WO2022028585A1 - 信息传输方法、网络设备、终端设备及存储介质 - Google Patents

信息传输方法、网络设备、终端设备及存储介质 Download PDF

Info

Publication number
WO2022028585A1
WO2022028585A1 PCT/CN2021/111235 CN2021111235W WO2022028585A1 WO 2022028585 A1 WO2022028585 A1 WO 2022028585A1 CN 2021111235 W CN2021111235 W CN 2021111235W WO 2022028585 A1 WO2022028585 A1 WO 2022028585A1
Authority
WO
WIPO (PCT)
Prior art keywords
qcl
reference signal
trp
qcl type
type
Prior art date
Application number
PCT/CN2021/111235
Other languages
English (en)
French (fr)
Inventor
黄秋萍
苏昕
高秋彬
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP21853728.0A priority Critical patent/EP4195565A1/en
Priority to US18/020,083 priority patent/US20230318688A1/en
Publication of WO2022028585A1 publication Critical patent/WO2022028585A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06968Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to an information transmission method, a network device, a terminal device, and a storage medium.
  • the terminal equipment usually uses the demodulation reference signal (Demodulation Reference Signal, DMRS) to obtain the DMRS resource element (Resource Element, RE) when performing physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) channel estimation. channel estimation value, and then obtain the channel estimation value on the PDSCH RE by interpolation.
  • DMRS Demodulation Reference Signal
  • PRB Physical Resource Block
  • the UE In order to improve the channel estimation performance of the UE, the UE usually needs to use a tracking reference signal (Tracking reference signal, TRS) to obtain large-scale parameters in the time domain and/or frequency domain, and use them to obtain channel estimation interpolation.
  • Tracking reference signal Tracking reference signal
  • TRS tracking reference signal
  • a single frequency network Single Frequency Network, SFN deployment method is usually adopted, which is referred to as the HST-SFN scenario for short.
  • multiple remote radio heads Remote Radio Heads, RRHs
  • BBU Building Baseband Unit
  • Two transmission reception points (TRPs) are usually deployed, which are directed to different beam directions to cover the rails; all RRHs connected to the same BBU share the same cell (cell) identity (Identity Document, ID).
  • the information transmission scheme of the existing HST-SFN scenario is transparent SFN transmission, that is, downlink signals (such as PDSCH and DMRS of PDSCH) are sent from TRPs on the RRHs of multiple network devices, and a transmission configuration is configured for each terminal device.
  • Indication Transmission Configuration Indication, TCI
  • TCI Transmission Configuration Indication
  • each TCI state at least indicates a different reference signal configured for each terminal device.
  • the terminal device estimates the Doppler characteristic of the channel experienced by the PDSCH based on the reference signal (usually TRS) of the Doppler characteristic included in the Quasi Co-Location (QCL) type in the TCI state (referred to as the Doppler characteristic of the PDSCH). ler characteristics).
  • Embodiments of the present disclosure provide an information transmission method, a network device, a terminal device, and a storage medium, so as to solve the defect of large pilot overhead in the prior art.
  • an embodiment of the present disclosure provides an information transmission method, including:
  • the QCL configuration information indicates at least two reference signals and the QCL type corresponding to the reference signals
  • the first reference signal in the reference signals is used for the
  • the terminal device determines the Doppler characteristic of the downlink signal, the second reference signal in the reference signal is used by the terminal device to determine the delay characteristic of the downlink signal, and the number of the first reference signal is one or more, the number of the second reference signal is one or more;
  • the sending the downlink signal to the terminal device includes:
  • the method also includes:
  • the second reference signal is sent by using a TRP different from the TRP sending the first reference signal among the TRPs sending the downlink signal Signal.
  • the sending the downlink signal to the terminal device includes:
  • the method also includes:
  • the second reference signal is simultaneously sent to the terminal device using all TRPs that send the downlink signal.
  • the first reference signal is a reference signal whose QCL type is QCL-TypeA
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE
  • the QCL-TypeE indicates the QCL type indicating the average delay average delay and the delay extension delay spread
  • the QCL-TypeA indicates the Doppler frequency shift Doppler shift, Doppler extension Doppler spread, average delay average delay and the QCL type of the delay spread delay spread
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeA, wherein the QCL-TypeB indicates the QCL type indicating Doppler shift and Doppler spread ;or
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE; or
  • Both the first reference signal and the second reference signal are reference signals whose QCL type is QCL-TypeA.
  • the QCL configuration information is carried by a set composed of a transmission configuration indication state TCI state;
  • the set composed of the TCI state is any of the following:
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeE;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal and the second reference signal whose QCL types are both QCL-TypeA.
  • the downlink signal is sent by multiple transmission and reception points TRP, and before the sending of the downlink signal to the terminal device, further includes any one of the following:
  • the first TRP is the network device A selected TRP
  • the second TRP is one or more TRPs other than the first TRP
  • the frequency compensation value of the TRP is determined as the frequency compensation value of the fourth TRP in the reference beam direction, wherein the third TRP is one TRP in the reference beam direction, and the fourth TRP is the reference beam direction one or more TRPs other than the third TRP;
  • a frequency offset value is determined according to the signal received by the fifth TRP in the reference beam direction of the uplink signal, and the frequency compensation value of the sixth TRP in the reference beam direction is determined according to the frequency offset value, wherein the The fifth TRP is a group of TRPs in the reference beam direction, and the sixth TRP is one or more TRPs other than the fifth TRP in the reference beam direction;
  • a frequency offset value is determined according to signals received by all TRPs in the reference beam direction of the uplink signal, and frequency compensation values of seventh TRPs in other beam directions are determined according to the frequency offset value, wherein the seventh TRP one or more TRPs for beam directions other than the reference beam direction;
  • the sending the downlink signal to the terminal device includes:
  • the downlink signal is sent to the terminal device according to the frequency compensation value.
  • the determining the frequency compensation value of the downlink signal at the second TRP according to the frequency offset value of the first TRP includes:
  • the difference is determined to be the frequency compensation value of the second TRP. ;or,
  • the frequency compensation value of the first TRP is ⁇ f 1 , it is determined that the sum of the difference and the ⁇ f 1 is the frequency compensation value of the second TRP, where ⁇ f 1 is not 0.
  • the method further includes:
  • the frequency compensation value of each TRP in other beam directions is determined according to the frequency offset value of the third TRP.
  • the determining the frequency compensation value of each TRP in other beam directions according to the frequency offset value of the third TRP includes:
  • the eighth TRP is one or more TRPs in other beam directions other than the reference beam direction;
  • the difference is determined to be equal to the beam direction of the eighth TRP. frequency offset value for all TRPs; or,
  • the frequency compensation value of the third TRP is ⁇ f 2 , determine that the sum of the difference and the ⁇ f 2 is the frequency compensation value of all TRPs in the beam direction where the eighth TRP is located, where ⁇ f 2 is not 0 .
  • the information transmission method further includes at least one of the following:
  • the QCL configuration information indicates a first reference signal whose QCL type is QCL-TypeA and a second reference signal whose QCL type is QCL-TypeE, sending the first reference signal whose QCL type is QCL-TypeA through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeE through one or more of the second TRPs;
  • the QCL configuration information indicates that the first reference signal whose QCL type is QCL-TypeB and the second reference signal whose QCL type is QCL-TypeA is, sending the first reference signal whose QCL type is QCL-TypeB through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeA through one or more of the second TRPs;
  • the QCL configuration information indicates that the QCL type is the first reference signal of QCL-TypeB and the second reference signal of the QCL type is QCL-TypeE
  • the first reference signal of the QCL type of QCL-TypeB is sent through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeE through one or more of the second TRPs;
  • the QCL configuration information indicates that the QCL type is the first reference signal of QCL-TypeA and the second reference signal of the QCL type is QCL-TypeA, sending the first reference signal of the QCL type of QCL-TypeA through the first TRP A reference signal, and the second reference signal whose QCL type is QCL-TypeA is sent through one or more of the second TRPs.
  • the information transmission method further includes:
  • the QCL reference signal is a signal in the first reference signal.
  • the information transmission method further includes:
  • TCI state indication information indicates the TCI state where the first reference signal is located
  • sequence number indication information indicates the sequence number of the first reference signal in all QCL-TypeA reference signals in the TCI state associated with the downlink signal.
  • an embodiment of the present disclosure further provides an information transmission method, including: receiving quasi-co-site QCL configuration information of a downlink signal, where the QCL configuration information indicates at least two reference signals and a QCL type corresponding to the reference signals , the first reference signal in the reference signal is used by the terminal device to determine the Doppler characteristic of the downlink signal, and the second reference signal in the reference signal is used by the terminal device to determine the Doppler characteristic of the downlink signal Time delay characteristics, the number of the first reference signal is one or more, and the number of the second reference signal is one or more;
  • the downlink signal is acquired according to the QCL configuration information.
  • the acquiring the downlink signal according to the QCL configuration information includes:
  • the downlink signal is acquired according to the Doppler characteristic and the time delay characteristic.
  • the determining the delay characteristic of the downlink signal according to the second reference signal includes:
  • the time delay characteristic of the downlink signal is determined according to the first reference signal and the second reference signal.
  • the method before acquiring the downlink signal according to the Doppler characteristic and the delay characteristic, the method further includes:
  • the method before acquiring the downlink signal according to the Doppler characteristic and the delay characteristic, the method further includes:
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal, and the time of the downlink signal is determined according to the second reference signal.
  • Extended properties including:
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal including the Doppler characteristic and the delay characteristic according to the QCL type; and the first reference signal including only the delay characteristic according to the QCL type and the second reference signal whose QCL type includes a delay characteristic to determine the delay characteristic of the downlink signal; or,
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal whose QCL type includes only Doppler characteristics; and the Doppler characteristic is determined according to the second reference signal whose QCL type only includes delay characteristics the delay characteristics of the downstream signal; or,
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal including only Doppler characteristic according to the QCL type; and the second reference including delay characteristic and Doppler characteristic according to the QCL type
  • the signal determines the delay characteristic of the downlink signal; or,
  • the downlink is determined according to all the first reference signals of the QCL types including Doppler characteristics and delay characteristics and all the second reference signals of the QCL types including Doppler characteristics and delay characteristics delay characteristic of the signal; and determining the Doppler characteristic of the downlink signal according to the first reference signal of the QCL type including the Doppler characteristic and the delay characteristic; or,
  • the delay characteristic of the downlink signal is determined according to the second reference signal including the Doppler characteristic and the delay characteristic according to the QCL type; and the first reference signal including the Doppler characteristic and the delay characteristic according to the QCL type A reference signal determines the Doppler characteristic of the downlink signal.
  • the first reference signal is a specific reference signal among the reference signals of the QCL type including Doppler characteristics and time delay characteristics.
  • the second reference signal is a QCL type reference signal including Doppler characteristics and time delay characteristics.
  • the first reference signal is a reference signal whose QCL type is QCL-TypeA
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE
  • the QCL-TypeE indicates the QCL type indicating the average delay average delay and the delay extension delay spread
  • the QCL-TypeA indicates the Doppler frequency shift Doppler shift, Doppler extension Doppler spread, average delay average delay and the QCL type of the delay spread delay spread
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeA, wherein the QCL-TypeB indicates the QCL type indicating Doppler shift and Doppler spread ;or
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE; or
  • Both the first reference signal and the second reference signal are reference signals whose QCL type is QCL-TypeA.
  • the QCL configuration information is carried by a set composed of a transmission configuration indication state TCI state, and the set composed of the TCI state is one of the following:
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeE;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal and the second reference signal whose QCL types are both QCL-TypeA.
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal, and the time of the downlink signal is determined according to the second reference signal.
  • Extended properties including:
  • the delay characteristic of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeA and the second reference signal whose QCL type is QCL-TypeE, and the delay characteristic of the downlink signal is determined according to the QCL type is QCL - the first reference signal of Type A determines the Doppler characteristic of the downlink signal; or,
  • the time-domain characteristic of the downlink signal is determined according to the second reference signal whose QCL type is QCL-TypeA, and the multiplicity of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeB. Puller properties; or,
  • the time-domain characteristic of the downlink signal is determined according to the second reference signal whose QCL type is QCL-TypeE, and the multiplicity of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeB. Puller properties; or,
  • the delay characteristic of the downlink signal is determined according to all the first reference signals whose QCL type is QCL-TypeA and all the second reference signals whose QCL type is QCL-TypeA, and according to the A specific reference signal in the first reference signal whose QCL type is QCL-TypeA determines the Doppler characteristic of the downlink signal.
  • the specific reference signal is a reference signal indicated by the network device or a default reference signal.
  • the network device performs frequency pre-compensation when transmitting the downlink signal; the method further includes:
  • the transmission frequency of the uplink signal is determined according to the indication information; wherein the uplink signal is an uplink signal used to determine the frequency precompensation value of the downlink signal in the network device.
  • the downlink signal is transmitted through multiple TRPs, and frequency precompensation is performed on one or more of the TRPs, further comprising:
  • the first reference signal is used to determine the transmission frequency of the uplink signal used to calculate the frequency pre-compensation value of the downlink signal at each TRP.
  • an embodiment of the present disclosure further provides a network device, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the QCL configuration information indicates at least two reference signals and the QCL type corresponding to the reference signals
  • the first reference signal in the reference signals is used for the
  • the terminal device determines the Doppler characteristic of the downlink signal, the second reference signal in the reference signal is used by the terminal device to determine the delay characteristic of the downlink signal, and the number of the first reference signal is one or more, the number of the second reference signal is one or more;
  • the sending the downlink signal to the terminal device includes:
  • the sending the downlink signal to the terminal device includes:
  • the second reference signal is simultaneously sent to the terminal device using all TRPs that send the downlink signal.
  • the first reference signal is a reference signal whose QCL type is QCL-TypeA
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE
  • the QCL-TypeE indicates the QCL type indicating the average delay average delay and the delay spread delay spread
  • the QCL-TypeA indicates the Doppler shift frequency Doppler shift, Doppler spread Doppler spread, and average delay average delay to the QCL type of the delay spread delay spread
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeA, wherein the QCL-TypeB indicates the QCL type indicating Doppler shift and Doppler spread ;or
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE; or
  • Both the first reference signal and the second reference signal are reference signals whose QCL type is QCL-TypeA.
  • the QCL configuration information is carried by a set composed of a transmission configuration indication state TCI state;
  • the set composed of the TCI state is any of the following:
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeE;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal and the second reference signal whose QCL types are both QCL-TypeA.
  • the downlink signal is sent by multiple transmission and reception points TRP, and before the sending of the downlink signal to the terminal device, further includes any one of the following:
  • the first TRP is the network device A selected TRP
  • the second TRP is one or more TRPs other than the first TRP
  • the frequency compensation value of the TRP is determined as the frequency compensation value of the fourth TRP in the reference beam direction, wherein the third TRP is a TRP in the reference beam direction, and the fourth TRP is the reference beam direction one or more TRPs other than the third TRP;
  • a frequency offset value is determined according to the signal received by the fifth TRP in the reference beam direction of the uplink signal, and the frequency compensation value of the sixth TRP in the reference beam direction is determined according to the frequency offset value, wherein the The fifth TRP is a group of TRPs in the reference beam direction, and the sixth TRP is one or more TRPs other than the fifth TRP in the reference beam direction;
  • a frequency offset value is determined according to signals received by all TRPs in the reference beam direction of the uplink signal, and frequency compensation values of seventh TRPs in other beam directions are determined according to the frequency offset value, wherein the seventh TRP one or more TRPs for beam directions other than the reference beam direction;
  • the sending the downlink signal to the terminal device includes:
  • the downlink signal is sent to the terminal device according to the frequency compensation value.
  • the determining the frequency compensation value of the downlink signal at the second TRP according to the frequency offset value of the first TRP includes:
  • the difference is determined to be the frequency compensation value of the second TRP. ;or,
  • the frequency compensation value of the first TRP is ⁇ f 1 , it is determined that the sum of the difference and the ⁇ f 1 is the frequency compensation value of the second TRP, where ⁇ f 1 is not 0.
  • the method further includes:
  • the frequency compensation value of each TRP in other beam directions is determined according to the frequency offset value of the third TRP.
  • the determining the frequency compensation value of each TRP in other beam directions according to the frequency offset value of the third TRP includes:
  • the eighth TRP is one or more TRPs in other beam directions other than the reference beam direction;
  • the difference is determined to be equal to the beam direction of the eighth TRP. frequency offset value for all TRPs; or,
  • the frequency compensation value of the third TRP is ⁇ f 2 , determine that the sum of the difference and the ⁇ f 2 is the frequency compensation value of all TRPs in the beam direction where the eighth TRP is located, where ⁇ f 2 is not 0 .
  • the network device further includes at least one of the following:
  • the QCL configuration information indicates a first reference signal whose QCL type is QCL-TypeA and a second reference signal whose QCL type is QCL-TypeE, sending the first reference signal whose QCL type is QCL-TypeA through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeE through one or more of the second TRPs;
  • the QCL configuration information indicates that the first reference signal whose QCL type is QCL-TypeB and the second reference signal whose QCL type is QCL-TypeA is, sending the first reference signal whose QCL type is QCL-TypeB through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeA through one or more of the second TRPs;
  • the QCL configuration information indicates that the QCL type is the first reference signal of QCL-TypeB and the second reference signal of the QCL type is QCL-TypeE
  • the first reference signal of the QCL type of QCL-TypeB is sent through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeE through one or more of the second TRPs;
  • the QCL configuration information indicates that the QCL type is the first reference signal of QCL-TypeA and the second reference signal of the QCL type is QCL-TypeA, sending the first reference signal of the QCL type of QCL-TypeA through the first TRP A reference signal, and the second reference signal whose QCL type is QCL-TypeA is sent through one or more of the second TRPs.
  • the network device further includes:
  • the QCL reference signal is a signal in the first reference signal.
  • the network device further includes:
  • TCI state indication information indicates the TCI state where the first reference signal is located
  • sequence number indication information indicates the sequence number of the first reference signal in all QCL-TypeA reference signals in the TCI state associated with the downlink signal.
  • an embodiment of the present disclosure further provides a network device, including:
  • the first sending unit is configured to send the quasi-co-site QCL configuration information of the downlink signal to the terminal equipment, the QCL configuration information indicates at least two reference signals and the QCL type corresponding to the reference signal, and the No.
  • a reference signal is used by the terminal device to determine the Doppler characteristic of the downlink signal
  • a second reference signal in the reference signal is used by the terminal device to determine the delay characteristic of the downlink signal
  • the first reference signal is used to determine the time delay characteristic of the downlink signal.
  • the number of reference signals is one or more, and the number of the second reference signals is one or more;
  • the second sending unit is configured to send the downlink signal to the terminal device.
  • the second sending unit is configured to:
  • the network device also includes:
  • a third sending unit configured to send the reference signal to the terminal device; wherein, when sending the reference signal, a TRP that is different from the TRP used to send the first reference signal is used for sending the downlink signal.
  • the TRP sends the second reference signal.
  • the second sending unit is configured to:
  • the network device also includes:
  • a fourth sending unit configured to simultaneously send the second reference signal to the terminal device using all the TRPs that send the downlink signal.
  • the first reference signal is a reference signal whose QCL type is QCL-TypeA
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE
  • the QCL-TypeE indicates the QCL type indicating the average delay average delay and the delay spread delay spread
  • the QCL-TypeA indicates the Doppler shift frequency Doppler shift, Doppler spread Doppler spread, and average delay average delay to the QCL type of the delay spread delay spread
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeA, wherein the QCL-TypeB indicates the QCL type indicating Doppler shift and Doppler spread ;or
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE; or
  • Both the first reference signal and the second reference signal are reference signals whose QCL type is QCL-TypeA.
  • the QCL configuration information is carried by a set composed of a transmission configuration indication state TCI state;
  • the set composed of the TCI state is any of the following:
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeE;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal and the second reference signal whose QCL types are both QCL-TypeA.
  • the downlink signal is sent by multiple transmission and reception points TRP, and the network device further includes a first determination unit configured to perform any one of the following:
  • the first TRP is the network device A selected TRP
  • the second TRP is one or more TRPs other than the first TRP
  • the frequency compensation value of the TRP is determined as the frequency compensation value of the fourth TRP in the reference beam direction, wherein the third TRP is one TRP in the reference beam direction, and the fourth TRP is the reference beam direction one or more TRPs other than the third TRP;
  • a frequency offset value is determined according to the signal received by the fifth TRP in the reference beam direction of the uplink signal, and the frequency compensation value of the sixth TRP in the reference beam direction is determined according to the frequency offset value, wherein the The fifth TRP is a group of TRPs in the reference beam direction, and the sixth TRP is one or more TRPs other than the fifth TRP in the reference beam direction;
  • a frequency offset value is determined according to signals received by all TRPs in the reference beam direction of the uplink signal, and frequency compensation values of seventh TRPs in other beam directions are determined according to the frequency offset value, wherein the seventh TRP one or more TRPs for beam directions other than the reference beam direction;
  • the second sending unit is used for:
  • the downlink signal is sent to the terminal device according to the frequency compensation value.
  • the determining the frequency compensation value of the downlink signal at the second TRP according to the frequency offset value of the first TRP includes:
  • the difference is determined to be the frequency compensation value of the second TRP. ;or,
  • the frequency compensation value of the first TRP is ⁇ f 1 , it is determined that the sum of the difference and the ⁇ f 1 is the frequency compensation value of the second TRP, where ⁇ f 1 is not 0.
  • the method further includes:
  • the frequency compensation value of each TRP in other beam directions is determined according to the frequency offset value of the third TRP.
  • the determining the frequency compensation value of each TRP in other beam directions according to the frequency offset value of the third TRP includes:
  • the eighth TRP is one or more TRPs in other beam directions other than the reference beam direction;
  • the difference is determined to be equal to the beam direction of the eighth TRP. frequency offset value for all TRPs; or,
  • the frequency compensation value of the third TRP is ⁇ f 2 , determine that the sum of the difference and the ⁇ f 2 is the frequency compensation value of all TRPs in the beam direction where the eighth TRP is located, where ⁇ f 2 is not 0 .
  • the network device further includes: a fifth sending unit, configured to perform at least one of the following:
  • the QCL configuration information indicates a first reference signal whose QCL type is QCL-TypeA and a second reference signal whose QCL type is QCL-TypeE, sending the first reference signal whose QCL type is QCL-TypeA through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeE through one or more of the second TRPs;
  • the QCL configuration information indicates that the first reference signal whose QCL type is QCL-TypeB and the second reference signal whose QCL type is QCL-TypeA is, sending the first reference signal whose QCL type is QCL-TypeB through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeA through one or more of the second TRPs;
  • the QCL configuration information indicates that the QCL type is the first reference signal of QCL-TypeB and the second reference signal of the QCL type is QCL-TypeE
  • the first reference signal of the QCL type of QCL-TypeB is sent through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeE through one or more of the second TRPs;
  • the QCL configuration information indicates that the QCL type is the first reference signal of QCL-TypeA and the second reference signal of the QCL type is QCL-TypeA, sending the first reference signal of the QCL type of QCL-TypeA through the first TRP A reference signal, and the second reference signal whose QCL type is QCL-TypeA is sent through one or more of the second TRPs.
  • the network device further includes:
  • a sixth sending unit configured to send indication information of a QCL reference signal of the uplink signal to the terminal device, where the QCL reference signal is used to indicate a reference signal used by the terminal device to determine the transmission frequency of the uplink signal .
  • the QCL reference signal is a signal in the first reference signal.
  • the network device further includes:
  • TCI state indication information indicates the TCI state where the first reference signal is located
  • sequence number indication information indicates the sequence number of the first reference signal in all QCL-TypeA reference signals in the TCI state associated with the downlink signal.
  • an embodiment of the present disclosure further provides a terminal device, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the QCL configuration information at least indicates two reference signals and the QCL type corresponding to the reference signals
  • the first reference signal in the reference signals is used for the terminal device to determine Doppler characteristics of the downlink signal
  • the second reference signal in the reference signal is used by the terminal device to determine the delay characteristic of the downlink signal
  • the number of the first reference signal is one or more
  • the number of the second reference signal is one or more;
  • the downlink signal is acquired according to the QCL configuration information.
  • the acquiring the downlink signal according to the QCL configuration information includes:
  • the determining the delay characteristic of the downlink signal according to the second reference signal includes:
  • the time delay characteristic of the downlink signal is determined according to the first reference signal and the second reference signal.
  • the method before acquiring the downlink signal according to the Doppler characteristic and the delay characteristic, the method further includes:
  • the method before acquiring the downlink signal according to the Doppler characteristic and the delay characteristic, the method further includes:
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal
  • the time delay of the downlink signal is determined according to the second reference signal Features, including:
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal including the Doppler characteristic and the delay characteristic according to the QCL type; and the first reference signal including only the delay characteristic according to the QCL type and the second reference signal whose QCL type includes a delay characteristic to determine the delay characteristic of the downlink signal; or,
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal whose QCL type includes only Doppler characteristics; and the Doppler characteristic is determined according to the second reference signal whose QCL type only includes delay characteristics the delay characteristics of the downstream signal; or,
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal including only Doppler characteristic according to the QCL type; and the second reference including delay characteristic and Doppler characteristic according to the QCL type
  • the signal determines the delay characteristic of the downlink signal; or,
  • the downlink is determined according to all the first reference signals of the QCL types including Doppler characteristics and delay characteristics and all the second reference signals of the QCL types including Doppler characteristics and delay characteristics delay characteristic of the signal; and determining the Doppler characteristic of the downlink signal according to the first reference signal of the QCL type including the Doppler characteristic and the delay characteristic; or,
  • the delay characteristic of the downlink signal is determined according to the second reference signal including the Doppler characteristic and the delay characteristic according to the QCL type; and the first reference signal including the Doppler characteristic and the delay characteristic according to the QCL type A reference signal determines the Doppler characteristic of the downlink signal.
  • the first reference signal is a specific reference signal among the reference signals of the QCL type including Doppler characteristics and time delay characteristics.
  • the second reference signal is a QCL type reference signal including Doppler characteristics and time delay characteristics.
  • the first reference signal is a reference signal whose QCL type is QCL-TypeA
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE
  • the QCL-TypeE indicates the QCL type indicating the average delay average delay and the delay spread delay spread
  • the QCL-TypeA indicates the Doppler shift Doppler shift, the Doppler spread Doppler spread, the average delay average delay to the QCL type of the delay spread delay spread
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeA, wherein the QCL-TypeB indicates the QCL type indicating Doppler shift and Doppler spread ;or
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE; or
  • Both the first reference signal and the second reference signal are reference signals whose QCL type is QCL-TypeA.
  • the QCL configuration information is carried by a set composed of a transmission configuration indication state TCI state, and the set composed of the TCI state is one of the following:
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeE;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal and the second reference signal whose QCL types are both QCL-TypeA.
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal
  • the time delay of the downlink signal is determined according to the second reference signal Features, including:
  • the delay characteristic of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeA and the second reference signal whose QCL type is QCL-TypeE, and the delay characteristic of the downlink signal is determined according to the QCL type is QCL - the first reference signal of Type A determines the Doppler characteristic of the downlink signal; or,
  • the time-domain characteristic of the downlink signal is determined according to the second reference signal whose QCL type is QCL-TypeA, and the multiplicity of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeB. Puller properties; or,
  • the time-domain characteristic of the downlink signal is determined according to the second reference signal whose QCL type is QCL-TypeE, and the multiplicity of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeB. Puller properties; or,
  • the delay characteristic of the downlink signal is determined according to all the first reference signals whose QCL type is QCL-TypeA and all the second reference signals whose QCL type is QCL-TypeA, and according to the A specific reference signal in the first reference signal whose QCL type is QCL-TypeA determines the Doppler characteristic of the downlink signal.
  • the specific reference signal is a reference signal indicated by the network device or a default reference signal.
  • the network device performs frequency pre-compensation when transmitting the downlink signal; the method further includes:
  • the transmission frequency of the uplink signal is determined according to the indication information; wherein the uplink signal is an uplink signal used to determine the frequency precompensation value of the downlink signal in the network device.
  • the downlink signal is transmitted through multiple TRPs, and frequency precompensation is performed on one or more of the TRPs, further comprising:
  • the first reference signal is used to determine the transmission frequency of the uplink signal used to calculate the frequency pre-compensation value of the downlink signal at each TRP.
  • an embodiment of the present disclosure further provides a terminal device, including:
  • a first receiving unit configured to receive quasi-co-site QCL configuration information of downlink signals, the QCL configuration information at least indicates two reference signals and a QCL type corresponding to the reference signals, and the first reference signal in the reference signals Used by the terminal device to determine the Doppler characteristic of the downlink signal, the second reference signal in the reference signal is used by the terminal device to determine the time delay characteristic of the downlink signal, and the first reference signal
  • the number is one or more, and the number of the second reference signal is one or more;
  • a second obtaining unit configured to obtain the downlink signal according to the QCL configuration information.
  • the second obtaining unit is configured to:
  • the downlink signal is acquired according to the Doppler characteristic and the time delay characteristic.
  • the determining the delay characteristic of the downlink signal according to the second reference signal includes:
  • the time delay characteristic of the downlink signal is determined according to the first reference signal and the second reference signal.
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal
  • the time delay of the downlink signal is determined according to the second reference signal Features, including:
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal including the Doppler characteristic and the delay characteristic according to the QCL type; and the first reference signal including only the delay characteristic according to the QCL type and the second reference signal whose QCL type includes a delay characteristic to determine the delay characteristic of the downlink signal; or,
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal whose QCL type includes only Doppler characteristics; and the Doppler characteristic is determined according to the second reference signal whose QCL type only includes delay characteristics the delay characteristics of the downstream signal; or,
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal including only Doppler characteristic according to the QCL type; and the second reference including delay characteristic and Doppler characteristic according to the QCL type
  • the signal determines the delay characteristic of the downlink signal; or,
  • the downlink is determined according to all the first reference signals of the QCL types including Doppler characteristics and delay characteristics and all the second reference signals of the QCL types including Doppler characteristics and delay characteristics delay characteristic of the signal; and determining the Doppler characteristic of the downlink signal according to the first reference signal of the QCL type including the Doppler characteristic and the delay characteristic; or,
  • the delay characteristic of the downlink signal is determined according to the second reference signal including the Doppler characteristic and the delay characteristic according to the QCL type; and the first reference signal including the Doppler characteristic and the delay characteristic according to the QCL type A reference signal determines the Doppler characteristic of the downlink signal.
  • the first reference signal is a specific reference signal among the reference signals of the QCL type including Doppler characteristics and time delay characteristics.
  • the second reference signal is a QCL type reference signal including Doppler characteristics and time delay characteristics.
  • the first reference signal is a reference signal whose QCL type is QCL-TypeA
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE
  • the QCL-TypeE indicates the QCL type indicating the average delay average delay and the delay spread delay spread
  • the QCL-TypeA indicates the Doppler shift frequency Doppler shift, Doppler spread Doppler spread, and average delay average delay to the QCL type of the delay spread delay spread
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeA, wherein the QCL-TypeB indicates the QCL type indicating Doppler shift and Doppler spread ;or
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE; or
  • Both the first reference signal and the second reference signal are reference signals whose QCL type is QCL-TypeA.
  • the QCL configuration information is carried by a set composed of a transmission configuration indication state TCI state, and the set composed of the TCI state is one of the following:
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeE;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal and the second reference signal whose QCL types are both QCL-TypeA.
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal
  • the time delay of the downlink signal is determined according to the second reference signal Features, including:
  • the delay characteristic of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeA and the second reference signal whose QCL type is QCL-TypeE, and the delay characteristic of the downlink signal is determined according to the QCL type is QCL - the first reference signal of Type A determines the Doppler characteristic of the downlink signal; or,
  • the time-domain characteristic of the downlink signal is determined according to the second reference signal whose QCL type is QCL-TypeA, and the multiplicity of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeB. Puller properties; or,
  • the time-domain characteristic of the downlink signal is determined according to the second reference signal whose QCL type is QCL-TypeE, and the multiplicity of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeB. Puller properties; or,
  • the delay characteristic of the downlink signal is determined according to all the first reference signals whose QCL type is QCL-TypeA and all the second reference signals whose QCL type is QCL-TypeA, and according to the A specific reference signal in the first reference signal whose QCL type is QCL-TypeA determines the Doppler characteristic of the downlink signal.
  • the specific reference signal is a reference signal indicated by the network device or a default reference signal.
  • the network device performs frequency pre-compensation when transmitting the downlink signal
  • the terminal device further includes:
  • a third receiving unit configured to receive the indication information of the QCL reference signal of the uplink signal
  • the second determination unit is configured to determine the sending frequency of the uplink signal according to the indication information; wherein the uplink signal is an uplink signal used to determine the frequency pre-compensation value of the downlink signal in the network device.
  • the downlink signal is transmitted through multiple TRPs, and frequency precompensation is performed on one or more of the TRPs, and the terminal device further includes:
  • the third determining unit is configured to use the first reference signal to determine the transmission frequency of the uplink signal used to calculate the frequency precompensation value of the downlink signal at each TRP.
  • an embodiment of the present disclosure further provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the first aspect as described above The information transmission method or the steps of the information transmission method according to the second aspect.
  • the reference signal indicated by the QCL configuration information used by the terminal device to determine the delay characteristic and Doppler characteristic of the downlink signal does not need to perform Doppler Pre-compensation for frequency shift, therefore, the reference signal indicated by the QCL configuration information configured by the network device can be used by all terminal devices, so the network device does not need to send a dedicated reference signal for each terminal device, thereby saving pilot overhead.
  • FIG. 1 is a schematic diagram of a deployment method of an HST-SFN scenario provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of an information transmission method provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of another information transmission method provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of another information transmission method provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of another information transmission method provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another network device provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal device provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another terminal device provided by an embodiment of the present disclosure.
  • the terminal device determines the downlink frequency point according to the reference signal in the Transmission Configuration Indication state (TCI state). , and based on the downlink frequency point, the uplink frequency point is obtained, and the uplink signal transmission is performed on the uplink frequency point.
  • TCI state Transmission Configuration Indication state
  • the downlink frequency points obtained by the terminal equipment include the downlink Doppler frequency offset (referred to as Doppler frequency shift), and the uplink Doppler frequency shift is further superimposed when the uplink signal is transmitted. frequency shift. Therefore, during single-point transmission, the frequency of the uplink signal when received by the network device has twice the Doppler frequency shift relative to the uplink frequency point of the network device.
  • the downlink frequency points of each transmission reception point are the same, but due to different geographical locations, the Doppler frequency shift of the terminal equipment is different.
  • the terminal device only determines one downlink frequency point, and transmits the uplink signal based on the downlink frequency point. Due to the different geographic locations and/or receiving beam directions of the respective TRPs, the Doppler shifts experienced by the uplink signals arriving at the respective TRPs are different. Since the network device does not know what kind of downlink frequency the terminal device is based on to transmit the uplink signal, the network device cannot estimate the Doppler frequency shift experienced by the downlink or uplink, and thus cannot effectively predict the Doppler frequency shift. Compensation cannot effectively eliminate Doppler spread.
  • the number of PRBs allocated to downlink signals (such as PDSCH) is small, the REs of the DMRS will also be small, and better accuracy may not be obtained by using the DMRS to estimate the Doppler characteristic and the delay characteristic. Therefore, it is allowed to configure QCL reference signals for PDSCH, that is, to configure different QCL reference signals for terminal equipment, so that terminal equipment can measure large-scale parameters of PDSCH and DMRS of PDSCH through QCL reference signals for better channel estimation.
  • the network equipment configures different QCL reference signals for each terminal equipment, which will require a large amount of pilot frequency overhead.
  • the embodiments of the present disclosure provide corresponding solutions to the above problems, for example, it is not necessary to send a dedicated QCL reference signal for each terminal device to save pilot overhead, and for example, frequency compensation is used to eliminate Doppler spread, so that Improve the demodulation performance of downlink signals.
  • the method and the device are conceived based on the same application. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and repeated descriptions will not be repeated here.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G New Radio (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband Code Division Multiple Access
  • General packet Wireless service general packet Radio service
  • GPRS general packet Wireless service
  • LTE long term evolution
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution advanced
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present disclosure.
  • the network device involved in the embodiments of the present disclosure may be a base station, and the base station may include a plurality of cells providing services for the terminal.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the network device can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet. Protocol (IP) communication network.
  • IP Internet Protocol
  • the network devices may also coordinate attribute management for the air interface.
  • the network device involved in the embodiments of the present disclosure may be a network device (Base Transceiver Station, BTS) in the Global System for Mobile Communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA). ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long term evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., which are not limited in the embodiments of the present disclosure.
  • a network device may include a centralized unit (CU) node and a distributed unit (DU) node, and the centralized unit and the distributed unit may also be geographically separated.
  • FIG. 2 is an information transmission method provided by an embodiment of the present disclosure. As shown in FIG. 2 , the method at least includes the following steps:
  • the terminal device send quasi-co-site QCL configuration information of a downlink signal to a terminal device, where the QCL configuration information indicates at least two reference signals and a QCL type corresponding to the reference signals, and the first reference signal in the reference signals is used for
  • the terminal device determines the Doppler characteristic of the downlink signal, the second reference signal in the reference signal is used by the terminal device to determine the time delay characteristic of the downlink signal, and the first reference signal includes one or a plurality of the reference signals, the second reference signal includes one or more of the reference signals;
  • the network device may send QCL configuration information to the terminal device, where the QCL configuration information is the configuration information of the downlink signal.
  • the downlink signal includes but is not limited to PDSCH, physical Downlink Control Channel (Physical Downlink Control Channel, PDCCH), DMRS of PDSCH, DMRS of PDCCH, Channel State Information-Reference Signal (Channel State Information-Reference Signal, CSI-RS).
  • the QCL configuration information indicates at least two reference signals and a QCL type corresponding to each reference signal. It should be noted that the QCL types corresponding to each reference signal may be the same or different.
  • the network device needs to ensure that after receiving the QCL configuration information, the terminal device can determine the delay characteristic and Doppler characteristic of the downlink signal according to the reference signal of the relevant QCL type in the QCL configuration information.
  • the QCL configuration information indicates at least two reference signals, and the at least two reference signals may include a first reference signal and a second reference signal.
  • the main configuration basis is that the terminal device can determine the downlink according to the first reference signal.
  • Doppler characteristics of the signal when configuring the second reference signal, the main configuration basis is that the terminal device can determine the delay characteristics of the downlink signal according to the second reference signal (which may include determining the downlink signal jointly according to the second reference signal and the first reference signal. delay characteristics of the signal).
  • the number of the first reference signals may be one or more
  • the number of the second reference signals may be one or more.
  • the Doppler characteristic of the downlink signal is the Doppler characteristic of the channel of the downlink signal
  • the time delay characteristic of the downlink signal is the time delay of the channel of the downlink signal characteristic
  • the time delay characteristic and Doppler characteristic of the downlink signal are the time delay characteristic and Doppler characteristic of the channel of the downlink signal.
  • the Doppler characteristics include, but are not limited to, one or more of the following: Doppler shift, Doppler spread.
  • the delay characteristics include, but are not limited to, one or more of the following: average delay, delay spread.
  • Quasi-co-site QCL means that the large-scale parameters of the channel experienced by a symbol on one antenna port can be inferred from the channel experienced by a symbol on another antenna port, where the large-scale parameters can include delay spread, average time delay, Doppler spread, Doppler delay, average gain, and spatial reception parameters.
  • the existing 5G New Radio (NR) system mainly includes the following four QCL types, as shown in Table 1 below:
  • Doppler shift Doppler shift
  • Doppler spread Doppler spread
  • the network device After configuring the QCL configuration information of the downlink signal, the network device sends the downlink signal to the terminal device, so that the terminal device obtains the downlink signal according to the QCL configuration information.
  • acquiring the downlink signal includes receiving the downlink signal, and/or detecting and decoding the downlink signal.
  • the information transmission method provided by the embodiments of the present disclosure can make the terminal device by indicating to the terminal equipment a reference signal for determining the Doppler characteristic of the channel experienced by the downlink signal and a reference signal for determining the delay characteristic of the channel experienced by the downlink signal
  • the device can better estimate the Doppler characteristics and delay characteristics, thereby improving the demodulation performance of the terminal device. Since the reference signal used to estimate the Doppler characteristic of the channel experienced by the downlink signal is not the same as the reference signal used to estimate the delay characteristic of the channel experienced by the downlink signal, it is possible for the network device to send the two signals in different ways. Therefore, the transmission of cell-level reference signals (one reference signal can be used by multiple terminal equipments at the same time) can be realized, and the overhead of reference signals can be reduced.
  • two specific implementation manners for sending the downlink signal to the terminal device in step 202 are provided, as follows:
  • the method also includes:
  • the second reference signal is sent by using a TRP different from the TRP sending the first reference signal among the TRPs sending the downlink signal Signal.
  • a first reference signal and a second reference signal are sent to the terminal device, wherein the first reference signal and the second reference signal are sent to the terminal device.
  • the reference signal and the second reference signal are sent through different TRPs, and the used TRPs are from multiple TRPs that send downlink signals.
  • the term "and/or" describes the association relationship of associated objects, and indicates that there can be three kinds of relationships. For example, A and/or B can indicate that A exists alone, A and B exist at the same time, and B exists alone these three situations.
  • the character “/” generally indicates that the associated objects are an "or" relationship.
  • the method also includes:
  • the second reference signal is simultaneously sent to the terminal device using all TRPs that send the downlink signal.
  • a first reference signal and a second reference signal are sent to the terminal device, wherein, The TRP used by the second reference signal comes from all TRPs that transmit downlink signals.
  • the following descriptions are made for the QCL types of the first reference signal and the second reference signal:
  • the first reference signal is a reference signal whose QCL type is QCL-TypeA
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE.
  • the QCL-TypeE indicates the QCL type indicating the average delay average delay and the delay spread delay spread
  • the QCL-TypeA indicates the Doppler frequency shift Doppler shift, Doppler spread Doppler spread, average delay and delay the QCL type of the spread
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeA, wherein the QCL-TypeB indicates the QCL type indicating Doppler shift and Doppler spread ;or
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE; or
  • Both the first reference signal and the second reference signal are reference signals whose QCL type is QCL-TypeA.
  • the embodiment of the present disclosure provides four kinds of QCL configuration information, wherein the first type of QCL configuration information indicates a first reference signal whose QCL type is QCL-TypeA (the first reference signal can be used to determine the time of the downlink signal channel). delay characteristic and Doppler characteristic) and a second reference signal whose QCL type is QCL-TypeE (the second reference signal can be used to determine the time delay characteristic of the downlink signal channel).
  • the first type of QCL configuration information indicates a first reference signal whose QCL type is QCL-TypeA (the first reference signal can be used to determine the time of the downlink signal channel). delay characteristic and Doppler characteristic) and a second reference signal whose QCL type is QCL-TypeE (the second reference signal can be used to determine the time delay characteristic of the downlink signal channel).
  • the terminal device can determine the delay characteristic of the downlink signal according to the first reference signal whose QCL type is QCL-TypeA and the second reference signal whose QCL type is QCL-TypeE, and the terminal device can determine the delay characteristic of the downlink signal according to the QCL type is QCL-Type
  • the first reference signal of Type A determines the Doppler characteristic of the downlink signal.
  • the QCL-TypeE is a self-defined QCL type, which is used to represent the QCL type that only indicates the delay characteristic.
  • the QCL type indicating the average delay average delay and the delay extension delay spread does not have to be represented by QCL-TypeE,
  • QCL-TypeF, QCL-TypeG, etc. which is not limited here.
  • the terminal can determine that the Doppler characteristic of the downlink signal is estimated using the first reference signal, and the delay characteristic of the downlink signal is estimated using the second reference signal. estimate.
  • the first reference signal can be transmitted from a transmission point without frequency pre-compensation of the downlink signal, so that its Doppler offset value is the same as that of the downlink signal, and the second reference signal used for delay estimation can be sent from the downlink signal.
  • the delay characteristics of the channel of the first reference signal and the delay characteristics of the channel of the second reference signal can be combined to obtain the delay characteristics of the downlink signal channel.
  • the second reference signal can well perform channel estimation on the downlink signal and ensure the demodulation performance of the downlink signal.
  • the second type of QCL configuration information indicates a first reference signal whose QCL type is QCL-TypeB (the first reference signal includes Doppler characteristics) and a second reference signal whose QCL type is QCL-TypeA (the second reference signal includes time delay characteristics and Doppler characteristics).
  • the terminal device can determine the delay characteristic of the downlink signal according to the second reference signal whose QCL type is QCL-TypeA, and the terminal device can determine the delay characteristic of the downlink signal according to the first reference signal whose QCL type is QCL-TypeB. Puller characteristics.
  • the QCL type of the second reference signal is the QCL type used to indicate the delay characteristic and Doppler characteristic , which enables the terminal to understand, based on the QCL type of the reference signal, which reference signal should be used to estimate the Doppler characteristic and delay characteristic of the downlink signal channel.
  • the terminal may determine to use the first reference signal to estimate the Doppler characteristic of the downlink signal, and to use the second reference signal to estimate the time delay characteristic of the downlink signal.
  • the first reference signal can be transmitted from a transmission point that does not perform frequency pre-compensation of the downlink signal, so that its Doppler offset value is the same as that of the downlink signal, and the second reference signal used for delay estimation can be sent from the downlink signal. All transmission points of the signal are sent, so that it has the same time delay characteristics as the downlink signal channel, so that the first reference signal and the second reference signal can be used for channel estimation of the downlink signal, and the demodulation performance of the downlink signal is guaranteed.
  • the third QCL configuration information indicates a first reference signal whose QCL type is QCL-TypeB (the first reference signal includes Doppler characteristics) and a second reference signal whose QCL type is QCL-TypeE (the second reference signal includes delay characteristics).
  • the terminal device can determine the delay characteristic of the downlink signal according to the second reference signal whose QCL type is QCL-TypeE, and the terminal device can determine the delay characteristic of the downlink signal according to the first reference signal whose QCL type is QCL-TypeB. Puller characteristics.
  • the terminal can determine to use the first reference signal to estimate the Doppler characteristic of the downlink signal, and to use the second reference signal to estimate the time delay characteristic of the downlink signal.
  • the first reference signal can be transmitted from a transmission point that does not perform frequency pre-compensation of the downlink signal, so that its Doppler offset value is the same as that of the downlink signal, and the second reference signal used for delay estimation can be sent from the downlink signal. All transmission points of the signal are sent, so that it has the same time delay characteristics as the downlink signal channel, so that the first reference signal and the second reference signal can be used for channel estimation of the downlink signal, and the demodulation performance of the downlink signal is guaranteed.
  • the fourth type of QCL configuration information indicates the first reference signal and the second reference signal whose QCL type is QCL-TypeA (the first reference signal and the second reference signal both include time delay characteristics and Doppler characteristics).
  • the terminal device may determine the time delay characteristic of the downlink signal according to all the first reference signals and the second reference signals whose QCL type is QCL-TypeA.
  • the UE determines the Doppler type of the downlink signal channel.
  • the manners of the Doppler characteristic and the time delay characteristic may be: based on using the first reference signal to estimate the Doppler characteristic, and based on the second reference signal to estimate the time delay characteristic; or, using the first reference signal to perform the Doppler summation Estimation of the delay characteristic, the estimation of the delay characteristic can be performed based on the second reference signal; or, the Doppler estimation can be performed by using the first reference signal, and the estimation of the Doppler characteristic and the delay characteristic can be performed based on the second reference signal .
  • This method enables the network device to have greater flexibility in the transmission of the reference signal.
  • the channel estimation of the downlink signal can be well performed, and the demodulation performance of the downlink signal can be improved.
  • the QCL configuration information is carried by a set composed of the transmission configuration indication state TCI state;
  • the set composed of the TCI state is any of the following:
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates at least one first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the first reference signal whose QCL type is QCL-TypeE The second reference signal; the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeE ;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal and the second reference signal whose QCL types are both QCL-TypeA.
  • the set composed of TCI states includes at least two TCI states, one of which at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates that the QCL type is QCL - Second reference signal of TypeE.
  • the set composed of TCI state includes TCI state 1 and TCI state 2
  • TCI state 1 includes the first reference signal RS1 whose QCL type is QCL-TypeA
  • TCI state 2 includes the second reference signal RS2 whose QCL type is QCL-TypeE , as shown in Table 2 below:
  • TCI state 1 TCI state 2 RS1
  • the set of the first type of TCI states is as follows:
  • the set composed of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA.
  • the set composed of TCI state includes TCI state 1 and TCI state 2
  • TCI state 1 includes the first reference signal RS1 whose QCL type is QCL-TypeB
  • TCI state 2 includes the second reference signal RS2 whose QCL type is QCL-TypeA , as shown in Table 3 below:
  • TCI state 1 TCI state 2 RS1
  • the second type of TCI state consists of the following sets:
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeA.
  • the set composed of TCI state includes TCI state 1, TCI state 1 includes the first reference signal RS1 whose QCL type is QCL-TypeB, and includes the second reference signal RS2 whose QCL type is QCL-TypeA, as shown in Table 4 below. Show:
  • the set of the first type of TCI states is as follows:
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE.
  • the set composed of TCI state includes TCI state 1 and TCI state 2
  • TCI state 1 includes the first reference signal RS1 whose QCL type is QCL-TypeB
  • TCI state 2 includes the second reference signal RS2 whose QCL type is QCL-TypeE , as shown in Table 5 below:
  • TCI state 1 TCI state 2 RS1
  • the second type of TCI state consists of the following sets:
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates a first reference signal whose QCL type is QCL-TypeB, and a second reference signal whose QCL type is QCL-TypeE.
  • the set composed of TCI state includes TCI state 1, TCI state 1 includes the first reference signal RS1 whose QCL type is QCL-TypeB, and includes the second reference signal RS2 whose QCL type is QCL-TypeE, as shown in Table 6 below. Show:
  • the set of the first type of TCI states is as follows:
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA.
  • the set composed of TCI state includes TCI state 1 and TCI state 2
  • TCI state 1 includes a first reference signal RS1 whose QCL type is QCL-TypeA
  • TCI state 2 includes a second reference signal RS2 whose QCL type is QCL-TypeA , as shown in Table 7 below:
  • TCI state 1 TCI state 2 RS1
  • the second type of TCI state consists of the following sets:
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates a first reference signal whose QCL type is QCL-TypeA, and a second reference signal whose QCL type is QCL-TypeA.
  • the set composed of TCI state includes TCI state 1, TCI state 1 includes the first reference signal RS1 whose QCL type is QCL-TypeA, and includes the second reference signal RS2 whose QCL type is QCL-TypeA, as shown in Table 8 below. Show:
  • the third type of TCI state consists of the following sets:
  • the set composed of TCI states includes at least one TCI state, wherein the TCI state indicates at least two reference signals whose QCL type is QCL-TypeA.
  • the set composed of TCI state includes TCI state 1, and TCI state 1 includes two reference signals whose QCL type is QCL-TypeA, which are the first reference signal RS1 and the second reference signal RS2 respectively, as shown in Table 9 below:
  • the embodiment of the present disclosure enables the terminal device to obtain accurate delay characteristics and Doppler characteristics of downlink signals.
  • the downlink signal is sent by multiple transmission and reception points TRP, that is, the network device sends the downlink signal through the multiple transmission and reception points TRP.
  • the network device Before sending the downlink signal to the terminal equipment, it also includes any of the following:
  • the first TRP is the network device A selected TRP
  • the second TRP is one or more TRPs other than the first TRP
  • the frequency compensation value of the TRP is determined as the frequency compensation value of the fourth TRP in the reference beam direction, wherein the third TRP is one TRP in the reference beam direction, and the fourth TRP is the reference beam direction one or more TRPs other than the third TRP;
  • a frequency offset value is determined according to the signal received by the fifth TRP in the reference beam direction of the uplink signal, and the frequency compensation value of the sixth TRP in the reference beam direction is determined according to the frequency offset value, wherein the The fifth TRP is a group of TRPs in the reference beam direction, and the sixth TRP is one or more TRPs other than the fifth TRP in the reference beam direction;
  • a frequency offset value is determined according to signals received by all TRPs in the reference beam direction of the uplink signal, and frequency compensation values of seventh TRPs in other beam directions are determined according to the frequency offset value, wherein the seventh TRP one or more TRPs for beam directions other than the reference beam direction;
  • the sending the downlink signal to the terminal device includes:
  • the downlink signal is sent to the terminal device according to the frequency compensation value.
  • the downlink frequency points are adjusted at the TRP by the frequency compensation value to obtain the adjusted frequency; the downlink signal is transmitted at the adjusted frequency.
  • the above frequency offset value is a Doppler offset value obtained after channel estimation is performed on the uplink signal.
  • sending the downlink signal to the terminal according to the frequency offset value includes: adjusting the center frequency of the downlink signal by using the frequency offset value, and sending the downlink signal on the adjusted frequency. the downlink signal. For example, optionally, at each TRP, the center frequency of the downlink signal is adjusted based on the frequency offset value of the TRP, and the downlink signal is sent on the adjusted frequency.
  • sending the downlink signal to the terminal according to the frequency offset value includes: after increasing or decreasing the frequency offset value relative to the frequency determined according to the downlink frequency point, the transmission frequency of the downlink signal is adjusted higher or lower.
  • the downlink signal is sent. For example, in each TRP, based on the frequency offset value of the TRP, the transmission frequency of the downlink signal is increased or decreased relative to the frequency determined according to the downlink frequency point, and then the downlink signal is transmitted.
  • a frequency offset value is determined according to the signals received by the uplink signal at multiple TRPs, which can be performed in the following ways:
  • Manner 1 The network device uses the same uplink signal received by these TRPs to perform channel estimation, and uses the channel estimation result to estimate the Doppler frequency shift, where the Doppler frequency shift is the frequency offset value.
  • Mode 2 The network device uses the uplink signals received by each TRP in these TRPs to perform channel estimation respectively, and uses the results of the channel estimation of each TRP to calculate the Doppler frequency shift value respectively, and use the multiple Doppler frequency shift values.
  • a weighted average is performed according to the received strength of the uplink signal, and the result of the weighted average is the frequency offset value.
  • a TRP in the beam direction refers to a TRP in which the beam is directed toward the beam direction.
  • a TRP in the beam direction refers to a TRP whose beam is directed to a certain side of the TRP (for example, all TRPs whose beams are directed to the right side of the TRP are TRPs in one beam direction, and those whose beams are directed to the left of the TRP are TRPs in the same beam direction. All TRPs are TRPs in the other beam direction).
  • the determining the frequency compensation value of the downlink signal at the second TRP according to the frequency offset value of the first TRP includes:
  • the difference is determined to be the frequency compensation value of the second TRP. ;or,
  • the frequency compensation value of the first TRP is ⁇ f 1 , it is determined that the sum of the difference and the ⁇ f 1 is the frequency compensation value of the second TRP, where ⁇ f 1 is not 0.
  • the method further includes:
  • the frequency compensation value of each TRP in other beam directions is determined according to the frequency offset value of the third TRP.
  • determining the frequency compensation value of each TRP in other beam directions according to the frequency offset value of the third TRP includes:
  • the eighth TRP is one or more TRPs in other beam directions other than the reference beam direction;
  • the difference is determined to be equal to the beam direction of the eighth TRP.
  • the frequency compensation value of the third TRP is ⁇ f 2 , determine that the sum of the difference and the ⁇ f 2 is the frequency compensation value of all TRPs in the beam direction where the eighth TRP is located, where ⁇ f 2 is not 0 .
  • the eighth TRP is all TRPs other than the TRP in the beam direction where the third TRP is located.
  • the method further includes:
  • the frequency compensation value of each TRP in other beam directions is determined according to the frequency offset value.
  • the determining the frequency compensation value of each TRP in other beam directions according to the frequency offset value includes:
  • the ninth TRP is one or more TRPs in other beam directions other than the reference beam direction;
  • the difference is determined to be equal to the beam direction where the ninth TRP is located. Frequency compensation values for all TRPs;
  • the frequency compensation value of the fifth TRP is ⁇ f 3 , determine that the sum of the difference and the ⁇ f 3 is the frequency compensation value of all TRPs in the beam direction where the ninth TRP is located, where ⁇ f 3 is not 0 .
  • the method further includes:
  • the frequency compensation value of each TRP in other beam directions is determined according to the frequency offset value.
  • the determining the frequency compensation value of each TRP in other beam directions according to the frequency offset value includes:
  • the first beam direction is a beam direction other than the reference beam direction;
  • the frequency offset value is 0, or all TRPs in the reference beam direction do not adjust the downlink frequency points of the downlink signal, then determine that the difference is the frequency of all TRPs in the first beam direction compensation value;
  • the frequency compensation value of the reference beam direction is ⁇ f 3
  • the sum of the difference and the ⁇ f 3 is determined as the frequency compensation value of all TRPs in the first beam direction, where ⁇ f 3 is not 0.
  • the QCL configuration information indicates a first reference signal whose QCL type is QCL-TypeA and a second reference signal whose QCL type is QCL-TypeE, sending the first reference signal whose QCL type is QCL-TypeA through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeE through one or more of the second TRPs;
  • the QCL configuration information indicates that the first reference signal whose QCL type is QCL-TypeB and the second reference signal whose QCL type is QCL-TypeA is, sending the first reference signal whose QCL type is QCL-TypeB through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeA through one or more of the second TRPs;
  • the QCL configuration information indicates that the QCL type is the first reference signal of QCL-TypeB and the second reference signal of the QCL type is QCL-TypeE
  • the first reference signal of the QCL type of QCL-TypeB is sent through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeE through one or more of the second TRPs;
  • the QCL configuration information indicates that the QCL type is the first reference signal of QCL-TypeA and the second reference signal of the QCL type is QCL-TypeA, sending the first reference signal of the QCL type of QCL-TypeA through the first TRP A reference signal, and the second reference signal whose QCL type is QCL-TypeA is sent through one or more of the second TRPs.
  • the first reference signal and the second reference signal in each type of QCL configuration information can have 4 transmission modes, that is, there are 16 transmission modes in total, as follows:
  • the transmission modes of the first reference signal and the second reference signal in the first type of QCL configuration information include the following four:
  • the QCL configuration information indicates a first reference signal whose QCL type is QCL-TypeA and at least one second reference signal whose QCL type is QCL-TypeE, sending the QCL type as QCL-TypeA through the first TRP the first reference signal, and send the second reference signal whose QCL type is QCL-TypeE through one or more of the second TRPs;
  • the QCL configuration information indicates a first reference signal whose QCL type is QCL-TypeA and at least one second reference signal whose QCL type is QCL-TypeE, sending the QCL type as QCL-TypeA through the first TRP the reference signal, and send the reference signal of the QCL type as QCL-TypeE through all TRPs;
  • the QCL configuration information indicates a first reference signal whose QCL type is QCL-TypeA and at least one second reference signal whose QCL type is QCL-TypeE
  • the QCL type is QCL-Type is sent through the TRP in the reference beam direction
  • the first reference signal of TypeA, and the second reference signal of the QCL type of QCL-TypeE is sent through TRP in one or more beam directions other than the reference beam direction;
  • the QCL configuration information indicates a first reference signal whose QCL type is QCL-TypeA and at least one second reference signal whose QCL type is QCL-TypeE
  • the QCL type is QCL-Type is sent through the TRP in the reference beam direction
  • the first reference signal of Type A, and the second reference signal of the QCL type of QCL-TypeE is sent through TRPs in all beam directions.
  • the transmission modes of the first reference signal and the second reference signal in the second type of QCL configuration information include the following four:
  • the QCL configuration information indicates at least one first reference signal whose QCL type is QCL-TypeB and one second reference signal whose QCL type is QCL-TypeA, sending the QCL type as QCL-TypeB through the first TRP the first reference signal, and send the second reference signal whose QCL type is QCL-TypeA through one or more of the second TRPs;
  • the QCL configuration information indicates at least one first reference signal whose QCL type is QCL-TypeB and one second reference signal whose QCL type is QCL-TypeA, sending the QCL type as QCL-TypeB through the first TRP the first reference signal, and send the second reference signal of the QCL type QCL-TypeA through all TRPs;
  • the QCL configuration information indicates at least one first reference signal whose QCL type is QCL-TypeB and one second reference signal whose QCL type is QCL-TypeA
  • the QCL type is QCL-Type is sent through the TRP in the reference beam direction
  • the first reference signal of TypeB, and the second reference signal of the QCL type is QCL-TypeA sent through TRP in one or more beam directions other than the reference beam direction;
  • the QCL configuration information indicates at least one first reference signal whose QCL type is QCL-TypeB and one second reference signal whose QCL type is QCL-TypeA
  • the QCL type is QCL-Type is sent through the TRP in the reference beam direction
  • the first reference signal of Type B, and the second reference signal of the QCL type of QCL-TypeA is sent through TRPs in all beam directions.
  • the transmission modes of the first reference signal and the second reference signal in the third QCL configuration information include the following four:
  • the QCL configuration information indicates at least one first reference signal whose QCL type is QCL-TypeB and at least one second reference signal whose QCL type is QCL-TypeE, sending the QCL type QCL-Type E through the first TRP A first reference signal of TypeB, and sending a second reference signal of the QCL type QCL-TypeE through one or more of the second TRPs;
  • the QCL configuration information indicates at least one first reference signal whose QCL type is QCL-TypeB and at least one second reference signal whose QCL type is QCL-TypeE, sending the QCL type QCL-Type E through the first TRP
  • the first reference signal of TypeB, and the second reference signal of the QCL type is QCL-TypeE is sent through all TRPs;
  • the QCL configuration information indicates at least one first reference signal whose QCL type is QCL-TypeB and at least one second reference signal whose QCL type is QCL-TypeE
  • the QCL type is QCL sent through the TRP in the reference beam direction - the first reference signal of TypeB
  • the second reference signal of the QCL type of QCL-TypeE is sent through TRP in one or more beam directions other than the reference beam direction;
  • the QCL configuration information indicates at least one first reference signal whose QCL type is QCL-TypeB and at least one second reference signal whose QCL type is QCL-TypeE
  • the QCL type is QCL sent through the TRP in the reference beam direction -
  • the first reference signal of TypeB, and the second reference signal of the QCL type of QCL-TypeE is transmitted through TRP in all beam directions.
  • the sending modes of the first reference signal and the second reference signal in the fourth QCL configuration information include the following four:
  • the QCL configuration information indicates that the QCL type is the first reference signal of QCL-TypeA and the second reference signal of the QCL type is QCL-TypeA, sending the first reference signal of the QCL type of QCL-TypeA through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeA through one or more of the second TRPs;
  • the QCL configuration information indicates that the QCL type is the first reference signal of QCL-TypeA and the second reference signal of the QCL type is QCL-TypeA, sending the first reference signal of the QCL type of QCL-TypeA through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeA through all TRPs;
  • the QCL configuration information indicates that the QCL type is the first reference signal of QCL-TypeA and the second reference signal of the QCL type is QCL-TypeA
  • the first reference signal of the QCL type of QCL-TypeA is sent through the TRP in the reference beam direction a reference signal, and sending the second reference signal of the QCL type as QCL-TypeA through TRP in one or more beam directions other than the reference beam direction;
  • the QCL configuration information indicates that the QCL type is the first reference signal of QCL-TypeA and the second reference signal of the QCL type is QCL-TypeA
  • the first reference signal of the QCL type of QCL-TypeA is sent through the TRP in the reference beam direction A reference signal
  • the second reference signal of QCL type QCL-TypeA is sent through TRPs in all beam directions.
  • it also includes:
  • the QCL reference signal is a signal in the first reference signal.
  • the QCL reference signal is used to indicate the reference signal for determining the transmission frequency of the uplink signal, so that the network device performs Doppler pre-compensation on the downlink signal from each TRP.
  • the uplink signals may be all uplink signals.
  • the uplink signal is an uplink signal used to perform frequency offset values (Doppler shifts) of multiple TRPs of the network device.
  • the network device may further determine the frequency pre-compensation value of the downlink signal according to the frequency offset values.
  • the terminal device can determine the downlink frequency point and/or the transmission frequency of the uplink signal based on the reference signal.
  • the network device can better determine how to pre-compensate for each TRP. For example, the frequency pre-compensation of the downlink signal is not performed on the TRP that transmits the first reference signal, and the frequency pre-compensation of the downlink signal is performed on other TRPs.
  • it also includes:
  • TCI state indication information indicates the TCI state where the first reference signal is located
  • sequence number indication information indicates the sequence number of the first reference signal in all QCL-TypeA reference signals in the TCI state associated with the downlink signal.
  • the embodiments of the present disclosure enable that when downlink signals are sent from multiple TRPs, the Doppler frequency shifts of each TRP reaching the terminal device are basically the same, which avoids the positive-path Doppler frequency from some TRPs
  • the path of some TRPs is negative Doppler frequency shift, so that the Doppler spread is better eliminated, and the demodulation performance of the downlink signal can be improved.
  • the terminal device Since the reference signal used by the terminal equipment to determine the Doppler characteristic and the time delay characteristic of the downlink signal is not subjected to Doppler precompensation, all terminal equipments can use one reference signal sent by the network equipment. Therefore, it is not necessary to send a dedicated reference signal for each terminal device, thereby saving the overhead of the reference signal, that is, saving the overhead of the pilot frequency.
  • the terminal device can obtain relatively accurate time delay characteristic and Doppler characteristic, thereby improving the Performance of downlink transmissions for high-speed mobile scenarios.
  • the signal transmission method of the embodiment of the present disclosure is described above from the network device side, and the signal transmission method of the embodiment of the present disclosure is described and explained from the terminal device side below:
  • FIG. 3 is an information transmission method provided by an embodiment of the present disclosure. As shown in FIG. 3 , the method at least includes the following steps:
  • Receive quasi-co-site QCL configuration information of a downlink signal the QCL configuration information indicates at least two reference signals and a QCL type corresponding to the reference signals, and the first reference signal in the reference signals is used for the terminal
  • the device determines the Doppler characteristic of the downlink signal, the second reference signal in the reference signal is used by the terminal device to determine the delay characteristic of the downlink signal, and the number of the first reference signal is one or Multiple, the number of the second reference signal is one or more;
  • the QCL configuration information is the configuration information of the downlink signal.
  • the downlink signal includes but is not limited to PDSCH, PDCCH, DMRS of PDSCH, DMRS of PDCCH, CSI- RS.
  • the network device sends the quasi-co-site QCL configuration information of the downlink signal to the terminal device, so that the terminal device receives the quasi-co-site QCL configuration information of the downlink signal.
  • the QCL configuration information indicates at least two reference signals and a QCL type corresponding to each reference signal. It should be noted that the QCL types corresponding to each reference signal may be the same or different.
  • the network device needs to ensure that after receiving the QCL configuration information, the terminal device can determine the delay characteristic and Doppler characteristic of the downlink signal according to the reference signal of the relevant QCL type in the QCL configuration information.
  • the QCL configuration information indicates at least two reference signals, and the at least two reference signals may include a first reference signal and a second reference signal.
  • the main configuration basis is that the terminal device can determine the downlink according to the first reference signal.
  • Doppler characteristics of the signal when configuring the second reference signal, the main configuration basis is that the terminal device can determine the delay characteristics of the downlink signal according to the second reference signal (including determining the downlink signal according to the second reference signal and the first reference signal jointly. delay characteristics).
  • the number of the first reference signals may be one or more, and the number of the second reference signals may also be one or more.
  • the terminal device After receiving the quasi-co-site QCL configuration information of the downlink signal, the terminal device acquires the downlink signal according to the QCL configuration information.
  • the terminal device can obtain accurate delay characteristics and Doppler characteristics of downlink signals, thereby improving the performance of downlink transmission in high-speed mobile scenarios.
  • acquiring the downlink signal includes receiving the downlink signal, and/or detecting and decoding the downlink signal.
  • the acquiring the downlink signal according to the QCL configuration information in step 302 includes:
  • the downlink signal is acquired according to the Doppler characteristic and the time delay characteristic.
  • the acquiring the delay characteristic of the downlink signal according to the second reference signal includes:
  • the time delay characteristic of the downlink signal is determined according to the first reference signal and the second reference signal.
  • the terminal device may determine the delay characteristic of the downlink signal only according to the second reference signal, or may determine the delay characteristic of the downlink signal jointly according to the first reference signal and the second reference signal.
  • the method before acquiring the downlink signal according to the Doppler characteristic and the delay characteristic, the method further includes:
  • the method before acquiring the downlink signal according to the Doppler characteristic and the delay characteristic, the method further includes:
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal, and the downlink signal is determined according to the second reference signal delay characteristics, including:
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal including the Doppler characteristic and the delay characteristic according to the QCL type; and the first reference signal including only the delay characteristic according to the QCL type and the second reference signal whose QCL type includes a delay characteristic to determine the delay characteristic of the downlink signal; or,
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal whose QCL type includes only Doppler characteristics; and the Doppler characteristic is determined according to the second reference signal whose QCL type only includes delay characteristics the delay characteristics of the downstream signal; or,
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal including only Doppler characteristic according to the QCL type; and the second reference including delay characteristic and Doppler characteristic according to the QCL type
  • the signal determines the delay characteristic of the downlink signal; or,
  • the downlink is determined according to all the first reference signals of the QCL types including Doppler characteristics and delay characteristics and all the second reference signals of the QCL types including Doppler characteristics and delay characteristics delay characteristic of the signal; and determining the Doppler characteristic of the downlink signal according to the first reference signal including the Doppler characteristic and the delay characteristic of the QCL type; or,
  • the delay characteristic of the downlink signal is determined according to the second reference signal including the Doppler characteristic and the delay characteristic according to the QCL type; and the first reference signal including the Doppler characteristic and the delay characteristic according to the QCL type A reference signal determines the Doppler characteristic of the downlink signal.
  • the first reference signal is a specific reference signal among the reference signals of the QCL type including Doppler characteristics and time delay characteristics.
  • the second reference signal is a QCL type reference signal including Doppler characteristics and time delay characteristics.
  • the second reference signal is a reference signal of all QCL types including Doppler characteristics and time delay characteristics.
  • the specific reference signal is:
  • the reference signal indicated by the network device may be:
  • the network device directly indicates the reference signal of the specific QCL type in the TCI state (for example, the specific QCL type is QCL-TypeA); or,
  • the network device indicates the TCI state where the specific reference signal is located, and the specific reference signal is a specific QCL type in the TCI state indicated by the network device (for example, the specific QCL type is QCL-TypeA) (for example, the network equipment instructs the terminal equipment to use the reference signal of QCL-TypeA in the first TCI state to determine the Doppler characteristics of the downlink signal, then the terminal equipment uses the reference signal of QCL-TypeA in the first TCI state to determine Doppler characteristics of the downlink signal; for another example, the network device instructs the terminal device to use the reference signal of QCL-TypeA in the second TCI state to determine the Doppler characteristics of the downlink signal, then the terminal device uses the QCL-TypeA in the second TCI state.
  • the reference signal of Type A determines the Doppler characteristic of the downlink signal); or,
  • the network device indicates the TRP corresponding to the specific reference signal, and the specific reference signal is of a specific QCL type (for example, the specific QCL type is QCL-TypeA) in the TCI state indicated by the network device. reference signal, etc.; or,
  • a reference signal whose time domain characteristics are ignored in the QCL type indicated by the network device (for example, the QCL type is QCL-TypeA); or,
  • a reference signal whose frequency domain characteristics are not ignored in the QCL type indicated by the network device (for example, the QCL type is QCL-TypeA).
  • the default reference signal can be:
  • the reference signal of a specific QCL type (for example, the specific QCL type is QCL-TypeA) in the TCI state agreed between the network device and the terminal device; or,
  • the reference signal of a specific QCL type (for example, the specific QCL type is QCL-TypeA) with a specific sequence number agreed between the network device and the terminal device (for example, the reference signal of the first QCL-TypeA in the TCI state signal; another example, for example, the reference signal of the second QCL-TypeA in the TCI state); or,
  • a reference signal whose time domain characteristics are ignored in the QCL type agreed between the network device and the terminal device (for example, the QCL type is QCL-TypeA); or,
  • the reference signal in the QCL (for example, the QCL type is QCL-TypeA) agreed between the network device and the terminal device is not ignored in the frequency domain, etc.
  • the behavior of the terminal device includes: receiving the TCI state indication information sent by the base station, and determining the first reference signal according to the TCI state indication information; the TCI state indication information indicates the TCI where the first reference signal is located. state.
  • the behavior of the terminal device includes: receiving the sequence number indication information sent by the base station, and determining the first reference signal according to the sequence number indication information; the sequence number indication information indicates that the first reference signal is in the downlink with the The sequence number in the TCI state to which the signal is associated.
  • the sequence number indication information indicates the sequence number of the first reference signal in all QCL-TypeA reference signals in the TCI state associated with the downlink signal.
  • the behavior of the network device includes: sending TCI state indication information, where the TCI state indication information indicates the TCI state where the first reference signal is located.
  • the behavior of the network device includes: sending sequence number indication information, the sequence number indication information indicates the sequence number of the first reference signal in all QCL-TypeA reference signals in the TCI state associated with the downlink signal .
  • QCL-TypeA Taking the QCL type corresponding to a specific signal as QCL-TypeA as an example, there are:
  • the reference signal of the specific QCL-TypeA is:
  • the reference signal indicated by the network device may be:
  • the network device directly indicates the reference signal of the number of QCL-TypeA in the TCI state.
  • the reference signal of QCL-TypeA in a specific TCI state indicated by the network device (for example, the network device instructs the terminal device to use the reference signal of QCL-TypeA in the first TCI state to determine the number of downlink signals).
  • the terminal equipment uses the reference signal of QCL-TypeA in the first TCI state to determine the Doppler characteristic of the downlink signal); or,
  • the reference signal of QCL-TypeA of a specific TRP indicated by the network device etc.; or,
  • the default reference signal can be:
  • the reference signal of QCL-TypeA in the specific TCI state agreed between the network device and the terminal device; or,
  • a specific QCL-TypeA reference signal (for example, the first QCL-TypeA reference signal in the TCI state) agreed between the network device and the terminal device; or,
  • the first reference signal is a reference signal whose QCL type is QCL-TypeA
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE
  • the QCL-TypeE indicates the QCL type indicating the average delay average delay and the delay spread delay spread
  • the QCL-TypeA indicates the Doppler frequency shift Doppler shift, Doppler spread Doppler spread, average delay QCL type of average delay and delay spread delay spread
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeA, wherein the QCL-TypeB indicates the QCL type indicating Doppler shift and Doppler spread ;or
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE; or
  • Both the first reference signal and the second reference signal are reference signals whose QCL type is QCL-TypeA.
  • the QCL configuration information is carried by a set composed of a transmission configuration indication state TCI state, and the set composed of the TCI state is one of the following:
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeE;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the second reference signal whose QCL type is QCL-TypeA;
  • the set composed of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal and the second reference signal whose QCL types are both QCL-TypeA;
  • the QCL-TypeE indicates the QCL type indicating the average delay average delay and the delay spread delay spread
  • the QCL-TypeA indicates the Doppler frequency shift Doppler shift, Doppler spread Doppler spread, average delay average delay and the QCL type of the delay spread delay spread
  • the QCL-TypeB indicates the QCL type indicating Doppler shift and Doppler spread.
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal, and the downlink signal is determined according to the second reference signal delay characteristics, including:
  • the delay characteristic of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeA and the second reference signal whose QCL type is QCL-TypeE, and the delay characteristic of the downlink signal is determined according to the QCL type is QCL - the first reference signal of Type A determines the Doppler characteristic of the downlink signal; or,
  • the time-domain characteristic of the downlink signal is determined according to the second reference signal whose QCL type is QCL-TypeA, and the multiplicity of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeB. Puller properties; or,
  • the time-domain characteristic of the downlink signal is determined according to the second reference signal whose QCL type is QCL-TypeE, and the multiplicity of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeB. Puller properties; or,
  • the delay characteristic of the downlink signal is determined according to all the first reference signals whose QCL type is QCL-TypeA and all the second reference signals whose QCL type is QCL-TypeA, and according to the A specific reference signal in the first reference signal whose QCL type is QCL-TypeA determines the Doppler characteristic of the downlink signal.
  • the network device performs frequency pre-compensation when transmitting the downlink signal; further comprising:
  • the transmission frequency of the uplink signal is determined according to the indication information; wherein the uplink signal is an uplink signal used to determine the frequency precompensation value of the downlink signal in the network device.
  • the QCL reference signal is used to indicate the reference signal used by the terminal device to determine the transmission frequency of the uplink signal, so that the network device performs Doppler pre-compensation on the downlink signal from each TRP; wherein the QCL reference signal is the signal in the first reference signal.
  • the downlink signal is transmitted through multiple TRPs, and frequency precompensation is performed on one or more of the TRPs, further comprising:
  • the first reference signal is used to determine the transmission frequency of the uplink signal used to calculate the frequency pre-compensation value of the downlink signal at each TRP.
  • the downlink signal is sent by multiple TRPs, and the acquiring the downlink signal according to the QCL configuration information includes:
  • the frequency obtained after making the adjustment is the downlink frequency of the TRP at the downlink frequency of the TRP determined by the network device according to the frequency compensation value of the TRP determined.
  • the method of the embodiment of the present disclosure is not limited to the scenario of two TRPs, but also includes three or more TRPs. The case of TRP.
  • Step 1 The UE sends an uplink reference signal (UL RS).
  • UL RS uplink reference signal
  • the network side can measure the frequency offset of each TRP relative to the uplink frequency point.
  • Step 2 Multiple TRPs on the network side simultaneously receive the UL RS sent by the UE, and determine the frequency offset relative to the uplink frequency point on the base station side.
  • Step 3 The network side transmits the PDSCH, the DMRS of the PDSCH and their QCL reference signals.
  • Doppler pre-compensation is not performed on the DMRS of PDSCH and PDSCH in one TRP (assuming that the TRP is the reference TRP), that is, the downlink frequency points on the network side are used for transmission, and in other TRPs (may be referred to as target TRPs), PDSCH and PDSCH are not pre-compensated.
  • the DMRS is transmitted after Doppler pre-compensation;
  • the difference between the Doppler pre-compensation values of any two TRPs that transmit the PDSCH and the DMRS of the PDSCH at the network side is the difference between the Doppler offset values detected by the network side at the two TRPs.
  • the Doppler pre-compensation value of any target TRP is the difference between the Doppler offset value detected by the network side at the reference TRP and the Doppler offset value detected by the network side at the TRP (for example, the network side is at the reference TRP The detected Doppler offset value minus the Doppler offset value detected by the network side at this TRP). or,
  • the TRP in the same beam direction does not perform Doppler pre-compensation, that is, the downlink frequency of the network side is used for transmission. (let's call it the target TRP) Doppler pre-compensation for transmission,
  • the Doppler pre-compensation value of any target TRP is the difference between the Doppler offset value detected by the network side at a reference TRP and the Doppler offset value detected by the network side at the target TRP (for example, the network side The Doppler offset value detected at a reference TRP minus the Doppler offset value detected by the network side at the target TRP); or,
  • the Doppler pre-compensation value of any target TRP is the difference between the Doppler offset value detected by the TRP in the reference beam direction on the network side and the Doppler offset value detected by the network side in the beam direction where the target TRP is located ( For example, the Doppler offset value detected by the network side in the TRP in the reference beam direction minus the Doppler offset value detected by the network side in the beam direction where the target TRP is located).
  • the network side uses any TRP in the reference beam direction to detect the Doppler offset value, and uses it as the Doppler offset value detected by the TRP in the reference beam direction; optionally, the network side uplinks in the reference beam direction
  • the TRP with the maximum signal received power detects the Doppler offset value, and uses it as the Doppler offset value detected by the TRP in the reference beam direction;
  • the Doppler offset value is detected, and after processing, a comprehensive Doppler value is obtained, and the comprehensive Doppler value is used as the Doppler offset value detected by the TRP in the reference beam direction.
  • the network side uses any TRP to detect the Doppler offset value in the beam direction of the target TRP, and uses it as the Doppler offset value detected in the beam direction of the target TRP;
  • the Doppler offset value is detected by the TRP with the largest uplink signal received power in the beam direction where the target TRP is located, and it is used as the Doppler offset value detected in the beam direction where the target TRP is located;
  • the network side The Doppler offset value is detected at the target TRP and used as the Doppler offset value detected in the beam direction where the target TRP is located.
  • the reference signal is transmitted as follows:
  • the QCL reference signals in two TCI sate (note: can be extended to three or more) are respectively transmitted from two different TRPs, where the QCL reference signal RS 1 of TCI sate 1 (reference signal of QCL-TypeA) is transmitted from the reference TRP sent; or,
  • the QCL reference signals in the two TCI states are respectively transmitted from one or more TRPs pointing to different beam directions, wherein the QCL reference signal of TCI state 1 ((QCL-TypeA reference signal)) is transmitted from one or more TRPs pointing to the reference beam direction.
  • the QCL reference signal RS 2 ((QCL-TypeE reference signal)) of TCI state 2 is transmitted from one or more TRPs directed to another beam direction.
  • the QCL reference signal is not subjected to Doppler pre-compensation, that is, the downlink frequency on the network side is used for transmission.
  • Step 4 For each data layer of PDSCH and each DMRS port of PDSCH, the UE uses the delay characteristics determined by all reference signals (RS 1 and RS 2) of the QCL type including the delay characteristics, including Doppler according to the QCL type.
  • the reference signal of the Doppler characteristic determines the Doppler characteristic.
  • the UE uses the above-mentioned time delay characteristic and Doppler characteristic to estimate the PDSCH channel.
  • the UE uses multiple reference signals (for example, RS 1 and RS 2) to jointly determine the delay characteristics of the PDSCH
  • the UE uses each reference signal to determine the power and delay of the transmission path respectively, and then determines the power and delay of the multiple reference signals.
  • the transmission paths are combined as the PDSCH transmission path.
  • the combining manner includes power superposition of paths with the same delay.
  • the UE uses multiple reference signals (for example, RS 1 and RS 2) to jointly determine the delay characteristics of the PDSCH
  • the UE uses each reference signal to determine the power delay profile respectively, and then uses the multiple determined power delay profiles. Combined together as the power delay profile of the PDSCH.
  • the combining manner is to add the power delay profiles.
  • the UE determines the uplink frequency point of the uplink reference signal UL RS in step 1 based on the reference signal whose QCL type includes Doppler characteristics.
  • the configuration information of the UL RS includes a configuration of a QCL reference signal, and the QCL reference signal is used to indicate a reference signal for determining the uplink frequency point of the UL RS.
  • the QCL reference signal is used to indicate a reference signal for determining the uplink frequency point of the UL RS.
  • Step 3 should be modified to:
  • Step 3' The network side performs PDSCH, PDSCH DMRS and QCL reference signal transmission.
  • the difference between the Doppler pre-compensation values of any two TRPs that transmit the PDSCH and the DMRS of the PDSCH at the network side is the difference between the Doppler offset values detected by the network side at the two TRPs.
  • the network side selects a TRP as the reference TRP
  • the Doppler pre-compensation value of any target TRP is the difference between the Doppler offset value detected by the network side on the reference TRP and the Doppler offset value detected by the network side on the TRP ( For example, the Doppler offset value detected by the network side at the reference TRP minus the Doppler offset value detected by the network side at the TRP).
  • the TRPs in the same beam direction (may be referred to as the reference beam direction) use the same Doppler pre-compensation value, and the difference between the Doppler pre-compensation values in any two beam directions is equal to the two detected by the network side.
  • the difference between the Doppler values in the Doppler directions may be referred to as the reference beam direction.
  • the transmission mode of the QCL reference signal is the same as in step 3.
  • the reference signal of QCL-TypeA is sent from one or more TRPs in the same beam direction.
  • Step 4' For PDSCH and DMRS ports of PDSCH, the UE determines the delay characteristics using all reference signals (RS 1 and RS 2) of the QCL type including the delay characteristics.
  • the transmission method of this scheme makes the Doppler offset of each TRP to the UE basically the same when the PDSCH is sent from multiple TRPs, avoiding the positive Doppler frequency offset from some TRPs and the The Doppler frequency offset with a negative diameter can better eliminate the Doppler spread and improve the demodulation performance of PDSCH.
  • the QCL reference signals that is, RS 1 and RS 2 in the example
  • the QCL reference signals that is, RS 1 and RS 2 in the example
  • all UEs can use the QCL reference signals sent by the network side. . Therefore, it is not necessary to send a dedicated QCL reference signal for each UE, thereby saving the overhead of the QCL reference signal.
  • the UE can more accurately obtain the Doppler characteristics of the PDSCH; for different TRPs using Different QCL reference signals are used to determine the delay characteristics of PDSCH, so that the measured delay characteristics of PDSCH can better reflect the delay characteristics of each TRP channel, which enables the UE to obtain the delay characteristics of PDSCH more accurately.
  • the UE sends an uplink reference signal (UL RS).
  • UL RS uplink reference signal
  • the network side performs PDSCH, PDSCH DMRS and QCL reference signal transmission.
  • Doppler pre-compensation is not performed on a TRP (assuming that the TRP is a reference TRP), that is, the downlink frequency point on the network side is used for transmission, and Doppler pre-compensation is performed on other TRPs (may be called target TRP) before transmission;
  • the Doppler pre-compensation value of any target TRP is the difference between the Doppler offset value detected by the network side at the reference TRP and the Doppler offset value detected by the network side at the TRP where it is located (for example, the network side is at the reference TRP The detected Doppler offset value minus the Doppler offset value detected by the network side at the TRP where it is located)
  • the TRP in the same beam direction does not perform Doppler pre-compensation, that is, the downlink frequency of the network side is used for transmission.
  • TRP let's call it target TRP is transmitted after Doppler pre-compensation,
  • the Doppler pre-compensation value of any target TRP is the difference between the Doppler offset value detected by the network side at a reference TRP and the Doppler offset value detected by the network side at the target TRP (for example, the network side The Doppler offset value detected at a reference TRP minus the Doppler offset value detected by the network side at the target TRP); or,
  • the Doppler pre-compensation value of any target TRP is the difference between the Doppler offset value detected by the TRP in the reference beam direction on the network side and the Doppler offset value detected by the network side in the beam direction where the target TRP is located ( For example, the Doppler offset value detected by the network side in the TRP in the reference beam direction minus the Doppler offset value detected by the network side in the beam direction where the target TRP is located).
  • the network side uses any TRP in the reference beam direction to detect the Doppler offset value, and uses it as the Doppler offset value detected by the TRP in the reference beam direction; optionally, the network side uplinks in the reference beam direction
  • the TRP with the maximum signal received power detects the Doppler offset value, and uses it as the Doppler offset value detected by the TRP in the reference beam direction;
  • the Doppler offset value is detected, and after processing, a comprehensive Doppler value is obtained, and the comprehensive Doppler value is used as the Doppler offset value detected by the TRP in the reference beam direction.
  • the network side uses any TRP to detect the Doppler offset value in the beam direction of the target TRP, and uses it as the Doppler offset value detected in the beam direction of the target TRP;
  • the Doppler offset value is detected by the TRP with the largest uplink signal received power in the beam direction where the target TRP is located, and it is used as the Doppler offset value detected in the beam direction where the target TRP is located;
  • the network side The Doppler offset value is detected at the target TRP and used as the Doppler offset value detected in the beam direction where the target TRP is located.
  • the QCL reference signal adopts the following transmission methods:
  • the reference signal (RS 2) of QCL type QCL-TypeA is sent from two TRPs simultaneously, and the reference signal (RS 1) of QCL-TypeB is sent from the reference TRP;
  • the reference signal (RS 2) of QCL type QCL-TypeA is sent simultaneously from TRPs in all beam directions, and the reference signal (RS 1) of QCL-TypeB is sent from the reference beam direction.
  • QCL-TypeA and QCL-TypeB are configured in the same TCI sate.
  • QCL-TypeA and QCL-TypeB are configured in different TCI sate. (Optionally, when there are two or more TCI states, the reference signals of the two or more TCI states are sent from different TRPs respectively)
  • the QCL reference signal is not subjected to Doppler pre-compensation, that is, the downlink frequency on the network side is used for transmission.
  • the UE determines the delay characteristics of the DMRS ports of PDSCH and PDSCH according to the reference signal (RS 2) whose QCL type is QCL-TypeA, according to QCL-TypeB
  • the reference signal (RS 1) of the PDSCH determines the Doppler characteristics of the PDSCH and the DMRS port of the PDSCH.
  • the UE uses the above-mentioned time delay characteristic and Doppler characteristic to estimate the PDSCH channel.
  • the UE determines the uplink frequency point of the uplink reference signal UL RS based on the reference signal whose QCL type only includes the Doppler characteristic (QCL-TypeB).
  • the configuration information of the UL RS includes a configuration of a QCL reference signal, and the QCL reference signal is used to indicate a reference signal for determining the uplink frequency point of the UL RS.
  • the QCL reference signal is used to indicate a reference signal for determining the uplink frequency point of the UL RS.
  • step (3) should be modified to:
  • the network side performs PDSCH, PDSCH DMRS and QCL reference signal transmission.
  • the difference between the Doppler pre-compensation values of any two TRPs that transmit the PDSCH and the DMRS of the PDSCH at the network side is the difference between the Doppler offset values detected by the network side at the two TRPs.
  • the network side selects a TRP as the reference TRP
  • the Doppler pre-compensation value of any target TRP is the difference between the Doppler offset value detected by the network side on the reference TRP and the Doppler offset value detected by the network side on the TRP ( For example, the Doppler offset value detected by the network side at the reference TRP minus the Doppler offset value detected by the network side at the TRP)
  • the TRP in the same beam direction uses the same Doppler pre-compensation value, and the difference between the Doppler pre-compensation values in the two beam directions is equal to the difference between the Doppler values in the two Doppler directions detected by the network side.
  • the transmission method of the QCL reference signal is the same as (3).
  • the reference signal of QCL-TypeB is sent from one or more TRPs in the same beam direction.
  • the UE uses all reference signals (RS 1 and RS 2) of the QCL type including the delay characteristic to determine the delay characteristic.
  • the transmission method of this scheme makes the Doppler offset of each TRP to the UE basically the same when the PDSCH is sent from multiple TRPs, avoiding the positive Doppler frequency offset from some TRPs and the The Doppler frequency offset with a negative diameter can better eliminate the Doppler spread and improve the demodulation performance of PDSCH.
  • the QCL reference signals that is, RS 1 and RS 2 in the example
  • the QCL reference signals that is, RS 1 and RS 2 in the example
  • all UEs can use the QCL reference signals sent by the network side. . Therefore, it is not necessary to send a dedicated QCL reference signal for each UE, thereby saving the overhead of the QCL reference signal.
  • the UE can more accurately obtain the Doppler characteristic of the PDSCH; the transmission is used to determine the PDSCH
  • the TRP of the QCL reference signal with the delay characteristic is exactly the same as the TRP for sending the PDSCH, which enables the UE to obtain the delay characteristic of the PDSCH more accurately by using the reference signal (that is, RS 2 in the example).
  • the UE sends an uplink reference signal (UL RS).
  • UL RS uplink reference signal
  • the network side performs PDSCH, PDSCH DMRS and QCL reference signal transmission.
  • Doppler pre-compensation is not performed on a TRP (assuming that the TRP is a reference TRP), that is, the downlink frequency point on the network side is used for transmission, and Doppler pre-compensation is performed on other TRPs (may be called target TRP) before transmission;
  • the Doppler pre-compensation value of any target TRP is the difference between the Doppler offset value detected by the network side at the reference TRP and the Doppler offset value detected by the network side at the TRP where it is located (the network side detected at the reference TRP The Doppler offset value minus the Doppler offset value detected by the network side at the TRP where it is located)
  • the TRP in the same beam direction does not perform Doppler pre-compensation, that is, the downlink frequency of the network side is used for transmission. (let's call it the target TRP) Doppler pre-compensation for transmission,
  • the Doppler pre-compensation value of any target TRP is the difference between the Doppler offset value detected by the network side at a reference TRP and the Doppler offset value detected by the network side at the target TRP (for example, the network side The Doppler offset value detected at a reference TRP minus the Doppler offset value detected by the network side at the target TRP); or,
  • the Doppler pre-compensation value of any target TRP is the difference between the Doppler offset value detected by the TRP in the reference beam direction on the network side and the Doppler offset value detected by the network side in the beam direction where the target TRP is located ( For example, the Doppler offset value detected by the network side in the TRP in the reference beam direction minus the Doppler offset value detected by the network side in the beam direction where the target TRP is located).
  • the network side uses any TRP in the reference beam direction to detect the Doppler offset value, and uses it as the Doppler offset value detected by the TRP in the reference beam direction; optionally, the network side uplinks in the reference beam direction
  • the TRP with the maximum signal received power detects the Doppler offset value, and uses it as the Doppler offset value detected by the TRP in the reference beam direction;
  • the Doppler offset value is detected, and after processing, a comprehensive Doppler value is obtained, and the comprehensive Doppler value is used as the Doppler offset value detected by the TRP in the reference beam direction.
  • the network side uses any TRP to detect the Doppler offset value in the beam direction of the target TRP, and uses it as the Doppler offset value detected in the beam direction of the target TRP;
  • the Doppler offset value is detected by the TRP with the largest uplink signal received power in the beam direction where the target TRP is located, and it is used as the Doppler offset value detected in the beam direction where the target TRP is located;
  • the network side The Doppler offset value is detected at the target TRP and used as the Doppler offset value detected in the beam direction where the target TRP is located.
  • the QCL reference signal adopts the following transmission methods:
  • the reference signal (RS 2) whose QCL type is QCL-TypeE is sent from two TRPs simultaneously, and the reference signal (RS 1) of QCL-TypeB is sent from the reference TRP;
  • the reference signal (RS 2) of the QCL type QCL-TypeE is sent simultaneously from the TRPs in all beam directions, and the reference signal (RS 1) of the QCL-TypeB is sent from the reference beam direction.
  • QCL-TypeE and QCL-TypeB are configured in the same TCI sate.
  • QCL-TypeE and QCL-TypeB are configured in different TCI sate. (In the case of two or more TCI states, the reference signals for the two or more TCI states are sent from different TRPs respectively)
  • the QCL reference signal is not subjected to Doppler pre-compensation, that is, the downlink frequency on the network side is used for transmission.
  • the UE determines the delay characteristics of the DMRS ports of PDSCH and PDSCH according to the reference signal (RS 2) whose QCL type is QCL-TypeE, and according to QCL-TypeB
  • the reference signal (RS 1) of the PDSCH determines the Doppler characteristics of the PDSCH and the DMRS port of the PDSCH.
  • the UE uses the above-mentioned time delay characteristic and Doppler characteristic to estimate the PDSCH channel.
  • the UE determines the uplink frequency point of the uplink reference signal UL RS based on the reference signal whose QCL type only includes the Doppler characteristic (QCL-TypeB).
  • the configuration information of the UL RS includes a configuration of a QCL reference signal, and the QCL reference signal is used to indicate a reference signal for determining the uplink frequency point of the UL RS.
  • the QCL reference signal is used to indicate a reference signal for determining the uplink frequency point of the UL RS.
  • step (3) should be modified to:
  • the network side performs PDSCH, PDSCH DMRS and QCL reference signal transmission.
  • the difference between the Doppler pre-compensation values of any two TRPs that transmit the PDSCH and the DMRS of the PDSCH at the network side is the difference between the Doppler offset values detected by the network side at the two TRPs.
  • the network side selects a TRP as the reference TRP
  • the Doppler pre-compensation value of any target TRP is the difference between the Doppler offset value detected by the network side on the reference TRP and the Doppler offset value detected by the network side on the TRP ( For example, the Doppler offset value detected by the network side at the reference TRP minus the Doppler offset value detected by the network side at the TRP)
  • TRPs in the same beam direction use the same Doppler pre-compensation value, and the two wave
  • the difference between the Doppler pre-compensation values in the beam direction is equal to the two Doppler detected on the network side
  • the transmission method of the QCL reference signal is the same as (3).
  • the reference signal of QCL-TypeB is sent from one or more TRPs in the same beam direction.
  • the UE uses a reference signal of the QCL type including the delay characteristic (reference signal of QCL-TypeE, RS 2) to determine the delay characteristic.
  • the UE sends an uplink reference signal (UL RS).
  • UL RS uplink reference signal
  • the network side performs PDSCH, PDSCH DMRS and QCL reference signal transmission.
  • Doppler pre-compensation is not performed on a TRP (assuming the TRP is the reference TRP), that is, using
  • the downlink frequency on the network side is transmitted, and it is transmitted in other TRPs (may be referred to as target TRPs).
  • the Doppler pre-compensation value of any target TRP is the difference between the Doppler offset value detected by the network side at the reference TRP and the Doppler offset value detected by the network side at the TRP where it is located (the network side detected at the reference TRP The Doppler offset value minus the Doppler offset value detected by the network side at the TRP where it is located)
  • the TRP in the same beam direction does not perform Doppler pre-compensation, that is, the downlink frequency of the network side is used for transmission. (let's call it the target TRP) Doppler pre-compensation for transmission,
  • the Doppler pre-compensation value of any target TRP is the difference between the Doppler offset value detected by the network side at a reference TRP and the Doppler offset value detected by the network side at the target TRP (for example, the network side The Doppler offset value detected at a reference TRP minus the Doppler offset value detected by the network side at the target TRP); or,
  • the Doppler pre-compensation value of any target TRP is the difference between the Doppler offset value detected by the TRP in the reference beam direction on the network side and the Doppler offset value detected by the network side in the beam direction where the target TRP is located ( For example, the Doppler offset value detected by the network side in the TRP in the reference beam direction minus the Doppler offset value detected by the network side in the beam direction where the target TRP is located).
  • the network side uses any TRP in the reference beam direction to detect the Doppler offset value, and uses it as the Doppler offset value detected by the TRP in the reference beam direction; optionally, the network side uplinks in the reference beam direction
  • the TRP with the maximum signal received power detects the Doppler offset value, and uses it as the Doppler offset value detected by the TRP in the reference beam direction;
  • the Doppler offset value is detected, and after processing, a comprehensive Doppler value is obtained, and the comprehensive Doppler value is used as the Doppler offset value detected by the TRP in the reference beam direction.
  • the network side uses any TRP to detect the Doppler offset value in the beam direction of the target TRP, and uses it as the Doppler offset value detected in the beam direction of the target TRP;
  • the Doppler offset value is detected by the TRP with the largest uplink signal received power in the beam direction where the target TRP is located, and it is used as the Doppler offset value detected in the beam direction where the target TRP is located;
  • the network side The Doppler offset value is detected at the target TRP and used as the Doppler offset value detected in the beam direction where the target TRP is located.
  • the QCL reference signal adopts the following transmission methods:
  • Any reference signal whose QCL type is QCL-TypeA is sent from only one TRP, and reference signals whose QCL type is QCL-TypeA are sent from different TRPs;
  • Reference signals of any QCL type QCL-TypeA are only sent from one or more TRPs pointing to the same beam direction, and reference signals of different QCL types QCL-TypeA are sent from TRPs pointing to different beam directions.
  • multiple reference signals whose QCL type is QCL-TypeA are configured in the same TCI sate.
  • multiple reference signals whose QCL type is QCL-TypeA are configured in different TCI sates.
  • the reference signals of the two or more TCI states are sent from different TRPs respectively.
  • the QCL reference signal is not subjected to Doppler pre-compensation, that is, the downlink frequency on the network side is used for transmission.
  • a specific QCL-TypeA reference signal is sent from a TRP without Doppler precompensation on the PDSCH.
  • the reference signal of the specific QCL-TypeA is:
  • the reference signal indicated by the base station or,
  • the reference signal indicated by the base station may be:
  • the base station directly indicates the reference signal of the number of QCL-TypeA in the TCI state;
  • the reference signal of QCL-TypeA in a specific TCI state indicated by the base station (for example, the base station instructs the UE to use the reference signal of QCL-TypeA in the first TCI state to determine the Doppler characteristic of PDSCH , the UE uses the reference signal of QCL-TypeA in the first TCI state to determine the Doppler characteristics of the PDSCH); or,
  • the reference signal of QCL-Type A of the specific TRP indicated by the base station, etc. is transmitted.
  • the default reference signal can be:
  • the reference signal of QCL-TypeA in the specific TCI state agreed between the network side and the UE; or,
  • a specific QCL-TypeA reference signal (for example, the first QCL-TypeA reference signal in the TCI state) agreed between the network side and the UE.
  • the UE jointly determines the PDSCH and the DMRS port of the PDSCH according to all the reference signals whose QCL types include both delay characteristics and Doppler characteristics (for example, QCL-TypeA) in the one or two TCI states According to the specific reference signal in step (3), the Doppler characteristics of the PDSCH and the DMRS port of the PDSCH are determined. The UE can further use the above-mentioned delay characteristic and Doppler characteristic to perform PDSCH channel estimation.
  • the UE determines the uplink frequency point of the uplink reference signal UL RS based on a specific reference signal.
  • the specific reference signal here can be:
  • the reference signal indicated by the base station or,
  • the reference signal indicated by the base station may be:
  • the base station directly indicates the reference signal of the number of QCL-TypeA in the TCI state;
  • the reference signal of QCL-TypeA in a specific TCI state indicated by the base station (for example, the base station instructs the UE to use the reference signal of QCL-TypeA in the first TCI state to determine the Doppler characteristic of PDSCH , the UE uses the reference signal of QCL-TypeA in the first TCI state to determine the Doppler characteristics of the PDSCH); or,
  • the reference signal of QCL-Type A of the specific TRP indicated by the base station, etc. is transmitted.
  • the default reference signal can be:
  • the reference signal of QCL-TypeA in the specific TCI state agreed between the network side and the UE; or,
  • a specific QCL-TypeA reference signal (for example, the first QCL-TypeA reference signal in the TCI state) agreed between the network side and the UE.
  • the configuration information of the UL RS includes a configuration of a QCL reference signal, and the QCL reference signal is used to indicate a reference signal for determining the uplink frequency point of the UL RS.
  • the QCL reference signal is used to indicate a reference signal for determining the uplink frequency point of the UL RS.
  • step (3) should be modified to:
  • the network side performs PDSCH, PDSCH DMRS and QCL reference signal transmission.
  • the difference between the Doppler pre-compensation values of any two TRPs that transmit the PDSCH and the DMRS of the PDSCH at the network side is the difference between the Doppler offset values detected by the network side at the two TRPs.
  • the network side selects a TRP as the reference TRP
  • the Doppler pre-compensation value of any target TRP is the difference between the Doppler offset value detected by the network side on the reference TRP and the Doppler offset value detected by the network side on the TRP ( For example, the Doppler offset value detected by the network side at the reference TRP minus the Doppler offset value detected by the network side at the TRP)
  • the TRP in the same beam direction uses the same Doppler pre-compensation value, and the difference between the Doppler pre-compensation values in the two beam directions is equal to the difference between the Doppler values in the two Doppler directions detected by the network side.
  • the transmission method of the QCL reference signal is the same as (3).
  • the base station transmits the specific reference signal in this embodiment in multiple TRPs in the same beam direction.
  • the base station sends the specific reference signal in this embodiment in the above-mentioned reference TRP.
  • the UE uses the QCL type in the one or two TCI states to include both delay characteristics and Doppler characteristics (for example, QCL-TypeA) All the reference signals of the PDSCH jointly determine the delay characteristics of the PDSCH and the DMRS port of the PDSCH.
  • Example 1 As shown in FIG. 4 , taking the simultaneous transmission of PDSCH/DMRS from two TRPs as an example, PDSCH/DMRS are sent from two TRPs at the same time, and Doppler pre-compensation is performed on TRP2.
  • the first reference signal is TRS1
  • the second reference signal is TRS2.
  • f c is the downlink DL center frequency determined by the base station
  • ⁇ f is the downlink center determined by the UE
  • f UL-DL is the difference between the center frequency points of DL and UL.
  • the base station estimates the Doppler offset for each TRP using the UL RS, and determines the frequency pre-compensation value of the PDSCH at each TRP accordingly.
  • the base station sends PDSCH from TRP1 and TRP2 at the same time, and does not perform frequency pre-compensation on PDSCH in TRP1, and performs frequency pre-compensation on PDSCH in TRP 2, then the center frequency of PDSCH when TRP1 is sent is fc, and the center frequency when TRP2 is sent.
  • the base station sends the first reference signal TRS1 in TRP1, and does not perform frequency precompensation on TRS1, then the center frequency of TRS1 when TRP1 is sent is fc; the base station sends the first reference signal TRS1 in TRP2 Two reference signals TRS2, and no frequency pre-compensation is performed on TRS2, the center frequency of TRS2 when TRP2 is sent is fc.
  • the center frequency of the path corresponding to TRP 1 is f c +f 1
  • the center frequency of the path corresponding to TRP 2 is f c +f 1.
  • the UE can more accurately estimate the Doppler offset value of PDSCH according to TRS 1. Since the power delay spectrum of the TRS1 channel and the power delay spectrum of the TRS2 channel are combined to form the power delay spectrum of the PDSCH channel, the UE can well estimate the PDSCH delay characteristics through TRS1 and TRS2. Since the Doppler frequency shift values of each path of the channel experienced by the PDSCH are basically equal, there is no Doppler spreading, which can improve the demodulation performance of the PDSCH by the UE.
  • Example 2 As shown in Figure 5, it is assumed that the UE sends the uplink reference signal UL RS for Doppler estimation on the center frequency point f c + ⁇ f+f UL-DL , and f c is the downlink DL center frequency determined by the base station. ⁇ f is the difference between the downlink center frequency determined by the UE and the downlink center frequency determined by the base station, and f UL-DL is the difference between the center frequencies of DL and UL.
  • the base station uses the UL RS to estimate the Doppler offset for each TRP, and accordingly determines the frequency precompensation value of the PDSCH and its corresponding DMRS at each TRP.
  • the base station transmits PDSCH and its corresponding DMRS from TRP1 and TRP2 at the same time, and does not perform frequency pre-compensation on PDSCH and its corresponding DMRS in TRP1, and uses f 1 -f 2 to perform frequency pre-compensation on PDSCH in TRP 2, then PDSCH and its corresponding DMRS are used for frequency pre-compensation.
  • the center frequency point of the corresponding DMRS when TRP1 is sent is fc
  • the center frequency point when TRP2 is sent is fc + f 1 -f 2 .
  • the base station sends the first reference signal TRS1 on TRP1, and does not perform frequency prediction on TRS 1. Compensation, then the center frequency of TRS1 when TRP1 is sent is fc; the base station sends the second reference signal TRS2 when TRP1 and TRP2 simultaneously, and does not perform frequency pre-compensation on TRS2, then the center frequency of TRS2 when TRP1 and TRP2 are sent for fc.
  • the UE receives the PDSCH, and the center frequency of the path corresponding to TRP 1 on the UE side in the PDSCH channel is f c +f 1 , and the center frequency of the path corresponding to TRP 2 is f c +f 1.
  • the channel of TRS1 comes from TRP1, and the center frequency point of its receiving frequency is f c +f 1 , which is the same as that of PDSCH.
  • the channel of TRS2 comes from TRP1 and TRP2, and the center frequency points of the paths of the two TRPs on the UE side are both f c +f 2 .
  • the UE can more accurately estimate the Doppler offset value of PDSCH according to TRS 1. Since the power delay spectrum of the TRS1 channel and the power delay spectrum of the TRS2 channel are combined to form the power delay spectrum of the PDSCH channel, the UE can well estimate the PDSCH delay characteristics through TRS1 and TRS2. Since the Doppler frequency shift values of each path of the channel experienced by the PDSCH are basically equal, there is no Doppler spreading, which can improve the demodulation performance of the PDSCH by the UE.
  • FIG. 6 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • the network device includes a memory 601, a transceiver 602, and a processor 603, wherein the memory 601, the transceiver 602, and the processor 603 pass through The bus interface completes mutual communication; the processor 603 can read the computer program in the memory 601 and perform the following operations:
  • the QCL configuration information indicates at least two reference signals and the QCL type corresponding to the reference signals
  • the first reference signal in the reference signals is used for the
  • the terminal device determines the Doppler characteristic of the downlink signal, the second reference signal in the reference signal is used by the terminal device to determine the delay characteristic of the downlink signal, and the number of the first reference signal is one or more, the number of the second reference signal is one or more;
  • the network device since the reference signal indicated by the QCL configuration information used by the terminal device to determine the time delay characteristic and Doppler characteristic of the downlink signal does not need to be pre-compensated for the Doppler frequency shift, the network The reference signal indicated by the QCL configuration information configured by the device can be used by all terminal devices, so that the network device does not need to send a dedicated reference signal for each terminal device, thereby saving pilot overhead.
  • the sending the downlink signal to the terminal device specifically includes:
  • the second reference signal is sent by using a TRP different from the TRP sending the first reference signal among the TRPs sending the downlink signal Signal.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect, and the same part as the method embodiment in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the sending the downlink signal to the terminal device includes:
  • the method also includes:
  • the second reference signal is simultaneously sent to the terminal device using all TRPs that send the downlink signal.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect, and the same part as the method embodiment in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the first reference signal is a reference signal whose QCL type is QCL-TypeA
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE.
  • the QCL-TypeE indicates the QCL type indicating the average delay average delay and the delay spread delay spread
  • the QCL-TypeA indicates the Doppler frequency shift Doppler shift, Doppler spread Doppler spread, average delay and delay the QCL type of the spread
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeA, wherein the QCL-TypeB indicates the QCL type indicating Doppler shift and Doppler spread ;or
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE; or
  • Both the first reference signal and the second reference signal are reference signals whose QCL type is QCL-TypeA.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • the QCL configuration information is carried by a set composed of the transmission configuration indication state TCI state;
  • the set composed of the TCI state is any of the following:
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates at least one first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the first reference signal whose QCL type is QCL-TypeE The second reference signal; the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeE ;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal and the second reference signal whose QCL types are both QCL-TypeA.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • the downlink signal is sent by multiple transmission and reception points TRP, and before the downlink signal is sent to the terminal device, it further includes any one of the following:
  • the first TRP is the network device A selected TRP
  • the second TRP is one or more TRPs other than the first TRP
  • the frequency compensation value of the TRP is determined as the frequency compensation value of the fourth TRP in the reference beam direction, wherein the third TRP is one TRP in the reference beam direction, and the fourth TRP is the reference beam direction one or more TRPs other than the third TRP;
  • a frequency offset value is determined according to the signal received by the fifth TRP in the reference beam direction of the uplink signal, and the frequency compensation value of the sixth TRP in the reference beam direction is determined according to the frequency offset value, wherein the The fifth TRP is a group of TRPs in the reference beam direction, and the sixth TRP is one or more TRPs other than the fifth TRP in the reference beam direction;
  • a frequency offset value is determined according to signals received by all TRPs in the reference beam direction of the uplink signal, and frequency compensation values of seventh TRPs in other beam directions are determined according to the frequency offset value, wherein the seventh TRP one or more TRPs for beam directions other than the reference beam direction;
  • the sending the downlink signal to the terminal device includes:
  • the downlink signal is sent to the terminal device according to the frequency compensation value.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • the determining the frequency compensation value of the downlink signal at the second TRP according to the frequency offset value of the first TRP includes:
  • the difference is determined to be the frequency compensation value of the second TRP. ;or,
  • the frequency compensation value of the first TRP is ⁇ f 1 , it is determined that the sum of the difference and the ⁇ f 1 is the frequency compensation value of the second TRP, where ⁇ f 1 is not 0.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • the method further includes:
  • the frequency compensation value of each TRP in other beam directions is determined according to the frequency offset value of the third TRP.
  • determining the frequency compensation value of each TRP in other beam directions according to the frequency offset value of the third TRP includes:
  • the eighth TRP is one or more TRPs in other beam directions other than the reference beam direction;
  • the difference is determined to be equal to the beam direction of the eighth TRP. frequency offset value for all TRPs; or,
  • the frequency compensation value of the third TRP is ⁇ f 2 , determine that the sum of the difference and the ⁇ f 2 is the frequency compensation value of all TRPs in the beam direction where the eighth TRP is located, where ⁇ f 2 is not 0 .
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect, and the same part as the method embodiment in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the method further includes:
  • the frequency compensation value of each TRP in other beam directions is determined according to the frequency offset value.
  • the determining the frequency compensation value of each TRP in other beam directions according to the frequency offset value includes:
  • the ninth TRP is one or more TRPs in other beam directions other than the reference beam direction;
  • the difference is determined to be equal to the beam direction where the ninth TRP is located. frequency offset value for all TRPs; or,
  • the frequency compensation value of the ninth TRP is ⁇ f 3 , determine that the sum of the difference and the ⁇ f 3 is the frequency compensation value of all TRPs in the beam direction where the ninth TRP is located, where ⁇ f 3 is not 0 .
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • the QCL configuration information indicates a first reference signal whose QCL type is QCL-TypeA and a second reference signal whose QCL type is QCL-TypeE, sending the first reference signal whose QCL type is QCL-TypeA through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeE through one or more of the second TRPs;
  • the QCL configuration information indicates that the first reference signal whose QCL type is QCL-TypeB and the second reference signal whose QCL type is QCL-TypeA is, sending the first reference signal whose QCL type is QCL-TypeB through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeA through one or more of the second TRPs;
  • the QCL configuration information indicates that the QCL type is the first reference signal of QCL-TypeB and the second reference signal of the QCL type is QCL-TypeE
  • the first reference signal of the QCL type of QCL-TypeB is sent through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeE through one or more of the second TRPs;
  • the QCL configuration information indicates that the QCL type is the first reference signal of QCL-TypeA and the second reference signal of the QCL type is QCL-TypeA, sending the first reference signal of the QCL type of QCL-TypeA through the first TRP A reference signal, and the second reference signal whose QCL type is QCL-TypeA is sent through one or more of the second TRPs.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect, and the same part as the method embodiment in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the QCL reference signal is a signal in the first reference signal.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • it also includes:
  • TCI state indication information indicates the TCI state where the first reference signal is located
  • sequence number indication information indicates the sequence number of the first reference signal in all QCL-TypeA reference signals in the TCI state associated with the downlink signal.
  • the embodiments of the present disclosure enable that when downlink signals are sent from multiple TRPs, the Doppler frequency shifts of each TRP reaching the terminal device are basically the same, which avoids the positive-path Doppler frequency from some TRPs
  • the path of some TRPs is a negative Doppler frequency shift, so that the Doppler spread is better eliminated, and the demodulation performance of the downlink signal can be improved.
  • the terminal device Since the reference signal used by the terminal equipment to determine the Doppler characteristic and the time delay characteristic of the downlink signal is not subjected to Doppler precompensation, therefore, one reference signal sent by the processor 603 can be used by all terminal equipments. Therefore, it is not necessary to send a dedicated reference signal for each terminal device, thereby saving the overhead of the reference signal, that is, saving the overhead of the pilot frequency.
  • the terminal device can obtain relatively accurate time delay characteristic and Doppler characteristic, thereby improving the Performance of downlink transmissions for high-speed mobile scenarios.
  • FIG. 7 is a schematic structural diagram of a network device provided by another embodiment of the present disclosure. As shown in FIG. 7 , the network device includes a first sending unit 701 and a second sending unit 702, where:
  • the first sending unit 701 is configured to send the quasi-co-site QCL configuration information of the downlink signal to the terminal device, where the QCL configuration information indicates at least two reference signals and the QCL type corresponding to the reference signal, and the QCL type in the reference signal is
  • the first reference signal is used by the terminal device to determine the Doppler characteristic of the downlink signal
  • the second reference signal in the reference signal is used by the terminal device to determine the delay characteristic of the downlink signal
  • the first reference signal is used for determining the time delay characteristic of the downlink signal.
  • the number of a reference signal is one or more, and the number of the second reference signal is one or more;
  • the second sending unit 702 is configured to send the downlink signal to the terminal device.
  • the network device since the reference signal indicated by the QCL configuration information used by the terminal device to determine the time delay characteristic and Doppler characteristic of the downlink signal does not need to be pre-compensated for the Doppler frequency shift, the network The reference signal indicated by the QCL configuration information configured by the device can be used by all terminal devices, so that the network device does not need to send a dedicated reference signal for each terminal device, thereby saving pilot overhead.
  • the second sending unit is configured to:
  • the network device also includes:
  • a third sending unit configured to send the reference signal to the terminal device; wherein, when sending the reference signal, a TRP that is different from the TRP used to send the first reference signal is used for sending the downlink signal.
  • the TRP sends the second reference signal.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • the second sending unit is configured to:
  • the network device also includes:
  • a fourth sending unit configured to simultaneously send the second reference signal to the terminal device using all the TRPs that send the downlink signal.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • the first reference signal is a reference signal whose QCL type is QCL-TypeA
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE
  • the QCL-TypeE indicates an indication
  • the QCL-TypeA indicates the QCL indicating Doppler shift, Doppler spread, average delay average delay and delay spread delay spread type
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeA, wherein the QCL-TypeB indicates the QCL type indicating Doppler shift and Doppler spread ;or
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE; or
  • Both the first reference signal and the second reference signal are reference signals whose QCL type is QCL-TypeA.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • the QCL configuration information is carried by a set composed of a transmission configuration indication state TCI state;
  • the set composed of the TCI state is any of the following:
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeE;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal and the second reference signal whose QCL types are both QCL-TypeA.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • the downlink signal is sent by multiple transmission and reception points TRP, and the network device further includes a first determination unit configured to perform any one of the following:
  • the first TRP is the network device A selected TRP
  • the second TRP is one or more TRPs other than the first TRP
  • the frequency compensation value of the TRP is determined as the frequency compensation value of the fourth TRP in the reference beam direction, wherein the third TRP is one TRP in the reference beam direction, and the fourth TRP is the reference beam direction one or more TRPs other than the third TRP;
  • a frequency offset value is determined according to the signal received by the fifth TRP in the reference beam direction of the uplink signal, and the frequency compensation value of the sixth TRP in the reference beam direction is determined according to the frequency offset value, wherein the The fifth TRP is a group of TRPs in the reference beam direction, and the sixth TRP is one or more TRPs other than the fifth TRP in the reference beam direction;
  • a frequency offset value is determined according to signals received by all TRPs in the reference beam direction of the uplink signal, and frequency compensation values of seventh TRPs in other beam directions are determined according to the frequency offset value, wherein the seventh TRP one or more TRPs for beam directions other than the reference beam direction;
  • the second sending unit is used for:
  • the downlink signal is sent to the terminal device according to the frequency compensation value.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect, and the same part as the method embodiment in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the determining the frequency compensation value of the downlink signal at the second TRP according to the frequency offset value of the first TRP includes:
  • the difference is determined to be the frequency compensation value of the second TRP. ;or,
  • the frequency compensation value of the first TRP is ⁇ f 1 , it is determined that the sum of the difference and the ⁇ f 1 is the frequency compensation value of the second TRP, where ⁇ f 1 is not 0.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • the method further includes:
  • the frequency compensation value of each TRP in other beam directions is determined according to the frequency offset value of the third TRP.
  • the determining the frequency compensation value of each TRP in other beam directions according to the frequency offset value of the third TRP includes:
  • the eighth TRP is one or more TRPs in other beam directions other than the reference beam direction;
  • the difference is determined to be equal to the beam direction of the eighth TRP. frequency offset value for all TRPs; or,
  • the frequency compensation value of the third TRP is ⁇ f 2 , determine that the sum of the difference and the ⁇ f 2 is the frequency compensation value of all TRPs in the beam direction where the eighth TRP is located, where ⁇ f 2 is not 0 .
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect, and the same part as the method embodiment in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • a fifth sending unit configured to perform at least one of the following:
  • the QCL configuration information indicates a first reference signal whose QCL type is QCL-TypeA and a second reference signal whose QCL type is QCL-TypeE, sending the first reference signal whose QCL type is QCL-TypeA through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeE through one or more of the second TRPs;
  • the QCL configuration information indicates that the first reference signal whose QCL type is QCL-TypeB and the second reference signal whose QCL type is QCL-TypeA is, sending the first reference signal whose QCL type is QCL-TypeB through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeA through one or more of the second TRPs;
  • the QCL configuration information indicates that the QCL type is the first reference signal of QCL-TypeB and the second reference signal of the QCL type is QCL-TypeE
  • the first reference signal of the QCL type of QCL-TypeB is sent through the first TRP a reference signal, and send the second reference signal whose QCL type is QCL-TypeE through one or more of the second TRPs;
  • the QCL configuration information indicates that the QCL type is the first reference signal of QCL-TypeA and the second reference signal of the QCL type is QCL-TypeA, sending the first reference signal of the QCL type of QCL-TypeA through the first TRP A reference signal, and the second reference signal whose QCL type is QCL-TypeA is sent through one or more of the second TRPs.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect, and the same part as the method embodiment in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • a sixth sending unit configured to send indication information of a QCL reference signal of the uplink signal to the terminal device, where the QCL reference signal is used to indicate a reference signal used by the terminal device to determine the transmission frequency of the uplink signal .
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • the QCL reference signal is a signal in the first reference signal.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • it also includes:
  • TCI state indication information indicates the TCI state where the first reference signal is located
  • sequence number indication information indicates the sequence number of the first reference signal in all QCL-TypeA reference signals in the TCI state associated with the downlink signal.
  • FIG. 8 is a schematic structural diagram of a terminal device provided by an embodiment of the present disclosure.
  • the terminal device includes a memory 801, a transceiver 802, a processor 803, and a user interface 804, wherein the memory 801, the transceiver 802,
  • the processor 803 and the user interface 804 communicate with each other through the bus interface; the processor 803 can read the computer program in the memory 801 and perform the following operations:
  • Receive quasi-co-site QCL configuration information of a downlink signal the QCL configuration information indicates at least two reference signals and a QCL type corresponding to the reference signals
  • the first reference signal in the reference signals is used for the terminal device to determine Doppler characteristics of the downlink signal
  • the second reference signal in the reference signal is used by the terminal device to determine the delay characteristic of the downlink signal
  • the number of the first reference signal is one or more
  • the number of the second reference signal is one or more;
  • the downlink signal is acquired according to the QCL configuration information.
  • the terminal device by using the above-mentioned QCL configuration information, the terminal device can obtain accurate delay characteristics and Doppler characteristics of downlink signals, thereby improving the performance of downlink transmission in high-speed mobile scenarios.
  • the acquiring the downlink signal according to the QCL configuration information specifically includes:
  • the downlink signal is acquired according to the Doppler characteristic and the time delay characteristic.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the determining the delay characteristic of the downlink signal according to the second reference signal includes:
  • the time delay characteristic of the downlink signal is determined according to the first reference signal and the second reference signal.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effect, and the same parts as the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the method before acquiring the downlink signal according to the Doppler characteristic and the delay characteristic, the method further includes:
  • the method before acquiring the downlink signal according to the Doppler characteristic and the delay characteristic, the method further includes:
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the determining the Doppler characteristic of the downlink signal according to the first reference signal and determining the delay characteristic of the downlink signal according to the second reference signal include:
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal including the Doppler characteristic and the delay characteristic according to the QCL type; and the first reference signal including only the delay characteristic according to the QCL type and the second reference signal whose QCL type includes a delay characteristic to determine the delay characteristic of the downlink signal; or,
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal whose QCL type includes only Doppler characteristics; and the Doppler characteristic is determined according to the second reference signal whose QCL type only includes delay characteristics the delay characteristics of the downstream signal; or,
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal including only Doppler characteristic according to the QCL type; and the second reference including delay characteristic and Doppler characteristic according to the QCL type
  • the signal determines the delay characteristic of the downlink signal; or,
  • the downlink is determined according to all the first reference signals of the QCL types including Doppler characteristics and delay characteristics and all the second reference signals of the QCL types including Doppler characteristics and delay characteristics delay characteristic of the signal; and determining the Doppler characteristic of the downlink signal according to the first reference signal including the Doppler characteristic and the delay characteristic of the QCL type; or,
  • the delay characteristic of the downlink signal is determined according to the second reference signal including the Doppler characteristic and the delay characteristic according to the QCL type; and the first reference signal including the Doppler characteristic and the delay characteristic according to the QCL type A reference signal determines the Doppler characteristic of the downlink signal.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effect, and the same parts as the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the first reference signal is a specific reference signal among the reference signals of the QCL type including Doppler characteristics and time delay characteristics.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effect, and the same parts as the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the second reference signal is a QCL type reference signal including Doppler characteristics and time delay characteristics.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effect, and the same parts as the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the first reference signal is a reference signal whose QCL type is QCL-TypeA
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE
  • the QCL-TypeE indicates an indication
  • the QCL-TypeA indicates the QCL indicating Doppler shift, Doppler spread, average delay average delay and delay spread delay spread type
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeA, wherein the QCL-TypeB indicates the QCL type indicating Doppler shift and Doppler spread ;or
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE; or
  • Both the first reference signal and the second reference signal are reference signals whose QCL type is QCL-TypeA.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the QCL configuration information is carried by a set composed of a transmission configuration indication state TCI state, and the set composed of the TCI state is one of the following:
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeE;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal and the second reference signal whose QCL types are both QCL-TypeA.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the determining of the Doppler characteristic of the downlink signal according to the first reference signal, and the determining of the delay characteristic of the downlink signal according to the second reference signal include:
  • the delay characteristic of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeA and the second reference signal whose QCL type is QCL-TypeE, and the delay characteristic of the downlink signal is determined according to the QCL type is QCL - the first reference signal of Type A determines the Doppler characteristic of the downlink signal; or,
  • the time-domain characteristic of the downlink signal is determined according to the second reference signal whose QCL type is QCL-TypeA, and the multiplicity of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeB. Puller properties; or,
  • the time-domain characteristic of the downlink signal is determined according to the second reference signal whose QCL type is QCL-TypeE, and the multiplicity of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeB. Puller properties; or,
  • the delay characteristic of the downlink signal is determined according to all the first reference signals whose QCL type is QCL-TypeA and all the second reference signals whose QCL type is QCL-TypeA, and according to the A specific reference signal in the first reference signal whose QCL type is QCL-TypeA determines the Doppler characteristic of the downlink signal.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the specific reference signal is a reference signal indicated by the network device or a default reference signal.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the network device performs frequency pre-compensation when transmitting the downlink signal; further comprising:
  • the transmission frequency of the uplink signal is determined according to the indication information; wherein the uplink signal is an uplink signal used to determine the frequency precompensation value of the downlink signal in the network device.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the downlink signal is transmitted through multiple TRPs, and frequency pre-compensation is performed on one or more of the TRPs, further comprising:
  • the first reference signal is used to determine the transmission frequency of the uplink signal used to calculate the frequency pre-compensation value of the downlink signal at each TRP.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by another embodiment of the present disclosure.
  • the network device includes a first receiving unit 901 and a second obtaining unit 902, wherein:
  • a first receiving unit 901 configured to receive quasi-co-site QCL configuration information of a downlink signal, where the QCL configuration information indicates at least two reference signals and a QCL type corresponding to the reference signals, and the first reference in the reference signals
  • the signal is used by the terminal device to determine the Doppler characteristic of the downlink signal
  • the second reference signal in the reference signal is used by the terminal device to determine the delay characteristic of the downlink signal
  • the first reference signal The number is one or more, and the number of the second reference signal is one or more;
  • the second obtaining unit 902 is configured to obtain the downlink signal according to the QCL configuration information.
  • the terminal device by using the above-mentioned QCL configuration information, the terminal device can obtain accurate delay characteristics and Doppler characteristics of downlink signals, thereby improving the performance of downlink transmission in high-speed mobile scenarios.
  • the second obtaining unit is configured to:
  • the downlink signal is acquired according to the Doppler characteristic and the time delay characteristic.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the determining the delay characteristic of the downlink signal according to the second reference signal includes:
  • the time delay characteristic of the downlink signal is determined according to the first reference signal and the second reference signal.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the method before acquiring the downlink signal according to the Doppler characteristic and the delay characteristic, the method further includes:
  • the method before acquiring the downlink signal according to the Doppler characteristic and the delay characteristic, the method further includes:
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the determining of the Doppler characteristic of the downlink signal according to the first reference signal, and the determining of the delay characteristic of the downlink signal according to the second reference signal include:
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal including the Doppler characteristic and the delay characteristic according to the QCL type; and the first reference signal including only the delay characteristic according to the QCL type and the second reference signal whose QCL type includes a delay characteristic to determine the delay characteristic of the downlink signal; or,
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal whose QCL type includes only Doppler characteristics; and the Doppler characteristic is determined according to the second reference signal whose QCL type only includes delay characteristics the delay characteristics of the downstream signal; or,
  • the Doppler characteristic of the downlink signal is determined according to the first reference signal including only Doppler characteristic according to the QCL type; and the second reference including delay characteristic and Doppler characteristic according to the QCL type
  • the signal determines the delay characteristic of the downlink signal; or,
  • the downlink is determined according to all the first reference signals of the QCL types including Doppler characteristics and delay characteristics and all the second reference signals of the QCL types including Doppler characteristics and delay characteristics delay characteristic of the signal; and determining the Doppler characteristic of the downlink signal according to the first reference signal of the QCL type including the Doppler characteristic and the delay characteristic; or,
  • the delay characteristic of the downlink signal is determined according to the second reference signal including the Doppler characteristic and the delay characteristic according to the QCL type; and the first reference signal including the Doppler characteristic and the delay characteristic according to the QCL type A reference signal determines the Doppler characteristic of the downlink signal.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the first reference signal is a specific reference signal among the reference signals of the QCL type including Doppler characteristics and time delay characteristics.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the second reference signal is a QCL type reference signal including Doppler characteristics and time delay characteristics.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the first reference signal is a reference signal whose QCL type is QCL-TypeA
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE
  • the QCL-TypeE indicates an indication
  • the QCL-TypeA indicates the QCL indicating Doppler shift, Doppler spread, average delay average delay and delay spread delay spread type
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeA, wherein the QCL-TypeB indicates the QCL type indicating Doppler shift and Doppler spread ;or
  • the first reference signal is a reference signal whose QCL type is QCL-TypeB
  • the second reference signal is a reference signal whose QCL type is QCL-TypeE; or
  • Both the first reference signal and the second reference signal are reference signals whose QCL type is QCL-TypeA.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the QCL configuration information is carried by a set composed of a transmission configuration indication state TCI state, and the set composed of the TCI state is one of the following:
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeE reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeB, and the second reference signal whose QCL type is QCL-TypeE;
  • the set of TCI states includes at least two TCI states, wherein one TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the other TCI state at least indicates the second reference signal whose QCL type is QCL-TypeA reference signal;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal whose QCL type is QCL-TypeA, and the second reference signal whose QCL type is QCL-TypeA;
  • the set of TCI states includes at least one TCI state, wherein the TCI state at least indicates the first reference signal and the second reference signal whose QCL types are both QCL-TypeA.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effect, and the same parts as the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the determining of the Doppler characteristic of the downlink signal according to the first reference signal, and the determining of the delay characteristic of the downlink signal according to the second reference signal include:
  • the delay characteristic of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeA and the second reference signal whose QCL type is QCL-TypeE, and the delay characteristic of the downlink signal is determined according to the QCL type is QCL - the first reference signal of Type A determines the Doppler characteristic of the downlink signal; or,
  • the time-domain characteristic of the downlink signal is determined according to the second reference signal whose QCL type is QCL-TypeA, and the multiplicity of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeB. Puller properties; or,
  • the time-domain characteristic of the downlink signal is determined according to the second reference signal whose QCL type is QCL-TypeE, and the multiplicity of the downlink signal is determined according to the first reference signal whose QCL type is QCL-TypeB. Puller properties; or,
  • the delay characteristic of the downlink signal is determined according to all the first reference signals whose QCL type is QCL-TypeA and all the second reference signals whose QCL type is QCL-TypeA, and according to the A specific reference signal in the first reference signal whose QCL type is QCL-TypeA determines the Doppler characteristic of the downlink signal.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the specific reference signal is a reference signal indicated by the network device or a default reference signal, where the reference signal indicated by the network device is: the network device indicates the first reference signal in the TCI state i QCL-TypeA reference signals, where i is a positive integer; or, a QCL-TypeA reference signal in a specific TCI state indicated by the network device; or, a QCL-TypeA sent from a specific TRP indicated by the network device Type A reference signal; wherein the default reference signal is: a specific QCL-TypeA reference signal agreed upon by the network device and the terminal device.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the network device performs frequency pre-compensation when transmitting the downlink signal; the terminal device further includes:
  • a third receiving unit configured to receive the indication information of the QCL reference signal of the uplink signal
  • the second determination unit is configured to determine the sending frequency of the uplink signal according to the indication information; wherein the uplink signal is an uplink signal used to determine the frequency pre-compensation value of the downlink signal in the network device.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • the downlink signal is transmitted through multiple TRPs, and frequency pre-compensation is performed on one or more of the TRPs, further comprising:
  • the third determining unit is configured to use the first reference signal to determine the transmission frequency of the uplink signal used to calculate the frequency precompensation value of the downlink signal at each TRP.
  • the above-mentioned terminal device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effects, and the same parts as those in the method embodiments in this embodiment will not be described here. And the beneficial effects will be described in detail.
  • an embodiment of the present disclosure further provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the foregoing implementations
  • Examples of methods provided include:
  • the QCL configuration information indicates at least two reference signals and the QCL type corresponding to the reference signals
  • the first reference signal in the reference signals is used for the
  • the terminal device determines the Doppler characteristic of the downlink signal, the second reference signal in the reference signal is used by the terminal device to determine the delay characteristic of the downlink signal, and the number of the first reference signal is one or more, the number of the second reference signal is one or more;
  • Receive quasi-co-site QCL configuration information of a downlink signal the QCL configuration information indicates at least two reference signals and a QCL type corresponding to the reference signals
  • the first reference signal in the reference signals is used for the terminal device to determine Doppler characteristics of the downlink signal
  • the second reference signal in the reference signal is used by the terminal device to determine the delay characteristic of the downlink signal
  • the number of the first reference signal is one or more
  • the number of the second reference signal is one or more;
  • the downlink signal is acquired according to the QCL configuration information.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by the processor, including but not limited to magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.) , optical memory (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)) and the like.
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
  • each embodiment can be implemented by means of software plus a necessary general hardware platform, and certainly can also be implemented by hardware.
  • the above-mentioned technical solutions can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic A disc, an optical disc, etc., includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

本公开实施例提供信息传输方法、网络设备、终端设备及存储介质,能够提高高速移动场景下终端的解调性能和/或节省导频开销,方法包括:向终端设备发送下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;向所述终端设备发送所述下行信号。

Description

信息传输方法、网络设备、终端设备及存储介质
相关申请的交叉引用
本公开要求于2020年08月07日提交的申请号为202010791707.4,发明名称为“信息传输方法、网络侧设备、终端及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及通信技术领域,尤其涉及一种信息传输方法、网络设备、终端设备及存储介质。
背景技术
终端设备(User Equipment,UE)在进行物理下行共享信道(Physical Downlink Shared Channel,PDSCH)信道估计时,通常利用解调参考信号(Demodulation Reference Signal,DMRS)获得DMRS资源粒子(Resource Element,RE)的信道估计值,然后通过插值获得PDSCH RE上的信道估计值。由于DMRS的物理资源块(Physical Resource Block,PRB)有可能较少,无法保证大尺度参数(如多普勒频移(Doppler shift)、多普勒扩展(Doppler spread)、平均时延(average delay)以及时延扩展(delay spread))的测量精度,从而无法获得准确的信道估计插值系数。为了提高UE的信道估计性能,UE通常需要使用跟踪参考信号(Tracking reference signal,TRS)获得时域和/或频域大尺度参数,并利用它们获得信道估计插值。在高铁场景下,为了避免终端设备进行频繁的小区切换,通常采用单频网(Single Frequency Network,SFN)的部署方式,简称为HST-SFN场景。如图1所示的HST-SFN场景的部署方式示意图中,多个射频拉远头(Remote Redio Head,RRH)通过光纤连接到同一个基带处理单元(Building Baseband Unit,BBU),每个RRH上通常部署两个传输接收点(Transmission reception point,TRP),分别打向不同的波束方向以覆盖铁轨;连接到同一个BBU的所有的RRH共享相同的小区(cell)标识(Identity Document,ID)。
现有的HST-SFN场景的信息传输方案为透明的SFN传输,即下行信号(比如PDSCH和PDSCH的DMRS)从多个网络设备的RRH上的TRP发出,且针对每个终端设备配置一个传输配置指示(Transmission Configuration Indication,TCI)状态(state),每个TCI state至少指示为每个终端设备配置的不同参考信号。终端设备基于TCI state里的准共站址(Quasi Co-Location,QCL)类型包括的多普勒特性的参考信号(通常为TRS)估计PDSCH所经历信道的多普勒特性(简称PDSCH的多普勒特性)。
然而,网络设备为每个终端设备配置不同的参考信号会造成大量的导频开销。综上可见,现有的信息传输方案存在导频开销大的问题。
发明内容
本公开实施例提供一种信息传输方法、网络设备、终端设备和存储介质,用以解决现有技术中导频开销大的缺陷。
第一方面,本公开实施例提供一种信息传输方法,包括:
向终端设备发送下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
向所述终端设备发送所述下行信号。
可选地,根据本公开一个实施例的信息传输方法,所述向所述终端设备发送所述下行信号,包括:
通过多个传输接收点TRP发送所述下行信号;
所述方法还包括:
向所述终端设备发送所述参考信号;其中,在发送所述参考信号时,使用发送所述下行信号的TRP中,与发送所述第一参考信号的TRP不同的TRP发送所述第二参考信号。
可选地,根据本公开一个实施例的信息传输方法,所述向所述终端设备发送所述下行信号,包括:
通过多个传输接收点TRP发送所述下行信号;
所述方法还包括:
向所述终端设备使用发送所述下行信号的所有TRP同时发送所述第二参考信号。
可选地,根据本公开一个实施例的信息传输方法,所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号,其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、平均时延average delay以及时延扩展delay spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
可选地,根据本公开一个实施例的信息传输方法,所述QCL配置信息通过传输配置指示状态TCI state组成的集合携带;所述TCI state组成的集合为以下任意一项:
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
可选地,根据本公开一个实施例的信息传输方法,所述下行信号由多个传输接收点TRP发送,所述向所述终端设备发送所述下行信号之前,还包括以下任意一项:
确定上行信号在第一TRP的频率偏移值,根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,其中,所述第一TRP为所述网络设备选定的一个TRP,所述第二TRP为所述第一TRP以外的一个或多个TRP;
确定上行信号在参考波束方向上的第三TRP的频率偏移值,根据所述第三TRP的频率偏移值确定所述下行信号在所述第三TRP的频率补偿值,将所述第三TRP的频率补偿值确定为所述参考波束方向的第四TRP的频率补偿值,其中,所述第三TRP为所述参考波束方向的一个TRP,所述第四TRP为所 述参考波束方向上所述第三TRP以外的一个或多个TRP;
根据上行信号在参考波束方向上的第五TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定所述参考波束方向的第六TRP的频率补偿值,其中,所述第五TRP为所述参考波束方向的一组TRP,所述第六TRP为所述参考波束方向上所述第五TRP以外的一个或多个TRP;
根据上行信号在参考波束方向上的所有TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定其他波束方向的第七TRP的频率补偿值,其中,所述第七TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
所述向所述终端设备发送所述下行信号,包括:
根据所述频率补偿值向所述终端设备发送所述下行信号。
可选地,根据本公开一个实施例的信息传输方法,所述根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,包括:
获取所述第一TRP的频率偏移值与获取到的所述第二TRP的频率偏移值的差值;
若所述第一TRP的频率补偿值为0,或者,在所述第一TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第二TRP的频率补偿值;或者,
若所述第一TRP的频率补偿值为Δf 1,则确定所述差值与所述Δf 1之和为所述第二TRP的频率补偿值,其中Δf 1不为0。
可选地,根据本公开一个实施例的信息传输方法,所述确定上行信号在参考波束方向上的第三TRP的频率偏移值之后,还包括:
根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值。
可选地,根据本公开一个实施例的信息传输方法,所述根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值,包括:
获取所述第三TRP的频率偏移值与第八TRP的频率偏移值的差值;所述第八TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
若所述第三TRP的频率补偿值为0,或者,在所述第三TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第八TRP所在波束方向的所有TRP的频率补偿值;或者,
若所述第三TRP的频率补偿值为Δf 2,则确定所述差值与所述Δf 2之和为所述第八TRP所在波束方向的所有TRP的频率补偿值,其中Δf 2不为0。
可选地,根据本公开一个实施例的信息传输方法,还包括以下至少一项:
若所述QCL配置信息指示一个QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号。
可选地,根据本公开一个实施例的信息传输方法,还包括:
向所述终端设备发送所述上行信号的QCL参考信号的指示信息,所述QCL参考信号用于指示所述终端设备用来确定所述上行信号的发送频率的参考信号。
可选地,根据本公开一个实施例的信息传输方法,所述QCL参考信号为所述第一参考信号中的信号。
可选地,根据本公开一个实施例的信息传输方法,还包括:
向所述终端设备发送TCI state指示信息,所述TCI state指示信息指示所述第一参考信号所在的TCI state;或者,
向所述终端设备发送序号指示信息,所述序号指示信息指示所述第一参考信号在与所述下行信号相关联的TCI state中所有的QCL-TypeA参考信号中的序号。
第二方面,本公开实施例还提供一种信息传输方法,包括:接收下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
根据所述QCL配置信息获取所述下行信号。
可选地,根据本公开一个实施例的信息传输方法,所述根据所述QCL配置信息获取所述下行信号,包括:
根据所述第一参考信号确定所述下行信号的多普勒特性;
根据所述第二参考信号确定所述下行信号的时延特性;
根据所述多普勒特性和所述时延特性获取所述下行信号。
可选地,根据本公开一个实施例的信息传输方法,所述根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述第一参考信号和所述第二参考信号确定所述下行信号的时延特性。
可选地,根据本公开一个实施例的信息传输方法,所述根据所述多普勒特性和所述时延特性获取所述下行信号之前,还包括:
接收所述网络设备发送的所述参考信号;其中,在发送所述参考信号时,所述第二参考信号发送自发送所述下行信号的TRP中,与发送所述第一参考信号的TRP不同的TRP。
可选地,根据本公开一个实施例的信息传输方法,所述根据所述多普勒特性和所述时延特性获取所述下行信号之前,还包括:
接收所述网络设备发送的所述参考信号;其中,在发送所述参考信号时,所述第二参考信号发送自发送所述下行信号的所有TRP。
可选地,根据本公开一个实施例的信息传输方法,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所述第一参考信号和所述QCL类型包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型包括时延特性和多普勒特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所有的所述QCL类型包括多普勒特性和时延特性的所述第一参考信号和所有的所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性。
可选地,根据本公开一个实施例的信息传输方法,所述第一参考信号为QCL类型包括多普勒特性和时延特性的参考信号中特定的参考信号。
可选地,根据本公开一个实施例的信息传输方法,所述第二参考信号为QCL类型包括多普勒特性和时延特性的参考信号。
可选地,根据本公开一个实施例的信息传输方法,所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号,其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、平均时延average delay以及时延扩展delay spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
可选地,根据本公开一个实施例的信息传输方法,所述QCL配置信息通过传输配置指示状态TCI state组成的集合携带,所述TCI state组成的集合为以下中的一项:
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
可选地,根据本公开一个实施例的信息传输方法,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述QCL类型为QCL-TypeA的所述第一参考信号以及所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所有的所述QCL类型为QCL-TypeA的所述第一参考信号和所有的所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号中特定的参考信号确定所述下行信号的多普勒特性。
可选地,根据本公开一个实施例的信息传输方法,所述特定的参考信号为所述网络设备指示的参考信号或默认的参考信号。
可选地,根据本公开一个实施例的信息传输方法,所述网络设备传输所述下行信号时进行了频率预补偿;所述方法还包括:
接收上行信号的QCL参考信号的指示信息;
根据所述指示信息确定所述上行信号的发送频率;其中,所述上行信号为用来确定所述下行信号在所述网络设备的频率预补偿值的上行信号。
可选地,根据本公开一个实施例的信息传输方法,所述下行信号通过多个TRP传输,且在一个或多个所述TRP进行频率预补偿,还包括:
使用所述第一参考信号确定用来计算所述下行信号在各个TRP的频率预补偿值的上行信号的发送频率。
第三方面,本公开实施例还提供一种网络设备,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
向终端设备发送下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
向所述终端设备发送所述下行信号。
可选地,根据本公开一个实施例的网络设备,所述向所述终端设备发送所述下行信号,包括:
通过多个传输接收点TRP发送所述下行信号;
还包括:
向所述终端设备发送所述参考信号;其中,在发送所述参考信号时,使用发送所述下行信号的TRP中,与发送所述第一参考信号的TRP不同的TRP 发送所述第二参考信号。
可选地,根据本公开一个实施例的网络设备,所述向所述终端设备发送所述下行信号,包括:
通过多个传输接收点TRP发送所述下行信号;
还包括:
向所述终端设备使用发送所述下行信号的所有TRP同时发送所述第二参考信号。
可选地,根据本公开一个实施例的网络设备,所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号,其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、平均时延average delay以及时延扩展delay spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
可选地,根据本公开一个实施例的网络设备,所述QCL配置信息通过传输配置指示状态TCI state组成的集合携带;所述TCI state组成的集合为以下任意一项:
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指 示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
可选地,根据本公开一个实施例的网络设备,所述下行信号由多个传输接收点TRP发送,所述向所述终端设备发送所述下行信号之前,还包括以下任意一项:
确定上行信号在第一TRP的频率偏移值,根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,其中,所述第一TRP为所述网络设备选定的一个TRP,所述第二TRP为所述第一TRP以外的一个或多个TRP;
确定上行信号在参考波束方向上的第三TRP的频率偏移值,根据所述第三TRP的频率偏移值确定所述下行信号在所述第三TRP的频率补偿值,将所述第三TRP的频率补偿值确定为所述参考波束方向的第四TRP的频率补偿值, 其中,所述第三TRP为所述参考波束方向的一个TRP,所述第四TRP为所述参考波束方向上所述第三TRP以外的一个或多个TRP;
根据上行信号在参考波束方向上的第五TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定所述参考波束方向的第六TRP的频率补偿值,其中,所述第五TRP为所述参考波束方向的一组TRP,所述第六TRP为所述参考波束方向上所述第五TRP以外的一个或多个TRP;
根据上行信号在参考波束方向上的所有TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定其他波束方向的第七TRP的频率补偿值,其中,所述第七TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
所述向所述终端设备发送所述下行信号,包括:
根据所述频率补偿值向所述终端设备发送所述下行信号。
可选地,根据本公开一个实施例的网络设备,所述根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,包括:
获取所述第一TRP的频率偏移值与获取到的所述第二TRP的频率偏移值的差值;
若所述第一TRP的频率补偿值为0,或者,在所述第一TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第二TRP的频率补偿值;或者,
若所述第一TRP的频率补偿值为Δf 1,则确定所述差值与所述Δf 1之和为所述第二TRP的频率补偿值,其中Δf 1不为0。
可选地,根据本公开一个实施例的网络设备,所述确定上行信号在参考波束方向上的第三TRP的频率偏移值之后,还包括:
根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值。
可选地,根据本公开一个实施例的网络设备,所述根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值,包括:
获取所述第三TRP的频率偏移值与第八TRP的频率偏移值的差值;所述 第八TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
若所述第三TRP的频率补偿值为0,或者,在所述第三TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第八TRP所在波束方向的所有TRP的频率补偿值;或者,
若所述第三TRP的频率补偿值为Δf 2,则确定所述差值与所述Δf 2之和为所述第八TRP所在波束方向的所有TRP的频率补偿值,其中Δf 2不为0。
可选地,根据本公开一个实施例的网络设备,还包括以下至少一项:
若所述QCL配置信息指示一个QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号。
可选地,根据本公开一个实施例的网络设备,还包括:
向所述终端设备发送所述上行信号的QCL参考信号的指示信息,所述QCL参考信号用于指示所述终端设备用来确定所述上行信号的发送频率的参考信号。
可选地,根据本公开一个实施例的网络设备,所述QCL参考信号为所述 第一参考信号中的信号。
可选地,根据本公开一个实施例的网络设备,还包括:
向所述终端设备发送TCI state指示信息,所述TCI state指示信息指示所述第一参考信号所在的TCI state;或者,
向所述终端设备发送序号指示信息,所述序号指示信息指示所述第一参考信号在与所述下行信号相关联的TCI state中所有的QCL-TypeA参考信号中的序号。
第四方面,本公开实施例还提供一种网络设备,包括:
第一发送单元,用于向终端设备发送下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
第二发送单元,用于向所述终端设备发送所述下行信号。
可选地,根据本公开一个实施例的网络设备,所述第二发送单元,用于:
通过多个传输接收点TRP发送所述下行信号;
所述网络设备还包括:
第三发送单元,用于向所述终端设备发送所述参考信号;其中,在发送所述参考信号时,使用发送所述下行信号的TRP中,与发送所述第一参考信号的TRP不同的TRP发送所述第二参考信号。
可选地,根据本公开一个实施例的网络设备,所述第二发送单元用于:
通过多个传输接收点TRP发送所述下行信号;
所述网络设备还包括:
第四发送单元,用于向所述终端设备使用发送所述下行信号的所有TRP同时发送所述第二参考信号。
可选地,根据本公开一个实施例的网络设备,所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE 的参考信号,其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、平均时延average delay以及时延扩展delay spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
可选地,根据本公开一个实施例的网络设备,所述QCL配置信息通过传输配置指示状态TCI state组成的集合携带;所述TCI state组成的集合为以下任意一项:
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE 的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
可选地,根据本公开一个实施例的网络设备,所述下行信号由多个传输接收点TRP发送,所述网络设备还包括第一确定单元,用于执行以下任意一项:
确定上行信号在第一TRP的频率偏移值,根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,其中,所述第一TRP为所述网络设备选定的一个TRP,所述第二TRP为所述第一TRP以外的一个或多个TRP;
确定上行信号在参考波束方向上的第三TRP的频率偏移值,根据所述第三TRP的频率偏移值确定所述下行信号在所述第三TRP的频率补偿值,将所述第三TRP的频率补偿值确定为所述参考波束方向的第四TRP的频率补偿值,其中,所述第三TRP为所述参考波束方向的一个TRP,所述第四TRP为所述参考波束方向上所述第三TRP以外的一个或多个TRP;
根据上行信号在参考波束方向上的第五TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定所述参考波束方向的第六TRP的频率补偿值,其中,所述第五TRP为所述参考波束方向的一组TRP,所述第六TRP为所述参考波束方向上所述第五TRP以外的一个或多个TRP;
根据上行信号在参考波束方向上的所有TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定其他波束方向的第七TRP的频率补偿值,其中,所述第七TRP为所述参考波束方向以外其他波束方向的一个或多个 TRP;
所述第二发送单元,用于:
根据所述频率补偿值向所述终端设备发送所述下行信号。
可选地,根据本公开一个实施例的网络设备,所述根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,包括:
获取所述第一TRP的频率偏移值与获取到的所述第二TRP的频率偏移值的差值;
若所述第一TRP的频率补偿值为0,或者,在所述第一TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第二TRP的频率补偿值;或者,
若所述第一TRP的频率补偿值为Δf 1,则确定所述差值与所述Δf 1之和为所述第二TRP的频率补偿值,其中Δf 1不为0。
可选地,根据本公开一个实施例的网络设备,所述确定上行信号在参考波束方向上的第三TRP的频率偏移值之后,还包括:
根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值。
可选地,根据本公开一个实施例的网络设备,所述根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值,包括:
获取所述第三TRP的频率偏移值与第八TRP的频率偏移值的差值;所述第八TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
若所述第三TRP的频率补偿值为0,或者,在所述第三TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第八TRP所在波束方向的所有TRP的频率补偿值;或者,
若所述第三TRP的频率补偿值为Δf 2,则确定所述差值与所述Δf 2之和为所述第八TRP所在波束方向的所有TRP的频率补偿值,其中Δf 2不为0。
可选地,根据本公开一个实施例的网络设备,还包括:第五发送单元,用于执行以下至少一项:
若所述QCL配置信息指示一个QCL类型为QCL-TypeA的第一参考信号 和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号。
可选地,根据本公开一个实施例的网络设备,还包括:
第六发送单元,用于向所述终端设备发送所述上行信号的QCL参考信号的指示信息,所述QCL参考信号用于指示所述终端设备用来确定所述上行信号的发送频率的参考信号。
可选地,根据本公开一个实施例的网络设备,所述QCL参考信号为所述第一参考信号中的信号。
可选地,根据本公开一个实施例的网络设备,还包括:
向所述终端设备发送TCI state指示信息,所述TCI state指示信息指示所述第一参考信号所在的TCI state;或者,
向所述终端设备发送序号指示信息,所述序号指示信息指示所述第一参考信号在与所述下行信号相关联的TCI state中所有的QCL-TypeA参考信号中的序号。
第五方面,本公开实施例还提供一种终端设备,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
接收下行信号的准共站址QCL配置信息,所述QCL配置信息至少指示两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
根据所述QCL配置信息获取所述下行信号。
可选地,根据本公开一个实施例的终端设备,所述根据所述QCL配置信息获取所述下行信号,包括:
根据所述第一参考信号确定所述下行信号的多普勒特性;
根据所述第二参考信号确定所述下行信号的时延特性;
根据所述多普勒特性和所述时延特性获取所述下行信号;
可选地,根据本公开一个实施例的终端设备,所述根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述第一参考信号和所述第二参考信号确定所述下行信号的时延特性。
可选地,根据本公开一个实施例的终端设备,所述根据所述多普勒特性和所述时延特性获取所述下行信号之前,还包括:
接收所述网络设备发送的所述参考信号;其中,在发送所述参考信号时,所述第二参考信号发送自发送所述下行信号的TRP中,与发送所述第一参考信号的TRP不同的TRP。
可选地,根据本公开一个实施例的终端设备,所述根据所述多普勒特性和所述时延特性获取所述下行信号之前,还包括:
接收所述网络设备发送的所述参考信号;其中,在发送所述参考信号时,所述第二参考信号发送自发送所述下行信号的所有TRP。
可选地,根据本公开一个实施例的终端设备,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所述第一参考信号和所述QCL类型包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型包括时延特性和多普勒特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所有的所述QCL类型包括多普勒特性和时延特性的所述第一参考信号和所有的所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性。
可选地,根据本公开一个实施例的终端设备,所述第一参考信号为QCL类型包括多普勒特性和时延特性的参考信号中特定的参考信号。
可选地,根据本公开一个实施例的终端设备,所述第二参考信号为QCL类型包括多普勒特性和时延特性的参考信号。
可选地,根据本公开一个实施例的终端设备,所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号,其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler  shift、多普勒扩展Doppler spread、平均时延average delay以及时延扩展delay spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
可选地,根据本公开一个实施例的终端设备,所述QCL配置信息通过传输配置指示状态TCI state组成的集合携带,所述TCI state组成的集合为以下中的一项:
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少 指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
可选地,根据本公开一个实施例的终端设备,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述QCL类型为QCL-TypeA的所述第一参考信号以及所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所有的所述QCL类型为QCL-TypeA的所述第一参考信号和所有的所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号中特定的参考信号确定所述下行信号的多普勒特性。
可选地,根据本公开一个实施例的终端设备,所述特定的参考信号为所述网络设备指示的参考信号或默认的参考信号。
可选地,根据本公开一个实施例的终端设备,所述网络设备传输所述下行信号时进行了频率预补偿;所述方法还包括:
接收上行信号的QCL参考信号的指示信息;
根据所述指示信息确定所述上行信号的发送频率;其中,所述上行信号为用来确定所述下行信号在所述网络设备的频率预补偿值的上行信号。
可选地,根据本公开一个实施例的终端设备,所述下行信号通过多个TRP传输,且在一个或多个所述TRP进行频率预补偿,还包括:
使用所述第一参考信号确定用来计算所述下行信号在各个TRP的频率预补偿值的上行信号的发送频率。
第六方面,本公开实施例还提供一种终端设备,包括:
第一接收单元,用于接收下行信号的准共站址QCL配置信息,所述QCL配置信息至少指示两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
第二获取单元,用于根据所述QCL配置信息获取所述下行信号。
可选地,根据本公开一个实施例的终端设备,所述第二获取单元,用于:
根据所述第一参考信号确定所述下行信号的多普勒特性;
根据所述第二参考信号确定所述下行信号的时延特性;
根据所述多普勒特性和所述时延特性获取所述下行信号。
可选地,根据本公开一个实施例的终端设备,所述根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述第一参考信号和所述第二参考信号确定所述下行信号的时延特性。
可选地,根据本公开一个实施例的终端设备,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所 述第一参考信号和所述QCL类型包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型包括时延特性和多普勒特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所有的所述QCL类型包括多普勒特性和时延特性的所述第一参考信号和所有的所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性。
可选地,根据本公开一个实施例的终端设备,所述第一参考信号为QCL类型包括多普勒特性和时延特性的参考信号中特定的参考信号。
可选地,根据本公开一个实施例的终端设备,所述第二参考信号为QCL类型包括多普勒特性和时延特性的参考信号。
可选地,根据本公开一个实施例的终端设备,所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号,其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、平均时延average delay以及时延扩展delay spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
可选地,根据本公开一个实施例的终端设备,所述QCL配置信息通过传输配置指示状态TCI state组成的集合携带,所述TCI state组成的集合为以下中的一项:
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
可选地,根据本公开一个实施例的终端设备,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述QCL类型为QCL-TypeA的所述第一参考信号以及所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所有的所述QCL类型为QCL-TypeA的所述第一参考信号和所有的所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号中特定的参考信号确定所述下行信号的多普勒特性。
可选地,根据本公开一个实施例的终端设备,所述特定的参考信号为所述网络设备指示的参考信号或默认的参考信号。
可选地,根据本公开一个实施例的终端设备,所述网络设备传输所述下行信号时进行了频率预补偿,所述终端设备还包括:
第三接收单元,用于接收上行信号的QCL参考信号的指示信息;
第二确定单元,用于根据所述指示信息确定所述上行信号的发送频率;其中,所述上行信号为用来确定所述下行信号在所述网络设备的频率预补偿值的上行信号。
可选地,根据本公开一个实施例的终端设备,所述下行信号通过多个TRP 传输,且在一个或多个所述TRP进行频率预补偿,所述终端设备还包括:
第三确定单元,用于使用所述第一参考信号确定用来计算所述下行信号在各个TRP的频率预补偿值的上行信号的发送频率。
第七方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上所述第一方面所述的信息传输方法或如所述第二方面所述的信息传输方法的步骤。
本公开实施例提供的信息传输方法、网络设备、终端设备和存储介质,由于用于终端设备确定下行信号的时延特性和多普勒特性的QCL配置信息指示的参考信号不需要进行多普勒频移的预补偿,因此,网络设备配置的QCL配置信息指示的参考信号能够供所有终端设备使用,从而网络设备不需要针对每个终端设备发送专门的参考信号,从而节省了导频开销。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种HST-SFN场景的部署方式示意图;
图2是本公开实施例提供的一种信息传输方法的流程示意图;
图3是本公开实施例提供的另一种信息传输方法的流程示意图;
图4是本公开实施例提供的另一种信息传输方法的流程示意图;
图5是本公开实施例提供的另一种信息传输方法的流程示意图;
图6是本公开实施例提供的一种网络设备的结构示意图;
图7是本公开实施例提供的另一种网络设备的结构示意图;
图8是本公开实施例提供的一种终端设备的结构示意图;
图9是本公开实施例提供的另一种终端设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在现有的高速列车-单频网(High Speed Train-Single Frequency Network,HST-SFN)场景下,终端设备根据传输配置指示状态(Transmission Configuration Indication state,TCI state)中的参考信号确定下行频点、并基于该下行频点获得上行频点,在上行频点上进行上行信号的传输。在终端设备处于移动状态时,终端设备获得的下行频点中包含了下行的多普勒频率偏移(简称多普勒频移),在进行上行信号的传输时又进一步叠加了上行的多普勒频移。因此,在单点传输时,上行信号在网络设备接收时的频率相对于网络设备的上行频点存在两倍的多普勒频移。在多点传输时,各个传输接收点(Transmissionreceptionpoint,TRP)的下行频点相同,但由于地理位置不同,在终端设备的多普勒频移是不同的。但终端设备只确定出一个下行频点,并基于该下行频点进行上行信号的传输。由于各个TRP的地理位置和/或接收波束方向的不同,上行信号到达各个TRP经历的多普勒频移是不同的。由于网络设备并不知道终端设备基于什么样的下行频点进行上行信号的传输,所以网络设备无法估计出下行或上行经历的多普勒频移,从而无法有效地进行多普勒频移的预补偿,无法有效消除多普勒扩展。
此外,在下行信号(比如PDSCH)被分配的PRB数目较少时,DMRS的RE也会较少,使用DMRS进行多普勒特性和时延特性的估计可能无法获得较好的精度。因此允许为PDSCH配置QCL参考信号,即为终端设备配置不同的QCL参考信号,从而终端设备可以通过QCL参考信号测量PDSCH和PDSCH的DMRS的大尺度参数,以更好地进行信道估计。但网络设备为 每个终端设备配置不同的QCL参考信号,将需要大量的导频开销。为了降低导频开销,需要考虑如何利用小区级的QCL参考信号实现既能减少Doppler扩展,又能使得终端设备能够以较高的精度获得时域和频域大尺度参数的传输方案。本公开各实施例针对上述问题,提供了相应的解决方案,比如不需要针对每个终端设备发送专门的QCL参考信号,以节省导频开销,又比如通过频率补偿方式消除多普勒扩展,以提高下行信号的解调性能。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接 入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而 不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图2为本公开一实施例提供的信息传输方法,如图2所示,该方法至少包括如下步骤:
201、向终端设备发送下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号包括一个或多个所述参考信号,所述第二参考信号包括一个或多个所述参考信号;
在网络设备向终端设备发送下行信号之前,网络设备可以向所述终端设备发送QCL配置信息,该QCL配置信息为下行信号的配置信息,在本实施例中,下行信号包括但不限于PDSCH、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、PDSCH的DMRS、PDCCH的DMRS、信道状态信息-参考信号(Channel State Information-Reference Signal,CSI-RS)。
QCL配置信息指示至少两个参考信号以及各参考信号对应的QCL类型。需要说明的是,各参考信号对应的QCL类型可以相同,也可以不同。网络设备在配置QCL配置信息时,需要保证终端设备接收到QCL配置信息后,能够根据QCL配置信息中的相关QCL类型的参考信号确定下行信号的时延特性和多普勒特性。
QCL配置信息指示至少两个参考信号,该至少两个参考信号可以包括第一参考信号和第二参考信号,在配置第一参考信号时,主要配置依据在于终端设备能够根据第一参考信号确定下行信号的多普勒特性,在配置第二参考信号时,主要配置依据在于终端设备能够根据第二参考信号确定下行信号的时延特性(可包括根据第二参考信号和第一参考信号共同确定下行信号的时延特性)。另外,第一参考信号的个数可以为一个或多个,第二参考信号的个数可以为一个或多个。
可选的,本公开实施例中,所述下行信号的多普勒特性为所述下行信号 的信道的多普勒特性;所述下行信号的时延特性为所述下行信号的信道的时延特性;所述下行信号的时延特性和多普勒特性为所述下行信号的信道的时延特性和多普勒特性。
所述多普勒特性包括但不限于以下中的一个或多个:多普勒频移、多普勒扩展。
所述时延特性包括但不限于以下中的一个或多个:平均时延、时延扩展。
需要理解的是,在本公开各实施例的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。另外,“多个”是指两个或两个以上,其它量词与之类似。
下面对本公开实施例中涉及到的准共站址QCL进行解释说明:
准共站址QCL是指某个天线端口上的符号经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道推断出来,其中的大尺度参数可以包括时延扩展、平均时延、多普勒扩展、多普勒时延、平均增益以及空间接收参数等。例如,现有的5G新空口(New Radio,NR)系统中主要包括以下四种QCL类型,如下表1所示:
表1
Figure PCTCN2021111235-appb-000001
其中,多普勒频移(Doppler shift)和多普勒扩展(Doppler spread)为多普勒特性,平均时延(average)和时延扩展(delay spread)为时域特性。
202、向所述终端设备发送所述下行信号。
在配置完成下行信号的QCL配置信息后,网络设备向终端设备发送下行信号,以便终端设备根据QCL配置信息获取下行信号。
在本公开实施例中,获取下行信号包括接收下行信号,和/或,对下行信号的检测译码。
本公开实施例提供的信息传输方法可以通过向终端设备指示用于确定下行信号所经历信道的多普勒特性的参考信号和用于确定下行信号所经历信道的时延特性的参考信号来使得终端设备更好地进行多普勒特性和时延特性的估计,从而提高终端设备的解调性能。由于用来估计下行信号所经历信道的多普勒特性的参考信号与用于估计下行信号所经历信道的时延特性的参考信号并不完全相同,这可以实现网络设备以不同的方式发送这两种参考信号,从而可以实现小区级的参考信号(一个参考信号可同时供多个终端设备使用)的传输,降低参考信号的开销。
在上述实施例的基础上,在一些可选的实施例中,提供了两种针对步骤202中向所述终端设备发送所述下行信号的具体实现方式,如下:
第一种方式:
通过多个传输接收点TRP发送所述下行信号;
所述方法还包括:
向所述终端设备发送所述参考信号;其中,在发送所述参考信号时,使用发送所述下行信号的TRP中,与发送所述第一参考信号的TRP不同的TRP发送所述第二参考信号。
具体地,在向所述终端设备发送所述下行信号之前,和/或在向所述终端设备发送所述下行信号时,向终端设备发送第一参考信号和第二参考信号,其中,第一参考信号和第二参考信号通过不同的TRP发送,且所使用的TRP来自于发送下行信号的多个TRP。
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
第二种方式:
通过多个传输接收点TRP发送所述下行信号;
所述方法还包括:
向所述终端设备使用发送所述下行信号的所有TRP同时发送所述第二参考信号。
具体地,在向所述终端设备发送所述下行信号之前,和/或在向所述终端设备发送所述下行信号时,向所述终端设备发送第一参考信号和第二参考信号,其中,第二参考信号所使用的TRP来自于发送下行信号的所有TRP。
在上述实施例的基础上,在一些可选的实施例中,针对第一参考信号和第二参考信号的QCL类型进行了如下说明:
所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号。其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、average delay以及delay spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
具体地,本公开实施例提供了四种QCL配置信息,其中第一种QCL配置信息指示QCL类型为QCL-TypeA的第一参考信号(该第一参考信号可用来确定所述下行信号信道的时延特性和多普勒特性)和QCL类型为QCL-TypeE的第二参考信号(该第二参考信号可用来确定所述下行信号信道的时延特性)。相应地,终端设备可以根据QCL类型为QCL-TypeA的第一参考信号以及QCL类型为QCL-TypeE的第二参考信号确定出下行信号的时延特性,以及,终端设备可以根据QCL类型为QCL-TypeA的第一参考信号确定出下行信号的多普勒特性。需要说明的是,QCL-TypeE为自定义的一个QCL 类型,用于表示只指示时延特性的QCL类型。例如,为指示平均时延average delay和时延扩展delay spread的QCL类型,但本公开实施例中表示指示平均时延average delay和时延扩展delay spread的QCL类型不一定要用QCL-TypeE表示,例如也可以采用QCL-TypeF、QCL-TypeG等表示,此处不做限定。
本QCL配置信息的配置方式,由于第一参考信号的QCL类型就是用来指示多普勒特性和时延特性的QCL类型,第二参考信号的QCL类型就是用来指示时延特性的QCL类型,二者类型不同,通过本QCL配置信息的配置方式,所述终端可以判断出使用第一参考信号进行下行信号的多普勒特性的估计,以及使用第二参考信号进行下行信号的时延特性的估计。第一参考信号可以从某个不进行下行信号频率预补偿的传输点进行传输,从而使得其多普勒偏移值与下行信号相同,用来进行时延估计的第二参考信号可以从发送下行信号的其他传输点发送,这样第一参考信号的信道的时延特性和第二参考信号的信道的时延特性组合起来就可以得到下行信号信道的时延特性,从而利用第一参考信号和第二参考信号可以很好地对下行信号进行信道估计,保证下行信号的解调性能。
其中第二种QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号(该第一参考信号包括多普勒特性)和QCL类型为QCL-TypeA的第二参考信号(该第二参考信号包括时延特性和多普勒特性)。相应地,终端设备可以根据QCL类型为QCL-TypeA的第二参考信号确定出下行信号的时延特性,以及,终端设备可以根据QCL类型为QCL-TypeB的第一参考信号确定出下行信号的多普勒特性。
本QCL配置信息的配置方式,由于第一参考信号的QCL类型就是用来指示多普勒特性的QCL类型,第二参考信号的QCL类型就是用来指示时延特性和多普勒特性的QCL类型,这使得终端可以基于参考信号的QCL类型理解应该是用哪个参考信号进行下行信号信道的多普勒特性和时延特性的估计。所述终端可以判断出使用第一参考信号进行下行信号的多普勒特性的估计,以及使用第二参考信号进行下行信号的时延特性的估计。第一参考信号 可以从某个不进行下行信号频率预补偿的传输点进行传输,从而使得其多普勒偏移值与下行信号相同,用来进行时延估计的第二参考信号可以从发送下行信号的所有的传输点发送,这样它与下行信号信道的时延特性相同,从而利用第一参考信号和第二参考信号可以很好地对下行信号进行信道估计,保证下行信号的解调性能。
其中第三种QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号(该第一参考信号包括多普勒特性)和QCL类型为QCL-TypeE的第二参考信号(该第二参考信号包括时延特性)。相应地,终端设备可以根据QCL类型为QCL-TypeE的第二参考信号确定出下行信号的时延特性,以及,终端设备可以根据QCL类型为QCL-TypeB的第一参考信号确定出下行信号的多普勒特性。
通过本QCL配置信息的配置方式,由于第一参考信号的QCL类型就是用来指示多普勒特性的QCL类型,第二参考信号的QCL类型就是用来指示时延特性的QCL类型,这使得终端可以基于参考信号的类型理解应该是用哪个参考信号进行下行信号信道的多普勒特性和时延特性的估计。通过本方案中参考信号的类型,所述终端可以判断出使用第一参考信号进行下行信号的多普勒特性的估计,以及使用第二参考信号进行下行信号的时延特性的估计。第一参考信号可以从某个不进行下行信号频率预补偿的传输点进行传输,从而使得其多普勒偏移值与下行信号相同,用来进行时延估计的第二参考信号可以从发送下行信号的所有的传输点发送,这样它与下行信号信道的时延特性相同,从而利用第一参考信号和第二参考信号可以很好地对下行信号进行信道估计,保证下行信号的解调性能。
其中第四种QCL配置信息指示QCL类型为QCL-TypeA的第一参考信号和第二参考信号(该第一参考信号和第二参考信号均包括时延特性和多普勒特性)。相应地,终端设备可以根据所有的QCL类型为QCL-TypeA的第一参考信号和第二参考信号确定出下行信号的时延特性。
通过本QCL配置信息的配置方式,由于第一参考信号的QCL类型和第二参考信号的QCL类型都是用来指示多普勒特性和时延特性的QCL类型, UE确定下行信号信道的多普勒特性和时延特性的方式可以为:基于用第一参考信号进行多普勒特性的估计,基于第二参考信可以进行时延特性的估计;或,利用第一参考信号进行多普勒和时延特性的估计,基于第二参考信可以进行时延特性的估计;或,利用第一参考信号进行多普勒的估计,基于第二参考信可以进行多普勒特性和时延特性的估计。本方式使得网络设备对参考信号的传输具有更大的灵活性。同时,通过第一参考信号和第二参考信号估计出的多普勒特性和时延特性,可以很好地对下行信号进行信道估计,提高下行信号的解调性能。
在上述实施例的基础上,在一些可选的实施例中,QCL配置信息通过传输配置指示状态TCI state组成的集合携带;所述TCI state组成的集合为以下任意一项:
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;,
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示至少一个QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
具体地,本公开实施例针对上述四种QCL配置信息,通过如下TCI state组成的集合携带:
针对上述第一种QCL配置信息,TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的第二参考信号。例如,TCI state组成的集合中包括TCI state 1和TCI state 2,TCI state 1包括QCL类型为QCL-TypeA的第一参考信号RS1,TCI state 2包括QCL类型为QCL-TypeE的第二参考信号RS2,具体如下表2所示:
表2
TCI state 1 TCI state 2
RS1|QCL-TypeA RS2|QCL-TypeE
针对上述第二种QCL配置信息,存在两种类型的TCI state组成的集合,第一种类型的TCI state组成的集合如下:
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的第二参考信号。例如,TCI state组成的集合中包括TCI state 1和TCI state 2,TCI state 1包括QCL类型为QCL-TypeB的第一参考信号RS1,TCI state 2包括QCL类型为QCL-TypeA的第二参考信号RS2,具体如下表3所示:
表3
TCI state 1 TCI state 2
RS1|QCL-TypeB RS2|QCL-TypeA
第二种类型的TCI state组成的集合如下:
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的第一参考信号,以及QCL类型为QCL-TypeA的第二参考信号。例如,TCI state组成的集合中包括TCI state 1,TCI state 1包括QCL类型为QCL-TypeB的第一参考信号RS1,以及包括QCL类型为QCL-TypeA的第二参考信号RS2,具体如下表4所示:
表4
Figure PCTCN2021111235-appb-000002
针对上述第三种QCL配置信息,存在两种类型的TCI state组成的集合,第一种类型的TCI state组成的集合如下:
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的第二参考信号。例如,TCI state组成的集合中包括TCI state 1和TCI state 2,TCI state 1包括QCL类型为QCL-TypeB的第一参考信号RS1,TCI state 2包括QCL类型为QCL-TypeE的第二参考信号RS2,具体如下表5所示:
表5
TCI state 1 TCI state 2
RS1|QCL-TypeB RS2|QCL-TypeE
第二种类型的TCI state组成的集合如下:
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的第一参考信号,以及QCL类型为QCL-TypeE的第二参考信号。例如,TCI state组成的集合中包括TCI state 1,TCI state 1包括 QCL类型为QCL-TypeB的第一参考信号RS1,以及包括QCL类型为QCL-TypeE的第二参考信号RS2,具体如下表6所示:
表6
Figure PCTCN2021111235-appb-000003
针对上述第四种QCL配置信息,存在三种类型的TCI state组成的集合,第一种类型的TCI state组成的集合如下:
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的第二参考信号。例如,TCI state组成的集合中包括TCI state 1和TCI state 2,TCI state 1包括QCL类型为QCL-TypeA的第一参考信号RS1,TCI state 2包括QCL类型为QCL-TypeA的第二参考信号RS2,具体如下表7所示:
表7
TCI state 1 TCI state 2
RS1|QCL-TypeA RS2|QCL-TypeA
第二种类型的TCI state组成的集合如下:
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的第一参考信号,以及QCL类型为QCL-TypeA的第二参考信号。例如,TCI state组成的集合中包括TCI state 1,TCI state 1包括QCL类型为QCL-TypeA的第一参考信号RS1,以及包括QCL类型为QCL-TypeA的第二参考信号RS2,具体如下表8所示:
表8
Figure PCTCN2021111235-appb-000004
Figure PCTCN2021111235-appb-000005
第三种类型的TCI state组成的集合如下:
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的两个参考信号。例如,TCI state组成的集合中包括TCI state 1,TCI state 1包括QCL类型为QCL-TypeA的两个参考信号,分别为第一参考信号RS1和第二参考信号RS2,具体如下表9所示:
表9
TCI state 1
RS 1,RS 2|QCL-TypeA
需要说明的是,本公开实施例通过配置上述四种不同类型的QCL配置信息,能够使得终端设备获得准确的下行信号的时延特性和多普勒特性。
在上述实施例的基础上,在一些可选的实施例中,下行信号由多个传输接收点TRP发送,即网络设备通过多个传输接收点TRP发送下行信号。在向终端设备发送下行信号之前,还包括以下任意一项:
确定上行信号在第一TRP的频率偏移值,根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,其中,所述第一TRP为所述网络设备选定的一个TRP,所述第二TRP为所述第一TRP以外的一个或多个TRP;
确定上行信号在参考波束方向上的第三TRP的频率偏移值,根据所述第三TRP的频率偏移值确定所述下行信号在所述第三TRP的频率补偿值,将所述第三TRP的频率补偿值确定为所述参考波束方向的第四TRP的频率补偿值,其中,所述第三TRP为所述参考波束方向的一个TRP,所述第四TRP为所述参考波束方向上所述第三TRP以外的一个或多个TRP;
根据上行信号在参考波束方向上的第五TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定所述参考波束方向的第六TRP的频率补 偿值,其中,所述第五TRP为所述参考波束方向的一组TRP,所述第六TRP为所述参考波束方向上所述第五TRP以外的一个或多个TRP;
根据上行信号在参考波束方向上的所有TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定其他波束方向的第七TRP的频率补偿值,其中,所述第七TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
所述向所述终端设备发送所述下行信号,包括:
根据所述频率补偿值向所述终端设备发送所述下行信号。
可选地,通过频率补偿值在TRP对下行频点进行调整,得到调整后的频率;在调整后的频率进行下行信号的传输。
可选的,上述频率偏移值为对上行信号进行信道估计后得到的多普勒偏移值。
可选的,根据所述频率偏移值向所述终端发送所述下行信号,包括:利用所述频率偏移值对下行信号进行中心频点的调整,在进行了调整后的频率上发送所述下行信号。例如,可选的,在每个TRP,基于该TRP的频率偏移值对下行信号进行中心频点的调整,在进行了调整后的频率上发送所述下行信号。
可选的,根据所述频率偏移值向所述终端发送所述下行信号,包括:将下行信号的发送频率相对于根据下行频点确定的频率调高或调低所述频率偏移值后发送所述下行信号。例如,在每个TRP,基于该TRP的频率偏移值将下行信号的发送频率相对于根据下行频点确定的频率调高或调低该频率偏移值后发送所述下行信号。
以上各方式中,根据上行信号在多个TRP接收到的信号确定出一个频率偏移值,可以通过如下方式进行:
方式一:网络设备利用这些TRP接收到的同一个上行信号进行信道估计,利用该信道估计的结果估计多普勒频移,该多普勒频移就是所述频率偏移值。
方式二:网络设备利用这些TRP中各个TRP接收到的上行信号分别进行信道估计,并分别利用各个TRP信道估计的结果分别计算出多普勒频移值, 将这多个多普勒频移值根据上行信号的接收强度进行加权平均,加权平均后的结果就是所述频率偏移值。
在本公开实施例中,可选的,波束方向上的一个TRP是指波束打向该波束方向的一个TRP。可选的,波束方向上的一个TRP是指指波束指向TRP的某一侧的一个TRP(例如,波束打向TRP右侧的所有TRP都为一个波束方向的TRP,波束打向TRP左侧的所有TRP都为另一个波束方向的TRP)。
在上述实施例的基础上,在一些可选的实施例中,所述根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,包括:
获取所述第一TRP的频率偏移值与获取到的所述第二TRP的频率偏移值的差值;
若所述第一TRP的频率补偿值为0,或者,在所述第一TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第二TRP的频率补偿值;或者,
若所述第一TRP的频率补偿值为Δf 1,则确定所述差值与所述Δf 1之和为所述第二TRP的频率补偿值,其中Δf 1不为0。
可以理解的是,若第一TRP的频率补偿值为0,则在第一TRP不进行多普勒补偿。
在上述实施例的基础上,在一些可选的实施例中,所述确定上行信号在参考波束方向上的第三TRP的频率偏移值之后,还包括:
根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值。
具体地,所述根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值,包括:
获取所述第三TRP的频率偏移值与第八TRP的频率偏移值的差值;所述第八TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
若所述第三TRP的频率补偿值为0,或者,在所述第三TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第八TRP所在波束方向的所有TRP的频率补偿值;
若所述第三TRP的频率补偿值为Δf 2,则确定所述差值与所述Δf 2之和为所述第八TRP所在波束方向的所有TRP的频率补偿值,其中Δf 2不为0。
可选的,第八TRP为第三TRP所在波束方向的TRP以外的所有TRP。
在上述实施例的基础上,在一些可选的实施例中,所述根据上行信号在参考波束方向上的第五TRP接收到的信号确定出一个频率偏移值之后,还包括:
根据所述频率偏移值确定其他波束方向的各个TRP的频率补偿值。
所述根据所述频率偏移值确定其他波束方向的各个TRP的频率补偿值,包括:
获取所述第五TRP的频率偏移值与第九TRP的频率偏移值的差值;所述第九TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
若所述第五TRP的频率补偿值为0,或者,在所述第五TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第九TRP所在波束方向的所有TRP的频率补偿值;
若所述第五TRP的频率补偿值为Δf 3,则确定所述差值与所述Δf 3之和为所述第九TRP所在波束方向的所有TRP的频率补偿值,其中Δf 3不为0。
在上述实施例的基础上,在一些可选的实施例中,所述根据上行信号在参考波束方向上的第五TRP接收到的信号确定出一个频率偏移值之后,还包括:
根据所述频率偏移值确定其他波束方向的各个TRP的频率补偿值。
所述根据所述频率偏移值确定其他波束方向的各个TRP的频率补偿值,包括:
获取所述频率偏移值与第一波束方向的频率偏移值的差值;所述第一波束方向为所述参考波束方向以外的一个波束方向;
若所述频率偏移值为0,或者,在参考波束方向的所有TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第一波束方向的所有TRP的频率补偿值;
若所述参考波束方向的频率补偿值为Δf 3,则确定所述差值与所述Δf 3之和 为所述第一波束方向的所有TRP的频率补偿值,其中Δf 3不为0。
在上述实施例的基础上,在一些可选的实施例中,针对上述四种QCL配置信息中的第一参考信号和第二参考信号的发送方式进行了如下说明:
若所述QCL配置信息指示一个QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号。
具体地,每一种QCL配置信息中的第一参考信号和第二参考信号都可以有4种发送方式,即总共有16中发送方式,具体如下:
第一种QCL配置信息中的第一参考信号和第二参考信号的发送方式包括如下4种:
若所述QCL配置信息指示一个QCL类型为QCL-TypeA的第一参考信号和至少一个QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示一个QCL类型为QCL-TypeA的第一参考信号 和至少一个QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的参考信号,以及通过所有TRP发送所述QCL类型为QCL-TypeE的参考信号;
若所述QCL配置信息指示一个QCL类型为QCL-TypeA的第一参考信号和至少一个QCL类型为QCL-TypeE的第二参考信号,则通过所述参考波束方向上的TRP发送QCL类型为QCL-TypeA的第一参考信号,以及通过所述参考波束方向以外的一个或多个波束方向的TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示一个QCL类型为QCL-TypeA的第一参考信号和至少一个QCL类型为QCL-TypeE的第二参考信号,则通过所述参考波束方向上的TRP发送QCL类型为QCL-TypeA的第一参考信号,以及通过所有波束方向的TRP发送所述QCL类型为QCL-TypeE的第二参考信号。
第二种QCL配置信息中的第一参考信号和第二参考信号的发送方式包括如下4种:
若所述QCL配置信息指示至少一个QCL类型为QCL-TypeB的第一参考信号和一个QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号;
若所述QCL配置信息指示至少一个QCL类型为QCL-TypeB的第一参考信号和一个QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过所有TRP发送所述QCL类型为QCL-TypeA的第二参考信号;
若所述QCL配置信息指示至少一个QCL类型为QCL-TypeB的第一参考信号和一个QCL类型为QCL-TypeA的第二参考信号,则通过所述参考波束方向上的TRP发送QCL类型为QCL-TypeB的第一参考信号,以及通过所述参考波束方向以外的一个或多个波束方向的TRP发送所述QCL类型为QCL-TypeA的第二参考信号;
若所述QCL配置信息指示至少一个QCL类型为QCL-TypeB的第一参考 信号和一个QCL类型为QCL-TypeA的第二参考信号,则通过所述参考波束方向上的TRP发送QCL类型为QCL-TypeB的第一参考信号,以及通过所有波束方向的TRP发送所述QCL类型为QCL-TypeA的第二参考信号。
第三种QCL配置信息中的第一参考信号和第二参考信号的发送方式包括如下4种:
若所述QCL配置信息指示至少一个QCL类型为QCL-TypeB的第一参考信号和至少一个QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示至少一个QCL类型为QCL-TypeB的第一参考信号和至少一个QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过所有TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示至少一个QCL类型为QCL-TypeB的第一参考信号和至少一个QCL类型为QCL-TypeE的第二参考信号,则通过所述参考波束方向上的TRP发送QCL类型为QCL-TypeB的第一参考信号,以及通过所述参考波束方向以外的一个或多个波束方向的TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示至少一个QCL类型为QCL-TypeB的第一参考信号和至少一个QCL类型为QCL-TypeE的第二参考信号,则通过所述参考波束方向上的TRP发送QCL类型为QCL-TypeB的第一参考信号,以及通过所有波束方向的TRP发送所述QCL类型为QCL-TypeE的第二参考信号。
第四种QCL配置信息中的第一参考信号和第二参考信号的发送方式包括如下4种:
若所述QCL配置信息指示QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过所有TRP发送所述QCL类型为QCL-TypeA的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述参考波束方向上的TRP发送QCL类型为QCL-TypeA的第一参考信号,以及通过所述参考波束方向以外的一个或多个波束方向的TRP发送所述QCL类型为QCL-TypeA的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述参考波束方向上的TRP发送QCL类型为QCL-TypeA的第一参考信号,以及通过所有波束方向的TRP发送所述QCL类型为QCL-TypeA的第二参考信号。
在上述实施例的基础上,在一些可选的实施例中,还包括:
向所述终端设备发送所述上行信号的QCL参考信号的指示信息,所述QCL参考信号用于指示所述终端设备用来确定所述上行信号的发送频率的参考信号;
其中,所述QCL参考信号为所述第一参考信号中的信号。
具体地,QCL参考信号用来指示确定上行信号的发送频率的参考信号,以使得网络设备对来自于各个TRP的下行信号都进行多普勒预补偿。
所述上行信号可以是所有的上行信号。
或者,所述上行信号为用来进行网络设备的多个TRP的频率偏移值(多普勒频移)的上行信号。所述网络设备可以根据这些频率偏移值进一步确定下行信号的频率预补偿值。
通过向终端设备指示用来确定下行信号的频率预补偿值的上行信号的发送频率的参考信号,可以使得终端设备基于该参考信号确定下行频点和/或所述上行信号的发送频率。从而使得网络设备更好的确定对各个TRP如何进行预补偿。例如,对发送第一参考信号的TRP不进行所述下行信号的频率预补 偿,对于其他TRP进行所述下行信号的频率预补偿。
在一些可选的实施例中,还包括:
向所述终端设备发送TCI state指示信息,所述TCI state指示信息指示所述第一参考信号所在的TCI state;或者,
向所述终端设备发送序号指示信息,所述序号指示信息指示所述第一参考信号在与所述下行信号相关联的TCI state中所有的QCL-TypeA参考信号中的序号。
综上,本公开实施例使得下行信号从多个TRP发送时,各个TRP到达终端设备的多普勒频移基本都是一样的,避免了来自于某些TRP的径为正的大多普勒频移,某些TRP的径为负的大多普勒频移,从而较好的消除了多普勒扩展,可以提高下行信号的解调性能。
由于用于终端设备确定下行信号的多普勒特性和时延特性的参考信号不进行多普勒预补偿,因此,网络设备发送的一个参考信号所有终端设备都可以使用。从而不需要针对每个终端设备发送专门的参考信号,从而节省了参考信号的开销,即节省了导频开销。另外,通过本公开实施例的参考信号配置方法和终端设备确定下行信号的多普勒特性和时延特性的方式,可以使得终端设备获得比较准确的时延特性和多普勒特性,从而可以提高高速移动场景下行链路传输的性能。
上面从网络设备侧对本公开实施例的信号传输方法进行了描述说明,下面从终端设备侧对本公开实施例的信号传输方法进行描述说明:
图3为本公开一实施例提供的信息传输方法,如图3所示,该方法至少包括如下步骤:
301、接收下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
在网络设备向终端设备发送下行信号之前,网络设备需要配置QCL配置 信息,该QCL配置信息为下行信号的配置信息,下行信号包括但不限于PDSCH、PDCCH、PDSCH的DMRS、PDCCH的DMRS、CSI-RS。在配置完成后,网络设备向终端设备发送下行信号的准共站址QCL配置信息,从而终端设备接收下行信号的准共站址QCL配置信息。
QCL配置信息指示至少两个参考信号以及各参考信号对应的QCL类型。需要说明的是,各参考信号对应的QCL类型可以相同,也可以不同。网络设备在配置QCL配置信息时,需要保证终端设备接收到QCL配置信息后,能够根据QCL配置信息中的相关QCL类型的参考信号确定下行信号的时延特性和多普勒特性。
QCL配置信息指示至少两个参考信号,该至少两个参考信号可以包括第一参考信号和第二参考信号,在配置第一参考信号时,主要配置依据在于终端设备能够根据第一参考信号确定下行信号的多普勒特性,在配置第二参考信号时,主要配置依据在于终端设备能够根据第二参考信号确定下行信号的时延特性(包括根据第二参考信号和第一参考信号共同确定下行信号的时延特性)。另外,第一参考信号的个数可以为一个或多个,第二参考信号的个数也可以为一个或多个。
302、根据所述QCL配置信息获取所述下行信号。
终端设备接收到下行信号的准共站址QCL配置信息后,根据QCL配置信息获取下行信号。
本公开实施例提供的信息传输方法中,采用上述QCL配置信息,终端设备能够获得准确的下行信号的时延特性和多普勒特性,从而提高高速移动场景下行链路传输的性能。
本公开实施例提供的信息传输方法中,获取下行信号包括接收下行信号,和/或,对下行信号的检测译码。
在上述实施例的基础上,在一些可选的实施例中,步骤302中所述根据所述QCL配置信息获取所述下行信号,包括:
根据所述第一参考信号确定所述下行信号的多普勒特性;
根据所述第二参考信号确定所述下行信号的时延特性;
根据所述多普勒特性和所述时延特性获取所述下行信号。
在上述实施例的基础上,在一些可选的实施例中,所述根据所述第二参考信号获取所述下行信号的时延特性,包括:
根据所述第一参考信号和所述第二参考信号确定所述下行信号的时延特性。
需要说明的是,终端设备可以仅根据第二参考信号确定下行信号的时延特性,也可以根据第一参考信号和第二参考信号共同确定下行信号的时延特性。
在上述实施例的基础上,在一些可选的实施例中,所述根据所述多普勒特性和所述时延特性获取所述下行信号之前,还包括:
接收所述网络设备发送的所述参考信号;其中,在发送所述参考信号时,所述第二参考信号发送自发送所述下行信号的TRP中,与发送所述第一参考信号的TRP不同的TRP。
在上述实施例的基础上,在一些可选的实施例中,所述根据所述多普勒特性和所述时延特性获取所述下行信号之前,还包括:
接收所述网络设备发送的所述参考信号;其中,在发送所述参考信号时,所述第二参考信号发送自发送所述下行信号的所有TRP。
在上述实施例的基础上,在一些可选的实施例中,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所述第一参考信号和所述QCL类型包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下 行信号的多普勒特性;以及根据所述QCL类型包括时延特性和多普勒特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所有的所述QCL类型包括多普勒特性和时延特性的所述第一参考信号和所有的所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性。
可选地,所述第一参考信号为QCL类型包括多普勒特性和时延特性的参考信号中特定的参考信号。
可选地,所述第二参考信号为QCL类型包括多普勒特性和时延特性的参考信号。
可选地,所述第二参考信号为所有的QCL类型包括多普勒特性和时延特性的参考信号。
可选地,所述特定的参考信号为:
网络设备指示的参考信号;或者,
默认的参考信号。
其中,网络设备指示的参考信号可以为:
对应于只有一个TCI state的情形,网络设备直接指示为TCI state里的第几个特定QCL类型(例如,特定QCL类型为QCL-TypeA)的参考信号;或者,
对应于有多个TCI state的情形,网络设备指示所述特定参考信号所在的TCI state,所述特定参考信号为网络设备指示的TCI state里特定QCL类型(例如,特定QCL类型为QCL-TypeA)的参考信号(例如,网络设备指示终端设备使用第1个TCI state里QCL-TypeA的参考信号确定下行信号的多普勒特性,则终端设备使用第1个TCI state里QCL-TypeA的参考信号确定下行信号的多普勒特性;再例如,网络设备指示终端设备使用第2个TCI state里 QCL-TypeA的参考信号确定下行信号的多普勒特性,则终端设备使用第2个TCI state里QCL-TypeA的参考信号确定下行信号的多普勒特性)的参考信号;或者,
对应于有多个TCI state的情形,网络设备指示所述特定参考信号对应的TRP,所述特定参考信号为网络设备指示的TCI state里特定QCL类型(例如,特定QCL类型为QCL-TypeA)的参考信号等;或者,
网络设备指示的QCL类型(例如,QCL类型为QCL-TypeA)中的时域特性被忽略的参考信号;或者,
网络设备指示的QCL类型(例如,QCL类型为QCL-TypeA)中的频域特性不被忽略的参考信号等。
其中,默认的参考信号可以为:
对应于有多个TCI state的情形,网络设备与终端设备约定的TCI state里特定QCL类型(例如,特定QCL类型为QCL-TypeA)的参考信号;或者,
对应于1个TCI state的情形,网络设备与终端设备约定的特定序号的特定QCL类型(例如,特定QCL类型为QCL-TypeA)的参考信号(例如,TCI state里第一个QCL-TypeA的参考信号;再例如,例如,TCI state里第2个QCL-TypeA的参考信号);或者,
网络设备与终端设备约定的QCL类型(例如,QCL类型为QCL-TypeA)中的时域特性被忽略的参考信号;或者,
网络设备与终端设备约定的QCL(例如,QCL类型为QCL-TypeA)中的频域特性不被忽略的参考信号等。
可选的,终端设备的行为包括:接收基站发送的TCI state指示信息,根据所述TCI state指示信息确定所述第一参考信号;所述TCI state指示信息指示所述第一参考信号所在的TCI state。
可选的,终端设备的行为包括:接收基站发送的序号指示信息,根据所述序号指示信息确定所述第一参考信号;所述序号指示信息指示所述第一参考信号在在与所述下行信号相关联的TCI state中的序号。可选的,所述序号指示信息指示所述第一参考信号在在与所述下行信号相关联的TCI state中所 有的QCL-TypeA参考信号中的序号。
可选的,网络设备的行为包括:发送TCI state指示信息,所述TCI state指示信息指示所述第一参考信号所在的TCI state。
可选的,网络设备的行为包括:发送序号指示信息,所述序号指示信息指示所述第一参考信号在在与所述下行信号相关联的TCI state中所有的QCL-TypeA参考信号中的序号。
以特定信号对应的QCL类型为QCL-TypeA为例进行描述,则有:
可选地,所述特定的QCL-TypeA的参考信号为:
网络设备指示的参考信号;或者,
默认的参考信号。
网络设备指示的参考信号可以为:
对应于只有一个TCI state的情形,网络设备直接指示为TCI state里的第几个QCL-TypeA的参考信号;或者,
对应于有多个TCI state的情形,网络设备指示的特定TCI state里QCL-TypeA的参考信号(例如,网络设备指示终端设备使用第1个TCI state里QCL-TypeA的参考信号确定下行信号的多普勒特性,则终端设备使用第1个TCI state里QCL-TypeA的参考信号确定下行信号的多普勒特性);或者,
对应于有多个TCI state的情形,网络设备指示的特定TRP的QCL-TypeA的参考信号等;或者,
网络设备指示的QCL-Type A中的时域特性被忽略的参考信号;或者,
网络设备指示的QCL-Type A中的频域特性不被忽略的参考信号等。
默认的参考信号可以为:
对应于有多个TCI state的情形,网络设备与终端设备约定的特定TCI state里QCL-TypeA的参考信号;或者,
对应于有多个TCI state的情形,网络设备与终端设备约定的特定的QCL-TypeA的参考信号(例如,TCI state里第一个QCL-TypeA的参考信号);或者,
网络设备与终端设备约定的QCL-Type A中的时域特性被忽略的参考信 号;或者,
网络设备与终端设备约定的QCL-Type A中的频域特性不被忽略的参考信号等。
在上述实施例的基础上,在一些可选的实施例中,所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号,其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、平均时延average delay以及时延扩展delay spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
在上述实施例的基础上,在一些可选的实施例中,所述QCL配置信息通过传输配置指示状态TCI state组成的集合携带,所述TCI state组成的集合为以下中的一项:
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号;
其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、平均时延average delay以及时延扩展delay spread的QCL类型,所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型。
在上述实施例的基础上,在一些可选的实施例中,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述QCL类型为QCL-TypeA的所述第一参考信号以及所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确 定所述下行信号的多普勒特性;或者,
根据所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所有的所述QCL类型为QCL-TypeA的所述第一参考信号和所有的所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号中特定的参考信号确定所述下行信号的多普勒特性。
其中,特定的参考信号的相关说明可以参照前述实施例,此处不再赘述。
在上述实施例的基础上,在一些可选的实施例中,所述网络设备传输所述下行信号时进行了频率预补偿;还包括:
接收上行信号的QCL参考信号的指示信息;
根据所述指示信息确定所述上行信号的发送频率;其中,所述上行信号为用来确定所述下行信号在所述网络设备的频率预补偿值的上行信号。
具体地,QCL参考信号用于指示所述终端设备用来确定上行信号的发送频率的参考信号,以使得网络设备对来自于各个TRP的下行信号都进行多普勒预补偿;其中,QCL参考信号为第一参考信号中的信号。
在上述实施例的基础上,在一些可选的实施例中,所述下行信号通过多个TRP传输,且在一个或多个所述TRP进行频率预补偿,还包括:
使用所述第一参考信号确定用来计算所述下行信号在各个TRP的频率预补偿值的上行信号的发送频率。
在上述实施例的基础上,在一些可选的实施例中,所述下行信号由多个TRP发送,所述根据所述QCL配置信息获取下行信号,包括:
根据所述QCL配置信息接收多个TRP在调整后的频率发送的下行信号,所述调整后的频率为所述网络设备根据确定出的所述TRP的频率补偿值在所述TRP对下行频点进行调整后得到的频率。
下面针对上述四种QCL配置信息下的信号传输方法分别进行说明:
应当理解的是,虽然以下示例多以网络设备通过两个TRP进行下行信号 的传输为例进行阐述,但本公开实施例的方法并不限于2个TRP的场景,也包括3个或更多地TRP的情形。
针对上述第一种QCL配置信息,基本流程如下:
步骤1、UE发送上行参考信号(UL RS)。(也可以是上行信号,总之,使得网络侧可以测量出各个TRP相对于上行频点的频偏就可以。
步骤2、网络侧的多个TRP同时接收UE发送的UL RS,并确定相对于基站侧上行频点的频偏。
步骤3、网络侧进行PDSCH、PDSCH的DMRS和它们的QCL参考信号传输。
其中,在进行PDSCH和PDSCH的DMRS进行传输时,
在一个TRP(假设该TRP为参考TRP)对PDSCH和PDSCH的DMRS不进行Doppler预补偿,即使用网络侧的下行频点进行传输,在其他TRP(不妨将其称为目标TRP)对PDSCH和PDSCH的DMRS进行Doppler预补偿后传输;
可选的,网络侧在任意两个发送PDSCH和PDSCH的DMRS的TRP的Doppler预补偿值的差值为网络侧在这两个TRP检测到的Doppler偏移值的差值。可选的,任一目标TRP的Doppler预补偿值为网络侧在参考TRP检测到的Doppler偏移值与网络侧在该TRP检测到的Doppler偏移值的差值(例如,网络侧在参考TRP检测到的Doppler偏移值减去网络侧在该TRP检测到的Doppler偏移值)。或者,
网络侧在进行PDSCH和PDSCH的DMRS进行传输时,在同一个波束方向(不妨将其称为参考波束方向)的TRP不进行Doppler预补偿,即使用网络侧的下行频点进行传输,在其他TRP(不妨将其称为目标TRP)进行Doppler预补偿后传输,
可选的,任一目标TRP的Doppler预补偿值为网络侧在一个参考TRP检测到的Doppler偏移值与网络侧在该目标TRP检测到的Doppler偏移值的差值(例如,为网络侧在一个参考TRP检测到的Doppler偏移值减去网络侧在该目标TRP检测到的Doppler偏移值);或者,
可选的,任一目标TRP的Doppler预补偿值为网络侧在参考波束方向的TRP检测到的Doppler偏移值与网络侧在该目标TRP所在波束方向检测到的Doppler偏移值的差值(例如,为网络侧在参考波束方向的TRP检测到的Doppler偏移值减去网络侧在该目标TRP所在波束方向检测到的Doppler偏移值)。可选地,网络侧在参考波束方向使用任一TRP进行Doppler偏移值的检测,并将其作为参考波束方向的TRP检测到的Doppler偏移值;可选地,网络侧在参考波束方向上行信号接收功率最大的TRP进行Doppler偏移值的检测,并将其作为参考波束方向的TRP检测到的Doppler偏移值;可选地,网络侧在参考波束方向所有能收到上述UL RS的TRP进行Doppler偏移值的检测,进行处理后得到一个综合的Doppler值,将该综合的Doppler值作为参考波束方向的TRP检测到的Doppler偏移值。可选的,网络侧在目标TRP所在波束方向使用任一TRP进行Doppler偏移值的检测,并将其作为目标TRP所在波束方向检测到的Doppler偏移值;可选的,网络侧在目标TRP所在波束方向上行信号接收功率最大的TRP进行Doppler偏移值的检测,并将其作为目标TRP所在波束方向检测到的Doppler偏移值;可选的,网络侧在目标TRP所在波束方向所有能收到上述UL RS的TRP进行Doppler偏移值的检测,进行处理后得到一个综合的Doppler值,将该综合的Doppler值作为目标TRP所在波束方向检测到的Doppler偏移值;可选的,网络侧在该目标TRP进行Doppler偏移值的检测,并将其作为该目标TRP所在波束方向检测到的Doppler偏移值。
参考信号采用如下传输方式:
两个TCI sate(注意:可以扩展到三个或更多)中的QCL参考信号分别从两个不同的TRP传输,其中TCI sate 1的QCL参考信号RS 1(QCL-TypeA的参考信号)从参考TRP发送;或者,
两个TCI sate中的QCL参考信号分别从指向不同的波束方向的一个或多个TRP传输,其中TCI state 1的QCL参考信号((QCL-TypeA的参考信号))从指向参考波束方向的一个或多个TRP传输,TCI state 2的QCL参考信号RS 2((QCL-TypeE的参考信号))从指向另外一个波束方向的一个或多个TRP 传输。
可选的,QCL参考信号不进行Doppler预补偿,即,使用网络侧的下行频点进行传输。
步骤4、对于PDSCH每个数据层和PDSCH的每个DMRS端口,UE使用QCL类型包括时延特性的所有的参考信号(RS 1和RS 2)确定出的时延特性,根据QCL类型包括多普勒特性的参考信号确定出Doppler特性。UE利用上述时延特性和Doppler特性进行PDSCH的信道估计。
可选的,UE在利用多个参考信号(例如RS 1和RS 2)共同确定PDSCH的时延特性时,UE使用各个参考信号分别确定出传输径的功率和时延,然后将多个确定出的传输径合并起来作为PDSCH的传输径。可选的,合并方式包括相同时延的径的功率叠加。
可选的,UE在利用多个参考信号(例如RS 1和RS 2)共同确定PDSCH的时延特性时,UE使用各个参考信号分别确定出功率延迟谱,然后将多个确定出的功率延迟谱合并到一起作为PDSCH的功率延迟谱。可选的,合并方式为将功率延迟谱相加。
可选的,上述方式中,UE基于QCL类型包括多普勒特性的参考信号确定步骤1中所述上行参考信号UL RS的上行频点。
可选的,所述UL RS的配置信息中包括一个QCL参考信号的配置,所述QCL参考信号用来指示确定所述UL RS上行频点的参考信号。(目的:指示UE使用哪个TRS确定UL RS的上行频点,以使得基站对来自于各个TRP的PDSCH和PDSCH的DMRS都进行Doppler预补偿)。
此时,步骤3应修改为:
(步骤3’)网络侧进行PDSCH、PDSCH的DMRS和QCL参考信号传输。
其中,在进行PDSCH和PDSCH的DMRS进行传输时,
在所有TRP进行Doppler预补偿。
可选的,网络侧在任意两个发送PDSCH和PDSCH的DMRS的TRP的Doppler预补偿值的差值为网络侧在这两个TRP检测到的Doppler偏移值的差 值。例如,网络侧选择一个TRP作为参考TRP,任一目标TRP的Doppler预补偿值为网络侧在参考TRP检测到的Doppler偏移值与网络侧在该TRP检测到的Doppler偏移值的差值(例如,网络侧在参考TRP检测到的Doppler偏移值减去网络侧在该TRP检测到的Doppler偏移值)。
可选地,同一个波束方向(不妨将其称为参考波束方向)的TRP使用相同的Doppler预补偿值,任意两个波束方向的Doppler预补偿值之间的差值等于网络侧检测到的两个Doppler方向的Doppler值的差值。
QCL参考信号的传输方式与步骤3相同。
可选地,QCL-TypeA的参考信号从同一个波束方向的一个或多个TRP发送。
(步骤4’)对于PDSCH和PDSCH的DMRS端口,UE使用QCL类型包括时延特性的所有的参考信号(RS 1和RS 2)确定出时延特性。
本方案的传输方法使得PDSCH从多个TRP发送时,各个TRP到达UE的Doppler偏移基本都是一样的,避免了来自于某些TRP的径为正的大多普勒频偏,某些TRP的径为负的大多普勒频偏,从而较好的消除了多普勒扩展,可以提高PDSCH的解调性能。
由于用于UE确定PDSCH的Doppler特性和时延特性的QCL参考信号(即例子中的RS 1和RS 2)不进行多普勒预补偿,因此,网络侧发送的QCL参考信号所有UE都可以使用。从而不需要针对每个UE发送专门的QCL参考信号,从而节省了QCL参考信号的开销。
另外,由于本方案中的RS 1信号的多普勒频移与PDSCH的多普勒频移相同,通过本公开的RS 1信号,UE可以较为准确地获得PDSCH的Doppler特性;对于不同的TRP使用不同的QCL参考信号来确定PDSCH的时延特性,可以使得测量出的PDSCH的时延特性更能体现出各个TRP信道的时延特性,这使得UE可以较为准确的获得PDSCH的时延特性。
针对上述第二种QCL配置信息,基本流程如下:
(1)UE发送上行参考信号(UL RS)。
(2)网络侧的多个TRP同时接收UE发送的UL RS,并确定相对于基站 侧上行频点的频偏。
(3)网络侧进行PDSCH、PDSCH的DMRS和QCL参考信号传输。
其中,在进行PDSCH和PDSCH的DMRS进行传输时,
在一个TRP(假设该TRP为参考TRP)不进行Doppler预补偿,即使用网络侧的下行频点进行传输,在其他TRP(不妨将其称为目标TRP)进行Doppler预补偿后传输;
可选的,任一目标TRP的Doppler预补偿值为网络侧在参考TRP检测到的Doppler偏移值与网络侧在所在TRP检测到的Doppler偏移值的差值(例如,网络侧在参考TRP检测到的Doppler偏移值减去网络侧在所在TRP检测到的Doppler偏移值)
或者,
网络侧在进行PDSCH和PDSCH的DMRS进行传输时,在同一个波束方向(不妨将其称为参考波束方向)的TRP不进行Doppler预补偿,即,使用网络侧的下行频点进行传输,在其他TRP(不妨将其称为目标TRP)进行Doppler预补偿后传输,
可选的,任一目标TRP的Doppler预补偿值为网络侧在一个参考TRP检测到的Doppler偏移值与网络侧在该目标TRP检测到的Doppler偏移值的差值(例如,为网络侧在一个参考TRP检测到的Doppler偏移值减去网络侧在该目标TRP检测到的Doppler偏移值);或者,
可选的,任一目标TRP的Doppler预补偿值为网络侧在参考波束方向的TRP检测到的Doppler偏移值与网络侧在该目标TRP所在波束方向检测到的Doppler偏移值的差值(例如,为网络侧在参考波束方向的TRP检测到的Doppler偏移值减去网络侧在该目标TRP所在波束方向检测到的Doppler偏移值)。可选地,网络侧在参考波束方向使用任一TRP进行Doppler偏移值的检测,并将其作为参考波束方向的TRP检测到的Doppler偏移值;可选地,网络侧在参考波束方向上行信号接收功率最大的TRP进行Doppler偏移值的检测,并将其作为参考波束方向的TRP检测到的Doppler偏移值;可选地,网络侧在参考波束方向所有能收到上述UL RS的TRP进行Doppler偏移值的检 测,进行处理后得到一个综合的Doppler值,将该综合的Doppler值作为参考波束方向的TRP检测到的Doppler偏移值。可选的,网络侧在目标TRP所在波束方向使用任一TRP进行Doppler偏移值的检测,并将其作为目标TRP所在波束方向检测到的Doppler偏移值;可选的,网络侧在目标TRP所在波束方向上行信号接收功率最大的TRP进行Doppler偏移值的检测,并将其作为目标TRP所在波束方向检测到的Doppler偏移值;可选的,网络侧在目标TRP所在波束方向所有能收到上述UL RS的TRP进行Doppler偏移值的检测,进行处理后得到一个综合的Doppler值,将该综合的Doppler值作为目标TRP所在波束方向检测到的Doppler偏移值;可选的,网络侧在该目标TRP进行Doppler偏移值的检测,并将其作为该目标TRP所在波束方向检测到的Doppler偏移值。
QCL参考信号采用如下传输方式:
QCL类型为QCL-TypeA的参考信号(RS 2)从两个TRP同时发送,QCL-TypeB的参考信号(RS 1)从参考TRP发送;
或者,
QCL类型为QCL-TypeA的参考信号(RS 2)从所有波束方向的TRP同时发送,QCL-TypeB的参考信号(RS 1)从参考波束方向发送。
可选的,QCL-TypeA和QCL-TypeB被配置在同一个TCI sate里。
可选的,QCL-TypeA和QCL-TypeB被配置在不同的TCI sate里。(可选的,在为两个或多个TCI state时,两个或多个TCI state的参考信号分别从不同的TRP发送)
可选的,QCL参考信号不进行Doppler预补偿,即,使用网络侧的下行频点进行传输。
(4)对于,PDSCH每个数据层和PDSCH的每个DMRS端口,UE根据QCL类型为QCL-TypeA的参考信号(RS 2)确定出PDSCH和PDSCH的DMRS端口的时延特性,根据QCL-TypeB的参考信号(RS 1)确定出PDSCH和PDSCH的DMRS端口的Doppler特性。UE利用上述时延特性和Doppler特性进行PDSCH的信道估计。
可选的,上述方式中,UE基于QCL类型只包括多普勒特性(QCL-TypeB)的参考信号确定上行参考信号UL RS的上行频点。
可选的,所述UL RS的配置信息中包括一个QCL参考信号的配置,所述QCL参考信号用来指示确定所述UL RS上行频点的参考信号。(目的:指示UE使用哪个TRS确定UL RS的上行频点,以使得基站对来自于各个TRP的PDSCH和PDSCH的DMRS都进行Doppler预补偿)。
此时,步骤(3)应修改为:
(3’)网络侧进行PDSCH、PDSCH的DMRS和QCL参考信号传输。
其中,在进行PDSCH和PDSCH的DMRS进行传输时,
在所有TRP进行Doppler预补偿。
可选的,网络侧在任意两个发送PDSCH和PDSCH的DMRS的TRP的Doppler预补偿值的差值为网络侧在这两个TRP检测到的Doppler偏移值的差值。例如,网络侧选择一个TRP作为参考TRP,任一目标TRP的Doppler预补偿值为网络侧在参考TRP检测到的Doppler偏移值与网络侧在该TRP检测到的Doppler偏移值的差值(例如,网络侧在参考TRP检测到的Doppler偏移值减去网络侧在该TRP检测到的Doppler偏移值)
可选地,同一个波束方向的TRP使用相同的Doppler预补偿值,两个波束方向的Doppler预补偿值之间的差值等于网络侧检测到的两个Doppler方向的Doppler值的差值。
QCL参考信号的传输方式与(3)相同。
可选地,QCL-TypeB的参考信号从同一个波束方向的一个或多个TRP发送。
(4’)对于,PDSCH每个数据层和PDSCH的DMRS端口,UE使用QCL类型包括时延特性的所有的参考信号(RS 1和RS 2)确定出时延特性。
本方案的传输方法使得PDSCH从多个TRP发送时,各个TRP到达UE的Doppler偏移基本都是一样的,避免了来自于某些TRP的径为正的大多普勒频偏,某些TRP的径为负的大多普勒频偏,从而较好的消除了多普勒扩展,可以提高PDSCH的解调性能。
由于用于UE确定PDSCH的Doppler特性和时延特性的QCL参考信号(即例子中的RS 1和RS 2)不进行多普勒预补偿,因此,网络侧发送的QCL参考信号所有UE都可以使用。从而不需要针对每个UE发送专门的QCL参考信号,从而节省了QCL参考信号的开销。
另外,由于本方案中的RS 1信号的多普勒频移与PDSCH的多普勒频移相同,通过本公开的RS 1信号,UE可以较为准确地获得PDSCH的Doppler特性;发送用来确定PDSCH的时延特性的QCL参考信号的TRP与发送PDSCH的TRP完全相同,这使得UE利用该参考信号(即例子中的RS 2)可以更为准确的获得PDSCH的时延特性。
针对上述第三种QCL配置信息,基本流程如下:
(1)UE发送上行参考信号(UL RS)。
(2)网络侧的多个TRP同时接收UE发送的UL RS,并确定相对于基站侧上行频点的频偏。
(3)网络侧进行PDSCH、PDSCH的DMRS和QCL参考信号传输。
其中,在进行PDSCH和PDSCH的DMRS进行传输时,
在一个TRP(假设该TRP为参考TRP)不进行Doppler预补偿,即使用网络侧的下行频点进行传输,在其他TRP(不妨将其称为目标TRP)进行Doppler预补偿后传输;
可选的,任一目标TRP的Doppler预补偿值为网络侧在参考TRP检测到的Doppler偏移值与网络侧在所在TRP检测到的Doppler偏移值的差值(网络侧在参考TRP检测到的Doppler偏移值减去网络侧在所在TRP检测到的Doppler偏移值)
或者,
网络侧在进行PDSCH和PDSCH的DMRS进行传输时,在同一个波束方向(不妨将其称为参考波束方向)的TRP不进行Doppler预补偿,即使用网络侧的下行频点进行传输,在其他TRP(不妨将其称为目标TRP)进行Doppler预补偿后传输,
可选的,任一目标TRP的Doppler预补偿值为网络侧在一个参考TRP检 测到的Doppler偏移值与网络侧在该目标TRP检测到的Doppler偏移值的差值(例如,为网络侧在一个参考TRP检测到的Doppler偏移值减去网络侧在该目标TRP检测到的Doppler偏移值);或者,
可选的,任一目标TRP的Doppler预补偿值为网络侧在参考波束方向的TRP检测到的Doppler偏移值与网络侧在该目标TRP所在波束方向检测到的Doppler偏移值的差值(例如,为网络侧在参考波束方向的TRP检测到的Doppler偏移值减去网络侧在该目标TRP所在波束方向检测到的Doppler偏移值)。可选地,网络侧在参考波束方向使用任一TRP进行Doppler偏移值的检测,并将其作为参考波束方向的TRP检测到的Doppler偏移值;可选地,网络侧在参考波束方向上行信号接收功率最大的TRP进行Doppler偏移值的检测,并将其作为参考波束方向的TRP检测到的Doppler偏移值;可选地,网络侧在参考波束方向所有能收到上述UL RS的TRP进行Doppler偏移值的检测,进行处理后得到一个综合的Doppler值,将该综合的Doppler值作为参考波束方向的TRP检测到的Doppler偏移值。可选的,网络侧在目标TRP所在波束方向使用任一TRP进行Doppler偏移值的检测,并将其作为目标TRP所在波束方向检测到的Doppler偏移值;可选的,网络侧在目标TRP所在波束方向上行信号接收功率最大的TRP进行Doppler偏移值的检测,并将其作为目标TRP所在波束方向检测到的Doppler偏移值;可选的,网络侧在目标TRP所在波束方向所有能收到上述UL RS的TRP进行Doppler偏移值的检测,进行处理后得到一个综合的Doppler值,将该综合的Doppler值作为目标TRP所在波束方向检测到的Doppler偏移值;可选的,网络侧在该目标TRP进行Doppler偏移值的检测,并将其作为该目标TRP所在波束方向检测到的Doppler偏移值。
QCL参考信号采用如下传输方式:
QCL类型为QCL-TypeE的参考信号(RS 2)从两个TRP同时发送,QCL-TypeB的参考信号(RS 1)从参考TRP发送;
或者,
QCL类型为QCL-TypeE的参考信号(RS 2)从所有波束方向的TRP同 时发送,QCL-TypeB的参考信号(RS 1)从参考波束方向发送。
可选的,QCL-TypeE和QCL-TypeB被配置在同一个TCI sate里。
可选的,QCL-TypeE和QCL-TypeB被配置在不同的TCI sate里。(在为两个或多个TCI state时,为两个或多个TCI state的参考信号分别从不同的TRP发送)
可选的,QCL参考信号不进行Doppler预补偿,即,使用网络侧的下行频点进行传输。
(4)对于,PDSCH每个数据层和PDSCH的每个DMRS端口,UE根据QCL类型为QCL-TypeE的参考信号(RS 2)确定出PDSCH和PDSCH的DMRS端口的时延特性,根据QCL-TypeB的参考信号(RS 1)确定出PDSCH和PDSCH的DMRS端口的Doppler特性。UE利用上述时延特性和Doppler特性进行PDSCH的信道估计。
可选的,上述方式中,UE基于QCL类型只包括多普勒特性(QCL-TypeB)的参考信号确定上行参考信号UL RS的上行频点。
可选的,所述UL RS的配置信息中包括一个QCL参考信号的配置,所述QCL参考信号用来指示确定所述UL RS上行频点的参考信号。(目的:指示UE使用哪个TRS确定UL RS的上行频点,以使得基站对来自于各个TRP的PDSCH和PDSCH的DMRS都进行Doppler预补偿)。
此时,步骤(3)应修改为:
(3’)网络侧进行PDSCH、PDSCH的DMRS和QCL参考信号传输。
其中,在进行PDSCH和PDSCH的DMRS进行传输时,
在所有TRP进行Doppler预补偿。
可选的,网络侧在任意两个发送PDSCH和PDSCH的DMRS的TRP的Doppler预补偿值的差值为网络侧在这两个TRP检测到的Doppler偏移值的差值。例如,网络侧选择一个TRP作为参考TRP,任一目标TRP的Doppler预补偿值为网络侧在参考TRP检测到的Doppler偏移值与网络侧在该TRP检测到的Doppler偏移值的差值(例如,网络侧在参考TRP检测到的Doppler偏移值减去网络侧在该TRP检测到的Doppler偏移值)
可选地,同一个波束方向的TRP使用相同的Doppler预补偿值,两个波
束方向的Doppler预补偿值之间的差值等于网络侧检测到的两个Doppler
方向的Doppler值的差值。
QCL参考信号的传输方式与(3)相同。
可选地,QCL-TypeB的参考信号从同一个波束方向的一个或多个TRP发送。
(4’)对于,PDSCH每个数据层和PDSCH的DMRS端口,UE使用QCL类型包括时延特性的参考信号(QCL-TypeE的参考信号,RS 2)确定出时延特性。
针对上述第四种QCL配置信息,基本流程如下:
(1)UE发送上行参考信号(UL RS)。
(2)网络侧的多个TRP同时接收UE发送的UL RS,并确定相对于基站侧上行频点的频偏。
(3)网络侧进行PDSCH、PDSCH的DMRS和QCL参考信号传输。
其中,在进行PDSCH和PDSCH的DMRS进行传输时,
在一个TRP(假设该TRP为参考TRP)不进行Doppler预补偿,即使用
网络侧的下行频点进行传输,在其他TRP(不妨将其称为目标TRP)进
行Doppler预补偿后传输;
可选的,任一目标TRP的Doppler预补偿值为网络侧在参考TRP检测到的Doppler偏移值与网络侧在所在TRP检测到的Doppler偏移值的差值(网络侧在参考TRP检测到的Doppler偏移值减去网络侧在所在TRP检测到的Doppler偏移值)
或者,
网络侧在进行PDSCH和PDSCH的DMRS进行传输时,在同一个波束方向(不妨将其称为参考波束方向)的TRP不进行Doppler预补偿,即使用网络侧的下行频点进行传输,在其他TRP(不妨将其称为目标TRP)进行Doppler预补偿后传输,
可选的,任一目标TRP的Doppler预补偿值为网络侧在一个参考TRP检 测到的Doppler偏移值与网络侧在该目标TRP检测到的Doppler偏移值的差值(例如,为网络侧在一个参考TRP检测到的Doppler偏移值减去网络侧在该目标TRP检测到的Doppler偏移值);或者,
可选的,任一目标TRP的Doppler预补偿值为网络侧在参考波束方向的TRP检测到的Doppler偏移值与网络侧在该目标TRP所在波束方向检测到的Doppler偏移值的差值(例如,为网络侧在参考波束方向的TRP检测到的Doppler偏移值减去网络侧在该目标TRP所在波束方向检测到的Doppler偏移值)。可选地,网络侧在参考波束方向使用任一TRP进行Doppler偏移值的检测,并将其作为参考波束方向的TRP检测到的Doppler偏移值;可选地,网络侧在参考波束方向上行信号接收功率最大的TRP进行Doppler偏移值的检测,并将其作为参考波束方向的TRP检测到的Doppler偏移值;可选地,网络侧在参考波束方向所有能收到上述UL RS的TRP进行Doppler偏移值的检测,进行处理后得到一个综合的Doppler值,将该综合的Doppler值作为参考波束方向的TRP检测到的Doppler偏移值。可选的,网络侧在目标TRP所在波束方向使用任一TRP进行Doppler偏移值的检测,并将其作为目标TRP所在波束方向检测到的Doppler偏移值;可选的,网络侧在目标TRP所在波束方向上行信号接收功率最大的TRP进行Doppler偏移值的检测,并将其作为目标TRP所在波束方向检测到的Doppler偏移值;可选的,网络侧在目标TRP所在波束方向所有能收到上述UL RS的TRP进行Doppler偏移值的检测,进行处理后得到一个综合的Doppler值,将该综合的Doppler值作为目标TRP所在波束方向检测到的Doppler偏移值;可选的,网络侧在该目标TRP进行Doppler偏移值的检测,并将其作为该目标TRP所在波束方向检测到的Doppler偏移值。
QCL参考信号采用如下传输方式:
任意QCL类型为QCL-TypeA的参考信号都只从一个TRP发出,且不同的QCL类型为QCL-TypeA的参考信号从不同的TRP发出;
或者,
任意QCL类型为QCL-TypeA的参考信号都只从指向同一个波束方向的 一个或多个TRP发出,且不同的QCL类型为QCL-TypeA的参考信号从指向不同波束方向的TRP发出。
可选的,多个QCL类型为QCL-TypeA的参考信号被配置在同一个TCI sate里。
可选的,多个QCL类型为QCL-TypeA的参考信号被配置在不同的TCI sate里。
(可选的,在为两个或多个TCI state时,两个或多个TCI state的参考信号分别从不同的TRP发送)
可选的,QCL参考信号不进行Doppler预补偿,即,使用网络侧的下行频点进行传输。
可选地,特定的QCL-TypeA的参考信号从PDSCH不进行Doppler预补偿的TRP发送。
可选的,所述特定的QCL-TypeA的参考信号为:
基站指示的参考信号;或者,
默认的参考信号。
其中,基站指示的参考信号可以为:
(对应于只有一个TCI state的情形)基站直接指示为TCI state里的第几个QCL-TypeA的参考信号;或者
(对应于有多个TCI state的情形)基站指示的特定TCI state里QCL-TypeA的参考信号(例如,基站指示UE使用第1个TCI state里QCL-TypeA的参考信号确定PDSCH的多普勒特性,则UE使用第1个TCI state里QCL-TypeA的参考信号确定PDSCH的多普勒特性);或者,
(对应于有多个TCI state的情形)发送自基站指示的特定TRP的QCL-TypeA的参考信号等。
其中,默认的参考信号可以为:
(对应于有多个TCI state的情形)网络侧与UE约定的特定TCI state里QCL-TypeA的参考信号;或者,
(对应于有多个TCI state的情形)网络侧与UE约定的特定的QCL-TypeA 的参考信号(例如,TCI state里第一个QCL-TypeA的参考信号)。
(4)UE根据所述一个或两个TCI state中QCL类型既包括时延特性、又包括多普勒特性(例如,为QCL-TypeA)的所有的参考信号共同确定出PDSCH和PDSCH的DMRS端口的时延特性,根据步骤(3)中特定的参考信号确定出PDSCH和PDSCH的DMRS端口的多普勒特性。UE可以进一步利用上述时延特性和Doppler特性进行PDSCH的信道估计。
可选的,上述方式中,UE基于一个特定的参考信号确定上行参考信号UL RS的上行频点。可选的,这里特定的参考信号可以为:
基站指示的参考信号;或者,
默认的参考信号。
其中,基站指示的参考信号可以为:
(对应于只有一个TCI state的情形)基站直接指示为TCI state里的第几个QCL-TypeA的参考信号;或者
(对应于有多个TCI state的情形)基站指示的特定TCI state里QCL-TypeA的参考信号(例如,基站指示UE使用第1个TCI state里QCL-TypeA的参考信号确定PDSCH的多普勒特性,则UE使用第1个TCI state里QCL-TypeA的参考信号确定PDSCH的多普勒特性);或者,
(对应于有多个TCI state的情形)发送自基站指示的特定TRP的QCL-TypeA的参考信号等。
其中,默认的参考信号可以为:
(对应于有多个TCI state的情形)网络侧与UE约定的特定TCI state里QCL-TypeA的参考信号;或者,
(对应于有多个TCI state的情形)网络侧与UE约定的特定的QCL-TypeA的参考信号(例如,TCI state里第一个QCL-TypeA的参考信号)。
可选的,所述UL RS的配置信息中包括一个QCL参考信号的配置,所述QCL参考信号用来指示确定所述UL RS上行频点的参考信号。(目的:指示UE使用哪个TRS确定UL RS的上行频点,以使得基站对来自于各个TRP的PDSCH和PDSCH的DMRS都进行Doppler预补偿)。
此时,步骤(3)应修改为:
(3’)网络侧进行PDSCH、PDSCH的DMRS和QCL参考信号传输。
其中,在进行PDSCH和PDSCH的DMRS进行传输时,
在所有TRP进行Doppler预补偿。
可选的,网络侧在任意两个发送PDSCH和PDSCH的DMRS的TRP的Doppler预补偿值的差值为网络侧在这两个TRP检测到的Doppler偏移值的差值。例如,网络侧选择一个TRP作为参考TRP,任一目标TRP的Doppler预补偿值为网络侧在参考TRP检测到的Doppler偏移值与网络侧在该TRP检测到的Doppler偏移值的差值(例如,网络侧在参考TRP检测到的Doppler偏移值减去网络侧在该TRP检测到的Doppler偏移值)
可选地,同一个波束方向的TRP使用相同的Doppler预补偿值,两个波束方向的Doppler预补偿值之间的差值等于网络侧检测到的两个Doppler方向的Doppler值的差值。
QCL参考信号的传输方式与(3)相同。
可选的,基站在同一个波束方向的多个TRP发送本实施例中特定的参考信号。
可选的,基站在上述参考TRP发送本实施例中特定的参考信号。
(4’)对于,PDSCH每个数据层和PDSCH的DMRS端口,UE使用所述一个或两个TCI state中QCL类型既包括时延特性、又包括多普勒特性(例如,为QCL-TypeA)的所有的参考信号共同确定出PDSCH和PDSCH的DMRS端口的时延特性。
下面从网络设备和终端设备交互的角度对本公开实施例中的信号传输方法进行说明:
实例1:如图4所示,以PDSCH/DMRS从两个TRP同时传输为例,PDSCH/DMRS从2个TRP同时发送,且在TRP2进行多普勒预补偿。第一参考信号为TRS1,第二参考信号为TRS2。
假设UE transmits在中心频点f c+Δf+f UL-DL发送用于进行多普勒估计的上行参考信号UL RS,f c是基站确定的下行DL中心频点,Δf是UE确定的 下行中心频点与基站确定的下行中心频点的差值,f UL-DL是DL和UL的中心频点的差值。
基站使用UL RS为每个TRP估计多普勒偏移,并相应地确定PDSCH在各个TRP的频率预补偿值。基站从TRP1和TRP2同时发送PDSCH,且在TRP1对PDSCH不进行频率预补偿,在TRP 2对PDSCH进行频率预补偿,则PDSCH在TRP1发送时的中心频点为fc,在TRP2发送时的中心频点为f c+f 1-f 2,基站在TRP1发送第一参考信号TRS1,且对TRS 1不进行频率预补偿,则TRS1在TRP1发送时的中心频点为fc;基站在TRP 2发送第二参考信号TRS2,且对TRS2不进行频率预补偿,则TRS2在TRP2发送时的中心频点为fc。
由于UE的高速移动会带来多普勒频移,则PDSCH接收时,经历的信道中,TRP 1对应的径的中心频点为f c+f 1,TRP2对应的径的中心频点为f c+f 1.。TRS1接收时,经历的信道来自于TRP1,接收频率的中心频点为f c+f 1,与PDSCH相同。TRS2接收时,经历的信道来自于TRP2,接收频率的中心频点为f c+f 2。由于TRS 1的多普勒偏移值与PDSCH相同,UE根据TRS 1即可较为准确地估计出PDSCH的多普勒偏移值。由于TRS1信道的功率时延谱和TRS2信道的功率时延谱组合起来就是PDSCH信道的功率时延谱,因此,UE通过TRS1和TRS2就可以很好地估计出PDSCH的时延特性。由于PDSCH经历的信道的各个径的多普勒频移值基本相等,因此并没有了多普勒扩展,这可以提高UE对PDSCH的解调性能。
实例2:如图5所示,假设UE在中心频点f c+Δf+f UL-DL上发送用于进行多普勒估计的上行参考信号UL RS,f c是基站确定的下行DL中心频点,Δf是UE确定的下行中心频点与基站确定的下行中心频点的差值,f UL-DL是DL和UL的中心频点的差值。
基站使用UL RS为每个TRP估计多普勒偏移,并相应地确定PDSCH和其对应的DMRS在各个TRP的频率预补偿值。基站从TRP1和TRP2同时发送PDSCH和其对应的DMRS,且在TRP1对PDSCH和其对应的DMRS不进行频率预补偿,在TRP 2使用f 1-f 2对PDSCH进行频率预补偿,则PDSCH和 其对应的DMRS在TRP1发送时的中心频点为fc,在TRP2发送时的中心频点为f c+f 1-f 2.基站在TRP1发送第一参考信号TRS1,且对TRS 1不进行频率预补偿,则TRS1在TRP1发送时的中心频点为fc;基站在TRP1和TRP 2同时发送第二参考信号TRS2,且对TRS2不进行频率预补偿,则TRS2在TRP1和TRP2发送时的中心频点为fc。
由于UE的高速移动会带来多普勒频移,则UE接收PDSCH,PDSCH的信道中UE侧TRP 1对应的径的中心频点为f c+f 1,TRP2对应的径的中心频点为f c+f 1.。TRS1的信道来自于TRP1,其接收频率的中心频点为f c+f 1,与PDSCH相同。TRS2的信道来自于TRP1和TRP2,UE侧两个TRP的径的中心频点均为f c+f 2。由于TRS 1的多普勒偏移值与PDSCH相同,UE根据TRS 1即可较为准确地估计出PDSCH的多普勒偏移值。由于TRS1信道的功率时延谱和TRS2信道的功率时延谱组合起来就是PDSCH信道的功率时延谱,因此,UE通过TRS1和TRS2就可以很好地估计出PDSCH的时延特性。由于PDSCH经历的信道的各个径的多普勒频移值基本相等,因此没有了多普勒扩展,这可以提高UE对PDSCH的解调性能。
图6为本公开一实施例提供的网络设备的结构示意图,如图6所示,该网络设备包括存储器601、收发机602以及处理器603,其中,存储器601,收发机602,处理器603通过总线接口完成相互间的通信;处理器603可以读取存储器601中的计算机程序并执行以下操作:
向终端设备发送下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
向所述终端设备发送所述下行信号。
本公开实施例提供的网络设备中,由于用于终端设备确定下行信号的时延特性和多普勒特性的QCL配置信息指示的参考信号不需要进行多普勒频 移的预补偿,因此,网络设备配置的QCL配置信息指示的参考信号能够供所有终端设备使用,从而网络设备不需要针对每个终端设备发送专门的参考信号,从而节省了导频开销。
基于上述任一实施例,所述向所述终端设备发送所述下行信号,具体包括:
通过多个传输接收点TRP发送所述下行信号;
还包括:
向所述终端设备发送所述参考信号;其中,在发送所述参考信号时,使用发送所述下行信号的TRP中,与发送所述第一参考信号的TRP不同的TRP发送所述第二参考信号。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述向所述终端设备发送所述下行信号,包括:
通过多个传输接收点TRP发送所述下行信号;
所述方法还包括:
向所述终端设备使用发送所述下行信号的所有TRP同时发送所述第二参考信号。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,还包括:
所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号。其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、average delay以及delay spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参 考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述QCL配置信息通过传输配置指示状态TCI state组成的集合携带;所述TCI state组成的集合为以下任意一项:
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;,
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示至少一个QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述下行信号由多个传输接收点TRP发送,所述向终端设备发送下行信号之前,还包括以下任意一项:
确定上行信号在第一TRP的频率偏移值,根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,其中,所述第一TRP为所述网络设备选定的一个TRP,所述第二TRP为所述第一TRP以外的一个或多个TRP;
确定上行信号在参考波束方向上的第三TRP的频率偏移值,根据所述第三TRP的频率偏移值确定所述下行信号在所述第三TRP的频率补偿值,将所述第三TRP的频率补偿值确定为所述参考波束方向的第四TRP的频率补偿值,其中,所述第三TRP为所述参考波束方向的一个TRP,所述第四TRP为所述参考波束方向上所述第三TRP以外的一个或多个TRP;
根据上行信号在参考波束方向上的第五TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定所述参考波束方向的第六TRP的频率补偿值,其中,所述第五TRP为所述参考波束方向的一组TRP,所述第六TRP为所述参考波束方向上所述第五TRP以外的一个或多个TRP;
根据上行信号在参考波束方向上的所有TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定其他波束方向的第七TRP的频率补偿值,其中,所述第七TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
所述向所述终端设备发送所述下行信号,包括:
根据所述频率补偿值向所述终端设备发送所述下行信号。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,包括:
获取所述第一TRP的频率偏移值与获取到的所述第二TRP的频率偏移值的差值;
若所述第一TRP的频率补偿值为0,或者,在所述第一TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第二TRP的频率补偿值;或者,
若所述第一TRP的频率补偿值为Δf 1,则确定所述差值与所述Δf 1之和为所述第二TRP的频率补偿值,其中Δf 1不为0。
可以理解的是,若第一TRP的频率补偿值为0,则在第一TRP不进行多普勒补偿。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述确定上行信号在参考波束方向上的第三TRP的频率偏移值之后,还包括:
根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值。
具体地,所述根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值,包括:
获取所述第三TRP的频率偏移值与第八TRP的频率偏移值的差值;所述第八TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
若所述第三TRP的频率补偿值为0,或者,在所述第三TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第八TRP所在波束方向 的所有TRP的频率补偿值;或者,
若所述第三TRP的频率补偿值为Δf 2,则确定所述差值与所述Δf 2之和为所述第八TRP所在波束方向的所有TRP的频率补偿值,其中Δf 2不为0。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述根据上行信号在参考波束方向上的第五TRP接收到的信号确定出一个频率偏移值之后,还包括:
根据所述频率偏移值确定其他波束方向的各个TRP的频率补偿值。
所述根据所述频率偏移值确定其他波束方向的各个TRP的频率补偿值,包括:
获取所述第五TRP的频率偏移值与第九TRP的频率偏移值的差值;所述第九TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
若所述第五TRP的频率补偿值为0,或者,在所述第五TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第九TRP所在波束方向的所有TRP的频率补偿值;或者,
若所述第九TRP的频率补偿值为Δf 3,则确定所述差值与所述Δf 3之和为所述第九TRP所在波束方向的所有TRP的频率补偿值,其中Δf 3不为0。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,针对上述四种QCL配置信息中的第一参考信号和第二参考信号的发送方式进行了如下说明:
若所述QCL配置信息指示一个QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和 QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,还包括:
向所述终端设备发送所述上行信号的QCL参考信号的指示信息,所述QCL参考信号用于指示所述终端设备用来确定所述上行信号的发送频率的参考信号;
其中,所述QCL参考信号为所述第一参考信号中的信号。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
在一些可选的实施例中,还包括:
向所述终端设备发送TCI state指示信息,所述TCI state指示信息指示所述第一参考信号所在的TCI state;或者,
向所述终端设备发送序号指示信息,所述序号指示信息指示所述第一参考信号在与所述下行信号相关联的TCI state中所有的QCL-TypeA参考信号中的序号。
综上,本公开实施例使得下行信号从多个TRP发送时,各个TRP到达终端设备的多普勒频移基本都是一样的,避免了来自于某些TRP的径为正的大多普勒频移,某些TRP的径为负的大多普勒频移,从而较好的消除了多普勒扩展,可以提高下行信号的解调性能。
由于用于终端设备确定下行信号的多普勒特性和时延特性的参考信号不进行多普勒预补偿,因此,处理器603发送的一个参考信号所有终端设备都可以使用。从而不需要针对每个终端设备发送专门的参考信号,从而节省了参考信号的开销,即节省了导频开销。另外,通过本公开实施例的参考信号配置方法和终端设备确定下行信号的多普勒特性和时延特性的方式,可以使得终端设备获得比较准确的时延特性和多普勒特性,从而可以提高高速移动场景下行链路传输的性能。
图7为本公开另一实施例提供的网络设备的结构示意图,如图7所示,该网络设备包括第一发送单元701和第二发送单元702,其中:
第一发送单元701,用于向终端设备发送下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
第二发送单元702,用于向所述终端设备发送所述下行信号。
本公开实施例提供的网络设备中,由于用于终端设备确定下行信号的时延特性和多普勒特性的QCL配置信息指示的参考信号不需要进行多普勒频移的预补偿,因此,网络设备配置的QCL配置信息指示的参考信号能够供所有终端设备使用,从而网络设备不需要针对每个终端设备发送专门的参考信号,从而节省了导频开销。
基于上述任一实施例,所述第二发送单元,用于:
通过多个传输接收点TRP发送所述下行信号;
所述网络设备还包括:
第三发送单元,用于向所述终端设备发送所述参考信号;其中,在发送所述参考信号时,使用发送所述下行信号的TRP中,与发送所述第一参考信号的TRP不同的TRP发送所述第二参考信号。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述第二发送单元用于:
通过多个传输接收点TRP发送所述下行信号;
所述网络设备还包括:
第四发送单元,用于向所述终端设备使用发送所述下行信号的所有TRP同时发送所述第二参考信号。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号,其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、平均时延average delay以及时延扩展delay spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施 例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述QCL配置信息通过传输配置指示状态TCI state组成的集合携带;所述TCI state组成的集合为以下任意一项:
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施 例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述下行信号由多个传输接收点TRP发送,所述网络设备还包括第一确定单元,用于执行以下任意一项:
确定上行信号在第一TRP的频率偏移值,根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,其中,所述第一TRP为所述网络设备选定的一个TRP,所述第二TRP为所述第一TRP以外的一个或多个TRP;
确定上行信号在参考波束方向上的第三TRP的频率偏移值,根据所述第三TRP的频率偏移值确定所述下行信号在所述第三TRP的频率补偿值,将所述第三TRP的频率补偿值确定为所述参考波束方向的第四TRP的频率补偿值,其中,所述第三TRP为所述参考波束方向的一个TRP,所述第四TRP为所述参考波束方向上所述第三TRP以外的一个或多个TRP;
根据上行信号在参考波束方向上的第五TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定所述参考波束方向的第六TRP的频率补偿值,其中,所述第五TRP为所述参考波束方向的一组TRP,所述第六TRP为所述参考波束方向上所述第五TRP以外的一个或多个TRP;
根据上行信号在参考波束方向上的所有TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定其他波束方向的第七TRP的频率补偿值,其中,所述第七TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
所述第二发送单元,用于:
根据所述频率补偿值向所述终端设备发送所述下行信号。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,包括:
获取所述第一TRP的频率偏移值与获取到的所述第二TRP的频率偏移值的差值;
若所述第一TRP的频率补偿值为0,或者,在所述第一TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第二TRP的频率补偿值;或者,
若所述第一TRP的频率补偿值为Δf 1,则确定所述差值与所述Δf 1之和为所述第二TRP的频率补偿值,其中Δf 1不为0。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述确定上行信号在参考波束方向上的第三TRP的频率偏移值之后,还包括:
根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值。
基于上述任一实施例,所述根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值,包括:
获取所述第三TRP的频率偏移值与第八TRP的频率偏移值的差值;所述第八TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
若所述第三TRP的频率补偿值为0,或者,在所述第三TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第八TRP所在波束方向的所有TRP的频率补偿值;或者,
若所述第三TRP的频率补偿值为Δf 2,则确定所述差值与所述Δf 2之和为所述第八TRP所在波束方向的所有TRP的频率补偿值,其中Δf 2不为0。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,还包括:第五发送单元,用于执行以下至少一项:
若所述QCL配置信息指示一个QCL类型为QCL-TypeA的第一参考信号 和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
若所述QCL配置信息指示QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,还包括:
第六发送单元,用于向所述终端设备发送所述上行信号的QCL参考信号的指示信息,所述QCL参考信号用于指示所述终端设备用来确定所述上行信号的发送频率的参考信号。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述QCL参考信号为所述第一参考信号中的信号。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施 例中与方法实施例相同的部分及有益效果进行具体赘述。
在一些可选的实施例中,还包括:
向所述终端设备发送TCI state指示信息,所述TCI state指示信息指示所述第一参考信号所在的TCI state;或者,
向所述终端设备发送序号指示信息,所述序号指示信息指示所述第一参考信号在与所述下行信号相关联的TCI state中所有的QCL-TypeA参考信号中的序号。
图8为本公开一实施例提供的终端设备的结构示意图,如图8所示,该终端设备包括存储器801、收发机802、处理器803以及用户接口804,其中,存储器801,收发机802,处理器803以及用户接口804通过总线接口完成相互间的通信;处理器803可以读取存储器801中的计算机程序并执行以下操作:
接收下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
根据所述QCL配置信息获取所述下行信号。
本公开实施例提供的终端设备,采用上述QCL配置信息,终端设备能够获得准确的下行信号的时延特性和多普勒特性,从而提高高速移动场景下行链路传输的性能。
基于上述任一实施例,所述根据所述QCL配置信息获取所述下行信号,具体包括:
根据所述第一参考信号确定所述下行信号的多普勒特性;
根据所述第二参考信号确定所述下行信号的时延特性;
根据所述多普勒特性和所述时延特性获取所述下行信号。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施 例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述第一参考信号和所述第二参考信号确定所述下行信号的时延特性。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述根据所述多普勒特性和所述时延特性获取所述下行信号之前,还包括:
接收所述网络设备发送的所述参考信号;其中,在发送所述参考信号时,所述第二参考信号发送自发送所述下行信号的TRP中,与发送所述第一参考信号的TRP不同的TRP。
基于上述任一实施例,所述根据所述多普勒特性和所述时延特性获取所述下行信号之前,还包括:
接收所述网络设备发送的所述参考信号;其中,在发送所述参考信号时,所述第二参考信号发送自发送所述下行信号的所有TRP。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所述第一参考信号和所述QCL类型包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下 行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型包括时延特性和多普勒特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所有的所述QCL类型包括多普勒特性和时延特性的所述第一参考信号和所有的所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,所述第一参考信号为QCL类型包括多普勒特性和时延特性的参考信号中特定的参考信号。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,所述第二参考信号为QCL类型包括多普勒特性和时延特性的参考信号。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号,其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的 QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、平均时延average delay以及时延扩展delay spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述QCL配置信息通过传输配置指示状态TCI state组成的集合携带,所述TCI state组成的集合为以下中的一项:
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示 QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述QCL类型为QCL-TypeA的所述第一参考信号以及所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所有的所述QCL类型为QCL-TypeA的所述第一参考信号和所有的所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时延 特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号中特定的参考信号确定所述下行信号的多普勒特性。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述特定的参考信号为所述网络设备指示的参考信号或默认的参考信号。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述网络设备传输所述下行信号时进行了频率预补偿;还包括:
接收上行信号的QCL参考信号的指示信息;
根据所述指示信息确定所述上行信号的发送频率;其中,所述上行信号为用来确定所述下行信号在所述网络设备的频率预补偿值的上行信号。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述下行信号通过多个TRP传输,且在一个或多个所述TRP进行频率预补偿,还包括:
使用所述第一参考信号确定用来计算所述下行信号在各个TRP的频率预补偿值的上行信号的发送频率。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图9为本公开另一实施例提供的终端设备的结构示意图,如图9所示,该网络设备包括第一接收单元901和第二获取单元902,其中:
第一接收单元901,用于接收下行信号的准共站址QCL配置信息,所述 QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
第二获取单元902,用于根据所述QCL配置信息获取所述下行信号。
本公开实施例提供的终端设备,采用上述QCL配置信息,终端设备能够获得准确的下行信号的时延特性和多普勒特性,从而提高高速移动场景下行链路传输的性能。
基于上述任一实施例,所述第二获取单元,用于:
根据所述第一参考信号确定所述下行信号的多普勒特性;
根据所述第二参考信号确定所述下行信号的时延特性;
根据所述多普勒特性和所述时延特性获取所述下行信号。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述第一参考信号和所述第二参考信号确定所述下行信号的时延特性。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述根据所述多普勒特性和所述时延特性获取所述下行信号之前,还包括:
接收所述网络设备发送的所述参考信号;其中,在发送所述参考信号时,所述第二参考信号发送自发送所述下行信号的TRP中,与发送所述第一参考信号的TRP不同的TRP。
基于上述任一实施例,所述根据所述多普勒特性和所述时延特性获取所述下行信号之前,还包括:
接收所述网络设备发送的所述参考信号;其中,在发送所述参考信号时,所述第二参考信号发送自发送所述下行信号的所有TRP。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所述第一参考信号和所述QCL类型包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型包括时延特性和多普勒特性的所述第二参考信号确定所述下行信号的时延特性;或者,
根据所有的所述QCL类型包括多普勒特性和时延特性的所述第一参考信号和所有的所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施 例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,所述第一参考信号为QCL类型包括多普勒特性和时延特性的参考信号中特定的参考信号。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,所述第二参考信号为QCL类型包括多普勒特性和时延特性的参考信号。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号,其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、平均时延average delay以及时延扩展delay spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述QCL配置信息通过传输配置指示状态TCI state组成的集合携带,所述TCI state组成的集合为以下中的一项:
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
根据所述QCL类型为QCL-TypeA的所述第一参考信号以及所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
根据所有的所述QCL类型为QCL-TypeA的所述第一参考信号和所有的所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号中特定的参考信号确定所述下行信号的多普勒特性。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述特定的参考信号为所述网络设备指示的参考信号或默认的参考信号,其中所述网络设备指示的参考信号为:所述网络设备指示为TCI state中的第i个QCL-TypeA的参考信号,其中i为正整数;或者,所述网络设备指示的特定TCI state中的QCL-TypeA的参考信号;或者,发送自所述网络设备指示的特定TRP的QCL-TypeA的参考信号;其中所述默认的参考信号为:所述网络设备与所述终端设备约定的特定的QCL-TypeA的参考信号。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施 例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述网络设备传输所述下行信号时进行了频率预补偿;所述终端设备还包括:
第三接收单元,用于接收上行信号的QCL参考信号的指示信息;
第二确定单元,用于根据所述指示信息确定所述上行信号的发送频率;其中,所述上行信号为用来确定所述下行信号在所述网络设备的频率预补偿值的上行信号。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述下行信号通过多个TRP传输,且在一个或多个所述TRP进行频率预补偿,还包括:
第三确定单元,用于使用所述第一参考信号确定用来计算所述下行信号在各个TRP的频率预补偿值的上行信号的发送频率。
具体来说,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述各实施例提供的方法,包括:
向终端设备发送下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
向所述终端设备发送所述下行信号。
或者包括:
接收下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
根据所述QCL配置信息获取所述下行信号。
需要说明的是:所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技 术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (76)

  1. 一种信息传输方法,其特征在于,包括:
    向终端设备发送下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
    向所述终端设备发送所述下行信号。
  2. 根据权利要求1所述的信息传输方法,其特征在于,所述向所述终端设备发送所述下行信号,包括:
    通过多个传输接收点TRP发送所述下行信号;
    所述方法还包括:
    向所述终端设备发送所述参考信号;其中,在发送所述参考信号时,使用发送所述下行信号的TRP中,与发送所述第一参考信号的TRP不同的TRP发送所述第二参考信号。
  3. 根据权利要求1所述的信息传输方法,其特征在于,所述向所述终端设备发送所述下行信号,包括:
    通过多个传输接收点TRP发送所述下行信号;
    所述方法还包括:
    向所述终端设备使用发送所述下行信号的所有TRP同时发送所述第二参考信号。
  4. 根据权利要求1所述的信息传输方法,其特征在于,所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号,其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、平均时延average delay以及时延扩展delay spread的QCL类型;或者,
    所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
    所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
    所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
  5. 根据权利要求1所述的信息传输方法,其特征在于,所述QCL配置信息通过传输配置指示状态TCI state组成的集合携带;所述TCI state组成的集合为以下任意一项:
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
  6. 根据权利要求1至5任一项所述的信息传输方法,其特征在于,所述下行信号由多个传输接收点TRP发送,所述向所述终端设备发送所述下行信号之前,还包括以下任意一项:
    确定上行信号在第一TRP的频率偏移值,根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,其中,所述第一TRP为所述网络设备选定的一个TRP,所述第二TRP为所述第一TRP以外的一个或多个TRP;
    确定上行信号在参考波束方向上的第三TRP的频率偏移值,根据所述第三TRP的频率偏移值确定所述下行信号在所述第三TRP的频率补偿值,将所述第三TRP的频率补偿值确定为所述参考波束方向的第四TRP的频率补偿值,其中,所述第三TRP为所述参考波束方向的一个TRP,所述第四TRP为所述参考波束方向上所述第三TRP以外的一个或多个TRP;
    根据上行信号在参考波束方向上的第五TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定所述参考波束方向的第六TRP的频率补偿值,其中,所述第五TRP为所述参考波束方向的一组TRP,所述第六TRP为所述参考波束方向上所述第五TRP以外的一个或多个TRP;
    根据上行信号在参考波束方向上的所有TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定其他波束方向的第七TRP的频率补偿值,其中,所述第七TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
    所述向所述终端设备发送所述下行信号,包括:
    根据所述频率补偿值向所述终端设备发送所述下行信号。
  7. 根据权利要求6所述的信息传输方法,其特征在于,所述根据所述第 一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,包括:
    获取所述第一TRP的频率偏移值与获取到的所述第二TRP的频率偏移值的差值;
    若所述第一TRP的频率补偿值为0,或者,在所述第一TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第二TRP的频率补偿值;或者,
    若所述第一TRP的频率补偿值为Δf 1,则确定所述差值与所述Δf 1之和为所述第二TRP的频率补偿值,其中Δf 1不为0。
  8. 根据权利要求6所述的信息传输方法,其特征在于,所述确定上行信号在参考波束方向上的第三TRP的频率偏移值之后,还包括:
    根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值。
  9. 根据权利要求8所述的信息传输方法,其特征在于,所述根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值,包括:
    获取所述第三TRP的频率偏移值与第八TRP的频率偏移值的差值;所述第八TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
    若所述第三TRP的频率补偿值为0,或者,在所述第三TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第八TRP所在波束方向的所有TRP的频率补偿值;或者,
    若所述第三TRP的频率补偿值为Δf 2,则确定所述差值与所述Δf 2之和为所述第八TRP所在波束方向的所有TRP的频率补偿值,其中Δf 2不为0。
  10. 根据权利要求6所述的信息传输方法,其特征在于,还包括以下至少一项:
    若所述QCL配置信息指示一个QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
    若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和 QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号;
    若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
    若所述QCL配置信息指示QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号。
  11. 根据权利要求6所述的信息传输方法,其特征在于,还包括:
    向所述终端设备发送所述上行信号的QCL参考信号的指示信息,所述QCL参考信号用于指示所述终端设备用来确定所述上行信号的发送频率的参考信号。
  12. 根据权利要求11所述的信息传输方法,其特征在于,所述QCL参考信号为所述第一参考信号中的信号。
  13. 根据权利要求1所述的信息传输方法,其特征在于,还包括:
    向所述终端设备发送TCI state指示信息,所述TCI state指示信息指示所述第一参考信号所在的TCI state;或者,
    向所述终端设备发送序号指示信息,所述序号指示信息指示所述第一参考信号在与所述下行信号相关联的TCI state中所有的QCL-TypeA参考信号中的序号。
  14. 一种信息传输方法,其特征在于,包括:
    接收下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参 考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
    根据所述QCL配置信息获取所述下行信号。
  15. 根据权利要求14所述的信息传输方法,其特征在于,所述根据所述QCL配置信息获取所述下行信号,包括:
    根据所述第一参考信号确定所述下行信号的多普勒特性;
    根据所述第二参考信号确定所述下行信号的时延特性;
    根据所述多普勒特性和所述时延特性获取所述下行信号。
  16. 根据权利要求15所述的信息传输方法,其特征在于,所述根据所述第二参考信号确定所述下行信号的时延特性,包括:
    根据所述第一参考信号和所述第二参考信号确定所述下行信号的时延特性。
  17. 根据权利要求15所述的信息传输方法,其特征在于,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
    根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所述第一参考信号和所述QCL类型包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
    根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
    根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型包括时延特性和多普勒特性的所述第二参考信号确定所述下行信号的时延特性;或者,
    根据所有的所述QCL类型包括多普勒特性和时延特性的所述第一参考信号和所有的所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;或者,
    根据所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性。
  18. 根据权利要求15所述的信息传输方法,其特征在于,所述第一参考信号为QCL类型包括多普勒特性和时延特性的参考信号中特定的参考信号。
  19. 根据权利要求15所述的信息传输方法,其特征在于,所述第二参考信号为QCL类型包括多普勒特性和时延特性的参考信号。
  20. 根据权利要求14-19任一项所述的信息传输方法,其特征在于,所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号,其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、平均时延average delay以及时延扩展delay spread的QCL类型;或者,
    所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
    所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
    所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
  21. 根据权利要求14-19任一项所述的信息传输方法,其特征在于,所述QCL配置信息通过传输配置指示状态TCI state组成的集合携带,所述TCI state组成的集合为以下中的一项:
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指 示QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
  22. 根据权利要求15所述的信息传输方法,其特征在于,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
    根据所述QCL类型为QCL-TypeA的所述第一参考信号以及所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号确定所述下行信号的多普勒特性;或者,
    根据所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
    根据所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
    根据所有的所述QCL类型为QCL-TypeA的所述第一参考信号和所有的所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号中特定的参考信号确定所述下行信号的多普勒特性。
  23. 根据权利要求18或22所述的信息传输方法,其特征在于,所述特定的参考信号为所述网络设备指示的参考信号或默认的参考信号。
  24. 根据权利要求14所述的信息传输方法,其特征在于,
    所述网络设备传输所述下行信号时进行了频率预补偿;所述方法还包括:
    接收上行信号的QCL参考信号的指示信息;
    根据所述指示信息确定所述上行信号的发送频率;其中,所述上行信号为用来确定所述下行信号在所述网络设备的频率预补偿值的上行信号。
  25. 根据权利要求14或24所述的信息传输方法,其特征在于,所述下行信号通过多个TRP传输,且在一个或多个所述TRP进行频率预补偿,还包括:
    使用所述第一参考信号确定用来计算所述下行信号在各个TRP的频率预补偿值的上行信号的发送频率。
  26. 一种网络设备,其特征在于,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    向终端设备发送下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
    向所述终端设备发送所述下行信号。
  27. 根据权利要求26所述的网络设备,其特征在于,所述向所述终端设备发送所述下行信号,包括:
    通过多个传输接收点TRP发送所述下行信号;
    还包括:
    向所述终端设备发送所述参考信号;其中,在发送所述参考信号时,使用发送所述下行信号的TRP中,与发送所述第一参考信号的TRP不同的TRP发送所述第二参考信号。
  28. 根据权利要求26所述的网络设备,其特征在于,所述向所述终端设备发送所述下行信号,包括:
    通过多个传输接收点TRP发送所述下行信号;
    还包括:
    向所述终端设备使用发送所述下行信号的所有TRP同时发送所述第二参考信号。
  29. 根据权利要求26所述的网络设备,其特征在于,包括:
    所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号,其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、平均时延average delay以及时延扩展delay spread的QCL类型;或者,
    所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
    所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
    所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
  30. 根据权利要求26所述的网络设备,其特征在于,所述QCL配置信 息通过传输配置指示状态TCI state组成的集合携带;所述TCI state组成的集合为以下任意一项:
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
  31. 根据权利要求26-29任一项所述的网络设备,其特征在于,所述下行信号由多个传输接收点TRP发送,所述向所述终端设备发送所述下行信号之前,还包括以下任意一项:
    确定上行信号在第一TRP的频率偏移值,根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,其中,所述第一TRP为所述网络设备选定的一个TRP,所述第二TRP为所述第一TRP以外的一个或多个TRP;
    确定上行信号在参考波束方向上的第三TRP的频率偏移值,根据所述第三TRP的频率偏移值确定所述下行信号在所述第三TRP的频率补偿值,将所述第三TRP的频率补偿值确定为所述参考波束方向的第四TRP的频率补偿值,其中,所述第三TRP为所述参考波束方向的一个TRP,所述第四TRP为所述参考波束方向上所述第三TRP以外的一个或多个TRP;
    根据上行信号在参考波束方向上的第五TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定所述参考波束方向的第六TRP的频率补偿值,其中,所述第五TRP为所述参考波束方向的一组TRP,所述第六TRP为所述参考波束方向上所述第五TRP以外的一个或多个TRP;
    根据上行信号在参考波束方向上的所有TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定其他波束方向的第七TRP的频率补偿值,其中,所述第七TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
    所述向所述终端设备发送所述下行信号,包括:
    根据所述频率补偿值向所述终端设备发送所述下行信号。
  32. 根据权利要求31所述的网络设备,其特征在于,所述根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,包括:
    获取所述第一TRP的频率偏移值与获取到的所述第二TRP的频率偏移值的差值;
    若所述第一TRP的频率补偿值为0,或者,在所述第一TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第二TRP的频率补偿值;或者,
    若所述第一TRP的频率补偿值为Δf 1,则确定所述差值与所述Δf 1之和为所述第二TRP的频率补偿值,其中Δf 1不为0。
  33. 根据权利要求31所述的网络设备,其特征在于,所述确定上行信号在参考波束方向上的第三TRP的频率偏移值之后,还包括:
    根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值。
  34. 根据权利要求33所述的网络设备,其特征在于,所述根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值,包括:
    获取所述第三TRP的频率偏移值与第八TRP的频率偏移值的差值;所述第八TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
    若所述第三TRP的频率补偿值为0,或者,在所述第三TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第八TRP所在波束方向的所有TRP的频率补偿值;或者,
    若所述第三TRP的频率补偿值为Δf 2,则确定所述差值与所述Δf 2之和为所述第八TRP所在波束方向的所有TRP的频率补偿值,其中Δf 2不为0。
  35. 根据权利要求30所述的网络设备,其特征在于,还包括以下至少一项:
    若所述QCL配置信息指示一个QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
    若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号;
    若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
    若所述QCL配置信息指示QCL类型为QCL-TypeA的第一参考信号和 QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号。
  36. 根据权利要求30所述的网络设备,其特征在于,还包括:
    向所述终端设备发送所述上行信号的QCL参考信号的指示信息,所述QCL参考信号用于指示所述终端设备用来确定所述上行信号的发送频率的参考信号。
  37. 根据权利要求36所述的网络设备,其特征在于,所述QCL参考信号为所述第一参考信号中的信号。
  38. 根据权利要求26所述的网络设备,其特征在于,还包括:
    向所述终端设备发送TCI state指示信息,所述TCI state指示信息指示所述第一参考信号所在的TCI state;或者,
    向所述终端设备发送序号指示信息,所述序号指示信息指示所述第一参考信号在与所述下行信号相关联的TCI state中所有的QCL-TypeA参考信号中的序号。
  39. 一种网络设备,其特征在于,包括:
    第一发送单元,用于向终端设备发送下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
    第二发送单元,用于向所述终端设备发送所述下行信号。
  40. 根据权利要求39所述的网络设备,其特征在于,所述第二发送单元,用于:
    通过多个传输接收点TRP发送所述下行信号;
    所述网络设备还包括:
    第三发送单元,用于向所述终端设备发送所述参考信号;其中,在发送 所述参考信号时,使用发送所述下行信号的TRP中,与发送所述第一参考信号的TRP不同的TRP发送所述第二参考信号。
  41. 根据权利要求39所述的网络设备,其特征在于,所述第二发送单元用于:
    通过多个传输接收点TRP发送所述下行信号;
    所述网络设备还包括:
    第四发送单元,用于向所述终端设备使用发送所述下行信号的所有TRP同时发送所述第二参考信号。
  42. 根据权利要求39所述的网络设备,其特征在于,所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号,其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、平均时延average delay以及时延扩展delay spread的QCL类型;或者,
    所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
    所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
    所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
  43. 根据权利要求39所述的网络设备,其特征在于,所述QCL配置信息通过传输配置指示状态TCI state组成的集合携带;所述TCI state组成的集合为以下任意一项:
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少 指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
  44. 根据权利要求39至41任一项所述的网络设备,其特征在于,所述下行信号由多个传输接收点TRP发送,所述网络设备还包括第一确定单元,用于执行以下任意一项:
    确定上行信号在第一TRP的频率偏移值,根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,其中,所述第一TRP为所述网络设备选定的一个TRP,所述第二TRP为所述第一TRP以外的一个或多个TRP;
    确定上行信号在参考波束方向上的第三TRP的频率偏移值,根据所述第三TRP的频率偏移值确定所述下行信号在所述第三TRP的频率补偿值,将所 述第三TRP的频率补偿值确定为所述参考波束方向的第四TRP的频率补偿值,其中,所述第三TRP为所述参考波束方向的一个TRP,所述第四TRP为所述参考波束方向上所述第三TRP以外的一个或多个TRP;
    根据上行信号在参考波束方向上的第五TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定所述参考波束方向的第六TRP的频率补偿值,其中,所述第五TRP为所述参考波束方向的一组TRP,所述第六TRP为所述参考波束方向上所述第五TRP以外的一个或多个TRP;
    根据上行信号在参考波束方向上的所有TRP接收到的信号确定出一个频率偏移值,根据所述频率偏移值确定其他波束方向的第七TRP的频率补偿值,其中,所述第七TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
    所述第二发送单元,用于:
    根据所述频率补偿值向所述终端设备发送所述下行信号。
  45. 根据权利要求44所述的网络设备,其特征在于,所述根据所述第一TRP的频率偏移值确定所述下行信号在第二TRP的频率补偿值,包括:
    获取所述第一TRP的频率偏移值与获取到的所述第二TRP的频率偏移值的差值;
    若所述第一TRP的频率补偿值为0,或者,在所述第一TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第二TRP的频率补偿值;或者,
    若所述第一TRP的频率补偿值为Δf 1,则确定所述差值与所述Δf 1之和为所述第二TRP的频率补偿值,其中Δf 1不为0。
  46. 根据权利要求44所述的网络设备,其特征在于,所述确定上行信号在参考波束方向上的第三TRP的频率偏移值之后,还包括:
    根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值。
  47. 根据权利要求45所述的网络设备,其特征在于,所述根据所述第三TRP的频率偏移值确定其他波束方向的各个TRP的频率补偿值,包括:
    获取所述第三TRP的频率偏移值与第八TRP的频率偏移值的差值;所述第八TRP为所述参考波束方向以外其他波束方向的一个或多个TRP;
    若所述第三TRP的频率补偿值为0,或者,在所述第三TRP不进行所述下行信号的下行频点的调整,则确定所述差值为所述第八TRP所在波束方向的所有TRP的频率补偿值;或者,
    若所述第三TRP的频率补偿值为Δf 2,则确定所述差值与所述Δf 2之和为所述第八TRP所在波束方向的所有TRP的频率补偿值,其中Δf 2不为0。
  48. 根据权利要求44所述的网络设备,其特征在于,还包括:第五发送单元,用于执行以下至少一项:
    若所述QCL配置信息指示一个QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
    若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号;
    若所述QCL配置信息指示QCL类型为QCL-TypeB的第一参考信号和QCL类型为QCL-TypeE的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeB的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeE的第二参考信号;
    若所述QCL配置信息指示QCL类型为QCL-TypeA的第一参考信号和QCL类型为QCL-TypeA的第二参考信号,则通过所述第一TRP发送所述QCL类型为QCL-TypeA的第一参考信号,以及通过一个或多个所述第二TRP发送所述QCL类型为QCL-TypeA的第二参考信号。
  49. 根据权利要求44所述的网络设备,其特征在于,还包括:
    第六发送单元,用于向所述终端设备发送所述上行信号的QCL参考信号的指示信息,所述QCL参考信号用于指示所述终端设备用来确定所述上行信 号的发送频率的参考信号。
  50. 根据权利要求49所述的网络设备,其特征在于,所述QCL参考信号为所述第一参考信号中的信号。
  51. 根据权利要求39所述的网络设备,其特征在于,还包括:
    向所述终端设备发送TCI state指示信息,所述TCI state指示信息指示所述第一参考信号所在的TCI state;或者,
    向所述终端设备发送序号指示信息,所述序号指示信息指示所述第一参考信号在与所述下行信号相关联的TCI state中所有的QCL-TypeA参考信号中的序号。
  52. 一种终端设备,其特征在于,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    接收下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
    根据所述QCL配置信息获取所述下行信号。
  53. 根据权利要求52所述的终端设备,其特征在于,所述根据所述QCL配置信息获取所述下行信号,包括:
    根据所述第一参考信号确定所述下行信号的多普勒特性;
    根据所述第二参考信号确定所述下行信号的时延特性;
    根据所述多普勒特性和所述时延特性获取所述下行信号。
  54. 根据权利要求53所述的终端设备,其特征在于,所述根据所述第二参考信号确定所述下行信号的时延特性,包括:
    根据所述第一参考信号和所述第二参考信号确定所述下行信号的时延特性。
  55. 根据权利要求53所述的终端设备,其特征在于,所述根据所述第一 参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
    根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所述第一参考信号和所述QCL类型包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
    根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
    根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型包括时延特性和多普勒特性的所述第二参考信号确定所述下行信号的时延特性;或者,
    根据所有的所述QCL类型包括多普勒特性和时延特性的所述第一参考信号和所有的所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;或者,
    根据所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性。
  56. 根据权利要求53所述的终端设备,其特征在于,所述第一参考信号为QCL类型包括多普勒特性和时延特性的参考信号中特定的参考信号。
  57. 根据权利要求53所述的终端设备,其特征在于,所述第二参考信号为QCL类型包括多普勒特性和时延特性的参考信号。
  58. 根据权利要求52-57任一项所述的终端设备,其特征在于,所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号,其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、平均时延average  delay以及时延扩展delay spread的QCL类型;或者,
    所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
    所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
    所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
  59. 根据权利要求52-57任一项所述的终端设备,其特征在于,所述QCL配置信息通过传输配置指示状态TCI state组成的集合携带,所述TCI state组成的集合为以下中的一项:
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指 示QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
  60. 根据权利要求53所述的终端设备,其特征在于,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
    根据所述QCL类型为QCL-TypeA的所述第一参考信号以及所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号确定所述下行信号的多普勒特性;或者,
    根据所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
    根据所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
    根据所有的所述QCL类型为QCL-TypeA的所述第一参考信号和所有的所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号中特定的参考信号确定所述下行信号的多普勒特性。
  61. 根据权利要求56或60所述的终端设备,其特征在于,所述特定的参考信号为所述网络设备指示的参考信号或默认的参考信号。
  62. 根据权利要求52所述的终端设备,其特征在于,所述网络设备传输所述下行信号时进行了频率预补偿;所述方法还包括:
    接收上行信号的QCL参考信号的指示信息;
    根据所述指示信息确定所述上行信号的发送频率;其中,所述上行信号为用来确定所述下行信号在所述网络设备的频率预补偿值的上行信号。
  63. 根据权利要求52或62所述的终端设备,其特征在于,所述下行信号通过多个TRP传输,且在一个或多个所述TRP进行频率预补偿,还包括:
    使用所述第一参考信号确定用来计算所述下行信号在各个TRP的频率预补偿值的上行信号的发送频率。
  64. 一种终端设备,其特征在于,包括:
    第一接收单元,用于接收下行信号的准共站址QCL配置信息,所述QCL配置信息指示至少两个参考信号和所述参考信号对应的QCL类型,所述参考信号中的第一参考信号用于所述终端设备确定所述下行信号的多普勒特性,所述参考信号中的第二参考信号用于所述终端设备确定所述下行信号的时延特性,所述第一参考信号的个数为一个或多个,所述第二参考信号的个数为一个或多个;
    第二获取单元,用于根据所述QCL配置信息获取所述下行信号。
  65. 根据权利要求64所述的终端设备,其特征在于,所述第二获取单元,用于:
    根据所述第一参考信号确定所述下行信号的多普勒特性;
    根据所述第二参考信号确定所述下行信号的时延特性;
    根据所述多普勒特性和所述时延特性获取所述下行信号。
  66. 根据权利要求65所述的终端设备,其特征在于,所述根据所述第二参考信号确定所述下行信号的时延特性,包括:
    根据所述第一参考信号和所述第二参考信号确定所述下行信号的时延特性。
  67. 根据权利要求65所述的终端设备,其特征在于,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
    根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所 述第一参考信号和所述QCL类型包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
    根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型只包括时延特性的所述第二参考信号确定所述下行信号的时延特性;或者,
    根据所述QCL类型只包括多普勒特性的所述第一参考信号确定所述下行信号的多普勒特性;以及根据所述QCL类型包括时延特性和多普勒特性的所述第二参考信号确定所述下行信号的时延特性;或者,
    根据所有的所述QCL类型包括多普勒特性和时延特性的所述第一参考信号和所有的所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性;或者,
    根据所述QCL类型包括多普勒特性和时延特性的所述第二参考信号确定所述下行信号的时延特性;以及根据所述QCL类型包括多普勒特性和时延特性的所述第一参考信号确定所述下行信号的多普勒特性。
  68. 根据权利要求65所述的信息传输方法,其特征在于,所述第一参考信号为QCL类型包括多普勒特性和时延特性的参考信号中特定的参考信号。
  69. 根据权利要求65所述的信息传输方法,其特征在于,所述第二参考信号为QCL类型包括多普勒特性和时延特性的参考信号。
  70. 根据权利要求64-69中任一项所述的终端设备,其特征在于,所述第一参考信号为QCL类型为QCL-TypeA的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号,其中,所述QCL-TypeE表示指示平均时延average delay和时延扩展delay spread的QCL类型,所述QCL-TypeA表示指示多普勒频移Doppler shift、多普勒扩展Doppler spread、平均时延average delay以及时延扩展delay spread的QCL类型;或者,
    所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeA的参考信号,其中所述QCL-TypeB表示指示Doppler shift和Doppler spread的QCL类型;或者,
    所述第一参考信号为QCL类型为QCL-TypeB的参考信号,所述第二参考信号为QCL类型为QCL-TypeE的参考信号;或者,
    所述第一参考信号和所述第二参考信号都是QCL类型为QCL-TypeA的参考信号。
  71. 根据权利要求64-69中任一项所述的终端设备,其特征在于,所述QCL配置信息通过传输配置指示状态TCI state组成的集合携带,所述TCI state组成的集合为以下中的一项:
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeB的所述第一参考信号,以及QCL类型为QCL-TypeE的所述第二参考信号;
    TCI state组成的集合中至少包括两个TCI state,其中一个TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,另一个TCI state至少指示QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型为QCL-TypeA的所述第一参考信号,以及QCL类型为QCL-TypeA的所述第二参考信号;
    TCI state组成的集合中至少包括一个TCI state,其中TCI state至少指示QCL类型均为QCL-TypeA的所述第一参考信号和所述第二参考信号。
  72. 根据权利要求65所述的终端设备,其特征在于,所述根据所述第一参考信号确定所述下行信号的多普勒特性,以及根据所述第二参考信号确定所述下行信号的时延特性,包括:
    根据所述QCL类型为QCL-TypeA的所述第一参考信号以及所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号确定所述下行信号的多普勒特性;或者,
    根据所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
    根据所述QCL类型为QCL-TypeE的所述第二参考信号确定所述下行信号的时域特性,并根据所述QCL类型为QCL-TypeB的所述第一参考信号确定所述下行信号的多普勒特性;或者,
    根据所有的所述QCL类型为QCL-TypeA的所述第一参考信号和所有的所述QCL类型为QCL-TypeA的所述第二参考信号确定所述下行信号的时延特性,并根据所述QCL类型为QCL-TypeA的所述第一参考信号中特定的参考信号确定所述下行信号的多普勒特性。
  73. 根据权利要求68或72所述的终端设备,其特征在于,所述特定的参考信号为所述网络设备指示的参考信号或默认的参考信号。
  74. 根据权利要求64所述的终端设备,其特征在于,所述网络设备传输所述下行信号时进行了频率预补偿,所述终端设备还包括:
    第三接收单元,用于接收上行信号的QCL参考信号的指示信息;
    第二确定单元,用于根据所述指示信息确定所述上行信号的发送频率;其中,所述上行信号为用来确定所述下行信号在所述网络设备的频率预补偿值的上行信号。
  75. 根据权利要求64或74所述的终端设备,其特征在于,所述下行信 号通过多个TRP传输,且在一个或多个所述TRP进行频率预补偿,所述终端设备还包括:
    第三确定单元,用于使用所述第一参考信号确定用来计算所述下行信号在各个TRP的频率预补偿值的上行信号的发送频率。
  76. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1-13任一项所述的方法;或者,
    一种处理器可读存储介质,其特征在于,所述处理器可读存储介质有执行权利要求14-25任一所述方法的处理器可执行的计算机程序。
PCT/CN2021/111235 2020-08-07 2021-08-06 信息传输方法、网络设备、终端设备及存储介质 WO2022028585A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21853728.0A EP4195565A1 (en) 2020-08-07 2021-08-06 Information transmission method, network device, terminal device and storage medium
US18/020,083 US20230318688A1 (en) 2020-08-07 2021-08-06 Information transmission method, network device, terminal device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010791707.4A CN114070527B (zh) 2020-08-07 2020-08-07 信息传输方法、网络侧设备、终端及存储介质
CN202010791707.4 2020-08-07

Publications (1)

Publication Number Publication Date
WO2022028585A1 true WO2022028585A1 (zh) 2022-02-10

Family

ID=80118636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111235 WO2022028585A1 (zh) 2020-08-07 2021-08-06 信息传输方法、网络设备、终端设备及存储介质

Country Status (5)

Country Link
US (1) US20230318688A1 (zh)
EP (1) EP4195565A1 (zh)
CN (1) CN114070527B (zh)
TW (1) TWI782658B (zh)
WO (1) WO2022028585A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024092692A1 (en) * 2022-11-04 2024-05-10 Qualcomm Incorporated Doppler offset reporting for coherent joint-transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288743A1 (en) * 2016-03-31 2017-10-05 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving reference signals in wireless communication
CN107888266A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 一种准共址指示信息指示方法及设备
CN110166190A (zh) * 2018-02-11 2019-08-23 华为技术有限公司 准共址信息的确定方法、装置及设备
US20200154489A1 (en) * 2018-11-12 2020-05-14 Qualcomm Incorporated Configuring transmission configuration indication states on an initial control resource set

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078464A1 (ko) * 2015-11-04 2017-05-11 엘지전자(주) 무선 통신 시스템에서 하향링크 데이터 송수신 방법 및 이를 위한 장치
KR102270085B1 (ko) * 2017-05-01 2021-06-28 엘지전자 주식회사 무선 통신 시스템에서 단말의 사운딩 방법 및 이를 위한 장치
US10686574B2 (en) * 2017-08-17 2020-06-16 Industrial Technology Research Institute Methods and apparatus for indicating a radio resource to a receiver in a wireless communication system
CN110995400B (zh) * 2018-04-02 2021-01-15 Oppo广东移动通信有限公司 确定参考信号的方法、网络设备、ue及计算机存储介质
CN110474745B (zh) * 2018-05-11 2021-01-22 维沃移动通信有限公司 一种准共址配置方法、终端及网络设备
CN110581752B (zh) * 2018-06-07 2021-02-26 展讯通信(上海)有限公司 传输配置指示的发送、接收方法及装置、存储介质、基站、终端
US10659109B2 (en) * 2018-07-02 2020-05-19 Qualcomm Incorporated Method and apparatus for expanding quasi-colocation (QCL) signaling to cover varied scenarios
WO2020056777A1 (zh) * 2018-09-21 2020-03-26 Oppo广东移动通信有限公司 无线通信的方法、发送节点和接收节点
EP3871357A4 (en) * 2018-10-24 2022-07-13 INTEL Corporation QUASI-COLLOCATION DETERMINATION (QCL) FOR RECEPTION OF A DOWNSTREAM SHARED PHYSICAL CHANNEL (PDSCH)
US11184132B2 (en) * 2018-11-14 2021-11-23 Mediatek Inc. Transmission configuration indication (TCI)—state indication for non-coherent joint transmission (NCJT) channel state information (CSI) reporting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288743A1 (en) * 2016-03-31 2017-10-05 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving reference signals in wireless communication
CN107888266A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 一种准共址指示信息指示方法及设备
CN110166190A (zh) * 2018-02-11 2019-08-23 华为技术有限公司 准共址信息的确定方法、装置及设备
US20200154489A1 (en) * 2018-11-12 2020-05-14 Qualcomm Incorporated Configuring transmission configuration indication states on an initial control resource set

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On the remaining issues of QCL", 3GPP DRAFT; R1-1806515 ON THE REMAINING ISSUES OF QCL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Busan, Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051441716 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024092692A1 (en) * 2022-11-04 2024-05-10 Qualcomm Incorporated Doppler offset reporting for coherent joint-transmission

Also Published As

Publication number Publication date
US20230318688A1 (en) 2023-10-05
EP4195565A1 (en) 2023-06-14
CN114070527A (zh) 2022-02-18
TW202218455A (zh) 2022-05-01
TWI782658B (zh) 2022-11-01
CN114070527B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
US11751187B2 (en) Signal transmission method and apparatus
WO2018127181A1 (zh) 一种信号传输方法和装置
WO2022083783A1 (zh) 信道估计方法、装置及存储介质
WO2022083778A1 (zh) 信号传输方法及装置
WO2022078115A1 (zh) 功率确定方法、装置、终端及网络侧设备
WO2022028585A1 (zh) 信息传输方法、网络设备、终端设备及存储介质
WO2022089442A1 (zh) 一种定位方法、装置、终端及设备
WO2021159258A1 (zh) 一种数据传输方法及装置
TWI745909B (zh) 一種定位測量值的確定方法、裝置、電子設備及電腦存儲介質
WO2022227796A1 (zh) 终端设备的定位方法、装置及存储介质
CN114554539B (zh) 业务处理方法、装置、网络设备及存储介质
CN115549872B (zh) Pusch信号的处理方法、装置及存储介质
WO2022152317A1 (zh) 信息处理方法、装置、终端及网络设备
WO2023169401A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2024032648A1 (zh) Sl-prs的功率控制方法、终端、网络侧设备、装置及存储介质
WO2023082906A1 (zh) 天线校准方法、设备、装置及存储介质
CN114499781B (zh) 参考信号传输方法、发射端、接收端、装置和存储介质
WO2023078429A1 (zh) Srs传输功率确定方法、设备、装置及存储介质
WO2024032646A1 (zh) 多频点定位方法、设备、装置及存储介质
Kim et al. Enhanced handoff scheme based on efficient uplink quality estimation in LTE-Advanced system
CN117545059A (zh) 定时提前获取方法、装置、终端及基站
CN116782246A (zh) 信号处理方法、装置、设备及存储介质
CN116782409A (zh) 一种信息处理方法、装置及可读存储介质
CN117459985A (zh) 波束指示方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021853728

Country of ref document: EP

Effective date: 20230307