 nm is Δn2, the optically anisotropic layer is suitably applied to the circular polarizing plate. It is preferable that the second region satisfies the following formula (2A-1).
Equation (2A-1) 100 nm ≦ Δn2d2 ≦ 240 nm
Among them, it is more preferable to satisfy the formula (2A-2), and it is further preferable to satisfy the formula (2A-3).
Equation (2A-2) 120 nm ≤ Δn 2d 2 ≤ 220 nm
Equation (2A-3) 140 nm ≤ Δn 2d2 ≤ 200 nm
 第2領域は、ホモジニアス配向した液晶化合物の配向状態を固定してなる領域である。ホモジニアス配向の定義は、上述した通りである。 The second region is a region formed by fixing the orientation state of the homogenically oriented liquid crystal compound. The definition of homogenius orientation is as described above.
 なお、Δn1d1とΔn2d2との差は特に制限されないが、光学異方性層を円偏光板に好適に適用できる点で、-50~50nmが好ましく、-30~30nmがより好ましい。 Although the difference between Δn1d1 and Δn2d2 is not particularly limited, -50 to 50 nm is preferable, and -30 to 30 nm is more preferable in that the optically anisotropic layer can be suitably applied to a circular polarizing plate.
 また、第1実施態様における光学異方性層中の厚み方向に沿って延びる螺旋軸に沿って捩れ配向した液晶化合物の配向状態を固定してなる領域が2つ含まれ、一方の領域を領域Aおよび他方の領域を領域Bとする場合、領域Aの厚みをdA、波長550nmで測定した領域Aの屈折率異方性層をΔAとした場合、領域Aは、光学異方性層を円偏光板に好適に適用できる点で、以下の式(3A-1)を満たすことが好ましい。
 式(3A-1) 205nm≦ΔnAdA≦345nm
 なかでも、式(3A-2)を満たすことがより好ましく、式(3A-3)を満たすことがさらに好ましい。
 式(3A-2) 225nm≦ΔnAdA≦325nm
 式(3A-3) 245nm≦ΔnAdA≦305nm
Further, two regions are included in the optically anisotropic layer according to the first embodiment, in which the orientation state of the liquid crystal compound twisted and oriented along the spiral axis extending along the thickness direction is fixed, and one region is defined as a region. When A and the other region are the region B, when the thickness of the region A is dA and the refractive index anisotropic layer of the region A measured at a wavelength of 550 nm is ΔA, the region A is a circular optically anisotropic layer. It is preferable to satisfy the following formula (3A-1) in that it can be suitably applied to a polarizing plate.
Equation (3A-1) 205 nm ≤ ΔnAdA ≤ 345 nm
Among them, it is more preferable to satisfy the formula (3A-2), and it is further preferable to satisfy the formula (3A-3).
Equation (3A-2) 225 nm ≤ ΔnAdA ≤ 325 nm
Equation (3A-3) 245 nm ≤ ΔnAdA ≤ 305 nm
 領域Aにおける液晶化合物の捩れ角の絶対値は特に制限されないが、光学異方性層を円偏光板に好適に適用できる点で、0°超60°以下が好ましく、10~50°がより好ましい。 The absolute value of the twist angle of the liquid crystal compound in the region A is not particularly limited, but it is preferably more than 0 ° and 60 ° or less, more preferably 10 to 50 °, in that the optically anisotropic layer can be suitably applied to the circular polarizing plate. ..
 領域Bの厚みをd2、波長550nmで測定した領域Bの屈折率異方性をΔnBとした場合、光学異方性層を円偏光板に好適に適用できる点で、領域Bは以下の式(4A-1)を満たすことが好ましい。
 式(4A-1) 70nm≦ΔnBdB≦210nm
 なかでも、式(4A-2)を満たすことがより好ましく、式(4A-3)を満たすことがさらに好ましい。
 式(4A-2) 90nm≦ΔnBdB≦190nm
 式(4A-3) 110nm≦ΔnBdB≦170nm
When the thickness of the region B is d2 and the refractive index anisotropy of the region B measured at a wavelength of 550 nm is ΔnB, the region B can be suitably applied to the circularly polarizing plate. It is preferable to satisfy 4A-1).
Equation (4A-1) 70 nm ≤ ΔnB dB ≤ 210 nm
Among them, it is more preferable to satisfy the formula (4A-2), and it is further preferable to satisfy the formula (4A-3).
Equation (4A-2) 90 nm ≤ ΔnB dB ≤ 190 nm
Equation (4A-3) 110 nm ≤ ΔnB dB ≤ 170 nm
 領域Bにおける液晶化合物の捩れ角の絶対値は特に制限されないが、光学異方性層を円偏光板に好適に適用できる点で、50~110°が好ましく、60~100°がより好ましい。 The absolute value of the twist angle of the liquid crystal compound in the region B is not particularly limited, but 50 to 110 ° is preferable, and 60 to 100 ° is more preferable, in that the optically anisotropic layer can be suitably applied to the circular polarizing plate.
 また、上記態様のように、本発明の光学異方性層の製造方法の第1実施態様にて形成される光学異方性層が厚み方向に沿って液晶化合物の配向状態が異なる領域を2つ有する場合(以下、2つの領域を領域Xおよび領域Yという。)、領域Xの領域Y側の表面での遅相軸と、領域Yの領域X側の表面での遅相軸とは平行となる場合が多い。 Further, as in the above aspect, the region where the optically anisotropic layer formed in the first embodiment of the method for producing an optically anisotropic layer of the present invention differs in the orientation state of the liquid crystal compound along the thickness direction is 2 When there are two regions (hereinafter, the two regions are referred to as region X and region Y), the slow axis on the surface of the region X on the region Y side and the slow axis on the surface of the region Y on the region X side are parallel. In many cases.
 第1実施態様における光学異方性層中の光学特性に関しては上述した態様に制限されず、例えば、光学異方性層が厚み方向に沿って液晶化合物の配向状態が異なる領域を2つ有する場合、2つの領域がそれぞれ特許第5960743号に記載の第1光学異方性層および第2光学異方性層の光学特性(液晶化合物の捩れ角、Δnd、ReB、遅相軸の関係)を満たすことが好ましい。
 また、他の態様として、光学異方性層が厚み方向に2つの領域を有する場合、2つの領域が特許第5753922号に記載の第1光学異方性層および第2光学異方性層の光学特性(液晶化合物の捩れ角、Δn1d1、Δn2d2、遅相軸の関係)を満たすことが好ましい。
The optical properties in the optically anisotropic layer in the first embodiment are not limited to those described above, and for example, when the optically anisotropic layer has two regions in which the orientation state of the liquid crystal compound is different along the thickness direction. The two regions satisfy the optical characteristics (relationship between the twist angle of the liquid crystal compound, Δnd, ReB, and the slow axis) of the first optically anisotropic layer and the second optically anisotropic layer described in Patent No. 5960743, respectively. Is preferable.
In addition, as another embodiment, when the optically anisotropic layer has two regions in the thickness direction, the two regions are the first optically anisotropic layer and the second optically anisotropic layer described in Patent No. 5753922. It is preferable to satisfy the optical characteristics (relationship between the twist angle of the liquid crystal compound, Δn1d1, Δn2d2, and the slow axis).
 第1実施態様における光学異方性層は、逆波長分散性を示すことが好ましい。
 つまり、光学異方性層の波長450nmで測定した面内レタデーションであるRe(450)と、光学異方性層の波長550nmで測定した面内レタデーションであるRe(550)と、光学異方性層の波長650nmで測定した面内レタデーションのであるRe(650)とは、Re(450)≦Re(550)≦Re(650)の関係にあることが好ましい。
The optically anisotropic layer in the first embodiment preferably exhibits reverse wavelength dispersibility.
That is, Re (450), which is an in-plane retardation measured at a wavelength of 450 nm of the optically anisotropic layer, and Re (550), which is an in-plane retardation measured at a wavelength of 550 nm of the optically anisotropic layer, are optically anisotropic. It is preferable that Re (650), which is the in-plane retardation measured at a layer wavelength of 650 nm, has a relationship of Re (450) ≤ Re (550) ≤ Re (650).
 第1実施態様における光学異方性層の光学特性は特に制限されないが、λ/4板として機能することが好ましい。
 λ/4板は、ある特定の波長の直線偏光を円偏光に(または、円偏光を直線偏光に)変換する機能を有する板であり、特定の波長λnmにおける面内レタデーションRe(λ)がRe(λ)=λ/4を満たす板(光学異方性層)のことをいう。
 この式は、可視光域のいずれかの波長(例えば、550nm)において達成されていればよいが、波長550nmにおける面内レタデーションRe(550)が、110nm≦Re(550)≦180nmの関係を満たすことが好ましい。
The optical characteristics of the optically anisotropic layer in the first embodiment are not particularly limited, but it is preferable that the optical anisotropic layer functions as a λ / 4 plate.
The λ / 4 plate is a plate having a function of converting linearly polarized light of a specific wavelength into circularly polarized light (or converting circularly polarized light into linearly polarized light), and the in-plane retardation Re (λ) at a specific wavelength of λnm is Re. A plate (optically anisotropic layer) that satisfies (λ) = λ / 4.
This equation may be achieved at any wavelength in the visible light region (eg, 550 nm), but the in-plane retardation Re (550) at a wavelength of 550 nm satisfies the relationship 110 nm ≤ Re (550) ≤ 180 nm. Is preferable.
<<第2実施態様>>
 本発明の光学異方性層の製造方法の第2実施態様は、以下の工程1B~5Bを有する。後述するように、第2実施態様においては、コレステリック液晶相を固定してなる領域を有する光学異方性層が形成される。
工程1B:光照射により螺旋誘起力が変化する感光性キラル剤を少なくとも含むキラル剤、および、重合性基を有する液晶化合物を含む組成物層を形成する工程
工程2B:組成物層に加熱処理を施して、組成物層中の液晶化合物を配向させて、コレステリック液晶相を形成する工程
工程3B:工程2Bの後、酸素濃度1体積%以上の条件下にて、組成物層に対して、光照射を50秒間以下、かつ、300mJ/cm2以下で行う工程
工程4B:工程3Bの後、組成物層に、光照射時より高い温度で加熱処理を施す工程
工程5B:工程4Bの後、組成物層に対して硬化処理を施して、液晶化合物の配向状態が異なる領域を厚み方向に沿って複数有する光学異方性層を形成する工程
 後述するように、第2実施態様において、上記特性の光学異方性層を製造するためには、組成物層中におけるキラル剤の合計含有量(全てのキラル剤の総含有量)は、液晶化合物の全質量に対して、5.0質量%超であることが好ましい。
 第1実施態様と、第2実施態様との違いは、主に、キラル剤の含有量の点が挙げられる。
 以下、上記各工程の手順について詳述する。
<< Second Embodiment >>
The second embodiment of the method for producing an optically anisotropic layer of the present invention comprises the following steps 1B to 5B. As will be described later, in the second embodiment, an optically anisotropic layer having a region formed by fixing the cholesteric liquid crystal phase is formed.
Step 1B: Forming a composition layer containing at least a photosensitive chiral agent whose spiral-inducing force changes by light irradiation and a liquid crystal compound having a polymerizable group Step 2B: Heat-treating the composition layer. Step 3B to form a cholesteric liquid crystal phase by orienting the liquid crystal compound in the composition layer: After step 2B, light is applied to the composition layer under the condition of an oxygen concentration of 1% by volume or more. Step 4B: After step 3B, the composition layer is heat-treated at a temperature higher than that at the time of light irradiation. Step 5B: Composition after step 4B. A step of subjecting a physical layer to a curing treatment to form an optically anisotropic layer having a plurality of regions having different orientation states of liquid crystal compounds along the thickness direction. As will be described later, in the second embodiment, the above-mentioned characteristics In order to produce an optically anisotropic layer, the total content of the chiral agent (total content of all chiral agents) in the composition layer is more than 5.0% by mass with respect to the total mass of the liquid crystal compound. Is preferable.
The difference between the first embodiment and the second embodiment is mainly in the content of the chiral agent.
Hereinafter, the procedure of each of the above steps will be described in detail.
<工程1B>
 工程1Bは、光照射により螺旋誘起力が変化する感光性キラル剤を少なくとも含むキラル剤、および、重合性基を有する液晶化合物を含む組成物層を形成する工程である。本工程を実施することにより、後述する光照射処理が施される組成物層が形成される。
 組成物層に含まれるキラル剤(キラル剤Aおよびキラル剤B)および液晶化合物は、工程1Aで説明した通りである。
 また、組成物層には、上述した工程1Aで説明したように、キラル剤および液晶化合物以外のその他の成分を含んでいてもよい。
<Step 1B>
Step 1B is a step of forming a composition layer containing at least a photosensitive chiral agent whose spiral-inducing force is changed by light irradiation and a liquid crystal compound having a polymerizable group. By carrying out this step, a composition layer to be subjected to a light irradiation treatment described later is formed.
The chiral agent (chiral agent A and chiral agent B) and the liquid crystal compound contained in the composition layer are as described in step 1A.
Further, as described in the above-mentioned step 1A, the composition layer may contain other components other than the chiral agent and the liquid crystal compound.
 工程1Bにおいて、後述する工程2Bにおいてコレステリック液晶相が形成されるように、組成物層中にキラル剤が含まれる。
 第2実施態様において、組成物層中におけるキラル剤の合計含有量(全てのキラル剤の総含有量)は特に制限されないが、液晶化合物の配向状態を制御しやすい点で、液晶化合物の全質量に対して、5.0質量%超が好ましく、5.5質量%以上がより好ましく、6.0質量%以上がさらに好ましい。上限は特に制限されないが、25質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下がさらに好ましい。
In step 1B, a chiral agent is contained in the composition layer so that the cholesteric liquid crystal phase is formed in step 2B described later.
In the second embodiment, the total content of the chiral agent (total content of all chiral agents) in the composition layer is not particularly limited, but the total mass of the liquid crystal compound is easy to control in that the orientation state of the liquid crystal compound is easily controlled. On the other hand, more than 5.0% by mass is preferable, 5.5% by mass or more is more preferable, and 6.0% by mass or more is further preferable. The upper limit is not particularly limited, but is preferably 25% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less.
 キラル剤中におけるキラル剤Aの含有量は特に制限されないが、液晶化合物の配向状態を制御しやすい点で、キラル剤の全質量に対して、5~95質量%が好ましく、10~90質量%がより好ましい。 The content of the chiral agent A in the chiral agent is not particularly limited, but is preferably 5 to 95% by mass, preferably 10 to 90% by mass, based on the total mass of the chiral agent, in that the orientation state of the liquid crystal compound can be easily controlled. Is more preferable.
 工程1Bにより形成される組成物層中のキラル剤の螺旋誘起力の絶対値は、10μm-1以上が好ましく、15μm-1以上がより好ましく、20μm-1以上がさらに好ましい。上限は特に制限されないが、250μm-1以下の場合が多く、200μm-1以下の場合が多い。
 また、組成物中に2種以上のキラル剤が含まれる場合、工程1Bにより形成される組成物層中のキラル剤の加重平均螺旋誘起力の絶対値は、上記範囲内であることが好ましい。
 組成物層中のキラル剤の螺旋誘起力または螺旋誘起力の絶対値が上記範囲である場合、工程2Bによって、組成物中の液晶化合物がコレステリック配向している。
 加重平均螺旋誘起力の定義は、上述した通りである。
The absolute value of the spiral-inducing force of the chiral agent in the composition layer formed in step 1B is preferably 10 μm -1 or more, more preferably 15 μm -1 or more, still more preferably 20 μm -1 or more. The upper limit is not particularly limited, but in many cases it is 250 μm -1 or less, and in many cases it is 200 μm -1 or less.
When two or more kinds of chiral agents are contained in the composition, the absolute value of the weighted average spiral inducing force of the chiral agents in the composition layer formed in step 1B is preferably within the above range.
When the absolute value of the spiral-induced force or the spiral-induced force of the chiral agent in the composition layer is in the above range, the liquid crystal compound in the composition is cholesterically oriented by the step 2B.
The definition of the weighted average spiral induced force is as described above.
 工程1Bにおける組成物層の形成方法は、上述した工程1Aにおける組成物層の形成方法と同様の形成方法が挙げられる。 Examples of the method for forming the composition layer in step 1B include the same forming method as the method for forming the composition layer in step 1A described above.
<工程2B>
 工程2Bは、組成物層に加熱処理を施して、組成物層中の液晶化合物を配向させて、コレステリック液晶相を形成する工程である。本工程を実施することにより、組成物層中の液晶化合物が所定の配向状態となる。
 加熱処理の条件としては、使用される液晶化合物に応じて最適な条件が選択される。
 なかでも、加熱温度としては、25~250℃の場合が多く、40~150℃の場合がより多く、50~130℃の場合がさらに多い。
 加熱時間としては、0.1~60分間の場合が多く、0.2~5分間の場合がより多い。
<Process 2B>
Step 2B is a step of heat-treating the composition layer to orient the liquid crystal compound in the composition layer to form a cholesteric liquid crystal phase. By carrying out this step, the liquid crystal compound in the composition layer is in a predetermined orientation state.
As the heat treatment conditions, the optimum conditions are selected according to the liquid crystal compound used.
Among them, the heating temperature is often 25 to 250 ° C, more often 40 to 150 ° C, and even more often 50 to 130 ° C.
The heating time is often 0.1 to 60 minutes, and more often 0.2 to 5 minutes.
<工程3B>
 工程3Bは、工程2Bの後、酸素濃度1体積%以上の条件下にて、組成物層に対して、光照射を50秒間以下、かつ、300mJ/cm2以下で行う工程である。以下では、図面を用いて本工程の機構を説明する。なお、図8に示す態様は、液晶化合物はコレステリック液晶相を形成している態様に該当する。
 図8に示すように、工程3Bでは酸素濃度1体積%以上の条件下にて、基板10の組成物層220側とは反対側の方向(図8中の白抜き矢印の方向)から光照射を行う。なお、図8では光照射は基板10側から実施されているが、組成物層220側から実施されてもよい。
 その際、組成物層220の基板10側の下側領域220Aと、基板10側とは反対側の上側領域220Bとを比較すると、上側領域220Bの表面のほうが空気側にあるため、上側領域220B中の酸素濃度が高く、下側領域220A中の酸素濃度は低い。そのため、組成物層220に対して光照射がなされると、下側領域220Aにおいては液晶化合物の重合が進行しやすく、液晶化合物の配向状態が固定される。なお、下側領域220Aにおいてもキラル剤Aが存在しており、キラル剤Aも感光し、螺旋誘起力が変化する。しかしながら、下側領域220Aでは液晶化合物の配向状態が固定されているため、後述する、光照射された組成物層に対して加熱処理を施す工程4Bを実施しても、液晶化合物の配向状態の変化は生じない。
 また、上側領域220Bにおいては酸素濃度が高いため、光照射がなされても、液晶化合物の重合が酸素により阻害され、重合が進行しにくい。そして、上側領域220Bにおいてもキラル剤Aが存在しているため、キラル剤Aが感光し、螺旋誘起力が変化する。そのため、後述する工程4Bを実施すると、変化した螺旋誘起力に沿って液晶化合物の配向状態が変化する。
 つまり、工程3Bを実施することにより、組成物層の基板側の領域(下側領域)においては液晶化合物の配向状態の固定化が進行しやすい。また、組成物層の基板側と反対側の領域(上側領域)においては、液晶化合物の配向状態の固定化は進行しづらく、かつ、感光したキラル剤Aに応じて螺旋誘起力が変化した状態となる。
<Process 3B>
Step 3B is a step of irradiating the composition layer with light for 50 seconds or less and 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more after the step 2B. Hereinafter, the mechanism of this process will be described with reference to the drawings. The embodiment shown in FIG. 8 corresponds to the embodiment in which the liquid crystal compound forms a cholesteric liquid crystal phase.
As shown in FIG. 8, in step 3B, under the condition that the oxygen concentration is 1% by volume or more, light is irradiated from the direction opposite to the composition layer 220 side of the substrate 10 (the direction of the white arrow in FIG. 8). I do. Although the light irradiation is carried out from the substrate 10 side in FIG. 8, it may be carried out from the composition layer 220 side.
At that time, when the lower region 220A on the substrate 10 side of the composition layer 220 and the upper region 220B on the opposite side to the substrate 10 side are compared, the surface of the upper region 220B is on the air side, so that the upper region 220B The oxygen concentration in the lower region 220A is high, and the oxygen concentration in the lower region 220A is low. Therefore, when the composition layer 220 is irradiated with light, the polymerization of the liquid crystal compound easily proceeds in the lower region 220A, and the orientation state of the liquid crystal compound is fixed. The chiral agent A is also present in the lower region 220A, and the chiral agent A is also exposed to light, and the spiral inducing force changes. However, since the orientation state of the liquid crystal compound is fixed in the lower region 220A, even if step 4B of heat-treating the light-irradiated composition layer, which will be described later, is performed, the orientation state of the liquid crystal compound remains. No change occurs.
Further, since the oxygen concentration is high in the upper region 220B, even if light irradiation is performed, the polymerization of the liquid crystal compound is inhibited by the oxygen, and the polymerization is difficult to proceed. Since the chiral agent A is also present in the upper region 220B, the chiral agent A is exposed to light and the spiral inducing force changes. Therefore, when step 4B described later is carried out, the orientation state of the liquid crystal compound changes along the changed spiral-induced force.
That is, by carrying out step 3B, the fixation of the orientation state of the liquid crystal compound is likely to proceed in the substrate-side region (lower region) of the composition layer. Further, in the region opposite to the substrate side (upper region) of the composition layer, the fixation of the orientation state of the liquid crystal compound is difficult to proceed, and the spiral inducing force changes according to the exposed chiral agent A. Will be.
 工程3Bにおける光照射の各種条件(酸素濃度、照射時間、照射量など)は、上述した工程3Aにおける光照射の各種条件と同じである。 The various conditions of light irradiation (oxygen concentration, irradiation time, irradiation amount, etc.) in step 3B are the same as the various conditions of light irradiation in step 3A described above.
<工程4B>
 工程4Bは、工程3Bの後、組成物層に、光照射時より高い温度で加熱処理を施す工程である。本工程を実施することにより、光照射が施された組成物層中のキラル剤Aの螺旋誘起力が変化した領域において、液晶化合物の配向状態が変化する。より具体的には、本工程は、工程3Bの後の組成物層に対して、照射時より高い温度で加熱処理を施して、工程3Bで固定されていない組成物層中の液晶化合物を配向させる工程である。
 以下では、図面を用いて本工程の機構を説明する。
<Process 4B>
Step 4B is a step of subjecting the composition layer to a heat treatment at a temperature higher than that at the time of light irradiation after the step 3B. By carrying out this step, the orientation state of the liquid crystal compound changes in the region where the spiral-inducing force of the chiral agent A in the composition layer irradiated with light changes. More specifically, in this step, the composition layer after step 3B is heat-treated at a temperature higher than that at the time of irradiation to orient the liquid crystal compound in the composition layer not fixed in step 3B. It is a process to make it.
Hereinafter, the mechanism of this process will be described with reference to the drawings.
 上述したように、図8に示した組成物層220に対して工程3Bを実施すると、下側領域220Aにおいては液晶化合物の配向状態が固定されるのに対して、上側領域220Bでは液晶化合物の重合は進行しづらく、液晶化合物の配向状態が固定されていない。また、上側領域220Bにおいてはキラル剤Aの螺旋誘起力が変化している。このようなキラル剤Aの螺旋誘起力の変化が生じると、光照射前の状態と比較すると、上側領域220Bにおいて液晶化合物を捩じる力が変化している。この点をより詳細に説明する。
 なお、以下の説明においては、組成物層220に、誘起される螺旋方向が左巻きであり、光照射によって螺旋誘起力が減少するキラル剤Aが含まれる場合について詳述する。
 このような状態の上側領域220Bにおいて光照射が行われ、図10に示すように、光照射量によってキラル剤Aの螺旋誘起力が減少する場合、上側領域220Bにおけるキラル剤の螺旋誘起力は小さくなる。
 そのため、このような螺旋誘起力の変化が生じている工程3B後の組成物層220に対して、加熱処理を施して液晶化合物の再配向を促すと、図9に示すように、上側領域220Bにおいては、コレステリック液晶層の螺旋ピッチが大きくなる。
 一方で、上述したように、組成物層220の下側領域220Aにおいては工程3Bの際に液晶化合物の重合が進行して液晶化合物の配向状態が固定されているため、液晶化合物の再配向は進行しない。
 上記のように、工程4Bを実施することにより、組成物層の厚み方向に沿って、螺旋ピッチが異なるコレステリック液晶相が複数形成される。
As described above, when step 3B is carried out on the composition layer 220 shown in FIG. 8, the orientation state of the liquid crystal compound is fixed in the lower region 220A, whereas the orientation state of the liquid crystal compound is fixed in the upper region 220B. The polymerization is difficult to proceed, and the orientation of the liquid crystal compound is not fixed. Further, in the upper region 220B, the spiral-inducing force of the chiral agent A changes. When such a change in the spiral-inducing force of the chiral agent A occurs, the force for twisting the liquid crystal compound changes in the upper region 220B as compared with the state before light irradiation. This point will be described in more detail.
In the following description, the case where the composition layer 220 contains the chiral agent A whose induced spiral direction is left-handed and whose spiral-inducing force is reduced by light irradiation will be described in detail.
When light irradiation is performed in the upper region 220B in such a state and the spiral inducing force of the chiral agent A decreases depending on the amount of light irradiation as shown in FIG. 10, the spiral inducing force of the chiral agent in the upper region 220B is small. Become.
Therefore, when the composition layer 220 after the step 3B in which such a change in the spiral inducing force is generated is heat-treated to promote the reorientation of the liquid crystal compound, as shown in FIG. 9, the upper region 220B In, the spiral pitch of the cholesteric liquid crystal layer becomes large.
On the other hand, as described above, in the lower region 220A of the composition layer 220, the polymerization of the liquid crystal compound proceeds during step 3B and the orientation state of the liquid crystal compound is fixed, so that the reorientation of the liquid crystal compound is not possible. Does not progress.
As described above, by carrying out step 4B, a plurality of cholesteric liquid crystal phases having different spiral pitches are formed along the thickness direction of the composition layer.
 なお、上記図8および9においては、キラル剤Aとして光照射により螺旋誘起力が減少するキラル剤を用いた態様について説明したが、この態様には制限されない。例えば、キラル剤Aとして光照射により螺旋誘起力が増加するキラル剤を用いてもよい。
 また、上記図8および9においては、キラル剤Aとして誘起される螺旋方向が左巻きであるキラル剤を用いた態様について説明したが、この態様には制限されない。例えば、キラル剤Aとして誘起される螺旋方向が右巻きであるキラル剤を用いてもよい。
 また、上記図8および9においては、1種のキラル剤Aのみを使用する態様について説明したが、この態様には制限されない。例えば、2種のキラル剤Aを用いる態様であってもよいし、キラル剤Aとキラル剤Bとを併用する態様であってもよい。
In addition, in FIGS. For example, as the chiral agent A, a chiral agent whose spiral-inducing force is increased by light irradiation may be used.
Further, in FIGS. 8 and 9, an embodiment in which the chiral agent induced as the chiral agent A has a left-handed spiral direction has been described, but the present invention is not limited to this embodiment. For example, a chiral agent whose spiral direction induced as the chiral agent A is right-handed may be used.
Further, in FIGS. 8 and 9, the embodiment in which only one kind of chiral agent A is used has been described, but the embodiment is not limited to this embodiment. For example, it may be an embodiment in which two kinds of chiral agents A are used, or an embodiment in which the chiral agent A and the chiral agent B are used in combination.
 加熱処理は、光照射時より高い温度で実施する。
 加熱処理の温度と、光照射時の温度との差は、5℃以上が好ましく、10~110℃がより好ましく、20~110℃がより好ましい。
The heat treatment is carried out at a temperature higher than that at the time of light irradiation.
The difference between the temperature of the heat treatment and the temperature at the time of light irradiation is preferably 5 ° C. or higher, more preferably 10 to 110 ° C., and even more preferably 20 to 110 ° C.
 加熱処理の温度は、光照射時の温度より高く、組成物層中の固定されていない液晶化合物を配向させる温度であることが好ましく、より具体的には、40~250℃の場合が多く、50~150℃の場合がより多く、50℃超150℃以下の場合がさらに多く、60~130℃の場合が特に多い。
 加熱時間としては、0.01~60分間の場合が多く、0.03~5分間の場合がより多い。
The temperature of the heat treatment is higher than the temperature at the time of light irradiation, and is preferably a temperature at which the non-fixed liquid crystal compound in the composition layer is oriented, and more specifically, it is often 40 to 250 ° C. More often, the temperature is 50 to 150 ° C., more often, the temperature is more than 50 ° C. and 150 ° C. or lower, and 60 to 130 ° C. is particularly common.
The heating time is often 0.01 to 60 minutes, and more often 0.03 to 5 minutes.
 また、光照射後の組成物層中のキラル剤の螺旋誘起力の絶対値は特に制限されないが、光照射後の組成物層中のキラル剤の螺旋誘起力と光照射前の螺旋誘起力との差の絶対値が、0.05μm-1以上が好ましく、0.05~10.0μm-1がより好ましく、0.1~10.0μm-1がさらに好ましい。
 なお、組成物中に2種以上のキラル剤が含まれる場合、光照射後の組成物層中のキラル剤の加重平均螺旋誘起力と光照射前の加重平均螺旋誘起力との差の絶対値が、0.05μm-1以上が好ましく、0.05~10.0μm-1がより好ましく、0.1~10.0μm-1がさらに好ましい。
Further, the absolute value of the spiral-inducing force of the chiral agent in the composition layer after light irradiation is not particularly limited, but the spiral-inducing force of the chiral agent in the composition layer after light irradiation and the spiral-inducing force before light irradiation are used. The absolute value of the difference is preferably 0.05 μm -1 or more, more preferably 0.05 to 10.0 μm -1 , and even more preferably 0.1 to 10.0 μm -1 .
When two or more kinds of chiral agents are contained in the composition, the absolute value of the difference between the weighted average spiral-inducing force of the chiral agents in the composition layer after light irradiation and the weighted average spiral-inducing force before light irradiation. However, 0.05 μm -1 or more is preferable, 0.05 to 10.0 μm -1 is more preferable, and 0.1 to 10.0 μm -1 is even more preferable.
<工程5B>
 工程5Bは、工程4Bの後、組成物層に対して硬化処理を施して、液晶化合物の配向状態が異なる領域を厚み方向に沿って複数有する光学異方性層を形成する工程である。本工程を実施することにより、組成物層中の液晶化合物の配向状態が固定され、結果として所定の光学異方性層が形成される。なお、本工程を実施することにより、コレステリック液晶相を固定してなる光学異方性層であって、厚み方向に沿って、コレステリック液晶相の螺旋ピッチが異なる複数の領域を有する光学異方性層が形成される。形成される各領域中における螺旋ピッチの長さは、一定である場合が多い。つまり、本工程を実施することにより、コレステリック液晶相を固定してなる光学異方性層であって、厚み方向に沿って、コレステリック液晶相の螺旋ピッチが異なる複数の領域を有し、各領域における螺旋ピッチが一定である光学異方性層を形成できる。
<Process 5B>
Step 5B is a step of subjecting the composition layer to a curing treatment after step 4B to form an optically anisotropic layer having a plurality of regions having different orientation states of the liquid crystal compounds along the thickness direction. By carrying out this step, the orientation state of the liquid crystal compound in the composition layer is fixed, and as a result, a predetermined optically anisotropic layer is formed. By carrying out this step, the optically anisotropic layer is formed by fixing the cholesteric liquid crystal phase, and has a plurality of regions in which the spiral pitch of the cholesteric liquid crystal phase is different along the thickness direction. Layers are formed. The length of the spiral pitch in each region formed is often constant. That is, by carrying out this step, it is an optically anisotropic layer in which the cholesteric liquid crystal phase is fixed, and has a plurality of regions in which the spiral pitch of the cholesteric liquid crystal phase is different along the thickness direction, and each region. An optically anisotropic layer having a constant spiral pitch can be formed.
 工程5Bでの硬化処理の方法としては、工程5Aでの硬化処理の方法が挙げられる。
 光学異方性層の厚みは特に制限されないが、0.05~10μmが好ましく、0.1~8.0μmがより好ましく、0.2~6.0μmがさらに好ましい。
Examples of the curing treatment method in step 5B include the curing treatment method in step 5A.
The thickness of the optically anisotropic layer is not particularly limited, but is preferably 0.05 to 10 μm, more preferably 0.1 to 8.0 μm, and even more preferably 0.2 to 6.0 μm.
 上記方法によって形成される、コレステリック液晶相を固定してなる光学異方性層であって、厚み方向に沿って、コレステリック液晶相の螺旋ピッチが異なる複数の領域を有する光学異方性層において、各領域のコレステリック液晶相由来の選択反射中心波長は異なる。例えば、光学異方性層は、厚み方向に沿って、青色光を反射するコレステリック液晶相が固定されてなる領域と、緑色光を反射するコレステリック液晶相が固定されてなる領域とを有する光学異方性層であってもよいし、厚み方向に沿って、緑色光を反射するコレステリック液晶相が固定されてなる領域と、赤色光を反射するコレステリック液晶相が固定されてなる領域とを有する光学異方性層であってもよい。
 なお、本明細書において、選択反射中心波長とは、対象となる物(部材)における透過率の極小値をTmin(%)とした場合、下記の式で表される半値透過率:T1/2(%)を示す2つの波長の平均値のことを言う。
 半値透過率を求める式: T1/2=100-(100-Tmin)÷2
 また可視光のうち、420nm以上500nm未満の波長域の光は青色光(B光)であり、500nm以上600nm未満の波長域の光は緑色光(G光)であり、600nm以上700nm未満の波長域の光は赤色光(R光)である。
In the optically anisotropic layer formed by the above method, which is formed by fixing the cholesteric liquid crystal phase and has a plurality of regions having different spiral pitches of the cholesteric liquid crystal phase along the thickness direction. The selective reflection center wavelength derived from the cholesteric liquid crystal phase in each region is different. For example, the optically anisotropic layer has an optical difference having a region in which a cholesteric liquid crystal phase that reflects blue light is fixed and a region in which a cholesteric liquid crystal phase that reflects green light is fixed along the thickness direction. It may be a square layer, or it may be an optic having a region in which a cholesteric liquid crystal phase that reflects green light is fixed and a region in which a cholesteric liquid crystal phase that reflects red light is fixed along the thickness direction. It may be an anisotropic layer.
In the present specification, the selective reflection center wavelength is defined as the half-value transmittance expressed by the following formula, where T min (%) is the minimum value of the transmittance of the target object (member): T 1 . It refers to the average value of two wavelengths indicating / 2 (%).
Formula for calculating half-value transmittance: T 1/2 = 100- (100-T min ) ÷ 2
Of the visible light, the light in the wavelength range of 420 nm or more and less than 500 nm is blue light (B light), and the light in the wavelength range of 500 nm or more and less than 600 nm is green light (G light), and the light has a wavelength of 600 nm or more and less than 700 nm. The light in the region is red light (R light).
 また、図9に示す態様においては、光学異方性層は2つの液晶化合物の配向状態の異なる領域を有していたが、本発明は上記態様に制限されず、光学異方性層は、液晶化合物の配向状態が異なる領域を3つ以上有していてもよい。上記のように、液晶化合物配向状態が異なる領域を3つ以上有する光学異方性層は、例えば、工程3Bの条件を変更して複数回実施することにより、形成できる。
 上記のような光学異方性層としては、例えば、厚み方向に沿って、青色光を反射するコレステリック液晶相が固定されてなる領域と、緑色光を反射するコレステリック液晶相が固定されてなる領域と、赤色光を反射するコレステリック液晶相が固定されてなる領域とを有する光学異方性層が挙げられる。
Further, in the embodiment shown in FIG. 9, the optically anisotropic layer has regions in which the orientation states of the two liquid crystal compounds are different, but the present invention is not limited to the above embodiment, and the optically anisotropic layer is not limited to the above embodiment. It may have three or more regions in which the orientation state of the liquid crystal compound is different. As described above, the optically anisotropic layer having three or more regions having different liquid crystal compound orientation states can be formed, for example, by changing the conditions of step 3B and performing the process a plurality of times.
The optically anisotropic layer as described above includes, for example, a region in which the cholesteric liquid crystal phase that reflects blue light is fixed and a region in which the cholesteric liquid crystal phase that reflects green light is fixed along the thickness direction. And an optically anisotropic layer having a region formed by fixing a cholesteric liquid crystal phase that reflects red light.
<<第3実施態様>>
 本発明の光学異方性層の製造方法の第3実施態様は、以下の工程1C~5Cを有する。後述するように、第3実施態様においては、液晶化合物の配向方向が層表面に対して傾斜または垂直に配向している液晶化合物の配向状態を固定してなる領域を有する光学異方性層が形成される。
工程1C:光照射により極性が変化する感光性化合物、および、重合性基を有する液晶化合物を含む組成物層を形成する工程
工程2C:組成物層に加熱処理を施して、組成物層中の液晶化合物を配向させる工程
工程3C:工程2Cの後、酸素濃度1体積%以上の条件下にて、組成物層に対して、光照射を50秒間以下、かつ、300mJ/cm2以下で行う工程
工程4C:工程3Cの後、組成物層に、光照射時より高い温度で加熱処理を施す工程
工程5C:工程4Cの後、組成物層に対して硬化処理を施して、液晶化合物の配向状態が異なる領域を厚み方向に沿って複数有する光学異方性層を形成する工程
 第3実施態様においては、後述するように、光照射により極性が変化する感光性化合物が使用されている。
 以下、上記各工程の手順について詳述する。
<< Third Embodiment >>
The third embodiment of the method for producing an optically anisotropic layer of the present invention comprises the following steps 1C to 5C. As will be described later, in the third embodiment, the optically anisotropic layer has a region in which the orientation direction of the liquid crystal compound is inclined or perpendicular to the layer surface and the orientation state of the liquid crystal compound is fixed. It is formed.
Step 1C: Forming a composition layer containing a photosensitive compound whose polarity changes by light irradiation and a liquid crystal compound having a polymerizable group Step 2C: The composition layer is heat-treated to be contained in the composition layer. Step 3C for orienting the liquid crystal compound: After step 2C, the composition layer is irradiated with light for 50 seconds or less and at 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more. Step 4C: After step 3C, the composition layer is heat-treated at a temperature higher than that at the time of light irradiation. Step 5C: After step 4C, the composition layer is cured and the orientation state of the liquid crystal compound is applied. Step of forming an optically anisotropic layer having a plurality of regions having different regions along the thickness direction In the third embodiment, as described later, a photosensitive compound whose polarity is changed by light irradiation is used.
Hereinafter, the procedure of each of the above steps will be described in detail.
<工程1C>
 工程1Cは、光照射により極性が変化する感光性化合物、および、重合性基を有する液晶化合物を含む組成物層を形成する工程である。本工程を実施することにより、後述する光照射処理が施される組成物層が形成される。
 組成物層に含まれる液晶化合物は、工程1Aで説明した通りである。
 また、組成物層には、上述した工程1Aで説明したように、その他の成分を含んでいてもよい。
<Process 1C>
Step 1C is a step of forming a composition layer containing a photosensitive compound whose polarity changes with light irradiation and a liquid crystal compound having a polymerizable group. By carrying out this step, a composition layer to be subjected to a light irradiation treatment described later is formed.
The liquid crystal compound contained in the composition layer is as described in step 1A.
Further, the composition layer may contain other components as described in the above-mentioned step 1A.
(光照射により極性が変化する感光性化合物)
 工程1Cの組成物層は、光照射により極性が変化する感光性化合物(以下、「特定感光性化合物」ともいう。)を含む。
 光照射により極性が変化する感光性化合物とは、光照射の前後で極性が変化する化合物である。後述するように、このような特定感光性化合物を含む組成物層に対して工程1Cの光照射を行うと、組成物層中の空気側の領域において特定化合物の極性が変化して、工程4Cを実施するとその極性の変化に伴って、液晶化合物の配向方向が層表面に対して傾斜または垂直となる。
(Photosensitive compound whose polarity changes with light irradiation)
The composition layer of step 1C contains a photosensitive compound whose polarity changes with light irradiation (hereinafter, also referred to as “specific photosensitive compound”).
The photosensitive compound whose polarity changes by light irradiation is a compound whose polarity changes before and after light irradiation. As will be described later, when the composition layer containing such a specific photosensitive compound is irradiated with light in step 1C, the polarity of the specific compound changes in the region on the air side in the composition layer, and step 4C When the above is performed, the orientation direction of the liquid crystal compound becomes inclined or perpendicular to the layer surface as the polarity changes.
 特定感光性化合物の極性の変化は、親水化する変化でもよいし、疎水化する変化でもよい。なかでも、液晶化合物の配向方向が層表面に対して傾斜または垂直に配向している液晶化合物の配向状態を容易に形成できる点からは、親水化する変化が好ましい。
 光照射により親水化する特定感光性化合物としては、光照射によって親水性基を生じる基を有する化合物が好ましい。親水性基の種類は特に制限されず、カチオン性基、アニオン性基、および、ノニオン性基のいずれであってもよく、より具体的には、カルボン酸基、スルホン酸基、ホスホン酸基、アミノ基、アンモニウム基、アミド基、チオール基、および、ヒドロキシ基が挙げられる。
The change in the polarity of the specific photosensitive compound may be a change that makes the specific photosensitive compound hydrophilic or a change that makes the specific photosensitive compound hydrophobic. Among them, the change of hydrophilicity is preferable from the viewpoint that the orientation state of the liquid crystal compound can be easily formed in which the orientation direction of the liquid crystal compound is inclined or perpendicular to the layer surface.
As the specific photosensitive compound that becomes hydrophilic by light irradiation, a compound having a group that produces a hydrophilic group by light irradiation is preferable. The type of the hydrophilic group is not particularly limited and may be any of a cationic group, an anionic group and a nonionic group, and more specifically, a carboxylic acid group, a sulfonic acid group and a phosphonic acid group. Examples thereof include an amino group, an ammonium group, an amide group, a thiol group, and a hydroxy group.
 特定感光性化合物は、フッ素原子またはケイ素原子を有することが好ましい。特定感光性化合物が上記原子を有する場合、組成物層の表面付近に特定感光性化合物が偏在しやすくなり、所望の光学異方性層が形成されやすくなる。 The specific photosensitive compound preferably has a fluorine atom or a silicon atom. When the specific photosensitive compound has the above-mentioned atoms, the specific photosensitive compound is likely to be unevenly distributed near the surface of the composition layer, and a desired optically anisotropic layer is likely to be formed.
 特定感光性化合物としては、式(X)で表される化合物が好ましい。 As the specific photosensitive compound, a compound represented by the formula (X) is preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(X)中、
 Tは、n+m価の芳香族炭化水素基を表し、
 Spは、単結合または2価の連結基を表し、
 Hbは、炭素数が4~30のフッ素置換アルキル基を表し、
 mは、1~4の整数を表し、
 nは、1~4の整数を表し、
 Aは、下記式(Y)で表される基を表し、
In the above formula (X),
T represents an n + m-valent aromatic hydrocarbon group.
Sp represents a single bond or a divalent linking group.
Hb represents a fluorine-substituted alkyl group having 4 to 30 carbon atoms.
m represents an integer from 1 to 4 and represents
n represents an integer from 1 to 4 and represents
A represents a group represented by the following formula (Y).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(Y)中、
 R1~R5は、それぞれ独立して、水素原子または1価の置換基を表し、
 *は、結合部位を表す。
 なお、上記式(X)中、上記Sp、上記Hb、または上記Aが各々複数個存在する場合、複数個存在するSp同士、複数個存在するHb同士、または複数個存在するA同士は、各々同一であっても異なっていてもよい。
In the above formula (Y),
R 1 to R 5 independently represent a hydrogen atom or a monovalent substituent.
* Represents a binding site.
In the formula (X), when a plurality of the above Sp, the above Hb, or the above A are present, the plurality of Sps, the plurality of Hbs, or the plurality of A's are each present. It may be the same or different.
 上記式(X)中、Tは、n+m価の芳香族炭化水素基を表す。
 上記芳香族炭化水素基は、芳香族炭化水素環から水素原子をn+m個除いた基であれば特に制限されないが、炭素数が6~22であることが好ましく、6~14であることがより好ましく、6~10であることがさらに好ましい。芳香族炭化水素基は、ベンゼン環であることが特に好ましい。
 なお、上記芳香族炭化水素基は、-Sp-Hbで表される基、および、-C(=O)O-Aで表される基以外にさらに置換基を有していてもよい。置換基としては、例えば、アルキル基(例えば、炭素数1~8のアルキル基)、アルコキシ基(例えば、炭素数1~8のアルコキシ基)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、および、ヨウ素原子)、シアノ基、および、アシルオキシ基(例えば、アセトキシ基)が挙げられる。
In the above formula (X), T represents an n + m-valent aromatic hydrocarbon group.
The aromatic hydrocarbon group is not particularly limited as long as it is a group obtained by removing n + m hydrogen atoms from the aromatic hydrocarbon ring, but the number of carbon atoms is preferably 6 to 22, and more preferably 6 to 14. It is preferably 6 to 10, and more preferably 6 to 10. The aromatic hydrocarbon group is particularly preferably a benzene ring.
The aromatic hydrocarbon group may have a substituent other than the group represented by —Sp—Hb and the group represented by —C (= O) OA. Examples of the substituent include an alkyl group (for example, an alkyl group having 1 to 8 carbon atoms), an alkoxy group (for example, an alkoxy group having 1 to 8 carbon atoms), and a halogen atom (for example, a fluorine atom, a chlorine atom and a bromine atom). , And an iodine atom), a cyano group, and an acyloxy group (eg, an acetoxy group).
 上記式(X)中、Spは、単結合または2価の連結基を表し、2価の連結基であることが好ましい。
 上記2価の連結基としては、特に制限されないが、直鎖もしくは分岐のアルキレン基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6)、直鎖もしくは分岐のアルケニレン基(好ましくは炭素数2~20、より好ましくは炭素数2~10、さらに好ましくは炭素数2~6)、直鎖もしくは分岐のアルキニレン基(好ましくは炭素数2~20、より好ましくは炭素数2~10、さらに好ましくは炭素数2~6)、または、これらにおいて1つまたは2つ以上の-CH2-が下記に示す「2価の有機基」で置換された基からなる群から選択される連結基であることが好ましい。
 上記2価の連結基としては、なかでも、溶解性をより向上させる点から、1つまたは2つ以上の-CH2-が下記に示す「2価の有機基」で置換された炭素数1~10のアルキレン基が好ましい。
(2価の有機基)
 上記2価の有機基としては、-O-、-S-、-C(=O)-、-C(=O)O-、-OC(=O)-、-C(=O)S-、-SC(=O)-、-NR6C(=O)-、または、-C(=O)NR6-が挙げられる。上記の中でも、親水化がより進行する点から、-O-、-S-、-C(=O)-、-C(=O)O-、-OC(=O)-、-C(=O)S-、またはSC(=O)-がより好ましく、-O-、-C(=O)-、-C(=O)O-、またはOC(=O)-がさらに好ましく、-O-、-C(=O)O-、またはOC(=O)-が特に好ましい。
 また、上記R6は、水素原子、または炭素数が1~6のアルキル基を表す。
 なお、上記2価の連結基中に、上記2価の有機基が含まれる場合、上記2価の有機基同士が隣接しないことが好ましい。
In the above formula (X), Sp represents a single bond or a divalent linking group, and is preferably a divalent linking group.
The divalent linking group is not particularly limited, but is a linear or branched alkylene group (preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, still more preferably 1 to 6 carbon atoms). Chain or branched alkenylene groups (preferably 2 to 20, more preferably 2 to 10, more preferably 2 to 6 carbons), straight or branched alkinylene groups (preferably 2 to 20, carbons 2-20, More preferably 2 to 10 carbon atoms, still more preferably 2 to 6 carbon atoms), or a group in which one or more -CH 2 -is substituted with the "divalent organic group" shown below. It is preferably a linking group selected from the group consisting of.
Among the above-mentioned divalent linking groups, one or two or more -CH 2 -are substituted with the "divalent organic group" shown below from the viewpoint of further improving the solubility, and the number of carbon atoms is 1. ~ 10 alkylene groups are preferred.
(Divalent organic group)
Examples of the divalent organic group include -O-, -S-, -C (= O)-, -C (= O) O-, -OC (= O)-, and -C (= O) S-. , -SC (= O)-, -NR 6 C (= O)-, or -C (= O) NR 6- . Among the above, from the point of further progress of hydrophilicization, -O-, -S-, -C (= O)-, -C (= O) O-, -OC (= O)-, -C (= O) S- or SC (= O)-is more preferred, -O-, -C (= O)-, -C (= O) O-, or OC (= O)-is even more preferred, -O. -, -C (= O) O-, or OC (= O)-is particularly preferable.
Further, R 6 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
When the divalent organic group is contained in the divalent linking group, it is preferable that the divalent organic groups are not adjacent to each other.
 上記式(X)中、Hbは、炭素数が4~30のフッ素置換アルキル基を表す。
 Hbは、炭素数4~20であることが好ましく、炭素数4~10であることがより好ましい。ここで、フッ素置換アルキル基は、水素原子が全てフッ素原子で置換されたパーフルオロアルキル基であってもよいし、水素原子の一部がフッ素原子で置換されているフルオロアルキル基であってもよい。また、フッ素置換アルキル基は、鎖状、分岐状および環状のいずれであってもよいが、鎖状または分岐状が好ましく、鎖状がより好ましい。
 フッ素置換アルキル基としては、なかでも、パーフルオロアルキル基である構造が好ましい。
In the above formula (X), Hb represents a fluorine-substituted alkyl group having 4 to 30 carbon atoms.
Hb preferably has 4 to 20 carbon atoms, and more preferably 4 to 10 carbon atoms. Here, the fluorine-substituted alkyl group may be a perfluoroalkyl group in which all hydrogen atoms are substituted with fluorine atoms, or a fluoroalkyl group in which a part of hydrogen atoms is substituted with fluorine atoms. good. The fluorine-substituted alkyl group may be chain-shaped, branched or cyclic, but is preferably chain-shaped or branched, and more preferably chain-shaped.
As the fluorine-substituted alkyl group, a structure that is a perfluoroalkyl group is preferable.
 上記式(X)において、-Sp-Hbで表される基の好適態様を以下に例示する。
なお、以下の例示において、*はTとの連結位置を示す。
 (Cp2p+1)-(CH2q-O-(CH2r-O-*
 (Cp2p+1)-(CH2q-C(=O)O-(CH2r-C(=O)O-*
 (Cp2p+1)-(CH2q-OC(=O)-(CH2r-C(=O)O-*
 (Cp2p+1)-(CH2q-OC(=O)-(CH2r-OC(=O)-*
 上記の-Sp-Hbで表される基において、pは4~30であることが好ましく、4~20であることがより好ましく、4~10であることがさらに好ましい。qは0~6であることが好ましく、0~4であることがより好ましく、0~3であることがさらに好ましい。rは1~6であることが好ましく、1~4であることがより好ましく、1~3であることがさらに好ましい。
 また、パーフルオロ基以外の部分の炭素数の合計は10以下が好ましい。
In the above formula (X), a preferred embodiment of the group represented by —Sp—Hb is exemplified below.
In the following examples, * indicates the connection position with T.
(C p F 2p + 1 )-(CH 2 ) q -O- (CH 2 ) r -O- *
(C p F 2p + 1 )-(CH 2 ) q -C (= O) O- (CH 2 ) r -C (= O) O- *
(C p F 2p + 1 )-(CH 2 ) q -OC (= O)-(CH 2 ) r -C (= O) O- *
(C p F 2p + 1 )-(CH 2 ) q -OC (= O)-(CH 2 ) r -OC (= O)-*
In the above-mentioned group represented by —Sp—Hb, p is preferably 4 to 30, more preferably 4 to 20, and even more preferably 4 to 10. q is preferably 0 to 6, more preferably 0 to 4, and even more preferably 0 to 3. r is preferably 1 to 6, more preferably 1 to 4, and even more preferably 1 to 3.
Further, the total number of carbon atoms in the portions other than the perfluoro group is preferably 10 or less.
 上記式(X)中、nおよびmは、それぞれ独立して、1~4の整数を表す。
 親水化がより進行する点から、nは、2以上であることが好ましい。mは、1~3であることが好ましく、2であることがより好ましい。
In the above equation (X), n and m each independently represent an integer of 1 to 4.
From the viewpoint of further progress of hydrophilization, n is preferably 2 or more. m is preferably 1 to 3, and more preferably 2.
 上記式(X)中、Aは、上記式(Y)で表される基を表す。
 以下、式(Y)について説明する。
In the above formula (X), A represents a group represented by the above formula (Y).
Hereinafter, the formula (Y) will be described.
 上記式(Y)中、R1~R5は、それぞれ独立して、水素原子または1価の置換基を表す。R1~R5が表す1価の置換基は特に制限されない。 In the above formula (Y), R 1 to R 5 independently represent a hydrogen atom or a monovalent substituent. The monovalent substituent represented by R 1 to R 5 is not particularly limited.
 R1~R4が表す1価の置換基としては、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、および、ヨウ素原子)、水酸基、シアノ基、置換または無置換のアミノ基(-N(RA2で表され、2つのRAはそれぞれ独立して水素原子または1価の有機基(1価の有機基としては、例えば、炭素数1~5のアルキル基)を表す。)、炭素数1~8のアルコキシ基(例えば、メトキシ基およびエトキシ基)、炭素数2~8のアミド基(例えば、-N(RB)C(=O)RC(RBは水素原子または1価の有機基(1価の有機基としては、例えば、炭素数1~5のアルキル基)を表し、RCは1価の有機基(1価の有機基としては、例えば、炭素数1~5のアルキル基)を表す。)、または、-C(=O)N(RD2(2つのRDはそれぞれ独立して水素原子または1価の有機基(例えば、炭素数1~5のアルキル基)を表す。))、炭素数2~8のアルコキシカルボニル基(例えば、-C(=O)OCH3)、炭素数2~8のアシルオキシ基(例えば、-OC(=O)CH3)、および、-SpA-HbAが挙げられる。 Examples of the monovalent substituent represented by R 1 to R 4 include a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom), a hydroxyl group, a cyano group, and a substituted or unsubstituted amino group (for example). Represented by -N ( RA ) 2 , the two RAs independently represent a hydrogen atom or a monovalent organic group (for example, an alkyl group having 1 to 5 carbon atoms as a monovalent organic group). .), An alkoxy group having 1 to 8 carbon atoms (for example, a methoxy group and an ethoxy group), an amide group having 2 to 8 carbon atoms (for example, −N (RB) C (= O) RC ( RB is hydrogen). It represents an atomic or monovalent organic group (as a monovalent organic group, for example, an alkyl group having 1 to 5 carbon atoms), and RC is a monovalent organic group (as a monovalent organic group, for example, carbon). Represents an alkyl group of number 1-5)) or -C (= O) N ( RD ) 2 (two RDs are independent hydrogen atoms or monovalent organic groups (eg, carbon number). (1 to 5 alkyl groups)))), an alkoxycarbonyl group having 2 to 8 carbon atoms (eg, -C (= O) OCH 3 ), an acyloxy group having 2 to 8 carbon atoms (eg, -OC (=). O) CH 3 ) and -Sp A -Hb A can be mentioned.
 上記SpA、および上記HbAは、上記式(X)のSpおよびHbと各々同義であり、その好ましい態様も同じである。なお、式(Y)において、R1~R4のうち複数個が-SpA-HbAを表す場合、複数個存在するSpA同士および複数個存在するHbA同士は、各々同一であっても異なっていてもよい。 The above Sp A and the above Hb A are synonymous with Sp and Hb of the above formula (X), respectively, and the preferred embodiments thereof are also the same. In the formula (Y), when a plurality of R 1 to R 4 represent −Sp A − Hb A , the plurality of Sp As and the plurality of Hb A are the same. May also be different.
 なかでも、上記R1~R4としては、それぞれ独立して、水素原子、ハロゲン原子、水酸基、シアノ基、アルコキシ基、-NH2、-NH(CH3)、-N(CH32、-C(=O)OCH3、-OC(=O)CH3、-NHC(=O)CH3、-N(CH3)C(=O)CH3、または、-SpA-HbAが好ましい。
 特に、露光による式(X)で表される化合物の分解速度をより速めて親水化がより進行する、および/または、配向性をより高める点から、上記R1~R4は、それぞれ独立して、-OCH3またはSpA-HbAがより好ましい。-OCH3である場合には、その構造中にエーテル酸素を含む(特に、式(Y)中のベンゼン環に結合する位置がエーテル酸素である)ため、露光による式(X)で表される化合物の分解速度がより速まり、親水化がより進行する傾向がある。一方、-SpA-HbAである場合には、HbAの存在によって配向性がより高まる傾向がある。なお、SpAがその構造中にエーテル酸素を含む場合(特に、SpA中のHbAと結合する側とは反対側の末端(言い換えると式(Y)のベンゼン環と連結する側の末端)にエーテル酸素が含まれる場合)は、上記-OCH3と同様に、分解速度が速まる効果が得られる。
Among them, the above R 1 to R 4 are independently hydrogen atom, halogen atom, hydroxyl group, cyano group, alkoxy group, -NH 2 , -NH (CH 3 ), -N (CH 3 ) 2 , -C (= O) OCH 3 , -OC (= O) CH 3 , -NHC (= O) CH 3 , -N (CH 3 ) C (= O) CH 3 , or -Sp A -Hb A preferable.
In particular, R 1 to R 4 are independent from each other in that the decomposition rate of the compound represented by the formula (X) by exposure is accelerated, the hydrophilicity is further promoted, and / or the orientation is further enhanced. More preferably, -OCH 3 or Sp A -Hb A. -In the case of OCH 3 , since ether oxygen is contained in the structure (in particular, the position bonded to the benzene ring in the formula (Y) is the ether oxygen), it is represented by the formula (X) by exposure. The decomposition rate of the compound is faster, and the hydrophilization tends to proceed more. On the other hand, in the case of -Sp A -Hb A , the orientation tends to be further enhanced by the presence of Hb A. When Sp A contains ether oxygen in its structure (in particular, the end of Sp A on the side opposite to the side that binds to Hb A (in other words, the end on the side that connects to the benzene ring of the formula (Y))). When ether oxygen is contained in), the effect of accelerating the decomposition rate can be obtained as in the case of -OCH 3 .
 さらに、露光による式(X)で表される化合物の分解速度をより一層速めて親水化がより進行する点からは、上記R1~R4のうち少なくとも2つが、それぞれ独立して、-OCH3またはSpB-HbBであることが好ましく、R2およびR3が、それぞれ独立して、-OCH3またはSpB-HbBであることがより好ましい。
 ここで、SpBは、-CH2-が-O-で置換された炭素数1~10のアルキレン基を表す。なかでも、上述のとおり、SpB中のHbBと結合する側とは反対側の末端(言い換えると式(Y)のベンゼン環と連結する側の末端)にエーテル酸素が含まれる場合には、分解速度が速まる効果がより顕著に得られ、親水化がより進行する。なお、上記アルキレン基中の-CH2-が複数の-O-で置換される場合、-O-同士は隣接しないことが好ましい。上記アルキレン基は、炭素数1~7であることがより好ましく、炭素数1~6であることがさらに好ましく、炭素数1~4であることが特に好ましい。また、アルキレン基は、直鎖および分岐のいずれであってもよいが、直鎖であることが好ましい。
Further, from the viewpoint that the decomposition rate of the compound represented by the formula (X) by exposure is further accelerated and the hydrophilization proceeds further, at least two of the above R 1 to R 4 are independently of -OCH. It is preferably 3 or Sp B −Hb B , and more preferably R 2 and R 3 are independently −OCH 3 or Sp B −Hb B , respectively.
Here, Sp B represents an alkylene group having 1 to 10 carbon atoms in which —CH 2 − is substituted with —O−. In particular, as described above, when ether oxygen is contained in the terminal on the side opposite to the side bonded to Hb B in Sp B (in other words, the terminal on the side connected to the benzene ring of the formula (Y)). The effect of accelerating the decomposition rate is obtained more remarkably, and hydrophilization progresses more. When —CH 2 − in the alkylene group is substituted with a plurality of —O—s, it is preferable that —O—s are not adjacent to each other. The alkylene group is more preferably 1 to 7 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 4 carbon atoms. The alkylene group may be linear or branched, but is preferably linear.
 上記HbBは、炭素数が4~30のフッ素置換アルキル基を表す。上記HbBの好適態様については、上述した式(X)のHbと同様である。
 なお、式(Y)において、R1~R4のうち複数個が-SpB-HbBを表す場合、複数個存在するSpB同士および複数個存在するHbB同士は、各々同一であっても異なっていてもよい。
The above Hb B represents a fluorine-substituted alkyl group having 4 to 30 carbon atoms. The preferred embodiment of the above Hb B is the same as that of the above-mentioned Hb of the formula (X).
In the formula (Y), when a plurality of R 1 to R 4 represent −Sp B −Hb B , the plurality of Sp Bs and the plurality of Hb Bs are the same. May be different.
 なかでも、露光による式(X)で表される化合物の分解速度をより速めて親水化がより進行し、且つ、配向性をより高める点から、上記R1~R4のうち少なくとも2つが-SpB-HbBであることが好ましく、R2およびR3のいずれもが-SpB-HbBであることがより好ましい。特に、上記-SpB-HbBとしては、下記式(Z)で表される構造が好ましい。
  式(Z)  (Cp2p+1)-(CH2q-O-(CH2r-O-*
 式(Z)中、pは4~30であることが好ましく、4~20であることがより好ましく、4~10であることがさらに好ましい。qは0~5であることが好ましく、0~4であることがより好ましく、0~3であることがさらに好ましい。rは1~5であることが好ましく、1~4であることがより好ましく、1~3であることがさらに好ましい。
Among them, at least two of R 1 to R 4 are-from the viewpoint that the decomposition rate of the compound represented by the formula (X) by exposure is accelerated, the hydrophilicity is further promoted, and the orientation is further enhanced. Sp B -Hb B is preferable, and it is more preferable that both R 2 and R 3 are -Sp B -Hb B. In particular, as the above-Sp B -Hb B , a structure represented by the following formula (Z) is preferable.
Equation (Z) (C p F 2p + 1 )-(CH 2 ) q -O- (CH 2 ) r -O- *
In the formula (Z), p is preferably 4 to 30, more preferably 4 to 20, and even more preferably 4 to 10. q is preferably 0 to 5, more preferably 0 to 4, and even more preferably 0 to 3. r is preferably 1 to 5, more preferably 1 to 4, and even more preferably 1 to 3.
 上記式(Y)において、R5は、水素原子、メチル基、エチル基、または芳香族基であることが好ましい。
 芳香族基としては、特に制限されないが、炭素数6~14であることが好ましく、6~10であることがより好ましく、フェニル基であることがさらに好ましい。
 上記R5は、なかでも、露光による式(X)で表される化合物の分解速度をより速めて親水化がより進行する点から、メチル基、エチル基、または芳香族基が好ましく、エチル基または芳香族基がより好ましく、芳香族基がさらに好ましい。
In the above formula (Y), R 5 is preferably a hydrogen atom, a methyl group, an ethyl group, or an aromatic group.
The aromatic group is not particularly limited, but is preferably 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms, and even more preferably a phenyl group.
Among them, R 5 is preferably a methyl group, an ethyl group, or an aromatic group, and an ethyl group is preferable, because the decomposition rate of the compound represented by the formula (X) by exposure is accelerated and the hydrophilicity is further promoted. Alternatively, an aromatic group is more preferable, and an aromatic group is even more preferable.
 また、上記式(Y)において、*は、上記式(X)中のC(=O)O-との結合部位を表す。 Further, in the above formula (Y), * represents a binding site with C (= O) O− in the above formula (X).
 上記式(X)で表される化合物は、分子構造が対称性を有するものであってもよいし、対称性を有しないものであってもよい。なお、ここでいう対称性とは、点対称、線対称、および、回転対称のいずれかに該当するものを意味し、非対称とは点対称、線対称、および、回転対称のいずれにも該当しないものを意味する。 The compound represented by the above formula (X) may have a molecular structure having symmetry or may not have symmetry. The symmetry here means any of point symmetry, line symmetry, and rotational symmetry, and asymmetry does not correspond to any of point symmetry, line symmetry, and rotational symmetry. Means things.
 また、上記式(X)で表される化合物において、上記Sp、上記Hb、または上記Aが各々複数個存在する場合、複数個存在するSp同士、複数個存在するHb同士、または複数個存在するA同士は、各々同一であっても異なっていてもよい。 Further, in the compound represented by the above formula (X), when a plurality of the above Sp, the above Hb, or the above A are present, there are a plurality of Sps, a plurality of Hbs, or a plurality of Hbs. A may be the same or different from each other.
 組成物層中の特定感光性化合物の含有量は、形成しようとする光学異方性層の特性(例えば、レタデーションや波長分散)に応じて適宜設定され得る。
 なかでも、所定の構造の光学異方性層がより形成しやすい点で、特定感光性化合物の含有量は、液晶化合物の全質量に対して、0.01~10質量%が好ましく、0.05~5質量%がより好ましい。
The content of the specific photosensitive compound in the composition layer can be appropriately set according to the characteristics (for example, retardation and wavelength dispersion) of the optically anisotropic layer to be formed.
In particular, the content of the specific photosensitive compound is preferably 0.01 to 10% by mass with respect to the total mass of the liquid crystal compound in that an optically anisotropic layer having a predetermined structure is more easily formed. More preferably, it is 05 to 5% by mass.
 工程1Aでは、上述した成分を含む組成物層を形成するが、その手順は特に制限されない。例えば、上述した特定感光性化合物および重合性基を有する液晶化合物を含む組成物を基板上に塗布して、必要に応じて乾燥処理を施す方法(以下、単に「塗布方法」ともいう。)、および、別途組成物層を形成して基板上に転写する方法が挙げられる。なかでも、生産性の点からは、塗布方法が好ましい。
 以下、塗布方法について詳述する。
In step 1A, a composition layer containing the above-mentioned components is formed, but the procedure is not particularly limited. For example, a method of applying a composition containing the above-mentioned specific photosensitive compound and a liquid crystal compound having a polymerizable group onto a substrate and subjecting it to a drying treatment as necessary (hereinafter, also simply referred to as “coating method”). Further, a method of separately forming a composition layer and transferring it onto a substrate can be mentioned. Above all, the coating method is preferable from the viewpoint of productivity.
Hereinafter, the coating method will be described in detail.
 塗布方法で使用される組成物には、上述した特定感光性化合物、重合性基を有する液晶化合物、および、その他必要に応じて用いられる他の成分(例えば、重合開始剤、重合性モノマー、界面活性剤、および、ポリマーなど)が含まれる。
 組成物中の各成分の含有量は、上述した組成物層中の各成分の含有量となるように調整されることが好ましい。
The composition used in the coating method includes the above-mentioned specific photosensitive compound, a liquid crystal compound having a polymerizable group, and other components used as necessary (for example, a polymerization initiator, a polymerizable monomer, and a surfactant). Activators, polymers, etc.) are included.
The content of each component in the composition is preferably adjusted to be the content of each component in the composition layer described above.
 塗布方法は特に制限されず、例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、および、ダイコーティング法が挙げられる。
 なお、必要に応じて、組成物の塗布後に、基板上に塗布された塗膜を乾燥する処理を実施してもよい。乾燥処理を実施することにより、塗膜から溶媒を除去できる。
The coating method is not particularly limited, and examples thereof include a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method.
If necessary, after the composition is applied, a treatment for drying the coating film applied on the substrate may be carried out. By carrying out the drying treatment, the solvent can be removed from the coating film.
 塗膜の膜厚は特に制限されないが、0.1~20μmが好ましく、0.2~15μmがより好ましく、0.5~10μmがさらに好ましい。 The film thickness of the coating film is not particularly limited, but is preferably 0.1 to 20 μm, more preferably 0.2 to 15 μm, and even more preferably 0.5 to 10 μm.
<工程2C>
 工程2Cは、組成物層に加熱処理を施して、組成物層中の液晶化合物を配向させる工程である。本工程を実施することにより、組成物層中の液晶化合物が所定の配向状態となる。なお、後述する図11に示すように、例えば、工程2Cを実施することにより、組成物中において液晶化合物はホモジニアス配向する。
 加熱処理の条件としては、使用される液晶化合物に応じて最適な条件が選択される。
 なかでも、加熱温度としては、25~250℃の場合が多く、40~150℃の場合がより多く、50~130℃の場合がさらに多い。
 加熱時間としては、0.1~60分間の場合が多く、0.2~5分間の場合がより多い。
<Process 2C>
Step 2C is a step of heat-treating the composition layer to orient the liquid crystal compound in the composition layer. By carrying out this step, the liquid crystal compound in the composition layer is in a predetermined orientation state. As shown in FIG. 11 described later, for example, by carrying out step 2C, the liquid crystal compound is homogenically oriented in the composition.
As the heat treatment conditions, the optimum conditions are selected according to the liquid crystal compound used.
Among them, the heating temperature is often 25 to 250 ° C, more often 40 to 150 ° C, and even more often 50 to 130 ° C.
The heating time is often 0.1 to 60 minutes, and more often 0.2 to 5 minutes.
<工程3C>
 工程3Cは、工程2Cの後、酸素濃度1体積%以上の条件下にて、組成物層に対して、光照射を50秒間以下、かつ、300mJ/cm2以下で行う工程である。以下では、図面を用いて本工程の機構を説明する。なお、以下では、組成物層に、光照射により親水化する化合物が含まれる場合を一例として説明する。図11中、組成物層において、液晶化合物LCはホモジニアス配向している。
 図11に示すように、工程3Cでは酸素濃度1体積%以上の条件下にて、基板10の組成物層320側とは反対側の方向(図11中の白抜き矢印の方向)から光照射を行う。なお、図11では光照射は基板10側から実施されているが、組成物層320側から実施されてもよい。
 その際、組成物層320の基板10側の下側領域320Aと、基板10側とは反対側の上側領域320Bとを比較すると、上側領域320Bの表面のほうが空気側にあるため、上側領域320B中の酸素濃度が高く、下側領域320A中の酸素濃度は低い。そのため、組成物層320に対して光照射がなされると、下側領域320Aにおいては液晶化合物の重合が進行しやすく、液晶化合物の配向状態が固定される。なお、下側領域320Aにおいても特定感光性化合物が存在しており、特定感光性化合物も感光し、親水化が進行する。しかしながら、下側領域320Aでは液晶化合物の配向状態が固定されているため、後述する、光照射された組成物層に対して加熱処理を施す工程4Cを実施しても、液晶化合物の配向状態の変化は生じない。
 また、上側領域320Bにおいては酸素濃度が高いため、光照射がなされても、液晶化合物の重合が酸素により阻害され、重合が進行しにくい。そして、上側領域320Bにおいても特定感光性化合物が存在しているため、特定感光性化合物が感光し、親水化が進行する。そのため、後述する工程4Cを実施すると、変化した極性の影響を受けて、液晶化合物の配向状態が変化する。
 つまり、工程3Cを実施することにより、組成物層の基板側の領域(下側領域)においては液晶化合物の配向状態の固定化が進行しやすい。また、組成物層の基板側と反対側の領域(上側領域)においては、液晶化合物の配向状態の固定化は進行しづらく、かつ、感光した特定感光性化合物に応じて極性が変化した状態となる。
<Process 3C>
Step 3C is a step of irradiating the composition layer with light for 50 seconds or less and 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more after the step 2C. Hereinafter, the mechanism of this process will be described with reference to the drawings. In the following, a case where the composition layer contains a compound that becomes hydrophilic by light irradiation will be described as an example. In FIG. 11, in the composition layer, the liquid crystal compound LC is homogenically oriented.
As shown in FIG. 11, in step 3C, under the condition that the oxygen concentration is 1% by volume or more, light is irradiated from the direction opposite to the composition layer 320 side of the substrate 10 (the direction of the white arrow in FIG. 11). I do. Although the light irradiation is carried out from the substrate 10 side in FIG. 11, it may be carried out from the composition layer 320 side.
At that time, when the lower region 320A on the substrate 10 side of the composition layer 320 and the upper region 320B on the opposite side to the substrate 10 side are compared, the surface of the upper region 320B is on the air side, so that the upper region 320B The oxygen concentration in the lower region 320A is high, and the oxygen concentration in the lower region 320A is low. Therefore, when the composition layer 320 is irradiated with light, the polymerization of the liquid crystal compound easily proceeds in the lower region 320A, and the orientation state of the liquid crystal compound is fixed. The specific photosensitive compound is also present in the lower region 320A, and the specific photosensitive compound is also exposed to light, and hydrophilicization progresses. However, since the alignment state of the liquid crystal compound is fixed in the lower region 320A, even if the step 4C in which the light-irradiated composition layer is heat-treated, which will be described later, the orientation state of the liquid crystal compound remains. No change occurs.
Further, since the oxygen concentration is high in the upper region 320B, even if light irradiation is performed, the polymerization of the liquid crystal compound is inhibited by the oxygen, and the polymerization is difficult to proceed. Since the specific photosensitive compound is also present in the upper region 320B, the specific photosensitive compound is exposed to light and hydrophilicity progresses. Therefore, when step 4C described later is carried out, the orientation state of the liquid crystal compound changes due to the influence of the changed polarity.
That is, by carrying out step 3C, the fixation of the orientation state of the liquid crystal compound is likely to proceed in the substrate-side region (lower region) of the composition layer. Further, in the region opposite to the substrate side (upper region) of the composition layer, it is difficult to fix the orientation state of the liquid crystal compound, and the polarity is changed according to the exposed specific photosensitive compound. Become.
 工程3Cにおける光照射の各種条件(酸素濃度、照射時間、照射量など)は、上述した工程3Aにおける光照射の各種条件と同じである。 The various conditions of light irradiation in step 3C (oxygen concentration, irradiation time, irradiation amount, etc.) are the same as the various conditions of light irradiation in step 3A described above.
<工程4C>
 工程4Cは、工程3Cの後、組成物層に、光照射時より高い温度で加熱処理を施す工程である。本工程を実施することにより、光照射が施された組成物層中の特定感光性化合物により極性が変化した領域において、液晶化合物の配向状態が変化する。より具体的には、本工程は、工程3Cの後の組成物層に対して、照射時より高い温度で加熱処理を施して、工程3Cで固定されていない組成物層中の液晶化合物を配向させる工程である。
 以下では、図面を用いて本工程の機構を説明する。
<Process 4C>
Step 4C is a step of subjecting the composition layer to a heat treatment at a temperature higher than that at the time of light irradiation after the step 3C. By carrying out this step, the orientation state of the liquid crystal compound changes in the region where the polarity is changed by the specific photosensitive compound in the composition layer irradiated with light. More specifically, in this step, the composition layer after step 3C is heat-treated at a temperature higher than that at the time of irradiation to orient the liquid crystal compound in the composition layer not fixed in step 3C. It is a process to make it.
Hereinafter, the mechanism of this process will be described with reference to the drawings.
 上述したように、図11に示した組成物層320に対して工程3Cを実施すると、下側領域320Aにおいては液晶化合物の配向状態が固定されるのに対して、上側領域320Bでは液晶化合物の重合は進行しづらく、液晶化合物の配向状態が固定されていない。また、上側領域320Bにおいては特定感光性化合物が感光して、親水化している。このような極性の変化が生じると、光照射前の状態と比較すると、上側領域320Bにおいて液晶化合物の配向方向が影響をうける。この点をより詳細に説明する。なお、上述したように、以下では、組成物層に、光照射により親水化する特定感光性化合物が含まれる場合を一例として説明する。
 組成物層に光照射により親水化する特定感光性化合物が含まれる場合には、図12に示すように、工程4Cを実施すると、上側領域320Bにおいて液晶化合物が垂直配向(ホメオトロピック配向)する。特に、特定感光性化合物が組成物層の表面付近に存在する場合には、液晶化合物が垂直配向しやすくなる。
 一方で、上述したように、組成物層320の下側領域320Aにおいては工程3Cの際に液晶化合物の重合が進行して液晶化合物の配向状態が固定されているため、液晶化合物の再配向は進行しない。
 上記のように、工程4Cを実施することにより、配向方向が層表面に対して傾斜または垂直に配向している液晶化合物を含む領域が形成される。
As described above, when step 3C is carried out on the composition layer 320 shown in FIG. 11, the orientation state of the liquid crystal compound is fixed in the lower region 320A, whereas the orientation state of the liquid crystal compound is fixed in the upper region 320B. The polymerization is difficult to proceed, and the orientation of the liquid crystal compound is not fixed. Further, in the upper region 320B, the specific photosensitive compound is exposed to light and becomes hydrophilic. When such a change in polarity occurs, the orientation direction of the liquid crystal compound is affected in the upper region 320B as compared with the state before light irradiation. This point will be described in more detail. As described above, the case where the composition layer contains a specific photosensitive compound that becomes hydrophilic by light irradiation will be described below as an example.
When the composition layer contains a specific photosensitive compound that is hydrophilized by light irradiation, as shown in FIG. 12, when step 4C is carried out, the liquid crystal compound is vertically oriented (homeotropic orientation) in the upper region 320B. In particular, when the specific photosensitive compound is present near the surface of the composition layer, the liquid crystal compound tends to be vertically oriented.
On the other hand, as described above, in the lower region 320A of the composition layer 320, the polymerization of the liquid crystal compound proceeds during step 3C and the orientation state of the liquid crystal compound is fixed, so that the reorientation of the liquid crystal compound occurs. Does not progress.
As described above, by carrying out step 4C, a region containing a liquid crystal compound whose orientation direction is inclined or perpendicular to the layer surface is formed.
 なお、上記図11においては、液晶化合物が垂直配向している態様について説明したが、この態様には制限されない。例えば、液晶化合物が傾斜配向している態様であってもよい。 Although the embodiment in which the liquid crystal compound is vertically oriented has been described in FIG. 11, the present invention is not limited to this embodiment. For example, the liquid crystal compound may be inclined or oriented.
 加熱処理は、光照射時より高い温度で実施する。
 加熱処理の温度と、光照射時の温度との差は、5℃以上が好ましく、10~110℃がより好ましく、20~110℃がより好ましい。
The heat treatment is carried out at a temperature higher than that at the time of light irradiation.
The difference between the temperature of the heat treatment and the temperature at the time of light irradiation is preferably 5 ° C. or higher, more preferably 10 to 110 ° C., and even more preferably 20 to 110 ° C.
 加熱処理の温度は、光照射時の温度より高く、組成物層中の固定されていない液晶化合物を配向させる温度であることが好ましく、より具体的には、40~250℃の場合が多く、50~150℃の場合がより多く、50℃超150℃以下の場合がさらに多く、60~130℃の場合が特に多い。
 加熱時間としては、0.01~60分間の場合が多く、0.03~5分間の場合がより多い。
The temperature of the heat treatment is higher than the temperature at the time of light irradiation, and is preferably a temperature at which the non-fixed liquid crystal compound in the composition layer is oriented, and more specifically, it is often 40 to 250 ° C. More often, the temperature is 50 to 150 ° C., more often, the temperature is more than 50 ° C. and 150 ° C. or lower, and 60 to 130 ° C. is particularly common.
The heating time is often 0.01 to 60 minutes, and more often 0.03 to 5 minutes.
<工程5C>
 工程5Cは、工程4Cの後、組成物層に対して硬化処理を施して、液晶化合物の配向状態が異なる領域を厚み方向に沿って複数有する光学異方性層を形成する工程である。本工程を実施することにより、組成物層中の液晶化合物の配向状態が固定され、結果として所定の光学異方性層が形成される。なお、本工程を実施することにより、厚み方向に沿って、層表面に対する液晶化合物の配向方向の傾斜角が異なる領域を複数有する光学異方性層が形成される。特に、本工程を実施することにより、厚み方向に沿って、垂直配向(ホメオトロピック配向)または傾斜配向した液晶化合物の配向状態を固定してなる領域と、水平配向(ホモジニアス配向)した液晶化合物の配向状態を固定してなる領域とを有する光学異方性層を形成できる。
<Process 5C>
Step 5C is a step of subjecting the composition layer to a curing treatment after step 4C to form an optically anisotropic layer having a plurality of regions having different orientation states of the liquid crystal compounds along the thickness direction. By carrying out this step, the orientation state of the liquid crystal compound in the composition layer is fixed, and as a result, a predetermined optically anisotropic layer is formed. By carrying out this step, an optically anisotropic layer having a plurality of regions having different inclination angles in the orientation direction of the liquid crystal compound with respect to the layer surface is formed along the thickness direction. In particular, by carrying out this step, a region formed by fixing the orientation state of the liquid crystal compound that is vertically oriented (homeotropic orientation) or tilted along the thickness direction, and a horizontally oriented (homogeneous orientation) liquid crystal compound. An optically anisotropic layer having a region having a fixed orientation state can be formed.
 工程5Cでの硬化処理の方法としては、工程5Aでの硬化処理の方法が挙げられる。
 光学異方性層の厚みは特に制限されないが、0.05~10μmが好ましく、0.1~8.0μmがより好ましく、0.2~6.0μmがさらに好ましい。
Examples of the curing treatment method in step 5C include the curing treatment method in step 5A.
The thickness of the optically anisotropic layer is not particularly limited, but is preferably 0.05 to 10 μm, more preferably 0.1 to 8.0 μm, and even more preferably 0.2 to 6.0 μm.
 第3実施態様における光学異方性層中の光学特性は特に制限されず、用途に応じて最適な値が選択される。以下、一例として、上述した手順によって作製される、ホメオトロピック配向した液晶化合物の配向状態を固定してなる第1領域と、ホモジニアス配向した液晶化合物の配向状態を固定してなる第2領域とを、厚み方向に沿って有する光学異方性層の場合について詳述する。 The optical characteristics in the optically anisotropic layer in the third embodiment are not particularly limited, and the optimum value is selected according to the application. Hereinafter, as an example, a first region in which the orientation state of the homeotropically oriented liquid crystal compound is fixed and a second region in which the orientation state of the anisotropically oriented liquid crystal compound is fixed, which are produced by the above procedure, are defined. , The case of the optically anisotropic layer having along the thickness direction will be described in detail.
 上記光学異方性層の第1領域の厚みをd1、波長550nmで測定した第1領域の面内の屈折率異方性をΔn1とした場合、光学異方性層を円偏光板に好適に適用できる点および液晶表示装置の光学補償板として適用した際に斜め方向の光漏れを低減できる点で、第1領域は以下の式(1C-1)を満たすことが好ましい。
 式(1C-1) 0nm≦Δn1d1≦30nm
 なかでも、式(1C-2)を満たすことがより好ましい。
 式(1C-2) 0nm≦Δn1d1≦20nm
 光学異方性層の第1領域の波長550nmにおける厚み方向のレタデーションは-150~-20nmが好ましく、-120~-20nmがより好ましい。
When the thickness of the first region of the optically anisotropic layer is d1 and the in-plane refractive index anisotropy of the first region measured at a wavelength of 550 nm is Δn1, the optically anisotropic layer is suitable for a circular polarizing plate. The first region preferably satisfies the following formula (1C-1) in that it can be applied and that light leakage in an oblique direction can be reduced when it is applied as an optical compensation plate of a liquid crystal display device.
Equation (1C-1) 0 nm ≤ Δn 1d1 ≤ 30 nm
Above all, it is more preferable to satisfy the formula (1C-2).
Equation (1C-2) 0 nm ≤ Δn 1d1 ≤ 20 nm
The retardation in the thickness direction at a wavelength of 550 nm in the first region of the optically anisotropic layer is preferably −150 to −20 nm, more preferably −120 to −20 nm.
 また、上記光学異方性層の第2領域の厚みをd2、波長550nmで測定した第2領域の面内の屈折率異方性をΔn2とした場合、光学異方性層を円偏光板に好適に適用できる点や液晶表示装置の光学補償板に好適に適用できる点で、第2領域は以下の式(2C-1)を満たすことが好ましい。つまり、第2領域の波長550nmにおける面内レタデーションは、100~180nmであることが好ましい。
 式(2C-1) 100nm≦Δn2d2≦180nm
 なかでも、式(2C-2)を満たすことがより好ましい。
 式(2C-2) 110nm≦Δn2d2≦170nm
 なお、屈折率異方性Δn2とは、第1領域の屈折率異方性を意味する。
Further, when the thickness of the second region of the optically anisotropic layer is d2 and the in-plane refractive index anisotropy of the second region measured at a wavelength of 550 nm is Δn2, the optically anisotropic layer is a circular polarizing plate. It is preferable that the second region satisfies the following formula (2C-1) in that it can be suitably applied and that it can be suitably applied to the optical compensation plate of the liquid crystal display device. That is, the in-plane retardation at a wavelength of 550 nm in the second region is preferably 100 to 180 nm.
Equation (2C-1) 100 nm ≤ Δn 2d2 ≤ 180 nm
Above all, it is more preferable to satisfy the formula (2C-2).
Equation (2C-2) 110 nm ≤ Δn 2d2 ≤ 170 nm
The refractive index anisotropy Δn2 means the refractive index anisotropy in the first region.
 第3実施態様における光学異方性層は、逆波長分散性を示すことが好ましい。
 つまり、光学異方性層の波長450nmで測定した面内レタデーションであるRe(450)と、光学異方性層の波長550nmで測定した面内レタデーションであるRe(550)と、光学異方性層の波長650nmで測定した面内レタデーションのであるRe(650)とは、Re(450)≦Re(550)≦Re(650)の関係にあることが好ましい。
The optically anisotropic layer in the third embodiment preferably exhibits reverse wavelength dispersibility.
That is, Re (450), which is an in-plane retardation measured at a wavelength of 450 nm of the optically anisotropic layer, and Re (550), which is an in-plane retardation measured at a wavelength of 550 nm of the optically anisotropic layer, are optically anisotropic. It is preferable that Re (650), which is the in-plane retardation measured at a wavelength of 650 nm of the layer, has a relationship of Re (450) ≤ Re (550) ≤ Re (650).
 第3実施態様における光学異方性層の光学特性は特に制限されないが、λ/4板として機能することや液晶表示装置の光学補償板として機能することが好ましい。
 λ/4板は、ある特定の波長の直線偏光を円偏光に(または、円偏光を直線偏光に)変換する機能を有する板であり、特定の波長λnmにおける面内レタデーションRe(λ)がRe(λ)=λ/4を満たす板(光学異方性層)のことをいう。
 この式は、可視光域のいずれかの波長(例えば、550nm)において達成されていればよいが、波長550nmにおける面内レタデーションRe(550)が、100nm≦Re(550)≦180nmの関係を満たすことが好ましい。
The optical characteristics of the optically anisotropic layer in the third embodiment are not particularly limited, but it is preferable that the optical anisotropic layer functions as a λ / 4 plate or as an optical compensation plate of a liquid crystal display device.
The λ / 4 plate is a plate having a function of converting linearly polarized light of a specific wavelength into circularly polarized light (or converting circularly polarized light into linearly polarized light), and the in-plane retardation Re (λ) at a specific wavelength of λnm is Re. A plate (optically anisotropic layer) that satisfies (λ) = λ / 4.
This equation may be achieved at any wavelength in the visible light region (eg, 550 nm), but the in-plane retardation Re (550) at a wavelength of 550 nm satisfies the relationship of 100 nm ≤ Re (550) ≤ 180 nm. Is preferable.
<<第4実施態様>>
 本発明の光学異方性層の製造方法の第4実施態様は、以下の工程1D~5Dを有する。後述するように、第4実施態様においては、液晶化合物が配向している配向状態(例えば、水平配向状態)を固定してなる領域と、液晶化合物が配向していない状態(液晶化合物の等方相)を固定してなる領域とを、厚み方向に沿って、有する光学異方性層が形成される。
工程1D:重合性基を有する液晶化合物を含む組成物層を形成する工程
工程2D:組成物層に加熱処理を施して、組成物層中の液晶化合物を配向させる工程
工程3D:工程2Dの後、酸素濃度1体積%以上の条件下にて、組成物層に対して、光照射を50秒間以下、かつ、300mJ/cm2以下で行う工程
工程4D:工程3Dの後、組成物層に、光照射時より高く、かつ、液晶化合物が等方相となる温度以上で加熱処理を施し工程
工程5D:工程4Dの後、組成物層に対して硬化処理を施して、液晶化合物の配向状態が異なる領域を厚み方向に沿って複数有する光学異方性層を形成する工程
 以下、上記各工程の手順について詳述する。
<< Fourth Embodiment >>
The fourth embodiment of the method for producing an optically anisotropic layer of the present invention comprises the following steps 1D to 5D. As will be described later, in the fourth embodiment, the region in which the oriented state in which the liquid crystal compound is oriented (for example, the horizontally oriented state) is fixed and the state in which the liquid crystal compound is not oriented (isotropic of the liquid crystal compound) An optically anisotropic layer having a region formed by fixing the phase) along the thickness direction is formed.
Step 1D: Forming a composition layer containing a liquid crystal compound having a polymerizable group Step 2D: A process of heat-treating the composition layer to orient the liquid crystal compound in the composition layer Step 3D: After step 2D Step 4D: After step 3D, the composition layer is irradiated with light for 50 seconds or less and 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more. The heat treatment is performed at a temperature higher than that at the time of light irradiation and at a temperature at which the liquid crystal compound becomes an isotropic phase or higher. Step of forming an optically anisotropic layer having a plurality of different regions along the thickness direction The procedure of each of the above steps will be described in detail below.
<工程1D>
 工程1Dは、重合性基を有する液晶化合物を含む組成物層を形成する工程である。本工程を実施することにより、後述する光照射処理が施される組成物層が形成される。
 組成物層に含まれる液晶化合物は、工程1Aで説明した通りである。
 また、組成物層には、上述した工程1Aで説明したように、液晶化合物以外のその他の成分を含んでいてもよい。
<Process 1D>
Step 1D is a step of forming a composition layer containing a liquid crystal compound having a polymerizable group. By carrying out this step, a composition layer to be subjected to a light irradiation treatment described later is formed.
The liquid crystal compound contained in the composition layer is as described in step 1A.
Further, as described in the above-mentioned step 1A, the composition layer may contain other components other than the liquid crystal compound.
 工程1Aでは、上述した成分を含む組成物層を形成するが、その手順は特に制限されない。例えば、上述した重合性基を有する液晶化合物を含む組成物を基板上に塗布して、必要に応じて乾燥処理を施す方法(以下、単に「塗布方法」ともいう。)、および、別途組成物層を形成して基板上に転写する方法が挙げられる。なかでも、生産性の点からは、塗布方法が好ましい。
 以下、塗布方法について詳述する。
In step 1A, a composition layer containing the above-mentioned components is formed, but the procedure is not particularly limited. For example, a method of applying the above-mentioned composition containing a liquid crystal compound having a polymerizable group onto a substrate and subjecting it to a drying treatment as necessary (hereinafter, also simply referred to as “coating method”), and a separate composition. Examples thereof include a method of forming a layer and transferring it onto a substrate. Above all, the coating method is preferable from the viewpoint of productivity.
Hereinafter, the coating method will be described in detail.
 塗布方法で使用される組成物には、上述した、重合性基を有する液晶化合物、および、その他必要に応じて用いられる他の成分(例えば、重合開始剤、重合性モノマー、界面活性剤、および、ポリマーなど)が含まれる。
 組成物中の各成分の含有量は、上述した組成物層中の各成分の含有量となるように調整されることが好ましい。
The composition used in the coating method includes the above-mentioned liquid crystal compounds having a polymerizable group, and other components used as necessary (for example, a polymerization initiator, a polymerizable monomer, a surfactant, and the like. , Polymers, etc.) are included.
The content of each component in the composition is preferably adjusted to be the content of each component in the composition layer described above.
 塗布方法は特に制限されず、例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、および、ダイコーティング法が挙げられる。
 なお、必要に応じて、組成物の塗布後に、基板上に塗布された塗膜を乾燥する処理を実施してもよい。乾燥処理を実施することにより、塗膜から溶媒を除去できる。
The coating method is not particularly limited, and examples thereof include a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method.
If necessary, after the composition is applied, a treatment for drying the coating film applied on the substrate may be carried out. By carrying out the drying treatment, the solvent can be removed from the coating film.
 塗膜の膜厚は特に制限されないが、0.1~20μmが好ましく、0.2~15μmがより好ましく、0.5~10μmがさらに好ましい。 The film thickness of the coating film is not particularly limited, but is preferably 0.1 to 20 μm, more preferably 0.2 to 15 μm, and even more preferably 0.5 to 10 μm.
<工程2D>
 工程2Dは、組成物層に加熱処理を施して、組成物層中の液晶化合物を配向させる工程である。本工程を実施することにより、組成物層中の液晶化合物が所定の配向状態となる。なお、後述する図13に示すように、例えば、工程2Dを実施することにより、組成物中において液晶化合物はホモジニアス配向する。
 加熱処理の条件としては、使用される液晶化合物に応じて最適な条件が選択される。
 なかでも、加熱温度としては、25~250℃の場合が多く、40~150℃の場合がより多く、50~130℃の場合がさらに多い。
 加熱時間としては、0.1~60分間の場合が多く、0.2~5分間の場合がより多い。
<Process 2D>
Step 2D is a step of heat-treating the composition layer to orient the liquid crystal compound in the composition layer. By carrying out this step, the liquid crystal compound in the composition layer is in a predetermined orientation state. As shown in FIG. 13, which will be described later, for example, by carrying out step 2D, the liquid crystal compound is homogenically oriented in the composition.
As the heat treatment conditions, the optimum conditions are selected according to the liquid crystal compound used.
Among them, the heating temperature is often 25 to 250 ° C, more often 40 to 150 ° C, and even more often 50 to 130 ° C.
The heating time is often 0.1 to 60 minutes, and more often 0.2 to 5 minutes.
<工程3D>
 工程3Dは、工程2Dの後、酸素濃度1体積%以上の条件下にて、組成物層に対して、光照射を50秒間以下、かつ、300mJ/cm2以下で行う工程である。以下では、図面を用いて本工程の機構を説明する。図13中、組成物層において、液晶化合物LCはホモジニアス配向している。
 図13に示すように、工程3Dでは酸素濃度1体積%以上の条件下にて、基板10の組成物層420側とは反対側の方向(図13中の白抜き矢印の方向)から光照射を行う。なお、図13では光照射は基板10側から実施されているが、組成物層420側から実施されてもよい。
 その際、組成物層420の基板10側の下側領域420Aと、基板10側とは反対側の上側領域420Bとを比較すると、上側領域420Bの表面のほうが空気側にあるため、上側領域420B中の酸素濃度が高く、下側領域420A中の酸素濃度は低い。そのため、組成物層420に対して光照射がなされると、下側領域420Aにおいては液晶化合物の重合が進行しやすく、液晶化合物の配向状態が固定される。そのため、後述する、光照射された組成物層に対して加熱処理を施す工程4Dを実施しても、液晶化合物の配向状態の変化は生じない。
 また、上側領域420Bにおいては酸素濃度が高いため、光照射がなされても、液晶化合物の重合が酸素により阻害され、重合が進行しにくい。そのため、後述する工程4Dを実施すると、液晶化合物の配向状態が変化する。
 つまり、工程3Dを実施することにより、組成物層の基板側の領域(下側領域)においては液晶化合物の配向状態の固定化が進行しやすい。また、組成物層の基板側と反対側の領域(上側領域)においては、液晶化合物の配向状態の固定化は進行しづらく、後述する工程4Dによって液晶化合物の配向状態が変化した状態となる。
<Process 3D>
Step 3D is a step of irradiating the composition layer with light for 50 seconds or less and 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more after the step 2D. Hereinafter, the mechanism of this process will be described with reference to the drawings. In FIG. 13, the liquid crystal compound LC is homogenically oriented in the composition layer.
As shown in FIG. 13, in step 3D, under the condition that the oxygen concentration is 1% by volume or more, light is irradiated from the direction opposite to the composition layer 420 side of the substrate 10 (the direction of the white arrow in FIG. 13). I do. Although the light irradiation is carried out from the substrate 10 side in FIG. 13, it may be carried out from the composition layer 420 side.
At that time, when the lower region 420A on the substrate 10 side of the composition layer 420 and the upper region 420B on the opposite side to the substrate 10 side are compared, the surface of the upper region 420B is on the air side, so that the upper region 420B The oxygen concentration in the lower region 420A is high, and the oxygen concentration in the lower region 420A is low. Therefore, when the composition layer 420 is irradiated with light, the polymerization of the liquid crystal compound easily proceeds in the lower region 420A, and the orientation state of the liquid crystal compound is fixed. Therefore, even if the step 4D of heat-treating the light-irradiated composition layer, which will be described later, is performed, the orientation state of the liquid crystal compound does not change.
Further, since the oxygen concentration is high in the upper region 420B, even if light irradiation is performed, the polymerization of the liquid crystal compound is inhibited by the oxygen, and the polymerization is difficult to proceed. Therefore, when the step 4D described later is carried out, the orientation state of the liquid crystal compound changes.
That is, by carrying out the step 3D, the fixation of the orientation state of the liquid crystal compound is likely to proceed in the substrate-side region (lower region) of the composition layer. Further, in the region opposite to the substrate side (upper region) of the composition layer, it is difficult to fix the orientation state of the liquid crystal compound, and the orientation state of the liquid crystal compound is changed by the step 4D described later.
 工程3Dにおける光照射の各種条件(酸素濃度、照射時間、照射量など)は、上述した工程3Aにおける光照射の各種条件と同じである。 The various conditions of light irradiation in step 3D (oxygen concentration, irradiation time, irradiation amount, etc.) are the same as the various conditions of light irradiation in step 3A described above.
<工程4D>
 工程4Dは、工程3Dの後、組成物層に、光照射時より高く、かつ、液晶化合物が等方相となる温度以上で加熱処理を施す工程である。本工程を実施することにより、組成物層中の液晶化合物の配向状態が固定されていない上側領域において、液晶化合物が等方相を示す。
 以下では、図面を用いて本工程の機構を説明する。
<Process 4D>
The step 4D is a step of subjecting the composition layer to a heat treatment after the step 3D at a temperature higher than that at the time of light irradiation and at a temperature higher than the temperature at which the liquid crystal compound becomes an isotropic phase. By carrying out this step, the liquid crystal compound exhibits an isotropic phase in the upper region where the orientation state of the liquid crystal compound in the composition layer is not fixed.
In the following, the mechanism of this process will be described with reference to the drawings.
 上述したように、図13に示した組成物層420に対して工程3Dを実施すると、下側領域420Aにおいては液晶化合物の配向状態が固定されるのに対して、上側領域420Bでは液晶化合物の重合は進行しづらく、液晶化合物の配向状態が固定されていない。
 そのため、工程4Dを実施すると、図14に示すように、上側領域420Bにおいては液晶化合物の重合が進行していないため、液晶化合物の配向状態が崩れ、等方相となる。
 一方で、上述したように、組成物層420の下側領域420Aにおいては工程3Dの際に液晶化合物の重合が進行して液晶化合物の配向状態が固定されているため、液晶化合物の再配向は進行しない。
 上記のように、工程4Dを実施することにより、厚み方向に沿って、液晶化合物の配向状態(例えば、水平配向状態)を固定してなる領域と、液晶化合物が配向していない状態(液晶化合物の等方相)を固定してなる領域とを有する光学異方性層が形成される。
As described above, when step 3D is performed on the composition layer 420 shown in FIG. 13, the orientation state of the liquid crystal compound is fixed in the lower region 420A, whereas the orientation state of the liquid crystal compound is fixed in the upper region 420B. The polymerization is difficult to proceed, and the orientation of the liquid crystal compound is not fixed.
Therefore, when step 4D is carried out, as shown in FIG. 14, since the polymerization of the liquid crystal compound has not progressed in the upper region 420B, the orientation state of the liquid crystal compound is broken and the phase becomes isotropic.
On the other hand, as described above, in the lower region 420A of the composition layer 420, the polymerization of the liquid crystal compound proceeds during the step 3D and the orientation state of the liquid crystal compound is fixed, so that the reorientation of the liquid crystal compound occurs. Does not progress.
As described above, by carrying out step 4D, a region in which the alignment state (for example, the horizontal alignment state) of the liquid crystal compound is fixed along the thickness direction and a state in which the liquid crystal compound is not oriented (liquid crystal compound). An optically anisotropic layer having a region formed by fixing the isotropic phase of the above is formed.
 加熱処理は、光照射時の温度より高く、かつ、液晶化合物が等方相となる温度以上で実施する。
 加熱処理の温度と、光照射時の温度との差は、5℃以上が好ましく、10~110℃がより好ましく、20~110℃がより好ましい。
The heat treatment is carried out at a temperature higher than the temperature at the time of light irradiation and at a temperature higher than the temperature at which the liquid crystal compound becomes an isotropic phase.
The difference between the temperature of the heat treatment and the temperature at the time of light irradiation is preferably 5 ° C. or higher, more preferably 10 to 110 ° C., and even more preferably 20 to 110 ° C.
 加熱処理の温度は、光照射時の温度より高く、組成物層中の固定されていない液晶化合物を等方相とする温度であることが好ましく、より具体的には、40~250℃の場合が多く、50~150℃の場合がより多く、50℃超150℃以下の場合がさらに多く、60~130℃の場合が特に多い。
 加熱時間としては、0.01~60分間の場合が多く、0.03~5分間の場合がより多い。
The temperature of the heat treatment is preferably higher than the temperature at the time of light irradiation, and is preferably a temperature in which the non-fixed liquid crystal compound in the composition layer is an isotropic phase, and more specifically, in the case of 40 to 250 ° C. The temperature is 50 to 150 ° C., more often, more than 50 ° C. and 150 ° C. or lower, and 60 to 130 ° C. is particularly common.
The heating time is often 0.01 to 60 minutes, and more often 0.03 to 5 minutes.
<工程5D>
 工程5Dは、工程4Dの後、組成物層に対して硬化処理を施して、液晶化合物の配向状態が異なる領域を厚み方向に沿って複数有する光学異方性層を形成する工程である。本工程を実施することにより、組成物層中の液晶化合物の配向状態が固定され、結果として所定の光学異方性層が形成される。
<Process 5D>
Step 5D is a step of subjecting the composition layer to a curing treatment after step 4D to form an optically anisotropic layer having a plurality of regions having different orientation states of the liquid crystal compounds along the thickness direction. By carrying out this step, the orientation state of the liquid crystal compound in the composition layer is fixed, and as a result, a predetermined optically anisotropic layer is formed.
 工程5Dでの硬化処理の方法としては、工程5Aでの硬化処理の方法が挙げられる。
 光学異方性層の厚みは特に制限されないが、0.05~10μmが好ましく、0.1~8.0μmがより好ましく、0.2~6.0μmがさらに好ましい。
Examples of the curing treatment method in step 5D include the curing treatment method in step 5A.
The thickness of the optically anisotropic layer is not particularly limited, but is preferably 0.05 to 10 μm, more preferably 0.1 to 8.0 μm, and even more preferably 0.2 to 6.0 μm.
 なお、上記図13および14においては、厚み方向に沿って、水平配向している液晶化合物の配向状態を固定してなる領域と、液晶化合物が等方相を示す状態を固定してなる領域とを有する光学異方性層の態様について説明したが、液晶化合物が等方相を示す状態を固定してなる領域が含まれていれば、この態様には制限されない。
 例えば、液晶化合物の配向状態としては、液晶化合物が棒状液晶化合物である場合、その配向状態としては、例えば、ネマチック配向(ネマチック相を形成している状態)、スメクチック配向(スメクチック相を形成している状態)、コレステリック配向(コレステリック相を形成している状態)、および、ハイブリッド配向が挙げられる。液晶化合物がディスコティック液晶化合物である場合、その配向状態としては、ネマチック配向、カラムナー配向(カラムナー相を形成している状態)、および、コレステリック配向が挙げられる。
 より具体的には、厚み方向に沿って、垂直配向している液晶化合物の配向状態を固定してなる領域と、液晶化合物が等方相を示す状態を固定してなる領域とを有する光学異方性層を形成してもよい。また、厚み方向に沿って、液晶化合物を用いて形成されたコレステリック液晶相を固定してなる領域と、液晶化合物が等方相を示す状態を固定してなる領域とを有する光学異方性層を形成してもよい。
In FIGS. 13 and 14, a region in which the orientation state of the horizontally oriented liquid crystal compound is fixed and a region in which the liquid crystal compound exhibits an isotropic phase are fixed along the thickness direction. Although the embodiment of the optically anisotropic layer having the above is described, the present invention is not limited to this embodiment as long as the liquid crystal compound contains a region in which the state of exhibiting an isotropic phase is fixed.
For example, when the liquid crystal compound is a rod-shaped liquid crystal compound, the orientation state of the liquid crystal compound is, for example, nematic orientation (state in which a nematic phase is formed) or smectic orientation (formation of a smectic phase). ), Cholesteric orientation (state forming a cholesteric phase), and hybrid orientation. When the liquid crystal compound is a discotic liquid crystal compound, examples of the orientation state include nematic orientation, columnar orientation (a state in which a columnar phase is formed), and cholesteric orientation.
More specifically, an optical difference having a region in which the orientation state of the liquid crystal compound vertically oriented is fixed along the thickness direction and a region in which the state in which the liquid crystal compound exhibits an isotropic phase is fixed. A square layer may be formed. Further, an optically anisotropic layer having a region formed by fixing a cholesteric liquid crystal phase formed by using a liquid crystal compound and a region formed by fixing a state in which the liquid crystal compound exhibits an isotropic phase along the thickness direction. May be formed.
 第4実施態様における光学異方性層の光学特性は特に制限されないが、λ/4板として機能することが好ましい。
 λ/4板は、ある特定の波長の直線偏光を円偏光に(または、円偏光を直線偏光に)変換する機能を有する板であり、特定の波長λnmにおける面内レタデーションRe(λ)がRe(λ)=λ/4を満たす板(光学異方性層)のことをいう。
 この式は、可視光域のいずれかの波長(例えば、550nm)において達成されていればよいが、波長550nmにおける面内レタデーションRe(550)が、110nm≦Re(550)≦180nmの関係を満たすことが好ましい。
The optical characteristics of the optically anisotropic layer in the fourth embodiment are not particularly limited, but it is preferable that the optical anisotropic layer functions as a λ / 4 plate.
The λ / 4 plate is a plate having a function of converting linearly polarized light of a specific wavelength into circularly polarized light (or converting circularly polarized light into linearly polarized light), and the in-plane retardation Re (λ) at a specific wavelength of λnm is Re. A plate (optically anisotropic layer) that satisfies (λ) = λ / 4.
This equation may be achieved at any wavelength in the visible light region (eg, 550 nm), but the in-plane retardation Re (550) at a wavelength of 550 nm satisfies the relationship 110 nm ≤ Re (550) ≤ 180 nm. Is preferable.
<<用途>>
 光学異方性層は種々の部材と組み合わせることができる。
 例えば、上記光学異方性層は、他の光学異方性層と組み合わせてもよい。つまり、図15に示すように、基板10と、上述した製造方法により製造される光学異方性層20と、他の光学異方性層22とを含む積層体24を作製してもよい。なお、図15に記載の積層体24は基板10を含んでいるが、積層体中に基板は含まれていなくてもよい。
 他の光学異方性層は特に制限されず、例えば、Aプレート(ポジティブAプレートおよびネガティブAプレート)およびCプレート(ポジティブCプレートおよびネガティブCプレート)が挙げられる。なかでも、後述する種々の用途(例えば、円偏光板)に適用しやすい点で、Cプレートが好ましい。
 Cプレートの波長550nmにおける厚み方向のレタデーションの絶対値の範囲は特に制限されないが、5~300nmが好ましく、10~200nmがより好ましい。
<< Use >>
The optically anisotropic layer can be combined with various members.
For example, the optically anisotropic layer may be combined with another optically anisotropic layer. That is, as shown in FIG. 15, a laminate 24 including the substrate 10, the optically anisotropic layer 20 manufactured by the above-mentioned manufacturing method, and another optically anisotropic layer 22 may be manufactured. Although the laminated body 24 shown in FIG. 15 includes the substrate 10, the laminated body may not include the substrate.
The other optically anisotropic layer is not particularly limited, and examples thereof include A plates (positive A plate and negative A plate) and C plates (positive C plate and negative C plate). Among them, the C plate is preferable because it can be easily applied to various uses (for example, a circular polarizing plate) described later.
The range of the absolute value of the retardation in the thickness direction at the wavelength of 550 nm of the C plate is not particularly limited, but is preferably 5 to 300 nm, more preferably 10 to 200 nm.
 なお、本明細書において、AプレートおよびCプレートは以下のように定義される。
 Aプレートは、ポジティブAプレート(正のAプレート)とネガティブAプレート(負のAプレート)との2種があり、フィルム面内の遅相軸方向(面内での屈折率が最大となる方向)の屈折率をnx、面内の遅相軸と面内で直交する方向の屈折率をny、厚み方向の屈折率をnzとしたとき、ポジティブAプレートは式(A1)の関係を満たすものであり、ネガティブAプレートは式(A2)の関係を満たすものである。なお、ポジティブAプレートはRthが正の値を示し、ネガティブAプレートはRthが負の値を示す。
 式(A1)  nx>ny≒nz
 式(A2)  ny<nx≒nz
 なお、上記「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。「実質的に同一」とは、例えば、(ny-nz)×d(ただし、dはフィルムの厚みである)が、-10~10nm、好ましくは-5~5nmの場合も「ny≒nz」に含まれ、(nx-nz)×dが、-10~10nm、好ましくは-5~5nmの場合も「nx≒nz」に含まれる。
 Cプレートは、ポジティブCプレート(正のCプレート)とネガティブCプレート(負のCプレート)との2種があり、ポジティブCプレートは式(C1)の関係を満たすものであり、ネガティブCプレートは式(C2)の関係を満たすものである。なお、ポジティブCプレートはRthが負の値を示し、ネガティブCプレートはRthが正の値を示す。
 式(C1)  nz>nx≒ny
 式(C2)  nz<nx≒ny
 なお、上記「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。「実質的に同一」とは、例えば、(nx-ny)×d(ただし、dはフィルムの厚みである)が、0~10nm、好ましくは0~5nmの場合も「nx≒ny」に含まれる。
In addition, in this specification, A plate and C plate are defined as follows.
There are two types of A plates, a positive A plate (positive A plate) and a negative A plate (negative A plate), and the slow axis direction in the film plane (the direction in which the refractive index in the plane is maximized). ) Is nx, the refractive index in the direction orthogonal to the slow axis in the plane is ny, and the refractive index in the thickness direction is nz, the positive A plate satisfies the relationship of the equation (A1). The negative A plate satisfies the relation of the formula (A2). The positive A plate shows a positive value for Rth, and the negative A plate shows a negative value for Rth.
Equation (A1) nx> ny≈nz
Equation (A2) ny <nx≈nz
The above "≈" includes not only the case where both are completely the same, but also the case where both are substantially the same. “Substantially the same” means, for example, “ny ≈ nz” when (ny-nz) × d (where d is the thickness of the film) is -10 to 10 nm, preferably -5 to 5 nm. In the case where (nx-nz) × d is −10 to 10 nm, preferably −5 to 5 nm, it is also included in “nx≈nz”.
There are two types of C plates, a positive C plate (positive C plate) and a negative C plate (negative C plate). The positive C plate satisfies the relationship of the formula (C1), and the negative C plate is It satisfies the relationship of the equation (C2). The positive C plate shows a negative value for Rth, and the negative C plate shows a positive value for Rth.
Equation (C1) nz> nx≈ny
Equation (C2) nz <nx≈ny
The above "≈" includes not only the case where both are completely the same, but also the case where both are substantially the same. "Substantially the same" means, for example, that (nx-ny) x d (where d is the thickness of the film) is included in "nx≈ny" even when it is 0 to 10 nm, preferably 0 to 5 nm. Is done.
 上記積層体の製造方法は特に制限されず、公知の方法が挙げられる。例えば、本発明の製造方法により得られる光学異方性層と、他の光学異方性層(例えば、Cプレート)とを積層して、積層体を得る方法が挙げられる。上記積層の方法としては、別途作製した他の光学異方性層を本発明の製造方法により得られる光学異方性層上に貼合してもよいし、本発明の製造方法により得られる光学異方性層上に他の光学異方性層を形成するための組成物を塗布して他の光学異方性層を形成してもよい。 The method for producing the above-mentioned laminate is not particularly limited, and a known method can be mentioned. For example, a method of laminating an optically anisotropic layer obtained by the production method of the present invention and another optically anisotropic layer (for example, a C plate) to obtain a laminated body can be mentioned. As the laminating method, another separately prepared optically anisotropic layer may be bonded onto the optically anisotropic layer obtained by the manufacturing method of the present invention, or the optics obtained by the manufacturing method of the present invention may be bonded. A composition for forming another optically anisotropic layer may be applied onto the anisotropic layer to form another optically anisotropic layer.
 また、本発明の製造方法にて得られる光学異方性層は、偏光子と組み合わせてもよい。つまり、図16に示すように、基板10と、上述した製造方法により製造される光学異方性層20と、偏光子26とを含む偏光子付き光学異方性層28を作製してもよい。図16においては、基板10上に偏光子26が配置されるが、この態様には制限されず、光学異方性層20上に偏光子26が配置されていてもよい。
 また、図16に記載の偏光子付き光学異方性層28は基板10を含んでいるが、偏光子付き光学異方性層中に基板は含まれていなくてもよい。
Further, the optically anisotropic layer obtained by the production method of the present invention may be combined with a polarizing element. That is, as shown in FIG. 16, the optically anisotropic layer 28 with a splitter may be manufactured, which includes the substrate 10, the optically anisotropic layer 20 manufactured by the above-mentioned manufacturing method, and the polarizing element 26. .. In FIG. 16, the polarizing element 26 is arranged on the substrate 10, but the present invention is not limited to this, and the polarizing element 26 may be arranged on the optically anisotropic layer 20.
Further, although the optically anisotropic layer 28 with a polarizing element shown in FIG. 16 includes the substrate 10, the substrate may not be included in the optically anisotropic layer with a polarizing element.
 光学異方性層と偏光子とを積層する際の位置関係は特に制限されないが、光学異方性層が、厚み方向に沿って延びる螺旋軸に沿って捩れ配向した液晶化合物の配向状態を固定してなる第1領域と、ホモジニアス配向した液晶化合物の配向状態を固定してなる第2領域とを、厚み方向に沿って有する場合、第2領域の面内遅相軸と偏光子の吸収軸とのなす角度の絶対値は、光学異方性層を円偏光板などに好適に適用できる点で、5~25°が好ましく、10~20°がより好ましい。
 また、上記第2領域の面内遅相軸と偏光子の吸収軸のなす角度が負の時は、第1領域での液晶化合物の捩れ角度も負であることが好ましく、上記第2領域の面内遅相軸と偏光子の吸収軸のなす角度が正の時は、第1領域での液晶化合物の捩れ角度も正であることが好ましい。
 なお、上記面内遅相軸と偏光子のなす角度が負である場合とは、偏光子側から視認した際に、偏光子の吸収軸を基準にして面内遅相軸の回転角度が時計回りの場合を意味し、上記面内遅相軸と偏光子のなす角度が正である場合とは、偏光子側から視認した際に、偏光子の吸収軸を基準にして面内遅相軸の回転角度が反時計回りの場合を意味する。
 また、液晶化合物の捩れ角度に関しては、表面側(手前側)にある液晶化合物の配向方向を基準に、奥側の液晶化合物の配向方向が時計回り(右回り)の時を負、反時計回り(左回り)の時を正として表す。
The positional relationship when laminating the optically anisotropic layer and the polarizing element is not particularly limited, but the optically anisotropic layer fixes the orientation state of the liquid crystal compound twist-oriented along the spiral axis extending along the thickness direction. When the first region formed by the The absolute value of the angle formed with is preferably 5 to 25 °, more preferably 10 to 20 °, in that the optically anisotropic layer can be suitably applied to a circular polarizing plate or the like.
Further, when the angle formed by the in-plane slow phase axis and the absorber absorption axis of the second region is negative, it is preferable that the twist angle of the liquid crystal compound in the first region is also negative, and the twist angle of the liquid crystal compound in the first region is also negative. When the angle formed by the in-plane slow phase axis and the absorber absorption axis is positive, it is preferable that the twist angle of the liquid crystal compound in the first region is also positive.
When the angle formed by the in-plane slow-phase axis and the splitter is negative, the rotation angle of the in-plane slow-phase axis is a clock with reference to the absorber absorption axis when visually recognized from the splitter side. The case of rotation means the case where the angle formed by the in-plane slow-phase axis and the stator is positive, which means that the in-plane slow-phase axis is based on the absorption axis of the polarizing element when visually recognized from the splitter side. It means that the rotation angle of is counterclockwise.
Regarding the twist angle of the liquid crystal compound, it is negative and counterclockwise when the orientation direction of the liquid crystal compound on the back side is clockwise (clockwise) with respect to the orientation direction of the liquid crystal compound on the front side (front side). The time of (counterclockwise) is expressed as positive.
 偏光子は、自然光を特定の直線偏光に変換する機能を有する部材であればよく、例えば、吸収型偏光子が挙げられる。
 偏光子の種類は特に制限はなく、通常用いられている偏光子を利用でき、例えば、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、および、ポリエン系偏光子が挙げられる。ヨウ素系偏光子および染料系偏光子は、一般に、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸することで作製される。
 なお、偏光子の片面または両面には、保護膜が配置されていてもよい。
The polarizing element may be any member as long as it has a function of converting natural light into specific linear polarization, and examples thereof include an absorption type polarizing element.
The type of the polarizing element is not particularly limited, and a commonly used polarizing element can be used. Examples thereof include an iodine-based polarizing element, a dye-based polarizing element using a dichroic dye, and a polyene-based polarizing element. Iodine-based and dye-based polarizing elements are generally produced by adsorbing iodine or a dichroic dye on polyvinyl alcohol and stretching it.
A protective film may be arranged on one side or both sides of the polarizing element.
 上記偏光子付き光学異方性層の製造方法は特に制限されず、公知の方法が挙げられる。例えば、本発明の製造方法により得られる光学異方性層と、偏光子とを積層して、偏光子付き光学異方性層を得る方法が挙げられる。 The method for producing the optically anisotropic layer with a polarizing element is not particularly limited, and a known method can be mentioned. For example, a method of laminating an optically anisotropic layer obtained by the production method of the present invention and a polarizing element to obtain an optically anisotropic layer with a polarizing element can be mentioned.
 なお、上記では光学異方性層と偏光子とを積層する態様について述べたが、本発明においては、上述した積層体と偏光子とを積層して、偏光子付き積層体を製造してもよい。 Although the embodiment in which the optically anisotropic layer and the polarizing element are laminated has been described above, in the present invention, the above-mentioned laminate and the polarizing element may be laminated to produce a laminate with a polarizing element. good.
 光学異方性層は種々の用途に適用できる。例えば、光学異方性層は円偏光板に好適に適用でき、上記偏光子付き光学異方性層を円偏光板として用いることもできる。
 上記構成を有する円偏光板は、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、および、陰極管表示装置(CRT)のような画像表示装置の反射防止用途に好適に用いられ、表示光のコントラスト比を向上させることができる。
 例えば、有機EL表示装置の光取り出し面側に本発明の円偏光板を用いた態様が挙げられる。この場合、外光は偏光膜によって直線偏光となり、次に光学異方性層を通過することで、円偏光となる。これが金属電極にて反射された際に円偏光状態が反転し、再び光学異方性層を通過した際に、入射時から90°傾いた直線偏光となり、偏光膜に到達して吸収される。結果として、外光の影響を抑制することができる。
The optically anisotropic layer can be applied to various applications. For example, the optically anisotropic layer can be suitably applied to a circular polarizing plate, and the optically anisotropic layer with a polarizing element can also be used as a circular polarizing plate.
Circular polarizing plates having the above configuration are used for antireflection applications of image display devices such as liquid crystal displays (LCDs), plasma display panels (PDPs), electroluminescence displays (ELDs), and cathode tube display devices (CRTs). It is preferably used and can improve the contrast ratio of the display light.
For example, an embodiment in which the circular polarizing plate of the present invention is used on the light extraction surface side of the organic EL display device can be mentioned. In this case, the external light is linearly polarized by the polarizing film, and then passes through the optically anisotropic layer to be circularly polarized. When this is reflected by the metal electrode, the circularly polarized state is inverted, and when it passes through the optically anisotropic layer again, it becomes linearly polarized light tilted by 90 ° from the time of incident, reaches the polarizing film, and is absorbed. As a result, the influence of external light can be suppressed.
 なかでも、上述した偏光子付き光学異方性層または偏光子付き積層体は、有機EL表示装置に適用されることが好ましい。つまり、偏光子付き光学異方性層または偏光子付き積層体は、有機EL表示装置の有機ELパネル上に配置され、反射防止用途に適用されることが好ましい。
 有機ELパネルは、陽極、陰極の一対の電極間に発光層もしくは発光層を含む複数の有機化合物薄膜を形成した部材であり、発光層のほか正孔注入層、正孔輸送層、電子注入層、電子輸送層、および、保護層などを有してもよく、またこれらの各層はそれぞれ他の機能を備えたものであってもよい。各層の形成にはそれぞれ種々の材料を用いることができる。
Among them, the above-mentioned optically anisotropic layer with a polarizing element or the laminated body with a polarizing element is preferably applied to an organic EL display device. That is, it is preferable that the optically anisotropic layer with a polarizing element or the laminate with a polarizing element is arranged on the organic EL panel of the organic EL display device and applied to antireflection applications.
The organic EL panel is a member in which a plurality of organic compound thin films including a light emitting layer or a light emitting layer are formed between a pair of electrodes of an anode and a cathode, and is a hole injection layer, a hole transport layer, and an electron injection layer in addition to the light emitting layer. , An electron transport layer, a protective layer, and the like may be provided, and each of these layers may have other functions. Various materials can be used to form each layer.
 光学異方性層は液晶表示装置の光学補償板にも好適に適用でき、上記偏光子付き光学異方性層を液晶表示装置の光学補償板として用いることもできる。
 液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、FFS(Fringe-Field-Switching)モード、または、TN(Twisted Nematic)モードが好ましいが、これらに限定されるものではない。
The optically anisotropic layer can be suitably applied to an optical compensation plate of a liquid crystal display device, and the optically anisotropic layer with a polarizing element can also be used as an optical compensation plate of a liquid crystal display device.
The liquid crystal cell used in the liquid crystal display device is a VA (Vertical Element) mode, an OCB (Optically Compensated Bend) mode, an IPS (In-Plane-Switching) mode, an FFS (Fringe-Field-Switching) mode, or a TN (Fringe-Field-Switching) mode. The Twisted Nematic) mode is preferred, but is not limited to these.
 上記偏光子付き光学異方層をIPSモードまたはFFSモードの液晶表示装置の光学補償板として用いる場合は、光学異方性層が図12に示す態様のように、ホモジニアス配向(水平配向)した液晶化合物の配向状態を固定してなる領域とホメオトロピック配向(垂直配向)した液晶化合物の配向状態を固定してなる領域を有することが好ましい。この場合、ホモジニアス配向(水平配向)した液晶化合物の配向状態を固定してなる領域の面内遅相軸と、偏光子の吸収軸とのなす角が直交または平行であることが好ましく、具体的には、ホモジニアス配向(水平配向)した液晶化合物の配向状態を固定してなる領域の面内遅相軸と、偏光子の吸収軸とのなす角が0~5°または85~95°であることがより好ましい。
 ここで、ホモジニアス配向(水平配向)した液晶化合物の配向状態を固定してなる領域の「面内遅相軸」は、ホモジニアス配向(水平配向)した液晶化合物の配向状態を固定してなる領域の面内において屈折率が最大となる方向を意味し、偏光子の「吸収軸」は、吸光度の最も高い方向を意味する。
 また、上記偏光子付き光学異方層をIPSモードまたはFFSモードの液晶表示装置の光学補償板として用いる場合は、偏光子、ホメオトロピック配向(垂直配向)した液晶化合物の配向状態を固定してなる領域、ホモジニアス配向(水平配向)した液晶化合物の配向状態を固定してなる領域、および、液晶セルの順に配置されるか、または、偏光子、ホモジニアス配向(水平配向)した液晶化合物の配向状態を固定してなる領域、ホメオトロピック配向(垂直配向)した液晶化合物の配向状態を固定してなる領域、および、液晶セルの順で配置されることが好ましい。
When the optically anisotropic layer with a polarizing element is used as an optical compensation plate for a liquid crystal display in IPS mode or FFS mode, the optically anisotropic layer is a homogenically oriented (horizontally oriented) liquid crystal as shown in FIG. It is preferable to have a region in which the orientation state of the compound is fixed and a region in which the orientation state of the homeotropic oriented (vertically oriented) liquid crystal compound is fixed. In this case, it is preferable that the angle formed by the in-plane slow phase axis of the region formed by fixing the orientation state of the homogeneously oriented (horizontally oriented) liquid crystal compound and the absorption axis of the polarizing element is orthogonal or parallel, and specifically. The angle between the in-plane slow phase axis of the region where the alignment state of the homogenically oriented (horizontally oriented) liquid crystal compound is fixed and the absorption axis of the polarizing element is 0 to 5 ° or 85 to 95 °. Is more preferable.
Here, the "in-plane slow phase axis" of the region in which the alignment state of the liquid crystal compound oriented in homogenius (horizontal orientation) is fixed is the region in which the orientation state of the liquid crystal compound in homogenius orientation (horizontal orientation) is fixed. It means the direction in which the refractive index is maximum in the plane, and the "absorption axis" of the substituent means the direction in which the absorbance is highest.
Further, when the optical heterolayer with a polarizing element is used as an optical compensation plate of a liquid crystal display device in IPS mode or FFS mode, the orientation state of the polarizing element and the homeotropic oriented (vertically oriented) liquid crystal compound is fixed. A region, a region formed by fixing the orientation state of the liquid crystal compound homogenically oriented (horizontally oriented), and an orientation state of the liquid crystal compound arranged in the order of the liquid crystal cell, or a substituent and a homogenius oriented (horizontally oriented) liquid crystal compound. It is preferable that the region is fixed, the region formed by fixing the orientation state of the homeotropic oriented (vertically oriented) liquid crystal compound, and the liquid crystal cell are arranged in this order.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す具体例により制限的に解釈されるべきものではない。 The features of the present invention will be described in more detail below with reference to Examples and Comparative Examples. The materials, amounts, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the specific examples shown below.
<実施例1>
(セルロースアシレートフィルム(基板)の作製)
 下記組成物をミキシングタンクに投入し、攪拌して、さらに90℃で10分間加熱した。その後、得られた組成物を、平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルターでろ過して、ドープを調製した。ドープの固形分濃度は23.5質量%であり、可塑剤の添加量はセルロースアシレートに対する割合であり、ドープの溶剤は塩化メチレン/メタノール/ブタノール=81/18/1(質量比)である。
<Example 1>
(Preparation of Cellulose Achillate Film (Substrate))
The following composition was put into a mixing tank, stirred, and further heated at 90 ° C. for 10 minutes. Then, the obtained composition was filtered through a filter paper having an average pore diameter of 34 μm and a sintered metal filter having an average pore diameter of 10 μm to prepare a dope. The solid content concentration of the dope is 23.5% by mass, the amount of the plasticizer added is the ratio to the cellulose acylate, and the solvent of the dope is methylene chloride / methanol / butanol = 81/18/1 (mass ratio). ..
――――――――――――――――――――――――――――――――――
セルロースアシレートドープ
――――――――――――――――――――――――――――――――――
セルロースアシレート(アセチル置換度2.86、粘度平均重合度310)
                            100質量部
糖エステル化合物1(化学式(S4)に示す)       6.0質量部
糖エステル化合物2(化学式(S5)に示す)       2.0質量部
シリカ粒子分散液(AEROSIL R972、日本アエロジル(株)製)
                            0.1質量部
溶剤(塩化メチレン/メタノール/ブタノール)
――――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――――
Cellulose acylate dope ――――――――――――――――――――――――――――――――――
Cellulose acylate (acetyl substitution degree 2.86, viscosity average polymerization degree 310)
100 parts by mass sugar ester compound 1 (represented by chemical formula (S4)) 6.0 parts by mass sugar ester compound 2 (represented by chemical formula (S5)) 2.0 parts by mass silica particle dispersion (AEROSIL R972, Nippon Aerosil Co., Ltd.) Made)
0.1 part by mass solvent (methylene chloride / methanol / butanol)
――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記で作製したドープを、ドラム製膜機を用いて流延した。0℃に冷却された金属支持体上に接するようにドープをダイから流延し、その後、得られたウェブ(フィルム)を剥ぎ取った。なお、ドラムはSUS製であった。 The dope prepared above was cast using a drum film forming machine. The dope was cast from the die so that it was in contact with the metal support cooled to 0 ° C., and then the resulting web (film) was stripped. The drum was made of SUS.
 流延されて得られたウェブ(フィルム)を、ドラムから剥離後、フィルム搬送時に30~40℃で、クリップでウェブの両端をクリップして搬送するテンター装置を用いてテンター装置内で20分間乾燥した。引き続き、ウェブをロール搬送しながらゾーン加熱により後乾燥した。得られたウェブにナーリングを施した後、巻き取った。
 得られたセルロースアシレートフィルムの膜厚は40μmであり、波長550nmにおける面内レタデーションRe(550)は1nm、波長550nmにおける厚み方向のレタデーションRth(550)は26nmであった。
After peeling the web (film) obtained by casting from the drum, it is dried in the tenter device for 20 minutes using a tenter device that clips and conveys both ends of the web at 30 to 40 ° C. during film transfer. did. Subsequently, the web was rolled and then dried by zone heating. The resulting web was knurled and then rolled up.
The film thickness of the obtained cellulose acylate film was 40 μm, the in-plane retardation Re (550) at a wavelength of 550 nm was 1 nm, and the thickness direction retardation Rth (550) at a wavelength of 550 nm was 26 nm.
(光学異方性層の形成)
 上記で作製したセルロースアシレートフィルムに連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルムの長手方向(搬送方向)とラビングローラーの回転軸とのなす角度は80°とした。フィルムの長手方向(搬送方向)を90°とし、フィルム側から観察してフィルム幅手方向を基準(0°)に時計回り方向を正の値で表すと、ラビングローラーの回転軸は10°にある。言い換えれば、ラビングローラーの回転軸の位置は、フィルムの長手方向を基準に、反時計回りに80°回転させた位置である。
(Formation of optically anisotropic layer)
The cellulose acylate film produced above was continuously subjected to a rubbing treatment. At this time, the longitudinal direction of the long film and the conveying direction were parallel, and the angle between the longitudinal direction of the film (transporting direction) and the rotation axis of the rubbing roller was set to 80 °. When the longitudinal direction (conveyance direction) of the film is 90 ° and the clockwise direction is expressed as a positive value with respect to the film width hand direction (0 °) when observed from the film side, the rotation axis of the rubbing roller is 10 °. be. In other words, the position of the rotation axis of the rubbing roller is a position rotated by 80 ° counterclockwise with respect to the longitudinal direction of the film.
 上記ラビング処理した長尺状のセルロースアシレートフィルムを基板として、ギーサー塗布機を用いて、下記の組成の棒状液晶化合物を含む光学異方性層形成用組成物(1)を塗布して、組成物層を形成した(工程1Aに該当)。なお、工程1Aにおける組成物層中のキラル剤の加重平均螺旋誘起力の絶対値は、0.0μm-1であった。
 次に、得られた組成物層を80℃で60秒間加熱した(工程2Aに該当)。この加熱により組成物層の棒状液晶化合物が所定の方向に配向した。
 その後、酸素を含む空気(酸素濃度:約20体積%)下、40℃にて、365nmLEDランプ(アクロエッジ(株)製)を使用して紫外線を組成物層に5秒間照射した(照射量:13mJ/cm2)(工程3Aに該当)。
 続いて、得られた組成物層を80℃で10秒間加熱した(工程4Aに該当)。
 その後、窒素パージを行って、酸素濃度100体積ppmとして、80℃にて、メタルハライドランプ(アイグラフィックス(株)製)を使用して紫外線を組成物層に照射し(照射量:500mJ/cm2)、液晶化合物の配向状態を固定した光学異方性層を形成した(工程5Aに該当)。このようにして光学フィルム(F-1)を作製した。
Using the rubbing-treated long cellulose acylate film as a substrate, a composition for forming an optically anisotropic layer (1) containing a rod-shaped liquid crystal compound having the following composition is applied using a Gieser coating machine to compose the composition. A material layer was formed (corresponding to step 1A). The absolute value of the weighted average spiral inducing force of the chiral agent in the composition layer in step 1A was 0.0 μm -1 .
Next, the obtained composition layer was heated at 80 ° C. for 60 seconds (corresponding to step 2A). By this heating, the rod-shaped liquid crystal compound of the composition layer was oriented in a predetermined direction.
Then, the composition layer was irradiated with ultraviolet rays for 5 seconds using a 365 nm LED lamp (manufactured by Acroedge Co., Ltd.) at 40 ° C. under oxygen-containing air (oxygen concentration: about 20% by volume) (irradiation amount:). 13 mJ / cm 2 ) (corresponding to step 3A).
Subsequently, the obtained composition layer was heated at 80 ° C. for 10 seconds (corresponding to step 4A).
After that, nitrogen purging was performed to irradiate the composition layer with ultraviolet rays using a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 80 ° C. with an oxygen concentration of 100% by volume (irradiation amount: 500 mJ / cm). 2 ) An optically anisotropic layer was formed in which the orientation state of the liquid crystal compound was fixed (corresponding to step 5A). In this way, the optical film (F-1) was produced.
 なお、光学異方性層形成用組成物(1)中における左捩れキラル剤(L1)の365nmにおけるモル吸光係数は40L/(mol・cm)であり、このキラル剤のHTPは、365nmの光を照射(13mJ/cm2)しても、照射前と比べて、変化が無かった。
 右捩れキラル剤(R1)の365nmにおけるモル吸光係数は38,450L/(mol・cm)であり、このキラル剤のHTPは、365nmの光を照射(13mJ/cm2)すると、照射前と比べて、35μm-1減少した。
 光重合開始剤(Irgacure819)の365nmにおけるモル吸光係数は860L/(mol・cm)であった。
The molar extinction coefficient of the left-handed twist chiral agent (L1) at 365 nm in the composition for forming an optically anisotropic layer (1) is 40 L / (mol · cm), and the HTP of this chiral agent is light of 365 nm. Even after irradiation (13 mJ / cm 2 ), there was no change compared to before irradiation.
The molar extinction coefficient of the right-handed chiral agent (R1) at 365 nm is 38,450 L / (mol · cm), and the HTP of this chiral agent is compared with that before irradiation when irradiated with light of 365 nm (13 mJ / cm 2 ). It decreased by 35 μm -1 .
The molar extinction coefficient of the photopolymerization initiator (Irgacure819) at 365 nm was 860 L / (mol · cm).
――――――――――――――――――――――――――――――――――
 光学異方性層形成用組成物(1)
――――――――――――――――――――――――――――――――――
下記の棒状液晶化合物(A)                80質量部
下記の棒状液晶化合物(B)                10質量部
下記の重合性化合物(C)                 10質量部
エチレンオキサイド変性トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)           4質量部
光重合開始剤(Irgacure819、BASF社製)    3質量部
下記の左捩れキラル剤(L1)             0.43質量部
下記の右捩れキラル剤(R1)             0.38質量部
下記のポリマー(A)                 0.08質量部
下記のポリマー(B)                 0.50質量部
メチルイソブチルケトン                 116質量部
プロピオン酸エチル                    40質量部
――――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――――
Composition for forming an optically anisotropic layer (1)
――――――――――――――――――――――――――――――――――
The following rod-shaped liquid crystal compound (A) 80 parts by mass The following rod-shaped liquid crystal compound (B) 10 parts by mass The following polymerizable compound (C) 10 parts by mass Ethylene oxide-modified trimethyl propanetriacrylate (V # 360, Osaka Organic Chemistry (V # 360, Osaka Organic Chemistry) (Manufactured by Co., Ltd.) 4 parts by mass Photopolymerization initiator (Irgacure819, manufactured by BASF) 3 parts by mass The following left twist chiral agent (L1) 0.43 parts by mass The following right twist chiral agent (R1) 0.38 parts by mass The following Polymer (A) 0.08 parts by mass The following polymer (B) 0.50 parts by mass Methyl isobutyl ketone 116 parts by mass Ethyl propionate 40 parts by mass ――――――――――――――――― ―――――――――――――――――
棒状液晶化合物(A)(以下、化合物の混合物) Rod-shaped liquid crystal compound (A) (hereinafter, a mixture of compounds)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
棒状液晶化合物(B) Rod-shaped liquid crystal compound (B)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
重合性化合物(C) Polymerizable compound (C)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 左捩れキラル剤(L1) Left twist chiral auxiliary (L1)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 右捩れキラル剤(R1) Right-handed twist chiral auxiliary (R1)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 ポリマー(A)(式中、各繰り返し単位に記載の数値は、全繰り返し単位に対する各繰り返しの含有量(質量%)を表す。) Polymer (A) (In the formula, the numerical value described in each repeating unit represents the content (mass%) of each repeating unit with respect to all repeating units).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 ポリマー(B)(式中、各繰り返し単位に記載の数値は、全繰り返し単位に対する各繰り返しの含有量(質量%)を表す。) Polymer (B) (In the formula, the numerical value described in each repeating unit represents the content (mass%) of each repeating unit with respect to all repeating units).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記で作製した光学フィルム(F-1)をラビング方向と平行に切削し、偏光顕微鏡で光学異方性層を断面方向から観察した。光学異方性層の厚みは2.7μmであり、光学異方性層の基板側の厚み(d2)1.3μmの領域(第2領域)は捩れ角の無いホモジニアス配向であり、光学異方性層の空気側(基板と反対側)の厚み(d1)1.4μmの領域(第1領域)は液晶化合物が捩れ配向していた。
 なお、Axometrics社のAxoscan、および、同社の解析ソフトウェア(Multi-Layer Analysis)を用いて、光学フィルム(F-1)の光学特性を求めた。第2領域の波長550nmにおけるΔn2と厚みd2との積(Δn2d1)は173nm、液晶化合物の捩れ角は0°であり、フィルムの長手方向に対する液晶化合物の配向軸角度は、基板に接する側が-10°、第1領域に接する側が-10°であった。
 また、第1領域の波長550nmにおけるΔn1と厚みd1との積(Δn1d1)は184nm、液晶化合物の捩れ角度は75°であり、フィルムの長手方向に対する液晶化合物の配向軸角度は、第2領域に接する側が-10°、空気側が-85°であった。
 なお、光学異方性層に含まれる液晶化合物の配向軸角度は、フィルムの長手方向を基準の0°として、光学異方性層の表面側からフィルムを観察し、時計回り(右回り)の時を負、反時計回り(左回り)の時を正として表してある。
 また、ここで液晶化合物の捩れ構造は、光学異方性層の表面側から基板を観察し、表面側(手前側)にある液晶化合物の配向方向を基準に、基板側(奥側)の液晶化合物の配向方向が時計回り(右回り)の時を負、反時計回り(左回り)の時を正として表してある。
The optical film (F-1) produced above was cut in parallel with the rubbing direction, and the optically anisotropic layer was observed from the cross-sectional direction with a polarizing microscope. The thickness of the optically anisotropic layer is 2.7 μm, and the region (second region) of the thickness (d2) of 1.3 μm on the substrate side of the optically anisotropic layer is a homogeneous orientation without a twist angle, and is optically anisotropic. The liquid crystal compound was twist-oriented in the region (first region) having a thickness (d1) of 1.4 μm on the air side (opposite side of the substrate) of the sex layer.
The optical characteristics of the optical film (F-1) were determined using Axoscan of Axometrics and analysis software (Multi-Layer Analysis) of the same company. The product (Δn2d1) of Δn2 and the thickness d2 at a wavelength of 550 nm in the second region is 173 nm, the twist angle of the liquid crystal compound is 0 °, and the orientation axis angle of the liquid crystal compound with respect to the longitudinal direction of the film is −10 on the side in contact with the substrate. °, the side in contact with the first region was -10 °.
The product (Δn1d1) of Δn1 and the thickness d1 at a wavelength of 550 nm in the first region is 184 nm, the twist angle of the liquid crystal compound is 75 °, and the orientation axis angle of the liquid crystal compound with respect to the longitudinal direction of the film is in the second region. The contact side was −10 ° and the air side was −85 °.
The orientation axis angle of the liquid crystal compound contained in the optically anisotropic layer is 0 ° with respect to the longitudinal direction of the film, and the film is observed from the surface side of the optically anisotropic layer in a clockwise direction (clockwise). Time is shown as negative, and counterclockwise (counterclockwise) is shown as positive.
Further, in the twisted structure of the liquid crystal compound, the substrate is observed from the surface side of the optically anisotropic layer, and the liquid crystal on the substrate side (back side) is based on the orientation direction of the liquid crystal compound on the surface side (front side). When the orientation direction of the compound is clockwise (clockwise), it is expressed as negative, and when it is counterclockwise (counterclockwise), it is expressed as positive.
(偏光子の作製)
 厚み80μmのポリビニルアルコール(PVA)フィルムを、ヨウ素濃度0.05質量%のヨウ素水溶液中に30℃で60秒間浸漬して染色した。次に、得られたフィルムをホウ酸濃度4質量%濃度のホウ酸水溶液中に60秒間浸漬している間に元の長さの5倍に縦延伸した後、50℃で4分間乾燥させて、厚み20μmの偏光子を得た。
(Making a polarizing element)
A polyvinyl alcohol (PVA) film having a thickness of 80 μm was immersed in an iodine aqueous solution having an iodine concentration of 0.05% by mass at 30 ° C. for 60 seconds for staining. Next, the obtained film was longitudinally stretched to 5 times the original length while immersed in a boric acid aqueous solution having a boric acid concentration of 4% by mass for 60 seconds, and then dried at 50 ° C. for 4 minutes. , A polarizing element having a thickness of 20 μm was obtained.
(偏光子保護フィルムの作製)
 市販のセルロースアシレート系フィルムのフジタックTG40UL(富士フイルム(株)製)を準備し、1.5モル/リットルで55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、0.005モル/リットルで35℃の希硫酸水溶液に得られたフィルムを1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に、得られたフィルムを120℃で十分に乾燥させて、表面を鹸化処理した偏光子保護フィルムを作製した。
(Making a polarizing element protective film)
A commercially available cellulose acylate film Fujitac TG40UL (manufactured by FUJIFILM Corporation) is prepared, immersed in a sodium hydroxide aqueous solution at 55 ° C. at 1.5 mol / liter, and then sufficiently sodium hydroxide is added with water. Rinse off. Then, the film obtained in a dilute aqueous sulfuric acid solution at 0.005 mol / liter at 35 ° C. was immersed for 1 minute, and then immersed in water to thoroughly wash away the dilute aqueous sulfuric acid solution. Finally, the obtained film was sufficiently dried at 120 ° C. to prepare a polarizing element protective film whose surface was saponified.
(円偏光板の作製)
 前述の偏光子保護フィルムの作製と同様に、上記で作製した光学フィルム(F-1)を鹸化処理し、光学フィルム(F-1)に含まれる基板面に、前述の偏光子および前述の偏光子保護フィルムをポリビニルアルコール系接着剤を用いて連続的に貼り合せ、長尺状の円偏光板(P-1)を作製した。つまり、円偏光板(P-1)は、偏光子保護フィルム、偏光子、基板、および、光学異方性層をこの順で有していた。
 なお、偏光子の吸収軸は円偏光板の長手方向と一致しており、偏光子の吸収軸に対する第2領域の面内遅相軸の回転角度は10°であり、偏光子の吸収軸に対する第1領域の第2領域側とは反対側の表面の面内遅相軸の回転角度は85°であった。
 なお、上記面内遅相軸の回転角度は、偏光子側から光学異方性層を観察して、円偏光板の長手方向を基準の0°とし、反時計回り方向に正、時計回りに負の角度値をもって表してある。
(Making a circular polarizing plate)
Similar to the production of the above-mentioned polarizing element protection film, the above-mentioned optical film (F-1) is saponified, and the above-mentioned polarizing element and the above-mentioned polarization are applied to the substrate surface contained in the optical film (F-1). The child protective film was continuously bonded using a polyvinyl alcohol-based adhesive to prepare a long circular polarizing plate (P-1). That is, the circularly polarizing plate (P-1) had a polarizing element protective film, a polarizing element, a substrate, and an optically anisotropic layer in this order.
The absorption axis of the polarizing element coincides with the longitudinal direction of the circular polarizing plate, and the rotation angle of the in-plane slow phase axis of the second region with respect to the absorption axis of the polarizing element is 10 ° with respect to the absorption axis of the substituent. The rotation angle of the in-plane retarding axis on the surface of the surface opposite to the second region side of the first region was 85 °.
The rotation angle of the in-plane slow-phase axis is set to 0 ° with respect to the longitudinal direction of the circularly polarizing plate by observing the optically anisotropic layer from the substituent side, and is positive and clockwise in the counterclockwise direction. It is represented by a negative angle value.
<実施例2>
(アルカリ鹸化処理)
 前述のセルロースアシレートフィルムを、温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、フィルムのバンド面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/m2で塗布し、110℃に加熱した(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。続いて、同じくバーコーターを用いて、純水を3ml/m2塗布した。次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアシレートフィルムを作製した。
<Example 2>
(Alkaline saponification treatment)
After passing the above-mentioned cellulose acylate film through a dielectric heating roll having a temperature of 60 ° C. and raising the film surface temperature to 40 ° C., an alkaline solution having the composition shown below is applied to the band surface of the film using a bar coater. The film was applied at a coating amount of 14 ml / m 2 and conveyed under a steam-type far-infrared heater manufactured by Noritake Co., Ltd. Limited, which was heated to 110 ° C. for 10 seconds. Subsequently, 3 ml / m 2 of pure water was subsequently applied using a bar coater. Then, after repeating washing with water with a fountain coater and draining with an air knife three times, the film was transported to a drying zone at 70 ° C. for 10 seconds and dried to prepare a cellulose acylate film treated with alkali saponification.
――――――――――――――――――――――――――――――――――
アルカリ溶液
――――――――――――――――――――――――――――――――――
水酸化カリウム                   4.7質量部
水                        15.8質量部
イソプロパノール                 63.7質量部
界面活性剤:C1429O(CH2CH2O)20H       1.0質量部
プロピレングリコール               14.8質量部
――――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――――
Alkaline solution ――――――――――――――――――――――――――――――――――
Potassium hydroxide 4.7 parts by mass Water 15.8 parts by mass Isopropanol 63.7 parts by mass Surfactant: C 14 H 29 O (CH 2 CH 2 O) 20 H 1.0 parts by mass Propylene glycol 14.8 parts by mass ――――――――――――――――――――――――――――――――――
(配向膜の形成)
 セルロースアシレートフィルムのアルカリ鹸化処理を行った面に、下記組成の配向膜塗布液を#14のワイヤーバーで連続的に塗布した。60℃の温風で60秒間、さらに100℃の温風で120秒間乾燥した。
(Formation of alignment film)
The alignment film coating solution having the following composition was continuously applied to the surface of the cellulose acylate film subjected to the alkali saponification treatment with a # 14 wire bar. It was dried with warm air at 60 ° C. for 60 seconds and further with warm air at 100 ° C. for 120 seconds.
――――――――――――――――――――――――――――――――――
配向膜塗布液
――――――――――――――――――――――――――――――――――
下記に示す変性ポリビニルアルコール            28質量部
クエン酸エステル(AS3、三共化学(株)製)      1.2質量部
光重合開始剤(Irgacure2959、BASF社製) 0.84質量部
グルタルアルデヒド                   2.8質量部
水                           699質量部
メタノール                       226質量部
――――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――――
Alignment film coating liquid ――――――――――――――――――――――――――――――――――
28 parts by mass of modified polyvinyl alcohol shown below Citric acid ester (AS3, manufactured by Sankyo Chemical Co., Ltd.) 1.2 parts by mass Photopolymerization initiator (Irgacure2959, manufactured by BASF) 0.84 parts by mass Glutaraldehyde 2.8 parts by mass 699 parts by mass of water 226 parts by mass of methanol ――――――――――――――――――――――――――――――――――
(変性ポリビニルアルコール) (Denatured polyvinyl alcohol)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(光学異方性層の形成)
 上記で作製した配向膜に連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルムの長手方向(搬送方向)とラビングローラーの回転軸とのなす角度は45°とした。フィルムの長手方向(搬送方向)を90°とし、フィルム側から観察してフィルム幅手方向を基準(0°)に時計回り方向を正の値で表すと、ラビングローラーの回転軸は135°にある。言い換えれば、ラビングローラーの回転軸の位置は、フィルムの長手方向を基準に、反時計回りに45°回転させた位置である。
(Formation of optically anisotropic layer)
The alignment film prepared above was continuously subjected to a rubbing treatment. At this time, the longitudinal direction of the long film and the conveying direction are parallel, and the angle between the longitudinal direction of the film (transporting direction) and the rotation axis of the rubbing roller is 45 °. When the longitudinal direction (conveyance direction) of the film is 90 ° and the clockwise direction is expressed as a positive value with respect to the film width hand direction (0 °) when observed from the film side, the rotation axis of the rubbing roller is 135 °. be. In other words, the position of the rotation axis of the rubbing roller is a position rotated by 45 ° counterclockwise with respect to the longitudinal direction of the film.
 上記ラビング処理した配向膜付きセルロースアシレートフィルムを基板として、ギーサー塗布機を用いて、下記の組成の棒状液晶化合物を含む光学異方性層形成用組成物(2)を塗布して、組成物層を形成した(工程1Cに該当)。
 次に、得られた組成物層を120℃で80秒間加熱した(工程2Cに該当)。この加熱により組成物層の棒状液晶化合物が所定の方向に配向した。
 その後、酸素を含む空気(酸素濃度:約20体積%)下、40℃にて、365nmLEDランプ(アクロエッジ(株)製)を使用して紫外線を組成物層に5秒間照射した(照射量:30mJ/cm2)(工程3Cに該当)。
 続いて、得られた組成物層を90℃で10秒間加熱した(工程4Cに該当)。
 その後、窒素パージを行って、酸素濃度100体積ppmとして、55℃にて、メタルハライドランプ(アイグラフィックス(株)製)を使用して紫外線を組成物層に照射し(照射量:500mJ/cm2)、液晶化合物の配向状態を固定した光学異方性層を形成した(工程5Cに該当)。このようにして光学フィルム(F-2)を作製した。
Using the rubbing-treated cellulose acylate film with an alignment film as a substrate, the composition (2) for forming an optically anisotropic layer containing a rod-shaped liquid crystal compound having the following composition is applied using a Gieser coating machine to obtain a composition. A layer was formed (corresponding to step 1C).
Next, the obtained composition layer was heated at 120 ° C. for 80 seconds (corresponding to step 2C). By this heating, the rod-shaped liquid crystal compound of the composition layer was oriented in a predetermined direction.
Then, the composition layer was irradiated with ultraviolet rays for 5 seconds using a 365 nm LED lamp (manufactured by Acroedge Co., Ltd.) at 40 ° C. under oxygen-containing air (oxygen concentration: about 20% by volume) (irradiation amount:). 30 mJ / cm 2 ) (corresponding to step 3C).
Subsequently, the obtained composition layer was heated at 90 ° C. for 10 seconds (corresponding to step 4C).
After that, nitrogen purging was performed to irradiate the composition layer with ultraviolet rays using a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 55 ° C. with an oxygen concentration of 100 volume ppm (irradiation amount: 500 mJ / cm). 2 ) An optically anisotropic layer was formed in which the orientation state of the liquid crystal compound was fixed (corresponding to step 5C). In this way, an optical film (F-2) was produced.
――――――――――――――――――――――――――――――――――
 光学異方性層形成用組成物(2)
――――――――――――――――――――――――――――――――――
上記の棒状液晶化合物(A)                20質量部
下記の棒状液晶化合物(D)                40質量部
下記の棒状液晶化合物(E)                40質量部
エチレンオキサイド変性トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)           4質量部
光重合開始剤(Irgacure819、BASF社製)    3質量部
上記のポリマー(A)                 0.08質量部
下記の感光性化合物(A)                0.4質量部
下記のイオン性化合物(A)               3.0質量部
メチルエチルケトン                   156質量部
――――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――――
Composition for forming an optically anisotropic layer (2)
――――――――――――――――――――――――――――――――――
20 parts by mass of the above rod-shaped liquid crystal compound (A) 40 parts by mass of the following rod-shaped liquid crystal compound (D) 40 parts by mass of the following rod-shaped liquid crystal compound (E) 40 parts by mass of ethylene oxide-modified trimethyla propantriacrylate (V # 360, Osaka Organic Chemistry) Co., Ltd.) 4 parts by mass Photopolymerization initiator (Irgacure819, manufactured by BASF) 3 parts by mass The above polymer (A) 0.08 parts by mass The following photosensitive compound (A) 0.4 parts by mass The following ionic compound (A) 3.0 parts by mass Methyl ethyl ketone 156 parts by mass ――――――――――――――――――――――――――――――――――
棒状液晶化合物(D) Rod-shaped liquid crystal compound (D)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
棒状液晶化合物(E) Rod-shaped liquid crystal compound (E)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
感光性化合物(A) Photosensitive compound (A)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
イオン性化合物(A) Ionic compound (A)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 なお、光学異方性層形成用組成物(2)中における感光性化合物(A)は、365nmの光を照射(30mJ/cm2)すると、親水性のカルボキシル基を有す分解物(A)を生じた。 The photosensitive compound (A) in the composition for forming an optically anisotropic layer (2) is a decomposition product (A) having a hydrophilic carboxyl group when irradiated with light of 365 nm (30 mJ / cm 2 ). Arose.
分解物(A) Decomposition product (A)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記で作製した光学フィルム(F-2)をラビング方向と平行に切削し、偏光顕微鏡で光学異方性層を断面方向から観察した。光学異方性層の厚みは4.3μmであり、光学異方性層の基板側の厚み3.0μmの領域(第2領域)はホモジニアス配向であり、光学異方性層の空気側(基板と反対側)の厚み1.3μmの領域(第1領域)は液晶化合物がホメオトロピック配向していた。
 なお、Axometrics社のAxoscan、および、同社の解析ソフトウェア(Multi-Layer Analysis)を用いて、光学フィルム(F-2)の光学特性を求めた。第2領域の波長550nmにおける面内レタデーション(Δn2d2)は140nmであり、フィルムの長手方向に対する面内遅相軸の角度は-45°であった。また、第1領域の波長550nmにおける面内レタデーション(Δn1d1)は0nm、第1領域の波長550nmにおける厚み方向のレタデーションは-60nmであった。
 なお、面内遅相軸の角度は、フィルムの長手方向を基準の0°として、光学異方性層の表面側から基板を観察し、時計回り(右回り)の時を負、反時計回り(左回り)の時を正として表してある。
The optical film (F-2) produced above was cut in parallel with the rubbing direction, and the optically anisotropic layer was observed from the cross-sectional direction with a polarizing microscope. The thickness of the optically anisotropic layer is 4.3 μm, the region (second region) having a thickness of 3.0 μm on the substrate side of the optically anisotropic layer is homogeneously oriented, and the air side (substrate) of the optically anisotropic layer is The liquid crystal compound was homeotropically oriented in the region (first region) having a thickness of 1.3 μm (on the opposite side).
The optical characteristics of the optical film (F-2) were determined using Axoscan of Axometrics and analysis software (Multi-Layer Analysis) of the same company. The in-plane retardation (Δn2d2) at a wavelength of 550 nm in the second region was 140 nm, and the angle of the in-plane slow phase axis with respect to the longitudinal direction of the film was −45 °. The in-plane retardation (Δn1d1) at a wavelength of 550 nm in the first region was 0 nm, and the retardation in the thickness direction at a wavelength of 550 nm in the first region was −60 nm.
The angle of the in-plane slow-phase axis is 0 ° with respect to the longitudinal direction of the film, and the substrate is observed from the surface side of the optically anisotropic layer. Clockwise (clockwise) is negative and counterclockwise. The time of (counterclockwise) is expressed as positive.
(円偏光板の作製)
 実施例1と同様に、上記で作製した光学フィルム(F-2)を鹸化処理し、光学フィルム(F-2)に含まれる基板面に、前述の偏光子および前述の偏光子保護フィルムをポリビニルアルコール系接着剤を用いて連続的に貼り合せ、長尺状の円偏光板(P-2)を作製した。つまり、円偏光板(P-2)は、偏光子保護フィルム、偏光子、基板、および、光学異方性層をこの順で有していた。
 なお、偏光子の吸収軸は円偏光板の長手方向と一致しており、偏光子の吸収軸に対する第2領域の面内遅相軸の回転角度は45°であった。
 なお、上記面内遅相軸の回転角度は、偏光子側から光学異方性層を観察して、円偏光板の長手方向を基準の0°とし、反時計回り方向に正、時計回りに負の角度値をもって表してある。
(Making a circular polarizing plate)
In the same manner as in Example 1, the optical film (F-2) produced above is sacrificed, and the above-mentioned polarizing element and the above-mentioned polarizing element protection film are polyvinyl-coated on the substrate surface contained in the optical film (F-2). A long circular polarizing plate (P-2) was prepared by continuously laminating them using an alcohol-based adhesive. That is, the circularly polarizing plate (P-2) had a polarizing element protective film, a polarizing element, a substrate, and an optically anisotropic layer in this order.
The absorption axis of the polarizing element coincided with the longitudinal direction of the circular polarizing plate, and the rotation angle of the in-plane slow-phase axis of the second region with respect to the absorption axis of the polarizing element was 45 °.
The rotation angle of the in-plane slow-phase axis is set to 0 ° with respect to the longitudinal direction of the circularly polarizing plate by observing the optically anisotropic layer from the substituent side, and is positive and clockwise in the counterclockwise direction. It is represented by a negative angle value.
<実施例3>
(光学異方性層の形成)
 実施例1で作製したセルロースアシレートフィルムに、連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルムの長手方向(搬送方向)とラビングローラーの回転軸とのなす角度は45°であった。なお、フィルムの長手方向(搬送方向)を90°とし、セルロースアシレートフィルム側から観察してセルロースアシレートフィルムの幅方向を基準(0°)に反時計回り方向を正の値で表すと、ラビングローラーの回転軸は135°であった。言い換えれば、ラビングローラーの回転軸の位置は、セルロースアシレートフィルムの長手方向を基準に、時計回りに45°回転させた位置であった。
<Example 3>
(Formation of optically anisotropic layer)
The cellulose acylate film produced in Example 1 was continuously subjected to a rubbing treatment. At this time, the longitudinal direction of the long film and the conveying direction were parallel, and the angle between the longitudinal direction of the film (transporting direction) and the rotation axis of the rubbing roller was 45 °. When the longitudinal direction (conveyance direction) of the film is 90 ° and the counterclockwise direction is represented by a positive value with respect to the width direction of the cellulose acylate film as a reference (0 °) when observed from the cellulose acylate film side, The axis of rotation of the rubbing roller was 135 °. In other words, the position of the rotation axis of the rubbing roller was a position rotated 45 ° clockwise with respect to the longitudinal direction of the cellulose acylate film.
 上記ラビング処理したセルロースアシレートフィルムを基板として、ギーサー塗布機を用いて、下記の組成の棒状液晶化合物を含む光学異方性層形成用組成物(3)を塗布して、組成物層を形成した(工程1Dに該当)。
 次に、得られた組成物層を80℃で60秒間加熱した(工程2Dに該当)。この加熱により組成物層の棒状液晶化合物が所定の方向に配向した。
 その後、酸素を含む空気(酸素濃度:約20体積%)下、40℃にて、365nmLEDランプ(アクロエッジ(株)製)を使用して紫外線を組成物層に5秒間照射した(照射量:50mJ/cm2)(工程3Dに該当)。
 続いて、得られた組成物層を120℃で10秒間加熱した(工程4Dに該当)。なお、光学異方性層形成用組成物(3)中の棒状液晶化合物の等方相への相転移温度は、110℃であった。
 その後、窒素パージを行って、酸素濃度100体積ppmとして、120℃にて、メタルハライドランプ(アイグラフィックス(株)製)を使用して紫外線を組成物層に照射し(照射量:500mJ/cm2)、液晶化合物の配向状態を固定した光学異方性層を形成した(工程5Dに該当)。このようにして光学フィルム(F-3)を作製した。
Using the rubbing-treated cellulose acylate film as a substrate, the composition for forming an optically anisotropic layer (3) containing a rod-shaped liquid crystal compound having the following composition is applied using a Gieser coating machine to form a composition layer. (Corresponds to step 1D).
Next, the obtained composition layer was heated at 80 ° C. for 60 seconds (corresponding to step 2D). By this heating, the rod-shaped liquid crystal compound of the composition layer was oriented in a predetermined direction.
Then, the composition layer was irradiated with ultraviolet rays for 5 seconds using a 365 nm LED lamp (manufactured by Acroedge Co., Ltd.) at 40 ° C. under oxygen-containing air (oxygen concentration: about 20% by volume) (irradiation amount:). 50 mJ / cm 2 ) (corresponding to process 3D).
Subsequently, the obtained composition layer was heated at 120 ° C. for 10 seconds (corresponding to step 4D). The phase transition temperature of the rod-shaped liquid crystal compound in the composition for forming an optically anisotropic layer (3) to the isotropic phase was 110 ° C.
After that, nitrogen purging was performed to irradiate the composition layer with ultraviolet rays using a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 120 ° C. with an oxygen concentration of 100 volume ppm (irradiation amount: 500 mJ / cm). 2 ) An optically anisotropic layer was formed in which the orientation state of the liquid crystal compound was fixed (corresponding to step 5D). In this way, an optical film (F-3) was produced.
 なお、光重合開始剤(Irgacure907)の365nmにおけるモル吸光係数は140L/(mol・cm)であった。 The molar extinction coefficient of the photopolymerization initiator (Irgacure907) at 365 nm was 140 L / (mol · cm).
――――――――――――――――――――――――――――――――――
 光学異方性層形成用組成物(3)
――――――――――――――――――――――――――――――――――
上記の棒状液晶化合物(A)                80質量部
上記の棒状液晶化合物(B)                10質量部
上記の重合性化合物(C)                 10質量部
エチレンオキサイド変性トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)           4質量部
光重合開始剤(Irgacure907、BASF社製)    3質量部
上記のポリマー(A)                 0.08質量部
上記のポリマー(B)                 0.50質量部
メチルイソブチルケトン                 116質量部
プロピオン酸エチル                    40質量部
――――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――――
Composition for forming an optically anisotropic layer (3)
――――――――――――――――――――――――――――――――――
80 parts by mass of the above-mentioned rod-shaped liquid crystal compound (A) 10 parts by mass of the above-mentioned polymerizable compound (C) 10 parts by mass of the above polymerizable compound (C) 10 parts by mass of ethylene oxide-modified trimethyl propanetriacrylate (V # 360, Osaka Organic Chemistry) (Manufactured by Co., Ltd.) 4 parts by mass Photopolymerization initiator (Irgacure907, manufactured by BASF) 3 parts by mass The above polymer (A) 0.08 parts by mass The above polymer (B) 0.50 parts by mass Methylisobutylketone 116 parts by mass Propion 40 parts by mass of ethyl acid acid ――――――――――――――――――――――――――――――――――
 上記で作製した光学フィルム(F-3)をラビング方向と平行に切削し、偏光顕微鏡で光学異方性層を断面方向から観察した。光学異方性層の厚みは2.7μmであり、光学異方性層の基板側の厚み1.1μmの領域(第2領域)はホモジニアス配向であり、光学異方性層の空気側(基板と反対側)の厚み1.6μmの領域(第1領域)は液晶化合物が等方状態(アイソトロピック相)であった。
 なお、Axometrics社のAxoscan、および、同社の解析ソフトウェア(Multi-Layer Analysis)を用いて、光学フィルム(F-3)の光学特性を求めた。第2領域の波長550nmにおける面内レタデーション(Δn2d2)は140nmであり、面内遅相軸は-45°であった。また、第1領域の波長550nmにおける面内レタデーション(Δn1d1)は0nm、厚み方向のレタデーションは0nmであった。
 なお、面内遅相軸の角度は、フィルムの長手方向を基準の0°として、光学異方性層の表面側から基板を観察し、時計回り(右回り)の時を負、反時計回り(左回り)の時を正として表してある。
The optical film (F-3) produced above was cut in parallel with the rubbing direction, and the optically anisotropic layer was observed from the cross-sectional direction with a polarizing microscope. The thickness of the optically anisotropic layer is 2.7 μm, the region (second region) having a thickness of 1.1 μm on the substrate side of the optically anisotropic layer is homogeneously oriented, and the air side (substrate) of the optically anisotropic layer is The liquid crystal compound was in an isotropic state (isotropic phase) in the region (first region) having a thickness of 1.6 μm (on the opposite side).
The optical characteristics of the optical film (F-3) were determined using Axoscan of Axometrics and analysis software (Multi-Layer Analysis) of the same company. The in-plane retardation (Δn2d2) at a wavelength of 550 nm in the second region was 140 nm, and the in-plane slow phase axis was −45 °. Further, the in-plane retardation (Δn1d1) at a wavelength of 550 nm in the first region was 0 nm, and the retardation in the thickness direction was 0 nm.
The angle of the in-plane slow-phase axis is 0 ° with respect to the longitudinal direction of the film, and the substrate is observed from the surface side of the optically anisotropic layer. Clockwise (clockwise) is negative and counterclockwise. The time of (counterclockwise) is expressed as positive.
(円偏光板の作製)
 実施例1と同様に、上記で作製した光学フィルム(F-3)を鹸化処理し、光学フィルム(F-3)に含まれる基板面に、前述の偏光子および前述の偏光子保護フィルムをポリビニルアルコール系接着剤を用いて連続的に貼り合せ、長尺状の円偏光板(P-3)を作製した。つまり、円偏光板(P-3)は、偏光子保護フィルム、偏光子、基板、および、光学異方性層をこの順で有していた。
 なお、偏光子の吸収軸は円偏光板の長手方向と一致しており、偏光子の吸収軸に対する第2領域の面内遅相軸の回転角度は45°であった。
 なお、上記面内遅相軸の回転角度は、偏光子側から光学異方性層を観察して、円偏光板の長手方向を基準の0°とし、反時計回り方向に正、時計回りに負の角度値をもって表してある。
(Making a circular polarizing plate)
In the same manner as in Example 1, the optical film (F-3) produced above is sacrificed, and the above-mentioned polarizing element and the above-mentioned polarizing element protection film are polyvinyl-coated on the substrate surface contained in the optical film (F-3). A long circular polarizing plate (P-3) was prepared by continuously laminating them using an alcohol-based adhesive. That is, the circularly polarizing plate (P-3) had a polarizing element protective film, a polarizing element, a substrate, and an optically anisotropic layer in this order.
The absorption axis of the polarizing element coincided with the longitudinal direction of the circular polarizing plate, and the rotation angle of the in-plane slow-phase axis of the second region with respect to the absorption axis of the polarizing element was 45 °.
The rotation angle of the in-plane slow-phase axis is set to 0 ° with respect to the longitudinal direction of the circularly polarizing plate by observing the optically anisotropic layer from the substituent side, and is positive and clockwise in the counterclockwise direction. It is represented by a negative angle value.
<実施例4>
(光学異方性層の形成)
 実施例1で作製したセルロースアシレートフィルムに、連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルムの長手方向(搬送方向)とラビングローラーの回転軸とのなす角度は90°であった。
<Example 4>
(Formation of optically anisotropic layer)
The cellulose acylate film produced in Example 1 was continuously subjected to a rubbing treatment. At this time, the longitudinal direction of the long film and the conveying direction were parallel, and the angle between the longitudinal direction of the film (transporting direction) and the rotation axis of the rubbing roller was 90 °.
 上記ラビング処理したセルロースアシレートフィルムを基板として、ギーサー塗布機を用いて、下記の組成の棒状液晶化合物を含む光学異方性層形成用組成物(4)を塗布して、組成物層を形成した(工程1Bに該当)。なお、工程1Bにおける組成物層中のキラル剤の加重平均螺旋誘起力の絶対値は、31μm-1であった。
 次に、得られた組成物層を100℃で80秒間加熱した(工程2Bに該当)。この加熱により組成物層の棒状液晶化合物が所定の方向に配向した。
 その後、酸素を含む空気(酸素濃度:約20体積%)下、40℃にて、365nmLEDランプ(アクロエッジ(株)製)を使用して紫外線を組成物層に10秒間照射した(照射量:100mJ/cm2)(工程3Bに該当)。
 続いて、得られた組成物層を90℃で10秒間加熱した(工程4Bに該当)。
 その後、窒素パージを行って、酸素濃度100体積ppmとして、55℃にて、メタルハライドランプ(アイグラフィックス(株)製)を使用して紫外線を組成物層に照射し(照射量:500mJ/cm2)、液晶化合物の配向状態を固定した光学異方性層を形成した(工程5Bに該当)。このようにして光学フィルム(F-4)を作製した。
Using the rubbing-treated cellulose acylate film as a substrate, the composition for forming an optically anisotropic layer (4) containing a rod-shaped liquid crystal compound having the following composition is applied using a Gieser coating machine to form a composition layer. (Corresponds to step 1B). The absolute value of the weighted average spiral inducing force of the chiral agent in the composition layer in step 1B was 31 μm -1 .
Next, the obtained composition layer was heated at 100 ° C. for 80 seconds (corresponding to step 2B). By this heating, the rod-shaped liquid crystal compound of the composition layer was oriented in a predetermined direction.
Then, the composition layer was irradiated with ultraviolet rays for 10 seconds using a 365 nm LED lamp (manufactured by Acroedge Co., Ltd.) at 40 ° C. under oxygen-containing air (oxygen concentration: about 20% by volume) (irradiation amount:). 100 mJ / cm 2 ) (corresponding to step 3B).
Subsequently, the obtained composition layer was heated at 90 ° C. for 10 seconds (corresponding to step 4B).
After that, nitrogen purging was performed to irradiate the composition layer with ultraviolet rays using a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 55 ° C. with an oxygen concentration of 100 volume ppm (irradiation amount: 500 mJ / cm). 2 ) An optically anisotropic layer was formed in which the orientation state of the liquid crystal compound was fixed (corresponding to step 5B). In this way, an optical film (F-4) was produced.
 なお、増感剤(カヤキュアーDETX)の365nmにおけるモル吸光係数は4200L/(mol・cm)であった。 The molar extinction coefficient of the sensitizer (Kayacure DETX) at 365 nm was 4200 L / (mol · cm).
――――――――――――――――――――――――――――――――――
 光学異方性層形成用組成物(4)
――――――――――――――――――――――――――――――――――
上記の棒状液晶化合物(A)                80質量部
上記の棒状液晶化合物(B)                10質量部
上記の棒状液晶化合物(C)                10質量部
エチレンオキサイド変性トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)           4質量部
光重合開始剤(Irgacure907、BASF社製)    3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製)      1質量部
上記の右捩れキラル剤(R1)               11質量部
上記のポリマー(A)                 0.08質量部
上記のポリマー(B)                  0.5質量部
メチルイソブチルケトン                 117質量部
プロピオン酸エチル                    39質量部
――――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――――
Composition for forming an optically anisotropic layer (4)
――――――――――――――――――――――――――――――――――
80 parts by mass of the above-mentioned rod-shaped liquid crystal compound (A) 10 parts by mass of the above-mentioned rod-shaped liquid crystal compound (C) 10 parts by mass of the above-mentioned rod-shaped liquid crystal compound (C) Ethylene oxide-modified trimethylolpropane triacrylate (V # 360, Osaka Organic Chemistry (V # 360, Osaka Organic Chemistry) (Manufactured by Co., Ltd.) 4 parts by mass Photopolymerization initiator (Irgacure907, manufactured by BASF) 3 parts by mass Sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass Right-handed twist chiral agent (R1) 11 mass Part The above polymer (A) 0.08 parts by mass The above polymer (B) 0.5 parts by mass Methyl isobutyl ketone 117 parts by mass Ethyl propionate 39 parts by mass ――――――――――――――― ―――――――――――――――――――
 上記で作製した光学フィルム(F-4)をラビング方向と平行に切削し、SEMで光学異方性層を断面方向から観察した。光学異方性層の厚みは3.6μmであり、光学異方性層の基板側の厚み1.8μmの領域(第2領域)と、光学異方性層の空気側(基板と反対側)の厚み1.8μmの領域(第1領域)を有しており、第2領域と第1領域とはそれぞれ螺旋ピッチの異なるコレステリック配向であった。
 なお、積分反射率計を用いて、光学フィルム(F-4)の分光反射特性を求めた。第2領域に由来する450nmを中心にした反射帯域と、第1領域に由来する650nmを中心にした反射帯域を有する二帯域コレステリック液晶フィルムであることが確認できた。
The optical film (F-4) produced above was cut in parallel with the rubbing direction, and the optically anisotropic layer was observed from the cross-sectional direction by SEM. The thickness of the optically anisotropic layer is 3.6 μm, and the region having a thickness of 1.8 μm on the substrate side of the optically anisotropic layer (second region) and the air side of the optically anisotropic layer (opposite to the substrate). It has a region (first region) with a thickness of 1.8 μm, and the second region and the first region have cholesteric orientations with different spiral pitches.
The spectral reflectance characteristics of the optical film (F-4) were determined using an integrated reflectance meter. It was confirmed that the two-band cholesteric liquid crystal film has a reflection band centered on 450 nm derived from the second region and a reflection band centered on 650 nm derived from the first region.
<比較例1>
 前述の実施例1において、365nmLEDランプによる照射を、酸素を含む空気(酸素濃度:約20体積%)下で実施するかわりに、窒素パージ下(酸素濃度100体積ppm)で行った以外は、実施例1と同様の手順に従って、光学フィルム(F-1)の作製方法と同様にして、光学フィルム(C-1)を作製した。つまり、比較例1においては、工程3Aを実施しなかった。
 なお、上記実施例1と同様の手順に従って、光学異方性層の断面を観察したところ、得られた光学異方性層の厚み方向全域にわたってホモジニアス配向が形成されており、本発明の所望の効果が得られなかった。
<Comparative Example 1>
In Example 1 described above, the irradiation with the 365 nm LED lamp was carried out under nitrogen purge (oxygen concentration 100% by volume ppm) instead of being carried out under oxygen-containing air (oxygen concentration: about 20% by volume). An optical film (C-1) was produced in the same manner as in the method for producing an optical film (F-1) according to the same procedure as in Example 1. That is, in Comparative Example 1, step 3A was not carried out.
When the cross section of the optically anisotropic layer was observed according to the same procedure as in Example 1, the homogeneous orientation was formed over the entire thickness direction of the obtained optically anisotropic layer, which is desired by the present invention. No effect was obtained.
<比較例2>
 前述の実施例1において、40℃にて、365nmLEDランプによる照射を行った後、80℃に加熱せず、40℃にて、メタルハライドランプを使用して紫外線照射を行った以外は、光学フィルム(F-1)の作製方法と同様にして、光学フィルム(C-2)を作製した。つまり、比較例2においては、工程4Aを実施しなかった。
 なお、上記実施例1と同様の手順に従って、光学異方性層の断面を観察したところ、得られた光学異方性層の厚み方向全域にわたってホモジニアス配向が形成されており、本発明の所望の効果が得られなかった。
<Comparative Example 2>
In Example 1 described above, an optical film (except that after irradiation with a 365 nm LED lamp at 40 ° C., UV irradiation was performed at 40 ° C. using a metal halide lamp without heating to 80 ° C. An optical film (C-2) was produced in the same manner as in the production method of F-1). That is, in Comparative Example 2, step 4A was not carried out.
When the cross section of the optically anisotropic layer was observed according to the same procedure as in Example 1, the homogeneous orientation was formed over the entire thickness direction of the obtained optically anisotropic layer, which is desired by the present invention. No effect was obtained.
<比較例3>
 前述の実施例1において、工程3Aにおける照射条件を、365nmLEDランプによる照射を100秒間(照射量:13mJ/cm2)に変更した以外は、光学フィルム(F-1)の作製方法と同様にして、光学フィルム(C-3)を作製した。つまり、比較例3においては、実施例1と比較して、照射量は同じだが、照射時間を長くした。
 なお、上記実施例1と同様の手順に従って、光学異方性層の断面を観察したところ、得られた光学異方性層の厚み方向全域にわたって捩れ配向が形成されており、本発明の所望の効果が得られなかった。
<Comparative Example 3>
In the above-mentioned Example 1, the irradiation conditions in the step 3A are the same as the method for producing the optical film (F-1) except that the irradiation with the 365 nm LED lamp is changed to 100 seconds (irradiation amount: 13 mJ / cm 2 ). , An optical film (C-3) was produced. That is, in Comparative Example 3, the irradiation amount was the same as that in Example 1, but the irradiation time was lengthened.
When the cross section of the optically anisotropic layer was observed according to the same procedure as in Example 1, the twisted orientation was formed over the entire thickness direction of the obtained optically anisotropic layer, which is desired by the present invention. No effect was obtained.
 作製した光学異方性層の波長λにおける面内レタデーションRe(λ)をAxometrics社製Axoscanで測定した。結果を表1に示す。 The in-plane retardation Re (λ) at the wavelength λ of the produced optically anisotropic layer was measured with Axoscan manufactured by Axometrics. The results are shown in Table 1.
<有機EL表示装置の作製および表示性能の評価>
(表示装置への実装)
 有機ELパネル搭載のSAMSUNG社製GALAXY S4を分解し、円偏光板を剥離して、そこに上記の実施例で作製した円偏光板(P-1)~(P-3)を、偏光子保護フィルムが外側に配置されるように、表示装置に貼り合せた。
<Manufacturing of organic EL display device and evaluation of display performance>
(Mounting on display device)
GALAXY S4 manufactured by SAMSUNG, which is mounted on an organic EL panel, is disassembled, the circularly polarizing plate is peeled off, and the circularly polarizing plates (P-1) to (P-3) produced in the above examples are protected by the polarizing element. It was attached to the display device so that the film was placed on the outside.
(表示性能の評価)
(正面方向)
 作製した有機EL表示装置に黒表示をして、明光下において正面方向より観察し、色味づきを下記の基準で評価した。結果を表1に示す。
4:色味づきが全く視認されない。(許容)
3:色味づきがやや視認されるものの、わずか。(許容)
2:色味づきが視認されるが、反射光は小さく、使用上問題はない。(許容)
1:色味づきが視認され、反射光も大きく、許容できない。
(Evaluation of display performance)
(Front direction)
The organic EL display device produced was displayed in black, observed from the front under bright light, and the coloration was evaluated according to the following criteria. The results are shown in Table 1.
4: Coloring is not visible at all. (Allowable)
3: Although the color is slightly visible, it is slight. (Allowable)
2: Coloring is visible, but the reflected light is small and there is no problem in use. (Allowable)
1: Coloring is visible and reflected light is large, which is unacceptable.
(斜め方向)
 作製した有機EL表示装置に黒表示をして、明光下において、極角45°から蛍光灯を映し込んで、全方位から反射光を観察した。色味変化の方位角依存性を下記の基準で評価した。結果を表1に示す。
4:色味差が全く視認されない。(許容)
3:色味差が視認されるものの、ごくわずか。(許容)
2:色味差が視認されるが、反射光は小さく、使用上問題はない。(許容)
1:色味差が視認され、反射光も大きく、許容できない。
(Diagonal direction)
A black display was displayed on the produced organic EL display device, a fluorescent lamp was projected from a polar angle of 45 ° under bright light, and reflected light was observed from all directions. The azimuth dependence of color change was evaluated according to the following criteria. The results are shown in Table 1.
4: No color difference is visible. (Allowable)
3: Although the color difference is visible, it is very slight. (Allowable)
2: The color difference is visible, but the reflected light is small and there is no problem in use. (Allowable)
1: The color difference is visible and the reflected light is large, which is unacceptable.
 表1中、「面内レタデーション」は、光学異方性層の各波長における面内レタデーションを示す。 In Table 1, "in-plane retardation" indicates in-plane retardation at each wavelength of the optically anisotropic layer.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 上記表1に示すように、各実施例中の光学異方性層の位相差は逆波長分散性を示し、この光学異方性層を有機EL表示装置に使用すると、色味づきと反射が抑制されることが確認された。 As shown in Table 1 above, the phase difference of the optically anisotropic layer in each embodiment shows anti-wavelength dispersibility, and when this optically anisotropic layer is used in an organic EL display device, coloring and reflection occur. It was confirmed that it was suppressed.
<液晶表示装置の作製および表示性能の評価>
(円偏光板の作製)
 上記で作製した光学フィルム(F-1)を鹸化処理し、光学フィルム(F-1)に含まれる基板面に、前述の偏光子および前述の偏光子保護フィルムをポリビニルアルコール系接着剤を用いて貼り合せ、円偏光板(P-4)を作製した。このとき、偏光子の吸収軸と光学フィルム(F-1)の長手方向のなす角度が90°となるように貼り合せた。すなわち、偏光子の吸収軸に対する第2領域の面内遅相軸の回転角度は100°であり、偏光子の吸収軸に対する第1領域の第2領域側とは反対側の表面の面内遅相軸の回転角度は175°であった。
 なお、上記面内遅相軸の回転角度は、偏光子側から光学異方性層を観察して、偏光子の吸収軸方向を基準の0°とし、反時計回り方向に正、時計回りに負の角度値をもって表してある。
<Manufacturing of liquid crystal display devices and evaluation of display performance>
(Making a circular polarizing plate)
The optical film (F-1) produced above is sacinified, and the above-mentioned polarizing element and the above-mentioned polarizing element protection film are applied to the substrate surface contained in the optical film (F-1) using a polyvinyl alcohol-based adhesive. They were laminated to prepare a circular polarizing plate (P-4). At this time, the polarizing elements were bonded together so that the angle formed by the absorption axis in the longitudinal direction of the optical film (F-1) was 90 °. That is, the rotation angle of the in-plane slow-phase axis of the second region with respect to the polarizing element absorption axis is 100 °, and the in-plane delay of the surface of the surface opposite to the second region side of the first region with respect to the polarizing element absorption axis. The rotation angle of the phase axis was 175 °.
The rotation angle of the in-plane slow-phase axis is set to 0 ° with respect to the absorption axis direction of the substituent by observing the optically anisotropic layer from the splitter side, and is positive and clockwise in the counterclockwise direction. It is represented by a negative angle value.
(液晶表示装置1の作製)
 以下のようにして、VAモードの半透過型液晶表示装置1を作製した。液晶セルの配向膜はポリイミドを使用し、透過部のセルギャップは4.0μm、反射部のセルギャップはで2.0μmとした。この空隔部に、誘電率異方性が負であるネマチック液晶を注入した。この液晶セルの上下基板に電圧を印加しないときは、ネマチック液晶は垂直に配向していた。また、電圧を印加した際は、方位が180°異なる2方向にネマチック液晶が傾斜するようにセル基板に突起を形成した。この液晶セルに電圧を印加し、白表示する際の波長550nmにおける面内レタデーションは、透過部が280nm、反射部が140nmであり、無印加で黒表示する際の波長550nmにおける面内レタデーションは、透過部が0nm、反射部が0nmであった。
 この上下基板と該基板間に挟持された液晶層とからなる液晶セルに、上記作製した円偏光板(P-1)および円偏光板(P-4)を貼り合せて、半透過型液晶表示装置1を作製した。このとき、観察者側から、円偏光板(P-1)、液晶セル、円偏光板(P-4)、およびバックライトを、この順に配置した。また、円偏光板(P-1)は、観察者側から、偏光子および光学フィルム(F-1)がこの順となり、円偏光板(P-4)は、観察者側から、光学フィルム(F-1)および偏光子が、この順となるようにし、円偏光板(P-1)および円偏光板(P-4)に含まれる各々の偏光子の吸収軸のなす角度は90°となるように配置した。また、上下基板に挟持されたネマチック液晶が傾斜した際、該ネマチック液晶の長軸を該セル基板に投影した方向(面内遅相軸)の回転角度は45°であった。
 なお、上記投影した方向(面内遅相軸)の回転角度は、円偏光板(P-1)側から液晶セルを観察して、偏光子の吸収軸方向を基準の0°とし、反時計回り方向に正、時計回りに負の角度値をもって表してある。
(Manufacturing of liquid crystal display device 1)
A semi-transmissive liquid crystal display device 1 in VA mode was manufactured as follows. Polyimide was used for the alignment film of the liquid crystal cell, the cell gap of the transmissive part was 4.0 μm, and the cell gap of the reflective part was 2.0 μm. A nematic liquid crystal having a negative dielectric anisotropy was injected into this space. When no voltage was applied to the upper and lower substrates of this liquid crystal cell, the nematic liquid crystal was vertically oriented. Further, when a voltage was applied, protrusions were formed on the cell substrate so that the nematic liquid crystal was tilted in two directions in which the orientations differed by 180 °. The in-plane retardation at a wavelength of 550 nm when a voltage is applied to the liquid crystal cell and displayed in white is 280 nm in the transmitting portion and 140 nm in the reflecting portion, and the in-plane retardation at a wavelength of 550 nm when displaying in black without application is The transmissive part was 0 nm and the reflective part was 0 nm.
The circular polarizing plate (P-1) and the circular polarizing plate (P-4) produced above are attached to a liquid crystal cell composed of the upper and lower substrates and a liquid crystal layer sandwiched between the substrates to display a semi-transmissive liquid crystal display. The device 1 was manufactured. At this time, the circularly polarizing plate (P-1), the liquid crystal cell, the circularly polarizing plate (P-4), and the backlight were arranged in this order from the observer side. Further, the circularly polarizing plate (P-1) is in this order from the observer side, and the polarizing element and the optical film (F-1) are in this order, and the circularly polarizing plate (P-4) is the optical film (P-4) from the observer side. The F-1) and the polarizing elements are arranged in this order, and the angle formed by the absorption axis of each of the polarizing plates included in the circularly polarizing plate (P-1) and the circularly polarizing plate (P-4) is 90 °. Arranged so as to be. Further, when the nematic liquid crystal sandwiched between the upper and lower substrates was tilted, the rotation angle in the direction in which the long axis of the nematic liquid crystal was projected onto the cell substrate (in-plane slow phase axis) was 45 °.
The rotation angle in the projected direction (in-plane slow-phase axis) is set to 0 ° with respect to the absorption axis direction of the polarizing element by observing the liquid crystal cell from the circular polarizing plate (P-1) side, and counterclockwise. It is represented by a positive angle value in the clockwise direction and a negative angle value in the clockwise direction.
(円偏光板の作製)
 特許6770649の実施例1、または実施例25に記載の方法と同様にして、セルロースアシレートフィルム上に配向膜を形成し、さらにその上に、ディスコティック液晶化合物からなる光学異方性層H、または棒状液晶化合物からなる光学異方性層Qを作製した。このとき、下記のレタデーションと遅相軸角度となるように、塗布層の厚みとラビング角度を調整した。光学異方性層Hの波長550nmにおける面内レタデーションは、280nmであり、光学異方性層Qの波長550nmにおける面内レタデーションは、120nmであった。
 続いて、光学異方性層Q、光学異方性層H、前述の偏光子および前述の偏光子保護フィルムが、この順になるように粘着剤を用いて貼り合せて、円偏光板(P-5)を作製した。このとき、セルロースアシレートフィルムと配向膜は、光学異方性層Hおよび光学異方性層Qから剥離し、円偏光板には含まれないようにした。また、偏光子の吸収軸に対する光学異方性層Hの面内遅相軸の回転角度は-75°であり、偏光子の吸収軸に対する光学異方性層Qの面内遅相軸の回転角度は-15°となるように貼り合せた。
 なお、上記面内遅相軸の回転角度は、偏光子側から光学異方性層を観察して、偏光子の吸収軸方向を基準の0°とし、反時計回り方向に正、時計回りに負の角度値をもって表してある。
(Making a circular polarizing plate)
An optically anisotropic layer H made of a discotic liquid crystal compound is formed on an alignment film on a cellulose acylate film in the same manner as in the method described in Example 1 or Example 25 of Patent 6770649. Alternatively, an optically anisotropic layer Q made of a rod-shaped liquid crystal compound was produced. At this time, the thickness and rubbing angle of the coating layer were adjusted so as to have the following retardation and the slow axis angle. The in-plane retardation of the optically anisotropic layer H at a wavelength of 550 nm was 280 nm, and the in-plane retardation of the optically anisotropic layer Q at a wavelength of 550 nm was 120 nm.
Subsequently, the optically anisotropic layer Q, the optically anisotropic layer H, the above-mentioned polarizing element, and the above-mentioned polarizing element protective film are bonded together using an adhesive so as to be in this order, and a circular polarizing plate (P-) is attached. 5) was produced. At this time, the cellulose acylate film and the alignment film were separated from the optically anisotropic layer H and the optically anisotropic layer Q so as not to be included in the circularly polarizing plate. Further, the rotation angle of the in-plane slow-phase axis of the optically anisotropic layer H with respect to the absorption axis of the polarizing element is −75 °, and the rotation of the in-plane slow-phase axis of the optically anisotropic layer Q with respect to the absorption axis of the polarizing element is −75 °. They were pasted together so that the angle was -15 °.
The rotation angle of the in-plane slow-phase axis is set to 0 ° with respect to the absorption axis direction of the substituent by observing the optically anisotropic layer from the splitter side, and is positive and clockwise in the counterclockwise direction. It is represented by a negative angle value.
(液晶表示装置2の作製)
 以下のようにして、ECBモードの半透過型液晶表示装置2を作製した。液晶セルの配向膜はポリイミドで、ラビング方向は上下が平行となるようにした。透過部のセルギャップは4.0μm、反射部のセルギャップはで2.0μmであり、この空隔部に、誘電率異方性が正であるネマチック液晶を注入した。この液晶セルに電圧印加した際の波長550nmにおける面内レタデーションは、白表示時の透過部が280nm、白表示時の反射部が140nm、黒表示時の透過部が40nm、黒表示時の反射部が20nmであった。また、電圧印加によって上下基板に挟持されたネマチック液晶が傾斜した際、該ネマチック液晶の長軸を該セル基板に投影した方向(面内遅相軸)は上記ラビング方向と一致していた。
 この上下基板と該基板間に挟持された液晶層とからなる液晶セルに、上記作製した円偏光板(P-1)および円偏光板(P-5)を貼り合せて、半透過型液晶表示装置2を作製した。このとき、観察者側から、円偏光板(P-5)、液晶セル、円偏光板(P-1)、およびバックライトを、この順に配置した。また、円偏光板(P-5)は、観察者側から、偏光子、光学異方性層Hおよび光学異方性層Qがこの順となり、円偏光板(P-1)は、観察者側から、光学フィルム(F-1)および偏光子が、この順となるように配置した。また、円偏光板(P-5)および円偏光板(P-1)に含まれる各々の偏光子の吸収軸のなす角度は90°となるようにし、液晶セルの配向膜に施したラビング方向と円偏光板(P-5)に含まれる光学異方性層Qの面内遅相軸方向のなす角度は0°となるように配置した。
(Manufacturing of liquid crystal display device 2)
An ECB mode semi-transmissive liquid crystal display device 2 was manufactured as follows. The alignment film of the liquid crystal cell was polyimide, and the rubbing direction was set so that the top and bottom were parallel. The cell gap of the transmissive part was 4.0 μm and the cell gap of the reflective part was 2.0 μm, and a nematic liquid crystal having a positive dielectric anisotropy was injected into this gap. The in-plane retardation at a wavelength of 550 nm when a voltage is applied to this liquid crystal cell is as follows: a transmissive part at white display is 280 nm, a reflective part at white display is 140 nm, a transmissive part at black display is 40 nm, and a reflective part at black display. Was 20 nm. Further, when the nematic liquid crystal sandwiched between the upper and lower substrates was tilted by applying a voltage, the direction in which the long axis of the nematic liquid crystal was projected onto the cell substrate (in-plane slow phase axis) coincided with the rubbing direction.
The circular polarizing plate (P-1) and the circular polarizing plate (P-5) produced above are attached to a liquid crystal cell composed of the upper and lower substrates and a liquid crystal layer sandwiched between the substrates to display a semi-transmissive liquid crystal display. The device 2 was manufactured. At this time, the circularly polarizing plate (P-5), the liquid crystal cell, the circularly polarizing plate (P-1), and the backlight were arranged in this order from the observer side. Further, in the circularly polarizing plate (P-5), the splitter, the optically anisotropic layer H, and the optically anisotropic layer Q are in this order from the observer side, and the circularly polarizing plate (P-1) is the observer. From the side, the optical film (F-1) and the polarizing element were arranged in this order. Further, the angle formed by the absorption axes of the polarizing plates included in the circular polarizing plate (P-5) and the circular polarizing plate (P-1) is set to 90 °, and the rubbing direction is applied to the alignment film of the liquid crystal cell. And the optically anisotropic layer Q contained in the circularly polarizing plate (P-5) were arranged so that the angle formed by the in-plane slow phase axial direction was 0 °.
(表示性能の評価)
 上記作製したVAモードの半透過型液晶表示装置1とECBモードの液晶表示装置2の透過部および反射部について、印加電圧を調整して、黒表示と白表示の視認性を目視評価した。いずれの表示装置においても、良好な白/黒コントラストを示し、本実施例の光学異方性層が液晶表示装置に好適に用いることができることを確認した。
(Evaluation of display performance)
The applied voltage was adjusted for the transmissive portion and the reflective portion of the VA mode semi-transmissive liquid crystal display device 1 and the ECB mode liquid crystal display device 2 produced above, and the visibility of the black display and the white display was visually evaluated. It was confirmed that the optically anisotropic layer of this example can be suitably used for the liquid crystal display device, showing good white / black contrast in any of the display devices.
<実施例5>
(光学異方性層の形成)
 実施例2で作製した配向膜に連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルムの長手方向(搬送方向)とラビングローラーの回転軸とのなす角度は90°とした。
<Example 5>
(Formation of optically anisotropic layer)
The alignment film prepared in Example 2 was continuously subjected to a rubbing treatment. At this time, the longitudinal direction of the long film and the conveying direction are parallel, and the angle between the longitudinal direction of the film (transporting direction) and the rotation axis of the rubbing roller is 90 °.
 上記ラビング処理した配向膜付きセルロースアシレートフィルムを基板として、ギーサー塗布機を用いて、下記の組成の棒状液晶化合物を含む光学異方性層形成用組成物(5)を塗布して、組成物層を形成した(工程1Cに該当)。
 次に、得られた組成物層を120℃で80秒間加熱した(工程2Cに該当)。この加熱により組成物層の棒状液晶化合物が所定の方向に配向した。
 その後、酸素を含む空気(酸素濃度:約20体積%)下、40℃にて、365nmLEDランプ(アクロエッジ(株)製)を使用して紫外線を組成物層に5秒間照射した(照射量:30mJ/cm2)(工程3Cに該当)。
 続いて、得られた組成物層を90℃で10秒間加熱した(工程4Cに該当)。
 その後、窒素パージを行って、酸素濃度100体積ppmとして、55℃にて、メタルハライドランプ(アイグラフィックス(株)製)を使用して紫外線を組成物層に照射し(照射量:500mJ/cm2)、液晶化合物の配向状態を固定した光学異方性層を形成した(工程5Cに該当)。このようにして光学フィルム(F-5)を作製した。
Using the rubbing-treated cellulose acylate film with an alignment film as a substrate, the composition (5) for forming an optically anisotropic layer containing a rod-shaped liquid crystal compound having the following composition is applied using a Gieser coating machine to obtain a composition. A layer was formed (corresponding to step 1C).
Next, the obtained composition layer was heated at 120 ° C. for 80 seconds (corresponding to step 2C). By this heating, the rod-shaped liquid crystal compound of the composition layer was oriented in a predetermined direction.
Then, the composition layer was irradiated with ultraviolet rays for 5 seconds using a 365 nm LED lamp (manufactured by Acroedge Co., Ltd.) at 40 ° C. under oxygen-containing air (oxygen concentration: about 20% by volume) (irradiation amount:). 30 mJ / cm 2 ) (corresponding to step 3C).
Subsequently, the obtained composition layer was heated at 90 ° C. for 10 seconds (corresponding to step 4C).
After that, nitrogen purging was performed to irradiate the composition layer with ultraviolet rays using a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 55 ° C. with an oxygen concentration of 100 volume ppm (irradiation amount: 500 mJ / cm). 2 ) An optically anisotropic layer was formed in which the orientation state of the liquid crystal compound was fixed (corresponding to step 5C). In this way, an optical film (F-5) was produced.
――――――――――――――――――――――――――――――――――
 光学異方性層形成用組成物(5)
――――――――――――――――――――――――――――――――――
下記の棒状液晶化合物(F)                42質量部
下記の棒状液晶化合物(G)                42質量部
下記の棒状液晶化合物(H)                12質量部
下記の棒状液晶化合物(I)                 4質量部
NKエステル A-200(新中村化学社製)         1質量部
ハイソルブ MTEM(東邦化学工業社製)          2質量部
光重合開始剤(Irgacure819、BASF社製)    3質量部
上記のポリマー(A)                 0.08質量部
上記の感光性化合物(A)                0.4質量部
上記のイオン性化合物(A)               3.0質量部
メチルエチルケトン                   156質量部
――――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――――
Composition for forming an optically anisotropic layer (5)
――――――――――――――――――――――――――――――――――
The following rod-shaped liquid crystal compound (F) 42 parts by mass The following rod-shaped liquid crystal compound (G) 42 parts by mass The following rod-shaped liquid crystal compound (H) 12 parts by mass The following rod-shaped liquid crystal compound (I) 4 parts by mass NK ester A-200 ( (Manufactured by Shin-Nakamura Chemical Co., Ltd.) 1 part by mass High solve MTEM (manufactured by Toho Chemical Industry Co., Ltd.) 2 parts by mass Photopolymerization initiator (Irgacure819, manufactured by BASF) 3 parts by mass The above polymer (A) 0.08 part by mass The above photosensitive Compound (A) 0.4 parts by mass 3.0 parts by mass of the above ionic compound (A) Methyl ethyl ketone 156 parts by mass ―――――――――――――――――――――――― ――――――――――
棒状液晶化合物(F) Rod-shaped liquid crystal compound (F)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
棒状液晶化合物(G) Rod-shaped liquid crystal compound (G)
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
棒状液晶化合物(H) Rod-shaped liquid crystal compound (H)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
棒状液晶化合物(I) Rod-shaped liquid crystal compound (I)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 上記で作製した光学フィルム(F-5)をラビング方向と平行に切削し、偏光顕微鏡で光学異方性層を断面方向から観察した。光学異方性層の厚みは4.3μmであり、光学異方性層の基板側の厚み2.4μmの領域(第2領域)はホモジニアス配向であり、光学異方性層の空気側(基板と反対側)の厚み1.9μmの領域(第1領域)は液晶化合物がホメオトロピック配向していた。
 なお、Axometrics社のAxoscan、および、同社の解析ソフトウェア(Multi-Layer Analysis)を用いて、光学フィルム(F-5)の光学特性を求めた。第2領域の波長550nmにおける面内レタデーション(Δn2d2)は130nmであり、フィルムの長手方向に対する面内遅相軸の角度は0°であった。また、第1領域の波長550nmにおける面内レタデーション(Δn1d1)は0nm、第1領域の波長550nmにおける厚み方向のレタデーションは-100nmであった。
 なお、面内遅相軸の角度は、フィルムの長手方向を基準の0°とする。
The optical film (F-5) produced above was cut in parallel with the rubbing direction, and the optically anisotropic layer was observed from the cross-sectional direction with a polarizing microscope. The thickness of the optically anisotropic layer is 4.3 μm, and the region (second region) having a thickness of 2.4 μm on the substrate side of the optically anisotropic layer is homogenously oriented, and the air side (substrate) of the optically anisotropic layer. The liquid crystal compound was homeotropically oriented in the region (first region) having a thickness of 1.9 μm (on the opposite side).
The optical characteristics of the optical film (F-5) were determined using Axoscan of Axometrics and analysis software (Multi-Layer Analysis) of the same company. The in-plane retardation (Δn2d2) at a wavelength of 550 nm in the second region was 130 nm, and the angle of the in-plane slow phase axis with respect to the longitudinal direction of the film was 0 °. The in-plane retardation (Δn1d1) at a wavelength of 550 nm in the first region was 0 nm, and the retardation in the thickness direction at a wavelength of 550 nm in the first region was −100 nm.
The angle of the in-plane slow phase axis is 0 ° with respect to the longitudinal direction of the film.
(液晶表示装置の光学補償板の作製)
 上記で作製した光学フィルム(F-5)を鹸化処理し、光学フィルム(F-5)に含まれる光学異方性層面に、前述の偏光子および前述の偏光子保護フィルムをポリビニルアルコール系接着剤を用いて連続的に貼り合せ、長尺状の偏光板(P-6)を作製した。つまり、偏光板(P-6)は、偏光子保護フィルム、偏光子、光学異方性層、および、基板をこの順で有していた。
 なお、偏光子の吸収軸は偏光板の長手方向と一致しており、偏光子の吸収軸に対する第2領域の面内遅相軸の回転角度は0°であった。
 なお、上記面内遅相軸の回転角度は、偏光子側から光学異方性層を観察して、偏光板の長手方向を基準の0°とする。
(Manufacturing of optical compensation plate for liquid crystal display device)
The optical film (F-5) produced above is sacinified, and the above-mentioned polarizing element and the above-mentioned polarizing element protective film are applied to the optically anisotropic layer surface contained in the optical film (F-5) with a polyvinyl alcohol-based adhesive. A long polarizing plate (P-6) was prepared by continuously laminating with each other. That is, the polarizing plate (P-6) had a polarizing element protective film, a polarizing element, an optically anisotropic layer, and a substrate in this order.
The absorption axis of the polarizing element coincided with the longitudinal direction of the polarizing plate, and the rotation angle of the in-plane slow-phase axis of the second region with respect to the absorption axis of the polarizing element was 0 °.
The rotation angle of the in-plane slow-phase axis is set to 0 ° with respect to the longitudinal direction of the polarizing plate by observing the optically anisotropic layer from the splitter side.
(液晶表示装置3の作製)
 市販の液晶表示装置(iPad(登録商標)、Apple社製)(FFSモードの液晶セルを含む液晶表示装置)からの表側の偏光板を剥がして、上記作製した偏光板(P-6)を、光学フィルム側が液晶セル側に配置されるように、かつ、偏光子の吸収軸がバックライト側の偏光板中の偏光子の吸収軸と直交するように、20μmのアクリル系粘着剤で貼り合わせ、液晶表示装置3を作製した。
(Manufacturing of liquid crystal display device 3)
The polarizing plate (P-6) produced above was obtained by peeling off the polarizing plate on the front side from a commercially available liquid crystal display device (iPad (registered trademark), manufactured by Apple) (a liquid crystal display device including a liquid crystal cell in FFS mode). Attach with a 20 μm acrylic adhesive so that the optical film side is arranged on the liquid crystal cell side and the absorption axis of the polarizing element is orthogonal to the absorption axis of the polarizing element in the polarizing plate on the backlight side. A liquid crystal display device 3 was manufactured.
(表示性能の評価)
 上記作製した液晶表示装置3について、印加電圧を調整して、黒表示と白表示の斜め方向の視認性を目視評価した。液晶表示装置3は良好な白/黒コントラストを示し、本実施例の光学異方性層が液晶表示装置の光学補償板に好適に用いることができることを確認した。
(Evaluation of display performance)
With respect to the liquid crystal display device 3 produced above, the applied voltage was adjusted, and the visibility in the diagonal direction of the black display and the white display was visually evaluated. The liquid crystal display device 3 showed good white / black contrast, and it was confirmed that the optically anisotropic layer of this example can be suitably used for the optical compensation plate of the liquid crystal display device.
 10  基板
 12,120,220,320,420  組成物層
 12A,120A,220A,320A,420A  下側領域
 12B,120B,220B,320B,420B  上側領域
 20  光学異方性層
 22  他の光学異方性層
 24  積層体
 26  偏光子
 28  偏光子付き光学異方性層
 
10 Substrate 12, 120, 220, 320, 420 Composition layer 12A, 120A, 220A, 320A, 420A Lower region 12B, 120B, 220B, 320B, 420B Upper region 20 Optical anisotropy layer 22 Other optical anisotropy Layer 24 Laminated body 26 Polarizer 28 Optically anisotropic layer with splitter

Claims (8)

  1.  重合性基を有する液晶化合物を含む組成物層を形成する工程1と、
     前記組成物層に加熱処理を施して、前記組成物層中の前記液晶化合物を配向させる工程2と、
     前記工程2の後、酸素濃度1体積%以上の条件下にて、前記組成物層に対して、光照射を50秒間以下、かつ、300mJ/cm2以下で行う工程3と、
     前記工程3の後、前記組成物層に、前記光照射時より高い温度で加熱処理を施す工程4と、
     前記工程4の後、前記組成物層に対して硬化処理を施して、前記液晶化合物の配向状態が異なる領域を厚み方向に沿って複数有する光学異方性層を形成する工程5と、を有する、光学異方性層の製造方法。
    Step 1 of forming a composition layer containing a liquid crystal compound having a polymerizable group, and
    Step 2 of subjecting the composition layer to heat treatment to orient the liquid crystal compound in the composition layer,
    After the step 2, the composition layer is irradiated with light for 50 seconds or less and at 300 mJ / cm 2 or less under the condition of an oxygen concentration of 1% by volume or more.
    After the step 3, the composition layer is heat-treated at a temperature higher than that at the time of the light irradiation, and the step 4
    After the step 4, the composition layer is subjected to a curing treatment to form an optically anisotropic layer having a plurality of regions having different orientation states of the liquid crystal compound along the thickness direction. , A method for manufacturing an optically anisotropic layer.
  2.  前記組成物層が光重合開始剤および光増感剤からなる群から選択される感光材料を含み、
     前記工程3における光照射の波長における前記感光材料のモル吸光係数が5000L/(mol・cm)以下である、請求項1に記載の光学異方性層の製造方法。
    The composition layer comprises a photosensitive material selected from the group consisting of a photopolymerization initiator and a photosensitizer.
    The method for producing an optically anisotropic layer according to claim 1, wherein the molar extinction coefficient of the photosensitive material at the wavelength of light irradiation in the step 3 is 5000 L / (mol · cm) or less.
  3.  前記組成物層が、キラル剤を含み、
     前記キラル剤が、光照射により螺旋誘起力が変化する感光性キラル剤を含む、請求項1または2に記載の光学異方性層の製造方法。
    The composition layer contains a chiral agent and
    The method for producing an optically anisotropic layer according to claim 1 or 2, wherein the chiral agent contains a photosensitive chiral agent whose spiral-inducing force is changed by light irradiation.
  4.  前記液晶化合物の全質量に対する、前記キラル剤の合計含有量が、5.0質量%以下である、請求項3に記載の光学異方性層の製造方法。 The method for producing an optically anisotropic layer according to claim 3, wherein the total content of the chiral auxiliary with respect to the total mass of the liquid crystal compound is 5.0% by mass or less.
  5.  前記液晶化合物の全質量に対する、前記キラル剤の合計含有量が、5.0質量%超である、請求項3に記載の光学異方性層の製造方法。 The method for producing an optically anisotropic layer according to claim 3, wherein the total content of the chiral auxiliary with respect to the total mass of the liquid crystal compound is more than 5.0% by mass.
  6.  前記組成物層が、光照射により極性が変化する感光性化合物を含む、請求項1または2に記載の光学異方性層の製造方法。 The method for producing an optically anisotropic layer according to claim 1 or 2, wherein the composition layer contains a photosensitive compound whose polarity changes with light irradiation.
  7.  前記感光性化合物が、光照射により親水化する感光性化合物である、請求項6に記載の光学異方性層の製造方法。 The method for producing an optically anisotropic layer according to claim 6, wherein the photosensitive compound is a photosensitive compound that becomes hydrophilic by light irradiation.
  8.  前記工程4における前記加熱処理の温度が、前記液晶化合物が等方相となる温度以上である、請求項1または2に記載の光学異方性層の製造方法。 The method for producing an optically anisotropic layer according to claim 1 or 2, wherein the temperature of the heat treatment in the step 4 is equal to or higher than the temperature at which the liquid crystal compound becomes an isotropic phase.
PCT/JP2021/027346 2020-08-04 2021-07-21 Method for manufacturing optically anisotropic layer WO2022030266A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237003823A KR20230031360A (en) 2020-08-04 2021-07-21 Manufacturing method of optically anisotropic layer
JP2022541436A JP7480306B2 (en) 2020-08-04 2021-07-21 Method for producing optically anisotropic layer
CN202180057967.1A CN116113858A (en) 2020-08-04 2021-07-21 Method for producing optically anisotropic layer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020-132348 2020-08-04
JP2020132348 2020-08-04
JP2021040068 2021-03-12
JP2021-040068 2021-03-12
JP2021112885 2021-07-07
JP2021-112885 2021-07-07

Publications (1)

Publication Number Publication Date
WO2022030266A1 true WO2022030266A1 (en) 2022-02-10

Family

ID=80117292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027346 WO2022030266A1 (en) 2020-08-04 2021-07-21 Method for manufacturing optically anisotropic layer

Country Status (4)

Country Link
JP (1) JP7480306B2 (en)
KR (1) KR20230031360A (en)
CN (1) CN116113858A (en)
WO (1) WO2022030266A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145071A (en) * 2002-10-25 2004-05-20 Fuji Photo Film Co Ltd Optical retardation plate and its manufacturing method
JP2010112986A (en) * 2008-11-04 2010-05-20 Konica Minolta Opto Inc Method for producing optical film, optical film production device, optical film and liquid crystal display
JP2014199359A (en) * 2013-03-29 2014-10-23 富士フイルム株式会社 Optical film for three-dimensional (3d) image display device and method for producing the same, polarizing plate, and 3d image display device
WO2015005122A1 (en) * 2013-07-08 2015-01-15 富士フイルム株式会社 Optical film, polarizer, image display device, and optical-film manufacturing device
JP2015087472A (en) * 2013-10-29 2015-05-07 日本ゼオン株式会社 Production method of article, and counterfeit preventive medium
WO2018030190A1 (en) * 2016-08-09 2018-02-15 Jnc株式会社 Polymerizable liquid crystal composition and liquid crystal polymer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9128322B2 (en) 2013-03-25 2015-09-08 Fujifilm Corporation Phase difference plate for circularly polarizing plate, circularly polarizing plate, and organic electroluminescence display apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145071A (en) * 2002-10-25 2004-05-20 Fuji Photo Film Co Ltd Optical retardation plate and its manufacturing method
JP2010112986A (en) * 2008-11-04 2010-05-20 Konica Minolta Opto Inc Method for producing optical film, optical film production device, optical film and liquid crystal display
JP2014199359A (en) * 2013-03-29 2014-10-23 富士フイルム株式会社 Optical film for three-dimensional (3d) image display device and method for producing the same, polarizing plate, and 3d image display device
WO2015005122A1 (en) * 2013-07-08 2015-01-15 富士フイルム株式会社 Optical film, polarizer, image display device, and optical-film manufacturing device
JP2015087472A (en) * 2013-10-29 2015-05-07 日本ゼオン株式会社 Production method of article, and counterfeit preventive medium
WO2018030190A1 (en) * 2016-08-09 2018-02-15 Jnc株式会社 Polymerizable liquid crystal composition and liquid crystal polymer

Also Published As

Publication number Publication date
KR20230031360A (en) 2023-03-07
CN116113858A (en) 2023-05-12
JP7480306B2 (en) 2024-05-09
JPWO2022030266A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
JP6231293B2 (en) Liquid crystal composition, retardation plate, circularly polarizing plate, and image display device
WO2019017483A1 (en) Liquid crystal display device
US11834600B2 (en) Liquid crystal composition, optical film, circularly polarizing plate for organic EL display, and method for producing optically anisotropic layer
US11841521B2 (en) Optical film, circularly polarizing plate, and organic electroluminescence display device
WO2004079416A1 (en) Method for producing film with twisted tilted alignment, film with twisted tilted alignment, and image display using same
WO2014157182A1 (en) Laminated polarizing plate and horizontal alignment liquid crystal display device
US20230176438A1 (en) Optically anisotropic layer
WO2021033631A1 (en) Optical anisotropic layer production method, laminate production method, polarizer-equipped optical anisotropic layer production method, polarizer-equipped laminate production method, composition, and optical anisotropic layer
WO2022030266A1 (en) Method for manufacturing optically anisotropic layer
JP2003232922A (en) Polarizing plate and liquid crystal display
WO2022054556A1 (en) Polarizing plate and organic electroluminescence display device
WO2022030218A1 (en) Optically anisotropic layer
JP7420956B2 (en) Optical films, circularly polarizing plates, organic electroluminescent display devices
WO2021132624A1 (en) Optical film, circularly polarizing plate, and organic electroluminescence display device
JP7217369B2 (en) Optical film, circularly polarizing plate, organic electroluminescence display
JP7364631B2 (en) liquid crystal display device
WO2022045188A1 (en) Optical film, circularly polarizing plate, and organic electroluminescence display device
JP7506754B2 (en) Optical films, circular polarizing plates, organic electroluminescence displays
JP2022182619A (en) Optical element, laminate, display device, and manufacturing method of optical element
WO2022045187A1 (en) Optical film, circularly polarizing plate, and organic electroluminescent display device
WO2021261435A1 (en) Circularly polarizing plate and organic electroluminescence display device
WO2024062850A1 (en) Optical film, method for producing optical film, polarizing plate, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541436

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237003823

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852679

Country of ref document: EP

Kind code of ref document: A1