WO2022030116A1 - 生体センサ及び生体状態判別方法 - Google Patents

生体センサ及び生体状態判別方法 Download PDF

Info

Publication number
WO2022030116A1
WO2022030116A1 PCT/JP2021/023292 JP2021023292W WO2022030116A1 WO 2022030116 A1 WO2022030116 A1 WO 2022030116A1 JP 2021023292 W JP2021023292 W JP 2021023292W WO 2022030116 A1 WO2022030116 A1 WO 2022030116A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
living body
wavelength band
light receiving
Prior art date
Application number
PCT/JP2021/023292
Other languages
English (en)
French (fr)
Inventor
敦史 伊藤
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to CN202180058593.5A priority Critical patent/CN116157075A/zh
Priority to EP21852487.4A priority patent/EP4173573A4/en
Priority to JP2022541140A priority patent/JPWO2022030116A1/ja
Priority to US18/006,968 priority patent/US20230284904A1/en
Publication of WO2022030116A1 publication Critical patent/WO2022030116A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4261Evaluating exocrine secretion production
    • A61B5/4266Evaluating exocrine secretion production sweat secretion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • A61B5/14517Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for sweat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety

Definitions

  • the technology according to the present disclosure (hereinafter, also referred to as “the present technology”) relates to a biological sensor and a biological state determination method.
  • the main purpose of this technique is to provide a biological sensor and a biological condition discrimination method that can easily discriminate the state of a living body.
  • This technology is an irradiation system that irradiates a living body with irradiation light including light having a wavelength within the wavelength band including the peak wavelength related to water absorption.
  • a light receiving system that individually receives light having a wavelength within the wavelength band among the light emitted from the irradiation system and reflected by each of the plurality of parts of the living body.
  • the processing system may determine the state of the living body by using the first distribution which is the distribution of the number of signals for each signal value of the signal for each part.
  • the processing system may determine the state of the living body from the feature amount of the first distribution.
  • the feature amount of the first distribution may be the number of signals whose signal value of the signal for each part is equal to or less than the reference value.
  • the reference value may be the average value of the signal values of the signals for each part.
  • the feature amount of the first distribution may be the median value, the average value, or the mode value of the signal value of the signal for each part.
  • the processing system may further determine the state of the living body by further using a second distribution which is a distribution of the number of signals for each signal value of the signal for each part according to the reflectance distribution of the plurality of parts themselves. good.
  • the processing system may determine the state of the living body by comparing the feature amounts of the first and second distributions.
  • the feature amount of the second distribution may be a feature amount corresponding to the feature amount of the first distribution.
  • the feature amount of the first distribution is the ratio of the number of signals whose signal values match a plurality of values among the signals of each part in the first distribution, and the feature amount of the second distribution is. , The ratio of the number of signals whose signal values match the plurality of values among the signals for each part in the second distribution may be used.
  • the light receiving system includes a light receiving element array including a plurality of light receiving elements corresponding to the plurality of portions, and an optical system corresponding to the plurality of light receiving elements, and the optical system is irradiated from the irradiation system.
  • the light having a wavelength within the wavelength band may be guided to the light receiving element corresponding to the portion.
  • the irradiation light includes only light having a wavelength within the wavelength band, and the optical system corresponds to the light receiving element having a wavelength within the wavelength band irradiated from the irradiation system and reflected at the corresponding portion. It may have an optical member leading to.
  • the irradiation light includes light having a wavelength within the wavelength band and light having a wavelength outside the wavelength band, and the optical system is the wavelength of the light emitted from the irradiation system and reflected at each of the plurality of sites. It may have a wavelength selection filter that selectively passes light of a wavelength within the band.
  • the optical system may have an optical member that guides light having a wavelength within the wavelength band that has passed through the wavelength selection filter to a corresponding light receiving element.
  • the optical system may have an optical member that guides light having a wavelength within the wavelength band to a corresponding light receiving element via the wavelength selection filter.
  • the irradiation system includes a light source that emits light having a wavelength within the wavelength band and light having a wavelength outside the wavelength band, and light having the wavelength band emitted from the light source and light having a wavelength outside the wavelength band. It may have a wavelength selection filter that selectively passes light in the wavelength band.
  • the optical system may have an optical member that guides light having a wavelength within the wavelength band reflected at the corresponding portion through the wavelength selection filter to the corresponding light receiving element.
  • the irradiation system may be arranged between two adjacent light receiving elements among the plurality of light receiving elements, and may include at least one light source that emits light including light having a wavelength within the wavelength band. Further comprising a light guide plate disposed between the optical system and the living body, the irradiation system includes a light source that emits light including light having a wavelength within the wavelength band, and the light guide plate is from the light source. Of the emitted light, light having a wavelength within the wavelength band may be guided, and the light within the wavelength band may be incident on each of the plurality of portions.
  • the light guide plate may be transparent to light having a wavelength within the wavelength band.
  • the light guide plate has a plurality of diffractive portions corresponding to the plurality of light receiving elements on the optical system side, and each of the plurality of diffractive portions corresponds to light having a wavelength within the incident wavelength band. It may be diffracted toward the site.
  • a circular polarizing plate arranged between the light receiving element array and the living body may be further provided.
  • the state of the living body may be a mental state estimated from the sweating state of each part.
  • This technology The process of irradiating a living body with irradiation light including light having a wavelength within the wavelength band including the peak wavelength related to water absorption, and A step of individually receiving light having a wavelength within the wavelength band among the light emitted from the irradiation system and reflected by each of the plurality of parts of the living body, and outputting a signal for each part.
  • FIG. 3 is a diagram showing the average value of the signal values of the first distribution and the second distribution.
  • FIG. 3 is a diagram showing the median values of the signal values of the first distribution and the second distribution.
  • FIG. 3 is a diagram showing the mode values of the signal values of the first distribution and the second distribution. It is a flowchart for demonstrating the biological state determination process 1.
  • each of the biological sensor and the biological condition determination method according to the present technology exerts a plurality of effects, each of the biological sensor and the biological condition determination method according to the present technology is at least one. It should be effective.
  • the effects described herein are merely exemplary and not limited, and may have other effects.
  • a sweating measuring device is widely used as a means for measuring a person's mental state.
  • a ventilation capsule type measuring device in which the skin is covered with a capsule and the humidity change due to sweating is observed is known.
  • a skin electrical activity (EDA) measuring device for electrically measuring a sweating phenomenon is also used.
  • the EDA measuring device uses a phenomenon in which the impedance and conductance of the skin change as a result of the influence of organs such as eccrine sweat glands on the skin by human mental activity.
  • the EDA measuring device is widely used because it can be realized by simply attaching two electrodes to the skin as compared with the ventilation capsule type measuring device.
  • both the ventilation capsule type measuring device and the EDA measuring device it is necessary to bring the measuring unit into contact with the skin, and there is a problem that discomfort occurs when the measuring device is attached.
  • these sweat measurement devices are not widely used and are often used in specialized institutions such as hospitals. If it becomes possible to use the sweat measurement device, which has restrictions on the usage environment, easily (easily) without discomfort, the services provided will be dynamically changed according to the mental state of the person. It can be expected that the product market will expand.
  • the inventor has made a non-contact type biological sensor that can easily discriminate the state of a living body (for example, the human body) (for example, the mental state estimated from the sweating state of the living body) as described below. Has led to the development of.
  • the measuring unit irradiates the surface (for example, skin) of the living body (for example, the human body) with light and receives the reflected light, so that the state of the living body (for example, the human body) is received. It is an optical sensor that discriminates the mental state) according to the sweating situation.
  • the biosensor according to the embodiment is a non-contact type biosensor used in a state where at least the measuring unit is in non-contact with the living body.
  • Examples of the usage form of the biological sensor according to this technology include a wristband type, an earring type, a ring type, a necklace type, a sticking type, a supporter type, and the like, which are attached to a living body and used, as well as to a living body.
  • a wide variety of forms are envisioned, such as portable ones that are used by holding them up.
  • FIG. 1 is a diagram schematically showing the configuration of the biological sensor 10-1 according to the first embodiment of the embodiment.
  • the measurement unit of the biological sensor 10-1 irradiation system 100-1 and light receiving system 200-1 described later
  • FIG. 2 is a block diagram showing a functional example 1 of the biological sensor 10-1 according to the first embodiment of the embodiment.
  • the biological sensor 10-1 of the first embodiment includes an irradiation system 100-1, a light receiving system 200-1, and a processing system 300-1.
  • the irradiation system 100-1 and the light receiving system 200-1 are provided integrally, for example.
  • the processing system 300-1 may be provided integrally with the irradiation system 100-1 and the light receiving system 200-1, or may be a separate body. As shown in FIG. 1, the biological sensor 10-1 is used in a state where the measuring unit including the irradiation system 100-1 and the light receiving system 200-1 is not in contact with the living body LB (for example, in a state of being close to each other). ..
  • the living body LB includes, for example, not only the human body but also the body of an animal other than human.
  • the irradiation system 100-1 irradiates the living body LB (specifically, the surface of the living body LB) with irradiation light IL containing light having a wavelength within the wavelength band WB including the peak wavelength ⁇ P related to water absorption.
  • the peak wavelength ⁇ P relating to water absorption is a wavelength having a peak (maximum value) in a graph showing a water absorption spectrum (horizontal axis: wavelength, vertical axis: absorbance).
  • the wavelength band WB is, for example, a wavelength band having a plurality (for example, two) in the wavelength range of 1300 nm to 2100 nm and having relatively high water absorption.
  • the first wavelength band WB1 including the peak wavelength ⁇ P1 (for example, 1450 nm).
  • the first wavelength band WB1 is preferably, for example, ⁇ P1 ⁇ 100 nm ⁇ WB1 ⁇ ⁇ P1 + 100 nm, and more preferably ⁇ P1 -50 nm ⁇ WB1 ⁇ ⁇ P1 + 50 nm.
  • the other of the above two wavelength bands WB is a second wavelength band WB2 including a peak wavelength ⁇ P2 (for example, 1940 nm).
  • the second wavelength band WB2 is preferably, for example, ⁇ P2 ⁇ 100 nm ⁇ WB2 ⁇ ⁇ P2 + 100 nm, and more preferably ⁇ P2 -50 nm ⁇ WB2 ⁇ ⁇ P2 + 50 nm.
  • the irradiation system 100-1 includes a light source 110a.
  • the light source 110a is, for example, a halogen lamp, an LED (light emitting diode), a laser, or the like.
  • the light emitted by the light source 110a may be visible light or invisible light, but invisible light (for example, infrared light) is preferable.
  • the light source 110a emits light from a direction inclined with respect to the surface of the living body LB when the light receiving system 200-1 faces the surface of the living body LB. Positioned relative to 200-1.
  • the light source 110a emits light having a wavelength within the wavelength band WB and light having a wavelength outside the wavelength band WB.
  • the light emitted from the light source 110a is the irradiation light IL. That is, the irradiation light IL includes light having a wavelength within the wavelength band WB and light having a wavelength outside the wavelength band WB.
  • the irradiation light IL may include light having a wavelength within at least one of the first and second wavelength bands WB1 and WB2. More specifically, the irradiation light IL may contain light of at least one wavelength in the first wavelength band WB1 or may contain light of at least one wavelength in the second wavelength band WB2. Alternatively, it may contain light having at least one wavelength in the first wavelength band WB1 and light having at least one wavelength in the second wavelength band WB2.
  • the light receiving system 200-1 individually receives light having a wavelength within the wavelength band WB among the light emitted from the irradiation system 100-1 and reflected by each of the plurality of parts of the living body LB.
  • the light receiving system 200-1 includes a light receiving element array 210 including a plurality of (for example) light receiving elements 210a, and an optical system 220-1 corresponding to the plurality of light receiving elements 210a.
  • the plurality of light receiving elements 210a are arranged in a two-dimensional array.
  • the plurality of light receiving elements 210a correspond to a plurality of parts (for example, LB1 to LB6) of the living body LB, respectively.
  • Each light receiving element 210a has sensitivity in the wavelength range of, for example, 1400 nm to 2000 nm.
  • Each light receiving element 210a is a pixel sensor made of, for example, a material such as InGaAs, PbSe, InSb or the like. That is, the light receiving element array 210 is an image sensor (area sensor) including a plurality of pixel sensors.
  • a relatively inexpensive pixel sensor made of InGaAs has sensitivity to wavelengths of about 1700 nm or less.
  • the irradiation light IL may include light having a wavelength within the first wavelength band WB1.
  • Each light receiving element 210a photoelectrically converts the incident light and outputs an electric signal.
  • a PD photodiode
  • the light receiving element is also referred to as, for example, a "light receiver", a "photodetector” or the like.
  • the optical system 220-1 guides the light having a wavelength within the wavelength band WB among the light emitted from the irradiation system 100-1 and reflected by each of the plurality of parts of the living body LB to the light receiving element 210a corresponding to the part.
  • the optical system 220-1 has a lens array 220a (optical member) including a plurality of light receiving lenses 220a1 and a wavelength selection filter 220b.
  • the lens array 220a and the wavelength selection filter 220b are adjacent to each other so that the lens array 220a is arranged on the light receiving element array 210 side and the wavelength selection filter 220b is arranged on the biological LB side. Have been placed.
  • the wavelength selection filter 220b selectively passes light having a wavelength within the wavelength band WB among the light irradiated from the irradiation system 100-1 and reflected by each of the plurality of parts of the living body LB.
  • the wavelength selection filter 220b is, for example, a bandpass filter having a wavelength band WB as a pass band.
  • the lens array 220a is arranged on the side opposite to the living body LB side of the wavelength selection filter 220b.
  • the lens array 220a guides light having a wavelength within the wavelength band WB that has passed through the wavelength selection filter 220b to the corresponding light receiving element 210a.
  • the plurality of light receiving lenses 220a1 of the lens array 220a are arranged in a two-dimensional array so as to face the corresponding plurality of light receiving elements 210a.
  • Each light receiving lens 220a1 is a lens that is convex toward the corresponding light receiving element 210a, and collects light from the corresponding portion of the living body LB to the corresponding light receiving element 210a via the wavelength selection filter 220b (preferably concatenated).
  • the wavelength selection filter 220b preferably concatenated.
  • FIG. 1 there are two sweat glands in the leftmost part LB1 of the living body LB facing the paper surface, and sweat W is gushing out from these two sweat glands.
  • the amount of light received by the light receiving element 210a corresponding to the portion is significantly reduced as compared with the case where sweat W does not spring out from these two sweat glands.
  • FIG. 1 there are no sweat glands in the second part LB2, the fourth part LB4, and the fifth part LB5 counting from the leftmost part of the living body LB facing the paper surface, and the light receiving light corresponding to each of these parts.
  • the amount of light received by the element 210a does not change.
  • FIG. 1 there are two sweat glands in the leftmost part LB1 of the living body LB facing the paper surface
  • the correspondence relationship between the plurality of parts of the living body LB and the plurality of light receiving elements 210a changes. Therefore, even if the light receiving light amount of each light receiving element 210a is acquired, the light receiving element 210a It does not mean that the sweating status of the corresponding part is acquired on a one-to-one basis.
  • the overall sweating state (sweat tendency) of a plurality of parts of the living body LB can be known, and the state of the living body LB (sweating tendency) can be found from the sweating state. For example, it is possible to determine the mental state).
  • the biological sensor according to the embodiment utilizes the fact that sweat is discretely expressed at the sweat gland position in the case of a minute sweating phenomenon such as mental sweating.
  • measurement is performed with a plurality of light receiving elements arranged in an array, but instead of observing the output value of each light receiving element, the amount of sweating is measured using the statistics of the entire output of the plurality of light receiving elements. Measure. For example, when observing skin without sweating, if a histogram of the output from each of the plurality of light receiving elements is created, the output distribution has a substantially normal distribution shape according to the reflectance distribution of the average skin.
  • the reflectance of the light receiving element that receives the reflected light from the portion having the sweat glands decreases due to the moisture content of the sweat. Therefore, in the reflectance distribution, the center of gravity moves from the substantially normal distribution to the low output side. If sweating progresses further, the output shifts to the lower output side, and if the skin is finally filled with sweat, the output of all the light receiving elements becomes zero.
  • the processing system 300-1 determines the state of the living body LB based on the statistics regarding the signal for each part of the living body LB output from the light receiving system 200-1.
  • the state of the living body LB is, for example, a mental state estimated from the sweating state of each part of the living body LB.
  • the processing system 300-1 uses the first distribution D1 (see FIG. 3), which is the distribution of the number of signals (number of signals) for each signal value of the signal for each part of the living body LB, and the state of the living body. To determine.
  • the horizontal axis represents a signal value and the vertical axis represents the number of signals.
  • the distribution of the number of signals for each signal value of the plurality of parts of the living body LB is the reflectance of the plurality of parts themselves. It becomes a substantially normal distribution according to the distribution (hereinafter referred to as "second distribution D2").
  • the first distribution D1 is the distribution of the number of signals for each signal value of each part of the living body LB when the living body LB is sweating, the part itself.
  • the distribution is such that the absorbance (absorbance) due to the sweat W adhering to the site is added to the reflectance, that is, the distribution is shifted to the side where the signal value becomes lower than the second distribution.
  • the feature amount of the first distribution is an index showing the sweating state of the living body LB. Therefore, the processing system 300-1 can determine the state of the living body LB (for example, the mental state estimated from the sweating state of the living body LB) from the feature amount of the first distribution.
  • the second distribution D2 is an output distribution having a substantially normal distribution centered on a signal value of about 30.
  • the average of the signal values is lowered to about 20, and the center of gravity is shifted to the side where the signal values are lower than the second distribution D2.
  • the processing system 300-1 includes a distribution acquisition unit 300a, a feature amount extraction unit 300b, and a discrimination unit 300c.
  • the processing system 300-1 is realized by hardware such as a CPU and a chipset.
  • the distribution acquisition unit 300a acquires the first distribution D1.
  • the feature amount extraction unit 300b extracts the feature amount from the first distribution D1.
  • the feature amount of the first distribution D1 indicates a deviation of the first distribution from the second distribution such as strain (kurtosis, skewness), variance, standard deviation, etc. of the first distribution D1, for example, It can be anything.
  • strain kurtosis, skewness
  • variance standard deviation, etc. of the first distribution D1
  • the feature amount of the first distribution D1 may be the average value S1 Ave of the signal values of the signals for each part of the living body LB in the first distribution D1.
  • This average value S1 Ave is smaller than the average value S2 Ave of the signal values of the signals for each part of the living body LB in the second distribution D2, and it is estimated that the smaller the value, the larger the amount of sweating in the living body LB. ..
  • the feature amount of the first distribution D1 is the number of signals (number of signals) in which the signal value of the signal for each part of the living body LB in the first distribution D1 is, for example, equal to or less than the average value S1 AVe (reference value). May be good.
  • the number of signals it is estimated that the signal value for each part of the living body LB in the second distribution D2 is larger than the number of signals having the average value S2 Ave or less, and the larger the value, the larger the amount of sweating in the living body LB. ..
  • the reference value is not limited to the average value S1 AVe of the signal values of the signals for each part of the living body LB in the first distribution D1, and may be a value less than the maximum value of the signal values.
  • the feature amount of the first distribution D1 may be the median value S1 Me of the signal value of the signal for each part of the living body LB.
  • This median S1 Me is smaller than the median S2 Me of the signal value of the signal for each part of the living body LB in the second distribution D2, and it is estimated that the smaller the value, the larger the amount of sweating in the living body LB. ..
  • the feature amount of the first distribution D1 is the mode value S1 Mo of the signal value of the signal for each part of the living body LB (the signal value at which the number of signals in the first distribution peaks). ) May be.
  • This mode S1 Mo is smaller than the mode S2 Mo (the signal value at which the number of signals in the second distribution peaks) of the signal value of the signal for each part of the living body LB in the second distribution D2. It is estimated that the smaller the value, the larger the amount of sweating in the living body LB.
  • the biological condition determination process 1 is an example of the biological condition determination method according to the present technology.
  • the biological state determination process 1 is started, for example, when the power of the biological sensor 10-1 in which the measuring unit is in close contact with the biological LB is turned on.
  • the irradiation system 100-1 irradiates the living body LB with the irradiation light IL. Specifically, the irradiation system 100-1 causes the light source 110a to emit light, and irradiates the living body LB with irradiation light IL including light having a wavelength within the wavelength band WB and light having a wavelength outside the wavelength band WB.
  • the light receiving system 200-1 individually receives light having a wavelength within the wavelength band WB including the peak wavelength ⁇ P related to water absorption among the light reflected by each of the plurality of parts of the living body LB. .. Specifically, of the light (irradiation light IL) irradiated and reflected on each of the plurality of parts of the living body LB, the light in the wavelength band WB passes through the wavelength selection filter 220b and the corresponding light receiving lens 220a1. The light is focused on the element 210a.
  • the light receiving system 200-1 outputs a signal for each part of the living body LB.
  • each of the plurality of light receiving elements 210a photoelectrically converts the received light and outputs an electric signal according to the amount of received light.
  • the processing system 300-1 acquires the first distribution D1. Specifically, the distribution acquisition unit 300a acquires the distribution of the number of signals for each signal value of the signal for each part of the living body LB (see FIG. 3).
  • the processing system 300-1 extracts the feature amount of the first distribution D1.
  • the feature amount extraction unit 300b extracts, for example, the average value S1 Ave , the number of signals whose signal values are equal to or less than the average value S1 Ave , the median S1 Me , the mode S1 Mo , and the like from the first distribution D1. do.
  • the processing system 300-1 determines the state of the living body LB from the feature amount of the first distribution D1. For example, when the feature amount of the first distribution D1 is the average value S1 Ave , the smaller the value of the discriminant unit 300c (the larger the sweating amount of the living body LB), the more tense the living body LB is. It is judged that the larger the value (the smaller the amount of sweating of the living body LB), the more relaxed the living body LB is. For example, when the feature amount of the first distribution D1 is the number of signals whose signal value is equal to or less than the average value S1 Ave , the larger the number of signals, the larger the number of signals (the larger the amount of sweating of the living body LB).
  • the discriminant unit 300c states that the smaller the value (the larger the sweating amount of the living body LB), the more tense the living body LB is. Judgment is made, and it is determined that the larger the value (the smaller the amount of sweating of the living body LB), the more relaxed the living body LB is.
  • the discrimination unit 300c may output the result of the discrimination as described above (for example, the mental state of the living body LB according to the magnitude of the feature amount of the first distribution) in a stepwise evaluation manner. For example, a 10-step discrimination result may be output in which the case where the living body LB is in the most relaxed state is set to 1 and the case where the living body LB is in the most tense state is set to 10.
  • step S7 the processing system 300-1 determines whether or not the processing is terminated. Specifically, the processing system 300-1 ends the processing when, for example, the power of the biological sensor 10-1 is turned off. If the judgment in step S7 is affirmed, the flow ends, and if it is denied, the process returns to step S1.
  • the biological sensor 10-1 includes an irradiation system 100-1 for irradiating the biological LB with irradiation light IL containing light having a wavelength within the wavelength band WB including the peak wavelength ⁇ P related to water absorption, and an irradiation system.
  • Light receiving system 200-1 that individually receives light of a wavelength within the wavelength band WB among the light emitted from 100-1 and reflected by each of a plurality of parts of the living body LB, and output from the light receiving system 200-1.
  • the processing system 300-1 for determining the state of the living body LB based on the statistics regarding the signal for each part is provided.
  • the state of the living body LB can be discriminated from the statistics of the signal value according to the substantial reflectance (presence / absence of sweat W, the reflectance that accurately reflects the amount) at each of the plurality of parts of the living body LB.
  • the state of LB can be easily determined.
  • the biosensor 10-1 it is possible to provide a biosensor capable of easily discriminating the state of the living body LB. Since the light having a wavelength outside the wavelength band WB has a relatively low absorbency of water, even if the light outside the wavelength band WB is received by the light receiving element array among the light reflected by the living body LB, the light receiving result is obtained. Does not accurately reflect the presence or absence and amount of sweat W.
  • the correspondence between the plurality of light receiving elements and the plurality of parts of the living body changes due to a slight deviation in the relative position between the biological sensor and the living body.
  • a method is conceivable in which the output of the light receiving element array is regarded as an image and tracking is performed, and the signal of each sweat gland is tracked to acquire a continuous value.
  • it is not possible to realize a biological sensor capable of easily discriminating the state of a living body because a large amount of calculation is required.
  • Another method is to define the average value of all the measured values of the light receiving element array as the amount of sweating.
  • the output of each light receiving element is not important, and it can be considered that the amount of sweating increases if the overall reflectance simply decreases.
  • the light receiving elements do not necessarily have to be arranged in an array, and a single light receiving element may be used. However, in such a case, when the living body moves, the entire sensor floats from the skin and external light enters, or the entire sensor moves laterally and the average reflectance of the skin changes. Cannot make continuous measurements.
  • the biosensor according to the present technology can stably realize sweating measurement with the same simplicity as using the average value of all the measured values described above without performing tracking.
  • the processing system 300-1 determines the state of the living body LB by using the first distribution which is the distribution of the number of signals for each signal value of the signal for each part of the living body LB. This makes it possible to more easily determine the state of the living body LB.
  • the processing system 300-1 determines the state of the living body LB from the feature amount of the first distribution D1. Thereby, the state of the living body LB can be discriminated more easily and accurately.
  • the feature amount of the first distribution D1 may be an average value S1 Ave , a median value S Me , or a mode value S Mo of the signal values of the signals for each part of the living body LB.
  • the index of the sweating amount can be calculated by an extremely simple process rather than calculating the skewness.
  • the feature amount of the first distribution D1 may be the number of signals whose signal value of the signal for each part of the living body LB is equal to or less than the reference value.
  • the index of the sweating amount can be calculated by an extremely simple process rather than calculating the skewness.
  • the reference value may be, for example, the average value S1 Ave of the signal values of the signals for each part of the living body LB, or may be any other value. When the reference value is the average value S1 Ave , a valid discrimination result can be obtained very easily.
  • the light receiving system 200-1 includes a light receiving element array 210 including a plurality of light receiving elements 210a corresponding to a plurality of parts of the living body LB, and an optical system 220-1 corresponding to the plurality of light receiving elements 210a, and includes an optical system 220.
  • -1 guides the light having a wavelength within the wavelength band WB among the light emitted from the irradiation system 100-1 and reflected by each of the plurality of parts of the living body LB to the light receiving element 210a corresponding to the part.
  • the light having a wavelength within the wavelength band WB can be reliably guided to the light receiving element 210a corresponding to the part.
  • the irradiation light IL includes light having a wavelength within the wavelength band WB and light having a wavelength outside the wavelength band WB, and the optical system 220-1 is the light emitted from the irradiation system 100-1 and reflected at each of the plurality of sites. Among them, it has a wavelength selection filter 220b that selectively passes light having a wavelength within the wavelength band WB. As a result, it is possible to block light having a wavelength outside the wavelength band WB, which has relatively low water absorption among the light reflected by each part of the living body LB.
  • the optical system 220-1 has a light receiving lens 220a1 that guides light having a wavelength within the wavelength band WB that has passed through the wavelength selection filter 220b to the corresponding light receiving element 210a.
  • a light receiving lens 220a1 that guides light having a wavelength within the wavelength band WB that has passed through the wavelength selection filter 220b to the corresponding light receiving element 210a.
  • the state of the living body LB is, for example, a mental state estimated from the sweating state of each part of the living body LB. Thereby, it is possible to provide the biological sensor 10-1 capable of easily discriminating the mental state of the biological LB.
  • the biological state discrimination method (for example, biological state discrimination process 1) using the biological sensor 10-1 of the first embodiment of the present technology is light having a wavelength within the wavelength band WB including the peak wavelength ⁇ P related to water absorption.
  • the state of the living body LB can be easily determined from the statistics of the signal values according to the substantial reflectance (reflectance reflecting the influence of sweat W) at each of the plurality of sites. can do.
  • the biological state determination method using the biological sensor 10-1 the state of the biological LB can be easily determined.
  • the biosensor according to the modified example of the first embodiment has the same configuration as the biosensor 10-1 according to the first embodiment (see FIG. 1) except that the configuration of the processing system is different.
  • the processing system 300-2 of the biological sensor according to the modified example has a storage unit 300d and a comparison unit 300e in addition to the configuration of the processing system 300-1 (see FIG. 2).
  • the storage unit 300d stores the second distribution D2 acquired in advance.
  • the second distribution D2 is acquired in advance by, for example, measuring a living body LB in a resting and relaxed state (a state without sweating) using a living body sensor according to a modified example.
  • the storage unit 300d is realized by, for example, a ROM, a RAM, a flash memory, a hard disk, or the like.
  • the feature amount extraction unit 300b extracts the feature amount of the first distribution D1 acquired by the distribution acquisition unit 300a, and the feature amount of the second distribution D2 stored in the storage unit 300d. (Features (of the same type) corresponding to the features of the first distribution D1) are extracted.
  • the comparison unit 300e compares the feature amounts of the first and second distributions D1 and D2 extracted by the feature amount extraction unit 300b.
  • the comparison unit 300e is carried by, for example, a CPU or the like.
  • the discrimination unit 300c discriminates the state of the living body LB according to the comparison result in the comparison unit 300e. 7.
  • Bio condition discrimination process 2 is an example of the biological condition determination method according to the present technology.
  • the biological state determination process 1 is started, for example, when the power of the biological sensor in which the measuring unit is close to and faces the biological LB is turned on.
  • the irradiation system 100-1 irradiates the living body LB with the irradiation light IL. Specifically, the irradiation system 100-1 causes the light source 110a to emit light, and irradiates the living body LB with irradiation light IL including light having a wavelength within the wavelength band WB and light having a wavelength outside the wavelength band WB.
  • the light receiving system 200-1 individually receives light having a wavelength within the wavelength band WB including the peak wavelength ⁇ P related to water absorption among the light reflected by each of the plurality of parts of the living body LB. .. Specifically, of the light (irradiation light IL) irradiated and reflected on each of the plurality of parts of the living body LB, the light in the wavelength band WB passes through the wavelength selection filter 220b and the corresponding light receiving lens 220a1. The light is focused on the element 210a.
  • the light receiving system 200-1 outputs a signal for each part of the living body LB.
  • each of the plurality of light receiving elements 210a photoelectrically converts the received light and outputs an electric signal corresponding to the amount of received light to the processing system 300-2.
  • the processing system 300-2 acquires the first distribution D1. Specifically, the distribution acquisition unit 300a acquires the distribution of the number of signals for each signal value of the signal for each part of the living body LB (see FIG. 3) from the input signal for each part of the living body LB, and acquires the distribution. The result is output to the feature amount extraction unit 300b.
  • the processing system 300-2 extracts the feature quantities of the first and second distributions D1 and D2.
  • the feature amount extraction unit 300b extracts the feature amount of the input first distribution D1 and the feature amount of the second distribution D2 stored in the storage unit 300d, and the first and second distributions.
  • the feature amounts of D1 and D2 are output to the comparison unit 300e.
  • the feature amount extraction unit 300b extracts the mean value S1 Ave from the first distribution D1 and extracts the mean value S2 Ave from the second distribution D2 (see FIG. 4).
  • the feature amount extraction unit 300b extracts the number of signals whose signal value is equal to or less than the reference value (for example, the average value S1 Ave ) from the first distribution D1, and the signal value is the reference value (for example) from the second distribution D2.
  • the number of signals equal to or less than the average value S2 Ave ) is extracted.
  • the feature amount extraction unit 300b extracts the median value S1 Me from the first distribution D1 and extracts the median value S2 Me from the second distribution D2 (see FIG. 5).
  • the feature amount extraction unit 300b extracts the mode S1 Mo from the first distribution D1 and extracts the mode S2 Mo from the second distribution D2 (see FIG. 6).
  • the feature amount extraction unit 300b has a ratio (for example, 400 and 200 in FIG. 3) of the number of signals (for example, 400 and 200 in FIG. 3) whose signal values match a plurality of values (for example, 15 and 45 in FIG. 3) from the first distribution D1. 0.5) is extracted, and the ratio of the number of signals (for example, 250 and 320 in FIG. 3) whose signal values match the plurality of values (for example, 15 and 45 in FIG. 3) from the second distribution D2, respectively. Extract (eg 0.78).
  • the processing system 300-2 compares the feature quantities of the first and second distributions D1 and D2. Specifically, the comparison unit 300e compares the corresponding feature amounts of the input first and second distributions D1 and D2, and the comparison result (for example, difference, ratio, etc. of the feature amount) is transmitted to the discrimination unit 300c. Output. For example, the comparison unit 300e takes the difference between the input average value S1 Ave and the average value S2 Ave , and outputs the difference to the discrimination unit 300c.
  • the comparison unit 300e takes a difference between the number of input signals whose signal value is equal to or less than the average value S1 Ave and the number of signals whose signal value is equal to or less than the average value S2 Ave , and outputs the difference to the determination unit 300c.
  • the comparison unit 300e takes the difference between the input median S1 Me and the median S2 Me , and outputs the difference to the discrimination unit 300c.
  • the comparison unit 300e takes the difference between the input mode S1 Mo and the mode value S2 Mo , and outputs the difference to the discrimination unit 300c.
  • the discrimination unit 300c may output the result of the discrimination as described above (for example, the mental state of the living body LB according to the magnitude of the difference) in a stepwise evaluation manner. For example, a 10-step discrimination result may be output in which the case where the living body LB is in the most relaxed state is set to 1 and the case where the living body LB is in the most tense state is set to 10.
  • the processing system 300-2 determines the state of the living body LB. Specifically, the discrimination unit 300c discriminates the state of the living body LB according to the input comparison result (for example, difference in feature amount, ratio, etc.). For example, the discriminating unit 300c determines that the larger the difference between the input feature amounts is, the more tense the living body LB is, and the smaller the difference is, the more relaxed the living body LB is.
  • the input comparison result for example, difference in feature amount, ratio, etc.
  • the processing system 300-2 determines whether or not the processing is terminated. Specifically, the processing system 300-2 ends the processing when, for example, the power of the biosensor according to the modified example of the first embodiment is turned off. If the judgment in step S18 is affirmed, the flow ends, and if it is denied, the process returns to step S11.
  • the second distribution D2 is stored in the storage unit 300d in advance, but instead of or in addition to this, the second distribution D2 is used by using the biosensor. May be acquired and updated at any time.
  • the discrimination unit 300c may also have the function of the comparison unit 300e. In this case, the comparison unit 300e is unnecessary.
  • the processing system 300-2 compares the feature amounts of the first and second distributions D1D and D2, and corresponds to the state of the living body LB (for example, the sweating state of the living body LB). (Mental state) is determined. Thereby, the state of the living body LB can be discriminated more accurately.
  • the feature amount of the second distribution D2 is a feature amount (of the same kind) corresponding to the feature amount of the first distribution D1.
  • the feature amount of the first distribution D1 is the ratio of the number of signals whose signal values match a plurality of values among the signals of each part in the first distribution D1
  • the feature amount of the second distribution D2. May be the ratio of the number of signals whose signal values match a plurality of values among the signals for each part in the second distribution D2.
  • the positional relationship between the lens array 220a and the wavelength selection filter 220b in the optical system of the light receiving system is opposite to that of the biosensor 10-1 according to the first embodiment. It has the same configuration as the biosensor 10-1 except that it is.
  • the wavelength selection filter 220b of the optical system 220-2 is arranged between the lens array 220a of the optical system 220-2 of the light receiving system 200-2 and the light receiving element array 210.
  • the lens array 220a and the wavelength selection filter 220b are adjacent to each other so that the lens array 220a is arranged on the living body LB side and the wavelength selection filter 220b is arranged on the light receiving element array 210 side. And are arranged.
  • the optical system 220-2 guides the light having a wavelength in the wavelength band WB to the corresponding light receiving element 210a via the wavelength selection filter 220b.
  • the biological sensor 10-2 according to the second embodiment described above can also obtain the same effect as the biological sensor 10-1 according to the first embodiment.
  • the biological sensor 10-4 according to the third embodiment is the biological sensor 10-1 according to the first embodiment, except that the irradiation system has a wavelength selection filter instead of the light receiving system.
  • the irradiation system 100-4 of the biological sensor 10-4 has a wavelength selection filter 120 arranged on the optical path between the light source 110a and the biological LB.
  • the wavelength selection filter 120 is substantially the same as the wavelength selection filter 220b of the biological sensor 10-1 according to the first embodiment.
  • the irradiation system 100-4 includes a light source 110a that emits light having a wavelength within the wavelength band WB and light having a wavelength outside the wavelength band WB, and light in the wavelength band WB and light in the wavelength band WB emitted from the light source 110a. It has a wavelength selection filter 120 that selectively passes light in the wavelength band WB among outside light.
  • the optical system 220-4 of the light receiving system 200-4 of the biological sensor 10-4 is a light receiving element corresponding to light having a wavelength within the wavelength band WB that has passed through the wavelength selection filter 120 and is reflected at the corresponding portion of the living body LB. It has a lens array 220a including a plurality of light receiving lenses 220a1 leading to 210a.
  • the biosensor 10-4 configured as described above, among the light having a wavelength in the wavelength band WB and the light having a wavelength outside the wavelength band WB emitted from the light source 110a, the light having a wavelength in the wavelength band WB is selected. It passes through the filter 120 and is irradiated to the living body LB as irradiation light. The light having a wavelength in the wavelength band WB that is irradiated to the living body LB and reflected by each of the plurality of parts of the living body LB passes through the wavelength selection filter 120 again and is guided to the corresponding light receiving element 210a via the corresponding light receiving lens 220a1. Be taken.
  • the biosensor 10-4 according to the third embodiment described above has the same effect as the biosensor 10-1 according to the first embodiment.
  • the irradiation system 100-5 has a light source 110b that emits only light in the wavelength band WB, and the light receiving system 200-4.
  • the sensor does not have a wavelength selection filter.
  • the irradiation light includes only the light having a wavelength within the wavelength band WB
  • the optical system 220-4 of the light receiving system 200-4 is irradiated from the irradiation system 100-5 to a plurality of parts of the biological LB. It has a lens array 220a including a light receiving lens 220a1 that guides light having a wavelength within the wavelength band WB reflected by each of the above to a light receiving element 210a corresponding to the portion.
  • the light having a wavelength within the wavelength band WB emitted from the light source 110b is irradiated to the biological LB as irradiation light.
  • the light having a wavelength in the wavelength band WB that is irradiated to the living body LB and reflected by each of the plurality of parts of the living body LB is guided to the corresponding light receiving element 210a via the light receiving lens 220a1 corresponding to the part.
  • the biosensor 10-5 according to the fourth embodiment described above has the same effect as the biosensor 10-1 according to the first embodiment, and can be downsized because it does not have a wavelength selection filter. ..
  • the optical system 220-6 of the light receiving system 200-6 has a light shielding member 220d (optical member) instead of the lens array. Except for this, it has the same configuration as the biological sensor 10-1 according to the first embodiment.
  • the light-shielding member 220d is arranged between the wavelength selection filter 220b and the light-receiving element array 210.
  • the light-shielding member 220d has a light-shielding wall 220d1 that forms a light guide path LGP (Light Guide Path) corresponding to each of the plurality of light-receiving elements 210a.
  • the light-shielding wall 220d1 is provided so as to surround each light guide path LGP. Adjacent light guide paths LGP are separated by a light-shielding wall 220d1.
  • the biosensor 10-6 configured as described above, among the light irradiated to the living body LB and reflected by each of the plurality of parts of the living body LB, the light having a wavelength within the wavelength band WB passes through the wavelength selection filter 220b. , It is incident on the corresponding light receiving element 210a via the corresponding light guide path LGP. According to the biosensor 10-6 described above, it is possible to obtain substantially the same effect as the biosensor 10-1 of the first embodiment.
  • the biological sensor 10-7 according to the sixth embodiment is the biological sensor according to the fifth embodiment except that the positional relationship between the wavelength selection filter 220b and the light shielding member 220d is different in the optical system of the light receiving system. It has the same configuration as the sensor 10-6.
  • the light shielding member 220d is arranged on the living body LB side, and the wavelength selection filter 220b is arranged on the lens array 220a side.
  • the light irradiated from the irradiation system 100-1 and reflected by each of the plurality of parts of the biological LB is guided by the corresponding light guide path LGP of the light shielding member 220d.
  • the guided light light having a wavelength within the wavelength band WB passes through the wavelength selection filter 220b and is incident on the corresponding light receiving element 210a. According to the biosensor 10-7 described above, the same effect as that of the biosensor 10-6 of the fifth embodiment can be obtained.
  • the biosensor 10-9 according to the seventh embodiment has the biosensor 10-1 according to the first embodiment except that the irradiation system has a wavelength selection filter instead of the light receiving system. It has the same configuration as.
  • the irradiation system 100-4 of the biological sensor 10-9 has a wavelength selection filter 120 arranged on the optical path between the light source 110a and the biological LB.
  • the wavelength selection filter 120 is substantially the same as the wavelength selection filter 220b of the biological sensor 10-1 according to the first embodiment.
  • the irradiation system 100-4 includes a light source 110a that emits light having a wavelength within the wavelength band WB and light having a wavelength outside the wavelength band WB, and light in the wavelength band WB and light in the wavelength band WB emitted from the light source 110a. It has a wavelength selection filter 120 that selectively passes light in the wavelength band WB among outside light.
  • the optical system 220-9 of the light receiving system 200-9 of the biological sensor 10-9 transmits light having a wavelength in the wavelength band WB that has passed through the wavelength selection filter 120 and is reflected by each of the plurality of parts of the living body LB to the parts. It has a light-shielding member 220d that leads to the corresponding light-receiving element 210a.
  • the biosensor 10-9 configured as described above, among the light having a wavelength in the wavelength band WB and the light having a wavelength outside the wavelength band WB emitted from the light source 110a, the light having a wavelength in the wavelength band WB is selected. It passes through the filter 120 and is irradiated to the living body LB as irradiation light. The light having a wavelength in the wavelength band WB that is irradiated to the living body LB and reflected by each of the plurality of parts of the living body LB passes through the wavelength selection filter 120 again and receives the corresponding light receiving through the corresponding light guide path LGP of the light shielding member 220d. It is guided by the element 210a.
  • the biosensor 10-9 according to the seventh embodiment described above has the same effect as the biosensor 10-6 according to the fifth embodiment.
  • the irradiation system 100-5 has a light source 110b that emits only light in the wavelength band WB, and the light receiving system 200-10.
  • the sensor does not have a wavelength selection filter.
  • the irradiation light includes only the light having a wavelength within the wavelength band WB, and the optical system 220-10 of the light receiving system 200-10 is irradiated from the irradiation system 100-5 to a plurality of parts of the biological LB. It has a light-shielding member 220d that guides the light of the wavelength in the wavelength band WB reflected by each of the above to the light receiving element 210a corresponding to the portion.
  • the light having a wavelength within the wavelength band WB emitted from the light source 110b is irradiated to the biological LB as irradiation light.
  • the light having a wavelength in the wavelength band WB that is irradiated to the living body LB and reflected by each of the plurality of parts of the living body LB is guided to the corresponding light receiving element 210a via the corresponding light guide path LGP of the light shielding member 220d.
  • the biosensor 10-10 according to the eighth embodiment described above has the same effect as the biosensor 10-6 according to the fifth embodiment, and can be downsized because it does not have a wavelength selection filter. ..
  • the irradiation system 100-11 has a light source array including a plurality of light sources 110a, and the light source array and the light receiving element 210a including the plurality of light receiving elements 210a. It has the same configuration as the biological sensor 10-1 according to the first embodiment, except that the array 210-11 is integrally provided along the same plane.
  • the irradiation system 100-11 of the biological sensor 10-11 is arranged between two adjacent light receiving elements 210a among a plurality of light receiving elements 210a arranged in an array, and has a wavelength of light in the wavelength band WB and a wavelength band WB.
  • the light receiving system 200-11 of the biosensor 10-11 is at least one (for example, a plurality of) arranged between two adjacent light sources 110a among a plurality of light sources 110a arranged in an array.
  • a light receiving element 210a In the example of FIG. 17, the plurality of light sources 110a of the light source array and the plurality of light receiving elements 210a of the light receiving element array 210-11 are arranged in an array along the same plane as a whole.
  • three light receiving elements 210a are arranged between two adjacent light sources 110a.
  • Each light source 110a is arranged at a position corresponding to the boundary between two adjacent light receiving lenses 220a1 of the lens array 220a of the optical system 220-1 in the in-plane direction of the light source array.
  • light having a wavelength within the wavelength band WB and light having a wavelength outside the wavelength band WB emitted from each light source 110a are incident across two adjacent light receiving lenses 220a1 and the two light receiving lenses. It is diffused by 220a1.
  • light having a wavelength within the wavelength band WB passes through the wavelength selection filter 220b and is irradiated across two adjacent parts of the living body LB.
  • the light of the wavelength in the wavelength band WB reflected by each of the two adjacent parts of the living body LB passes through the wavelength selection filter 220b again and is focused on the corresponding light receiving element 210a by the corresponding light receiving lens 220a1.
  • the biosensor 10-11 the same effect as that of the biosensor 10-1 according to the first embodiment is obtained, and the plurality of light sources 110a and the plurality of light receiving elements 210a are integrally arranged in an array. It is possible to reduce the size.
  • the biosensor 10-12 according to the tenth embodiment is the biosensor 10 according to the ninth embodiment, except that the positional relationship between the lens array and the wavelength selection filter in the optical system of the light receiving system is different. It has the same configuration as -11.
  • the wavelength selection filter 220b of the optical system 220-2 is arranged between the lens array 220a of the optical system 220-2 of the light receiving system 200-12 and the light receiving element array 210-11.
  • the lens array 220a and the wavelength selection filter 220b are adjacent to each other so that the lens array 220a is arranged on the living body LB side and the wavelength selection filter 220b is arranged on the light receiving element array 210 side. And are arranged.
  • the optical system 220-2 guides the light having a wavelength in the wavelength band WB to the corresponding light receiving element 210a via the wavelength selection filter 220b.
  • the biosensor 10-12 according to the tenth embodiment described above can obtain the same effect as the biosensor 10-11 according to the ninth embodiment.
  • the irradiation system 100-13 has a light source 110b that emits only light in the wavelength band WB, and the light receiving system 200-13.
  • the sensor does not have a wavelength selection filter.
  • the irradiation light includes only the light having a wavelength within the wavelength band WB
  • the optical system 220-3 of the light receiving system 200-13 is irradiated from the irradiation system 100-13 to a plurality of parts of the biological LB. It has a lens array 220a including a plurality of light receiving lenses 220a1 that guides light having a wavelength within the wavelength band WB reflected by each of the above to a light receiving element 210a corresponding to the portion.
  • the light having a wavelength within the wavelength band WB emitted from each light source 110b is irradiated as irradiation light across two adjacent parts of the biological LB.
  • Light having a wavelength within the wavelength band WB that is irradiated to two adjacent parts of the living body LB and reflected by each of the two parts is collected by the light receiving element 210a corresponding to the light receiving lens 220a1 corresponding to the part. ..
  • the biosensor 10-13 according to the eleventh embodiment described above has the same effect as the biosensor 10-11 according to the ninth embodiment, and can be downsized because it does not have a wavelength selection filter. ..
  • the biological sensor 10-14 according to the twelfth embodiment is the same as that of the first embodiment, except that the biological sensor 10-14 includes a light guide plate 400 arranged between the optical system 220-1 and the biological LB. It has the same configuration as the biological sensor 10-1.
  • the irradiation system 100-1 includes a light source 100a that emits light having a wavelength within the wavelength band WB and light having a wavelength outside the wavelength band WB.
  • the light source 110a is arranged on the one end surface side in a state where the emission direction faces the one end surface of the light guide plate 400. More specifically, the light source 110a is the light emitted from the light source 110a, and the light incident on the light guide plate 400 from one end surface of the light guide plate 400 is totally reflected by the surface of the light guide plate 400 on the living body LB side.
  • the emission direction is set so as to.
  • the light guide plate 400 guides the light having a wavelength in the wavelength band WB and the light having a wavelength outside the wavelength band WB among the light emitted from the light source 100a, and the light having a wavelength in the wavelength band WB and the wavelength band WB. External light is incident on each of the plurality of parts of the living body LB.
  • the light guide plate 400 has a plurality of diffractive portions 400a corresponding to the plurality of light receiving elements 210a on the optical system 220-1 side.
  • the light guide plate 400 is transparent to light having a wavelength within at least the wavelength band WB.
  • Each of the plurality of diffraction units 400a reflects and diffracts the incident light toward the corresponding portion of the living body LB.
  • the biological sensor 10-14 configured as described above, most of the light emitted from the light source 110a is incident on the light guide plate 400 from one end surface of the light guide plate 400, and the surface of the light guide plate 400 on the biological LB side. It is totally reflected at different total reflection angles. Each light totally reflected at different total reflection angles is reflected and diffracted by the corresponding diffraction unit 400a, passes through the surface of the light guide plate 400 on the living body LB side, and is incident on the corresponding portion of the living body LB. The light incident on the portion is reflected at the portion and passes through the corresponding diffractive portion 400a of the light guide plate 400. Of the transmitted light, only the light having a wavelength within the wavelength band WB passes through the wavelength selection filter 220b and is focused on the corresponding light receiving element 210a by the corresponding light receiving lens 220a1.
  • the biosensor 10-14 according to the above-described 12 also has the same effect as the biosensor 10-1 according to the first embodiment 1, and the light reflected from each part of the living body LB by the light guide plate 400. Can be guided to the corresponding light receiving element 210a with higher accuracy.
  • the light guide plate 400 may be transparent only to the light having a wavelength within the wavelength band WB among the light emitted from the light source 110a. In this case, the wavelength selection filter 220b is unnecessary because the light having a wavelength outside the wavelength band WB can be shielded.
  • the biological sensor 10-15 according to the thirteenth embodiment is the biological sensor according to the twelfth embodiment, except that the positional relationship between the lens array 220a and the wavelength selection filter 220b in the optical system of the light receiving system is different. It has the same configuration as the sensor 10-14.
  • the wavelength selection filter 220b of the optical system 220-2 is arranged between the lens array 220a of the optical system 220-2 of the light receiving system 200-2 and the light receiving element array 210.
  • the lens array 220a and the wavelength selection filter 220b are adjacent to each other so that the lens array 220a is arranged on the living body LB side and the wavelength selection filter 220b is arranged on the light receiving element array 210 side. And are arranged.
  • the optical system 220-2 guides the light having a wavelength in the wavelength band WB to the corresponding light receiving element 210a via the wavelength selection filter 220b.
  • the biosensor 10-15 according to the thirteenth embodiment described above has the same effect as the biosensor 10-14 according to the twelfth embodiment.
  • the biosensor 10-16 according to the twenty-fourth embodiment has the biosensor 10-14 according to the twelfth embodiment, except that the irradiation system has a wavelength selection filter instead of the light receiving system. It has the same configuration as.
  • the irradiation system 100-4 of the biological sensor 10-16 has a wavelength selection filter 120 arranged on the optical path between the light source 110a and the biological LB.
  • the wavelength selection filter 120 is substantially the same as the wavelength selection filter 220b of the biological sensor 10-1 according to the first embodiment.
  • the light source 110a emits light having a wavelength within the wavelength band WB and light having a wavelength outside the wavelength band WB.
  • the wavelength selection filter 120 selectively passes the light in the wavelength band WB and the light outside the wavelength band WB emitted from the light source 110a.
  • the optical system 220-4 of the light receiving system 200-4 of the biological sensor 10-16 transmits light having a wavelength within the wavelength band WB that has passed through the wavelength selection filter 120 and reflected by each of the plurality of parts of the living body LB to the parts. It has a light receiving lens 220a1 that leads to the corresponding light receiving element 210a.
  • each light emitted from the light source 110a and totally reflected by the surface of the light guide plate 400 on the surface on the living body LB side is diffracted by the corresponding diffractive portion 400a and is diffracted by the light guide plate 400. , It passes through the surface on the living body LB side and is incident on the wavelength selection filter 120.
  • Each light of the wavelength in the wavelength band WB that has passed through the wavelength selection filter 120 is reflected at the corresponding portion of the living body LB, and is incident on the corresponding light receiving lens 220a1 via the wavelength selection filter 120 and the corresponding diffraction unit 400a.
  • the light is focused on the corresponding light receiving element 210a by the light receiving lens 220a1.
  • the biosensor 10-16 according to the 14th embodiment described above has the same effect as the biosensor 10-14 according to the 12th embodiment.
  • the biological sensor 10-17 according to the fifteenth embodiment is a biological sensor according to the twelfth embodiment, except that the circular polarizing plate 220c is arranged between the light receiving element array 210 and the biological LB. It has the same configuration as 10-14. According to the biological sensor 10-17, the circular polarizing plate 220c can suppress sweat and surface reflection of the biological LB surface (skin), thereby reducing unnecessary noise and enabling stable measurement.
  • the optical system 220-3 of the light receiving system 200-3 has a circular polarizing plate 220c arranged between the light guide plate 400 and the biological LB.
  • the irradiation system 100-5 has a light source 110b that emits only light in the wavelength band WB, and the light receiving system 200-4.
  • the sensor does not have a wavelength selection filter.
  • the irradiation light includes only the light having a wavelength within the wavelength band WB, and the optical system 220-4 of the light receiving system 200-4 irradiates from the irradiation system 100-5 via the light guide plate 400. It has a lens array 220a including a light receiving lens 220a1 which is reflected by each of a plurality of parts of the living body LB and guides light having a wavelength in the wavelength band WB through the light guide plate 400 to a light receiving element 210a corresponding to the part.
  • the light guide plate 400 is used. 400 are totally reflected on the surface on the LB side of the living body at total reflection angles different from each other. Each light totally reflected at different total reflection angles is reflected and diffracted by the corresponding diffraction unit 400a, passes through the surface of the light guide plate 400 on the living body LB side, and is incident on the corresponding portion of the living body LB. The light incident on the portion is reflected at the portion, enters the light guide plate 400 again, and passes through the corresponding diffractive portion 400a of the light guide plate 400.
  • the transmitted light is focused on the corresponding light receiving element 210a by the corresponding light receiving lens 220a1.
  • the biosensor 10-18 according to the 16th embodiment described above has the same effect as the biosensor 10-14 according to the 12th embodiment, and can be downsized because it does not have a wavelength selection filter. ..
  • the biosensor 10-19 according to the seventeenth embodiment is the same as the biosensor 10-1 according to the first embodiment, except that the light receiving system has a lens instead of the lens array.
  • the optical system 220-19 of the light receiving system 200-19 has a lens 220f (optical member) corresponding to the light receiving element array 210 including a plurality of light receiving elements 210a.
  • the lens 220f is, for example, a lens that is convex toward the light receiving element array 210.
  • the biological sensor 10-19 of the light emitted from the light source 110a and reflected by each of the plurality of parts of the biological LB, only the light having a wavelength within the wavelength band WB passes through the wavelength selection filter 220b and is incident on the lens 220f. ..
  • the light having a wavelength in the wavelength band WB incident on the lens 220f is collected by the lens 220f on the corresponding light receiving element 210a.
  • the same effect as that of the optical sensor 10-1 according to the first embodiment is obtained, and since the optical system 220-19 has a single lens 220f, the optical system 220-19 is obtained.
  • the lens 220f can be obtained at low cost because the positioning between the lens and the light receiving element array 210 is easy and the design is established in the same manner as the camera.
  • the biosensor 10-20 according to the 18th embodiment is the biosensor 10 according to the 17th embodiment, except that the positional relationship between the lens array and the wavelength selection filter in the optical system of the light receiving system is different. It has the same configuration as -19.
  • the wavelength selection filter 220b of the optical system 220-20 is arranged between the lens 220f of the optical system 220-20 of the light receiving system 200-2 and the light receiving element array 210.
  • the lens 220f and the wavelength selection filter 220b are adjacent to each other so that the lens 220f is arranged on the living body LB side and the wavelength selection filter 220b is arranged on the light receiving element array 210 side. Have been placed.
  • the optical system 220-20 has a lens 220f in which the optical system 220-20 guides the light having a wavelength in the wavelength band WB to the corresponding light receiving element 210a via the wavelength selection filter 220b. Have. Also in this case, the same effect as that of the biological sensor 10-19 according to the 17th embodiment can be obtained.
  • the biosensor 10-22 according to the nineteenth embodiment is the biosensor 10-19 according to the seventeenth embodiment, except that the irradiation system has a wavelength selection filter instead of the light receiving system. It has the same configuration as.
  • the irradiation system 100-4 of the biological sensor 10-22 has a wavelength selection filter 120 arranged on the optical path between the light source 110a and the biological LB.
  • the wavelength selection filter 120 is substantially the same as the wavelength selection filter 220b of the biological sensor 10-1 according to the first embodiment.
  • the light source 110a emits light having a wavelength within the wavelength band WB and light having a wavelength outside the wavelength band WB.
  • the wavelength selection filter 120 selectively passes the light in the wavelength band WB and the light outside the wavelength band WB emitted from the light source 110a.
  • the optical system 220-22 of the light receiving system 200-22 of the biological sensor 10-22 transmits light having a wavelength within the wavelength band WB that has passed through the wavelength selection filter 120 and reflected by each of the plurality of parts of the living body LB to the parts. It has a lens 220f that leads to the corresponding light receiving element 210a.
  • the light having a wavelength within the wavelength band WB among the light emitted from the light source 110a passes through the wavelength selection filter 120 and is irradiated to the biological LB.
  • the light in the wavelength band WB that is irradiated to the living body LB and reflected by each of the plurality of parts of the living body LB is focused by the lens 220f on the light receiving element 210a corresponding to the part.
  • the biosensor 10-22 according to the 19th embodiment described above has the same effect as the biosensor 10-19 according to the 17th embodiment.
  • the irradiation system 100-5 has a light source 110b that emits only light in the wavelength band WB, and the light receiving system 200-23.
  • the sensor does not have a wavelength selection filter.
  • the irradiation light includes only the light having a wavelength within the wavelength band WB, and the optical system 220-5 of the light receiving system 200-23 is irradiated from the irradiation system 100-5 to a plurality of parts of the biological LB. It has a lens 220f that guides light having a wavelength within the wavelength band WB reflected by each of the above to a light receiving element 210a corresponding to the portion.
  • the light having a wavelength within the wavelength band WB emitted from the light source 110b is irradiated to the biological LB as irradiation light.
  • the light having a wavelength in the wavelength band WB that is irradiated to the living body LB and reflected by each of the plurality of parts of the living body LB is guided to the corresponding light receiving element 210a by the lens 220f.
  • the biosensor 10-23 according to the 20th embodiment described above has the same effect as the biosensor 10-19 according to the 17th embodiment, and can be downsized because it does not have a wavelength selection filter. ..
  • the present technology is not limited to the configurations described in each of the embodiments and modifications of the above embodiment, and can be appropriately modified.
  • the configurations of the above embodiments and modifications may be combined within a range that does not contradict each other.
  • the optical system of the light receiving system of the biological sensor according to the present technology may have a line sensor in which a plurality of light receiving elements (pixel sensors) are arranged one-dimensionally (in a line shape).
  • a lens array in which a plurality of light receiving lenses are arranged in a line, a light-shielding member in which a plurality of light guide paths are arranged in a line, or a single lens may be combined with the line sensor.
  • the biosensor according to Examples 2 to 20 may include a processing system 300-2 instead of the processing system 300-1.
  • the wavelength selection filter 120 is arranged between the lens array 220a and the biological LB, but the light source 110a is arranged as in the modified example shown in FIG. 29, for example.
  • the wavelength selection filter 120 may be arranged between the living body LB and the living body LB.
  • the wavelength selection filter 120 may be arranged in the same manner as in FIG. 29.
  • the wavelength selection filter 120 may be arranged between the light source 110a and the light guide plate 400.
  • this technology can also have the following configurations.
  • An irradiation system that irradiates a living body with irradiation light including light having a wavelength within the wavelength band including the peak wavelength related to water absorption.
  • a light receiving system that individually receives light having a wavelength within the wavelength band among the light emitted from the irradiation system and reflected by each of the plurality of parts of the living body.
  • a processing system for determining the state of the living body based on statistics on signals for each part output from the light receiving system, and a processing system for determining the state of the living body.
  • a biosensor that irradiates a living body with irradiation light including light having a wavelength within the wavelength band including the peak wavelength related to water absorption.
  • a light receiving system that individually receives light having a wavelength within the wavelength band among the light emitted from the irradiation system and reflected by each of the plurality of parts of the living body.
  • a processing system for determining the state of the living
  • the processing system further uses a second distribution, which is a distribution of the number of signals for each signal value of the signal for each part according to the reflectance distribution of the plurality of parts themselves, to determine the state of the living body.
  • the biosensor according to any one of (2) to (6).
  • the biosensor according to (8), wherein the feature amount of the second distribution is a feature amount corresponding to the feature amount of the first distribution.
  • the feature amount of the first distribution is the ratio of the number of signals whose signal values match a plurality of values among the signals for each part in the first distribution, and is the ratio of the number of signals of the second distribution.
  • the light receiving system includes a light receiving element array including a plurality of light receiving elements corresponding to the plurality of portions, and an optical system corresponding to the plurality of light receiving elements, and the optical system is derived from the irradiation system.
  • the living body according to any one of (1) to (10), which guides the light having a wavelength within the wavelength band among the light irradiated and reflected by each of the plurality of sites to the light receiving element corresponding to the site. Sensor.
  • the irradiation light includes only light having a wavelength within the wavelength band, and the optical system corresponds to light having a wavelength within the wavelength band irradiated from the irradiation system and reflected at the corresponding portion.
  • the irradiation light includes light having a wavelength within the wavelength band and light having a wavelength outside the wavelength band, and the optical system is the light emitted from the irradiation system and reflected by each of the plurality of sites.
  • the biosensor according to (11) which has a wavelength selection filter that selectively passes light having a wavelength within the wavelength band.
  • the optical system has an optical member that guides light having a wavelength within the wavelength band to a corresponding light receiving element via the wavelength selection filter.
  • the irradiation system includes a light source that emits light having a wavelength within the wavelength band and light having a wavelength outside the wavelength band, light within the wavelength band emitted from the light source, and light outside the wavelength band.
  • the irradiation system is arranged between two adjacent light receiving elements among the plurality of light receiving elements, and includes at least one light source that emits light including light having a wavelength within the wavelength band (11). ).
  • a light guide plate arranged between the optical system and the living body is further provided, the irradiation system includes a light source that emits light including light having a wavelength within the wavelength band, and the light guide plate includes a light source.
  • the light guide plate has a plurality of diffractive portions corresponding to the plurality of light receiving elements on the optical system side.
  • each of the plurality of diffracting portions diffracts the incident light having a wavelength within the wavelength band toward the corresponding portion.
  • the present technology comprises a step of irradiating a living body with irradiation light including light having a wavelength within the wavelength band including the peak wavelength related to water absorption.
  • Provided is a method for determining a biological state including.
  • 10-1 to 10-23 Biosensor, 100-1, 100-4, 100-5, 100-11, 100-13: Irradiation system, 110a, 110b: Light source, 200-1, 200-2, 200- 3,200-4,200-6,200-7,200-8,200-9,200-10,200-11,200-12,200-13,200-19,200-20,200-21, 200-22, 200-23: Light receiving system, 210, 210-11, 210-13: Light receiving element array, 210a: Light receiving element, 220-1, 220-2, 220-3, 220-4, 220-6, 220-7, 220-8, 220-9, 220-10, 220-19, 220-20, 220-21, 220-22: Optical system, 220a: Lens array (optical member), 220a1: Light receiving lens, 220b : Wavelength selection filter, 220c: Circularly polarizing plate, 220d: Light-shielding member (optical member), 220f: Lens (optical member), 300-1, 300-2: Processing system, LB:

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Psychiatry (AREA)
  • Developmental Disabilities (AREA)
  • Hospice & Palliative Care (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Endocrinology (AREA)
  • Educational Technology (AREA)
  • Physiology (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

生体の状態を簡易に判別することができる生体センサを提供する。 本技術に係る生体センサは、水の吸収に関するピーク波長を含む波長帯域内の波長の光を含む照射光を生体に照射する照射系と、前記照射系から照射され前記生体の複数部位の各々で反射された光のうち前記波長帯域内の波長の光を個別に受光する受光系と、前記受光系から出力された前記部位毎の信号に関する統計に基づいて、前記生体の状態を判別する処理系と、を備える。

Description

生体センサ及び生体状態判別方法
 本開示に係る技術(以下「本技術」とも呼ぶ)は、生体センサ及び生体状態判別方法に関する。
 従来、生体に光を照射し、該生体からの反射光を撮像して、該生体の水分分布を可視化する検査方法が知られている(例えば特許文献1参照)。
特開平8-184555号公報
 しかしながら、従来の検査方法を用いても、生体の状態を簡易に判別することが困難であった。
 そこで、本技術は、生体の状態を簡易に判別することができる生体センサ及び生体状態判別方法を提供することを主目的とする。
 本技術は、水の吸収に関するピーク波長を含む波長帯域内の波長の光を含む照射光を生体に照射する照射系と、
 前記照射系から照射され前記生体の複数部位の各々で反射された光のうち前記波長帯域内の波長の光を個別に受光する受光系と、
 前記受光系から出力された前記部位毎の信号に関する統計に基づいて、前記生体の状態を判別する処理系と、
 を備える、生体センサを提供する。
 前記処理系は、前記部位毎の信号の信号値毎の信号数の分布である第1の分布を用いて、前記生体の状態を判別してもよい。
 前記処理系は、前記第1の分布の特徴量から、前記生体の状態を判別してもよい。
 前記第1の分布の特徴量は、前記部位毎の信号の信号値が基準値以下の信号数であってもよい。
 前記基準値は、前記部位毎の信号の信号値の平均値であってもよい。
 前記第1の分布の特徴量は、前記部位毎の信号の信号値の中央値、平均値又は最頻値であってもよい。
 前記処理系は、前記複数部位自体の反射率分布に応じた前記部位毎の信号の信号値毎の信号数の分布である第2の分布を更に用いて、前記生体の状態を判別してもよい。
 前記処理系は、前記第1及び第2の分布の特徴量を比較して、前記生体の状態を判別してもよい。
 前記第2の分布の特徴量は、前記第1の分布の特徴量に対応する特徴量であってもよい。
 前記第1の分布の特徴量は、前記第1の分布における前記部位毎の信号のうち信号値が複数の値にそれぞれ一致する信号の数の比率であり、前記第2の分布の特徴量は、前記第2の分布における前記部位毎の信号のうち信号値が前記複数の値にそれぞれ一致する信号の数の比率であってもよい。
 前記受光系は、前記複数部位にそれぞれ対応する複数の受光素子を含む受光素子アレイと、前記複数の受光素子に対応する光学系と、を含み、前記光学系は、前記照射系から照射され前記複数部位の各々で反射された光のうち前記波長帯域内の波長の光を該部位に対応する前記受光素子に導いてもよい。
 前記照射光は、前記波長帯域内の波長の光のみを含み、前記光学系は、前記照射系から照射され対応する前記部位で反射された前記波長帯域内の波長の光を対応する前記受光素子に導く光学部材を有していてもよい。
 前記照射光は、前記波長帯域内の波長の光及び前記波長帯域外の波長の光を含み、前記光学系は、前記照射系から照射され前記複数部位の各々で反射された光のうち前記波長帯域内の波長の光を選択的に通過させる波長選択フィルタを有していてもよい。
 前記光学系は、前記波長選択フィルタを通過した前記波長帯域内の波長の光を対応する受光素子に導く光学部材を有していてもよい。
 前記光学系は、前記波長帯域内の波長の光を前記波長選択フィルタを介して対応する受光素子に導く光学部材を有していてもよい。
 前記照射系は、前記波長帯域内の波長の光及び前記波長帯域外の波長の光を出射する光源と、前記光源から出射された前記波長帯域内の光及び前記波長帯域外の光のうち前記波長帯域内の光を選択的に通過させる波長選択フィルタと、を有していてもよい。
 前記光学系は、前記波長選択フィルタを通過して対応する前記部位で反射された前記波長帯域内の波長の光を対応する受光素子に導く光学部材を有していてもよい。
 前記照射系は、前記複数の受光素子のうち隣り合う2つの前記受光素子間に配置され、前記波長帯域内の波長の光を含む光を出射する光源を少なくとも1つ含んでいてもよい。
 前記光学系と前記生体との間に配置される導光板を更に備え、前記照射系は、前記波長帯域内の波長の光を含む光を出射する光源を含み、前記導光板は、前記光源から出射された光のうち少なくとも前記波長帯域内の波長の光を導光し、該波長帯域内の光を前記複数部位の各々に入射させてもよい。
 前記導光板は、前記波長帯域内の波長の光に対して透明であってもよい。
 前記導光板は、前記複数の受光素子にそれぞれ対応する複数の回折部を前記光学系側に有し、前記複数の回折部の各々は、入射された前記波長帯域内の波長の光を対応する前記部位に向けて回折してもよい。
 前記受光素子アレイと前記生体との間に配置される円偏光板を更に備えていてもよい。
 前記生体の状態は、前記部位毎の発汗状況から推定される精神状態であってもよい。
 本技術は、
 水の吸収に関するピーク波長を含む波長帯域内の波長の光を含む照射光を生体に照射する工程と、
 前記照射系から照射され前記生体の複数部位の各々で反射された光のうち前記波長帯域内の波長の光を個別に受光して前記部位毎の信号を出力する工程と、
 前記出力する工程で出力された前記部位毎の信号に関する統計に基づいて、前記生体の状態を判別する工程と、
 を含む、生体状態判別方法も提供する。
本技術の一実施形態の実施例1に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例1に係る生体センサの機能例を示すブロック図である。 第1の分布及び第2の分布を示すグラフである。 図3に第1の分布及び第2の分布の信号値の平均値を表記した図である。 図3に第1の分布及び第2の分布の信号値の中央値を表記した図である。 図3に第1の分布及び第2の分布の信号値の最頻値を表記した図である。 生体状態判別処理1を説明するためのフローチャートである。 本技術の一実施形態の実施例1の変形例に係る生体センサの機能例を示すブロック図である。 生体状態判別処理2を説明するためのフローチャートである。 本技術の一実施形態の実施例2に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例3に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例4に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例5に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例6に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例7に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例8に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例9に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例10に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例11に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例12に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例13に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例14に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例15に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例16に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例17に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例18に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例19に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例20に係る生体センサの構成を模式的に示す図である。 本技術の一実施形態の実施例3の変形例に係る生体センサの構成を模式的に示す図である。
 以下に添付図面を参照しながら、本技術の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、これにより本技術の範囲が狭く解釈されることはない。本明細書において、本技術に係る生体センサ及び生体状態判別方法の各々が複数の効果を奏することが記載される場合でも、本技術に係る生体センサ及び生体状態判別方法の各々は、少なくとも1つの効果を奏すればよい。本明細書に記載された効果はあくまで例示であって限定されるものではなく、また他の効果があってもよい。
 また、以下の順序で説明を行う。
1.導入
2.本技術の一実施形態に係る生体センサ
3.本技術の一実施形態の実施例1に係る生体センサの構成
4.生体状態判別処理1
5.本技術の一実施形態の実施例1に係る生体センサの効果及び生体状態判別方法の効果
6.本技術の一実施形態の実施例1の変形例に係る生体センサの構成
7.生体状態判別処理2
8.本技術の一実施形態の実施例1の変形例に係る生体センサの効果
9.本技術の一実施形態の実施例2~20に係る生体センサ
10.本技術の変形例
1.<導入>
 従来、例えば人の精神状態を計測する手段として発汗計測装置が広く用いられている。この発汗計測装置として、例えばカプセルで皮膚を覆い、発汗による湿度変化を観測する換気カプセル式計測装置が知られている。また、この発汗計測装置として、例えば電気的に発汗現象を計測する皮膚電気活動(EDA)計測装置も用いられている。EDA計測装置は、人の精神的な活動により皮膚のエクリン線などの器官が影響を受けた結果、皮膚のインピーダンスやコンダクタンスが変化する現象を用いるものである。EDA計測装置は、換気カプセル式計測装置に比べて電極を2つ皮膚に貼り付けるだけの簡単な実装により実現できるため、広く用いられている。
 しかし、換気カプセル式計測装置及びEDA計測装置の何れの場合も皮膚に計測部を当接させる必要があり、装着時に不快感が生じるという問題があった。このため、これらの発汗計測装置は一般には普及しておらず病院など専門機関で使用されることが多い。このような使用環境に制限が生じる発汗計測装置を気軽に(簡易に)不快感なく使用することができるようになれば人の精神状態に応じて提供するサービスを動的に変更するなどの新たな製品市場が広がってくると期待できる。
 そこで、発明者は、鋭意検討の末、以下に説明するような、生体(例えば人体)の状態(例えば生体の発汗状況から推定される精神状態)を簡易に判別可能な非接触型の生体センサを開発するに至った。
2.<本技術の一実施形態に係る生体センサ>
 以下、本技術の一実施形態に係る生体センサについて説明する。
 本技術の一実施形態に係る生体センサは、例えば、計測部が、生体(例えば人体)の表面(例えば皮膚)に光を照射し、反射光を受光することにより、生体の状態(例えば人の発汗状況に応じた精神状態)を判別する光学式のセンサである。
 詳述すると、一実施形態に係る生体センサは、少なくとも計測部が生体に対して非接触の状態で用いられる非接触型の生体センサである。
 本技術に係る生体センサの使用形態としては、例えばリストバンド型、イヤリング型、指輪型、ネックレス型、貼付型、サポーター型等の生体に対して装着されて用いられる装着型の他、生体に対してかざすことにより用いられる携帯型のもの等、多種多様な形態が想定される。
3.<本技術の一実施形態の実施例1に係る生体センサの構成>
 図1は、一実施形態の実施例1に係る生体センサ10-1の構成を模式的に示す図である。図1では、生体センサ10-1の計測部(後述する照射系100-1及び受光系200-1)が断面図で示されている。図2は、一実施形態の実施例1に係る生体センサ10-1の機能例1を示すブロック図である。
 実施例1の生体センサ10-1は、図1に示すように、照射系100-1、受光系200-1及び処理系300-1を備える。
 照射系100-1及び受光系200-1は、例えば、一体的に設けられている。処理系300-1は、照射系100-1及び受光系200-1と一体的に設けられてもよいし、別体であってもよい。
 生体センサ10-1は、図1に示すように、照射系100-1と受光系200-1とから成る計測部が生体LBに対して非接触の状態(例えば近接した状態)で使用される。
 なお、生体LBは、例えば人体の他、人間以外の動物等の身体も含む。
(照射系)
 照射系100-1は、水の吸収に関するピーク波長λを含む波長帯域WB内の波長の光を含む照射光ILを生体LB(詳しくは、生体LB表面)に照射する。
 水の吸収に関するピーク波長λは、水の吸収スペクトルを示すグラフ(横軸:波長、縦軸:吸光度)において、ピーク(極大値)をとる波長である。
 波長帯域WBは、一例として、1300nm~2100nmの波長範囲に複数(例えば2つ)存在する、相対的に水の吸収性が高い波長帯域である。
 上記2つの波長帯域WBの一方が、ピーク波長λP1(例えば1450nm)を含む第1の波長帯域WB1である。第1の波長帯域WB1は、例えば、λP1-100nm≦WB1≦λP1+100nmであることが好ましく、λP1-50nm≦WB1≦λP1+50nmであることがより好ましい。
 上記2つの波長帯域WBの他方が、ピーク波長λP2(例えば1940nm)を含む第2の波長帯域WB2である。第2の波長帯域WB2は、例えば、λP2-100nm≦WB2≦λP2+100nmであることが好ましく、λP2-50nm≦WB2≦λP2+50nmであることがより好ましい。
 照射系100-1は、光源110aを含む。光源110aは、例えば、ハロゲンランプ、LED(発光ダイオード)、レーザ等である。光源110aが出射する光は、可視光でも非可視光でもよいが、非可視光(例えば赤外光)が好ましい。
 光源110aは、一例として、図1に示すように、受光系200-1を生体LB表面に対して正対させたときに生体LB表面に対して傾斜する方向から光を出射するように受光系200-1に対して位置決めされている。
 光源110aは、波長帯域WB内の波長の光及び波長帯域WB外の波長の光を出射する。ここでは、光源110aから出射された光が照射光ILである。すなわち、照射光ILは、波長帯域WB内の波長の光及び波長帯域WB外の波長の光を含む。
 照射光ILは、第1及び第2の波長帯域WB1、WB2の少なくとも一方内の波長の光を含んでいればよい。
 詳述すると、照射光ILは、第1の波長帯域WB1内の少なくとも1つの波長の光を含んでいてもよいし、第2の波長帯域WB2内の少なくとも1つの波長の光を含んでいてもよいし、第1の波長帯域WB1内の少なくとも1つの波長の光及び第2の波長帯域WB2内の少なくとも1つの波長の光を含んでいてもよい。
(受光系)
 受光系200-1は、照射系100-1から照射され生体LBの複数部位の各々で反射された光のうち波長帯域WB内の波長の光を個別に受光する。
 受光系200-1は、複数(例えば)の受光素子210aを含む受光素子アレイ210と、複数の受光素子210aに対応する光学系220-1とを含む。
 複数の受光素子210aは、一例として、2次元アレイ状に配列されている。
 複数の受光素子210aは、生体LBの複数部位(例えばLB1~LB6)にそれぞれ対応する。
 各受光素子210aは、例えば、1400nm~2000nmの波長範囲で感度を持つ。
 各受光素子210aは、例えば、InGaAs、PbSe、InSb等の材料からなる画素センサである。すなわち、受光素子アレイ210は、複数の画素センサを含む画像センサ(エリアセンサ)である。
 例えば比較的安価なInGaAsからなる画素センサでは、略1700nm以下の波長に対して感度を有する。この場合、照射光ILが第1の波長帯域WB1内の波長の光を含んでいればよい。
 各受光素子210aは、入射光を光電変換し、電気信号を出力する。
 受光素子210aとしては、例えばPD(フォトダイオード)、フォトトランジスタ等が用いられる。
 受光素子は、例えば「受光器」、「光検出器」等とも呼ばれる。
(光学系)
 光学系220-1は、照射系100-1から照射され生体LBの複数部位の各々で反射された光のうち波長帯域WB内の波長の光を該部位に対応する受光素子210aに導く。
 光学系220-1は、複数の受光レンズ220a1を含むレンズアレイ220a(光学部材)と、波長選択フィルタ220bとを有する。
 光学系220-1では、レンズアレイ220aが受光素子アレイ210側に配置され、且つ、波長選択フィルタ220bが生体LB側に配置されるようにレンズアレイ220aと波長選択フィルタ220bとが互いに隣接して配置されている。
 波長選択フィルタ220bは、照射系100-1から照射され生体LBの複数部位の各々で反射された光のうち波長帯域WB内の波長の光を選択的に通過させる。波長選択フィルタ220bは、一例として波長帯域WBを通過帯域とするバンドパスフィルタである。
 レンズアレイ220aは、波長選択フィルタ220bの生体LB側とは反対側に配置されている。レンズアレイ220aは、波長選択フィルタ220bを通過した波長帯域WB内の波長の光を対応する受光素子210aに導く。
 レンズアレイ220aの複数の受光レンズ220a1は、一例として、対応する複数の受光素子210aに対向するように2次元アレイ状に配列されている。
 各受光レンズ220a1は、対応する受光素子210a側に凸となるレンズであり、波長選択フィルタ220bを介した、生体LBの対応する部位からの光を対応する受光素子210aに集光(好ましくは結像)する。
 すなわち、各受光素子210aには、対応する受光レンズ220a1の集光作用により生体LBの対応する部位からの光のみが入射される。このため、各受光素子210aに生体LBの対応しない部位からの光が入射されること(クロストーク)が抑制される。
(非接触による発汗計測のメカニズム)
 ところで、汗は、周知のとおり、生体表面から満遍なく湧き出るものではなく、生体表面の汗腺と呼ばれる器官から離散的に湧き出る。このため、生体表面の複数部位のうち汗腺がある部位は、水(汗)による吸光により、汗腺がない部位に比べて実質的に反射率が低下する。この反射率低下は、汗腺の数が多い部位ほど大きくなる。生体の各部位の反射率が低下するほど、該部位からの反射光の光量が低下し、該部位に対応する受光素子での受光光量は低下することとなる。
 詳述すると、一例として、図1において、生体LBの、紙面に向かって最も左側の部位LB1には2つの汗腺があり、この2つの汗腺から汗Wが湧き出ている。この場合、該部位に対応する受光素子210aでの受光光量(出力信号の信号値)は、この2つの汗腺から汗Wが湧き出ていない場合に比べて、大きく低下することとなる。
 図1において、生体LBの、紙面に向かって最も左側の部位から数えて2番目の部位LB2、4番目の部位LB4及び5番目の部位LB5には汗腺がなく、これらの各部位に対応する受光素子210aでの受光光量は変化しない。
 図1において、生体LBの、紙面に向かって最も左側の部位から数えて3番目の部位LB3及び6番目の部位LB6には汗腺が1つずつあり、各汗腺から汗Wが湧き出ている。この場合、これらの各部位に対応する受光素子210aでの受光光量は、各汗腺から汗Wが湧き出ていない場合に比べて、低下することとなる。
 結果として、LB1に対応する受光素子210aでの受光光量の低下が、LB3及びLB6の各々に対応する受光素子210aでの受光光量の低下よりも大きくなると推定される。
(非接触による発汗計測の問題点)
 以上のように非接触で生体LBの部位毎の発汗計測を行うことは可能であるが、複数の受光素子210aの受光光量を単純に比較しても、対応する複数部位の発汗状況を比較することは困難である。その理由は、複数の受光素子210aと生体LBとの生体LB表面に沿う方向の相対位置を厳密に一致させ続けることが困難だからである。一般に人の汗腺密度は130~600個/cmであり、平均的な汗線間隔は0.4~0.8mmと算出される。よって、上記相対位置が1mm程度ずれただけでも、生体LBの複数部位と複数の受光素子210aとの対応関係が変わってしまうので、各受光素子210aの受光光量を取得しても該受光素子210aに一対一で対応する部位の発汗状況を取得したことにはならない。
 そこで、受光系200-1から出力された生体LBの部位毎の信号に関する統計をとれば、生体LBの複数部位の全体の発汗状況(発汗傾向)が分かり、該発汗状況から生体LBの状態(例えば精神状態)を判別することが可能となる。
 補足すると、一実施形態に係る生体センサでは、精神性発汗のような微量な発汗現象の際には汗腺位置で離散的に汗が表出することを利用する。その際、アレイ状に配列された複数の受光素子にて計測を行うが、個々の受光素子の出力値を観測するのではなく、複数の受光素子の出力全体の統計量を用いて発汗量を測定する。
 例えば発汗の生じていない皮膚を観測する場合、複数の受光素子のそれぞれからの出力のヒストグラムを作成すると平均的な皮膚の反射率分布に従った略正規分布形状の出力分布となる。これに対して、発汗が生じると、汗腺を有する部位からの反射光を受光する受光素子については汗の水分により反射率が低下する。このため、反射率分布は略正規分布から低出力側へと重心が移動することとなる。さらに発汗が進めば出力はさらに低出力側へとシフトし、最終的に皮膚が汗で満たされればすべての受光素子の出力が0となる。
(処理系)
 処理系300-1は、受光系200-1から出力された生体LBの部位毎の信号に関する統計に基づいて、生体LBの状態を判別する。
 生体LBの状態は、例えば、生体LBの部位毎の発汗状況から推定される精神状態である。
 処理系300-1は、一例として、生体LBの部位毎の信号の信号値毎の信号数(信号の数)の分布である第1の分布D1(図3参照)を用いて、生体の状態を判別する。図3において、横軸は信号値を表し、縦軸は信号数を表す。
 ここで、図3に示すように、生体LBが発汗していないと仮定したときの、生体LBの複数部位の各々の信号の信号値毎の信号数の分布は、該複数部位自体の反射率分布に応じた略正規分布(以下「第2の分布D2」と呼ぶ)となる。
 これに対して、上述したように、第1の分布D1は、生体LBが発汗しているときの生体LBの部位毎の信号の信号値毎の信号数の分布であるため、該部位自体の反射率に該部位に付着した汗Wによる吸光度(吸光率)が加味された分布、すなわち第2の分布に対して信号値が低くなる側にずれた分布となる。この場合、第1の分布の特徴量が、生体LBの発汗状況を示す指標となる。
 そこで、処理系300-1は、第1の分布の特徴量から、生体LBの状態(例えば生体LBの発汗状況から推定される精神状態)を判別しうる。
 詳述すると、図3において、第2の分布D2は信号値が約30を中心とした略正規分布の出力分布となっている。一方、第1の分布D1は、信号値の平均が約20に低下するとともに重心が第2の分布D2に対して信号値が低くなる側にずれている。
 受光素子個々の出力を捉えることを行わず、すべての出力を統計的に処理することにより複雑な処理を行うことなく発汗現象の有無、発汗量を得ることができる。このような統計的な処理を行うことで、外光が入射する場合、皮膚の計測位置がずれた場合等の外的要因があっても発汗がない場合は略正規型の分布となり、低出力側に分布が変位した場合は変位量に応じた分だけ発汗が生じたことが分かる。このため、複数の受光素子を用いて統計的な処理を行うことによって外的要因によらず継続した発汗量の計測が可能となる。
 処理系300-1は、図2に示すように、分布取得部300a、特徴量抽出部300b及び判別部300cを含む。処理系300-1は、例えばCPU、チップセット等のハードウェアにより実現される。
 分布取得部300aは、第1の分布D1を取得する。
 特徴量抽出部300bは、第1の分布D1からその特徴量を抽出する。
 第1の分布D1の特徴量は、例えば第1の分布D1の歪み(尖度、歪度)、分散、標準偏差等の第2の分布に対する第1の分布のずれを示すものであれば、如何なるものであってもよい。第1の分布の特徴量と、対応する第2の分布の特徴量との差が大きいほど、生体LBの発汗量が多く、例えば生体LBがより緊張した状態、よりストレスのある状態、より自律神経の乱れが生じた状態等と推定できる。
 例えば、第1の分布D1の特徴量は、図4に示すように、第1の分布D1における生体LBの部位毎の信号の信号値の平均値S1Aveであってもよい。この平均値S1Aveは、第2の分布D2における生体LBの部位毎の信号の信号値の平均値S2Aveよりも小さくなり、その値が小さいほど、生体LBにおいて発汗量が多いと推定される。
 例えば、第1の分布D1の特徴量は、第1の分布D1における生体LBの部位毎の信号の信号値が例えば平均値S1AVe(基準値)以下の信号数(信号の数)であってもよい。この信号数は、第2の分布D2における生体LBの部位毎の信号値が平均値S2Ave以下の信号数よりも大きくなり、その値が大きいほど、生体LBにおいて発汗量が多いと推定される。なお、上記基準値は、第1の分布D1における生体LBの部位毎の信号の信号値の平均値S1AVeに限らず、該信号値の最大値未満の値であればよい。
 例えば、第1の分布D1の特徴量は、図5に示すように、生体LBの部位毎の信号の信号値の中央値S1Meであってもよい。この中央値S1Meは、第2の分布D2における生体LBの部位毎の信号の信号値の中央値S2Meよりも小さくなり、その値が小さいほど、生体LBにおいて発汗量が多いと推定される。
 例えば、第1の分布D1の特徴量は、図6に示すように、生体LBの部位毎の信号の信号値の最頻値S1Mo(第1の分布における信号数がピークとなる信号値))であってもよい。この最頻値S1Moは、第2の分布D2における生体LBの部位毎の信号の信号値の最頻値S2Mo(第2の分布における信号数がピークとなる信号値))よりも小さくなり、その値が小さいほど、生体LBにおいて発汗量が多いと推定される。
4.<生体状態判別処理1>
 以下、生体センサ10-1を用いて実施される生体状態判別処理1について、図7のフローチャートを参照して説明する。生体状態判別処理1は、本技術に係る生体状態判別方法の一例である。生体状態判別処理1は、例えば、生体LBに対して計測部が近接して対向した状態にある生体センサ10-1の電源がオンになったときに開始される。
 最初のステップS1では、照射系100-1が生体LBに照射光ILを照射する。具体的には、照射系100-1が光源110aを発光させて、波長帯域WB内の波長の光及び波長帯域WB外の波長の光を含む照射光ILを生体LBに照射する。
 次のステップS2では、受光系200-1が、生体LBの複数部位の各々で反射された光のうち水の吸収に関するピーク波長λを含む波長帯域WB内の波長の光を個別に受光する。具体的には、生体LBの複数部位の各々に照射され反射された光(照射光IL)のうち波長帯域WB内の光が波長選択フィルタ220bを通過し、対応する受光レンズ220a1で対応する受光素子210aに集光される。
 次のステップS3では、受光系200-1が、生体LBの部位毎の信号を出力する。具体的には、複数の受光素子210aの各々が、受光した光を光電変換し、受光光量に応じた電気信号を出力する。
 次のステップS4では、処理系300-1が、第1の分布D1を取得する。具体的には、分布取得部300aが生体LBの部位毎の信号の信号値毎の信号数の分布を取得する(図3参照)。
 次のステップS5では、処理系300-1が、第1の分布D1の特徴量を抽出する。具体的には、特徴量抽出部300bが、第1の分布D1から、例えば平均値S1Ave、信号値が平均値S1Ave以下の信号数、中央値S1Me、最頻値S1Mo等を抽出する。
 次のステップS6では、処理系300-1が、第1の分布D1の特徴量から、生体LBの状態を判別する。
 例えば、第1の分布D1の特徴量が平均値S1Aveである場合には、判別部300cが、その値が小さいほど(生体LBの発汗量が多いほど)生体LBがより緊張した状態にあると判断し、その値が大きいほど(生体LBの発汗量が少ないほど)生体LBがよりリラックスした状態にあると判断する。
 例えば、第1の分布D1の特徴量が、信号値が平均値S1Ave以下の信号数である場合には、判別部300cが、該信号数が多いほど(生体LBの発汗量が多いほど)生体LBがより緊張した状態にあると判断し、該信号数が少ないほど(生体LBの発汗量が少ないほど)生体LBがよりリラックスした状態にあると判断する。
 例えば、第1の分布の特徴量が中央値S1Meである場合には、判別部300cが、その値が小さいほど(生体LBの発汗量が多いほど)生体LBがより緊張した状態にあると判断し、その値が大きいほど(生体LBの発汗量が少ないほど)生体LBがよりリラックスした状態にあると判断する。
 例えば、第1の分布の特徴量が最頻値S1Moである場合には、判別部300cが、その値が小さいほど(生体LBの発汗量が多いほど)生体LBがより緊張した状態にあると判断し、その値が大きいほど(生体LBの発汗量が少ないほど)生体LBがよりリラックスした状態にあると判断する。
 なお、判別部300cは、以上のような判別の結果(例えば第1の分布の特徴量の大きさに応じた生体LBの精神状態)を段階評価的に出力してもよい。例えば、生体LBが最もリラックスした状態にある場合を1とし、最も緊張した状態にある場合を10とした10段階の判別結果を出力してもよい。
 最後のステップS7では、処理系300-1が、処理を終了するか否かを判断する。具体的には、処理系300-1は、例えば生体センサ10-1の電源がオフとなったときに処理を終了させる。ステップS7での判断が肯定されるとフローは終了し、否定されるとステップS1に戻る。
5.<本技術の一実施形態の実施例1に係る生体センサ及び生体状態判別方法の効果>
 実施例1に係る生体センサ10-1は、水の吸収に関するピーク波長λを含む波長帯域WB内の波長の光を含む照射光ILを生体LBに照射する照射系100-1と、照射系100-1から照射され生体LBの複数部位の各々で反射された光のうち波長帯域WB内の波長の光を個別に受光する受光系200-1と、該受光系200-1から出力された部位毎の信号に関する統計に基づいて、生体LBの状態を判別する処理系300-1と、を備える。
 これにより、生体LBの複数部位の各々での実質的な反射率(汗Wの有無、量を正確に反映する反射率)に応じた信号値の統計から生体LBの状態を判別できるので、生体LBの状態を簡易に判別することができる。
 結果として、生体センサ10-1によれば、生体LBの状態を簡易に判別することができる生体センサを提供できる。
 なお、波長帯域WB外の波長の光は相対的に水の吸収性が低いので、生体LBで反射された光のうち波長帯域WB外の光を受光素子アレイで受光しても、その受光結果は汗Wの有無、量を正確には反映しない。
 一方、上述したように受光素子毎の出力を得る方法では、生体センサと生体との間の相対位置の僅かなずれで、複数の受光素子と生体の複数部位との対応関係が変わってしまう。この対策として、受光素子アレイの出力を画像と見立ててトラッキングを行い、各汗腺の信号を追跡し継続した値を取得する方法が考えられる。しかし、このような方法を用いても、多大な演算量を要するため、生体の状態を簡易に判別可能な生体センサを実現することはできない。
 また、別の方法として受光素子アレイの計測値全体の平均値を発汗量として定義する方法もある。この場合、受光素子毎の出力は重要ではなく単に全体の反射率が低下すれば発汗量が増加したと考えることができる。このように構成すれば、受光素子は必ずしもアレイ状に配列される必要はなく、単一の受光素子でもよいことになる。しかし、このような場合、生体が動いた際にセンサ全体が皮膚から浮いて外光が入る、またはセンサ全体が横方向に移動して平均的な皮膚の反射率が変化するなどが生じた場合には継続した計測を行うことができない。
 人の精神状態を知りたいと考えた場合、病院や研究室などでの安静な場合のみを想定するのではなく、ウェアラブル機器として人に装着し、日常生活環境で発汗状態を計測することも求められるため外光の侵入などについては十分な対策が必要であり、さらなる改善が求められる。
 本技術に係る生体センサは、トラッキングを行わず、かつ上述した計測値全体の平均値を用いるのと同様な簡便さで安定的に発汗計測を実現することができる。
 処理系300-1は、生体LBの部位毎の信号の信号値毎の信号数の分布である第1の分布を用いて、生体LBの状態を判別する。これにより、生体LBの状態をより簡易に判別可能とすることができる。
 処理系300-1は、第1の分布D1の特徴量から、生体LBの状態を判別することが好ましい。これにより、生体LBの状態をより簡易かつ精度良く判別することができる。
 第1の分布D1の特徴量は、生体LBの部位毎の信号の信号値の平均値S1Ave、中央値SMe又は最頻値SMoであってもよい。これにより、例えば歪度を計算するよりも極めて簡易な処理で発汗量の指標を算出することができる。
 第1の分布D1の特徴量は、生体LBの部位毎の信号の信号値が基準値以下の信号数であってもよい。これにより、例えば歪度を計算するよりも極めて簡易な処理で発汗量の指標を算出することができる。この場合に、当該基準値は、例えば生体LBの部位毎の信号の信号値の平均値S1Aveであってもよいし、その他の値であってもよい。当該基準値が平均値S1Aveである場合には、極めて簡易に妥当な判別結果を得ることができる。
 受光系200-1は、生体LBの複数部位にそれぞれ対応する複数の受光素子210aを含む受光素子アレイ210と、複数の受光素子210aに対応する光学系220-1と、を含み、光学系220-1は、照射系100-1から照射され生体LBの複数部位の各々で反射された光のうち波長帯域WB内の波長の光を該部位に対応する受光素子210aに導く。これにより、生体LBの各部位で反射された光のうち波長帯域WB内の波長の光を該部位に対応する受光素子210aに確実に導くことができる。
 照射光ILは、波長帯域WB内の波長の光及び波長帯域WB外の波長の光を含み、光学系220-1は、照射系100-1から照射され複数部位の各々で反射された光のうち波長帯域WB内の波長の光を選択的に通過させる波長選択フィルタ220bを有する。これにより、生体LBの各部位で反射された光のうち相対的に水の吸収性が低い、波長帯域WB外の波長の光を遮光することができる。
 光学系220-1は、波長選択フィルタ220bを通過した波長帯域WB内の波長の光を対応する受光素子210aに導く受光レンズ220a1を有する。これにより、生体LBの各部位で反射された光のうち波長選択フィルタ220bを通過した波長帯域WB内の波長の光を対応する受光素子210aに確実に導くことができる。
 生体LBの状態は、例えば、生体LBの部位毎の発汗状況から推定される精神状態である。これにより、生体LBの精神状態を簡易に判別できる生体センサ10-1を提供できる。
 本技術の一実施形態の実施例1の生体センサ10-1を用いる生体状態判別方法(例えば生体状態判別処理1)は、水の吸収に関するピーク波長λを含む波長帯域WB内の波長の光を含む照射光ILを生体LBに照射する工程と、照射系100-1から照射され生体LBの複数部位の各々で反射された光のうち波長帯域WB内の波長の光を個別に受光して該部位毎の信号を出力する工程と、該出力する工程で出力された該部位毎の信号に関する統計に基づいて、生体LBの状態を判別する工程と、を含む。
 これにより、複数部位の各々での実質的な反射率(汗Wの影響も反映する反射率)に応じた信号値の統計から生体LBの状態を判別できるので、生体LBの状態を簡易に判別することができる。
 結果として、生体センサ10-1を用いる生体状態判別方法によれば、生体LBの状態を簡易に判別することができる。
6.<本技術の一実施形態の実施例1の変形例に係る生体センサの構成>
 実施例1の変形例に係る生体センサは、図8に示すように、処理系の構成が異なる点を除いて、実施例1に係る生体センサ10-1と同様の構成(図1参照)を有する。
 変形例に係る生体センサの処理系300-2は、処理系300-1の構成(図2参照)に加えて、記憶部300d及び比較部300eを有する。
 記憶部300dは、予め取得された第2の分布D2を記憶する。第2の分布D2は、予め、例えば安静且つリラックスした状態(発汗がない状態)にある生体LBに対して、変形例に係る生体センサを用いた計測を行うことにより取得されている。
 記憶部300dは、例えばROM、RAM、フラッシュメモリ、ハードディスク等により実現される。
 処理系300-2において、特徴量抽出部300bは、分布取得部300aで取得された第1の分布D1の特徴量を抽出するとともに、記憶部300dに記憶された第2の分布D2の特徴量(第1の分布D1の特徴量に対応する(同種の)特徴量)を抽出する。
 比較部300eは、特徴量抽出部300bで抽出された第1及び第2の分布D1、D2の特徴量を比較する。比較部300eは、例えばCPU等により担われる。
 処理系300-2において、判別部300cは、比較部300eでの比較結果に応じて、生体LBの状態を判別する。
7.<生体状態判別処理2>
 以下、実施例1の変形例に係る生体センサを用いて実施される生体状態判別処理2について、図9のフローチャートを参照して説明する。生体状態判別処理2は、本技術に係る生体状態判別方法の一例である。生体状態判別処理1は、例えば、生体LBに対して計測部が近接して対向した状態にある生体センサの電源がオンになったときに開始される。
 最初のステップS11では、照射系100-1が生体LBに照射光ILを照射する。具体的には、照射系100-1が光源110aを発光させて、波長帯域WB内の波長の光及び波長帯域WB外の波長の光を含む照射光ILを生体LBに照射する。
 次のステップS12では、受光系200-1が、生体LBの複数部位の各々で反射された光のうち水の吸収に関するピーク波長λを含む波長帯域WB内の波長の光を個別に受光する。具体的には、生体LBの複数部位の各々に照射され反射された光(照射光IL)のうち波長帯域WB内の光が波長選択フィルタ220bを通過し、対応する受光レンズ220a1で対応する受光素子210aに集光される。
 次のステップS13では、受光系200-1が、生体LBの部位毎の信号を出力する。具体的には、複数の受光素子210aの各々が、受光した光を光電変換し、受光光量に応じた電気信号を処理系300-2に出力する。
 次のステップS14では、処理系300-2が、第1の分布D1を取得する。具体的には、分布取得部300aが、入力された生体LBの部位毎の信号から、生体LBの部位毎の信号の信号値毎の信号数の分布(図3参照)を取得し、その取得結果を特徴量抽出部300bに出力する。
 次のステップS15では、処理系300-2が、第1及び第2の分布D1、D2の特徴量を抽出する。具体的には、特徴量抽出部300bが、入力された第1の分布D1の特徴量及び記憶部300dに記憶された第2の分布D2の特徴量を抽出し、第1及び第2の分布D1、D2の特徴量を比較部300eに出力する。
 例えば、特徴量抽出部300bが、第1の分布D1から平均値S1Aveを抽出し、且つ、第2の分布D2から平均値S2Aveを抽出する(図4参照)。
 例えば、特徴量抽出部300bが、第1の分布D1から信号値が基準値(例えば平均値S1Ave)以下の信号数を抽出し、且つ、第2の分布D2から信号値が基準値(例えば平均値S2Ave)以下の信号数を抽出する。
 例えば、特徴量抽出部300bが、第1の分布D1から中央値S1Meを抽出し、且つ、第2の分布D2から中央値S2Meを抽出する(図5参照)。
 例えば、特徴量抽出部300bが、第1の分布D1から最頻値S1Moを抽出し、且つ、第2の分布D2から最頻値S2Moを抽出する(図6参照)。
 例えば、特徴量抽出部300bが、第1の分布D1から信号値が複数の値(例えば図3において15と45)にそれぞれ一致する信号の数(例えば図3において400と200)の比率(例えば0.5)を抽出し、且つ、第2の分布D2から信号値が該複数の値(例えば図3において15と45)にそれぞれ一致する信号の数(例えば図3において250と320)の比率(例えば0.78)を抽出する。
 次のステップS16では、処理系300-2が、第1及び第2の分布D1、D2の特徴量を比較する。具体的には、比較部300eが、入力された第1及び第2の分布D1、D2の対応する特徴量を比較し、その比較結果(例えば特徴量の差分、比等)を判別部300cに出力する。
 例えば比較部300eが、入力された平均値S1Aveと平均値S2Aveとの差分をとり、該差分を判別部300cに出力する。
 例えば比較部300eが、入力された、信号値が平均値S1Ave以下の信号数と信号値が平均値S2Ave以下の信号数との差分とり、該差分を判別部300cに出力する。
 例えば比較部300eが、入力された中央値S1Meと中央値S2Meとの差分をとり、該差分を判別部300cに出力する。
 例えば比較部300eが、入力された最頻値S1Moと最頻値S2Moとの差分をとり、該差分を判別部300cに出力する。
 なお、判別部300cは、以上のような判別の結果(例えば差分の大きさに応じた生体LBの精神状態)を段階評価的に出力してもよい。例えば、生体LBが最もリラックスした状態にある場合を1とし、最も緊張した状態にある場合を10とした10段階の判別結果を出力してもよい。
 次のステップS17では、処理系300-2が、生体LBの状態を判別する。具体的には、判別部300cが、入力された比較結果(例えば特徴量の差分、比等)に応じて、生体LBの状態を判別する。
 例えば、判別部300cは、入力された特徴量の差分が大きいほど生体LBがより緊張した状態にあると判別し、該差分が小さいほど生体LBがよりリラックスした状態にあると判別する。
 最後のステップS18では、処理系300-2が、処理を終了するか否かを判断する。具体的には、処理系300-2は、例えば実施例1の変形例に係る生体センサの電源がオフとなったときに処理を終了させる。ステップS18での判断が肯定されるとフローは終了し、否定されるとステップS11に戻る。
 なお、実施例1の変形例に係る生体センサでは、第2の分布D2が予め記憶部300dに記憶されているが、これに代えて又は加えて、当該生体センサを用いて第2の分布D2を随時取得、更新することとしてもよい。
 実施例1の変形例に係る生体センサでは、判別部300cが比較部300eの機能も有していてもよい。この場合、比較部300eは不要である。
8.<本技術の一実施形態の実施例1の変形例に係る生体センサの効果>
 実施例1の変形例に係る生体センサは、処理系300-2が、第1及び第2の分布D1D、D2の特徴量を比較して、生体LBの状態(例えば生体LBの発汗状況に応じた精神状態)を判別する。これにより、生体LBの状態をより精度良く判別することができる。
 第2の分布D2の特徴量は、第1の分布D1の特徴量に対応する(同種の)特徴量である。
 例えば、第1の分布D1の特徴量は、第1の分布D1における部位毎の信号のうち信号値が複数の値にそれぞれ一致する信号の数の比率であり、第2の分布D2の特徴量は、第2の分布D2における部位毎の信号のうち信号値が複数の値にそれぞれ一致する信号の数の比率であってもよい。
9.<本技術の一実施形態の実施例2~20に係る生体センサ>
 以下、一実施形態の実施例2~20に係る生体センサ10-2~10~20について図10~図28を参照して説明する。
(実施例2に係る生体センサ)
 図10に示すように、実施例2に係る生体センサ10-2は、受光系の光学系におけるレンズアレイ220aと波長選択フィルタ220bとの位置関係が実施例1に係る生体センサ10-1と逆になっている点を除いて、該生体センサ10-1と同様の構成を有する。
 生体センサ10-2は、受光系200-2の光学系220-2のレンズアレイ220aと、受光素子アレイ210との間に光学系220-2の波長選択フィルタ220bが配置されている。
 すなわち、光学系220-2では、レンズアレイ220aが生体LB側に配置され、且つ、波長選択フィルタ220bが受光素子アレイ210側に配置されるようにレンズアレイ220aと波長選択フィルタ220bとが互いに隣接して配置されている。
 以上のように、実施例2に係る生体センサ10-2は、光学系220-2が、波長帯域WB内の波長の光を波長選択フィルタ220bを介して対応する受光素子210aに導く受光レンズ220a1を有する。
 以上説明した実施例2に係る生体センサ10-2でも、実施例1に係る生体センサ10-1と同様の効果を得ることができる。
(実施例3に係る生体センサ)
 図11に示すように、実施例3に係る生体センサ10-4は、受光系に代えて照射系が波長選択フィルタを有している点を除いて、実施例1に係る生体センサ10-1と同様の構成を有する。
 生体センサ10-4の照射系100-4では、光源110aと生体LBとの間の光路上に配置される波長選択フィルタ120を有している。波長選択フィルタ120は、実施例1に係る生体センサ10-1の波長選択フィルタ220bと実質的に同一である。
 すなわち、照射系100-4は、波長帯域WB内の波長の光及び波長帯域WB外の波長の光を出射する光源110aと、該光源110aから出射された波長帯域WB内の光及び波長帯域WB外の光のうち波長帯域WB内の光を選択的に通過させる波長選択フィルタ120と、を有する。
 生体センサ10-4の受光系200-4の光学系220-4は、波長選択フィルタ120を通過して生体LBの対応する部位で反射された波長帯域WB内の波長の光を対応する受光素子210aに導く、複数の受光レンズ220a1を含むレンズアレイ220aを有する。
 以上のように構成される生体センサ10-4では、光源110aから出射された波長帯域WB内の波長の光及び波長帯域WB外の波長の光のうち波長帯域WB内の波長の光が波長選択フィルタ120を通過して照射光として生体LBに照射される。生体LBに照射され生体LBの複数部位の各々で反射された波長帯域WB内の波長の光は、再び波長選択フィルタ120を通過し、対応する受光レンズ220a1を介して対応する受光素子210aに導かれる。
 以上説明した実施例3に係る生体センサ10-4も、実施例1に係る生体センサ10-1と同様の効果を奏する。
(実施例4に係る生体センサ)
 図12に示すように、実施例4に係る生体センサ10-5は、照射系100-5が波長帯域WB内の光のみを出射する光源110bを有している点、及び受光系200-4が波長選択フィルタを有していない点を除いて、実施例1に係る生体センサ10-1と同様の構成を有する。
 すなわち、生体センサ10-5では、照射光は波長帯域WB内の波長の光のみを含み、受光系200-4の光学系220-4は、照射系100-5から照射され生体LBの複数部位の各々で反射された波長帯域WB内の波長の光を該部位に対応する受光素子210aに導く受光レンズ220a1を含むレンズアレイ220aを有する。
 以上のように構成される生体センサ10-5では、光源110bから出射された波長帯域WB内の波長の光が照射光として生体LBに照射される。生体LBに照射され生体LBの複数部位の各々で反射された波長帯域WB内の波長の光は、該部位に対応する受光レンズ220a1を介して対応する受光素子210aに導かれる。
 以上説明した実施例4に係る生体センサ10-5も、実施例1に係る生体センサ10-1と同様の効果を奏するとともに、波長選択フィルタを有していない分、小型化を図ることができる。
(実施例5に係る生体センサ)
 図13に示すように、実施例5に係る生体センサ10-6は、受光系200-6の光学系220-6がレンズアレイに代えて遮光部材220d(光学部材)を有している点を除いて、実施例1に係る生体センサ10-1と同様の構成を有する。
 遮光部材220dは、波長選択フィルタ220bと受光素子アレイ210との間に配置されている。
 遮光部材220dは、複数の受光素子210aの各々に対応する導光路LGP(Light Guide Path)を形成する遮光壁220d1を有している。遮光壁220d1は各導光路LGPを取り囲むように設けられている。遮光壁220d1により隣り合う導光路LGPが隔てられている。
 以上のように構成される生体センサ10-6では、生体LBに照射され該生体LBの複数部位の各々で反射された光のうち波長帯域WB内の波長の光が波長選択フィルタ220bを通過し、対応する導光路LGPを介して対応する受光素子210aに入射される。
 以上説明した生体センサ10-6によれば、実施例1の生体センサ10-1と概ね同様の効果を得ることができる。
(実施例6に係る生体センサ)
 図14に示すように、実施例6に係る生体センサ10-7は、受光系の光学系において波長選択フィルタ220bと遮光部材220dとの位置関係が異なる点を除いて、実施例5に係る生体センサ10-6と同様の構成を有する。
 生体センサ10-7は、受光系200-7の光学系220-7において遮光部材220dが生体LB側に配置され、且つ、波長選択フィルタ220bがレンズアレイ220a側に配置されている。
 以上のように構成される生体センサ10-7では、照射系100-1から照射され生体LBの複数部位の各々で反射された光は、遮光部材220dの対応する導光路LGPで導光され、導光された光のうち波長帯域WB内の波長の光が波長選択フィルタ220bを通過し、対応する受光素子210aに入射される。
 以上説明した生体センサ10-7によれば、実施例5の生体センサ10-6と同様の効果を得ることができる。
(実施例7に係る生体センサ)
 図15に示すように、実施例7に係る生体センサ10-9は、受光系に代えて照射系が波長選択フィルタを有している点を除いて、実施例1に係る生体センサ10-1と同様の構成を有する。
 生体センサ10-9の照射系100-4は、光源110aと生体LBとの間の光路上に配置される波長選択フィルタ120を有している。波長選択フィルタ120は、実施例1に係る生体センサ10-1の波長選択フィルタ220bと実質的に同一である。
 すなわち、照射系100-4は、波長帯域WB内の波長の光及び波長帯域WB外の波長の光を出射する光源110aと、該光源110aから出射された波長帯域WB内の光及び波長帯域WB外の光のうち波長帯域WB内の光を選択的に通過させる波長選択フィルタ120と、を有する。
 生体センサ10-9の受光系200-9の光学系220-9は、波長選択フィルタ120を通過して生体LBの複数部位の各々で反射された波長帯域WB内の波長の光を該部位に対応する受光素子210aに導く遮光部材220dを有する。
 以上のように構成される生体センサ10-9では、光源110aから出射された波長帯域WB内の波長の光及び波長帯域WB外の波長の光のうち波長帯域WB内の波長の光が波長選択フィルタ120を通過して照射光として生体LBに照射される。生体LBに照射され生体LBの複数部位の各々で反射された波長帯域WB内の波長の光は、再び波長選択フィルタ120を通過し、遮光部材220dの対応する導光路LGPを介して対応する受光素子210aに導かれる。
 以上説明した実施例7に係る生体センサ10-9も、実施例5に係る生体センサ10-6と同様の効果を奏する。
(実施例8に係る生体センサ)
 図16に示すように、実施例8に係る生体センサ10-10は、照射系100-5が波長帯域WB内の光のみを出射する光源110bを有している点、及び受光系200-10が波長選択フィルタを有していない点を除いて、実施例5に係る生体センサ10-6と同様の構成を有する。
 すなわち、生体センサ10-10では、照射光は波長帯域WB内の波長の光のみを含み、受光系200-10の光学系220-10は、照射系100-5から照射され生体LBの複数部位の各々で反射された波長帯域WB内の波長の光を該部位に対応する受光素子210aに導く遮光部材220dを有する。
 以上のように構成される生体センサ10-10では、光源110bから出射された波長帯域WB内の波長の光が照射光として生体LBに照射される。生体LBに照射され生体LBの複数部位の各々で反射された波長帯域WB内の波長の光は、遮光部材220dの対応する導光路LGPを介して対応する受光素子210aに導かれる。
 以上説明した実施例8に係る生体センサ10-10も、実施例5に係る生体センサ10-6と同様の効果を奏するとともに、波長選択フィルタを有していない分、小型化を図ることができる。
(実施例9に係る生体センサ)
 図17に示すように、実施例9に係る生体センサ10-11は、照射系100-11が複数の光源110aを含む光源アレイを有し、該光源アレイと複数の受光素子210aを含む受光素子アレイ210-11とが同一平面に沿って一体的に設けられている点を除いて、実施例1に係る生体センサ10-1と同様の構成を有する。
 生体センサ10-11の照射系100-11は、アレイ状に配列された複数の受光素子210aのうち隣り合う2つの受光素子210a間に配置され、波長帯域WB内の波長の光及び波長帯域WB外の波長の光を出射する、少なくとも1つ(例えば複数)の光源110aを含む。
 逆に言えば、生体センサ10-11の受光系200-11は、アレイ状に配列された複数の光源110aのうち隣り合う2つの光源110a間に配置された、少なくとも1つ(例えば複数)の受光素子210aを含む。
 図17の例では、光源アレイの複数の光源110aと受光素子アレイ210-11の複数の受光素子210aは、全体として同一平面に沿ってアレイ状に配列されている。ここでは、一例として、隣り合う2つの光源110a間に3つの受光素子210aが配置されている。
 各光源110aは、光源アレイの面内方向において、光学系220-1のレンズアレイ220aの隣接する2つの受光レンズ220a1の境界に対応する位置に配置されている。
 生成センサ10-11では、各光源110aから出射された波長帯域WB内の波長の光及び波長帯域WB外の波長の光が隣接する2つの受光レンズ220a1に跨って入射し、該2つの受光レンズ220a1により拡散される。該拡散された光のうち波長帯域WB内の波長の光が波長選択フィルタ220bを通過し、生体LBの隣接する2つの部位に跨って照射される。生体LBの隣接する2つの部位の各々で反射された波長帯域WB内の波長の光は、再び波長選択フィルタ220bを通過し、対応する受光レンズ220a1で対応する受光素子210aに集光される。
 生体センサ10-11によれば、実施例1に係る生体センサ10-1と同様な効果を奏するとともに、複数の光源110aと複数の受光素子210aとがアレイ状に一体的に配置されているので小型化を図ることができる。
(実施例10に係る生体センサ)
 図18に示すように、実施例10に係る生体センサ10-12は、受光系の光学系におけるレンズアレイと波長選択フィルタとの位置関係が異なる点を除いて、実施例9に係る生体センサ10-11と同様の構成を有する。
 生体センサ10-12は、受光系200-12の光学系220-2のレンズアレイ220aと、受光素子アレイ210-11との間に光学系220-2の波長選択フィルタ220bが配置されている。
 すなわち、光学系220-2では、レンズアレイ220aが生体LB側に配置され、且つ、波長選択フィルタ220bが受光素子アレイ210側に配置されるようにレンズアレイ220aと波長選択フィルタ220bとが互いに隣接して配置されている。
 以上のように、実施例10に係る生体センサ10-12は、光学系220-2が、波長帯域WB内の波長の光を波長選択フィルタ220bを介して対応する受光素子210aに導く受光レンズ220a1を有する。
 以上説明した実施例10に係る生体センサ10-12は、実施例9に係る生体センサ10-11と同様の効果を得ることができる。
(実施例11に係る生体センサ)
 図19に示すように、実施例11に係る生体センサ10-13は、照射系100-13が波長帯域WB内の光のみを出射する光源110bを有している点、及び受光系200-13が波長選択フィルタを有していない点を除いて、実施例9に係る生体センサ10-11と同様の構成を有する。
 すなわち、生体センサ10-13では、照射光は波長帯域WB内の波長の光のみを含み、受光系200-13の光学系220-3は、照射系100-13から照射され生体LBの複数部位の各々で反射された波長帯域WB内の波長の光を該部位に対応する受光素子210aに導く、複数の受光レンズ220a1を含むレンズアレイ220a有する。
 以上のように構成される生体センサ10-13では、各光源110bから出射された波長帯域WB内の波長の光が照射光として生体LBの隣接する2つの部位に跨って照射される。生体LBの隣接する2つの部位に照射され該2つの部位の各々で反射された波長帯域WB内の波長の光は、該部位に対応する受光レンズ220a1で対応する受光素子210aに集光される。
 以上説明した実施例11に係る生体センサ10-13も、実施例9に係る生体センサ10-11と同様の効果を奏するとともに、波長選択フィルタを有していない分、小型化を図ることができる。
(実施例12に係る生体センサ)
 図20に示すように、実施例12に係る生体センサ10-14は、光学系220-1と生体LBとの間に配置される導光板400を備えている点を除いて、実施例1に係る生体センサ10-1と同様の構成を有する。
 生体センサ10-14では、照射系100-1は、波長帯域WB内の波長の光及び波長帯域WB外の波長の光を出射する光源100aを含む。
 光源110aは、導光板400の一端面に出射方向が向いた状態で該一端面側に配置されている。詳述すると、光源110aは、該光源110aから出射された光であって、導光板400の一端面から導光板400内に入射された光が導光板400の、生体LB側の面で全反射するように出射方向が設定されている。
 導光板400は、光源100aから出射された光のうち波長帯域WB内の波長の光及び波長帯域WB外の波長の光を導光し、該波長帯域WB内の波長の光及び該波長帯域WB外の光を生体LBの複数部位の各々に入射させる。
 詳述すると、導光板400は、複数の受光素子210aにそれぞれ対応する複数の回折部400aを光学系220-1側に有している。導光板400は、少なくとも波長帯域WB内の波長の光に対して透明である。複数の回折部400aの各々は、入射された光を生体LBの対応する部位に向けて反射回折する。
 以上のように構成される生体センサ10-14では、光源110aから出射された光の大半が、導光板400の一端面から導光板400内に入射され、導光板400の、生体LB側の面で互いに異なる全反射角度で全反射される。互いに異なる全反射角度で全反射された各光は、対応する回折部400aで反射回折され導光板400の、生体LB側の面を透過して生体LBの対応する部位に入射される。該部位に入射された光は該部位で反射され、導光板400の対応する回折部400aを透過する。該透過した光のうち波長帯域WB内の波長の光のみが波長選択フィルタ220bを通過して対応する受光レンズ220a1で対応する受光素子210aに集光される。
 以上説明した実施例12に係る生体センサ10-14も、上記第1の実施例1に係る生体センサ10-1と同様の効果を奏するとともに、導光板400により生体LBの各部位からの反射光をより精度良く対応する受光素子210aに導くことができる。
 なお、導光板400は、光源110aから出射された光のうち波長帯域WB内の波長の光に対してのみ透明であってもよい。この場合、波長帯域WB外の波長の光を遮光できるので、波長選択フィルタ220bは不要である。
(実施例13に係る生体センサ)
 図21に示すように、実施例13に係る生体センサ10-15は、受光系の光学系におけるレンズアレイ220aと波長選択フィルタ220bとの位置関係が異なる点を除いて、実施例12に係る生体センサ10-14と同様の構成を有する。
 生体センサ10-15は、受光系200-2の光学系220-2のレンズアレイ220aと、受光素子アレイ210との間に光学系220-2の波長選択フィルタ220bが配置されている。
 すなわち、光学系220-2では、レンズアレイ220aが生体LB側に配置され、且つ、波長選択フィルタ220bが受光素子アレイ210側に配置されるようにレンズアレイ220aと波長選択フィルタ220bとが互いに隣接して配置されている。
 以上のように、実施例13に係る生体センサ10-15は、光学系220-2が、波長帯域WB内の波長の光を波長選択フィルタ220bを介して対応する受光素子210aに導く受光レンズ220a1を有する。
 以上説明した実施例13に係る生体センサ10-15は、実施例12に係る生体センサ10-14と同様の効果を奏する。
(実施例14に係る生体センサ)
 図22に示すように、実施例14に係る生体センサ10-16は、受光系に代えて照射系が波長選択フィルタを有している点を除いて、実施例12に係る生体センサ10-14と同様の構成を有する。
 生体センサ10-16の照射系100-4は、光源110aと生体LBとの間の光路上に配置される波長選択フィルタ120を有している。波長選択フィルタ120は、実施例1に係る生体センサ10-1の波長選択フィルタ220bと実質的に同一である。
 光源110aは、波長帯域WB内の波長の光及び波長帯域WB外の波長の光を出射する。
 波長選択フィルタ120は、光源110aから出射された波長帯域WB内の光及び波長帯域WB外の光のうち波長帯域WB内の光を選択的に通過させる。
 生体センサ10-16の受光系200-4の光学系220-4は、波長選択フィルタ120を通過して生体LBの複数部位の各々で反射された波長帯域WB内の波長の光を該部位に対応する受光素子210aに導く受光レンズ220a1を有する。
 以上のように構成される生体センサ10-16では、光源110aから出射され導光板400の、生体LB側の面で全反射された各光は、対応する回折部400aで回折され導光板400の、生体LB側の面を透過し、波長選択フィルタ120に入射される。波長選択フィルタ120を通過した波長帯域WB内の波長の各光が生体LBの対応する部位で反射され、波長選択フィルタ120及び対応する回折部400aを介して対応する受光レンズ220a1に入射され、該受光レンズ220a1で対応する受光素子210aに集光される。
 以上説明した実施例14に係る生体センサ10-16も、実施例12に係る生体センサ10-14と同様の効果を奏する。
(実施例15に係る生体センサ)
 図23に示すように、実施例15に係る生体センサ10-17は、受光素子アレイ210と生体LBとの間に円偏光板220cが配置される点を除いて、実施例12に係る生体センサ10-14と同様の構成を有する。
 生体センサ10-17によれば、円偏光板220cにより、汗や生体LB表面(皮膚)の表面反射を抑えることができるため不要なノイズを減らし、安定した計測が可能となる。
 ここでは、生体センサ10-17は、一例として、受光系200-3の光学系220-3が、導光板400と生体LBとの間に配置される円偏光板220cを有している。
(実施例16に係る生体センサ)
 図24に示すように、実施例16に係る生体センサ10-18は、照射系100-5が波長帯域WB内の光のみを出射する光源110bを有している点、及び受光系200-4が波長選択フィルタを有していない点を除いて、実施例12に係る生体センサ10-14と同様の構成を有する。
 すなわち、生体センサ10-18では、照射光は波長帯域WB内の波長の光のみを含み、受光系200-4の光学系220-4は、照射系100-5から導光板400を介して照射され生体LBの複数部位の各々で反射され導光板400を介した波長帯域WB内の波長の光を該部位に対応する受光素子210aに導く受光レンズ220a1を含むレンズアレイ220a有する。
 以上のように構成される生体センサ10-18では、各光源110bから出射された波長帯域WB内の波長の光の大半が、導光板400の一端面から導光板400内に入射され、導光板400の、生体LB側の面で互いに異なる全反射角度で全反射される。互いに異なる全反射角度で全反射された各光は、対応する回折部400aで反射回折され導光板400の、生体LB側の面を透過して生体LBの対応する部位に入射される。該部位に入射された光は該部位で反射され、再び導光板400に入射し、導光板400の対応する回折部400aを透過する。該透過した光は、対応する受光レンズ220a1で対応する受光素子210aに集光される。
 以上説明した実施例16に係る生体センサ10-18も、実施例12に係る生体センサ10-14と同様の効果を奏するとともに、波長選択フィルタを有していない分、小型化を図ることができる。
(実施例17に係る生体センサ)
 図25に示すように、実施例17に係る生体センサ10-19は、受光系がレンズアレイに代えてレンズを有している点を除いて、実施例1に係る生体センサ10-1と同様の構成を有する。
 生体センサ10-19は、受光系200-19の光学系220-19が、複数の受光素子210aを含む受光素子アレイ210に対応するレンズ220f(光学部材)を有する。レンズ220fは、一例として受光素子アレイ210側に凸となるレンズである。
 生体センサ10-19では、光源110aから出射され生体LBの複数部位の各々で反射された光のうち波長帯域WB内の波長の光のみが波長選択フィルタ220bを通過してレンズ220fに入射される。レンズ220fに入射された波長帯域WB内の波長の光は、レンズ220fにより対応する受光素子210aに集光される。
 以上説明した生体センサ10-19によれば、実施例1に係る光学センサ10-1と同様の効果を奏するとともに、光学系220-19が単一のレンズ220fを有するので、光学系220-19と受光素子アレイ210との位置決めが容易であるとともに、カメラと同様に設計が確立されており、レンズ220fを安価に入手可能である。
(実施例18に係る生体センサ)
 図26に示すように、実施例18に係る生体センサ10-20は、受光系の光学系におけるレンズアレイと波長選択フィルタとの位置関係が異なる点を除いて、実施例17に係る生体センサ10-19と同様の構成を有する。
 生体センサ10-20は、受光系200-2の光学系220-20のレンズ220fと、受光素子アレイ210との間に光学系220-20の波長選択フィルタ220bが配置されている。
 すなわち、光学系220-20では、レンズ220fが生体LB側に配置され、且つ、波長選択フィルタ220bが受光素子アレイ210側に配置されるようにレンズ220fと波長選択フィルタ220bとが互いに隣接して配置されている。
 以上のように、実施例18に係る生体センサ10-20は、光学系220-20が、波長帯域WB内の波長の光を波長選択フィルタ220bを介して対応する受光素子210aに導くレンズ220fを有する。この場合にも、実施例17に係る生体センサ10-19と同様の効果を得ることができる。
(実施例19に係る生体センサ)
 図27に示すように、実施例19に係る生体センサ10-22は、受光系に代えて照射系が波長選択フィルタを有している点を除いて、実施例17に係る生体センサ10-19と同様の構成を有する。
 生体センサ10-22の照射系100-4は、光源110aと生体LBとの間の光路上に配置される波長選択フィルタ120を有している。波長選択フィルタ120は、実施例1に係る生体センサ10-1の波長選択フィルタ220bと実質的に同一である。
 光源110aは、波長帯域WB内の波長の光及び波長帯域WB外の波長の光を出射する。
 波長選択フィルタ120は、光源110aから出射された波長帯域WB内の光及び波長帯域WB外の光のうち波長帯域WB内の光を選択的に通過させる。
 生体センサ10-22の受光系200-22の光学系220-22は、波長選択フィルタ120を通過して生体LBの複数部位の各々で反射された波長帯域WB内の波長の光を該部位に対応する受光素子210aに導くレンズ220fを有する。
 以上のように構成される生体センサ10-22では、光源110aから出射された光のうち波長帯域WB内の波長の光が波長選択フィルタ120を透過して生体LBに照射される。生体LBに照射され生体LBの複数部位の各々で反射された波長帯域WB内の光は、レンズ220fで該部位に対応する受光素子210aに集光される。
 以上説明した実施例19に係る生体センサ10-22も、実施例17に係る生体センサ10-19と同様の効果を奏する。
(実施例20に係る生体センサ)
 図28に示すように、実施例20に係る生体センサ10-23は、照射系100-5が波長帯域WB内の光のみを出射する光源110bを有している点、及び受光系200-23が波長選択フィルタを有していない点を除いて、実施例17に係る生体センサ10-19と同様の構成を有する。
 すなわち、生体センサ10-23では、照射光は波長帯域WB内の波長の光のみを含み、受光系200-23の光学系220-5は、照射系100-5から照射され生体LBの複数部位の各々で反射された波長帯域WB内の波長の光を該部位に対応する受光素子210aに導くレンズ220fを有する。
 以上のように構成される生体センサ10-23では、光源110bから出射された波長帯域WB内の波長の光が照射光として生体LBに照射される。生体LBに照射され生体LBの複数部位の各々で反射された波長帯域WB内の波長の光は、レンズ220fで対応する受光素子210aに導かれる。
 以上説明した実施例20に係る生体センサ10-23も、実施例17に係る生体センサ10-19と同様の効果を奏するとともに、波長選択フィルタを有していない分、小型化を図ることができる。
10.<本技術の変形例>
 本技術は、上記実施形態の各実施例及び変形例で説明した構成に限らず、適宜変更可能である。
 例えば、上記各実施例及び変形例の構成を相互に矛盾しない範囲内で組み合わせてもよい。
 例えば、本技術に係る生体センサの受光系の光学系は、複数の受光素子(画素センサ)が1次元に(ライン状に)配置されたラインセンサを有していてもよい。この場合、複数の受光レンズがライン状に配列されたレンズアレイ又は複数の導光路がライン状に配列された遮光部材又は単一のレンズをラインセンサに組み合わせてもよい。
 例えば、実施例2~20に係る生体センサは、処理系300-1に代えて処理系300-2を備えていてもよい。
 例えば実施例3に係る生体センサ10-4(図11参照)ではレンズアレイ220aと生体LBとの間に波長選択フィルタ120が配置されているが、例えば図29に示す変形例のように光源110aと生体LBとの間に波長選択フィルタ120を配置してもよい。実施例7に係る生体センサ10-8(図15参照)及び実施例19に係る生体センサ10-22(図27参照)においても、波長選択フィルタ120を図29と同様に配置してもよい。また、実施例14に係る生体センサ10-12(図22参照)において、波長選択フィルタ120を光源110aと導光板400との間に配置してもよい。
 また、本技術は、以下のような構成をとることもできる。
(1)水の吸収に関するピーク波長を含む波長帯域内の波長の光を含む照射光を生体に照射する照射系と、
 前記照射系から照射され前記生体の複数部位の各々で反射された光のうち前記波長帯域内の波長の光を個別に受光する受光系と、
 前記受光系から出力された前記部位毎の信号に関する統計に基づいて、前記生体の状態を判別する処理系と、
 を備える、生体センサ。
(2)前記処理系は、前記部位毎の信号の信号値毎の信号数の分布である第1の分布を用いて、前記生体の状態を判別する、(1)に記載の生体センサ。
(3)前記処理系は、前記第1の分布の特徴量から、前記生体の状態を判別する、(2)に記載の生体センサ。
(4)前記第1の分布の特徴量は、前記部位毎の信号の信号値が基準値以下の信号数である、(3)に記載の生体センサ。
(5)前記基準値は、前記部位毎の信号の信号値の平均値である、(4)に記載の生体センサ。
(6)前記第1の分布の特徴量は、前記部位毎の信号の信号値の中央値、平均値又は最頻値である、(3)に記載の生体センサ。
(7)前記処理系は、前記複数部位自体の反射率分布に応じた前記部位毎の信号の信号値毎の信号数の分布である第2の分布を更に用いて、前記生体の状態を判別する、(2)~(6)のいずれか1つに記載の生体センサ。
(8)前記処理系は、前記第1及び第2の分布の特徴量を比較して、前記生体の状態を判別する、請求項7に記載の生体センサ。
(9)前記第2の分布の特徴量は、前記第1の分布の特徴量に対応する特徴量である、(8)に記載の生体センサ。
(10)前記第1の分布の特徴量は、前記第1の分布における前記部位毎の信号のうち信号値が複数の値にそれぞれ一致する信号の数の比率であり、前記第2の分布の特徴量は、前記第2の分布における前記部位毎の信号のうち信号値が前記複数の値にそれぞれ一致する信号の数の比率である、(8)に記載の生体センサ。
(11)前記受光系は、前記複数部位にそれぞれ対応する複数の受光素子を含む受光素子アレイと、前記複数の受光素子に対応する光学系と、を含み、前記光学系は、前記照射系から照射され前記複数部位の各々で反射された光のうち前記波長帯域内の波長の光を該部位に対応する前記受光素子に導く、(1)~(10)のいずれか1つに記載の生体センサ。
(12)前記照射光は、前記波長帯域内の波長の光のみを含み、前記光学系は、前記照射系から照射され対応する前記部位で反射された前記波長帯域内の波長の光を対応する前記受光素子に導く光学部材を有する、(11)に記載の生体センサ。
(13)前記照射光は、前記波長帯域内の波長の光及び前記波長帯域外の波長の光を含み、前記光学系は、前記照射系から照射され前記複数部位の各々で反射された光のうち前記波長帯域内の波長の光を選択的に通過させる波長選択フィルタを有する、(11)に記載の生体センサ。
(14)前記光学系は、前記波長選択フィルタを通過した前記波長帯域内の波長の光を対応する受光素子に導く光学部材を有する、(13)に記載の生体センサ。
(15)前記光学系は、前記波長帯域内の波長の光を前記波長選択フィルタを介して対応する受光素子に導く光学部材を有する、(13)に記載の生体センサ。
(16)前記照射系は、前記波長帯域内の波長の光及び前記波長帯域外の波長の光を出射する光源と、前記光源から出射された前記波長帯域内の光及び前記波長帯域外の光のうち前記波長帯域内の光を選択的に通過させる波長選択フィルタと、を有する、(11)に記載の生体センサ。
(17)前記光学系は、前記波長選択フィルタを通過して対応する前記部位で反射された前記波長帯域内の波長の光を対応する受光素子に導く光学部材を有する、(16)に記載の生体センサ。
(18)前記照射系は、前記複数の受光素子のうち隣り合う2つの前記受光素子間に配置され、前記波長帯域内の波長の光を含む光を出射する光源を少なくとも1つ含む、(11)に記載の生体センサ。
(19)前記光学系と前記生体との間に配置される導光板を更に備え、前記照射系は、前記波長帯域内の波長の光を含む光を出射する光源を含み、前記導光板は、前記光源から出射された光のうち少なくとも前記波長帯域内の波長の光を導光し、該波長帯域内の光を前記複数部位の各々に入射させる、(11)に記載の生体センサ。
(20)前記導光板は、前記波長帯域内の波長の光に対して透明である、(19)に記載の生体センサ。
(21)前記導光板は、前記複数の受光素子にそれぞれ対応する複数の回折部を前記光学系側に有し、
 前記複数の回折部の各々は、入射された前記波長帯域内の波長の光を対応する前記部位に向けて回折する、(19)又は(20)に記載の生体センサ。
(22)前記生体センサは、前記受光素子アレイと前記生体との間に配置される円偏光板を更に備える、(11)~(21)のいずれか1つに記載の生体センサ。
(23)前記生体の状態は、前記部位毎の発汗状況から推定される精神状態である、(1)~(22)のいずれか1つに記載の生体センサ。
(24)本技術は、水の吸収に関するピーク波長を含む波長帯域内の波長の光を含む照射光を生体に照射する工程と、
 前記照射系から照射され前記生体の複数部位の各々で反射された光のうち前記波長帯域内の波長の光を個別に受光して前記部位毎の信号を出力する工程と、
 前記出力する工程で出力された前記部位毎の信号に関する統計に基づいて、前記生体の状態を判別する工程と、
 を含む、生体状態判別方法を提供する。
 10-1~10-23:生体センサ、100-1、100-4、100-5、100-11、100-13:照射系、110a、110b:光源、200-1、200-2、200-3、200-4、200-6、200-7、200-8、200-9、200-10、200-11、200-12、200-13、200-19、200-20、200-21、200-22、200-23:受光系、210、210-11、210-13:受光素子アレイ、210a:受光素子、220-1、220-2、220-3、220-4、220-6、220-7、220-8、220-9、220-10、220-19、220-20、220-21、220-22:光学系、220a:レンズアレイ(光学部材)、220a1:受光レンズ、220b:波長選択フィルタ、220c:円偏光板、220d:遮光部材(光学部材)、220f:レンズ(光学部材)、300-1、300-2:処理系、LB:生体、複数部位の各々:LB1~LB6、IL:照射光。 

Claims (24)

  1.  水の吸収に関するピーク波長を含む波長帯域内の波長の光を含む照射光を生体に照射する照射系と、
     前記照射系から照射され前記生体の複数部位の各々で反射された光のうち前記波長帯域内の波長の光を個別に受光する受光系と、
     前記受光系から出力された前記部位毎の信号に関する統計に基づいて、前記生体の状態を判別する処理系と、
     を備える、生体センサ。
  2.  前記処理系は、前記部位毎の信号の信号値毎の信号数の分布である第1の分布を用いて、前記生体の状態を判別する、請求項1に記載の生体センサ。
  3.  前記処理系は、前記第1の分布の特徴量から、前記生体の状態を判別する、請求項2に記載の生体センサ。
  4.  前記第1の分布の特徴量は、前記部位毎の信号の信号値が基準値以下の信号数である、請求項3に記載の生体センサ。
  5.  前記基準値は、前記部位毎の信号の信号値の平均値である、請求項4に記載の生体センサ。
  6.  前記第1の分布の特徴量は、前記部位毎の信号の信号値の中央値、平均値又は最頻値である、請求項3に記載の生体センサ。
  7.  前記処理系は、前記複数部位自体の反射率分布に応じた前記部位毎の信号の信号値毎の信号数の分布である第2の分布を更に用いて、前記生体の状態を判別する、請求項2に記載の生体センサ。
  8.  前記処理系は、前記第1及び第2の分布の特徴量を比較して、前記生体の状態を判別する、請求項7に記載の生体センサ。
  9.  前記第2の分布の特徴量は、前記第1の分布の特徴量に対応する特徴量である、請求項8に記載の生体センサ。
  10.  前記第1の分布の特徴量は、前記第1の分布における前記部位毎の信号のうち信号値が複数の値にそれぞれ一致する信号の数の比率であり、
     前記第2の分布の特徴量は、前記第2の分布における前記部位毎の信号のうち信号値が前記複数の値にそれぞれ一致する信号の数の比率である、請求項8に記載の生体センサ。
  11.  前記受光系は、
     前記複数部位にそれぞれ対応する複数の受光素子を含む受光素子アレイと、
     前記複数の受光素子に対応する光学系と、
     を含み、
     前記光学系は、前記照射系から照射され前記複数部位の各々で反射された光のうち前記波長帯域内の波長の光を該部位に対応する前記受光素子に導く、請求項1に記載の生体センサ。
  12.  前記照射光は、前記波長帯域内の波長の光のみを含み、
     前記光学系は、前記照射系から照射され対応する前記部位で反射された前記波長帯域内の波長の光を対応する前記受光素子に導く光学部材を有する、請求項11に記載の生体センサ。
  13.  前記照射光は、前記波長帯域内の波長の光及び前記波長帯域外の波長の光を含み、
     前記光学系は、前記照射系から照射され前記複数部位の各々で反射された光のうち前記波長帯域内の波長の光を選択的に通過させる波長選択フィルタを有する、請求項11に記載の生体センサ。
  14.  前記光学系は、前記波長選択フィルタを通過した前記波長帯域内の波長の光を対応する受光素子に導く光学部材を有する、請求項13に記載の生体センサ。
  15.  前記光学系は、前記波長帯域内の波長の光を前記波長選択フィルタを介して対応する受光素子に導く光学部材を有する、請求項13に記載の生体センサ。
  16.  前記照射系は、
     前記波長帯域内の波長の光及び前記波長帯域外の波長の光を出射する光源と、
     前記光源から出射された前記波長帯域内の光及び前記波長帯域外の光のうち前記波長帯域内の光を選択的に通過させる波長選択フィルタと、
     を有する、請求項11に記載の生体センサ。
  17.  前記光学系は、前記波長選択フィルタを通過して対応する前記部位で反射された前記波長帯域内の波長の光を対応する受光素子に導く光学部材を有する、請求項16に記載の生体センサ。
  18.  前記照射系は、前記複数の受光素子のうち隣り合う2つの前記受光素子間に配置され、前記波長帯域内の波長の光を含む光を出射する光源を少なくとも1つ含む、請求項11に記載の生体センサ。
  19.  前記光学系と前記生体との間に配置される導光板を更に備え、
     前記照射系は、前記波長帯域内の波長の光を含む光を出射する光源を含み、
     前記導光板は、前記光源から出射された光のうち少なくとも前記波長帯域内の波長の光を導光し、該波長帯域内の光を前記複数部位の各々に入射させる、請求項11に記載の生体センサ。
  20.  前記導光板は、前記波長帯域内の波長の光に対して透明である、請求項19に記載の生体センサ。
  21.  前記導光板は、前記複数の受光素子にそれぞれ対応する複数の回折部を前記光学系側に有し、
     前記複数の回折部の各々は、入射された前記波長帯域内の波長の光を対応する前記部位に向けて回折する、請求項19に記載の生体センサ。
  22.  前記受光素子アレイと前記生体との間に配置される円偏光板を更に備える、請求項11に記載の生体センサ。
  23.  前記生体の状態は、前記部位毎の発汗状況から推定される精神状態である、請求項1に記載の生体センサ。
  24.  水の吸収に関するピーク波長を含む波長帯域内の波長の光を含む照射光を生体に照射する工程と、
     前記照射系から照射され前記生体の複数部位の各々で反射された光のうち前記波長帯域内の波長の光を個別に受光して前記部位毎の信号を出力する工程と、
     前記出力する工程で出力された前記部位毎の信号に関する統計に基づいて、前記生体の状態を判別する工程と、
     を含む、生体状態判別方法。 
PCT/JP2021/023292 2020-08-07 2021-06-21 生体センサ及び生体状態判別方法 WO2022030116A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180058593.5A CN116157075A (zh) 2020-08-07 2021-06-21 生物体传感器和生物体状态确定方法
EP21852487.4A EP4173573A4 (en) 2020-08-07 2021-06-21 BIOLOGICAL SENSOR AND METHOD FOR DIFFERENTIATION OF BIOLOGICAL STATE
JP2022541140A JPWO2022030116A1 (ja) 2020-08-07 2021-06-21
US18/006,968 US20230284904A1 (en) 2020-08-07 2021-06-21 Biological sensor and biological condition determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020134690 2020-08-07
JP2020-134690 2020-08-07

Publications (1)

Publication Number Publication Date
WO2022030116A1 true WO2022030116A1 (ja) 2022-02-10

Family

ID=80119667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023292 WO2022030116A1 (ja) 2020-08-07 2021-06-21 生体センサ及び生体状態判別方法

Country Status (5)

Country Link
US (1) US20230284904A1 (ja)
EP (1) EP4173573A4 (ja)
JP (1) JPWO2022030116A1 (ja)
CN (1) CN116157075A (ja)
WO (1) WO2022030116A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4345446A1 (fr) * 2022-09-30 2024-04-03 Commissariat à l'énergie atomique et aux énergies alternatives Dispositif d'imagerie multispectrale en reflexion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184555A (ja) 1994-12-29 1996-07-16 Agency Of Ind Science & Technol 水分分布の検査方法
JP2007252803A (ja) * 2006-03-24 2007-10-04 Konica Minolta Holdings Inc データ解析装置及びデータ解析方法
JP2014016235A (ja) * 2012-07-09 2014-01-30 Seiko Epson Corp 光吸収係数分布推定装置、濃度測定装置及び光吸収係数分布推定装置の制御方法
JP2017198577A (ja) * 2016-04-28 2017-11-02 セイコーエプソン株式会社 生体情報計測装置
WO2018051975A1 (ja) * 2016-09-14 2018-03-22 Dynamic Brain Lab合同会社 生体情報測定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697000B2 (ja) * 2006-03-27 2011-06-08 パナソニック電工株式会社 体内成分計測装置
CN108366731B (zh) * 2015-12-14 2021-01-26 皇家飞利浦有限公司 用于确定对象的皮肤电活动的可穿戴设备和方法
EP3730054B1 (en) * 2017-12-19 2024-03-27 Panasonic Intellectual Property Management Co., Ltd. Biological measurement apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184555A (ja) 1994-12-29 1996-07-16 Agency Of Ind Science & Technol 水分分布の検査方法
JP2007252803A (ja) * 2006-03-24 2007-10-04 Konica Minolta Holdings Inc データ解析装置及びデータ解析方法
JP2014016235A (ja) * 2012-07-09 2014-01-30 Seiko Epson Corp 光吸収係数分布推定装置、濃度測定装置及び光吸収係数分布推定装置の制御方法
JP2017198577A (ja) * 2016-04-28 2017-11-02 セイコーエプソン株式会社 生体情報計測装置
WO2018051975A1 (ja) * 2016-09-14 2018-03-22 Dynamic Brain Lab合同会社 生体情報測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4173573A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4345446A1 (fr) * 2022-09-30 2024-04-03 Commissariat à l'énergie atomique et aux énergies alternatives Dispositif d'imagerie multispectrale en reflexion
FR3140450A1 (fr) * 2022-09-30 2024-04-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif d’imagerie multispectrale en reflexion

Also Published As

Publication number Publication date
EP4173573A1 (en) 2023-05-03
EP4173573A4 (en) 2023-12-20
CN116157075A (zh) 2023-05-23
US20230284904A1 (en) 2023-09-14
JPWO2022030116A1 (ja) 2022-02-10

Similar Documents

Publication Publication Date Title
US6438396B1 (en) Method and apparatus for providing high contrast imaging
EP3111197B1 (en) Optical spectrometer with matched etendue
KR20190058176A (ko) 분광 장치와, 분광 방법, 및 생체신호 측정장치
US9295419B2 (en) Method and system for a non-invasive measurement of optically active component concentration
US9509893B2 (en) Imaging device and analyzing apparatus using the imaging device
US20090079964A1 (en) Optical device components
CN108780040A (zh) 具有紧凑结构的分光分析装置
WO2013102661A1 (en) Spectroscopic sensor for bio-sensing
WO2022030116A1 (ja) 生体センサ及び生体状態判別方法
JP5538194B2 (ja) 光学装置及び電子機器
JP2023550206A (ja) 被分析物の存在または濃度の非侵襲的インビボ(生体内)測定のためのラマンプローブおよび装置および方法
JP6256345B2 (ja) 集光ユニット、集光方法及び光検出システム
JP2007333409A (ja) 浮遊粒子測定装置
EP3052010B1 (en) Probe, system, and method for non-invasive measurement of blood analytes
EP3786645B1 (en) Scattered light signal measuring device, and information processing device
CN115516849A (zh) 来自光相干的光学成像
WO2017034517A1 (en) Digital spectroscopic and holographic microscope and method thereof
JPWO2019230624A1 (ja) 粒子径分布測定装置及び粒子径分布測定装置用プログラム
WO2021199773A1 (ja) 生体情報測定装置、生体情報測定システム及び生体情報測定方法
JP2013053919A (ja) ヘイズ値測定装置及びヘイズ値測定方法
JP2004151099A (ja) 拡散反射率読み取りヘッド
US20230010628A1 (en) Imaging system and a method for imaging a sample
JP5070387B2 (ja) 光散乱体の非破壊測定装置
JP6694896B2 (ja) 分光器、光学検査装置、及び、oct装置
KR20170099465A (ko) 인라인 홀로그래피 이미지 분석을 이용한 혈액 샘플 분석 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541140

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021852487

Country of ref document: EP

Effective date: 20230130

NENP Non-entry into the national phase

Ref country code: DE