WO2022029872A1 - Fibre optique et système de transmission à fibre optique - Google Patents

Fibre optique et système de transmission à fibre optique Download PDF

Info

Publication number
WO2022029872A1
WO2022029872A1 PCT/JP2020/029775 JP2020029775W WO2022029872A1 WO 2022029872 A1 WO2022029872 A1 WO 2022029872A1 JP 2020029775 W JP2020029775 W JP 2020029775W WO 2022029872 A1 WO2022029872 A1 WO 2022029872A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core
clad
present disclosure
acoustic
Prior art date
Application number
PCT/JP2020/029775
Other languages
English (en)
Japanese (ja)
Inventor
隆 松井
陽子 山下
和秀 中島
泰志 坂本
信智 半澤
則幸 荒木
真一 青笹
諒太 今田
悠途 寒河江
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/029775 priority Critical patent/WO2022029872A1/fr
Publication of WO2022029872A1 publication Critical patent/WO2022029872A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/032Optical fibres with cladding with or without a coating with non solid core or cladding

Definitions

  • This disclosure relates to optical fibers and optical fiber transmission systems.
  • GAWBS Guided acoustic-wave Brillouin scattering
  • Non-Patent Documents 1 and 2 show that noise due to GAWBS can be reduced by an optical fiber having a plurality of pore structures uniform in the longitudinal direction.
  • An optical fiber having a pore structure has a problem that the manufacturing process is complicated and it is difficult to stably manufacture a long fiber, for example, a plurality of holes are formed in the optical fiber manufacturing process and precise control is required. Has.
  • the optical fiber of the present disclosure is An optical fiber having a clad and a core having a higher refractive index than the clad. At least one of the core or the clad is provided with one or more cavities located at positions other than the center of the core.
  • the optical fiber transmission system of the present disclosure is A transmitter that transmits optical signals and The optical fiber according to the present disclosure, which propagates an optical signal transmitted from the transmission unit, and A receiving unit that receives an optical signal propagated by the optical fiber, To prepare for.
  • An example of the structure of the optical fiber according to the present disclosure is shown.
  • An example of the AA'cross section is shown. It is a distribution of acoustic modes (TR 2, 7 modes) that induce GAWBS . It is an example of the scattering spectrum of GAWBS in a general-purpose single-mode optical fiber.
  • An example of the radial intensity of the acoustic mode is shown.
  • An example of the relationship between the power attenuation of the acoustic wave due to the cavity is shown.
  • An example of the system configuration of the present disclosure is shown.
  • the present disclosure is an optical fiber having a clad region and a core region having a higher refractive index than the clad region, and is discrete in one or in the longitudinal direction in either or both of the clad region and / or the core region of the optical fiber. It is characterized by having a hollow portion that is specifically arranged.
  • FIG. 1 shows a structural example of the optical fiber according to the present disclosure.
  • one or both of the regions of the clad 12 of the optical fiber and / or the region of the core 11 are provided with cavities 13 discretely arranged in the longitudinal direction.
  • the cavity portion 13 is arranged at a non-center position, that is, a position other than the center of the core 11.
  • FIG. 3 shows the distribution of acoustic modes (TR 2, 7 modes) that induce GAWBS .
  • TR 2, 7 modes acoustic modes
  • the acoustic wave spreads and is distributed throughout the clad, and the interaction with the light wave produces GAWBS. Therefore, in the present disclosure, the cavity portion 13 is arranged at a non-centered position in the optical fiber. As a result, the generated acoustic wave is lost and attenuated due to the presence of the cavity portion 13, and as a result, the GAWBS is reduced with respect to the propagated light.
  • one cavity 13 is arranged in the cross section, but it is preferable to arrange two or more of them because the acoustic wave can be more attenuated. Further, the cavity portion 13 can be arranged in the optical fiber at an arbitrary position and size by a processing technique such as laser processing using a femtosecond laser.
  • FIG. 4 is an example of the scattering spectrum of GAWBS in a general-purpose single-mode optical fiber.
  • a general-purpose optical fiber has multiple peaks discretely in a frequency band of 1 GHz or less, and particularly large scattering may occur in TR 2, 5 , TR 2, 7 , and TR 2, 13 modes of acoustic mode. I understand.
  • FIG. 5 shows an example of the radial intensity of the acoustic mode.
  • the horizontal axis is the normalized position r / D in which the center position r of the cavity 13 is standardized by the clad diameter D, and the vertical axis is the normalized acoustic wave intensity compared with the intensity of the acoustic wave when the cavity 13 is not present.
  • the center position r is the distance from the center of the core 11 to the center of the cavity 13.
  • the solid line, broken line, and dotted line represent TR 2, 5 , TR 2, 7 , and TR 2, 13 modes, respectively.
  • the normalized position r / D is small, that is, a relatively large intensity is generated at a position near the center, and this produces a large GAWBS by the interaction with the light wave.
  • the standardized position r / D has the highest strength at 0.02 to 0.12.
  • the cavity portion 13 is arranged at the normalized position r / D where the normalized acoustic wave intensity becomes large.
  • the normalized position r / D at which the standardized acoustic wave intensity is maximized, and the normalized position r / D where a plurality of acoustic modes overlap.
  • the present disclosure can efficiently attenuate the acoustic wave and reduce the GAWBS.
  • FIG. 6 shows an example of the relationship between the amount of power attenuation of the acoustic wave due to the cavity 13.
  • the horizontal axis is the normalized cavity diameter in which the diameter of the cavity 13 is standardized by the clad diameter, and the vertical axis is the reduction rate of the acoustic power as compared with the case where the cavity 13 is not present.
  • the acoustic mode was set to TR 2, 7 mode, which shows a large peak of GAWBS .
  • the cavity 13 is enlarged to receive and attenuate the loss, and a reduction effect of 10% or more can be obtained when the diameter of the normalized cavity is 0.07 or more. It is preferable to adopt a plurality of discrete arrangements in the longitudinal direction of the optical fiber or a plurality of arrangements in the cross section because a higher suppression effect can be obtained.
  • FIG. 7 shows an example of the optical fiber transmission system according to the present disclosure.
  • the transmission unit 91 and the reception unit 92 are connected by an optical fiber transmission line 93.
  • the optical fiber transmission line 93 of the present disclosure includes the optical fiber of the present disclosure at least in part.
  • the transmission unit 91 transmits an optical signal.
  • the optical fiber transmission line 93 propagates the optical signal transmitted from the transmission unit 91.
  • the receiving unit 92 receives the optical signal propagated in the optical fiber transmission line 93.
  • the optical signal can be, for example, an optical signal such as quantum communication or multi-level intensity / phase modulation (QAM: Quadrature Amplitude Modulation) that is greatly affected by GAWBS.
  • QAM Quadrature Amplitude Modulation
  • the optical fiber of the present disclosure can attenuate the acoustic wave generated in the optical fiber. Therefore, the noise power of the GAWBS generated in the optical fiber transmission line 93 is smaller than the noise power of the GAWBS generated by the same transmission power in the general-purpose single-mode fiber. Therefore, the optical fiber transmission system of the present disclosure can reduce the noise generated by GAWBS. For example, when the transmitting unit 91 and the receiving unit 92 transmit and receive optical signals using quantum communication or multi-valued intensity / phase modulation, the influence of GAWBS becomes large, so that the effects of the present disclosure can be further exerted.
  • the acoustic wave generated in the optical fiber is easily attenuated, and GAWBS is used. It is possible to reduce the noise caused by the noise.
  • This disclosure can be applied to the information and communication industry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

L'objectif de la présente divulgation est de permettre d'atténuer facilement des ondes acoustiques générées dans une fibre optique et de réduire le bruit généré par la diffusion Brillouin par ondes acoustiques guidées. La présente divulgation concerne une fibre optique qui comprend une gaine et un cœur pour lequel l'indice de réfraction est supérieur à la gaine, le coeur et/ou la gaine étant pourvu d'au moins une section de cavité disposée dans une position autre que le centre du coeur.
PCT/JP2020/029775 2020-08-04 2020-08-04 Fibre optique et système de transmission à fibre optique WO2022029872A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029775 WO2022029872A1 (fr) 2020-08-04 2020-08-04 Fibre optique et système de transmission à fibre optique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029775 WO2022029872A1 (fr) 2020-08-04 2020-08-04 Fibre optique et système de transmission à fibre optique

Publications (1)

Publication Number Publication Date
WO2022029872A1 true WO2022029872A1 (fr) 2022-02-10

Family

ID=80117916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029775 WO2022029872A1 (fr) 2020-08-04 2020-08-04 Fibre optique et système de transmission à fibre optique

Country Status (1)

Country Link
WO (1) WO2022029872A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367539A (ja) * 1991-06-11 1992-12-18 Fujikura Ltd 光ファイバ
US5627921A (en) * 1993-10-14 1997-05-06 Telefonaktiebolaget Lm Ericsson Optical fiber for sensors including holes in cladding
JPH10142433A (ja) * 1996-11-12 1998-05-29 Furukawa Electric Co Ltd:The 通信用光ファイバおよびその製造方法
JP2006285234A (ja) * 2005-03-22 2006-10-19 Matsushita Electric Ind Co Ltd 超高速レーザ直接書込加工された一体型回折素子を備えたマルチコア光ファイバ
US20070230861A1 (en) * 2004-05-14 2007-10-04 Igor Khrushchev Laser Inscribed Structures
JP2007532958A (ja) * 2004-04-16 2007-11-15 ディ.ケイ. アンド イー.エル. マクフェイル エンタープライジーズ プロプライエタリー リミテッド 空洞構造を備えた光学的活性基材
JP2014115328A (ja) * 2012-12-06 2014-06-26 Hitachi Metals Ltd ファイバブラッググレーティング及びその製造方法
JP2016537659A (ja) * 2013-01-29 2016-12-01 オーエフエス ファイテル,エルエルシー ホログラムを組み込まれた光導波路
JP2019531487A (ja) * 2016-08-10 2019-10-31 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. 光学導波路の屈曲及び/またはひずみを決定するための方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367539A (ja) * 1991-06-11 1992-12-18 Fujikura Ltd 光ファイバ
US5627921A (en) * 1993-10-14 1997-05-06 Telefonaktiebolaget Lm Ericsson Optical fiber for sensors including holes in cladding
JPH10142433A (ja) * 1996-11-12 1998-05-29 Furukawa Electric Co Ltd:The 通信用光ファイバおよびその製造方法
JP2007532958A (ja) * 2004-04-16 2007-11-15 ディ.ケイ. アンド イー.エル. マクフェイル エンタープライジーズ プロプライエタリー リミテッド 空洞構造を備えた光学的活性基材
US20070230861A1 (en) * 2004-05-14 2007-10-04 Igor Khrushchev Laser Inscribed Structures
JP2006285234A (ja) * 2005-03-22 2006-10-19 Matsushita Electric Ind Co Ltd 超高速レーザ直接書込加工された一体型回折素子を備えたマルチコア光ファイバ
JP2014115328A (ja) * 2012-12-06 2014-06-26 Hitachi Metals Ltd ファイバブラッググレーティング及びその製造方法
JP2016537659A (ja) * 2013-01-29 2016-12-01 オーエフエス ファイテル,エルエルシー ホログラムを組み込まれた光導波路
JP2019531487A (ja) * 2016-08-10 2019-10-31 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. 光学導波路の屈曲及び/またはひずみを決定するための方法

Similar Documents

Publication Publication Date Title
Hui Introduction to fiber-optic communications
KR950009564B1 (ko) 전자 방사 결합 장치 및 그를 구비한 광 파이버 통신 시스템
US8417069B2 (en) Multi dimension high security communication over multi mode fiber waveguide
JP4769120B2 (ja) 光通信システムおよびそれを備えたアクセスネットワーク
US6434311B1 (en) Reducing mode interference in transmission of a high order mode in optical fibers
US9121993B2 (en) Multi-core optical fiber and method of optical transmission
KR102014300B1 (ko) 다중 모드 및 단일 모드 전송을 위해 최적화된 고대역폭 다중 모드 광섬유
US6327403B1 (en) Reducing mode interference in transmission of LP02 Mode in optical fibers
Chen et al. 30Gbit/s 3× 3 optical mode group division multiplexing system with mode-selective spatial filtering
US8774574B2 (en) Optical time domain reflectometry for multiple spatial mode fibers
Chen et al. Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm
EP3274746B1 (fr) Coupleur optique à guide d'ondes à gradient d'indice
Li et al. 52 m/9 Gb/s PAM4 plastic optical fiber-underwater wireless laser transmission convergence with a laser beam reducer
WO2022029872A1 (fr) Fibre optique et système de transmission à fibre optique
CN101741475B (zh) 用于光纤到户的平面光波导型单纤三向复用器
JPS6237902B2 (fr)
JP5117636B1 (ja) 光伝送方法
US8457465B1 (en) Optical attenuation system
JP2009509199A (ja) マルチモードファイバによる高ビットレート伝送
JP2013522961A (ja) 無中継長距離光ファイバ伝送システム
Marcou et al. Comments on “On the analysis of a weakly guiding doubly clad dielectric optical fiber with an annular core”
Hayashi et al. Multi-core fiber for high-capacity long-haul spatially-multiplexed transmission
JP2005318532A (ja) 光信号伝送システム及びcatv伝送システム
Sakamoto et al. Fibre twisting and bending induced mode conversion characteristics in coupled multi-core fibre
US9146359B2 (en) Optical dispersion compensation module using fiber Bragg grating with multiple degrees of freedom for the optical field

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP