WO2022030044A1 - Membrane distillation device and method for operating same - Google Patents

Membrane distillation device and method for operating same Download PDF

Info

Publication number
WO2022030044A1
WO2022030044A1 PCT/JP2021/011887 JP2021011887W WO2022030044A1 WO 2022030044 A1 WO2022030044 A1 WO 2022030044A1 JP 2021011887 W JP2021011887 W JP 2021011887W WO 2022030044 A1 WO2022030044 A1 WO 2022030044A1
Authority
WO
WIPO (PCT)
Prior art keywords
water supply
pipe
secondary side
membrane
distillation apparatus
Prior art date
Application number
PCT/JP2021/011887
Other languages
French (fr)
Japanese (ja)
Inventor
晴樹 増田
淳一 高橋
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN202180056848.4A priority Critical patent/CN116033959A/en
Publication of WO2022030044A1 publication Critical patent/WO2022030044A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation

Definitions

  • the present invention relates to a membrane distillation apparatus and an operating method thereof.
  • the membrane distillation apparatus passes a heated liquid to be treated to the primary side of a hydrophobic flat membrane or a hydrophobic hollow fiber membrane, and makes the secondary side of the membrane lower than the vapor pressure of the primary side to be treated. It is configured to recover only vapor from the liquid and concentrate the liquid to be treated. Unlike a general distillation apparatus, the membrane distillation apparatus has an advantage that the evaporated surface area is increased and the apparatus is miniaturized by using the membrane.
  • FIG. 2 shows an example of a conventional example of a membrane distillation apparatus.
  • the liquid to be treated stored in the water supply tank 1 is sent to the heat exchanger (heater) 4 via the pipe 3 having the water supply pump 2, and after heat exchange with the high temperature fluid to be heated, the pipe is used. Water is sent to the membrane module 10 via 5.
  • the membrane module 10 is a hollow fiber membrane module.
  • a large number of hollow fibers 11 are aligned to form a hollow fiber bundle, which is arranged in the vertical direction.
  • the upper end side and the lower end side of the hollow fiber bundle are bound by the potting materials 12 and 13.
  • the hollow fiber bundle is arranged in the casing 14 of the membrane module 10, the inflow chamber 15 is formed on the upper side of the upper potting material 12, and the outflow chamber 16 is formed on the lower side of the lower potting material 13.
  • the inside of each hollow fiber 11 communicates with the inflow chamber 15 and the outflow chamber 16, respectively.
  • the liquid to be treated from the pipe 5 flows from the inflow chamber 15 into each hollow fiber 11 (primary side), passes through the hollow fiber 11, flows to the outflow chamber 16, and flows from the outflow chamber 16 to the water supply tank via the pipe 6. Return to 1.
  • the secondary side 17 is outside the hollow fiber 11 in the casing 14 and between the potting materials 12 and 13.
  • the secondary side 17 communicates with the decompression device 25 via a pipe (steam pipe) 20, a heat exchanger (cooler) 21, a pipe 22, a condensed water tank 23, and a pipe 24, and the decompression device 25 communicates with the decompression device 25.
  • the secondary side 17 is depressurized.
  • the water in the liquid to be treated permeates the hollow yarn 11 and becomes vapor, which is sucked and discharged from the secondary side 17 to the pipe 20 and discharged to the pipe 20 to be discharged from the secondary side 17 to the heat exchanger 21. Cooled with to produce condensed water.
  • the condensed water is stored in the condensed water tank 23.
  • Pressure sensors P1, P2, and P3 are installed so as to detect the pressure in the gas phase portion 1a, the pipe 20, and the pipe 5 of the water supply tank 1.
  • the negative pressure of the decompression apparatus 25 is transmitted from the secondary side 17 to the water supply tank 1 via the pipe 7. Therefore, the pressure in the pipe 3 on the suction side of the water supply pump 2 becomes low, and cavitation may occur. In order to prevent this cavitation, it is necessary to increase the head (water surface height) H in the water supply tank 1, and it is necessary to design to increase the height of the water supply tank 1.
  • An object of the present invention is to provide a membrane distillation apparatus capable of preventing cavitation of a water supply pump and an operation method thereof without increasing the height of the water supply tank.
  • the membrane distillation apparatus of the present invention has a membrane module whose casing is separated into a primary side and a secondary side by a hydrophobic membrane, and a water supply tank for circulating and supplying a liquid to be treated to the primary side of the membrane module.
  • a liquid circulation supply means for processing liquid having a water supply pump, a decompression device for reducing the pressure on the secondary side of the membrane module, and a communication means for communicating the secondary side of the membrane module with the gas phase portion of the water supply tank.
  • the membrane distillation apparatus is characterized in that the pressure difference between the gas phase portion of the water supply tank and the secondary side of the membrane module is 20 to 90 kPa.
  • the communication portion has a pressure difference adjusting means for adjusting the pressure difference.
  • the communication portion having the pressure difference adjusting means is a pipe provided with a valve.
  • the communication portion is a pipe
  • the inner diameter of the pipe is one of the inner diameter of the steam pipe connected to the secondary side so as to depressurize the secondary side and suck and discharge steam. It is less than / 4.
  • the operating method of the membrane distillation apparatus of the present invention is the operating method of the membrane distillation apparatus of the present invention, characterized in that the opening degree of the valve is adjusted so that the pressure difference is 20 to 90 kPa.
  • the pressure on the suction side of the water supply pump can be secured and cavitation can be prevented.
  • FIG. 1 shows the configuration of the membrane distillation apparatus according to the embodiment.
  • the pressure difference between the secondary side 17 and the gas phase portion 1a is adjusted in the pipe 7 that communicates the secondary side 17 of the membrane module 10 and the gas phase portion 1a of the water supply tank 1.
  • a valve 8 is provided. Instead of providing the valve 8, the diameter of the pipe 7 may be reduced to adjust the pressure difference between the secondary side 17 and the gas phase portion 1a, the diameter of the pipe 7 may be reduced, and the valve may be reduced. 8 may be provided. Further, the diameter of a part of the pipe 7 may be reduced.
  • the inner diameter of the pipe 7 is 1/4 (25%) or less of the inner diameter of the steam pipe 20, preferably 0.5 to 25%, and particularly preferably 1 to 20%.
  • the pipe 7 is installed for the purpose of discharging the condensate or precipitate accumulated on the secondary side of the membrane module 10 before restarting after the operation of the membrane distillation apparatus is stopped or during the operation, and the inner diameter of the pipe 7 is Even if it is small, there is almost no effect on the operation management of the membrane distillation apparatus.
  • the valve 8 is frequently opened and closed in order to stably adjust the pressure difference to a predetermined value, which makes operation management difficult.
  • the length of the pipe 7 is preferably 0.2 to 4 m, particularly preferably 0.5 to 2 m.
  • the opening degree of the valve 8 (or the pipe diameter of the pipe 7) is set so that 2 is 20 to 90 kPa, preferably 20 to 70 kPa.
  • the gauge pressure (difference from atmospheric pressure) of P 2 is preferably about -100 to -40 kPa, particularly preferably about -100 to -60 kPa.
  • FIG. 1 The other configurations of FIG. 1 are the same as those of FIG. 2, and the same reference numerals indicate the same parts.
  • the inner diameter (diameter) of the hollow yarn is preferably 0.1 to 3.0 mm, particularly 0.5 to 2.0 mm, and the thickness, that is, the difference between the outer diameter (radius) and the inner diameter (radius) of the hollow yarn is 0. 01 to 1.0 mm, particularly 0.1 to 0.5 mm is preferable.
  • the length of the hollow fiber is preferably 200 to 2000 mm, particularly preferably 300 to 1000 mm.
  • the filling rate of the hollow fibers (sum of the cross-sectional areas of the hollow fibers / the cross-sectional area of the casing) is preferably 5% to 50%, particularly preferably 15% to 35%.
  • the material of the hollow fiber include, but are not limited to, polysulfone, polyethersulfone, polyethylene, polypropylene, polyvinylidene fluoride, and polytetrafluoroethylene.
  • a hollow fiber is used, but a hydrophobic flat membrane may be used.
  • an acidic solution such as salt, phosphoric acid, hydrochloric acid, fluoroacid, sulfuric acid, an alkaline waste liquid such as ammonia water, and an aqueous solution such as plating waste water are suitable.
  • the water flow rate (linear velocity) of the liquid to be treated in the hollow fiber is preferably 400 to 2000 mm / sec, particularly about 700 to 1500 mm / sec.
  • the temperature of the liquid to be treated when flowing into the membrane module 10 is preferably 45 to 150 ° C., particularly preferably about 50 to 80 ° C.
  • Hollow fiber 11 Made of polytetrafluoroethylene, Inner diameter 1.0 mm, thickness 0.3 mm, length 600 mm, casing of single film module 10: inner diameter 10 mm, height 690 mm Water supply: 1% NaCl aqueous solution Water supply temperature: 60 ° C Membrane module inlet pressure P 3 : -80 kPa (gauge pressure) Water supply amount: 40 mL / min (Line speed in hollow fiber 850 mm / sec) Secondary pressure P 2 : -90 kPa (gauge pressure) Inner diameter of steam pipe 20: 6 mm Inner diameter of pipe 7: 6 mm Length of pipe 7: 1m Liquid level H: 50 cm
  • FIG. 3 shows the relationship between the pressure and boiling point of this aqueous solution. From this relationship, it is considered that boiling occurs at -80 kPa when the water supply temperature is 60 ° C.
  • Example 1 ⁇ Experimental equipment and conditions> The membrane distillation apparatus shown in FIG. 1 having the same configuration as that of Comparative Example 1 was used except that the pipe 7 had an inner diameter of 0.75 mm and the pipe 7 was provided with a valve 8 having an adjustable opening degree (the inner diameter of the pipe 7 is 12.5% of the inner diameter of the steam pipe 20). The distillation test was carried out under the same conditions as in Comparative Example 1 except that the opening degree of the valve 8 was adjusted so that the membrane module inlet pressure P 3 became ⁇ 40 kPa (gauge pressure).
  • Example 1 since the inner diameter of the pipe 7 is sufficiently smaller than that of Comparative Example 1, the speed at which the inside of the water supply tank 1 is depressurized is smaller than that of the secondary side 17, and the pressure adjustment is easy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

In the present invention, a liquid to be treated in a water supply tank 1 is supplied to hollow fibers 11 of a membrane module 10 via a water supply pump 2, a pipe 3, a heat exchanger 4, and a pipe 5, and returns to the water supply tank 1. The pressure of a secondary side 17 is reduced by a pressure reduction device 25. The water of the liquid to be treated which is flowing through the hollow fibers 11 evaporates, and is suctioned and discharged from the secondary side 17 to a pipe 20. A water supply tank gas phase part 1a and the secondary side 17 communicate with each other via a pipe 7 and a valve 8, and the pressure difference p1 - p2 between the water supply tank gas phase part 1a and the secondary side 17 is 20-90 kPa.

Description

膜蒸留装置及びその運転方法Membrane distillation equipment and its operation method
 本発明は、膜蒸留装置及びその運転方法に関する。 The present invention relates to a membrane distillation apparatus and an operating method thereof.
 膜蒸留装置は、疎水性平膜または疎水性中空糸膜の一次側に加温された被処理液を通水し、膜の二次側を一次側の蒸気圧以下にすることで、被処理液から蒸気のみを回収し、被処理液を濃縮するよう構成されている。膜蒸留装置は、一般的な蒸留装置と異なり、膜を用いることによって蒸発表面積が増え、装置が小型化するというメリットを有する。 The membrane distillation apparatus passes a heated liquid to be treated to the primary side of a hydrophobic flat membrane or a hydrophobic hollow fiber membrane, and makes the secondary side of the membrane lower than the vapor pressure of the primary side to be treated. It is configured to recover only vapor from the liquid and concentrate the liquid to be treated. Unlike a general distillation apparatus, the membrane distillation apparatus has an advantage that the evaporated surface area is increased and the apparatus is miniaturized by using the membrane.
 膜蒸留装置の従来例の一例を図2に示す。給水タンク1内に貯留された被処理液が給水ポンプ2を有した配管3を介して熱交換器(加温器)4に送水され、高温流体と熱交換して加温された後、配管5を介して膜モジュール10に送水される。 FIG. 2 shows an example of a conventional example of a membrane distillation apparatus. The liquid to be treated stored in the water supply tank 1 is sent to the heat exchanger (heater) 4 via the pipe 3 having the water supply pump 2, and after heat exchange with the high temperature fluid to be heated, the pipe is used. Water is sent to the membrane module 10 via 5.
 この従来例では、膜モジュール10は中空糸膜モジュールである。膜モジュール10では、多数本の中空糸11が引き揃えられて中空糸束とされ、上下方向に配設されている。中空糸束の上端側及び下端側がポッティング材12,13で結束されている。 In this conventional example, the membrane module 10 is a hollow fiber membrane module. In the membrane module 10, a large number of hollow fibers 11 are aligned to form a hollow fiber bundle, which is arranged in the vertical direction. The upper end side and the lower end side of the hollow fiber bundle are bound by the potting materials 12 and 13.
 中空糸束は膜モジュール10のケーシング14内に配置されており、上側ポッティング材12の上側に流入室15が形成され、下側ポッティング材13の下側に流出室16が形成されている。各中空糸11内はそれぞれ流入室15及び流出室16内に連通している。 The hollow fiber bundle is arranged in the casing 14 of the membrane module 10, the inflow chamber 15 is formed on the upper side of the upper potting material 12, and the outflow chamber 16 is formed on the lower side of the lower potting material 13. The inside of each hollow fiber 11 communicates with the inflow chamber 15 and the outflow chamber 16, respectively.
 配管5からの被処理液は、流入室15から各中空糸11内(一次側)に流入し、中空糸11を通り、流出室16へ流れ、該流出室16から配管6を介して給水タンク1に戻る。 The liquid to be treated from the pipe 5 flows from the inflow chamber 15 into each hollow fiber 11 (primary side), passes through the hollow fiber 11, flows to the outflow chamber 16, and flows from the outflow chamber 16 to the water supply tank via the pipe 6. Return to 1.
 ケーシング14内における中空糸11外であって且つポッティング材12,13間が二次側17である。 The secondary side 17 is outside the hollow fiber 11 in the casing 14 and between the potting materials 12 and 13.
 該二次側17は、配管(蒸気配管)20、熱交換器(冷却器)21、配管22、凝縮水タンク23及び配管24を介して減圧装置25に連通しており、該減圧装置25によって該二次側17が減圧される。 The secondary side 17 communicates with the decompression device 25 via a pipe (steam pipe) 20, a heat exchanger (cooler) 21, a pipe 22, a condensed water tank 23, and a pipe 24, and the decompression device 25 communicates with the decompression device 25. The secondary side 17 is depressurized.
 被処理液が中空糸17内(一次側)を流れる間に被処理液中の水が中空糸11を透過し、蒸気となって二次側17から配管20へ吸引排出され、熱交換器21で冷却されて凝縮水が生成する。凝縮水は、凝縮水タンク23に貯留される。 While the liquid to be treated flows through the hollow yarn 17 (primary side), the water in the liquid to be treated permeates the hollow yarn 11 and becomes vapor, which is sucked and discharged from the secondary side 17 to the pipe 20 and discharged to the pipe 20 to be discharged from the secondary side 17 to the heat exchanger 21. Cooled with to produce condensed water. The condensed water is stored in the condensed water tank 23.
 この従来例では、ケーシング14内の二次側17と給水タンク1内の上部(気相部1a)とが配管7で連通されている。 In this conventional example, the secondary side 17 in the casing 14 and the upper part (gas phase portion 1a) in the water supply tank 1 are communicated with each other by a pipe 7.
 給水タンク1の気相部1a、配管20及び配管5内の圧力を検出するように圧力センサP1,P2,P3が設置されている。 Pressure sensors P1, P2, and P3 are installed so as to detect the pressure in the gas phase portion 1a, the pipe 20, and the pipe 5 of the water supply tank 1.
特開平3-52627Japanese Patent Application Laid-Open No. 3-52227
 上記膜蒸留装置にあっては、減圧装置25の負圧が二次側17から配管7を介して給水タンク1内に伝達される。そのため、給水ポンプ2の吸込側における配管3内の圧力が低くなり、キャビテーションが発生するおそれがある。このキャビテーションを防止するためには、給水タンク1内の水頭(水面高さ)Hを大きくする必要があり、給水タンク1の高さを大きくする設計が必要となる。 In the membrane distillation apparatus, the negative pressure of the decompression apparatus 25 is transmitted from the secondary side 17 to the water supply tank 1 via the pipe 7. Therefore, the pressure in the pipe 3 on the suction side of the water supply pump 2 becomes low, and cavitation may occur. In order to prevent this cavitation, it is necessary to increase the head (water surface height) H in the water supply tank 1, and it is necessary to design to increase the height of the water supply tank 1.
 本発明は、給水タンクの高さを大きくすることなく、給水ポンプのキャビテーションを防止することができる膜蒸留装置及びその運転方法を提供することを目的とする。 An object of the present invention is to provide a membrane distillation apparatus capable of preventing cavitation of a water supply pump and an operation method thereof without increasing the height of the water supply tank.
 本発明の膜蒸留装置は、ケーシング内が疎水性膜によって一次側と二次側とに隔てられている膜モジュールと、該膜モジュールの一次側に被処理液を循環供給するための、給水タンク及び給水ポンプを有した被処理液循環供給手段と、該膜モジュールの二次側を減圧する減圧装置と、該膜モジュールの二次側と前記給水タンクの気相部とを連通する連通手段とを有する膜蒸留装置において、該給水タンクの気相部と膜モジュールの二次側との圧力差が20~90kPaであることを特徴とする。 The membrane distillation apparatus of the present invention has a membrane module whose casing is separated into a primary side and a secondary side by a hydrophobic membrane, and a water supply tank for circulating and supplying a liquid to be treated to the primary side of the membrane module. A liquid circulation supply means for processing liquid having a water supply pump, a decompression device for reducing the pressure on the secondary side of the membrane module, and a communication means for communicating the secondary side of the membrane module with the gas phase portion of the water supply tank. The membrane distillation apparatus is characterized in that the pressure difference between the gas phase portion of the water supply tank and the secondary side of the membrane module is 20 to 90 kPa.
 本発明の一態様では、前記連通部は、前記圧力差を調整する圧力差調整手段を有する。 In one aspect of the present invention, the communication portion has a pressure difference adjusting means for adjusting the pressure difference.
 本発明の一態様では、前記圧力差調整手段を有する前記連通部は、弁を備えた配管である。 In one aspect of the present invention, the communication portion having the pressure difference adjusting means is a pipe provided with a valve.
 本発明の一態様では、前記連通部は配管であり、該配管の内径が、前記二次側を減圧して蒸気を吸引排出するように該二次側に接続された蒸気配管の内径の1/4以下である。 In one aspect of the present invention, the communication portion is a pipe, and the inner diameter of the pipe is one of the inner diameter of the steam pipe connected to the secondary side so as to depressurize the secondary side and suck and discharge steam. It is less than / 4.
 本発明の膜蒸留装置の運転方法は、かかる本発明の膜蒸留装置の運転方法であって、前記圧力差が20~90kPaとなるように前記弁の開度を調整することを特徴とする。 The operating method of the membrane distillation apparatus of the present invention is the operating method of the membrane distillation apparatus of the present invention, characterized in that the opening degree of the valve is adjusted so that the pressure difference is 20 to 90 kPa.
 本発明によると、二次側と給水タンク内の気相部との圧力差を20~90kPaに調整することにより、送水ポンプの吸込側の圧力を確保し、キャビテーションを防止することができる。 According to the present invention, by adjusting the pressure difference between the secondary side and the gas phase portion in the water supply tank to 20 to 90 kPa, the pressure on the suction side of the water supply pump can be secured and cavitation can be prevented.
実施の形態に係る膜蒸留装置の構成図である。It is a block diagram of the membrane distillation apparatus which concerns on embodiment. 従来例に係る膜蒸留装置の構成図である。It is a block diagram of the membrane distillation apparatus which concerns on a conventional example. 沸点とゲージ圧との関係図である。It is a relationship diagram between the boiling point and the gauge pressure.
 図1は、実施の形態に係る膜蒸留装置の構成を示している。 FIG. 1 shows the configuration of the membrane distillation apparatus according to the embodiment.
 この実施の形態では、膜モジュール10の二次側17と給水タンク1の気相部1aとを連通する配管7に、二次側17と該気相部1aとの圧力差を調整するための弁8が設けられている。なお、弁8を設ける代りに配管7の径を小さくすることにより、二次側17と気相部1aとの圧力差を調整するようにしてもよく、配管7の径を小さくし、且つ弁8を設けるようにしてもよい。また配管7の一部の径を小さくしてもよい。 In this embodiment, the pressure difference between the secondary side 17 and the gas phase portion 1a is adjusted in the pipe 7 that communicates the secondary side 17 of the membrane module 10 and the gas phase portion 1a of the water supply tank 1. A valve 8 is provided. Instead of providing the valve 8, the diameter of the pipe 7 may be reduced to adjust the pressure difference between the secondary side 17 and the gas phase portion 1a, the diameter of the pipe 7 may be reduced, and the valve may be reduced. 8 may be provided. Further, the diameter of a part of the pipe 7 may be reduced.
 配管7の径を小さくする場合、配管7の内径は、蒸気配管20の内径の1/4(25%)以下、好ましくは0.5~25%、特に好ましくは1~20%である。なお配管7は、膜蒸留装置の運転停止後の再起動前または運転中に膜モジュール10の二次側に滞留する凝縮液又は析出物を排出する目的で設置されており、配管7の内径は小さくても膜蒸留装置の運転管理上の影響はほとんどない。一方、配管7の内径が大きい場合、圧力差を所定値に安定して調整するには弁8の開閉を頻繁に行うことになり運転管理が難しくなる。また弁8を閉にした場合は膜モジュール10の二次側に凝縮液又は析出物が滞留する可能性があり、膜蒸留装置の安定運転上問題となる。
また配管7の長さは0.2~4m、特に0.5~2mであることが好ましい。
When the diameter of the pipe 7 is reduced, the inner diameter of the pipe 7 is 1/4 (25%) or less of the inner diameter of the steam pipe 20, preferably 0.5 to 25%, and particularly preferably 1 to 20%. The pipe 7 is installed for the purpose of discharging the condensate or precipitate accumulated on the secondary side of the membrane module 10 before restarting after the operation of the membrane distillation apparatus is stopped or during the operation, and the inner diameter of the pipe 7 is Even if it is small, there is almost no effect on the operation management of the membrane distillation apparatus. On the other hand, when the inner diameter of the pipe 7 is large, the valve 8 is frequently opened and closed in order to stably adjust the pressure difference to a predetermined value, which makes operation management difficult. Further, when the valve 8 is closed, the condensed liquid or the precipitate may stay on the secondary side of the membrane module 10, which causes a problem in stable operation of the membrane distillation apparatus.
The length of the pipe 7 is preferably 0.2 to 4 m, particularly preferably 0.5 to 2 m.
 本発明では、圧力センサP1で検出される給水タンクの気相部1aの圧力Pと、圧力センサP2によって検出されるケーシング14内の二次側17の圧力Pとの差P-Pが20~90kPa好ましくは20~70kPaとなるように弁8の開度(又は配管7の管径)を設定する。 In the present invention, the difference P1 −P between the pressure P1 of the gas phase portion 1a of the water supply tank detected by the pressure sensor P1 and the pressure P2 of the secondary side 17 in the casing 14 detected by the pressure sensor P2. The opening degree of the valve 8 (or the pipe diameter of the pipe 7) is set so that 2 is 20 to 90 kPa, preferably 20 to 70 kPa.
 これにより、気相部1aの過度な圧力低下が防止され、給水タンク1の水頭Hを大きくすることなく、給水ポンプ2の吸込側でのキャビテーションを防止することができる。 As a result, an excessive pressure drop in the gas phase portion 1a can be prevented, and cavitation on the suction side of the water supply pump 2 can be prevented without increasing the head H of the water supply tank 1.
 Pのゲージ圧(大気圧との差)は-100~-40kPa特に-100~-60kPa程度が好ましい。 The gauge pressure (difference from atmospheric pressure) of P 2 is preferably about -100 to -40 kPa, particularly preferably about -100 to -60 kPa.
 なお、図1のその他の構成は図2と同様であり、同一符号は同一部分を示している。 The other configurations of FIG. 1 are the same as those of FIG. 2, and the same reference numerals indicate the same parts.
 上記中空糸11としては、疎水性中空糸膜が好適である。中空糸の内径(直径)は0.1~3.0mm特に0.5~2.0mmであることが好ましく、厚みすなわち中空糸の外径(半径)と内径(半径)との差は0.01~1.0mm、特に0.1~0.5mmが好ましい。中空糸の長さは200~2000mm、特に300~1000mmが好ましい。中空糸の充填率(中空糸の断面積の和/ケーシングの断面積)は5%~50%、特に15%~35%が好ましい。中空糸の素材としては、ポリスルホン、ポリエーテルスルホン、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン及びポリテトラフルオロエチレンなどが例示されるが、これらに限定されない。 As the hollow fiber 11, a hydrophobic hollow fiber membrane is suitable. The inner diameter (diameter) of the hollow yarn is preferably 0.1 to 3.0 mm, particularly 0.5 to 2.0 mm, and the thickness, that is, the difference between the outer diameter (radius) and the inner diameter (radius) of the hollow yarn is 0. 01 to 1.0 mm, particularly 0.1 to 0.5 mm is preferable. The length of the hollow fiber is preferably 200 to 2000 mm, particularly preferably 300 to 1000 mm. The filling rate of the hollow fibers (sum of the cross-sectional areas of the hollow fibers / the cross-sectional area of the casing) is preferably 5% to 50%, particularly preferably 15% to 35%. Examples of the material of the hollow fiber include, but are not limited to, polysulfone, polyethersulfone, polyethylene, polypropylene, polyvinylidene fluoride, and polytetrafluoroethylene.
 上記説明では、中空糸が用いられているが、疎水性平膜が用いられてもよい。 In the above description, a hollow fiber is used, but a hydrophobic flat membrane may be used.
 被処理液としては、食塩、リン酸、塩酸、弗酸、硫酸等の酸性溶液、アンモニア水のようなアルカリ廃液、メッキ廃水などの水溶液が好適である。中空糸内における被処理液の通水速度(線速度)は400~2000mm/sec、特に700~1500mm/sec程度が好適である。膜モジュール10に流入する際の被処理液の温度は45~150℃、特に50~80℃程度が好適である。 As the liquid to be treated, an acidic solution such as salt, phosphoric acid, hydrochloric acid, fluoroacid, sulfuric acid, an alkaline waste liquid such as ammonia water, and an aqueous solution such as plating waste water are suitable. The water flow rate (linear velocity) of the liquid to be treated in the hollow fiber is preferably 400 to 2000 mm / sec, particularly about 700 to 1500 mm / sec. The temperature of the liquid to be treated when flowing into the membrane module 10 is preferably 45 to 150 ° C., particularly preferably about 50 to 80 ° C.
 なお、上記の好適な条件は、好適な一例を示すものであり、本発明は上記条件に限定されるものではない。 The above-mentioned suitable conditions show a suitable example, and the present invention is not limited to the above-mentioned conditions.
[比較例1]
<実験装置および条件>
 図2に示す装置を下記条件で運転したときの給水タンク内圧力Pと、膜二次側の圧力Pの値を測定した。試験条件は以下のとおりである。
[Comparative Example 1]
<Experimental equipment and conditions>
The values of the pressure P1 in the water supply tank and the pressure P2 on the secondary side of the membrane when the apparatus shown in FIG. 2 was operated under the following conditions were measured. The test conditions are as follows.
  中空糸11:ポリテトラフルオロエチレン製、
  内径1.0mm、厚さ0.3mm、長さ600mm、1本
  膜モジュール10のケーシング14:内径10mm、高さ690mm
  給水:NaCl 1%水溶液
  給水温度:60℃
  膜モジュール入口圧力P:-80kPa(ゲージ圧)
  給水量:40mL/min(中空糸内の線速度850mm/sec)
  二次側圧力P:-90kPa(ゲージ圧)
  蒸気配管20の内径:6mm
  配管7の内径:6mm
  配管7の長さ:1m
  液面高さH:50cm
Hollow fiber 11: Made of polytetrafluoroethylene,
Inner diameter 1.0 mm, thickness 0.3 mm, length 600 mm, casing of single film module 10: inner diameter 10 mm, height 690 mm
Water supply: 1% NaCl aqueous solution Water supply temperature: 60 ° C
Membrane module inlet pressure P 3 : -80 kPa (gauge pressure)
Water supply amount: 40 mL / min (Line speed in hollow fiber 850 mm / sec)
Secondary pressure P 2 : -90 kPa (gauge pressure)
Inner diameter of steam pipe 20: 6 mm
Inner diameter of pipe 7: 6 mm
Length of pipe 7: 1m
Liquid level H: 50 cm
<結果、考察>
 膜二次側が減圧されると同時に、給水タンク1内の圧力も急激に減少し、給水タンク圧力Pが-70kPaに達した段階で、キャビテーションが生じ、-80kPaに達した段階で沸騰が始まった。
<Results, consideration>
At the same time as the pressure on the secondary side of the membrane is reduced, the pressure inside the water supply tank 1 also decreases sharply, cavitation occurs when the water supply tank pressure P 1 reaches -70 kPa, and boiling begins when it reaches -80 kPa. rice field.
 図3にこの水溶液の圧力と沸点との関係を示す。この関係より、給水温度が60℃であれば-80kPaで沸騰が生じると考えられる。 FIG. 3 shows the relationship between the pressure and boiling point of this aqueous solution. From this relationship, it is considered that boiling occurs at -80 kPa when the water supply temperature is 60 ° C.
 この比較例1は、-70kPaの段階でキャビテーションが生じたため、-90kPaに達した段階でもキャビテーションが生じないようにするためには少なくとも3m相当の液面高さが必要であると考えられる。 In this Comparative Example 1, since cavitation occurred at the stage of -70 kPa, it is considered that a liquid level height equivalent to at least 3 m is required to prevent cavitation even at the stage of reaching -90 kPa.
[実施例1]
<実験装置および条件>
 配管7を内径0.75mmのものとし、配管7に開度調整可能な弁8を設けたこと以外は比較例1と同一構成の図1に示す膜蒸留装置を用いた(配管7の内径は蒸気配管20の内径の12.5%)。膜モジュール入口圧力Pが-40kPa(ゲージ圧)となるように弁8の開度を調整したこと以外は比較例1と同一条件にて蒸留試験を行った。
[Example 1]
<Experimental equipment and conditions>
The membrane distillation apparatus shown in FIG. 1 having the same configuration as that of Comparative Example 1 was used except that the pipe 7 had an inner diameter of 0.75 mm and the pipe 7 was provided with a valve 8 having an adjustable opening degree (the inner diameter of the pipe 7 is 12.5% of the inner diameter of the steam pipe 20). The distillation test was carried out under the same conditions as in Comparative Example 1 except that the opening degree of the valve 8 was adjusted so that the membrane module inlet pressure P 3 became −40 kPa (gauge pressure).
<結果、考察>
 本実施例では、膜モジュール入口圧力Pが-40kPaとなるように弁8の開度を調整しているため、P-Pが50kPaとなり、ポンプ2がキャビテーションすることなく運転することが可能であった。
<Results, consideration>
In this embodiment, since the opening degree of the valve 8 is adjusted so that the membrane module inlet pressure P 3 becomes −40 kPa, P 1 − P 2 becomes 50 kPa, and the pump 2 can be operated without cavitation. It was possible.
 また、実施例1では配管7の内径が比較例1と比較して十分に小さいため、給水タンク1内が減圧される速度が二次側17に比べて小さく、圧力調整が容易であった。 Further, in Example 1, since the inner diameter of the pipe 7 is sufficiently smaller than that of Comparative Example 1, the speed at which the inside of the water supply tank 1 is depressurized is smaller than that of the secondary side 17, and the pressure adjustment is easy.
 以上より、給水タンク圧力を20~90kPaに調整することで、50cmの液面高さでも、キャビテーションを起こさずに運転が可能であることが確認された。 From the above, it was confirmed that by adjusting the water supply tank pressure to 20 to 90 kPa, it is possible to operate without causing cavitation even at a liquid level of 50 cm.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2020年8月7日付で出願された日本特許出願2020-134727に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the intent and scope of the invention.
This application is based on Japanese Patent Application No. 2020-134727 filed on August 7, 2020, which is incorporated by reference in its entirety.
 1 給水タンク
 2 給水ポンプ
 4,21 熱交換器
 8 弁
 10 膜モジュール
 11 中空糸
 12,13 ポッティング材
 14 ケーシング
 15 流入室
 16 流出室
 17 二次側
 25 減圧装置
1 Water supply tank 2 Water supply pump 4,21 Heat exchanger 8 Valve 10 Membrane module 11 Hollow fiber 12,13 Potting material 14 Casing 15 Inflow chamber 16 Outflow chamber 17 Secondary side 25 Decompression device

Claims (5)

  1.  ケーシング内が疎水性膜によって一次側と二次側とに隔てられている膜モジュールと、
     該膜モジュールの一次側に被処理液を循環供給するための、給水タンク及び給水ポンプを有した被処理液循環供給手段と、
     該膜モジュールの二次側を減圧する減圧装置と、
     該膜モジュールの二次側と前記給水タンクの気相部とを連通する連通手段と
    を有する膜蒸留装置において、
     該給水タンクの気相部と膜モジュールの二次側との圧力差が20~90kPaであることを特徴とする膜蒸留装置。
    A membrane module whose casing is separated into a primary side and a secondary side by a hydrophobic membrane,
    A liquid to be treated circulating supply means having a water supply tank and a water supply pump for circulating and supplying the liquid to be treated to the primary side of the membrane module.
    A decompression device that decompresses the secondary side of the membrane module,
    In a membrane distillation apparatus having a communication means for communicating the secondary side of the membrane module and the gas phase portion of the water supply tank.
    A membrane distillation apparatus characterized in that the pressure difference between the gas phase portion of the water supply tank and the secondary side of the membrane module is 20 to 90 kPa.
  2.  前記連通部は、前記圧力差を調整する圧力差調整手段を有する請求項1の膜蒸留装置。 The membrane distillation apparatus according to claim 1, wherein the communication unit has a pressure difference adjusting means for adjusting the pressure difference.
  3.  前記圧力差調整手段を有する前記連通部は、弁を備えた配管である請求項2の膜蒸留装置。 The membrane distillation apparatus according to claim 2, wherein the communication portion having the pressure difference adjusting means is a pipe provided with a valve.
  4.  前記連通部は配管であり、該配管の内径が、前記二次側を減圧して蒸気を吸引排出するように該二次側に接続された蒸気配管の内径の1/4以下である請求項1の膜蒸留装置。 The communication portion is a pipe, and the inner diameter of the pipe is 1/4 or less of the inner diameter of the steam pipe connected to the secondary side so as to depressurize the secondary side and suck and discharge steam. 1 membrane distillation apparatus.
  5.  請求項3の膜蒸留装置の運転方法であって、前記圧力差が20~90kPaとなるように前記弁の開度を調整することを特徴とする膜蒸留装置の運転方法。 The method for operating the membrane distillation apparatus according to claim 3, wherein the opening degree of the valve is adjusted so that the pressure difference is 20 to 90 kPa.
PCT/JP2021/011887 2020-08-07 2021-03-23 Membrane distillation device and method for operating same WO2022030044A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180056848.4A CN116033959A (en) 2020-08-07 2021-03-23 Membrane distillation device and method for operating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020134727A JP6958687B1 (en) 2020-08-07 2020-08-07 Membrane distillation equipment and its operation method
JP2020-134727 2020-08-07

Publications (1)

Publication Number Publication Date
WO2022030044A1 true WO2022030044A1 (en) 2022-02-10

Family

ID=78281980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011887 WO2022030044A1 (en) 2020-08-07 2021-03-23 Membrane distillation device and method for operating same

Country Status (3)

Country Link
JP (1) JP6958687B1 (en)
CN (1) CN116033959A (en)
WO (1) WO2022030044A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346823A (en) * 1991-05-27 1992-12-02 Hitachi Ltd Membrane method and device for evaporating and concentrating waste liquid
JP2015100776A (en) * 2013-11-27 2015-06-04 住友電気工業株式会社 Wastewater treatment method, membrane distillation module, and wastewater treatment device
US20170354931A1 (en) * 2016-06-14 2017-12-14 Korea Institute Of Science And Technology Membrane distillation system which is capable of real-time monitoring on membrane scaling
JP2018083189A (en) * 2016-05-24 2018-05-31 旭化成株式会社 Film distillation apparatus
CN108704484A (en) * 2018-06-06 2018-10-26 大连理工大学 A kind of membrane contactor separation method for polynary pollutant aqueous solution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352627A (en) * 1989-07-19 1991-03-06 Hitachi Ltd Membrane distillation apparatus
CN1254303C (en) * 2004-04-27 2006-05-03 内蒙古工业大学 Method for increasing flux of membrane distillation and membrane distillation device
US20100051549A1 (en) * 2008-08-29 2010-03-04 Milton Roy Company Heat recuperating membrane distillation apparatus and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346823A (en) * 1991-05-27 1992-12-02 Hitachi Ltd Membrane method and device for evaporating and concentrating waste liquid
JP2015100776A (en) * 2013-11-27 2015-06-04 住友電気工業株式会社 Wastewater treatment method, membrane distillation module, and wastewater treatment device
JP2018083189A (en) * 2016-05-24 2018-05-31 旭化成株式会社 Film distillation apparatus
US20170354931A1 (en) * 2016-06-14 2017-12-14 Korea Institute Of Science And Technology Membrane distillation system which is capable of real-time monitoring on membrane scaling
CN108704484A (en) * 2018-06-06 2018-10-26 大连理工大学 A kind of membrane contactor separation method for polynary pollutant aqueous solution

Also Published As

Publication number Publication date
CN116033959A (en) 2023-04-28
JP6958687B1 (en) 2021-11-02
JP2022030607A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
CN106470753B (en) Vacuum membrane distillation type water making device for ship
WO2022030044A1 (en) Membrane distillation device and method for operating same
JP6151593B2 (en) Operation method of heat pump type concentrator
JP2006281004A (en) Deoxygenation apparatus and deoxygenation system
JP2013108637A (en) Heat exchanger
JP2020192495A (en) Membrane distillation type distillation apparatus
JP5546803B2 (en) Heat exchanger
JP5384152B2 (en) Air heater
WO2022059235A1 (en) Method for operating membrane distillation apparatus
JP6570965B2 (en) Absorption heat pump
JP2002147972A (en) Steam heating device
JP2007107836A (en) Steam attemperator
JP2007303783A (en) Heat exchanger
JPH09137909A (en) Low pressure steam heater by heat medium
JP5047426B2 (en) Steam heating device
TW202212747A (en) Distillation apparatus
CN116147386A (en) Plate type falling film heat exchange component of nonmetal heat exchange material, MVR evaporation device and preparation method
JP4472102B2 (en) Steam heating device
JP5384151B2 (en) Heat exchanger
KR101746637B1 (en) Fresh water geneator with controlling non-condensible gas
JP5457731B2 (en) Heat exchanger
KR200309776Y1 (en) Vapor injecting ice and hot water generating device
WO2016151381A1 (en) Apparatus and method for flushing aseptic chambers of a high-pressure homogenizer or pump
JP2009222284A (en) Air heating device
JP2001201273A (en) Steam-heating equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852755

Country of ref document: EP

Kind code of ref document: A1