WO2020121502A1 - 基地局、無線装置、及び、通信制御方法 - Google Patents

基地局、無線装置、及び、通信制御方法 Download PDF

Info

Publication number
WO2020121502A1
WO2020121502A1 PCT/JP2018/045984 JP2018045984W WO2020121502A1 WO 2020121502 A1 WO2020121502 A1 WO 2020121502A1 JP 2018045984 W JP2018045984 W JP 2018045984W WO 2020121502 A1 WO2020121502 A1 WO 2020121502A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
resource
operator
terminal
information
Prior art date
Application number
PCT/JP2018/045984
Other languages
English (en)
French (fr)
Inventor
浩樹 原田
大輔 村山
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US17/312,683 priority Critical patent/US20220070679A1/en
Priority to PCT/JP2018/045984 priority patent/WO2020121502A1/ja
Priority to JP2020559659A priority patent/JP7217292B2/ja
Priority to CN201880100166.7A priority patent/CN113170311B/zh
Priority to EP18943025.9A priority patent/EP3897022A4/en
Publication of WO2020121502A1 publication Critical patent/WO2020121502A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a base station, a wireless device, and a communication control method.
  • LTE Long Term Evolution
  • FAA Future Radio Access
  • 5G 5th generation mobile communication system
  • 5G+ 5G plus
  • New-RAT or NR new radio access technology
  • One of the purposes of the present disclosure is to improve the efficiency of frequency sharing technology.
  • a base station a control unit that controls a setting related to use of a radio resource allocated to a first wireless device by a second wireless device, and information related to the setting to the second wireless device. And a transmitting unit for transmitting.
  • FIG. 3 is a diagram showing a configuration example of a wireless communication system according to the first embodiment.
  • FIG. 3 is a block diagram showing a configuration example of a base station according to the first embodiment.
  • FIG. 3 is a block diagram showing a configuration example of a terminal according to the first embodiment.
  • FIG. 5 is a diagram showing an example of frequency sharing among a plurality of operators in the shared frequency according to the first embodiment.
  • FIG. 6 is a diagram showing a configuration example of a wireless communication system according to a second embodiment.
  • FIG. 9 is a diagram showing a configuration example of a wireless communication system according to a third embodiment. It is a figure which shows an example of the hardware constitutions of a base station, a terminal, and an IAB node.
  • unlicensed frequency also referred to as unlicensed spectrum or unlicensed band
  • Communication eg, sometimes referred to as NR-U (NR unlicensed)
  • the unlicensed frequency defines, for example, a coexistence method between different RATs or between different operators.
  • NR-U and Wi-Fi registered trademark
  • NR-U and LTE License-Assisted Access LTE-LAA
  • LTE-LAA LTE License-Assisted Access
  • For the unlicensed frequency for example, 2.4 GHz, 5 to 7 GHz or 57 to 71 GHz may be used.
  • the "operator” means, for example, a telecommunications carrier that uses RAT. Different RATs may be used by different operators or by the same operator. In the following description, the “operator” means not only the “communication carrier” but also a RAT used by the communication carrier or a communication facility (for example, a base station) used in the RAT.
  • FIG. 1 shows an example of sharing a frequency among a plurality of operators (for example, operators A, B and C) using a shared frequency.
  • the operators A, B, and C do not use the frequencies individually assigned to each operator as shown on the left side of FIG. 1, but common among the operators as shown on the right side of FIG. Use the frequency of.
  • each operator may be able to use a wide band frequency as compared with the case where the frequency is individually assigned.
  • the shared frequency for example, 2.3 GHz or 3.5 GHz may be used.
  • the method by which operators coexist may differ between the unlicensed frequency and the shared frequency.
  • LAA Licensed Assisted Access
  • time synchronization between operators (hereinafter sometimes simply referred to as “synchronization”) can be introduced.
  • time synchronization it is possible to improve the utilization efficiency of the shared frequency compared to the unlicensed frequency.
  • time synchronization may be introduced between multiple operators (eg, operators A and B), for example, as shown in FIG. In other words, multiple operators may cooperate to share the shared frequency.
  • each resource (for example, slot) in the shared frequency can preferentially use the resource (hereinafter, referred to as “priority operator”).
  • priority operator When time synchronization between operators is introduced in the shared frequency, each resource (for example, slot) in the shared frequency can preferentially use the resource (hereinafter, referred to as “priority operator”).
  • resources within the shared frequency may be semi-statically assigned to each operator.
  • the priority operator can preferentially use the allocated resources.
  • such resources are referred to as “priority resources” for convenience.
  • the resource when an unused priority resource by the priority operator exists, the resource may be used by another operator different from the priority operator (hereinafter, referred to as “non-priority operator”).
  • the operator A may use the unused resources of the priority resources assigned to the operator B, in addition to the priority resources assigned to the operator A.
  • the operator B may use the unused resources of the priority resources assigned to the operator A in addition to the priority resources assigned to the operator B.
  • Such use of unused resources by the non-priority operator may be referred to as “opportunistic use” for convenience.
  • the transmission signal of the priority operator and the transmission signal of the non-priority operator may be spatially multiplexed (SDM: Spatial Division Multiplexing).
  • SDM Spatial Division Multiplexing
  • a non-priority operator uses a beam different from a beam used by the priority operator (in other words, spatial resource) (in other words, an unused beam). ) May be used.
  • spatial multiplexing interference between a plurality of operators can be orthogonalized, and the frequency utilization efficiency of shared frequencies can be improved.
  • a plurality of operators may share a base station (eg, sometimes referred to as gNB).
  • gNB base station
  • the shared frequency may be a frequency used at the time of disaster (for example, a frequency for public safety).
  • a frequency used at the time of disaster for example, a frequency for public safety.
  • each operator monitors (in other words, senses) a resource different from the operator's priority resource (in other words, another operator's priority resource) to determine whether or not it can be used.
  • the operator When the monitored resource is used by another operator (for example, a priority operator), the operator cannot use the resource, and thus the monitoring process increases as the number of priority resources of other operators to monitor in the shared frequency increases. It is more likely to be wasted.
  • a priority operator When the monitored resource is used by another operator (for example, a priority operator), the operator cannot use the resource, and thus the monitoring process increases as the number of priority resources of other operators to monitor in the shared frequency increases. It is more likely to be wasted.
  • FIG. 4 shows a configuration example of the wireless communication system according to the present embodiment.
  • the wireless communication system shown in FIG. 4 includes, for example, a base station 10 and a terminal 20.
  • the operators A, B, and C share the base station 10.
  • the terminals 20 belonging to the operators A, B, and C are wirelessly connected (in other words, accessed) to the base station 10.
  • the configuration of the wireless communication system shown in FIG. 4 is an example, and the number of each of the base station 10, the terminal 20, and the operator is not limited to the number shown in FIG.
  • the base station 10 may be provided for each operator without being shared by the operators. In this case, for example, as shown in FIG. 2, time synchronization may be performed between the base stations 10 of the respective operators.
  • FIG. 5 is a block diagram showing a configuration example of base station 10 according to the present embodiment.
  • the base station 10 includes, for example, a control unit 101, a reception unit 102, and a transmission unit 103.
  • the control unit 101 controls the reception process in the reception unit 102 and the transmission process in the transmission unit 103. Further, for example, the control unit 101 controls (in other words, scheduling) allocation of resources used for signals transmitted and received by the terminal 20 in at least one of downlink (DL: downlink) and uplink (UL: uplink).
  • DL downlink
  • UL uplink
  • control unit 101 is, for example, an area that is a candidate for a resource used for transmitting control information indicating a scheduling result to each terminal 20 (for example, referred to as a “search space” or a “search space set”).
  • search space is an area in which the terminal 20 monitors (in other words, blind decoding) the control information.
  • control unit 101 may set the search space for each operator who shares the shared frequency.
  • control unit 101 determines whether or not there is a monitor in the search space (for example, on (on) and off (off)) for the terminal 20.
  • the unit of the terminal 20 that determines whether or not to monitor the search space may be one terminal 20 or a group of a plurality of terminals 20.
  • the group of the plurality of terminals 20 may be, for example, a group of terminals 20 belonging to one operator or a group of terminals 20 belonging to a plurality of operators.
  • the receiving unit 102 receives the UL signal transmitted from the terminal 20.
  • the receiving unit 102 receives the UL signal under the control of the control unit 101.
  • the UL signal includes UL control information, UL data, or a reference signal, for example.
  • the UL control information may be called, for example, Physical Uplink Control Channel (PUCCH) signal or Uplink Control Information (UCI).
  • the UL data may also be called, for example, Physical Uplink Shared Channel (PUSCH) signal.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the transmitting unit 103 transmits a DL signal for the terminal 20 to the terminal 20.
  • the transmission unit 103 transmits the DL signal under the control of the control unit 101.
  • the DL signal includes, for example, DL control information, DL data, or a reference signal.
  • the DL control information may include, for example, information indicating the resources allocated by the control unit 101, information indicating the presence or absence of a monitor in the search space, or the like.
  • the DL control information may be called, for example, a Physical Downlink Control Channel (PDCCH) signal or Downlink Control Information (DCI).
  • the DL data may be called, for example, a Physical Downlink Shared Channel (PDSCH) signal.
  • PDSCH Physical Downlink Shared Channel
  • the DL control information may be notified to the terminal 20 by upper layer signaling, or may be notified to the terminal 20 by dynamic signaling such as DCI or Medium Access Control Control Element (MAC CE).
  • Upper layer signaling may also be referred to as, for example, Radio Resource Control (RRC) signaling or upper layer parameters.
  • RRC Radio Resource Control
  • FIG. 6 is a block diagram showing an example of the configuration of terminal 20 according to the present embodiment.
  • the terminal 20 includes, for example, a control unit 201, a reception unit 202, and a transmission unit 203.
  • the control unit 201 controls, for example, the reception process in the reception unit 202 and the transmission process in the transmission unit 203.
  • the control unit 201 determines a search space that includes control information (for example, a PDCCH signal) regarding resource allocation within the shared frequency based on the information notified from the base station 10.
  • control information for example, a PDCCH signal
  • the control unit 201 also monitors the search space and detects control information addressed to the terminal 20. Then, the control unit 201 controls at least one of a DL data reception process and a UL data transmission process based on the detected control information (for example, resource allocation information).
  • control information for example, resource allocation information
  • the receiving unit 202 receives the DL signal transmitted from the base station 10. For example, the receiving unit 202 receives the DL signal under the control of the control unit 201.
  • the transmitter 203 transmits the UL signal to the base station 10.
  • the transmission unit 203 transmits the UL signal under the control of the control unit 201.
  • FIG. 7 shows an example of frequency sharing among a plurality of operators in the shared frequency.
  • the resources (for example, time resources such as slots) in the shared frequency are sequentially assigned to the operators A, B, and C, respectively.
  • each resource of the shared frequency is set as the priority resource of the operators A, B and C for every three resources.
  • the setting of the priority resource is not limited to the example shown in FIG. 7.
  • the priority resource of each operator may be set periodically or aperiodically.
  • the number of priority resources may be the same or different between operators.
  • the base station 10 assigns, for example, the terminals 20 belonging to the operators A, B, and C to one group for each operator (for example, UE group A, UE group B, and UE group C). Group.
  • the base station 10 sets, for each of the priority resources of the three operators A, B, and C (for example, called resources A, B, and C), a search space used to transmit control information regarding each resource, for example.
  • FIG. 7 shows, as an example, an example in which a signal to be transmitted/received by the operators A and B (in other words, traffic) exists, but a signal to be transmitted/received in the operator C does not exist.
  • resources A and B may be used by operators A and B (in other words, priority operator).
  • the resource C is not likely to be used by the operator C (in other words, the priority operator).
  • the base station 10 allocates resources to the terminals 20 belonging to the operators A and B, respectively. For example, the base station 10 allocates the resource A or the resource C to the terminal 20 belonging to the operator A. Further, for example, the base station 10 allocates the resource B or the resource C to the terminal 20 belonging to the operator B. For example, the resource C unused by the operator C may be assigned to any one of the operators A and B (in other words, a non-priority operator).
  • the base station 10 determines a search space to be monitored (in other words, whether or not there is a monitor in each search space) for the terminals 20 belonging to each of the operators A, B, and C (in other words, group).
  • the base station 10 instructs each terminal 20 of the set search space to be monitored.
  • the base station 10 may transmit, to each terminal 20, information indicating whether or not a search space corresponding to each resource is monitored (hereinafter referred to as monitor information).
  • the base station 10 instructs the terminal 20 (in other words, UE group A) belonging to the operator A to monitor the search space of the resource C in addition to the search space of the priority resource A.
  • the base station 10 instructs the terminal 20 (in other words, UE group B) belonging to the operator B to monitor the search space of the resource C in addition to the search space of the priority resource B.
  • the base station 10 instructs the terminal 20 (in other words, UE group C) belonging to the operator C to monitor the search space of the priority resource C.
  • the base station 10 instructs the terminals 20 of the operators A and B to monitor the search space including the control information regarding the priority resource corresponding to the operator C different from the operators A and B ( In other words, monitor: Yes).
  • the base station 10 does not instruct the terminal 20 of the operator C to monitor the search space including the control information regarding the priority resource corresponding to the operator A or B different from the operator C (in other words, Monitor: None).
  • the terminals 20 of the operators A, B, and C monitor the search space.
  • the monitor information may indicate whether the search space corresponding to each resource is monitored (monitor: on) or not monitored (monitor: off).
  • the monitor information may indicate a period in which the terminal 20 turns the monitor on (or turns off) for the search space of each resource.
  • the period in which the monitor is turned on (or the period in which it is turned off) may be defined by the specifications, for example.
  • the monitor information notified to each terminal 20 may indicate the presence or absence of a monitor in the search space corresponding to the priority resources of a plurality of operators.
  • the monitor in the search space corresponding to the priority resource of the operator to which each terminal 20 belongs is set to on.
  • the monitor information notified to each terminal 20 may indicate the presence/absence of a monitor in the search space corresponding to the priority resource of another operator different from the operator to which the terminal 20 belongs.
  • the terminal 20 determines the search space to be monitored based on the control information instructed (in other words, notified) from the base station 10. Then, the terminal 20 monitors the determined search space and detects control information (for example, resource allocation information) addressed to the terminal 20.
  • control information for example, resource allocation information
  • the terminal 20 of the operator A monitors the search space corresponding to the priority resource A of the operator A as well as the search space corresponding to the priority resource A of the operator A.
  • the terminal 20 of the operator A does not monitor the search space corresponding to the priority resource B of the operator B.
  • the terminal B of the operator B monitors the search space for the available resources (the resources B and C in FIG. 7) in the shared frequency, and the unusable resources (in FIG. 7). , Do not monitor the search space for resource A).
  • the terminals 20 of the operators A and B can use unused priority resources of other operators in addition to the priority resources. Further, by these monitoring processes, the terminals 20 of the operators A and B do not monitor the search spaces corresponding to the priority resources used by other operators, so that unnecessary monitoring processes can be reduced.
  • the operator C does not have a signal to be transmitted/received (in other words, traffic). Therefore, the terminal 20 of the operator C monitors the search space corresponding to the priority resource C of the operator C and does not monitor the search space corresponding to the priority resources of other operators. By this monitor processing, the terminal 20 of the operator C in which no traffic exists does not monitor the search space corresponding to another operator, and thus unnecessary monitor processing can be reduced.
  • the base station 10 may, for example, the second wireless device (for example, the priority resource) of the second wireless device (for example, the priority resource) allocated to the first wireless device (for example, the terminal 20 of each operator). , Control settings for use by terminals 20) of other operators.
  • the base station 10 sets monitor settings by the terminal 20 of another operator for control information (for example, resource allocation information) associated with a radio resource (for example, priority resource) allocated to the terminal 20 of a certain operator (for example, Monitor (either on or off). Then, the base station 10 transmits, to each terminal 20, information regarding the above-described setting (for example, information indicating whether or not a search space is monitored).
  • the terminal 20 receives the information indicating the setting (for example, the presence or absence of the search space monitor) regarding the use of the priority resource allocated to the other wireless device (for example, the terminal 20 of another operator). Then, the terminal 20 controls the use of the priority resource based on the received information.
  • the setting for example, the presence or absence of the search space monitor
  • the base station 10 can dynamically switch the presence or absence of a search space monitor for the terminals 20 belonging to each operator according to the resource usage status of a plurality of operators within the shared frequency. For example, the terminal 20 monitors the search space for resources that the terminal 20 may use in the shared frequency, but does not monitor the search space for resources that the terminal 20 cannot use.
  • the terminal 20 when the priority resources of other operators are unused, the terminal 20 has a higher possibility of being able to use the priority resources and can improve the frequency utilization efficiency of the shared frequency. Moreover, according to the present embodiment, when the priority resource of another operator is used, the terminal 20 does not monitor the search space of the priority resource, and therefore unnecessary monitor processing can be reduced.
  • the base station 10 uses the Radio Network Temporary Identifier based on the control information including the monitor information (for example, the PDCCH signal or the DCI) based on the information (for example, the identification information or the identifier) that can identify the operator (or the UE group).
  • RNTI may be used for scrambling.
  • the information capable of identifying the operator may be, for example, information (for example, PLMN ID) for identifying the Public Land Mobile Network (PLMN) corresponding to each operator.
  • the terminal 20 can extract monitor information for the group (for example, operator or UE group) to which the terminal 20 belongs from the signal received from the base station 10.
  • the plurality of terminals 20 belonging to each group can specify the control information scrambled by the identifier corresponding to the group.
  • the monitor information may be notified from the base station 10 to the terminal 20 by one or both of upper layer signaling and dynamic signaling (for example, DCI or MAC CE).
  • upper layer signaling and dynamic signaling for example, DCI or MAC CE.
  • information indicating a search space candidate corresponding to a priority resource of another operator may be notified from the base station 10 to the terminal 20 by higher layer signaling.
  • the base station 10 dynamically notifies the terminal 20 of the information indicating the presence/absence of a monitor in each of the search space candidates by dynamic signaling. By this notification, it is possible to reduce the amount of dynamic signaling information that indicates the presence or absence of a search space to be monitored.
  • the information indicating the search space candidates corresponding to the priority resources of other operators is dynamically transmitted from the base station 10 to the terminal 20 together with the information indicating the presence or absence of the monitor in each of the search space candidates. You may be notified. By this notification, for example, the search space to be monitored by the terminal 20 can be flexibly switched.
  • IAB node a wireless node (hereinafter, referred to as “IAB node”) forms a wireless access link with a terminal (or UE), and at least one of other IAB nodes and wireless base stations. A wireless backhaul link is formed between them.
  • FIG. 8 shows a configuration example of the wireless communication system according to the present embodiment.
  • the terminal according to the present embodiment has a basic configuration common to that of terminal 20 according to Embodiment 1, and therefore description will be given with reference to FIG. 6.
  • the wireless communication system shown in FIG. 8 includes IAB nodes 30A to 30C and a terminal 20 (UE).
  • Each of the IAB nodes 30A to 30C forms a cell which is an area where each IAB node 30 can wirelessly communicate.
  • the IAB node 30 has the function of a base station.
  • the terminal 20 in the cell can wirelessly connect (in other words, access) to the IAB node 30 forming the cell.
  • each of the IAB nodes 30A to 30C is connected to another IAB node 30 by wireless communication, for example.
  • the IAB node 30B is connected to the IAB node 30A.
  • the IAB node 30C is connected to the IAB node 30B.
  • the IAB node 30A may be connected to the core network (CN) via a fiber backhaul (Fiber Backhaul (BH)).
  • the IAB node 30A may be referred to as an "IAB donor".
  • the upstream IAB node 30 (for example, in the direction toward the IAB donor) is referred to as a “parent node”, and the downstream IAB node 30 (for example, in the direction away from the IAB donor). It is called a "child node”.
  • the parent node of the IAB node 30B is the IAB node 30A
  • the parent node of the IAB node 30C is the IAB node 30B
  • the child node of the IAB node 30B is the IAB node 30C
  • the child node of the IAB node 30A is the IAB node 30B.
  • the number of IAB nodes 30 is 3 and the number of terminals 20 is 3 in FIG. 8, the number of IAB nodes 30 and the number of terminals 20 included in the wireless communication system shown in FIG. It is not limited to the example shown in.
  • the number of parent nodes for one IAB node 30 may be two or more, and the number of child nodes for one IAB node 30 may be two or more. Further, the IAB node 30 which is a child node may be further connected to the IAB node 30C.
  • the IAB node 30 has a control unit 301, a Mobile-Termination (MT) 302, and a Distributed Unit (DU) 303.
  • MT Mobile-Termination
  • DU Distributed Unit
  • the control unit 301 controls the MT 302 and the DU 303.
  • the MT 302 may have a function corresponding to a terminal for a parent node, for example.
  • the MT 302 has the same transmission processing (in other words, UL processing) and reception processing (in other words, DL processing) functions as the terminal 20 (see FIG. 6, for example) described in the first embodiment. Good.
  • the DU 303 may have a function corresponding to a base station for a child node, for example.
  • the DU 303 has the same transmission processing (in other words, DL processing) and reception processing (in other words, UL processing) functions as the base station 10 (for example, refer to FIG. 5) described in the first embodiment. You may.
  • the IAB node 30B shown in FIG. 8 is connected to the DU 303 of the IAB node 10A, which is the parent node, by the MT 302. Further, for example, the IAB node 30B illustrated in FIG. 8 is connected to the terminal 20 or the MT 302 of the IAB node 30C, which is a child node, by the DU 303.
  • MT time resource used for DL (hereinafter referred to as "DL")
  • UL time resource time resource used for UL (hereinafter referred to as "UL")
  • F Flexible time resource: time resource used for DL or UL (hereinafter referred to as "F")
  • the IAB node 30 uses the following type of time because of the link between the IAB node 30 and the child node or the terminal 20 (hereinafter, referred to as “child link”). It has information (also called DU configuration) indicating a resource.
  • DL -DL time resource
  • UL UL time resource
  • F Flexible time resource
  • N Not-available time resource: a resource that is not used for communication of the child link of the DU (hereinafter referred to as "NA”)
  • the DL time resource (DL), UL time resource (UL), and Flexible time resource (F) of the child link of the DU 303 belong to one of the following two classifications.
  • -Hard The time resource corresponding to "Hard” is always available for the child link of the DU.
  • Soft The availability for the child links of the DU of the time resource corresponding to "Soft” is explicitly and/or implicitly controlled by the parent node.
  • the time resource for which “Soft” is set can be dynamically switched by the parent node, the IAB node 30, whether the DU 303 is available or not (NA).
  • the IAB node 30, which is the parent node uses the information indicating that the DU 303 is available (for example, IA (indicated as available)) or the DU 303 uses the time resource for which “Soft” is set.
  • the child node is notified of information indicating that it is impossible (for example, INA (indicated as not) available).
  • each IAB node 30 may obtain information indicating the time resource of the DU 303 (for example, DU configuration) from a parent node or an IAB donor (or Central Unit (CU)).
  • DU configuration for example, DU configuration
  • IAB donor or Central Unit (CU)
  • FIG. 9 shows an example of a combination of a resource setting (for example, DU configuration) of the DU 303 and a resource setting (for example, MT configuration) of the MT 302 in a time division multiplexing (TDM) operation.
  • the present embodiment is not limited to the TDM operation.
  • the present embodiment may be applied to SDM operation as well as TDM.
  • FIG. 10 shows, as an example, the correspondence between time resources (for example, slots) in the shared frequency and the type (DU configuration) of the DU 303 set in each time resource.
  • any of the DU configurations (DL-H, DL-S, UL-H, UL-S, FH, FS or NA) shown in FIG. 9 is set for each time resource. To be done.
  • the IAB node 30 or the terminal 20 which is a child node based on the relationship between the time resource shown in FIG. 10 and the resource setting of the DU 303, and the resource setting of the MT 302 (for example, MT configuration shown in FIG. 9). Determine how time resources are used.
  • the IAB node 30 further notifies the child node or the terminal 20 of information regarding an operator who can preferentially use each time resource.
  • the IAB node 30 (DU 303) uses the information indicating the association between a plurality of operators (in other words, each operator's terminal 20) and the resource (for example, priority resource) corresponding to each operator to other wireless devices. (For example, the child node or the terminal 20).
  • the information indicating the association between the operator and the time resource may be notified from the parent node to the child node, or may be notified from the CU (not shown) to each IAB node 30.
  • each time resource shown in FIG. 10 is set as a priority resource for operators A, B, and C every three resources.
  • the setting of the priority resource is not limited to the example shown in FIG.
  • the priority resource of each operator may be set periodically or aperiodically.
  • the number of priority resources may be the same or different between operators.
  • both the resource setting of the DU 303 and the priority operator are set in each time resource.
  • the child node IAB node 30 or the terminal 20 uses each time resource based on the information indicating the association between the priority operator and the time resource notified from the parent node IAB node 30.
  • the IAB node 30, which is a child node may schedule the terminal 20 of each operator based on the priority operator for each time resource.
  • the IAB node 30 uses the second wireless device (eg, other resource) of the wireless resource (eg, priority resource) assigned to the first wireless device (eg, the terminal 20 of each operator). Settings for use by the operator's terminal 20) may be controlled.
  • the second wireless device eg, other resource
  • the wireless resource eg, priority resource
  • the setting of the priority operator in each time resource is notified from the upstream IAB node 30 to the downstream IAB node 30 (or terminal 20).
  • the IAB node 30 can specify the priority operator in each time resource. In other words, the IAB node 30 can identify which operator's priority resource each time resource is. Therefore, each IAB node 30 can control the use of the priority operator or the non-priority operator in the time resource, for example, as in the first embodiment.
  • the frequency utilization efficiency of the shared frequency can be improved as in the first embodiment. Therefore, according to the present embodiment, the efficiency of the frequency sharing technology can be improved.
  • the parent node in the time resource for which “Soft” is set, the parent node, the IAB node 30, notifies the DU 303 of information indicating whether or not a resource is available (for example, either IA or INA).
  • the IAB node 30, which is the parent node may dynamically notify (in other words, change) the information (for example, PLMN ID) that can identify the priority operator of the time resource. By this notification, the priority operator is flexibly switched, so that the utilization efficiency of the resource can be improved.
  • the priority operator may be associated with each time resource on a one-to-one basis, for example, by information (for example, PLMN ID) capable of identifying the priority operator.
  • information for example, PLMN ID
  • the start timing and the cycle (or period) of the priority resource of each operator may be set for each operator.
  • the present embodiment may be applied to, for example, a wireless communication system including a relay station (or a relay node) that relays a signal instead of the IAB.
  • the base station and the terminal according to the present embodiment have the same basic configuration as the base station 10 and the terminal 20 according to the first embodiment, and therefore will be described with reference to FIGS. 5 and 6.
  • FIG. 11 shows a configuration example of the wireless communication system according to this embodiment.
  • the wireless communication system shown in FIG. 11 includes, for example, a plurality of base stations 10 and a plurality of terminals 20.
  • the operators A, B, and C share each base station 10.
  • the terminals 20 corresponding to the operators A, B, and C are wirelessly connected (in other words, accessed) to the base station 10.
  • each time resource of the shared frequency is set as the priority resource of the operators A, B, and C every three resources.
  • each of the base station 10, the terminal 20, and the operator are not limited to the numbers shown in FIG. 11.
  • the base station 10 may be provided for each operator without being shared by the operators. In this case, for example, as shown in FIG. 2, time synchronization may be performed between the base stations 10 of the respective operators.
  • the base station 10 (for example, the control unit 101) of the cell 1 generates spatial resource information regarding the spatial resource (for example, beam) that is preferentially used in the cell 1.
  • the spatial resource for example, beam
  • the spatial resource information may indicate the index of the reference signal (for example, Synchronization Signal Block (SSB)) corresponding to the beam used in each time resource, as shown in FIG. 11, for example.
  • the reference signal indexes corresponding to the beams used (or scheduled to be used) in the priority resources of the operators A, B, and C are SSB #0, #1, and #2, respectively.
  • the base station 10 of the cell 1 (for example, the transmission unit 103) notifies the spatial resource information to the base station 10 of the cell 2.
  • the spatial resource information may be dynamically notified from the base station 10 of cell 1 to the base station 10 of cell 2, for example. By this notification, the base station 10 of the cell 2 can specify the use status of the beam in each time resource in the base station 10 of the cell 1.
  • the terminal 20 (for example, the control unit 201) of the cell 2 measures, for example, the signal level (in other words, the interference level) from another cell (for example, the cell 1). Based on the measured signal level, the terminal 20 generates other cell information indicating information on a signal that can cause interference from another cell to the cell 2, and transmits the other cell information to the base station 10 of the cell 2.
  • the signal level in other words, the interference level
  • the terminal 20 Based on the measured signal level, the terminal 20 generates other cell information indicating information on a signal that can cause interference from another cell to the cell 2, and transmits the other cell information to the base station 10 of the cell 2.
  • the other cell information may include a parameter related to a spatial resource (for example, a beam) used for a signal whose signal level from another cell is equal to or higher than a threshold value.
  • a spatial resource for example, a beam
  • the other cell information may include the SSB index corresponding to the beam used for the signal whose signal level from the cell 1 is equal to or higher than the threshold value.
  • the other cell information may be called, for example, a Measurement Report (MR).
  • MR Measurement Report
  • the base station 10 of the cell 2 uses the spatial resource (for example, beam) that can be used by the terminal 20 of the cell 2 based on the other cell information of the cell 2 and the spatial resource information of the cell 1. To decide.
  • the spatial resource for example, beam
  • a beam corresponding to SSB#1 for example, operator B
  • a beam corresponding to SSB#2 for example, operator C
  • the beam corresponding to SSB#0 for example, the operator A
  • the beam corresponding to SSB#0 is used, but the beam causes the terminal 20 of the cell 2 to reach the terminal 20. It may be a situation in which it does not give interference.
  • the base station 10 of the cell 2 controls the use of the scheduling resource and the beam for the terminal 20 of the cell 2 based on the use status of the beam of the cell 1 as follows, for example.
  • the beam corresponding to SSB#0 is used in cell 1 for the priority resource of operator A, in cell 2, at least scheduling to terminal 20 that is not interfered by SSB#0 of cell 1 is possible. is there. Further, here, in the priority resource of the operator A, the beam corresponding to SSB#0 is unlikely to interfere with the terminal 20 of the cell 1 from the cell 1. Therefore, even if SSB#0 is used in cell 1, cell 2 can use the same time-frequency resource for terminal 20.
  • the base station 10 of the cell 2 determines that the scheduling of the terminal 20 in the cell 2 is possible with the priority resource of the operator A. For example, the base station 10 of the cell 2 may allocate an arbitrary beam to the terminal 20 of the cell 2 in the priority resource of the operator A.
  • the base station 10 of the cell 2 for the terminal 20 does not interfere with the terminal 20 (A) scheduled in the priority resource of the operator A of the cell 1. Therefore, the base station 10 (for example, the transmission unit 103) of the cell 1 can give interference to the terminal 20 scheduled in the time resource, in addition to the information on the reference signal index corresponding to the beam used in each time resource. Information of the reference signal index of the cell 2 having the property may be included in the spatial resource information and notified to the cell 2. By this notification, the base station 10 of the cell 2 can grasp which beam is used in each resource used in the cell 1 to cause interference. For example, the base station 10 of the cell 2 can control the beam allocation that avoids the use of beams that cause interference.
  • the base station 10 of the cell 2 causes the terminal 20 of the cell 2 to interfere with the terminal 20 of the cell 2 from the resources used in the cell 1.
  • Non-interfering beams are assigned from cell 2 to cell 1 using resources using no beams.
  • the signal of the terminal 20 of the cell 2 and the signal of the terminal 20 of the cell 1 can be spatially multiplexed with the same time and frequency resources.
  • the interference from the cell 2 to the cell 1 is orthogonalized, and spatial multiplexing (in other words, scheduling at the same time or the same frequency) becomes possible. ..
  • the base station 10 of the cell 2 sets the radio resources (for example, priority resources) allocated to the terminal 20 of each operator for use by the terminal 20 of another operator, as in the first embodiment. You may control.
  • radio resources for example, priority resources
  • the base station 10 sets the parameter of the communication using the radio resource by the second radio device (for example, the terminal 20) that accesses the base station 10 (for example, the scheduling resource or the beam). (Setting) based on the parameter setting (for example, setting of the beam to be used or to be used) of the communication using the wireless resource by the first wireless device (for example, the terminal 20) that accesses another base station 10. ..
  • each base station 10 can specify the usage status of the spatial resource (for example, beam) of the other base station 10, for example, so that the spatial resource not used by the other base station 10 can be transmitted to the terminal 20. Can be assigned. Therefore, for example, the plurality of base stations 10 can spatially multiplex signals of different operators in the shared frequency.
  • the spatial resource for example, beam
  • the frequency utilization efficiency of shared frequencies can be improved by spatial multiplexing. Therefore, according to the present embodiment, it is possible to improve the efficiency of the frequency sharing technology.
  • FIG. 11 illustrates, as an example, a case where the spatial resource information corresponding to the beam used in the cell 1 is notified to the base station 10 of the cell 2.
  • the spatial resource information corresponding to the beam used in the cell 2 may be notified to the base station 10 of the cell 1. Due to this notification, the terminal 20 of the cell 1 causes interference from the cell 1 to the cell 2 in a resource that does not interfere with the terminal 20 of the cell 1 from the cell 2 among resources that may be used in the cell 2. No beam can be used.
  • the spatial resource information may be any information indicating the usage status of the spatial resource in the corresponding base station 10.
  • the spatial resource information may indicate the relationship between the priority operator and the used beam in each time resource, or may indicate the used beam in each time resource.
  • the spatial resource information may be associated with each priority operator (for example, PLMN ID) in each time resource.
  • information for example, a reference signal index
  • the beam eg, ⁇ SSB#0, SSB#0, SSB#0, SSB#0, SSB#0, SSB#0, SSB#0, SSB#0, ... ⁇
  • the information indicating the association between the priority operator and the time resource may be separately notified to each base station 10 or terminal 20.
  • different base stations 10 can share the usage status of spatial resources in the same operator (for example, operator A).
  • operator A for example, when terminals 20 belonging to the same operator are connected to different base stations 10, it becomes easy for each base station 10 to spatially multiplex the signals of the terminals 20 using different beams.
  • the present embodiment may be applied to the IAB described in the second embodiment, for example.
  • a wireless communication system including an IAB node 30 (see, eg, FIG. 8) forming a cell 1 and a cell 2 and a terminal 20 is used in the present embodiment. The same operation as the above may be applied.
  • the signal of the priority operator and the signal of another operator are spatially multiplexed in the priority resource (eg, time resource) of each operator.
  • signal multiplexing between operators is not limited to spatial multiplexing.
  • the signal of the priority operator and the signal of the other operator may be frequency-division multiplexed (FDM).
  • the parameter included in the spatial resource information is not limited to the SSB index.
  • the parameter included in the spatial resource information may be the index of the beam used or the index of another reference signal (for example, Sounding Reference Signal (SRS)).
  • the spatial resource information may be a parameter corresponding to a beam not used in the base station 10, instead of the parameter corresponding to the beam used in the base station 10.
  • the base station 10 may be provided for each operator without being shared by the operators. In this case, for example, as shown in FIG. 2, time synchronization may be performed between the base stations 10 of the respective operators.
  • each functional block may be realized by using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.) and may be implemented using these multiple devices.
  • the functional blocks may be realized by combining the one device or the plurality of devices with software.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, observation, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but not limited to these.
  • a functional block (component) that functions for transmission is called a transmitting unit or a transmitter.
  • the implementation method is not particularly limited.
  • the base station, the user terminal, and the like according to the embodiment of the present disclosure may function as a computer that performs the process of the wireless communication method of the present disclosure.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of the base station 10, the terminal 20, and the IAB node 30 according to the embodiment of the present disclosure.
  • the above-described base station 10, terminal 20, and IAB node 30 are physically computer devices including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. It may be configured.
  • the word “device” can be read as a circuit, device, unit, or the like.
  • the hardware configurations of the base station 10, the terminal 20, and the IAB node 30 may be configured to include one or a plurality of each device illustrated in the drawing, or may be configured without including some devices. Good.
  • the functions of the base station 10, the terminal 20, and the IAB node 30 are calculated by the processor 1001 by loading predetermined software (program) on hardware such as the processor 1001, the memory 1002, and the communication device 1004. Is controlled by controlling communication with the memory 1002 and controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 operates an operating system to control the entire computer, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, a calculation device, a register, and the like.
  • CPU central processing unit
  • the control units 101, 201, 301 and the like described above may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), software module, data, and the like from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiments is used.
  • the base station 10, the terminal 20, and the control units 101, 201, and 301 of the IAB node 30 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and also for other functional blocks. It may be realized similarly.
  • the various processes described above are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store an executable program (program code), a software module, or the like for implementing the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disc). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be called an auxiliary storage device.
  • the storage medium described above may be, for example, a database including at least one of the memory 1002 and the storage 1003, a server, or another appropriate medium.
  • the communication device 1004 is hardware (transmission/reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of a frequency division duplex (FDD: Frequency Division Duplex) and a time division duplex (TDD: Time Division Duplex). May be composed of For example, the receiving units 102 and 202, the transmitting units 103 and 203, the MT 302, the DU 303, and the like described above may be realized by the communication device 1004.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10, the terminal 20, and the IAB node 30 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate). It may be configured to include hardware such as Array), and the hardware may implement some or all of the functional blocks. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate
  • the notification of information is not limited to the aspect/embodiment described in the present disclosure, and may be performed using another method.
  • the information is notified by physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by notification information (MIB (Master Information Block), SIB (System Information Block)), another signal, or a combination thereof.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FRA Full Radio Access
  • NR new Radio
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Universal Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 UWB (Ultra-WideBand
  • Bluetooth registered trademark
  • the specific operation performed by the base station may be performed by its upper node in some cases.
  • the various operations performed for communication with a terminal are the base station and other network nodes other than the base station (eg MME or S-GW and the like are conceivable, but not limited to these).
  • MME or S-GW network nodes other than the base station
  • a combination of a plurality of other network nodes for example, MME and S-GW may be used.
  • Input/output direction Information, signals, and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input/output may be performed via a plurality of network nodes.
  • the input/output information and the like may be stored in a specific place (for example, a memory) or may be managed using a management table. Information that is input/output may be overwritten, updated, or added. The output information and the like may be deleted. The input information and the like may be transmitted to another device.
  • the determination may be performed based on a value represented by 1 bit (whether 0 or 1), may be performed based on a Boolean value (Boolean: true or false), or may be compared by numerical values (for example, a predetermined value). (Comparison with the value).
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • the software uses a website using at least one of wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), When sent from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
  • Information, signal The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description include voltage, current, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any of these. May be represented by a combination of
  • At least one of the channel and the symbol may be a signal (signaling).
  • the signal may also be a message.
  • a component carrier CC may be called a carrier frequency, a cell, a frequency carrier, or the like.
  • the information, parameters, etc. described in the present disclosure may be represented by using an absolute value, may be represented by using a relative value from a predetermined value, or by using other corresponding information. May be represented.
  • the radio resources may be those indicated by the index.
  • base station In the present disclosure, “base station (BS)”, “radio base station”, “fixed station”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “"Accesspoint”,”transmissionpoint”,”receptionpoint”,”transmission/receptionpoint”,”cell”,”sector”,”cellgroup”,”
  • carrier “component carrier” and the like may be used interchangeably.
  • a base station may be referred to by terms such as macro cell, small cell, femto cell, pico cell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: It is also possible to provide communication services by Remote Radio Head).
  • RRH small indoor base station
  • the term "cell” or “sector” means part or all of the coverage area of at least one of the base station and the base station subsystem that perform communication services in this coverage. Refers to.
  • Mobile stations are defined by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned).
  • At least one of the base station and the mobile station also includes a device that does not necessarily move during a communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by the user terminal.
  • the communication between the base station and the user terminal is replaced with communication between a plurality of user terminals (eg, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • the terminal 20 may have the function of the base station 10 described above.
  • the words such as “up” and “down” may be replaced with the words corresponding to the communication between terminals (for example, “side”).
  • the uplink channel and the downlink channel may be replaced with the side channel.
  • the terminal in the present disclosure may be replaced by the base station.
  • the base station 10 may have the function of the terminal 20 described above.
  • determining and “determining” as used in this disclosure may encompass a wide variety of actions.
  • “Judgment”, “decision” means, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigating (investigating), searching (looking up, search, inquiry) (Eg, searching in a table, database or another data structure), ascertaining what is considered to be “judgment” or “decision”, and the like.
  • “decision” and “decision” include receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), access (accessing) (for example, accessing data in a memory) may be regarded as “judging” and “deciding”.
  • “judgment” and “decision” are considered to be “judgment” and “decision” when things such as resolving, selecting, choosing, establishing, establishing, and comparing are done. May be included. That is, the “judgment” and “decision” may include considering some action as “judgment” and “decision”.
  • “determination (decision)” may be read as "assuming,”"expecting,””considering,” and the like.
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled”.
  • the connections or connections between the elements may be physical, logical, or a combination thereof.
  • connection may be read as “access”.
  • two elements are in the radio frequency domain, with at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-exhaustive examples. , Can be considered to be “connected” or “coupled” to each other, such as by using electromagnetic energy having wavelengths in the microwave region and the light (both visible and invisible) region.
  • the reference signal may be abbreviated as RS (Reference Signal), or may be referred to as a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • the phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” means both "based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • Parts in the configuration of each device described above may be replaced with “means”, “circuit”, “device”, and the like.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • Numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, radio frame configuration, transmission/reception
  • SCS subcarrier spacing
  • TTI Transmission Time Interval
  • At least one of a specific filtering process performed by the device in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a time unit based on neurology.
  • a slot may include multiple minislots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot. Minislots may be composed of fewer symbols than slots.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using a minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the radio frame, subframe, slot, minislot, and symbol all represent a time unit for transmitting a signal.
  • Radio frames, subframes, slots, minislots, and symbols may have different names corresponding to them.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot or one minislot may be referred to as a TTI.
  • TTI means, for example, the minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), code block, codeword, or the like, or may be a processing unit of scheduling, link adaptation, or the like.
  • the time interval for example, the number of symbols
  • the transport block, code block, codeword, etc. may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • the TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and a short TTI (eg, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the time domain of the RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • Each 1 TTI, 1 subframe, etc. may be configured with one or a plurality of resource blocks.
  • one or more RBs include a physical resource block (PRB: Physical RB), a subcarrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, etc. May be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part (may also be called a partial bandwidth) represents a subset of continuous common RBs (common resource blocks) for a certain neurology in a certain carrier. Good.
  • the common RB may be specified by the index of the RB based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE does not have to assume that it will send and receive predetermined signals/channels outside the active BWP.
  • BWP bitmap
  • the structure of the radio frame, subframe, slot, minislot, symbol, etc. described above is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, and included in RBs The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and other configurations can be variously changed.
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched according to execution.
  • the notification of the predetermined information (for example, the notification of “being X”) is not limited to the explicit notification, but is performed implicitly (for example, the notification of the predetermined information is not performed). Good.
  • One aspect of the present disclosure is useful for wireless communication systems.

Abstract

基地局は、第1の無線装置に割り当てた無線リソースの第2の無線装置による使用に関する設定を制御する制御部と、設定を示す情報を第2の無線装置へ送信する送信部と、を備える。

Description

基地局、無線装置、及び、通信制御方法
 本開示は、基地局、無線装置、及び、通信制御方法に関する。
 Universal Mobile Telecommunication System(UMTS)ネットワークにおいて、ロングタームエボリューション(LTE:Long Term Evolution)の後継システムが検討されている(例えば、非特許文献1を参照)。LTEの後継システムには、例えば、LTE-A(LTE-Advanced)、Future Radio Access(FRA)、5th generation mobile communication system(5G)、5G plus(5G+)、new radio access technology(New-RAT又はNR)などと呼ばれるものがある。
 また、例えば、5Gシステムからの更なる広帯域化および高速化を目的とした将来の無線システムについても検討されている。
3GPP TSG RAN WG1 Meeting #95, "RAN 1 Chairman's Notes," November 2018
 しかしながら、将来の無線システムにおいて、例えば、通信事業者(オペレータ)間で特定の周波数(例えば、アンライセンス周波数)を共用する技術について検討の余地がある。
 本開示の目的の一つは、周波数共用技術の効率化を図ることにある。
 本開示の一態様に係る基地局は、第1の無線装置に割り当てた無線リソースの第2の無線装置による使用に関する設定を制御する制御部と、前記設定に関する情報を前記第2の無線装置へ送信する送信部と、を具備する。
 本開示によれば、周波数共用技術の効率化を図ることができる。
周波数共用の一例を示す図である。 オペレータ間の同期及び協調の一例を示す図である。 オペレータ間の基地局共用の一例を示す図である。 実施の形態1に係る無線通信システムの構成例を示す図である。 実施の形態1に係る基地局の構成例を示すブロック図である。 実施の形態1に係る端末の構成例を示すブロック図である。 実施の形態1に係るシェアード周波数における複数のオペレータ間の周波数共用の一例を示す図である。 実施の形態2に係る無線通信システムの構成例を示す図である。 DUのリソース設定及びMTのリソース設定の組み合わせの一例を示す図である。 実施の形態2に係るDUリソースと優先オペレータとの対応付けの一例を示す図である。 実施の形態3に係る無線通信システムの構成例を示す図である。 基地局、端末及びIABノードのハードウェア構成の一例を示す図である。
 以下、本開示の実施の形態を、図面を参照して説明する。
 (実施の形態1)
 3GPP(例えば、Release 16)では、ライセンス周波数(licensed spectrum又はlicensed bandと呼ぶこともある)を用いた通信に加え、「アンライセンス周波数(unlicensed spectrum又はunlicensed bandと呼ぶこともある)」を用いた通信(例えば、NR-U(NR unlicensed)と呼ぶこともある)が検討されている。アンライセンス周波数では、例えば、異なるRAT間、又は、異なるオペレータ間の共存の方法が規定される。一例として、アンライセンス周波数において、NR-UとWi-Fi(登録商標)との共存、NR-UとLTE License-Assisted Access(LTE-LAA)との共存、又は、オペレータAのNR-UとオペレータBのNR-Uとの共存等があり得る。アンライセンス周波数には、例えば、2.4GHz、5~7GHz又は57~71GHz等が使用されてよい。
 なお、「オペレータ」とは、例えば、RATを用いる通信事業者を意味する。異なるRATは、異なるオペレータに用いられてもよいし同じオペレータによって用いられてもよい。以下の説明において、「オペレータ」は、「通信事業者」を意味する他、通信事業者が用いるRAT、あるいは当該RATで用いられる通信設備(例えば、基地局)を意味してもよい。
 将来の無線システムでは、アンライセンス周波数の他に、例えば、同じRATを用いるオペレータ間において周波数を共用する「シェアード周波数(shared spectrum)」を用いた通信が検討される。
 図1は、シェアード周波数を用いて複数のオペレータ(例えば、オペレータA、B及びC)間において周波数を共用する一例を示す。例えば、シェアード周波数では、オペレータA,B及びCは、図1の左側に示すようにオペレータ毎に個別に割り当てられた周波数を使用するのではなく、図1の右側に示すようにオペレータ間で共通の周波数を使用する。図1に示すように、各オペレータは、シェアード周波数を用いることにより、個別に周波数が割り当てられる場合と比較して、広帯域の周波数を使用できる可能性がある。シェアード周波数には、例えば、2.3GHz又は3.5GHz等が使用されてよい。
 オペレータが共存する方法(換言すると、周波数の共用方法)は、アンライセンス周波数とシェアード周波数との間で異なる可能性がある。
 アンライセンス周波数では、例えば、異なるRAT間において情報を共有できないことがある。そのため、例えば、各RATを用いるオペレータは、送信前にアンライセンス周波数をセンシングして、他のRATを用いるオペレータが使用していないリソースを用いて信号を送信する。なお、上述したセンシングは、Listen Before Talk(LBT)又はClear Channel Assessment(CCA)と呼ぶこともある。また、アンライセンス周波数を用いた通信方法は、Licensed Assisted Access(LAA)と呼ぶこともある。
 一方、シェアード周波数では、例えば、同じRATを用いるオペレータ間のように情報を共有できる場合、例えば、オペレータ間の時刻同期(以下、単に「同期」と略称することがある)を導入できる。時刻同期の導入により、アンライセンス周波数と比較して、シェアード周波数の利用効率を向上できる。
 以下、シェアード周波数を用いた通信方法について説明する。
 [オペレータ間同期]
 シェアード周波数において、例えば、図2に示すように、複数のオペレータ(例えば、オペレータA及びB)間に時刻同期が導入されてよい。換言すると、複数のオペレータが協調して、シェアード周波数を共用してもよい。
 例えば、シェアード周波数においてオペレータ間の時刻同期が導入される場合、シェアード周波数内の各リソース(例えば、スロット)には、当該リソースを優先的に使用可能なオペレータ(以下、「優先オペレータ」と呼ぶ)がそれぞれ設定される。例えば、シェアード周波数内のリソースは、各オペレータに対して準静的(semi-static)に割り当てられてよい。優先オペレータは、割り当てられたリソースを優先的に使用できる。このようなリソースを、以下、便宜的に、「優先リソース」と呼ぶ。
 また、例えば、優先オペレータによる未使用の優先リソースが存在する場合、当該リソースは、優先オペレータとは異なる他のオペレータ(以下、「非優先オペレータ」と呼ぶ)に使用されてよい。例えば、図2に示す例において、オペレータAは、オペレータAに割り当てられた優先リソースに加えて、オペレータBに割り当てられた優先リソースのうち未使用のリソースを使用してよい。逆に、オペレータBは、オペレータBに割り当てられた優先リソースに加えて、オペレータAに割り当てられた優先リソースのうち未使用のリソースを使用してよい。このような非優先オペレータによる未使用リソースの使用を、便宜的に、「opportunisticな使用」と称することがある。
 また、例えば、シェアード周波数において、優先オペレータの送信信号と、非優先オペレータの送信信号とが空間多重(SDM:Spatial Division Multiplexing)されてよい。例えば、優先オペレータが使用している優先リソース(例えば、時間リソース)において、非優先オペレータは、優先オペレータが使用しているビーム(換言すると、空間リソース)と異なるビーム(換言すると、未使用のビーム)を用いてよい。空間多重により、複数のオペレータ間の干渉を直交化でき、シェアード周波数の周波数利用効率を向上できる。
 このように、シェアード周波数において、オペレータ間の時刻同期の導入、及び、非有線オペレータが機会を見て(換言すると、opportunisticに)、優先オペレータの未使用リソースを使用することにより、周波数利用効率を向上できる。
 [オペレータ間の基地局共用]
 シェアード周波数において、例えば、図3に示すように、複数のオペレータ(例えば、オペレータA,B及びC)間において基地局(例えば、gNBと呼ぶこともある)を共用してよい。
 複数のオペレータが基地局を共用することにより、例えば、上述したオペレータ間の時刻同期(又は協調)に関する処理は、当該基地局内で完結し、基地局間のやりとりを削減できるので、システムの複雑さを低減できる。
 一例として、シェアード周波数は、災害時などに使用される周波数(例えば、public safety向けの周波数)でもよい。この場合、複数のオペレータによって基地局を共用することにより、各オペレータが個別に基地局を設置する場合と比較して、置局のコストを低減できる。
 以上、シェアード周波数を用いた通信形態について説明した。
 ここで、非優先オペレータが他のオペレータの優先リソースを使用するための動作について検討する。
 例えば、各オペレータは、当該オペレータの優先リソースと異なるリソース(換言すると、他のオペレータの優先リソース)をモニタ(換言すると、センシング)して、使用可能か否かを判断する。
 モニタしたリソースが他のオペレータ(例えば、優先オペレータ)に使用されている場合、オペレータは、当該リソースを使用できないため、シェアード周波数においてモニタする他のオペレータの優先リソースの数が多いほど、モニタ処理が無駄になる可能性が高くなる。
 一方、無駄なモニタ処理を削減するために、オペレータが優先リソースと異なるリソースをモニタしないこととした場合には、他のオペレータの優先リソースを使用できる機会が喪失するため、周波数利用効率が低下してしまう。
 そこで、本開示の一態様では、シェアード周波数におけるオペレータの処理効率及び周波数利用効率を向上可能な方法について説明する。
 [無線通信システムの構成]
 図4は、本実施の形態に係る無線通信システムの構成例を示す。図4に示す無線通信システムは、例えば、基地局10と、端末20と、を備える。図4では、一例として、オペレータA、B及びCが基地局10を共用する。各オペレータA、B及びCに属する端末20は、基地局10に無線接続(換言するとアクセス)している。
 なお、図4に示す無線通信システムの構成は一例であり、基地局10、端末20、及び、オペレータの各々の個数は、図4に示す個数に限定されない。また、基地局10は、オペレータ間で共用せずに、オペレータ毎に設けられてもよい。この場合、例えば、図2に示すように、各オペレータの基地局10間において時刻同期してもよい。
 [基地局10の構成]
 図5は、本実施の形態に係る基地局10の構成例を示すブロック図である。基地局10は、例えば、制御部101と、受信部102と、送信部103と、を含む。
 制御部101は、受信部102における受信処理、及び、送信部103における送信処理を制御する。また、例えば、制御部101は、下り(DL:downlink)及び上り(UL:uplink)の少なくとも一つにおいて端末20が送受信する信号に用いるリソースの割り当てを制御(換言すると、スケジューリング)する。
 また、制御部101は、例えば、各端末20に対して、スケジューリング結果を示す制御情報の送信に使用されるリソースの候補である領域(例えば、「サーチスペース」又は「サーチスペースセット」と呼ぶ)を設定する。例えば、サーチスペースは、端末20が制御情報をモニタ(換言すると、ブラインド復号)する領域である。例えば、制御部101は、シェアード周波数を共有するオペレータ毎にサーチスペースを設定してよい。
 また、制御部101は、端末20に対して、サーチスペースにおけるモニタの有無(例えば、オン(on)及びオフ(off))を決定する。なお、サーチスペースのモニタの有無を決定する端末20の単位は、1つの端末20でもよく、複数の端末20のグループでもよい。複数の端末20のグループは、例えば、1つのオペレータに属する端末20のグループ、又は、複数のオペレータに属する端末20のグループでもよい。
 受信部102は、端末20から送信されるUL信号を受信する。例えば、受信部102は、制御部101の制御により、UL信号を受信する。UL信号には、例えば、UL制御情報、ULデータ、又は、参照信号等が含まれる。UL制御情報は、例えば、Physical Uplink Control Channel(PUCCH)信号又はUplink Control Information(UCI)と呼ばれることもある。また、ULデータは、例えば、Physical Uplink Shared Channel(PUSCH)信号と呼ばれることもある。
 送信部103は、端末20向けのDL信号を端末20へ送信する。例えば、送信部103は、制御部101の制御により、DL信号を送信する。DL信号には、例えば、DL制御情報、DLデータ、又は、参照信号等が含まれる。DL制御情報は、例えば、制御部101によって割り当てられたリソースを示す情報、又は、サーチスペースにおけるモニタの有無を指示する情報等を含んでよい。また、DL制御情報は、例えば、Physical Downlink Control Channel(PDCCH)信号又はDownlink Control Information(DCI)と呼ばれることもある。また、DLデータは、例えば、Physical Downlink Shared Channel(PDSCH)信号と呼ばれることもある。
 また、DL制御情報は、例えば、上位レイヤシグナリングによって端末20に通知されてもよく、DCI又はMedium Access Control Control Element(MAC CE)等のダイナミックシグナリングによって端末20に通知されてもよい。上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング又は上位レイヤパラメータと呼ばれることもある。
 [端末20の構成]
 図6は、本実施の形態に係る端末20の構成の一例を示すブロック図である。端末20は、例えば、制御部201と、受信部202と、送信部203と、を含む。
 制御部201は、例えば、受信部202における受信処理、及び、送信部203における送信処理を制御する。例えば、制御部201は、基地局10から通知される情報に基づいて、シェアード周波数内のリソース割当に関する制御情報(例えば、PDCCH信号)が含まれるサーチスペースを決定する。
 また、制御部201は、サーチスペースをモニタして、端末20宛ての制御情報を検出する。そして、制御部201は、検出した制御情報(例えば、リソース割当情報)に基づいて、DLデータの受信処理、及び、ULデータの送信処理の少なくとも一つの処理を制御する。
 受信部202は、基地局10から送信されるDL信号を受信する。例えば、受信部202は、制御部201の制御により、DL信号を受信する。
 送信部203は、UL信号を基地局10へ送信する。例えば、送信部203は、制御部201の制御により、UL信号を送信する。
 [サーチスペースのモニタ方法]
 次に、端末20におけるサーチスペースのモニタ方法の一例について説明する。
 図7は、シェアード周波数における複数のオペレータ間の周波数共用の一例を示す。
 図7では、例えば、オペレータA,B及びCに対して、シェアード周波数内の各リソース(例えば、スロット等の時間リソース)が順に割り当てられている。換言すると、図7では、シェアード周波数の各リソースは、3リソース毎に、オペレータA、B及びCの優先リソースに設定される。なお、優先リソースの設定は、図7に示す例に限定されない。例えば、各オペレータの優先リソースは周期的又は非周期的に設定されてよい。又は、優先リソースの数は、オペレータ間で同じでもよく、異なってもよい。
 また、図7では、基地局10は、例えば、各オペレータA、B及びCに属する端末20をオペレータ毎の1つのグループ(例えば、UE group A、UE group B、及び、UE group C)にそれぞれグルーピングする。
 基地局10は、例えば、3つのオペレータA、B及びCの優先リソース(例えば、リソースA、B及びCと呼ぶ)毎に、各リソースに関する制御情報の送信に使用するサーチスペースを設定する。
 ここで、図7は、一例として、オペレータA及びBにおいて送受信すべき信号(換言するとトラフィック)が存在する一方、オペレータCにおいて送受信すべき信号が存在しない例を示す。換言すると、図7では、リソースA及びBは、オペレータA及びB(換言すると、優先オペレータ)によって使用される可能性がある。一方、図7では、リソースCは、オペレータC(換言すると、優先オペレータ)によって使用される可能性がない。
 この場合、基地局10は、オペレータA及びBにそれぞれ属する端末20に対してリソースを割り当てる。例えば、基地局10は、オペレータAに属する端末20に対して、リソースA又はリソースCを割り当てる。また、例えば、基地局10は、オペレータBに属する端末20に対して、リソースB又はリソースCを割り当てる。例えば、オペレータCが未使用のリソースCは、オペレータA及びB(換言すると、非優先オペレータ)の何れか一つに割り当てられてよい。
 また、基地局10は、オペレータA、B及びC(換言するとグループ)の各々に属する端末20に対して、モニタ対象のサーチスペース(換言すると、各サーチスペースにおけるモニタの有無)を決定する。基地局10は、設定したモニタ対象のサーチスペースを各端末20に指示する。例えば、基地局10は、各端末20に対して、各リソースに対応するサーチスペースのモニタの有無を示す情報(以下、モニタ情報と呼ぶ)を送信してよい。
 図7の場合、基地局10は、オペレータAに属する端末20(換言すると、UE group A)に対して、優先リソースAのサーチスペースに加え、リソースCのサーチスペースのモニタを指示する。同様に、例えば、基地局10は、オペレータBに属する端末20(換言すると、UE group B)に対して、優先リソースBのサーチスペースに加え、リソースCのサーチスペースのモニタを指示する。一方、基地局10は、オペレータCに属する端末20(換言すると、UE group C)に対して、優先リソースCのサーチスペースのモニタを指示する。
 換言すると、図7では、基地局10は、オペレータA及びBの端末20に対して、オペレータA及びBと異なるオペレータCに対応する優先リソースに関する制御情報が含まれるサーチスペースのモニタを指示する(換言すると、モニタ:有り)。一方、図7では、基地局10は、オペレータCの端末20に対して、オペレータCと異なるオペレータA又はBに対応する優先リソースに関する制御情報が含まれるサーチスペースのモニタを指示しない(換言すると、モニタ:無し)。
 よって、図7では、優先リソースCでは、オペレータA、B及びCの端末20がサーチスペースをモニタする。
 例えば、モニタ情報は、各リソースに対応するサーチスペースのモニタ有り(モニタ:on)、及び、モニタ無し(モニタ:off)の何れか一方を示してよい。または、モニタ情報は、各リソースのサーチスペースについて、端末20がモニタをonにする期間(又はoffにする期間)を示してもよい。なお、モニタをonにする期間(又はoffにする期間)は、例えば、仕様によって規定されてもよい。
 また、各端末20に通知されるモニタ情報は、複数のオペレータの優先リソースに対応するサーチスペースにおけるモニタの有無を示してよい。この場合、モニタ情報は、例えば、各端末20が属するオペレータの優先リソースに対応するサーチスペースにおけるモニタはonに設定される。または、各端末20に通知されるモニタ情報は、当該端末20が属するオペレータと異なる他のオペレータの優先リソースに対応するサーチスペースにおけるモニタの有無を示してもよい。
 端末20は、基地局10から指示(換言すると通知)される制御情報に基づいて、モニタ対象のサーチスペースを決定する。そして、端末20は、決定したサーチスペースをモニタし、当該端末20宛ての制御情報(例えば、リソース割当情報)を検出する。
 図7に示す例では、オペレータAの端末20は、オペレータAの優先リソースAに対応するサーチスペースに加え、オペレータCの優先リソースCに対応するサーチスペースをモニタする。一方、図7に示す例では、オペレータAの端末20は、オペレータBの優先リソースBに対応するサーチスペースをモニタしない。
 オペレータBの端末20についても、オペレータAの端末20と同様、シェアード周波数において、使用可能なリソース(図7では、リソースB及びC)に対してサーチスペースをモニタし、使用できないリソース(図7では、リソースA)に対してサーチスペースをモニタしない。
 これらのモニタ処理により、オペレータA及びBの端末20は、優先リソースに加え、他のオペレータの未使用の優先リソースを使用し得る。また、これらのモニタ処理により、オペレータA及びBの端末20は、他のオペレータの使用された優先リソースに対応するサーチスペースをモニタしないので、無駄なモニタ処理を削減できる。
 また、図7に示す例では、オペレータCには送受信すべき信号(換言すると、トラフィック)が存在しない。そのため、オペレータCの端末20は、オペレータCの優先リソースCに対応するサーチスペースをモニタし、他のオペレータの優先リソースに対応するサーチスペースをモニタしない。このモニタ処理により、トラフィックが存在しないオペレータCの端末20は、他のオペレータに対応するサーチスペースをモニタしないので、無駄なモニタ処理を削減できる。
 このように、本実施の形態では、基地局10は、例えば、第1の無線装置(例えば、各オペレータの端末20)に割り当てた無線リソース(例えば、優先リソース)の第2の無線装置(例えば、他のオペレータの端末20)による使用に関する設定を制御する。例えば、基地局10は、或るオペレータの端末20に割り当てた無線リソース(例えば、優先リソース)に関連付く制御情報(例えば、リソース割当情報)に対する他のオペレータの端末20によるモニタの設定(例えば、モニタのオン及びオフの何れか)を制御する。そして、基地局10は、上述した設定に関する情報(例えば、サーチスペースのモニタの有無を示す情報)を各端末20へ送信する。
 端末20は、他の無線装置(例えば、他のオペレータの端末20)に割り当てられた優先リソースの使用に関する設定(例えば、サーチスペースのモニタの有無)を示す情報を受信する。そして、端末20は、受信した情報に基づいて、優先リソースの使用を制御する。
 これらの処理により、基地局10は、シェアード周波数内における複数のオペレータによるリソースの使用状況に応じて、各オペレータに属する端末20に対するサーチスペースのモニタの有無を動的に切り替えできる。例えば、端末20は、シェアード周波数において、当該端末20が使用できる可能性のあるリソースのサーチスペースをモニタする一方、当該端末20が使用できないリソースのサーチスペースをモニタしない。
 よって、本実施の形態によれば、端末20は、他のオペレータの優先リソースが未使用である場合に、当該優先リソースを使用できる可能性が高くなり、シェアード周波数の周波数利用効率を向上できる。また、本実施の形態によれば、端末20は、他のオペレータの優先リソースが使用されている場合に、当該優先リソースのサーチスペースをモニタしないので、無駄なモニタ処理を削減できる。
 このように、本実施の形態によれば、周波数共用技術の効率化を図ることができる。
 なお、基地局10は、モニタ情報を含む制御情報(例えば、PDCCH信号又はDCI)を、例えば、オペレータ(又はUE group)を識別可能な情報(例えば、識別情報又は識別子)に基づくRadio Network Temporary Identifier(RNTI)によってスクランブリングしてもよい。オペレータを識別可能な情報は、例えば、各オペレータに対応するPublic Land Mobile Network(PLMN)を識別する情報(例えば、PLMN ID)でもよい。
 スクランブリングにより、端末20は、基地局10から受信した信号の中から、当該端末20が属するグループ(例えば、オペレータ又はUE group)向けのモニタ情報を抽出できる。換言すると、各グループに属する複数の端末20は、当該グループに対応する識別子によってスクランブリングされた制御情報を特定できる。
 また、モニタ情報は、上位レイヤシグナリング及びダイナミックシグナリング(例えば、DCI又はMAC CE)の何れか一方又は双方によって基地局10から端末20へ通知されてよい。
 例えば、各オペレータにおいて、他のオペレータの優先リソースに対応するサーチスペースの候補を示す情報が、上位レイヤシグナリングによって基地局10から端末20へ通知されてよい。この場合、基地局10は、サーチスペースの候補の各々におけるモニタの有無を示す情報を、ダイナミックシグナリングによって端末20へ動的に通知する。この通知により、モニタ対象のサーチスペースの有無を指示するダイナミックシグナリングの情報量を削減できる。
 または、各オペレータにおいて、他のオペレータの優先リソースに対応するサーチスペースの候補を示す情報は、当該サーチスペースの候補の各々におけるモニタの有無を示す情報と共に、基地局10から端末20へ動的に通知されてもよい。この通知により、例えば、端末20のモニタ対象のサーチスペースを柔軟に切り替えできる。
 (実施の形態2)
 本実施の形態では、シェアード周波数において、アクセスリンクとバックホールリンクとを統合するIntegrated Access Backhaul(IAB)の技術を適用する場合について説明する。
 [無線通信システムの構成]
 IABでは、無線ノード(以下、「IABノード」と呼ぶ)は、端末(又はUEと呼ぶ)との間において無線のアクセスリンクを形成すると共に、他のIABノード及び無線基地局の少なくとも一つとの間において無線のバックホールリンクを形成する。
 図8は、本実施の形態に係る無線通信システムの構成例を示す。なお、本実施の形態に係る端末は、実施の形態1に係る端末20と基本構成が共通するので、図6を援用して説明する。
 図8に示す無線通信システムは、IABノード30A~30C、及び、端末20(UE)を含む。
 IABノード30A~30Cの各々は、各IABノード30が無線通信可能なエリアであるセルを形成する。換言すると、IABノード30は、基地局の機能を有する。セル内の端末20は、当該セルを形成しているIABノード30に無線接続(換言すると、アクセス)できる。
 また、IABノード30A~30Cの各々は、例えば、無線通信によって他のIABノード30に接続される。例えば、図8では、IABノード30Bは、IABノード30Aに接続している。IABノード30Cは、IABノード30Bに接続している。
 また、例えば、IABノード30Aは、ファイババックホール(Fiber Backhaul(BH))を通じてコアネットワーク(Core Network(CN))に接続してよい。この場合、IABノード30Aは、「IABドナー(IAB donor)」と呼ばれてもよい。
 以下、或るIABノード30から見て、上流の(例えば、IABドナーに近づく方向の)IABノード30を「親ノード」と呼び、下流の(例えば、IABドナーから遠ざかる方向の)IABノード30を「子ノード」と呼ぶ。
 例えば、IABノード30Bの親ノードはIABノード30Aであり、IABノード30Cの親ノードはIABノード30Bである。また、例えば、IABノード30Bの子ノードはIABノード30Cであり、IABノード30Aの子ノードはIABノード30Bである。
 なお、図8では、IABノード30の数が3個、端末20の数が3個であるが、図8に示す無線通信システムに含まれるIABノード30の数及び端末20の数は、図8に示す例に限定されない。また、1つのIABノード30に対する親ノードの数は2つ以上でもよく、1つのIABノード30に対する子ノードの数は、2つ以上でもよい。また、IABノード30Cに対して、更に、子ノードであるIABノード30が接続されてもよい。
 [IABノードの構成例]
 図8に示すように、IABノード30は、制御部301と、Mobile-Termination(MT)302と、Distributed Unit(DU)303とを有する。
 制御部301は、MT302及びDU303を制御する。
 MT302は、例えば、親ノードに対する端末に相当する機能を有してよい。例えば、MT302は、実施の形態1で説明した端末20(例えば、図6を参照)と同様の送信処理(換言すると、UL処理)及び受信処理(換言すると、DL処理)の機能を有してよい。
 DU303は、例えば、子ノードに対する基地局に相当する機能を有してよい。例えば、DU303は、実施の形態1で説明した基地局10(例えば、図5を参照)と同様の送信処理(換言すると、DL処理)及び受信処理(換言すると、UL処理)の機能を有してよい。
 例えば、図8に示すIABノード30Bは、MT302によって、親ノードであるIABノード10AのDU303と接続する。また、例えば、図8に示すIABノード30Bは、DU303によって、端末20、又は、子ノードであるIABノード30CのMT302と接続する。
 IABノード30のMT302の観点から、当該IABノード30と親ノードとの間のリンク(以下、「親リンク」と呼ぶ)のために、以下の時間リソース(time-domain resource)を示す情報(MT configurationとも呼ぶ)が、親ノードから子ノードへ指示されてよい。
・DL時間リソース:DLのために使用される時間リソース(以下、「DL」と表す)
・UL時間リソース:ULのために使用される時間リソース(以下、「UL」と表す)
・Flexible時間リソース:DL又はULのために使用される時間リソース(以下、「F」と表す)
 また、IABノード30のDU303の観点から、IABノード30は、当該IABノード30と子ノード又は端末20との間のリンク(以下、「子リンク」と呼ぶ)のために、次のタイプの時間リソースを示す情報(DU configurationとも呼ぶ)を有する。
・DL時間リソース(以下、「DL」と表す)
・UL時間リソース(以下、「UL」と表す)
・Flexible時間リソース(以下、「F」と表す)
・Not-available時間リソース:DUの子リンクの通信のためには使用されないリソース(以下、「NA」と表す)
 また、DU303の子リンクのDL時間リソース(DL)、UL時間リソース(UL)及びFlexible時間リソース(F)は、それぞれ、次の2つの分類のうちの1つに属する。
・Hard:「Hard」に対応する時間リソースは、常にDUの子リンクのために利用できる。
・Soft:「Soft」に対応する時間リソースのDUの子リンクのための利用可能性(availability)は、親ノードによって、明示的及び/又は暗示的に制御される。
 例えば、「Soft」が設定された時間リソースは、親ノードであるIABノード30によって、DU303が利用可能か、利用不可能(NA)であるかを動的に切り替えられる。例えば、親ノードであるIABノード30は、「Soft」が設定された時間リソースに対して、DU303が利用可能であることを示す情報(例えば、IA(indicated as available))、又は、DU303が利用不可能であることを示す情報(例えば、INA(indicated as not available))を、子ノードに通知する。
 例えば、各IABノード30は、DU303の時間リソースを示す情報(例えば、DU configuration)を、親ノード又はIABドナー(又はCentral Unit(CU)と呼ぶ)から取得してよい。
 図9は、時分割多重(TDM:Time Division Multiplexing)動作における、DU303のリソース設定(例えば、DU configuration)、及び、MT302のリソース設定(例えば、MT configuration)の組み合わせの一例を示す。なお、本実施の形態は、TDM動作に限らない。例えば、本実施の形態は、SDM動作に対しても、TDMと同様に、適用されてよい。
 また、図10は、一例として、シェアード周波数内の時間リソース(例えば、スロット)と、各時間リソースに設定されるDU303のタイプ(DU configuration)との対応付けを示す。図10に示すように、各時間リソースに、図9に示すDU configuration(DL-H、DL-S、UL-H、UL-S、F-H、F-S又はNA)の何れかが設定される。
 例えば、子ノードであるIABノード30又は端末20は、図10に示す時間リソースとDU303のリソース設定との関係、及び、MT302のリソース設定(例えば、図9に示すMT configuration)に基づいて、当該時間リソースの用途を決定する。
 本実施の形態では、IABノード30は、更に、子ノード又は端末20に対して、各時間リソースを優先的に使用可能なオペレータに関する情報を通知する。換言すると、IABノード30(DU303)は、複数のオペレータ(換言すると、各オペレータの端末20)と、各オペレータに対応するリソース(例えば、優先リソース)との対応付けを示す情報を他の無線装置(例えば、子ノード又は端末20)に送信する。なお、オペレータと時間リソースとの対応付けを示す情報は、親ノードから子ノードに通知されてもよく、CU(図示せず)から各IABノード30へ通知されてもよい。
 例えば、図10に示す各時間リソースは、3リソース毎に、オペレータA、B及びCの優先リソースに設定される。なお、優先リソースの設定は、図10に示す例に限定されない。例えば、各オペレータの優先リソースは周期的又は非周期的に設定されてよい。又は、優先リソースの数は、オペレータ間で同じでもよく、異なってもよい。
 図10では、各時間リソースには、DU303のリソース設定及び優先オペレータの双方が設定される。
 子ノードであるIABノード30又は端末20は、親ノードであるIABノード30から通知される優先オペレータと時間リソースとの対応付けを示す情報に基づいて、各時間リソースを使用する。例えば、子ノードであるIABノード30は、時間リソース毎の優先オペレータに基づいて、各オペレータの端末20のスケジューリングを行ってよい。
 また、実施の形態1と同様に、IABノード30は、第1の無線装置(例えば、各オペレータの端末20)に割り当てた無線リソース(例えば、優先リソース)の第2の無線装置(例えば、他のオペレータの端末20)による使用に関する設定を制御してよい。
 このように、本実施の形態では、シェアード周波数においてIABを適用する場合に、各時間リソースにおける優先オペレータの設定が上流のIABノード30から下流のIABノード30(又は端末20)に通知される。
 この通知により、IABノード30は、各時間リソースにおける優先オペレータを特定できる。換言すると、IABノード30は、各時間リソースがどのオペレータの優先リソースであるかを特定できる。そのため、各IABノード30は、例えば、実施の形態1と同様、時間リソースにおいて、優先オペレータ又は非優先オペレータの使用を制御できる。
 以上より、本実施の形態によれば、IABが適用される場合でも、実施の形態1と同様、シェアード周波数の周波数利用効率を向上できる。よって、本実施の形態によれば、周波数共用技術の効率化を図ることができる。
 なお、「Soft」が設定された時間リソースにおいて、親ノードであるIABノード30がDU303に対するリソースが利用可能か否か(例えば、IA及びINAの何れか一方)を示す情報を通知する。親ノードであるIABノード30は、当該情報を通知する際、当該時間リソースの優先オペレータを識別可能な情報(例えば、PLMN ID)を動的に通知(換言すると、変更)してもよい。この通知により、優先オペレータが柔軟に切り替えられるので、当該リソースの利用効率を向上できる。
 また、優先オペレータは、例えば、優先オペレータを識別可能な情報(例えば、PLMN ID)によって、各時間リソースと1対1で対応付けられてもよい。又は、図10に示すDU303のリソース設定とは別に、例えば、各オペレータの優先リソースの開始タイミング、及び、周期(又は期間)が、オペレータ毎に設定されてもよい。
 また、本実施の形態では、一例として、シェアード周波数においてIABが適用される場合について説明した。しかし、本実施の形態は、例えば、IABの代わりに、信号を中継する中継局(又は、中継ノード)を備える無線通信システムに適用してもよい。
 (実施の形態3)
 本実施の形態では、シェアード周波数において、同一又は異なるオペレータの端末の信号が空間多重される場合について説明する。
 なお、本実施の形態に係る基地局及び端末は、実施の形態1に係る基地局10及び端末20と基本構成が共通するので、図5及び図6を援用して説明する。
 図11は、本実施の形態に係る無線通信システムの構成例を示す。図11に示す無線通信システムは、例えば、複数の基地局10と、複数の端末20と、を備える。図11では、一例として、オペレータA、B及びCは、各基地局10を共用する。各オペレータA、B及びCに対応する端末20は、基地局10に無線接続(換言するとアクセス)している。
 また、図11では、一例として、セル1を形成する基地局10、及び、セル2を形成する基地局10を含む。また、図11では、シェアード周波数の各時間リソースは、3リソース毎に、オペレータA、B及びCの優先リソースに設定される。
 なお、図11に示す無線通信システムの構成は一例である。基地局10、端末20、及び、オペレータの各々の個数は、図11に示す個数に限定されない。また、基地局10は、オペレータ間で共用せずに、オペレータ毎に設けられてもよい。この場合、例えば、図2に示すように、各オペレータの基地局10間において時刻同期してもよい。
 例えば、セル1の基地局10(例えば、制御部101)は、セル1において優先的に使用する空間リソース(例えば、ビーム)に関する空間リソース情報を生成する。
 空間リソース情報は、例えば、図11に示すように、各時間リソースにおいて使用されるビームに対応する参照信号(例えば、Synchronization Signal Block(SSB))のインデックスを示してよい。図11では、例えば、オペレータA、B及びCの優先リソースにおいて使用される(又は使用予定の)ビームに対応する参照信号インデックスは、それぞれSSB#0、#1及び#2である。
 セル1の基地局10(例えば、送信部103)は、空間リソース情報を、セル2の基地局10へ通知する。空間リソース情報は、例えば、セル1の基地局10からセル2の基地局10へ動的に通知されてよい。この通知により、セル2の基地局10は、セル1の基地局10における各時間リソースでのビームの使用状況を特定できる。
 また、セル2の端末20(例えば、制御部201)は、例えば、他のセル(例えば、セル1)からの信号レベル(換言すると、干渉レベル)を測定する。端末20は、測定した信号レベルに基づいて、他セルからセル2へ干渉を与え得る信号に関する情報を示す他セル情報を生成し、他セル情報をセル2の基地局10へ送信する。
 例えば、他セル情報には、他のセルからの信号レベルが閾値以上の信号に使用されている空間リソース(例えば、ビーム)に関するパラメータが含まれてよい。図11では、一例として、他セル情報には、セル1からの信号レベルが閾値以上の信号に使用されているビームに対応するSSBインデックスが含まれてよい。また、他セル情報は、例えば、Measurement Report(MR)と呼ばれてよい。
 セル2の基地局10(例えば、制御部101)は、セル2の他セル情報、及び、セル1の空間リソース情報に基づいて、セル2の端末20が使用可能な空間リソース(例えば、ビーム)を決定する。
 一例として、図11において、セル2の端末20からセル2の基地局10へ報告される他セル情報にセル1のSSB#1及びSSB#2が示されている場合について説明する。
 この場合、セル1では、SSB#1(例えば、オペレータB)に対応するビーム、及び、SSB#2(例えば、オペレータC)に対応するビームが使用されている状況であり得る。また、セル1では、SSB#0(例えば、オペレータA)に対応するビームが使用されていない状況、又は、SSB#0に対応するビームが使用されるものの、当該ビームによってセル2の端末20に対して干渉を与えない状況であり得る。セル2の基地局10は、これらのセル1のビームの使用状況に基づいて、例えば、以下のように、セル2の端末20に対するスケジューリングリソース及びビームの使用を制御する。
 例えば、オペレータAの優先リソースについて、セル1ではSSB#0に対応するビームが使用されるので、セル2では、少なくとも、セル1のSSB#0による干渉を受けない端末20へのスケジューリングが可能である。また、ここでは、オペレータAの優先リソースにおいて、SSB#0に対応するビームは、セル1からセル2の端末20へ干渉を与える可能性が低い。そのため、セル1においてSSB#0が使用されていても、セル2では、同じ時間周波数リソースを端末20に対して使用可能である。
 よって、セル2の基地局10は、オペレータAの優先リソースでは、セル2において端末20へのスケジューリングが可能であると判断する。例えば、セル2の基地局10は、オペレータAの優先リソースでは、セル2の端末20に対して、任意のビームを割り当ててよい。
 また、例えば、セル2の基地局10が端末20に対して使用するビームは、セル1のオペレータAの優先リソースにおいてスケジューリングされる端末20(A)に対して干渉を与えないことが望ましい。そこで、セル1の基地局10(例えば、送信部103)は、各時間リソースにおいて使用されるビームに対応する参照信号インデックスの情報に加え、当該時間リソースにおいてスケジューリングされる端末20に干渉を与える可能性のあるセル2の参照信号インデックスの情報を空間リソース情報に含めて、セル2に通知してもよい。この通知により、セル2の基地局10は、セル1で使用している各リソースにおいてどのビームを使用すると干渉が生じてしまうか、を把握することができる。例えば、セル2の基地局10は、干渉が生じるビームの使用を避けたビーム割り当てを制御できる。
 これらのビーム割り当てにより、図11において、セル2の基地局10は、セル2の端末20に対して、セル1において使用されているリソースのうちセル1からセル2の端末20へ干渉を与えていないビームを使用しているリソースを使用して、セル2からセル1へ干渉を生じないビームを割り当てられる。例えば、同一の時間及び周波数リソースで、セル2の端末20の信号と、セル1の端末20の信号とを空間多重できる。換言すると、セル2では、セル1において使用されている時間リソースでも、セル2からセル1への干渉を直交化して、空間多重(換言すると、同一時間又は同一周波数でのスケジューリング)が可能となる。
 なお、ビーム割り当ての際、セル2の基地局10は、実施の形態1と同様、各オペレータの端末20に割り当てた無線リソース(例えば、優先リソース)の他のオペレータの端末20による使用に関する設定を制御してよい。
 このように、本実施の形態では、基地局10は、当該基地局10にアクセスする第2の無線装置(例えば、端末20)による無線リソースを用いた通信のパラメータ設定(例えば、スケジューリングリソース又はビーム設定)を、他の基地局10にアクセスする第1の無線装置(例えば、端末20)による無線リソースを用いた通信のパラメータ設定(例えば、使用又は使用予定のビームの設定)に基づいて制御する。
 この制御により、各基地局10は、例えば、他の基地局10の空間リソース(例えば、ビーム)の使用状況を特定できるので、他の基地局10が使用していない空間リソースを、端末20に割り当てできる。そのため、例えば、複数の基地局10は、シェアード周波数において、異なるオペレータの信号を空間多重できる。
 以上より、本実施の形態によれば、空間多重によって、シェアード周波数の周波数利用効率を向上できる。よって、本実施の形態によれば、周波数共用技術の効率化を図ることができる。
 なお、図11は、一例として、セル1において使用されるビームに対応する空間リソース情報がセル2の基地局10へ通知される場合を示す。図11と同様にして、セル2において使用されるビームに対応する空間リソース情報がセル1の基地局10へ通知されてもよい。この通知により、セル1の端末20は、セル2において使用される可能性のあるリソースのうちセル2からセル1の端末20に干渉を与えないリソースにおいて、セル1からセル2へ干渉を与えていないビームを使用できる。
 また、図11では、空間リソース情報の一例として、所定期間のビームの使用予定を示す情報について説明した。しかし、空間リソース情報は、対応する基地局10における空間リソースの使用状況を示す情報であればよい。例えば、空間リソース情報は、各時間リソースにおける優先オペレータと使用ビームとの関係を示してもよく、各時間リソースにおける使用ビームを示してもよい。
 また、例えば、空間リソース情報は、各時間リソースにおける優先オペレータ(例えば、PLMN ID)毎に対応付けられてもよい。例えば、各オペレータの優先リソースにおいて使用予定のビームに対応する情報(例えば、参照信号インデックス)と、優先オペレータとが対応付けられてもよい。例えば、図11に示す例では、オペレータA(例えば、PLMN ID#A)の優先リソースに対して、使用予定のビーム(例えば、{SSB#0,SSB#0,SSB#0,SSB#0,…})が対応付けられてもよい。この場合、優先オペレータと時間リソースとの対応付けを示す情報は、各基地局10又は端末20に対して別途通知されてよい。この対応付けにより、例えば、同じオペレータ(例えば、オペレータA)における空間リソースの使用状況を異なる基地局10において共有できる。例えば、同じオペレータに属する端末20が異なる基地局10に接続される場合に、各基地局10は、異なるビームを用いて、当該端末20の信号を空間多重しやすくなる。
 また、本実施の形態は、例えば、実施の形態2において説明したIABに適用してもよい。例えば、図11に示す無線通信システムの代わりに、セル1及びセル2をそれぞれ形成するIABノード30(例えば、図8を参照)と、端末20と、を含む無線通信システムにおいて、本実施の形態と同様の動作を適用してもよい。
 また、本実施の形態では、一例として、各オペレータの優先リソース(例えば、時間リソース)において、優先オペレータの信号と他のオペレータの信号とが空間多重される場合について説明した。しかし、オペレータ間の信号の多重は、空間多重に限らない。例えば、各オペレータの優先リソース(例えば、時間リソース)において、優先オペレータの信号と他のオペレータの信号とが周波数多重(FDM:Frequency Division Multiplexing)されてもよい。
 また、本実施の形態では、一例として、空間リソース情報にSSBインデックスが含まれる場合について説明した。しかし、空間リソース情報に含まれるパラメータは、SSBインデックスに限らない。例えば、空間リソース情報に含まれるパラメータは、使用されるビームのインデックスでもよく、他の参照信号(例えば、Sounding Reference Signal(SRS))のインデックスでもよい。また、空間リソース情報は、基地局10において使用するビームに対応するパラメータの代わりに、基地局10において使用されないビームに対応するパラメータでもよい。
 また、基地局10は、オペレータ間で共用せずに、オペレータ毎に設けられてもよい。この場合、例えば、図2に示すように、各オペレータの基地局10間において時刻同期してもよい。
 以上、本開示の実施の形態について説明した。
 なお、上述した実施の形態1,2及び3の少なくとも2つを組み合わせてもよい。
 (ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、本開示の一実施の形態に係る基地局10、端末20、及び、IABノード30のハードウェア構成の一例を示す図である。上述の基地局10、端末20、及び、IABノード30は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局10、端末20、及び、IABノード30のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局10、端末20、及び、IABノード30における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部101,201,301などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、基地局10、端末20、及び、IABノード30の制御部101,201,301は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の受信部102,202、送信部103,203、MT302、及び、DU303などは、通信装置1004によって実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10、端末20、及び、IABノード30は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 (情報の通知、シグナリング)
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 (適応システム)
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 (処理手順等)
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 (基地局の操作)
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 (入出力の方向)
 情報及び信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 (入出力された情報等の扱い)
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 (判定方法)
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 (ソフトウェア)
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 (情報、信号)
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 (「システム」、「ネットワーク」)
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 (パラメータ、チャネルの名称)
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 (基地局)
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 (端末)
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 (基地局/移動局)
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末20が有する機能を基地局10が有する構成としてもよい。
 (用語の意味、解釈)
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 (態様のバリエーション等)
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 本開示の一態様は、無線通信システムに有用である。
 10 基地局
 20 端末
 30 IABノード
 101,201,301 制御部
 102,202 受信部
 103,203 送信部
 302 MT
 303 DU

Claims (6)

  1.  第1の無線装置に割り当てた無線リソースの第2の無線装置による使用に関する設定を制御する制御部と、
     前記設定を示す情報を前記第2の無線装置へ送信する送信部と、
     を具備する基地局。
  2.  前記制御部は、前記無線リソースに関連付く制御情報に対する前記第2の無線装置によるモニタの設定を制御する、
     請求項1に記載の基地局。
  3.  前記送信部は、前記第1の無線装置と、前記第1の無線装置に割り当てた前記無線リソースとの対応付けを示す情報を第3の無線装置へ送信する、
     請求項1に記載の基地局。
  4.  前記制御部は、前記基地局である第1の基地局にアクセスする前記第2の無線装置による前記無線リソースを用いた通信のパラメータ設定を、他の第2の基地局にアクセスする前記第1の無線装置による前記無線リソースを用いた通信のパラメータ設定に基づいて制御する、
     請求項1に記載の基地局。
  5.  他の無線装置に割り当てられた無線リソースの使用に関する設定を示す情報を受信する受信部と、
     前記情報に基づいて、前記無線リソースの使用を制御する制御部と、
     を具備する無線装置。
  6.  基地局は、
     第1の無線装置に割り当てた無線リソースの第2の無線装置による使用に関する設定を制御し、
     前記設定に関する情報を前記第2の無線装置へ送信する、
     通信制御方法。
PCT/JP2018/045984 2018-12-13 2018-12-13 基地局、無線装置、及び、通信制御方法 WO2020121502A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/312,683 US20220070679A1 (en) 2018-12-13 2018-12-13 Base station, wireless device, and communication control method
PCT/JP2018/045984 WO2020121502A1 (ja) 2018-12-13 2018-12-13 基地局、無線装置、及び、通信制御方法
JP2020559659A JP7217292B2 (ja) 2018-12-13 2018-12-13 端末、基地局、通信方法、及び、システム
CN201880100166.7A CN113170311B (zh) 2018-12-13 2018-12-13 基站、无线装置以及通信控制方法
EP18943025.9A EP3897022A4 (en) 2018-12-13 2018-12-13 BASE STATION, WIRELESS DEVICE AND COMMUNICATIONS CONTROL METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/045984 WO2020121502A1 (ja) 2018-12-13 2018-12-13 基地局、無線装置、及び、通信制御方法

Publications (1)

Publication Number Publication Date
WO2020121502A1 true WO2020121502A1 (ja) 2020-06-18

Family

ID=71075431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045984 WO2020121502A1 (ja) 2018-12-13 2018-12-13 基地局、無線装置、及び、通信制御方法

Country Status (5)

Country Link
US (1) US20220070679A1 (ja)
EP (1) EP3897022A4 (ja)
JP (1) JP7217292B2 (ja)
CN (1) CN113170311B (ja)
WO (1) WO2020121502A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022029966A1 (ja) * 2020-08-06 2022-02-10 株式会社Nttドコモ 無線通信ノード
WO2023209875A1 (ja) * 2022-04-27 2023-11-02 株式会社Nttドコモ 無線通信装置及び無線通信方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230180060A1 (en) * 2021-12-07 2023-06-08 Qualcomm Incorporated Resource pattern indication from distributed unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022778A1 (ja) * 2015-08-05 2017-02-09 シャープ株式会社 端末装置、基地局装置および通信方法
US20180219642A1 (en) * 2017-02-02 2018-08-02 Qualcomm Incorporated Unified spatial operation for dynamic medium sharing

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2792762C (en) * 2010-04-14 2016-02-23 Lg Electronics Inc. Method for setting a search space for a relay node in a wireless communication system and apparatus for same
US9769800B2 (en) * 2012-07-12 2017-09-19 Lg Electronics Inc. Method and apparatus for allocating control channel for transceiving data between devices in wireless access system
CN111294192A (zh) * 2013-07-29 2020-06-16 太阳专利信托公司 通信装置和通信方法
EP3051908B1 (en) * 2013-09-26 2021-12-15 Sharp Kabushiki Kaisha Terminal, base station, and communication method
JP2015070342A (ja) * 2013-09-27 2015-04-13 シャープ株式会社 基地局、端末、および通信方法
WO2016006450A1 (ja) * 2014-07-11 2016-01-14 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信システム
CN112996006B (zh) * 2014-11-07 2024-01-19 松下电器(美国)知识产权公司 控制通信设备的过程的集成电路
JPWO2016121917A1 (ja) * 2015-01-29 2017-12-07 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
US10349438B2 (en) * 2015-03-17 2019-07-09 Qualcomm Incorporated Scheduling enhancements for contention-based shared frequency spectrum
WO2016190631A1 (ko) * 2015-05-22 2016-12-01 엘지전자 주식회사 무선 통신 시스템에서 채널 센싱 및 그에 따른 전송을 위한 방법 및 이를 위한 장치
US11153868B2 (en) * 2015-09-02 2021-10-19 Ntt Docomo, Inc. User equipment, wireless base station, and wireless communication method using multiple Transmission Time Interval (TTI) lengths
WO2017078796A1 (en) * 2015-11-06 2017-05-11 Intel IP Corporation Partial subframe transmission in licensed assisted access
EP3410803B1 (en) * 2016-01-27 2020-12-23 LG Electronics Inc. -1- Method for receiving downlink signal, in wireless communication system supporting unlicensed band, and device for supporting same
WO2017171422A1 (ko) * 2016-03-30 2017-10-05 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 하향링크 제어 정보를 수신하는 방법 및 이를 지원하는 장치
US10231198B2 (en) * 2016-03-31 2019-03-12 Lg Electronics Inc. Method and user equipment for receiving downlink signal, and method and base station for transmitting downlink signal
JP2018064253A (ja) * 2016-10-14 2018-04-19 株式会社Nttドコモ ユーザ装置及び信号受信方法
US10595326B2 (en) * 2016-12-12 2020-03-17 Mediatek Inc. Methods of efficient downlink control information transmission
US10674485B2 (en) * 2016-12-22 2020-06-02 Qualcomm Incorporated Common control resource set with user equipment-specific resources
US10609699B2 (en) * 2017-03-16 2020-03-31 Kt Corporation Method for monitoring, transmitting, and receiving downlink pre-emption indication information in new radio networks and apparatus thereof
JP2020109883A (ja) * 2017-04-27 2020-07-16 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
JP6532932B2 (ja) * 2017-12-27 2019-06-19 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022778A1 (ja) * 2015-08-05 2017-02-09 シャープ株式会社 端末装置、基地局装置および通信方法
US20180219642A1 (en) * 2017-02-02 2018-08-02 Qualcomm Incorporated Unified spatial operation for dynamic medium sharing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"RAN 1 Chairman's Notes", 3GPP TSG RAN WG1 MEETING #95, November 2018 (2018-11-01)
See also references of EP3897022A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022029966A1 (ja) * 2020-08-06 2022-02-10 株式会社Nttドコモ 無線通信ノード
WO2023209875A1 (ja) * 2022-04-27 2023-11-02 株式会社Nttドコモ 無線通信装置及び無線通信方法

Also Published As

Publication number Publication date
US20220070679A1 (en) 2022-03-03
CN113170311B (zh) 2024-02-06
EP3897022A4 (en) 2022-08-03
JPWO2020121502A1 (ja) 2021-09-27
EP3897022A1 (en) 2021-10-20
CN113170311A (zh) 2021-07-23
JP7217292B2 (ja) 2023-02-02

Similar Documents

Publication Publication Date Title
JP7197656B2 (ja) 端末、無線通信方法及びシステム
JP7308863B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7313428B2 (ja) 端末、基地局、方法、及びシステム
JP7293198B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020129229A1 (ja) 無線ノード、及び、無線通信方法
JP7217292B2 (ja) 端末、基地局、通信方法、及び、システム
JP7152587B2 (ja) 端末及び送信方法
WO2020250395A1 (ja) 無線通信ノード及び無線通信方法
WO2020144763A1 (ja) ユーザ端末及び無線通信方法
US20220015043A1 (en) User equipment and base station apparatus
WO2019198249A1 (ja) ユーザ端末及び無線基地局
CN112771948B (zh) 用户终端以及无线通信方法
EP4175381A1 (en) Wireless communication node
JP7273859B2 (ja) ユーザ装置及び基地局装置
US20220287108A1 (en) Terminal and communication method
WO2022157952A1 (ja) 端末、基地局、および、通信方法
WO2022163153A1 (ja) 端末及び通信方法
JP7296461B2 (ja) 基地局装置、端末、及び送信方法
EP4142333A1 (en) Terminal and communication method
WO2022208817A1 (ja) 無線基地局及び端末
JP7305756B2 (ja) 端末、基地局、通信システム及び通信方法
WO2023012916A1 (ja) 無線通信ノード及び無線通信方法
WO2022244122A1 (ja) 端末及び通信方法
WO2021064971A1 (ja) 端末および通信方法
EP4040885A1 (en) Terminal and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559659

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018943025

Country of ref document: EP

Effective date: 20210713