WO2022029966A1 - 無線通信ノード - Google Patents

無線通信ノード Download PDF

Info

Publication number
WO2022029966A1
WO2022029966A1 PCT/JP2020/030240 JP2020030240W WO2022029966A1 WO 2022029966 A1 WO2022029966 A1 WO 2022029966A1 JP 2020030240 W JP2020030240 W JP 2020030240W WO 2022029966 A1 WO2022029966 A1 WO 2022029966A1
Authority
WO
WIPO (PCT)
Prior art keywords
iab
wireless communication
wireless
node
lbt
Prior art date
Application number
PCT/JP2020/030240
Other languages
English (en)
French (fr)
Inventor
浩樹 原田
大輔 栗田
慎也 熊谷
尚哉 芝池
真由子 岡野
ジン ワン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/030240 priority Critical patent/WO2022029966A1/ja
Priority to JP2022541051A priority patent/JPWO2022029966A1/ja
Publication of WO2022029966A1 publication Critical patent/WO2022029966A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • This disclosure relates to a wireless communication node that sets wireless access and a wireless backhaul.
  • the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
  • 5G New Radio
  • NG Next Generation
  • FR1 410MHz-7.125GHz
  • FR2 24.25GHz-52.6GHz
  • Non-Patent Document 1 NR that supports up to 71GHz, which exceeds 52.6GHz, is also under consideration.
  • 5G Evolution or 6G aim to support frequency bands above 71GHz.
  • Non-Patent Document 2 PTRS
  • IAB Integrated Access and Backhaul
  • UE User Equipment
  • gNB wireless base stations
  • NR-U New Radio-Unlicensed
  • Listen-Before allows transmission within a given time length only if gNB performs a carrier sense before initiating transmission and can confirm that the channel is not being used by another nearby system. -There seems to be room for improvement in the settings of the Talk (LBT) entity in the IAB node.
  • LBT Talk
  • a radio that can set a more appropriate LBT can be set.
  • the purpose is to provide a communication node.
  • One aspect of the present disclosure is a transmission / reception unit (radio signal transmission / reception unit 110) that transmits / receives a radio signal to and from an upper node via the first cell and transmits / receives a radio signal to and from a lower node via the second cell, and an unlicensed frequency.
  • a control unit (control unit 170) for executing channel sensing in the band is provided, and the control unit is set via the first radio link set via the first cell and the second cell. It is a wireless communication node (wireless communication node 100B) that executes the sensing independently for the second wireless link.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • FIG. 4 is a diagram showing a basic configuration example of the IAB.
  • FIG. 5 is a functional block configuration diagram of the wireless communication node 100B (IAB node).
  • FIG. 6 is a diagram showing an execution example of LBT according to the channel access procedure Type 1.
  • FIG. 7 is a diagram showing an execution example of LBT according to the channel access procedure Type 2A / 2B.
  • FIG. 8 is a diagram showing an execution example of LBT according to the channel access procedure Type 2C.
  • FIG. 9 is a diagram showing an example of sharing an LBT entity in the IAB.
  • FIG. 10 is a diagram showing an example of a communication sequence relating to the setting of the LBT entity.
  • FIG. 11 is a diagram showing an example of the hardware configuration of the wireless communication nodes 100A to 100C.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and is composed of a plurality of wireless communication nodes and terminals.
  • the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
  • the wireless communication system 10 includes wireless communication nodes 100A, 100B, 100C, and a terminal 200 (hereinafter, UE200, User Equipment).
  • the wireless communication nodes 100A, 100B, and 100C can form cell C1, cell C2, and cell C3, respectively.
  • the wireless communication nodes 100A, 100B, and 100C can set a wireless access (Access link) with the UE 200 and a wireless backhaul (Backhaul link) between the wireless communication nodes via the cell.
  • a backhaul (transmission path) by a wireless link may be set between the wireless communication node 100A and the wireless communication node 100B, and between the wireless communication node 100B and the wireless communication node 100C.
  • IAB Integrated Access and Backhaul
  • IAB reuses existing features and interfaces defined for wireless access.
  • MT Mobile-Termination
  • gNB-DU Distributed Unit
  • gNB-CU Central Unit
  • UPF User Plane Function
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • NRUu between MT and gNB / DU
  • F1, NG, X2 and N4 may be used as the baseline.
  • the wireless communication node 100A is connected to the NR radio access network (NG-RAN) and core network (Next Generation Core (NGC) or 5GC) via a wired transmission line such as a fiber transport.
  • NG-RAN and NGC may be included and simply expressed as "network”.
  • FIG. 2 shows the frequency range used in the wireless communication system 10.
  • the wireless communication system 10 corresponds to FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 uses a Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz and may use a bandwidth (BW) of 5-100 MHz.
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 has a higher frequency than FR1, and SCS of 60 or 120 kHz (240 kHz may be included) is used, and a bandwidth (BW) of 50 to 400 MHz may be used.
  • SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier interval in the frequency domain.
  • the wireless communication system 10 also supports a higher frequency band than the frequency band of FR2. Specifically, the wireless communication system 10 supports a frequency band exceeding 52.6 GHz and up to 71 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT- Discrete Fourier Transform-Spread
  • S-OFDM Discrete Fourier Transform-Spread
  • FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • Table 1 shows the relationship between the SCS and the symbol period.
  • the symbol period may be referred to as a symbol length, a time direction, a time domain, or the like.
  • FIG. 4 is a diagram showing a basic configuration example of IAB.
  • the wireless communication node 100A may constitute an IAB donor in the IAB
  • the wireless communication node 100B (and the wireless communication node 100C) may constitute an IAB node in the IAB.
  • the IAB donor may be referred to as a higher-level node in relation to the IAB node.
  • the IAB donor may be referred to as the Parent node.
  • the IAB donor has a CU and the parent node is simply used as a name in relation to the IAB node (or child node) and may not have a CU.
  • the IAB node may be referred to as a subordinate node in relation to the IAB donor (parent node).
  • a wireless link is set between the IAB donor and the IAB node. Specifically, a wireless link called Link_parent may be set.
  • a wireless link is set between the IAB node and the child node. Specifically, a wireless link called Link_child may be set.
  • Link_parent may be composed of DLParentBH in the downward direction and ULParentBH in the upward direction.
  • Link_child may be composed of DL Child BH in the downward direction and UL Child BH in the upward direction.
  • the IAB node has a MobileTermination (MT), which is a function for connecting to an IAB donor, and a DistributedUnit (DU), which is a function for connecting to a child node (or UE200).
  • MT MobileTermination
  • DU DistributedUnit
  • the IAB donor has a Central Unit (CU) and a DU.
  • the wireless resources used by DU include downlink (DL), uplink (UL) and Flexible time-resource (D / U / F), which are Hard, Soft or Not Available (H / S /). It is classified into any type of NA). Also, in Soft (S), it is stipulated that it can be used (available) or cannot be used (not available).
  • Flexible time-resource is a radio resource (time resource and / or frequency resource) that can be used for both DL and UL. Further, “Hard” is a wireless resource that can always be used for DU child link in which the corresponding time resource is connected to the child node or UE, and “Soft” is for DU child link of the corresponding time resource.
  • a radio resource (DU resource) whose availability is explicitly or implicitly controlled by the IAB donor (or parent node).
  • the wireless resource to be notified can be determined based on IA or INA.
  • IA means that the DU resource is explicitly or implicitly indicated as available. Also, “INA” means that the DU resource is explicitly or implicitly indicated as unavailable.
  • the wireless access and the wireless backhaul may be half-duplex communication (Half-duplex) or full-duplex communication (Full-duplex).
  • time division multiplexing TDM
  • spatial division multiplexing SDM
  • frequency division multiplexing FDM
  • DLParentBH is on the receiving (RX) side
  • ULParentBH is on the transmitting (TX) side
  • DLChildBH is on the transmitting (TX) side
  • Child BH is the receiving (RX) side.
  • TDD Time Division Duplex
  • the DL / UL setting pattern on the IAB node is not limited to DL-F-UL, but only the wireless backhaul (BH) and UL-F-DL setting patterns. May be applied.
  • SDM / FDM is used to realize simultaneous operation of DU and MT of the IAB node.
  • NR-U New Radio-Unlicensed
  • LAA Licensed-Assisted Access
  • the frequency band assigned for the wireless communication system 10 is a frequency band included in the frequency range such as FR1 and FR2 described above and based on the license allocation by the government.
  • the unlicensed frequency band is a frequency band that does not require a license allocation by the government and can be used without being limited to a specific telecommunications carrier.
  • a frequency band for wireless LAN (WLAN) (2.4 GHz, 5 GHz band, 60 GHz band, etc.) can be mentioned.
  • wireless communication nodes 100A, 100B, 100C are carrier sense (sensing). ) Is executed, and the Listen-Before-Talk (LBT) mechanism that enables transmission within a predetermined time length is applied only when it can be confirmed that the channel is not used by other systems in the vicinity. ..
  • carrier sense is a technique for confirming whether or not the frequency carrier is used for other communications before emitting radio waves.
  • a channel access procedure that complies with the regulations (execution of LBT, etc.) applied to the unlicensed frequency band in the frequency band of 52.6 GHz to 71 GHz may be specified.
  • LBT may be interpreted as being included in the Clear Channel Assessment (CCA) procedure that enables transmission within a predetermined time length.
  • CCA Clear Channel Assessment
  • a directional LBT / CCA (which may be referred to as Beam-based LBT / CCA) using a plurality of beams may be applied.
  • FIG. 5 is a functional block configuration diagram of the wireless communication node 100B (IAB node).
  • the wireless communication node 100A differs from the wireless communication node 100B that functions as an IAB node in that it functions as an IAB donor (parent node). Further, the wireless communication node 100C is different from the wireless communication node 100B in that it functions as a child node.
  • the case of the wireless communication node 100B will be described as an example.
  • the wireless communication node 100B includes a wireless signal transmission / reception unit 110, an amplifier unit 120, a modulation / demodulation unit 130, a control signal processing unit 140, a coding / decoding unit 150, and a control unit 170.
  • FIG. 5 shows only the main functional blocks related to the description of the embodiment, and that the wireless communication node 100B has other functional blocks (for example, a power supply unit). Further, FIG. 5 shows a functional block configuration of the wireless communication node 100B, and refer to FIG. 11 for the hardware configuration.
  • the radio signal transmission / reception unit 110 transmits / receives a radio signal according to NR.
  • the radio signal transmission / reception unit 110 uses Massive MIMO that generates a beam with higher directivity by controlling radio frequency (RF) signals transmitted from a plurality of antenna elements, and a carrier that bundles and uses a plurality of component carriers (CC). It can support aggregation (CA) and dual connectivity (DC) that communicates between the UE and each of the two NG-RAN Nodes at the same time.
  • Massive MIMO that generates a beam with higher directivity by controlling radio frequency (RF) signals transmitted from a plurality of antenna elements, and a carrier that bundles and uses a plurality of component carriers (CC). It can support aggregation (CA) and dual connectivity (DC) that communicates between the UE and each of the two NG-RAN Nodes at the same time.
  • CA aggregation
  • DC dual connectivity
  • the wireless signal transmission / reception unit 110 can transmit / receive a wireless signal to / from the wireless communication node 100A (upper node) via the cell C1 (first cell). Further, the wireless signal transmission / reception unit 110 can transmit / receive a wireless signal to / from the wireless communication node 100C or UE200 (lower node) via the cell C2 (second cell). In the present embodiment, the radio signal transmission / reception unit 110 constitutes a transmission / reception unit.
  • the amplifier unit 120 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like.
  • the amplifier unit 120 amplifies the signal output from the modulation / demodulation unit 130 to a predetermined power level. Further, the amplifier unit 120 amplifies the RF signal output from the radio signal transmission / reception unit 110.
  • the modulation / demodulation unit 130 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each specific communication destination (wireless communication node 100A, 100B or UE200).
  • the control signal processing unit 140 executes processing related to various control signals transmitted and received by the wireless communication node 100B. Specifically, the control signal processing unit 140 receives various control signals transmitted from the wireless communication node 100A (or wireless communication node 100C, hereinafter the same) and the UE 200 via the control channel, for example, the wireless resource control layer (RRC). ) Control signal is received. Further, the control signal processing unit 140 transmits various control signals to the wireless communication node 100A or UE200 via the control channel.
  • RRC wireless resource control layer
  • control signal processing unit 140 can execute processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signal
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a reference signal (pilot signal) known between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
  • the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), PositioningReferenceSignal (PRS) for position information, and the like. ..
  • CSI-RS ChannelStateInformation-ReferenceSignal
  • SRS SoundingReferenceSignal
  • PRS PositioningReferenceSignal
  • the Channels include control channels and data channels.
  • the control channel includes PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), PBCH (Physical Broadcast Channel) and the like.
  • the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • the signal may include a channel and a reference signal.
  • a channel may mean a carrier or part of a carrier composed of a set of contiguous resource blocks (RBs) on which a channel access procedure is performed in a shared spectrum.
  • RBs resource blocks
  • the channel access procedure (see 3GPP TS37.213) may be interpreted as a sensing-based procedure that evaluates the availability of the channel for transmission. Further, the basic unit for sensing may be defined as a sensing slot having a predetermined time.
  • the wireless communication node 100B (or other wireless communication node, the same applies hereinafter) or UE200 detects the channel and the detected power is at least less than the energy detection (ED) threshold. It is considered idle, otherwise the sensing slot period may be considered busy.
  • ED energy detection
  • Channel Occupancy means transmission on the channel by gNB (may be eNB) / UE (including the case of IAB MT / DU) after executing the corresponding channel access procedure. You can do it.
  • Channel Occupancy Time means that after the gNB / UE has executed the corresponding channel access procedure, the gNB / UE that shares the channel occupancy and any gNB / UE are on the channel. It may mean the total time to execute the transmission. The channel occupancy time may be shared for transmission between the gNB and the corresponding UE.
  • the DL transmission burst may be defined as a set of transmissions from gNB.
  • a DL transmit burst with a gap larger than a predetermined transmit gap may be considered as a separate DL transmit burst.
  • An uplink (UL) transmit burst may be defined as a set of transmissions from the UE.
  • UL transmit bursts with gaps larger than a given transmit gap may be considered separate UL transmit bursts.
  • a discovery burst may be defined as a DL transmit burst that is confined within a given window and contains a set of signals or channels associated with a duty cycle.
  • the discovery burst may be one of the following transmissions initiated by gNB:
  • the coding / decoding unit 150 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (wireless communication node 100A or UE200).
  • the coding / decoding unit 150 divides the data output from the data transmission / reception unit 160 into a predetermined size, and executes channel coding for the divided data. Further, the coding / decoding unit 150 decodes the data output from the modulation / demodulation unit 130 and concatenates the decoded data.
  • the data transmission / reception unit 160 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU).
  • PDU Protocol Data Unit
  • SDU Service Data Unit
  • the data transmitter / receiver 160 is a PDU / SDU in multiple layers (such as a medium access control layer (MAC), a radio link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble the.
  • MAC medium access control layer
  • RLC radio link control layer
  • PDCP packet data convergence protocol layer
  • the control unit 170 controls each functional block constituting the wireless communication node 100B.
  • the control unit 170 executes control for supporting IAB and NR-U.
  • the control unit 170 can execute control corresponding to a wide SCS such as 960 kHz in the unlicensed frequency band.
  • control unit 170 can execute channel sensing in the unlicensed frequency band.
  • sensing may be substantially interpreted as LBT.
  • sensing may be interpreted as a series of operations including LBT according to the channel access procedure (see 3GPP TS37.213), and sensing is over the time of the sensing slot, which is the basic unit for sensing. It may be interpreted as being executed.
  • control unit 170 may execute LBT using a single or a plurality of LBT entities.
  • the LBT entity may be a logical entity, or two or more independent LBT entities may be configured. In this case, one LBT entity may be used for MT (which may be interpreted for cell C1) and the other LBT entity may be used for DU (which may be interpreted for cell C2). good.
  • the LBT entity may be referred to as a sensing entity, an LBT unit, a sensing unit, or the like.
  • control unit 170 has a Backhaul link (first radio link) set via the cell C1 (first cell) and an Access link (second cell) set via the cell C2 (second cell).
  • first radio link set via the cell C1 (first cell)
  • second cell set via the cell C2 (second cell).
  • independent sensing may be performed.
  • a child node it may be a Backhaul link with the child node instead of the Access link.
  • Independent sensing is the timing, duration, and type of channel access procedure (details) in which the sensing for Backhaullink (that is, the sensing in cell C1) and the sensing for Accesslink (that is, the sensing in cell C2) are executed. Will be described later), etc. may mean that they may be different.
  • control unit 170 may use the shared sensing for Backhaul link and Access link when at least one of spatial division multiplexing (SDM) and frequency division multiplexing (FDM) is applied between Backhaul link and Access link. May be executed.
  • SDM spatial division multiplexing
  • FDM frequency division multiplexing
  • the shared sensing is the timing, period, and type of channel access procedure in which the sensing for Backhaullink (that is, the sensing in cell C1) and the sensing for Accesslink (that is, the sensing in cell C2) are executed. It may mean that at least one or all of them are the same, such as (details will be described later).
  • shared sensing may be performed using a single LBT entity.
  • the LBT entity does not necessarily have to be shared, and the LBT entity is separated for DU and MT, that is, different separate LBT entities are used. You may.
  • At least one of the Type, priority class and / or energy detection (ED) threshold of the channel access procedure (LBT) may be the same. ..
  • the ED threshold and the like will be described later.
  • the channel occupancy time may be shared not only between the IAB donor (parent node) and the child node / UE, but also between the DU and MT.
  • control unit 170 may share the COT even when performing independent sensing for Backhaul link and Access link.
  • COT sharing may mean that the same COT is applied for Backhaullink and Accesslink based on the LBT performed by either a single shared LBT or an independent LBT entity. , It may mean that the same COT is applied for Backhaul link and Access link only for some sensing, such as when a specific LBT is performed.
  • the control unit 170 may use a plurality of antenna panels and execute independent sensing for Backhaul link and Access link when at least one of SDM and FDM is applied in Backhaul link or Access link.
  • the plurality of antenna panels may mean that two or more separate antenna panels capable of separate control such as generation of a directional beam are provided in the wireless communication node 100B.
  • control unit 170 executes independent sensing using the plurality of antenna panels for Backhaul link and Access link. You may.
  • control unit 170 may transmit the capability of the wireless communication node 100B regarding sensing to the network via the wireless signal transmission / reception unit 110.
  • control unit 170 may send information about the LBT entity (single or plural), antenna panel configuration (single or plural), whether or not there is (Type) support for the channel access procedure, etc. to the network. ..
  • the capability may be transmitted as control information (Uplink Control Information (UCI), etc.) of a lower layer, or may be transmitted by signaling of an upper layer such as an RRC layer.
  • UCI Uplink Control Information
  • NR-U is applied in the frequency band 52.6-71 GHz
  • another numerology based on a simple extension of FR2 eg, 960 kHz SCS
  • another numerology to support one 2 GHz bandwidth eg, 960 kHz SCS. 120kHz SCS
  • other numerologies may not be supported.
  • FIG. 6 shows an execution example of LBT according to the channel access procedure Type 1.
  • a variable size conflict window (contention window) and a random backoff are applied.
  • the LBT determines whether the user is in a busy state (LBT busy) or an idle state (LBT idle) in relation to a peripheral node such as a Wi-Fi node.
  • FIG. 7 shows an execution example of LBT according to the channel access procedure Type 2A / 2B. Further, FIG. 8 shows an execution example of LBT according to the channel access procedure Type 2C.
  • the Type of the channel access procedure is specified in Chapter 4.1 of 3GPP TS37.213.
  • Type 2A a gap of 25 ⁇ sec (ED is also executed) is provided before transmission, and in Type 2B, a gap of 16 ⁇ sec (ED is also executed) is provided before transmission.
  • Type 2A / 2B random backoff does not have to be applied.
  • Type 2C a gap shorter than 16 ⁇ s is provided before transmission.
  • ED is not executed in the gap, and transmission may be executed immediately after the gap without LBT.
  • the operation related to LBT in IAB may be defined as follows.
  • IAB-MT MT of IAB node
  • IAB-DU DU of IAB node
  • Such an independent LBT entity may be set regardless of any other conditions.
  • the LBT entity for IAB-MT and the LBT entity for IAB-DU may perform different IAB-related operations, especially LBT-related operations (such as the Type of channel access procedure). That is, IAB-MT and IAB-DU may perform channel sensing in independent unlicensed frequency bands.
  • IAB-MT and IAB-DU are transmissions by SDM and / or FDM between the IAB-MT and IAB-DU (that is, simultaneous transmission of IAB-MT and IAB-DU).
  • a single LBT entity may be shared for support.
  • IAB-MT and IAB-DU may have separated LBT entities. Also, whether or not to share such a single LBT entity may be determined each time the mode of transmission and / or the setting or instruction from the IAB donor (parent node) changes.
  • IAB-MT and IAB-DU may perform shared sensing using a single LBT entity.
  • shared sensing means that at least one of the timing, duration, type of channel access procedure, etc., at which IAB-MT and IAB-DU sensing are performed is the same. good.
  • each transmission of IAB-MT and IAB-DU has a different LBT bandwidth (set of resource blocks). May be executed.
  • IAB-MT and IAB-DU may transmit using different frequency bandwidths among the bands including a plurality of specified LBT bandwidths (for example, 400 MHz).
  • IAB-MT and IAB-DU may set independent LBT entities.
  • IAB-MT and IAB-DU are shared using a single LBT entity if the IAB node does not use multiple antenna panels, i.e. can support SDM and / or FDM with a single antenna panel. You may perform sensing. Also, whether or not to share such a single LBT entity depends on the availability (capacity) of IAB-MT and / or IAB-DU and / or the setting or instruction from the IAB donor (parent node). It may be determined on a case-by-case basis.
  • the IAB node may report to the network the ability to indicate whether or not it supports the operations shown in (Alt.1) to (Alt.3).
  • the network eg, gNB or IAB donor
  • the network may determine the LBT entity configuration of IAB-MT and / or IAB-DU based on the report.
  • FIG. 9 shows an example of sharing an LBT entity in IAB. Specifically, FIG. 9 shows an example of sharing an LBT entity between an IAB donor (parent node), an IAB node (IAB-MT, IAB-DU), and a child node / UE.
  • the arrows in the figure indicate the data transmission direction (downward or upward).
  • the IAB-MT and the IAB-DU may share an LBT entity and share the same LBT (for example, Type 2) and the transmission period following the LBT to execute transmission. ..
  • the sharing of a single LBT entity may be limited to between the IAB donor (parent node) and the IAB node (IAB-MT, IAB-DU) and the child node / UE, or between the IAB donor and the child node / UE. It may include more intervening IAB nodes.
  • Sharing a single LBT entity between IAB-MT and IAB-DU may be interpreted as meaning at least one of the following.
  • At least one of the same (single) LBT Type, priority class, and ED threshold is used.
  • the ED threshold may be determined based on either or both of max (DU transmission (Tx) output, MTTx output) and max (DU bandwidth, MT bandwidth).
  • CWS ContentionWindowSize
  • HARQ Hybrid Automatic repeat request
  • LBT results LBT results
  • ⁇ COT may be shared not only between the IAB donor (parent node) and the child node / UE, but also between IAB-MT and IAB-DU.
  • the COT between IAB-MT and IAB-DU may be shared even if each of IAB-MT and IAB-DU has an independent LBT entity. However, sharing of COT between wireless communication nodes exceeding one hop may not be allowed.
  • FIG. 10 shows an example of a communication sequence related to the setting of the LBT entity.
  • the IAB node radio communication node 100B
  • the radio communication node 100A constituting the IAB donor (parent node) (S10).
  • the IAB node may report the capability by lower layer control information or higher layer signaling as described above.
  • the IAB node may report the capability to gNB or the like instead of the IAB donor (parent node).
  • the IAB donor (parent node) determines the configuration of the LBT entity in the IAB node based on the reported capacity (S20). Specifically, the IAB donor decides whether to set up a single LBT entity shared in IAB-MT and IAB-DU, or set up an independent LBT entity for each of IAB-MT and IAB-DU. You can do it.
  • the IAB donor notifies the IAB node of the information (LBT configuration) indicating the configuration of the determined LBT entity (S30).
  • the information may also be notified by lower layer control information or higher layer signaling.
  • the IAB node sets the LBT entity applied to IAB-MT and IAB-DU based on the information indicating the configuration of the notified LBT entity (S40). Specifically, the IAB node can set a single LBT entity shared in IAB-MT and IAB-DU, or an independent LBT entity for each of IAB-MT and IAB-DU.
  • the wireless communication node 100B is a Backhaul link (first cell) set via cell C1 (first cell) using independent LBT entities for IAB-MT and IAB-DU. Independent sensing can be executed for the access link (second wireless link) set via the cell C2 (second cell) and the one wireless link).
  • IAB simultaneous application of IAB and NR-U
  • IAB in the unlicensed frequency band
  • a wide SCS such as 960kHz in the high frequency band such as FR2x.
  • a more appropriate LBT can be set even when a wide SCS such as 960 kHz is supported in a high frequency band such as 52.6 to 71 GHz.
  • the wireless communication node 100B shares a single LBT entity for IAB-MT and IAB-DU, and at least one of spatial division multiplexing (SDM) and frequency division multiplexing (FDM) is with Backhaul link.
  • SDM spatial division multiplexing
  • FDM frequency division multiplexing
  • shared sensing can be performed for Backhaullink and Accesslink. Therefore, efficient LBT can be executed according to the multiplexing method (SDM, FDM, TDM).
  • the wireless communication node 100B uses a plurality of antenna panels, and when at least one of SDM and FDM is applied in Backhaul link or Access link, independent sensing is performed for Backhaul link and Access link, respectively. You may do it. Therefore, the optimum LBT can be executed according to the multiplexing method and the configuration of the antenna panel.
  • the wireless communication node 100B can transmit the capability of the wireless communication node 100B regarding sensing to the network. Therefore, the network can set an appropriate LBT entity according to the sensing (LBT) capability of the wireless communication node 100B.
  • LBT sensing
  • the wireless communication node 100B may share the COT for the Backhaul link and the Access link even when the independent sensing is executed. Therefore, by sharing the COT while using an independent LBT entity, efficient LBT in the IAB can be realized.
  • an SCS of 960 kHz is applied in FR2x
  • an SCS that is the same as or wider than the SCS applied to FR1 or FR2 for example, an SCS of 480 kHz is applied in FR2x. May be done.
  • the names of the parent node, the IAB node, and the child node have been used, but the wireless communication node in which the wireless backhaul between the wireless communication nodes such as gNB and the wireless access to the terminal are integrated.
  • the names may be different as long as the configuration is adopted. For example, it may be simply called a first node, a second node, or the like, or it may be called an upper node, a lower node, a relay node, an intermediate node, or the like.
  • the wireless communication node may be simply referred to as a communication device or a communication node, or may be read as a wireless base station.
  • the unlicensed frequency band may be called by a different name.
  • terms such as License-exempt or Licensed-Assisted Access (LAA) may be used.
  • the block configuration diagram (FIG. 5) used in the description of the above-described embodiment shows a block of functional units.
  • These functional blocks are realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the realization method is not particularly limited.
  • the above-mentioned wireless communication nodes 100A to 100C may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 11 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 11, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIG. 5) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), ApplicationSpecific IntegratedCircuit (ASIC), ProgrammableLogicDevice (PLD), and FieldProgrammableGateArray (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling eg RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)).
  • MIB System Information Block
  • SIB System Information Block
  • RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobileBroadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand
  • Bluetooth® Ultra-WideBand
  • other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information may be overwritten, updated, or added.
  • the output information may be deleted.
  • the entered information may be transmitted to other devices.
  • the determination may be made by a value represented by one bit (0 or 1), by a true / false value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
  • RRH Remote Radio Head
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS Mobile Station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • the words such as "up” and “down” may be read as words corresponding to the communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • the slot may be a unit of time based on numerology.
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. The minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (Sub-Carrier Group: SCG), resource element groups (Resource Element Group: REG), PRB pairs, RB pairs, etc. May be called.
  • Physical RB Physical RB: PRB
  • sub-carrier groups Sub-Carrier Group: SCG
  • resource element groups Resource Element Group: REG
  • PRB pairs RB pairs, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini-slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “joined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as “judgment” or “decision”.
  • judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Wireless communication system 100A, 100B, 100C Wireless communication node 110 Wireless signal transmission / reception unit 120 Amplifier unit 130 Modulation / demodulation unit 140 Control signal processing unit 150 Coding / decoding unit 160 Data transmission / reception unit 170 Control unit 200 UE C1, C2, C3 Cell 1001 Processor 1002 Memory 1003 Storage 1004 Communication Device 1005 Input Device 1006 Output Device 1007 Bus

Abstract

無線通信ノードは、第1セルを介して上位ノードと無線信号を送受信し、第2セルを介して下位ノードと無線信号を送受信し、アンライセンス周波数帯におけるチャネルのセンシングを実行する。無線通信ノードは、第1セルを介して設定される第1無線リンク、及び第2セルを介して設定される第2無線リンク用として、それぞれ独立したセンシングを実行する。

Description

無線通信ノード
 本開示は、無線アクセスと無線バックホールとを設定する無線通信ノードに関する。
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。
 3GPPのRelease 15及びRelease 16(NR)では、複数の周波数レンジ、具体的には、FR1(410 MHz~7.125 GHz)及びFR2(24.25 GHz~52.6 GHz)を含む帯域の動作が仕様化されている。
 また、3GPPのRelease-17では、52.6GHzを超え、71GHzまでをサポートするNRについても検討が進められている(非特許文献1)。さらに、Beyond 5G、5G Evolution或いは6G(Release-18以降)は、71GHzを超える周波数帯域もサポートすることを目標としている。
 52.6~71GHzの周波数帯域では、IEEE(Institute of Electrical and Electronics Engineers)802.11ad/ayと同等のチャネル帯域幅(約2GHz)とすることによる効率的な共存、及び位相雑音の低減に貢献するPTRS(Phase Tracking Reference Signal)のオーバヘッド低減を考慮して、より広いサブキャリア間隔(SCS)、例えば、960kHzのサポートが検討されている(非特許文献2)。
"New WID on Extending current NR operation to 71 GHz", RP-193229, 3GPP TSG RAN Meeting #86, 3GPP, 2019年12月 "RAN1 Chairman’s Notes", 3GPP TSG RAN WG1 Meeting #101-e, e-Meeting, 3GPP, 2020年6月
 960kHzなどの広いSCSは、上述したような効果が期待される一方、52.6~71GHzの周波数帯域用としてサポートされるSCSの数は、実装などを考慮し、最小限に抑えることが望ましい。
 また、端末(User Equipment, UE)への無線アクセスと、無線基地局(gNB)などの無線通信ノード間の無線バックホールとが統合されたIntegrated Access and Backhaul(IAB)に、アンライセンス(無免許)周波数帯のスペクトルを用いて利用可能な周波数帯を拡張するNew Radio-Unlicensed(NR-U)を適用し、IABの60GHz帯での運用も想定されている。
 しかしながら、960kHzなどの広いSCSをサポートする場合、現状の3GPPの仕様では必ずしも適切でない部分がある。
 例えば、送信を開始する前にgNBがキャリアセンスを実行し、チャネルが近傍の他システムによって使用されていないことを確認できた場合にのみ、所定の時間長以内の送信を可能とするListen-Before-Talk(LBT)のエンティティのIABノードにおける設定には改善の余地があると考えられる。
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、52.6~71GHzなどの高周波数帯域において960kHzなどの広いSCSがサポートされる場合でも、より適切なLBTを設定し得る無線通信ノードの提供を目的とする。
 本開示の一態様は、第1セルを介して上位ノードと無線信号を送受信し、第2セルを介して下位ノードと無線信号を送受信する送受信部(無線信号送受信部110)と、アンライセンス周波数帯におけるチャネルのセンシングを実行する制御部(制御部170)とを備え、前記制御部は、前記第1セルを介して設定される第1無線リンク、及び前記第2セルを介して設定される第2無線リンク用として、それぞれ独立した前記センシングを実行する無線通信ノード(無線通信ノード100B)である。
図1は、無線通信システム10の全体概略構成図である。 図2は、無線通信システム10において用いられる周波数レンジを示す図である。 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。 図4は、IABの基本的な構成例を示す図である。 図5は、無線通信ノード100B(IABノード)の機能ブロック構成図である。 図6は、チャネルアクセス手順 Type 1に従ったLBTの実行例を示す図である。 図7は、チャネルアクセス手順 Type 2A/2Bに従ったLBTの実行例を示す図である。 図8は、チャネルアクセス手順 Type 2Cに従ったLBTの実行例を示す図である。 図9は、IABにおけるLBTエンティティの共有例を示す図である。 図10は、LBTエンティティの設定に関する通信シーケンス例を示す図である。 図11は、無線通信ノード100A~100Cのハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、複数の無線通信ノード及び端末によって構成される。なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。

 具体的には、無線通信システム10は、無線通信ノード100A, 100B, 100C、及び端末200(以下、UE200, User Equipment)を含む。
 無線通信ノード100A, 100B, 100Cは、それぞれセルC1, セルC2, セルC3を形成できる。無線通信ノード100A, 100B, 100Cは、当該セルを介して、UE200との無線アクセス(Access link)、及び当該無線通信ノード間における無線バックホール(Backhaul link)を設定できる。具体的には、無線通信ノード100Aと無線通信ノード100B、及び無線通信ノード100Bと無線通信ノード100Cとの間には、無線リンクによるバックホール(伝送路)が設定されてよい。
 このように、UE200との無線アクセスと、当該無線通信ノード間における無線バックホールとが統合された構成は、Integrated Access and Backhaul(IAB)と呼ばれている。
 IABは、無線アクセスのために定義された既存の機能及びインターフェースを再利用する。特に、Mobile-Termination (MT), gNB-DU (Distributed Unit), gNB-CU (Central Unit), User Plane Function (UPF), Access and Mobility Management Function (AMF) and Session Management Function (SMF)、ならびに対応するインターフェース、例えば、NR Uu(MT~gNB/DU間)、F1, NG, X2及びN4がベースラインとして使用されてよい。
 無線通信ノード100Aは、ファイバートランスポートなどの有線伝送路を介して、NRの無線アクセスネットワーク(NG-RAN)及びコアネットワーク(Next Generation Core (NGC)または5GC)と接続される。なお、NG-RAN及びNGCを含めて、単に「ネットワーク」と表現されてもよい。
 図2は、無線通信システム10において用いられる周波数レンジを示す。図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。
  ・FR1:410 MHz~7.125 GHz
  ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。
 さらに、無線通信システム10は、FR2の周波数帯域よりも高周波数帯域にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、71GHzまでの周波数帯域に対応する。このような高周波数帯域は、便宜上「FR2x」と呼ばれてもよい。
 このような問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。
 また、FR2xのような高周波数帯域では、上述したように、キャリア間の位相雑音の増大が問題となる。このため、より大きな(広い)SCS、またはシングルキャリア波形の適用が必要となり得る。
 SCSが大きい程、シンボル/CP(Cyclic Prefix)期間及びスロット期間が短くなる(14シンボル/スロットの構成が維持される場合)。図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。また、表1は、SCSとシンボル期間との関係を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、14シンボル/スロットの構成が維持される場合、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。なお、シンボル期間は、シンボル長、時間方向或いは時間領域などと呼ばれてもよい。
 図4は、IABの基本的な構成例を示す図である。図4に示すように、本実施形態では、無線通信ノード100Aは、IABにおけるIABドナーを構成し、無線通信ノード100B(及び無線通信ノード100C)は、IABにおけるIABノードを構成してよい。
 なお、IABドナーは、IABノードとの関係において、上位ノードと呼ばれてもよい。さらに、IABドナーは、親ノード(Parent node)と呼ばれてもよい。また、IABドナーはCUを有し、親ノードは、単にIABノード(または子ノード)との関係における名称として用いられ、CUを有していなくてもよい。IABノードは、IABドナー(親ノード)との関係において、下位ノードとよばれてもよい。
 IABドナーとIABノードとの間には、無線リンク(Backhaul link)が設定される。具体的には、Link_parentと呼ばれる無線リンクが設定されてよい。IABノードと子ノードとの間には、無線リンク(Backhaul link)が設定される。具体的には、Link_childと呼ばれる無線リンクが設定されてよい。
 Link_parentは、下り方向のDL Parent BHと、上り方向のUL Parent BHとによって構成されてよい。Link_childは、下り方向のDL Child BHと、上り方向のUL Child BHとによって構成されてよい。
 IABノードは、IABドナーと接続するための機能であるMobile Termination(MT)と、子ノード(またはUE200)と接続するための機能であるDistributed Unit(DU)とを有する。子ノードもMTとDUとを有する。IABドナーは、Central Unit(CU)とDUとを有する。
 DUが利用する無線リソースには、DUの観点では、下りリンク(DL)、上りリンク(UL)及びFlexible time-resource(D/U/F)は、Hard、SoftまたはNot Available(H/S/NA)の何れかのタイプに分類される。また、Soft(S)内でも、使用可(available)または使用不可(not available)が規定されている。
 Flexible time-resource(F)は、DLまたはULの何れにも利用可能な無線リソース(時間リソース及び/または周波数リソース)である。また、「Hard」とは、対応する時間リソースが子ノードまたはUEと接続されるDU child link用として常に利用可能な無線リソースであり、「Soft」とは、対応する時間リソースのDU child link用としての利用可否がIABドナー(または親ノード)によって明示的または暗黙的に制御される無線リソース(DUリソース)である。
 さらに、Soft(S)である場合、IAまたはINAかに基づいて、通知の対象とする無線リソースを決定できる。
 「IA」は、DUリソースが使用可能として明示的または暗黙的に示されていることを意味する。また、「INA」は、DUリソースが使用不可として明示的または暗黙的に示されていることを意味する。
 本実施形態では、無線アクセス及び無線バックホールは、半二重通信(Half-duplex)でも全二重通信(Full-duplex)でも構わない。また、多重化方式は、時分割多重(TDM)、空間分割多重(SDM)及び周波数分割多重(FDM)が利用可能である。
 IABノードは、半二重通信(Half-duplex)で動作する場合、DL Parent BHが受信(RX)側、UL Parent BHが送信(TX)側となり、DL Child BHが送信(TX)側、UL Child BHが受信(RX)側となる。また、Time Division Duplex(TDD)の場合、IABノードにおけるDL/ULの設定パターンは、DL-F-ULのみに限られず、無線バックホール(BH)のみ、UL-F-DLなどの設定パターンが適用されてもよい。本実施形態では、SDM/FDMを用い、IABノードのDUとMTとの同時動作が実現される。
 また、本実施形態では、無線通信システム10では、無線通信システム10用(移動体通信用)に割り当てられる周波数帯に加え、当該周波数帯と異なるアンライセンス周波数帯も用いられる。具体的には、無線通信システム10では、アンライセンス(無免許)周波数帯のスペクトルを用いて利用可能な周波数帯を拡張するNew Radio-Unlicensed(NR-U)が実行可能である。NR-Uは、Licensed- Assisted Access(LAA)の一種であると解釈されてよい。
 無線通信システム10用に割り当てられる周波数帯とは、上述したFR1及びFR2などの周波数レンジ内に含まれ、行政による免許割り当てに基づく周波数帯である。
 アンライセンス周波数帯とは、行政による免許割り当てが不要であり、特定の通信事業者に限定されずに使用可能な周波数帯である。例えば、無線LAN(WLAN)用の周波数帯(2.4GHz, 5GHz帯または60GHz帯など)が挙げられる。
 アンライセンス周波数帯では、特定の通信事業者に限らず無線局を設置することが可能であるが、近傍の無線局からの信号が互いに干渉して通信性能を大きく劣化させることは望ましくない。
 そのため、例えば、アンライセンス周波数帯(例えば、5GHz帯)を用いる無線システムへの要求条件として、送信を開始する前にgNB、本実施形態では、無線通信ノード100A, 100B, 100Cがキャリアセンス(センシング)を実行し、チャネルが近傍の他システムによって使用されていないことを確認できた場合にのみ、所定の時間長以内の送信を可能とするListen-Before-Talk(LBT)のメカニズムが適用される。なお、キャリアセンスとは、電波を発射する前に、その周波数キャリアが他の通信に使用されていないかを確認する技術である。
 また、52.6GHz~71GHzの周波数帯におけるアンライセンス周波数帯に適用される規制(LBTの実行など)を遵守したチャネルアクセス手順(channel access procedure)が規定されてもよい。
 なお、LBTは、所定の時間長以内の送信を可能とするClear Channel Assessment (CCA)の手順に含まれると解釈されてもよい。さらに、複数のビームを用いる指向性(Directional)LBT/CCA(Beam-based LBT/CCAと呼ばれてもよい)が適用されてもよい。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、IABノードを構成する無線通信ノード100A, 100B, 100Cの機能ブロック構成について説明する。
 図5は、無線通信ノード100B(IABノード)の機能ブロック構成図である。なお、無線通信ノード100Aは、IABドナー(親ノード)として機能する点において、IABノードとして機能する無線通信ノード100Bと異なる。また、無線通信ノード100Cは、子ノードとして機能する点において、無線通信ノード100Bと異なる。以下、無線通信ノード100Bの場合を例として説明する。
 図5に示すように、無線通信ノード100Bは、無線信号送受信部110、アンプ部120、変復調部130、制御信号処理部140、符号化/復号部150及び制御部170を備える。
 なお、図5では、実施形態の説明に関連する主な機能ブロックのみが示されており、無線通信ノード100Bは、他の機能ブロック(例えば、電源部など)を有することに留意されたい。また、図5は、無線通信ノード100Bの機能的なブロック構成について示しており、ハードウェア構成については、図11を参照されたい。
 無線信号送受信部110は、NRに従った無線信号を送受信する。無線信号送受信部110は、複数のアンテナ素子から送信される無線(RF)信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。
 本実施形態では、無線信号送受信部110は、セルC1(第1セル)を介して無線通信ノード100A(上位ノード)と無線信号を送受信できる。また、無線信号送受信部110は、セルC2(第2セル)を介して無線通信ノード100CまたはUE200(下位ノード)と無線信号を送受信できる。本実施形態において、無線信号送受信部110は、送受信部を構成する。
 アンプ部120は、PA(Power Amplifier)/LNA(Low Noise Amplifier)などによって構成される。アンプ部120は、変復調部130から出力された信号を所定の電力レベルに増幅する。また、アンプ部120は、無線信号送受信部110から出力されたRF信号を増幅する。
 変復調部130は、特定の通信先(無線通信ノード100A, 100BまたはUE200)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。
 制御信号処理部140は、無線通信ノード100Bが送受信する各種の制御信号に関する処理を実行する。具体的には、制御信号処理部140は、無線通信ノード100A(または無線通信ノード100C、以下同)及びUE200から制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号処理部140は、無線通信ノード100AまたはUE200に向けて、制御チャネルを介して各種の制御信号を送信する。
 さらに、制御信号処理部140は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行できる。
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)などが含まれてもよい。
 チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、PRACH(Physical Random Access Channel)、及びPBCH(Physical Broadcast Channel)などが含まれる。
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。信号には、チャネル及び参照信号が含まれてよい。
 さらに、NR-Uに関しては、チャネルとは、共有スペクトルにおいてチャネルアクセス手順が実行される、連続したリソースブロック(RB)のセットで構成されるキャリアまたはキャリアの一部を意味してもよい。
 チャネルアクセス手順(3GPP TS37.213参照)は、伝送を行うためのチャネルの利用可能性(availability)を評価するセンシングに基づく手順と解釈されてよい。また、センシングのための基本ユニットは、所定時間を有するセンシングスロットとして規定されてよい。
 センシングスロット期間では、無線通信ノード100B(または他の無線通信ノード、以下同)、またはUE200がチャネルを検知し、検知された電力が少なくともエネルギー検出閾値(energy detection (ED) threshold)未満であればアイドルと見なされ、そうでなければ、当該センシングスロット期間は、ビジー状態であると見なされてよい。
 また、「チャネル占有」(Channel Occupancy)とは、対応するチャネルアクセス手順を実行した後におけるgNB(eNBでもよい)/UE(IABのMT/DUによる場合を含む)によるチャネル上の伝送を意味してよい。
 「チャネル占有時間(COT:Channel Occupancy Time)」とは、gNB/UEが、対応するチャネルアクセス手順を実行した後、チャネル占有を共有するgNB/UEと、任意のgNB/UEとがチャネル上において伝送を実行する総時間を意味してよい。チャネル占有時間は、gNBと対応するUEとの間における送信のために共有されてよい。
 DL送信バーストとは、gNBからの送信の集合として定義されてよい。所定の送信ギャップよりも大きいギャップを有するDL送信バーストは、別個のDL送信バーストと見なされてよい。
 上りリンク(UL)送信バーストとは、UEからの送信の集合として定義されてよい。所定の送信ギャップよりも大きいギャップを有するUL送信バーストは、別個のUL送信バーストと見なされてよい。
 発見(discovery)バーストとは、所定のウィンドウ内に閉じ込められ、duty cycleと関連付けられた信号またはチャネルのセットを含むDL送信バーストとてして定義されてよい。
発見バーストとしては、gNBによって開始される次の何れかの送信が指定されてよい。
  ・プライマリ同期信号(PSS)
  ・セカンダリ同期信号(SSS)
  ・下り物理報知チャネル(PBCH)
  ・PDSCHをスケジューリングするPDCCH用のCORESET(control resource sets:制御リソースセット)
  ・SIB1及び/またはnon-zero power CSI-RSを搬送するPDSCH
 符号化/復号部150は、所定の通信先(無線通信ノード100AまたはUE200)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。
 具体的には、符号化/復号部150は、データ送受信部160から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部150は、変復調部130から出力されたデータを復号し、復号したデータを連結する。
 データ送受信部160は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部160は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。
 制御部170は、無線通信ノード100Bを構成する各機能ブロックを制御する。特に、本実施形態では、制御部170は、IAB及びNR-Uをサポートするための制御を実行する。また、制御部170は、アンライセンス周波数帯における960kHzなどの広いSCSに対応した制御を実行できる。
 具体的には、制御部170は、アンライセンス周波数帯におけるチャネルのセンシングを実行できる。ここで、センシングとは、実質的にLBTと解釈されてもよい。また、センシングとは、チャネルアクセス手順(3GPP TS37.213参照)に従ったLBTを含む一連の動作と解釈されてもよく、センシングは、センシングのための基本ユニットであるセンシングスロットの時間に亘って実行されると解釈されてもよい。
 より具体的には、制御部170は、単一または複数のLBTエンティティを用いてLBTを実行してもよい。LBTエンティティは、論理的なエンティティであってもよく、独立した2以上のLBTエンティティが構成されてもよい。この場合、1つのLBTエンティティは、MT用(セルC1向けと解釈されてもよい)として用いられ、他のLBTエンティティは、DU用(セルC2向けと解釈されてもよい)として用いられてもよい。
 また、LBTエンティティは、センシングエンティテイ、LBTユニット或いはセンシングユニットなどと呼ばれてもよい。
 このように、制御部170は、セルC1(第1セル)を介して設定されるBackhaul link(第1無線リンク)、及びセルC2(第2セル)を介して設定されるAccess link(第2無線リンク)用として、それぞれ独立したセンシングを実行してよい。なお、子ノード向けの場合、Access linkではなく、子ノードとのBackhaul linkとしてよい。
 独立したセンシングとは、Backhaul link用のセンシング(つまり、セルC1におけるセンシング)と、Access link用のセンシング(つまり、セルC2におけるセンシング)とが実行されるタイミング、期間、チャネルアクセス手順のType(詳細については後述する)などが異なってよいことを意味してよい。
 或いは、制御部170は、空間分割多重(SDM)及び周波数分割多重(FDM)の少なくとも何れかがBackhaul linkとAccess linkとの間において適用される場合、Backhaul link及びAccess link用として共有されたセンシングを実行してもよい。
 共有されたセンシングとは、Backhaul link用のセンシング(つまり、セルC1におけるセンシング)と、Access link用のセンシング(つまり、セルC2におけるセンシング)とが実行されるタイミング、期間、チャネルアクセス手順のType(詳細については後述する)などの少なくとも何れか、或いは全てが同一であることを意味してよい。
 この場合、単一のLBTエンティティを用いて共有されたセンシングが実行されてもよい。或いは、共有されたセンシングが実行される場合でも、LBTエンティティは必ずしも共有されなくてもよく、DU用とMT用とにおいて、LBTエンティティが分離(separate)、つまり、異なる別個のLBTエンティティが用いられてもよい。
 一方、DU用とMT用とにおいて、LBTエンティティが共有される場合、少なくともチャネルアクセス手順(LBT)のType、優先度クラス及び/またはエネルギー検出(ED)閾値の何れかが同一であってもよい。なお、ED閾値などについては、さらに後述する。
 また、チャネル占有時間(COT)は、IABドナー(親ノード)と子ノード/UEだけでなく、DUとMTとの間においても共有されてもよい。
 なお、制御部170は、Backhaul link及びAccess link用として、それぞれ独立したセンシングを実行する場合でも、COTについては共有してもよい。COTの共有とは、Backhaul link及びAccess link用として、同一のCOTが単一の共有LBTまたは独立したLBTエンティティのいずれか一方が行ったLBTに基づいて適用されることを意味してもよいし、特定のLBTが行われた場合など、一部のセンシングに限定して同一のCOTがBackhaul link及びAccess link用として適用されることを意味してもよい。
 制御部170は、複数のアンテナパネルを用い、SDM及びFDMの少なくとも何れかがBackhaul linkまたはAccess linkにおいて適用される場合、Backhaul link及びAccess link用として、それぞれ独立したセンシングを実行してもよい。
 複数のアンテナパネルとは、指向性ビームの生成など、別個の制御が可能な別個のアンテナパネルが2つ以上無線通信ノード100Bに備えられていることを意味してよい。
 例えば、制御部170は、複数のアンテナパネルを用いて、Backhaul link及びAccess linkにSDMが適用される場合、Backhaul link及びAccess link用として、当該複数のアンテナパネルを用いてそれぞれ独立したセンシングを実行してもよい。
 また、制御部170は、無線信号送受信部110を介して、センシングに関する無線通信ノード100Bの能力をネットワークに送信してもよい。
 具体的には、制御部170は、LBTエンティティに関する情報(単一または複数)、アンテナパネルの構成(単一または複数)、チャネルアクセス手順の(Type)サポートの有無などをネットワークに送信してよい。
 当該能力は、下位レイヤの制御情報(Uplink Control Information(UCI)など)として送信されてもよいし、RRCレイヤなどの上位レイヤのシグナリングによって送信されてもよい。
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、アンライセンス周波数帯におけるチャネルのセンシング(LBT)に関する無線通信ノードの動作について説明する。
 (3.1)前提
 上述したように、960kHzなどの広いSCSは、52.6~71GHzの周波数帯域においてNR-Uが適用される場合において、IEEE802.11ad/ayと同等のチャネル帯域幅(約2GHz)とすることによる効率的な共存、及びPTRSのオーバヘッド低減などの利点がある。
 一方、52.6~71GHzの周波数帯域用としてサポートされるSCSの数は、実装などを考慮し、最小限に抑えることが望ましい。
 例えば、52.6~71GHzの周波数帯域においてNR-Uが適用される場合、1つの2GHz帯域幅をサポートするためのnumerology(例えば、960kHzのSCS)及びFR2の単純な拡張に基づく別のnumerology(例えば、120kHzのSCS)で十分であり、他のnumerologyはサポートされなくてもよいとも考えられる。
 FR2の単純な拡張(例えば、120kHzのSCS)を52.6~71GHzの周波数帯域に適用する場合、3GPP Release-15/16の仕様は、殆ど再利用できると考えられる。しかしながら、960kHzのSCSが適用される場合、3GPP Release-15/16とは異なる特別な取り扱いが必要となることは明らかである。
 WLAN(Wi-Fi(登録商標)向けの60GHz帯におけるIAB動作に適用されるnumerologyに関係なく、52.6~71GHzの周波数帯域内におけるアンライセンス周波数帯のスペクトルを用いたIAB動作をサポートするためには、幾つかの仕様の変更及び/または追加が必要となり得る。
 本実施形態では、特に、IABのDUとMTとにおいて、別個のLBTエンティティを適用するか、或いは単一のLBTエンティティを適用するかについて、幾つかの動作例が示される。
 図6は、チャネルアクセス手順 Type 1に従ったLBTの実行例を示す。図6に示す例では、可変サイズの競合ウィンドウ(contention window)、及びランダムなバックオフが適用される。図6に示すように、LBTによって、Wi-Fiノードなどの周辺ノードとの関係でビジー状態(LBT busy)なのか、或いはアイドル状態(LBT idle)なのかが判定される。
 図7は、チャネルアクセス手順 Type 2A/2Bに従ったLBTの実行例を示す。また、図8は、チャネルアクセス手順 Type 2Cに従ったLBTの実行例を示す。なお、チャネルアクセス手順(channel access procedure)のTypeは、3GPP TS37.213 4.1章において規定されている。
 図7に示すように、Type 2Aでは、送信の前に25μ秒のギャップ(EDも実行)が設けられ、Type 2Bでは、送信の前に16μ秒のギャップ(EDも実行)が設けられる。Type 2A/2Bでは、ランダムなバックオフは適用されなくてよい。
 図8に示すように、Type 2Cでは、送信の前に16μ秒よりも短いギャップが設けられる。Type 2Cでは、当該ギャップではEDは実行されず、LBT無しでギャップ後即座に送信が実行されてよい。
 (3.2)動作例
 次に、アンライセンス周波数帯におけるIABに関する動作例について説明する。具体的には、IABドナー及びIABノードなどの無線通信ノードにおけるLBTエンティティに関する動作例について説明する。
 IABにおけるLBTに関する動作は、次のように定義されてよい。
  ・(Alt.1):IABノードのMT(以下、IAB-MT)とIABノードのDU(以下、IAB-DU)は、それぞれBackhaul link及びAccess link(または子ノードとのBackhaul link)用として、独立したLBTエンティティを設定してもよい。
 このような独立したLBTエンティティは、他の如何なる条件に関わらず、設定されても構わない。IAB-MT用のLBTエンティティと、IAB-DU用のLBTエンティティとは、それぞれ別個に異なったIABに関する動作、特に、LBTに関する動作(チャネルアクセス手順のTypeなど)を実行してよい。つまり、IAB-MTとIAB-DUとは、それぞれ独立したアンライセンス周波数帯におけるチャネルのセンシングを実行してよい。
  ・(Alt.2):IAB-MTとIAB-DUとは、当該IAB-MT~IAB-DU間でのSDM及び/またはFDMによる送信(つまり、IAB-MT及びIAB-DUの同時送信)をサポートするため、単一のLBTエンティティを共有してもよい。
 IAB-MTとIAB-DUとが単一のLBTエンティティを共有しない場合には、IAB-MTとIAB-DUとは、分離(separate)されたLBTエンティティを有するようにしてもよい。また、このような単一のLBTエンティティを共有するか否かは、送信の態様及び/またはIABドナー(親ノード)からの設定あるいは指示が変化する毎に決定されてもよい。
 (Alt.2)では、IAB-MTとIAB-DUとは、単一のLBTエンティティを用いて共有されたセンシングを実行してもよい。上述したように、共有されたセンシングとは、IAB-MTと、IAB-DUとによるセンシングが実行されるタイミング、期間、チャネルアクセス手順のTypeなどの少なくとも何れかが同一であることを意味してよい。
  ・(Alt.2'):IAB-MT~IAB-DUとの間においてFDMが適用される場合、IAB-MT及びIAB-DUそれぞれの送信は、異なったLBT帯域幅(リソースブロックのセット)において実行されてよい。例えば、IAB-MT及びIAB-DUは、規定されているLBT帯域幅(例えば、400MHz)が複数含まれる帯域のうち、それぞれが異なる周波数帯域幅を用いて送信してもよい。
  ・(Alt.3):IABノードが複数のアンテナパネルを用いたSDM及び/またはFDMに対応している場合、IAB-MT及びIAB-DUは、それぞれ独立したLBTエンティティを設定してもよい。
 IABノードが複数のアンテナパネルを用いない、すなわち、単一のアンテナパネルを用いてSDM及び/またはFDMに対応できる場合、IAB-MT及びIAB-DUは、単一のLBTエンティティを用いて共有されたセンシングを実行してもよい。また、このような単一のLBTエンティティを共有するか否かは、IAB-MT及び/またはIAB-DUの対応可否(能力)及び/またはIABドナー(親ノード)からの設定あるいは指示が変化する毎に決定されてもよい。
  ・(Alt.4):IABノードは、(Alt.1)~(Alt.3)に示した動作に対応しているか否かを示す能力(capability)をネットワークに報告してよい。ネットワーク(例えば、gNBまたはIABドナー)は、当該報告に基づいて、IAB-MT及び/またはIAB-DUのLBTエンティティ構成を決定してよい。
 図9は、IABにおけるLBTエンティティの共有例を示す。具体的には、図9は、IABドナー(親ノード)~IABノード(IAB-MT, IAB-DU)~子ノード/UE間におけるLBTエンティティの共有例を示す。図中の矢印は、データの送信方向(下り方向または上り方向)を示す。
 図9に示すように、IAB-MTとIAB-DUとは、LBTエンティティを共有し、同一のLBT(例えば、Type 2)及び当該LBTに続く送信期間を共有して送信を実行してもよい。なお、単一LBTエンティティの共有は、IABドナー(親ノード)~IABノード(IAB-MT, IAB-DU)~子ノード/UE間に留めてもよいし、IABドナー~子ノード/UE間に介在するさらに多くのIABノードを含めてもよい。
 IAB-MT~IAB-DUとの間において、単一のLBTエンティティを共有するとは、以下の少なくとも何れかを意味すると解釈されてよい。
  ・同一(単一)のLBT Type、優先度クラス(priority class)及びED閾値の少なくとも何れかが用いられる。
 ED閾値は、max(DU送信(Tx)出, MTTx出力)及びmax(DU帯域幅、MT帯域幅)の何れかまたは両方に基づいて決定されてよい。
  ・Contention Window Size(CWS)も共有され、Backhaul link及びAccess linkの何れかかまたは両方の状況(例えば、Hybrid Automatic repeat request (HARQ)-ACK (Acknowledgement)、LBTの結果)に基づいて調整されてよい。
  ・COTは、IABドナー(親ノード)と子ノード/UEとの間のみではなく、IAB-MTとIAB-DUとの間においても共有されてよい。
 また、IAB-MTとIAB-DUとのCOTは、IAB-MT及びIAB-DUそれぞれが独立したLBTエンティティを有する場合であっても共有されてもよい。但し、1ホップを超える無線通信ノード間でのCOTの共有は許容されないようにしてもよい。
 図10は、LBTエンティティの設定に関する通信シーケンス例を示す。図10に示すように、IABノード(無線通信ノード100B)は、LBTエンティティに関する能力(capability)をネットワーク、ここでは、IABドナー(親ノード)を構成する無線通信ノード100Aに報告する(S10)。具体的には、IABノードは、上述したように下位レイヤの制御情報または上位レイヤのシグナリングによって当該能力を報告してよい。なお、IABノードは、IABドナー(親ノード)ではなく、gNBなどに当該能力を報告してもよい。
 IABドナー(親ノード)は、報告された当該能力に基づいて、IABノードにおけるLBTエンティティの構成を決定する(S20)。具体的には、IABドナーは、IAB-MT及びIAB-DUにおいて共有される単一のLBTエンティティを設定するか、或いはIAB-MT及びIAB-DUそれぞれに独立のLBTエンティティを設定するかを決定してよい。
 IABドナーは、決定したLBTエンティティの構成を示す情報(LBT configuration)をIABノードに通知する(S30)。当該情報も、下位レイヤの制御情報または上位レイヤのシグナリングによって通知されてよい。
 IABノードは、通知されたLBTエンティティの構成を示す情報に基づいて、IAB-MT及びIAB-DUに適用されるLBTエンティティを設定する(S40)。具体的には、IABノードは、IAB-MT及びIAB-DUにおいて共有される単一のLBTエンティティ、或いはIAB-MT及びIAB-DUそれぞれに独立のLBTエンティティを設定できる。
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、無線通信ノード100B(IABノード)は、IAB-MT及びIAB-DU用としてそれぞれ独立のLBTエンティティを用いて、セルC1(第1セル)を介して設定されるBackhaul link(第1無線リンク)、及びセルC2(第2セル)を介して設定されるAccess link(第2無線リンク)用として、それぞれ独立したセンシングを実行できる。
 このため、FR2xなどの高周波数帯域において960kHzなどの広いSCSを用いつつ、アンライセンス周波数帯におけるIAB(IABとNR-Uとの同時適用)を実現し得る。より具体的には、無線通信システム10によれば、52.6~71GHzなどの高周波数帯域において960kHzなどの広いSCSがサポートされる場合でも、より適切なLBTを設定し得る。
 本実施形態では、無線通信ノード100Bは、IAB-MT及びIAB-DU用として単一のLBTエンティティを共有し、空間分割多重(SDM)及び周波数分割多重(FDM)の少なくとも何れかがBackhaul linkとAccess linkとの間において適用される場合、Backhaul link及びAccess link用として共有されたセンシングを実行できる。このため、多重化方式(SDM, FDM, TDM)に応じた効率的なLBTを実行できる。
 本実施形態では、無線通信ノード100Bは、複数のアンテナパネルを用い、SDM及びFDMの少なくとも何れかがBackhaul linkまたはAccess linkにおいて適用される場合、Backhaul link及びAccess link用として、それぞれ独立したセンシングを実行してもよい。このため、多重化方式及びアンテナパネルの構成に応じて最適なLBTを実行できる。
 本実施形態では、無線通信ノード100Bは、センシングに関する無線通信ノード100Bの能力をネットワークに送信できる。このため、ネットワークは、無線通信ノード100Bのセンシング(LBT)に関する能力に応じた適切なLBTエンティティを設定できる。
 本実施形態では、無線通信ノード100Bは、Backhaul link及びAccess link用として、それぞれ独立したセンシングを実行する場合でも、COTについては共有してもよい。このため、独立したLBTエンティティを用いつつCOTについては共有することによって、IABでの効率的なLBTを実現し得る。
 (5)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、上述した実施形態では、FR2xにおいて960kHzのSCSが適用される例について説明したが、FR1またはFR2に適用されるSCSと同じSCSあるいはそれよりも広いSCS、例えば、480kHzのSCSがFR2xにおいて適用されてもよい。
 上述した実施形態では、親ノード、IABノード及び子ノードの名称が用いられていたが、gNBなどの無線通信ノード間の無線バックホールと、端末との無線アクセスとが統合された無線通信ノードの構成が採用される限りにおいて、当該名称は、異なっていてもよい。例えば、単純に第1、第2ノードなどと呼ばれてもよいし、上位ノード、下位ノード或いは中継ノード、中間ノードなどと呼ばれてもよい。
 さらに、無線通信ノードは、単に通信装置または通信ノードと呼ばれてもよいし、無線基地局と読み替えられてもよい。
 また、アンライセンス周波数帯は、異なる名称で呼ばれてもよい。例えば、免許免除(License-exempt)或いはLicensed-Assisted Access(LAA)などの用語が用いられてもよい。
 上述した実施形態の説明に用いたブロック構成図(図5)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述した無線通信ノード100A~100C(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、当該装置のハードウェア構成の一例を示す図である。図11に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロック(図5参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 10 無線通信システム
 100A, 100B, 100C 無線通信ノード
 110 無線信号送受信部
 120 アンプ部
 130 変復調部
 140 制御信号処理部
 150 符号化/復号部
 160 データ送受信部
 170 制御部
 200 UE
 C1, C2, C3 セル
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス

Claims (5)

  1.  第1セルを介して上位ノードと無線信号を送受信し、第2セルを介して下位ノードと無線信号を送受信する送受信部と、
     アンライセンス周波数帯におけるチャネルのセンシングを実行する制御部と
    を備え、
     前記制御部は、前記第1セルを介して設定される第1無線リンク、及び前記第2セルを介して設定される第2無線リンク用として、それぞれ独立した前記センシングを実行する無線通信ノード。
  2.  前記制御部は、空間分割多重及び周波数分割多重の少なくとも何れかが前記第1無線リンクまたは第2無線リンクにおいて適用される場合、前記第1無線リンク及び前記第2無線リンク用として共有された前記センシングを実行する請求項1に記載の無線通信ノード。
  3.  前記制御部は、複数のアンテナパネルを用い、空間分割多重及び周波数分割多重の少なくとも何れかが前記第1無線リンクと第2無線リンクとの間において適用される場合、前記第1無線リンク及び前記第2無線リンク用として、それぞれ独立した前記センシングを実行する請求項1に記載の無線通信ノード。
  4.  前記制御部は、前記送受信部を介して、前記センシングに関する前記無線通信ノードの能力をネットワークに送信する請求項1乃至3の何れか一項に記載の無線通信ノード。
  5.  前記制御部は、前記第1無線リンク及び前記第2無線リンク用として、それぞれ独立した前記センシングを実行する場合でも、チャネル占有時間を共有する請求項1に記載の無線通信ノード。
PCT/JP2020/030240 2020-08-06 2020-08-06 無線通信ノード WO2022029966A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/030240 WO2022029966A1 (ja) 2020-08-06 2020-08-06 無線通信ノード
JP2022541051A JPWO2022029966A1 (ja) 2020-08-06 2020-08-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/030240 WO2022029966A1 (ja) 2020-08-06 2020-08-06 無線通信ノード

Publications (1)

Publication Number Publication Date
WO2022029966A1 true WO2022029966A1 (ja) 2022-02-10

Family

ID=80117774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030240 WO2022029966A1 (ja) 2020-08-06 2020-08-06 無線通信ノード

Country Status (2)

Country Link
JP (1) JPWO2022029966A1 (ja)
WO (1) WO2022029966A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020114588A1 (en) * 2018-12-05 2020-06-11 Nokia Technologies Oy Extending coverage of a communication system
WO2020121502A1 (ja) * 2018-12-13 2020-06-18 株式会社Nttドコモ 基地局、無線装置、及び、通信制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020114588A1 (en) * 2018-12-05 2020-06-11 Nokia Technologies Oy Extending coverage of a communication system
WO2020121502A1 (ja) * 2018-12-13 2020-06-18 株式会社Nttドコモ 基地局、無線装置、及び、通信制御方法

Also Published As

Publication number Publication date
JPWO2022029966A1 (ja) 2022-02-10

Similar Documents

Publication Publication Date Title
WO2022029965A1 (ja) 無線通信ノード
WO2021009821A1 (ja) 端末
WO2022003785A1 (ja) 無線基地局及び端末
WO2022079876A1 (ja) 端末
WO2021171594A1 (ja) 端末
WO2021199200A1 (ja) 端末
WO2021019695A1 (ja) 端末
WO2022029966A1 (ja) 無線通信ノード
WO2021019698A1 (ja) 端末
WO2022029968A1 (ja) 無線通信ノード
WO2022003788A1 (ja) 端末
WO2022029982A1 (ja) 端末
WO2022079861A1 (ja) 端末
WO2022079879A1 (ja) 無線基地局及び端末
WO2022029981A1 (ja) 端末
WO2022029980A1 (ja) 端末
WO2022079878A1 (ja) 無線基地局及び端末
WO2022079877A1 (ja) 無線基地局及び端末
WO2022003789A1 (ja) 通信装置
WO2022074842A1 (ja) 端末
WO2021191983A1 (ja) 端末
WO2021192063A1 (ja) 端末
WO2021199388A1 (ja) 端末
WO2021229778A1 (ja) 端末
WO2022149287A1 (ja) 端末及び無線基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541051

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948738

Country of ref document: EP

Kind code of ref document: A1