WO2022028564A1 - 一种心脏瓣膜组件及其制备方法 - Google Patents

一种心脏瓣膜组件及其制备方法 Download PDF

Info

Publication number
WO2022028564A1
WO2022028564A1 PCT/CN2021/111111 CN2021111111W WO2022028564A1 WO 2022028564 A1 WO2022028564 A1 WO 2022028564A1 CN 2021111111 W CN2021111111 W CN 2021111111W WO 2022028564 A1 WO2022028564 A1 WO 2022028564A1
Authority
WO
WIPO (PCT)
Prior art keywords
heart valve
valve assembly
fabric layer
fabric
integrated
Prior art date
Application number
PCT/CN2021/111111
Other languages
English (en)
French (fr)
Inventor
亨利福特·瑞恩
肖家华
Original Assignee
山前(珠海)生物材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山前(珠海)生物材料科技有限公司 filed Critical 山前(珠海)生物材料科技有限公司
Priority to US18/020,100 priority Critical patent/US20230263625A1/en
Priority to EP21853961.7A priority patent/EP4193964A4/en
Priority to JP2023508056A priority patent/JP7504516B2/ja
Publication of WO2022028564A1 publication Critical patent/WO2022028564A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D3/00Woven fabrics characterised by their shape
    • D03D3/02Tubular fabrics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2409Support rings therefor, e.g. for connecting valves to tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2415Manufacturing methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D25/00Woven fabrics not otherwise provided for
    • D03D25/005Three-dimensional woven fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D5/00Selvedges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0069Sealing means
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • D10B2321/0211Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene high-strength or high-molecular-weight polyethylene, e.g. ultra-high molecular weight polyethylene [UHMWPE]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/06Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers
    • D10B2331/061Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers polyetherketones, polyetheretherketones, e.g. PEEK
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/10Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyurethanes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene
    • D10B2509/06Vascular grafts; stents

Definitions

  • the present application relates to the field of medical devices, in particular to a heart valve assembly and a preparation method thereof.
  • Heart valves There are currently three types of heart valves: 1) mechanical valves, 2) biological valves, and 3) synthetic polymer valves.
  • Mechanical valves are all composed of one or more valves that are mounted on an eccentric shaft and then secured to a safety valve seat on the heart muscle. These mechanical valves are extremely reliable in operation, but they are prone to disturbances in blood flow and increase the risk of thrombosis. Therefore, implanting a mechanical valve requires the patient to take anticoagulant drugs for life; furthermore, because the valve component of the mechanical valve cannot be compressed sufficiently into the catheter to be delivered to the installation site by the minimally invasive implantation of the catheter, , Mechanical valves require extremely invasive intracardiac implantation, rendering many elderly patients unusable due to complications.
  • Bioprosthetic valves are valve prostheses made from human organ tissue (allografts) or animal-derived tissues (autologous grafts). Since the biological tissues of these valve prostheses are generally well integrated with the heart and have the additional benefit of supporting transcatheter delivery, they can overcome the above-mentioned disadvantages of mechanical valves and are more widely used. However, because biological valves are composed of organic tissues, they are prone to natural aging and degeneration, and in order to avoid natural aging and degeneration, these biological tissues often require extensive chemical treatment to ensure biocompatibility and prevent surface calcification. . Also, these biological tissues need to be mounted on a seat for effective fixation within the heart, and the seat arrangement may also create unfavorable flow conditions inside the biological valve.
  • Synthetic polymer valves where the entire valve prosthesis is made of synthetic material, usually molded from polyurethane or silicone. These shaped valves are able to effectively overcome the problems associated with material fatigue while maintaining natural blood flow. However, these synthetic polymer valves are at risk of rupture in the flexural area over time due to cyclic stress. Recent advances in 3D printing technology have further increased attempts in this field to use a variety of printable polymers to replicate the shape of natural heart valves with increasing precision. However, to date, these valves have had little clinical or commercial success due to product design and structural material constraints.
  • the present application provides a heart valve assembly, an artificial valve device and a preparation method of the heart valve assembly.
  • a heart valve assembly comprising: a skirt portion having a tubular structure, at least two leaflets disposed on the inner wall of the skirt portion, and a plurality of integrated anchors disposed outside the skirt portion A fixed ring; one end of the integrated anchoring ring is fixedly arranged outside the skirt part, and one end is a free end; the skirt part, the leaflet body and the integrated anchoring ring form an integrated valve structure.
  • one end of the integrated anchoring ring is arranged at the edge of the skirt portion, or at any position outside the skirt portion in the width direction, or between the skirt portion and the leaflet. interweaving regions of the body.
  • the material of the skirt part, the integrated anchoring ring and the leaflet body is the same or different; the material is a biocompatible polymer; the biocompatible polymer is UHMWPE (Ultra High Molecular Weight Polyethylene). ), PET (polyethylene terephthalate), PEEK (polyetheretherketone), TPU (thermoplastic polyurethane elastomer rubber), PGA (polyglycolic acid), PLGA (polylactic-glycolic acid copolymer), PLA (polylactic acid), PLLA's (poly-L-lactide), PDO (poly-dioxanone), PHA's (polyhydroxyalkanoate), PGSU (polypropylene sebacate polyurethane), preferably , the material of the skirt part, the integrated anchoring ring and the leaflet body are all ultra-high molecular weight polyethylene.
  • UHMWPE Ultra High Molecular Weight Polyethylene
  • PET polyethylene terephthalate
  • PEEK polyether
  • the length of the integrated anchoring ring is 2mm to 50mm.
  • the distance between the upper and lower sides of the skirt part is 1mm-50mm.
  • the heart valve assembly further includes a side valve sealing ring, and the skirt portion, the leaflet body, the integrated anchoring ring and the side valve sealing ring form an integral valve structure.
  • the materials of the skirt part, the integrated anchoring ring and the leaflet body and the auxiliary valve sealing ring are the same or different;
  • the shape of the skirt portion is cylindrical or similar to a cylindrical shape.
  • a prosthetic valve device comprising the above-mentioned heart valve assembly, and a stent mounted on the heart valve assembly.
  • a method of manufacturing a heart valve assembly by using a shuttle narrow electronic jacquard loom to form a fabric; the fabric is composed of three fabric layers, the first fabric layer forming the skirt portion, the second fabric layer forming the skirt portion Two fabric layers form the leaflet body, and a third fabric layer forms the loops or integrated anchoring loops; these layers are seamlessly interwoven along the length of the fabric at predetermined locations.
  • the second fabric layer is formed by completely weaving the second fabric layer into the first fabric layer at a point along the width of the first fabric layer using any of the known weaving patterns , a seamless connection between the two fabric layers.
  • shuttle narrow-width electronic jacquard loom is MEGEBA SSLMV (German).
  • the second fabric layer is formed by completely weaving the second fabric layer into the first fabric at a point along the width of the first fabric layer using one of many known weaving patterns layer, the two fabric layers are seamlessly connected;
  • the known weave pattern may be a double-layer plain weave orthogonal weave pattern.
  • the specific method of forming the integrated anchor ring is: the weft yarns extend laterally a certain distance from the staggered point with the selvage of the first fabric layer, and the distance is 2mm to 50mm; The warp yarns are intertwined to form an integrated anchoring loop; the transverse direction is the width direction of the first fabric layer.
  • weft yarns laterally extend a certain distance from the intersection point with the selvedge of the first fabric layer, and the distance is 2 mm.
  • the above-mentioned one-piece valve structure is woven.
  • the two longitudinal (along the length direction of the first fabric layer) ends of the first fabric layer can be connected by any stitching method;
  • the stitching method includes stitching, ultrasonic welding, thermal bonding, etc., and the assembly is formed into a cylindrical shape or similar to a cylindrical shape;
  • the highly taut single warp yarn is a hub; the function of the hub is to assist in forming an integrated anchoring ring; when the heart valve is fixed to the stent, the hub is used to manipulate each anchoring ring to a predetermined position on the stent frame. Anchor location, simplifying the connection process.
  • the stent is a surgical heart valve stent, a self-expanding catheter-transmitted heart valve stent or a balloon-expanding catheter heart valve stent.
  • the denier of the yarns of the 2nd-4th fabric layers is 5-100 denier.
  • the heart valve component of the present application simplifies the assembly process by significantly reducing the need for precise sutures to connect the valve component to the stent. It may also reduce the uncertainty of current suturing techniques.
  • the heart valve assembly of the present application and its preparation method promote the application of synthetic materials in surgical and transcatheter heart valves.
  • the use of the heart valve component of the present application can improve the lifespan of the heart valve using animal-derived tissue.
  • heart valve components of the present application enable faster stent placement and faster assembly to the skirt and leaflet components, resulting in greater accuracy and repeatability, thereby reducing the need for trained assembly technicians. need.
  • the heart valve components of the present application can accommodate any number and geometry of leaflets that can be optimized for desired flow dynamics when using various combinations of materials.
  • FIG. 1 is a schematic structural diagram of the heart valve assembly in Embodiment 1;
  • Figure 2 is a cross-sectional view of a 3-layer fabric layer with integrated anchor loops
  • Fig. 3 is a schematic diagram of forming an integrated anchoring loop with the aid of a set of wires; the main purpose is to show how to form an anchoring loop, and 9 is a multi-layer fabric layer, which can be the first fabric and/or the second fabric layer and/or the fourth fabric layer. , without distinguishing between specific fabric layers.
  • Figure 4 is a 3-layer fabric including integrated anchoring loops
  • Figure 5 is a cross-section of the 3-layer fabric of Figure 4 including integrated anchoring loops; 8 is the interwoven area of the 3-layer fabric layer;
  • Figure 6 is a 3-layer fabric (with integrated anchoring loops), the first fabric layer matches the outline of the stent; 11 is the cutting area of the first fabric layer;
  • Fig. 7 is a fabric composed of four fabric layers in Example 2 (a side valve sealing ring is integrated on the basis of Fig. 6 ), and the first fabric layer matches the shape of the stent; reference numeral 12 is a side valve sealing ring;
  • Fig. 8 is the cross section of the fabric in Fig. 7; 8 is the interweaving area of four fabric layers;
  • Figure 9 is a typical surgical heart valve component of the prior art
  • Fig. 10 is a schematic diagram of the artificial valve device in Embodiment 3; in this figure, some parts are not marked in order to illustrate that the heart valve assembly is assembled with the stent as a whole.
  • Fig. 11 is an enlarged view of part A of Fig. 10;
  • Figure 12 is the stent in Example 3; the circle is not a structure on the stent, but is added to show the predetermined anchor point more clearly; reference numeral 14 is the predetermined anchor point;
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • Embodiment 1 A heart valve assembly
  • a heart valve assembly as shown in Figure 1, comprises a skirt body part 1 in a tubular structure, and at least two leaflets 2 connected to the inner wall of the skirt body part 1;
  • the integrated anchoring ring 3; the skirt part 1, the leaflet body 2 and the integrated anchoring ring 3 constitute a one-piece valve structure.
  • the upper and lower sides of the skirt part 1 are provided with selvedge; the opposite sides of the leaflet body 2 are the interwoven side and the free side, respectively, and the interwoven side is fixed between the two selvedges of the skirt part 1 by a weaving method. In between, the free side is selvedge.
  • the opposite sides of the integrated anchoring ring 3 are the interwoven side and the free side, respectively, and the interwoven side is fixed between the two selvedges outside the skirt part 1 by a weaving method.
  • the number of leaflet bodies 2 is set to three.
  • the skirt portion 1 provides a secure anchor point for the valve leaflets, preventing cardiac tissue surrounding the valve from growing into the interior of the valve and interfering with the function of the leaflets, while also preventing paravalvular leakage.
  • the function of the integrated anchoring ring 3 is to anchor the valve assembly to the stent.
  • the material of the skirt part 1 , the leaflet body 2 and the integrated anchoring ring 3 is the biocompatible polymer UHMWPE.
  • the preparation method of the heart valve assembly (refer to Figures 1-6) is:
  • Fabrics are formed by using a shuttle narrow electronic jacquard loom (MEGEBA SSLMV).
  • the fabric consists of three fabric layers, a base layer (first fabric layer) forming the skirt portion 1, a second fabric layer forming the leaflet body 2, and a third fabric layer forming the loop of the anchoring element of the stent, the anchor loop 3 .
  • the layers are seamlessly interwoven along the length of the fabric at predetermined locations.
  • the synthetic leaflet body 2 is connected to the fabric base layer (first fabric layer), and in the process of forming the first fabric layer, along the two edges of the first fabric layer, the weft yarns pass without being cut to form a selvage .
  • the width of the first fabric layer is 1mm-50mm, depending on the length of the connection forming the skirt part (the length of the connection area between the leaflet body 2 and the first fabric layer); the denier of the yarn used in the first fabric layer is 5-100 Denier, depending on the desired thickness and density of the first fabric layer.
  • the width of the first fabric layer is 50 mm, and the fineness of the yarn used in the first fabric layer is 100 denier.
  • this example uses a double plain weave orthogonal weave pattern to complete the second fabric layer The ground is woven into the first fabric layer with a seamless connection between the two fabric layers.
  • the second fabric layer will form the synthetic leaflet bodies 2 (valve leaflets) formed by interweaving the warp and weft yarns.
  • the second fabric layer is integrally connected to the first fabric layer to form attachment points. These points can be altered during the braiding process to create any number of geometrical figures for optimum performance of the valve leaflets, which in this embodiment are linear, see FIGS. 4 and 6 .
  • first fabric layer and the second fabric layer in this embodiment are shown in Figure 4, that is, the first fabric layer is a rectangle; as an alternative embodiment, it can be cut into a specific shape matching the shape of the stent Modify the first fabric layer, see Figure 6, while the modified skirt portion 1 still satisfies the engagement with the leaflet body 2.
  • a third fabric layer is added in structure, and the third fabric layer is an integrated anchoring loop 3 formed by using weft yarns; these weft yarn loops can be along the first fabric.
  • One selvedge of the layer is interwoven with the interlaced region of the first fabric layer and the second fabric layer, or the weft loops may be interwoven with the first fabric layer along one selvedge of the first fabric layer. It is also possible to interlace at different points along the width of the first fabric layer.
  • Such weft threads will extend laterally (referred to herein as the widthwise direction of the first fabric layer) from the point of intersection with the first fabric layer and/or the second fabric layer to a predetermined length, these loops may be anchored to anchors on the surface of the stent on a fixed point.
  • the specific method for forming the integrated anchoring ring 3 in this embodiment is as follows: the weft yarns laterally extend a certain distance from the interweaving point with the selvage of the first fabric layer, and the distance is 2 mm. At a predetermined point, the weft yarns will intertwine with the highly taut individual warp yarns, i.e. forming an integrated anchoring loop; the highly taut individual warp yarns are called hubs 5, see Figures 2 and 3; repeat the above The steps may form multiple integrated anchoring loops.
  • the material of the wire collection can be fiber, yarn or steel wire, and this embodiment is fiber.
  • the weft yarns extend transversely from the point of interlacing with the selvedge of the first fabric layer by a distance of 2 mm to 50 mm.
  • a single cluster 5 will intersect the weft at fixed points along the length of the first fabric layer. These hubs 5 will be used to assist in forming an integrated anchoring loop, and the length of the integrated anchoring loop will ultimately be determined by the position of the anchoring point on the corresponding stent, that is, the final position where the prosthetic valve is attached to the stent.
  • the interfaces between the first, second, and third fabric layers (anchoring rings) form a seamless, integrated valve assembly that can then be anchored to the stent frame in a rapid and repeatable manner .
  • the two longitudinal ends (along the length of the first fabric layer) of the first fabric layer can be connected by any stitching method, such as joint 4 in FIG. 1, the stitching method includes stitching, ultrasonic welding, thermal bonding, etc., the assembly It is formed into a cylindrical shape or similar to a cylindrical shape, as shown in FIG. 1 .
  • the heart valve assembly further includes a secondary valve sealing ring 12, which forms an integral valve structure with the skirt part 1, the leaflet body 2 and the integrated anchoring ring 3 (see Fig. 7 and Figure 8).
  • the fabric is formed by using a shuttle narrow electronic jacquard loom, the fabric is composed of four fabric layers, one base layer (first fabric layer) forming the skirt portion 1, the second fabric layer forming the leaflet body 2, the third fabric layer
  • the fabric layer consists of rings that form the anchoring elements of the stent-anchoring ring 3; the fourth layer forms a sewing ring and/or a side valve sealing ring 12, with interwoven sides and free sides, as shown in Figure 7, in this embodiment,
  • this example uses a double plain weave cross weave pattern, the interlaced side of the fourth Fully woven into the interwoven area, the four fabric layers are seamlessly connected.
  • the shape of the fourth fabric layer is square.
  • the layers are seamlessly interwoven along the length of the fabric at predetermined locations.
  • the function of the secondary valve sealing ring 12 is to make compressive contact with the biological tissue surrounding the valve prosthesis to ensure that paravalvular leakage does not occur during implant positioning and throughout its useful life. Tissue growth into the secondary valve sealing ring 12 may also be promoted, which will further reduce the likelihood of leakage and, over time, increase the anchoring stability of the valve.
  • This embodiment modifies the first fabric layer by cutting it into a specific shape that matches the shape of the stent, see FIG. 7 , while the modified skirt portion 1 still satisfies the engagement with the leaflet body 2 .
  • An artificial valve device comprising the heart valve assembly prepared in embodiment 1 or embodiment 2, and also comprising a stent 13 installed on the heart valve assembly, the stent being a surgical heart valve stent (for thoracotomy) , Self-expanding catheter delivery heart valve stent (for minimally invasive surgery/TAVR) or balloon-expandable catheter heart valve stent (for minimally invasive surgery/TAVR).
  • the heart valve assembly in this embodiment it can be processed by any post-processing techniques such as thermoforming, insert molding, ultrasonic welding, solvent treatment, scouring (cleaning with solvent), etc., to construct the final geometric shape. After completion, it can be fixed with the bracket.
  • the method of fixing the stent on the heart valve assembly depends on the geometry of the stent and the structure of the heart valve assembly, and the fixation between the heart valve assembly and the stent is achieved by the anchoring ring (see Figures 10-12), this implementation
  • the example method of securing the stent 13 to the heart valve assembly is to hook the free ends of the anchoring rings to predetermined anchor points 14 of the stent; position and then remove hub 5, simplifying the connection process.
  • the stent can be aligned and positioned more conveniently, thereby enabling more accurate and simple installation with less subjectivity.
  • the method of securing the stent to the other components will depend on the shape of the stent, the intended application (ie aortic valve, mitral valve, etc.) and the surgical method (ie transcatheter delivery, open heart surgery, etc.).
  • the remaining valve components can be secured in a variety of ways, including but not limited to suturing, welding, selective placement of adhesives, designing "pockets" in the skirt portion to reinforce the anchorage to the stent, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Prostheses (AREA)

Abstract

一种心脏瓣膜组件、人工瓣膜装置和一种心脏瓣膜组件的制备方法。一种心脏瓣膜组件,包括:包括呈管状结构的裙体部分(1),设置于裙体部分(1)内壁上的至少2个小叶体(2),设置于裙体部分(1)外部的若干个集成锚定环(3);集成锚定环(3)一端固定设置于裙体部分(1)外部,一端为自由端;裙体部分(1)、小叶体(2)和集成锚定环(3)构成一体式瓣膜结构。该心脏瓣膜部件通过显著减少将瓣膜部件连接到支架(13)的精确缝合的需要来简化组装过程,可以减少当前缝合技术的不确定性。

Description

一种心脏瓣膜组件及其制备方法 技术领域
本申请涉及医疗器械领域,具体涉及一种心脏瓣膜组件及其制备方法。
背景技术
目前已存在三种类型的心脏瓣膜:1)机械瓣膜,2)生物瓣膜,3)合成高分子瓣膜。
机械瓣膜都是由一个或多个瓣膜组成,这些瓣膜安装在偏心轴上,然后固定在心脏肌肉上的一个安全阀座上。这些机械瓣膜操作可靠性极高,但它们容易引起血流紊乱,增加血栓形成的风险。因此,植入机械瓣膜需要病人终生服用抗凝血药物;而且,由于机械瓣膜的瓣膜组件无法充分压缩到导管中,进而无法通过导管的微创植入方式将其送入到安装位置处,因此,机械瓣膜需要进行侵入性极强的心内植入手术,导致许多老年患者由于具有并发症而不能被使用。
生物瓣膜是由人体器官组织(同种移植物)或动物源性组织(自体移植物)制成的瓣膜修复体。由于这些瓣膜修复体的生物组织一般都能很好地与心脏结合在一起,并具有支持经导管输送的额外好处,因此能够克服机械瓣膜存在的上述缺点,更多地被应用。但是,由于生物瓣膜是由有机组织构成的,因此容易自然衰老和退化,而为了避免出现自然衰老和退化,这些生物组织通常需要经过大量的化学处理,以确保生物相容性,并防止表面钙化。并且,这些生物组织需要被安装在一个座位上才能有效在心脏内固定,这个座位的设置也可能在生物瓣膜内部产生不利的流动条件。
合成聚合物瓣膜,即采用合成材料制作整个瓣膜假体,通常是采用聚氨酯或硅胶成型。这些成型的瓣膜能够有效克服与材料疲劳相关的问题,同时保持自然的血液流动。然而,这些合成聚合物瓣膜随着时间的推移,由于循环应力,在弯曲区域有破裂的危险。近年来三维打印技术的发展虽然进一步增加了这一领域的尝试,即利用各种可打印的聚合物,以越来越精确的方式复制自然心脏瓣膜的形状。但是,到目前为止,由于产品设计和结构材料的限制,这些瓣膜在临床上或商业上几乎没有取得成功。基于循环应力,人们曾多次尝试使用编织技术制作“全纺织品”的心脏假体,但现有技术中公开的全纺织品的心脏假体依然存在弯曲区域过度疲劳导致假体失效或材质和形状并不能满足需求的问题。
当前心脏瓣膜技术的另一个挑战是难以将瓣叶材料连接到支架上,通常是通过手动缝合。此方法需要受过高度训练和熟练的技术人员来完成心脏瓣膜的各种部件(瓣叶、缝合环、副瓣膜密封环等)到支架或框架的连接。由于缝纫技术人员的不同和装配过程的固有主观性,这一过程具有固有的不确定性。
发明内容
因此,为了解决现有技术中的人工心脏瓣膜容易老化,且难以将瓣叶材料连接到支架上,本申请提供一种心脏瓣膜组件、人工瓣膜装置和一种心脏瓣膜组件的制备方法。
根据本发明的一个方面,提供一种心脏瓣膜组件,包括:包括呈管状结构的裙体部分,设置于裙体部分内壁上的至少2个小叶体,设置于裙体部分外部的若干个集成锚定环;所述集成锚定环一端固定设置于裙体部分外部,一端为自由端;所述裙体部分、小叶体和集成锚定环构成一体式瓣膜结构。
进一步地,所述集成锚定环的一端设置于所述裙体部分的边缘,或设置于所述裙体部分外部的宽度方向上的任意位置,或设置于所述裙体部分与所述小 叶体的交织区域。
进一步地,所述裙体部分、集成锚定环、小叶体的材质相同或不相同;所述材质为生物相容性聚合物;所述生物相容性聚合物为UHMWPE(超高分子量聚乙烯)、PET(聚对苯二甲酸乙二酯)、PEEK(聚醚醚酮)、TPU(热塑性聚氨酯弹性体橡胶)、PGA(聚羟基乙酸)、PLGA(聚乳酸-羟基乙酸共聚物)、PLA(聚乳酸)、PLLA’s(聚L-丙交酯)、PDO(聚对二氧环己酮)、PHA’s(聚羟基脂肪酸酯)、PGSU(聚癸二酸丙三醇酯聚氨酯),优选地,所述裙体部分、集成锚定环和小叶体的材质均为超高分子量聚乙烯。
进一步地,所述集成锚定环的长度为2mm到50mm。
所述裙体部分上下两侧的距离为1mm-50mm。
心脏瓣膜组件还包括副瓣密封环,裙体部分、小叶体、集成锚定环和副瓣密封环构成一体式瓣膜结构。
进一步地,裙体部分、集成锚定环和小叶体和副瓣密封环的材质相同或不相同;
进一步地,所述裙体部分的形状为圆柱形或者类似于圆柱形。
根据本发明的一个方面,提供一种人工瓣膜装置,包括上述心脏瓣膜组件,还包括安装在所述心脏瓣膜组件上的支架。
根据本发明的一个方面,提供一种心脏瓣膜组件的制备方法,通过使用有梭窄幅电子提花织机形成织物;所述织物由三层织物层构成,第一织物层形成裙体部分,第二织物层形成小叶体,第三织物层形成环即集成锚定环;这些层在预先确定的位置沿织物的长度方向无缝地交织在一起。
形成第二织物层的方法为:在沿着所述第一织物层的宽度方向的某一点上,使用已知的编织模式中的任意一种将第二织物层完整地织入第一织物层,两个 织物层之间无缝连接。
进一步地,所述有梭窄幅电子提花织机为MEGEBA SSLMV(德语)。
进一步地,形成第二织物层的方法为:在沿着第一织物层的宽度方向的某一点上,使用许多已知的编织模式中的一种将第二织物层完整地织入第一织物层,两个织物层之间无缝连接;所述的已知的编织模式可以为双层平纹组织正交编织模式。
进一步地,集成锚定环形成的具体方法为:纬纱从与第一织物层织边的交错点横向延伸一定距离,该距离为2mm到50mm;在预定的点,纬纱将与高度紧绷的单根经纱交织在一起,形成集成锚定环;所述横向为第一织物层的宽度方向。
进一步地,所述纬纱从与第一织物层织边的交错点横向延伸一定距离,该距离为2mm。
上述一体式瓣膜结构是通过纺织方式的。
进一步地,第一织物层的两个纵向(沿第一织物层长度方向)端部可以通过任意缝合方法连接;所述缝合方法包括缝合、超声焊接、热粘合等,组件形成为圆柱形形状或者类似于圆柱体形状;
所述高度紧绷的单根经纱为集线;集线的作用是辅助形成集成锚定环;将心脏瓣膜固定到支架上时,利用集线将每个锚定环操纵到支架框架上的预定锚定位置,简化了连接过程。
进一步的,所述支架为外科心脏瓣膜支架\自扩式导管传输心脏瓣膜支架或球囊扩张导管心脏瓣膜支架。
进一步地,第2-4织物层的纱线的纤度为5-100旦尼尔。
本申请的技术方案具备以下优点:
1、本申请心脏瓣膜部件通过显著减少将瓣膜部件连接到支架的精确缝合的需要来简化组装过程。还可能减少当前缝合技术的不确定性。
2、本申请的心脏瓣膜组件及其制备方法促进了人工合成材料在外科和经导管心脏瓣膜中的应用。
3、使用本申请的心脏瓣膜部件可以提高使用动物来源组织的心脏瓣膜的寿命。
4、将锚定环无缝地集成到裙体部分外部将有助于简化组装过程并减少制造瓣膜所需的总时间,从而潜在地降低了制造装置的总成本。
5、本申请的心脏瓣膜部件使支架能够更快地放置,更快速地组装到裙部和瓣叶部件上,从而更精确、重复性更高,从而减少了对训练有素的组装技术人员的需求。
6、本申请的心脏瓣膜部件可以容纳任意数量和几何形状的叶片,这些几何形状可以在使用各种组合材料时优化为理想的流动动力学。
7、本申请的制备方法改进之后可以用于制备除心脏瓣膜之外的,其它医疗器械领域所需的生物纺织材料。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1中的心脏瓣膜组件结构示意图;
图2为具有集成锚定环的3层织物层的剖视图;
图3为集线辅助形成集成锚定环示意图;主要目的是显示如何形成锚定环,9为多层织物层,具体可以是第一织物和/或第二织物层和/或第四织物层,不对具体的织物层进行区别。
图4为包括集成锚定环的3层织物;
图5为图4中包括集成的锚定环的3层织物的横截面;8为3层织物层的交织区域;
图6为3层织物(带有集成锚定环),第一织物层与支架轮廓匹配;11为第一织物层的裁剪区域;
图7为实施例2中的四层织物层构成的织物(在图6的基础上集成了副瓣密封环),第一织物层与支架外形相匹配;附图标记12为副瓣密封环;
图8为图7中织物的横截面;8为四层织物层的交织区域;
图9为现有技术典型的外科心脏瓣膜部件;
图10实施例3中的人工瓣膜装置示意图;该图为了说明心脏瓣膜组件作为一个整体与支架组装,有的部件不标记。
图11为图10的A部放大图;
图12为实施例3中的支架;圆圈不是支架上的结构,是为了更清楚显示预定锚定点而添加的;附图标记14为预定锚定点;
上述附图中的“井”状表示纺织物;
附图标记说明:
1、裙体部分;2、小叶体;3、集成锚定环;4、连接处;5、集线;6、纬 纱;7、经纱;8、2层织物层或者多层织物层的交织区域;9、多层织物层、10小叶体与裙体部分连接区域;11、裁剪区域;12、副瓣密封环;13、支架;14、预定锚定点。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1、一种心脏瓣膜组件
一种心脏瓣膜组件,如图1所示,包括呈管状结构的裙体部分1,以及连 接在裙体部分1的内壁上的至少2个小叶体2;设置于裙体部分1外部的若干个集成锚定环3;裙体部分1、小叶体2和集成锚定环3构成一体式瓣膜结构。
所述裙体部分1的上下两侧具有织边;所述小叶体2的相对两侧分别为交织侧和自由侧,所述交织侧通过编织方法固定在裙体部分1的两个织边之间,所述自由侧为织边。所述集成锚定环3的相对两侧分别为交织侧和自由侧,所述交织侧通过编织方法固定在裙体部分1外部的两个织边之间。
本实施例小叶体2的数量设置为3个。
裙体部分1为瓣膜小叶提供了一个安全的锚定点,防止瓣膜周围的心脏组织生长到瓣膜的内部并干扰小叶的功能,同时也能防止瓣周漏。
集成锚定环3的作用是将瓣膜组件锚固到支架上。
本实施例中裙体部分1、小叶体2和集成锚定环3的材质均为生物相容性聚合物UHMWPE。
所述心脏瓣膜组件的制备方法(参考图1-6)为:
1)通过使用有梭窄幅电子提花织机(MEGEBA SSLMV)形成织物。所述织物由三层织物层构成,一层基础层(第一织物层)形成裙体部分1,第二织物层形成小叶体2,第三织物层形成支架锚固元件的环即锚定环3。这些层在预先确定的位置沿织物的长度无缝地交织在一起。
合成的小叶体2连接到所述织物基层(第一织物层),形成第一织物层过程中,沿第一织物层的两个边缘,纬纱在不被切断的前提下而通过,形成织边。
该第一织物层的宽度为1mm-50mm,取决于形成裙体部分连接处的长度(小叶体2与第一织物层连接区域的长度);第一织物层所用纱线的纤度为5-100旦尼尔,取决于第一织物层所需的厚度和密度。本实施例第一织物层的宽度为 50mm,第一织物层所用纱线的纤度为100旦尼尔。
2)在沿着第一织物层的宽度方向的某一点上,使用许多已知的编织模式中的一种,本实施例使用的是双层平纹组织正交编织模式,将第二织物层完整地织入第一织物层,两个织物层之间无缝连接。
第二织物层将形成合成小叶体2(瓣膜小叶),小叶体2是通过经纱和纬线交织而形成的。
在沿第一织物层长度方向的某些点上,第二织物层与第一织物层整体连接,形成附着点。这些点可以在编织过程中进行改变,以创建任意数量的几何图形,从而实现瓣膜瓣叶的最佳性能,本实施例中该图形为直线形,见图4和图6。
本实施例的第一织物层和第二织物层的形状见图4,即第一织物层为长方形;作为一种可替代的实施例方式,可以通过切割成与支架形状相匹配的特定形状来修改第一织物层,见图6,同时修改后的裙体部分1仍能满足和小叶体2的接合。
3)在第一织物层和第二织物层的基础上,在结构上增加了第三织物层,第三织物层为利用纬纱形成的集成锚定环3;这些纬纱环可以沿着第一织物层的一个织边与第一织物层和第二织物层交织区域交织,或,这些纬纱环可以沿着第一织物层的一个织边与第一织物层交织。也可以在沿第一织物层宽度方向上的不同点处交错编织。这种纬线将从与第一织物层和/或第二织物层交织的交点横向(本文所指的横向为第一织物层宽度方向)延伸到预定长度,这些环可以锚定在支架表面的锚定点上。
本实施例中集成锚定环3形成的具体方法为:纬纱从与第一织物层织边的交织点横向延伸一定距离,该距离为2mm。在预定的点,纬纱将与高度紧绷的单根经纱交织在一起,即形成一个集成锚定环;将高度紧绷的单根经纱称为集线5,见图2和图3;重复上述步骤可以形成多个集成锚定环。集线的材质可以 为纤维、纱线或钢丝,本实施例为纤维。
作为一种可替代的实施方式,纬纱从与第一织物层织边的交织点横向延伸的距离为2mm到50mm。
一个单独的集线5将沿着第一织物层的长度方向与纬线在固定点相交。这些集线5将被用来辅助形成集成锚定环,集成锚定环长度最终将由相应支架上的锚定点位置决定,也就是人工瓣膜附着在支架上的最终位置。
第一层、第二层和第三层织物层(锚定环)之间的界面形成无缝的、集成的瓣膜组件,该瓣膜组件可随后以快速和可重复的方式锚定到支架框架上。
4)在完成所需数量的瓣膜、瓣叶和锚定环的织造之后,将织造结构从织机上取下,同时在集线5上保持足够的张力,以确保集成锚定环3被支撑和保持。第一织物层的两个纵向(沿第一织物层长度方向)端部可以通过任意缝合方法连接,如图1中连接处4,所述缝合方法包括缝合、超声焊接、热粘合等,组件形成为圆柱形形状或者类似于圆柱体形状,如图1。
实施例2
与实施例1的区别在于:心脏瓣膜组件还包括副瓣密封环12,所述副瓣密封环12与裙体部分1、小叶体2和集成锚定环3通过构成一体式瓣膜结构(见图7和图8)。通过使用有梭窄幅电子提花织机形成织物,所述织物由四层织物层构成,一层基础层(第一织物层)形成裙体部分1,第二织物层形成小叶体2,第三织物层由形成支架锚固元件的环-锚定环3组成;第四层形成一个缝纫环/或副瓣密封环12,具有交织侧和自由侧,如图7所示,在本实施例中,沿着第一织物层和第二织物层的交织区域,使用许多已知的编织模式中的一种,本实施例使用的是双层平纹组织正交编织模式,将第四织物层的交织侧完整地织入所述交织区域,四个织物层之间无缝连接。所述第四织物层的形状为正方形。这些层在预先确定的位置沿织物的长度无缝地交织在一起。副瓣密封环12的作 用是与瓣膜假体周围的生物组织进行挤压接触,以确保在植入物定位和整个使用寿命期间,不发生瓣周漏。还可以促进组织生长到副瓣密封环12中,这将进一步减少泄漏的可能性,随着时间的推移,增加瓣膜的锚定稳定性。
本实施例通过切割成与支架形状相匹配的特定形状来修改第一织物层,见图7,同时修改后的裙体部分1仍能满足和小叶体2的接合。
实施例3
一种人工瓣膜装置,包括实施例1或实施例2制备得到的心脏瓣膜组件,还包括安装在所述心脏瓣膜组件上的支架13,所述支架为外科心脏瓣膜支架(用于开胸手术)、自扩式导管传输心脏瓣膜支架(用于微创手术/TAVR)或球囊扩张导管心脏瓣膜支架(用于微创手术/TAVR)。本实施例中的心脏瓣膜组件制备好后,可以经过热成型、嵌入成型、超声波焊接、溶剂处理、煮练(用溶剂清洗)等任意后处理技术进行处理,用于构建最终的几何形状,构建完成后与支架进行固定即可。将支架固定在心脏瓣膜组件上的方法取决于支架的几何形状和心脏瓣膜组件的结构,而心脏瓣膜组件与支架之间进行的固定通过锚定环实现(见图10-图12),本实施例中将支架13固定在心脏瓣膜组件上的方法为将锚定环的自由端挂到支架的预定锚定点14;并且利用集线将每个集成锚定环操纵到支架框架上的预定锚定位置,然后将集线5去除,简化了连接过程。
采用本申请中提供的心脏瓣膜组件,使支架更加方便的对齐和定位,进而能使安装能够更准确、简便,主观性更低。
一旦心脏瓣膜组件被锚定到支架上,将支架固定到其它部件上的方法将取决于支架的形状、预期应用(即主动脉瓣、二尖瓣等)和手术方法(即经导管输送、开心手术等)。可以采用多种方法来固定其余的瓣膜部件,包括但不限于缝合、焊接、粘合剂的选择放置、在裙体部分设计“口袋”来加固与支架的锚定等。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的 限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请的保护范围之中。

Claims (10)

  1. 一种心脏瓣膜组件,其特征在于,包括:包括呈管状结构的裙体部分,设置于裙体部分内壁上的至少2个小叶体,设置于裙体部分外部的若干个集成锚定环;所述集成锚定环一端固定设置于裙体部分外部,一端为自由端;所述裙体部分、小叶体和集成锚定环构成一体式瓣膜结构。
  2. 根据权利要求1所述的心脏瓣膜组件,其特征在于,所述集成锚定环的一端设置于所述裙体部分的边缘,或设置于所述裙体部分外部的宽度方向上的任意位置,或设置于所述裙体部分与所述小叶体的交织区域。
  3. 根据权利要求1或2所述的心脏瓣膜组件,其特征在于,所述裙体部分、集成锚定环、小叶体的材质相同或不相同;所述材质为生物相容性聚合物;优选的,所述生物相容性聚合物为超高分子量聚乙烯、聚对苯二甲酸乙二酯、聚醚醚酮、热塑性聚氨酯弹性体橡胶、聚羟基乙酸、聚乳酸-羟基乙酸共聚物、聚乳酸、聚L-丙交酯、聚对二氧环己酮、聚羟基脂肪酸酯、聚癸二酸丙三醇酯聚氨酯中的一种或多种;更优选地,裙体部分、集成锚定环和小叶体的材质均为超高分子量聚乙烯。
  4. 根据权利要求1或2所述的心脏瓣膜组件,其特征在于,所述集成锚定环的长度为2mm到50mm;优选的,所述裙体部分上下两侧的距离为1mm-50mm。
  5. 根据权利要求1-4中任一项所述的心脏瓣膜组件,心脏瓣膜组件还包括副瓣密封环,裙体部分、小叶体、集成锚定环和副瓣密封环构成一体式瓣膜结构。
  6. 一种心脏瓣膜组件的制备方法,其特征在于,通过使用有梭窄幅电子提花织机形成织物;所述织物由三层织物层构成,第一织物层形成裙体部分,第二织物层形成小叶体,第三织物层形成环即集成锚定环;这些层在预先确定的 位置沿织物的长度方向无缝地交织在一起。
  7. 根据权利要求6所述心脏瓣膜组件的制备方法,其特征在于,形成第二织物层的方法为:在沿着所述第一织物层的宽度方向的某一点上,使用已知的编织模式中的任意一种将第二织物层完整地织入第一织物层,两个织物层之间无缝连接。
  8. 根据权利要求6或7所述心脏瓣膜组件的制备方法,其特征在于,集成锚定环形成的具体方法为:纬纱从与所述第一织物层织边的交织点横向延伸一定距离,该距离为2mm到50mm;在预定的点,纬纱将与高度紧绷的单根经纱交织在一起,形成集成锚定环;所述横向为第一织物层的宽度方向。
  9. 根据权利要求8所述心脏瓣膜组件的制备方法,其特征在于,所述纬纱从与第一织物层织边的交织点横向延伸一定距离,该距离为2mm。
  10. 一种人工瓣膜装置,其特征在于,包括权利要求1-5中任一项中的心脏瓣膜组件或权利要求6-9中任一项制备方法制备得到的心脏瓣膜组件,还包括安装在所述心脏瓣膜组件上的支架。
PCT/CN2021/111111 2020-08-07 2021-08-06 一种心脏瓣膜组件及其制备方法 WO2022028564A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/020,100 US20230263625A1 (en) 2020-08-07 2021-08-06 Heart valve assembly and preparation method therefor
EP21853961.7A EP4193964A4 (en) 2020-08-07 2021-08-06 HEART VALVE ARRANGEMENT AND PRODUCTION METHOD THEREOF
JP2023508056A JP7504516B2 (ja) 2020-08-07 2021-08-06 心臓弁アセンブリ及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010790457.2 2020-08-07
CN202010790457.2A CN114052988A (zh) 2020-08-07 2020-08-07 一种心脏瓣膜组件及其制备方法

Publications (1)

Publication Number Publication Date
WO2022028564A1 true WO2022028564A1 (zh) 2022-02-10

Family

ID=80117073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111111 WO2022028564A1 (zh) 2020-08-07 2021-08-06 一种心脏瓣膜组件及其制备方法

Country Status (5)

Country Link
US (1) US20230263625A1 (zh)
EP (1) EP4193964A4 (zh)
JP (1) JP7504516B2 (zh)
CN (1) CN114052988A (zh)
WO (1) WO2022028564A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020660A1 (en) * 2008-08-19 2010-02-25 Dsm Ip Assets B.V. Implantable valve prosthesis and method for manufacturing such a valve
CN105581858A (zh) * 2015-12-15 2016-05-18 先健科技(深圳)有限公司 人工心脏瓣膜支架及人工心脏瓣膜
CN107427355A (zh) * 2015-02-02 2017-12-01 赛姆斯股份公司 支架密封件及其制备方法
CN108992207A (zh) * 2015-11-06 2018-12-14 麦克尔有限公司 二尖瓣假体
CN110090094A (zh) * 2014-05-06 2019-08-06 帝斯曼知识产权资产管理有限公司 人工瓣膜和制造人工瓣膜的方法
CN111195166A (zh) * 2020-01-14 2020-05-26 启晨(上海)医疗器械有限公司 一种可编织的心脏瓣膜装置及其制作方法、使用方法
CN212940074U (zh) * 2020-08-07 2021-04-13 山前(珠海)生物材料科技有限公司 一种心脏瓣膜组件及心脏瓣膜装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014895B1 (en) 1996-12-10 2006-03-08 Purdue Research Foundation Artificial vascular valves
US8795357B2 (en) * 2011-07-15 2014-08-05 Edwards Lifesciences Corporation Perivalvular sealing for transcatheter heart valve
CN103006352B (zh) * 2012-12-24 2015-05-13 杭州启明医疗器械有限公司 一种假体瓣膜及假体瓣膜装置
KR20170002408A (ko) 2014-05-06 2017-01-06 디에스엠 아이피 어셋츠 비.브이. 인공 판막의 제조 방법 및 그 방법에 의해 얻어진 판막
CN108245281A (zh) * 2016-12-28 2018-07-06 上海微创心通医疗科技有限公司 瓣膜假体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020660A1 (en) * 2008-08-19 2010-02-25 Dsm Ip Assets B.V. Implantable valve prosthesis and method for manufacturing such a valve
CN110090094A (zh) * 2014-05-06 2019-08-06 帝斯曼知识产权资产管理有限公司 人工瓣膜和制造人工瓣膜的方法
CN107427355A (zh) * 2015-02-02 2017-12-01 赛姆斯股份公司 支架密封件及其制备方法
CN108992207A (zh) * 2015-11-06 2018-12-14 麦克尔有限公司 二尖瓣假体
CN105581858A (zh) * 2015-12-15 2016-05-18 先健科技(深圳)有限公司 人工心脏瓣膜支架及人工心脏瓣膜
CN111195166A (zh) * 2020-01-14 2020-05-26 启晨(上海)医疗器械有限公司 一种可编织的心脏瓣膜装置及其制作方法、使用方法
CN212940074U (zh) * 2020-08-07 2021-04-13 山前(珠海)生物材料科技有限公司 一种心脏瓣膜组件及心脏瓣膜装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4193964A4 *

Also Published As

Publication number Publication date
US20230263625A1 (en) 2023-08-24
EP4193964A4 (en) 2024-01-24
JP2023537029A (ja) 2023-08-30
EP4193964A1 (en) 2023-06-14
JP7504516B2 (ja) 2024-06-24
CN114052988A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
US11266498B2 (en) Method of making a prosthetic valve and valve obtained therewith
US10524902B2 (en) Prosthetic valve and method of making a prosthetic valve
US10583003B2 (en) Method of making a prosthetic valve and valve obtained therewith
CN212940074U (zh) 一种心脏瓣膜组件及心脏瓣膜装置
CN113226222A (zh) 医疗器械用纤维材料
EP3139863B1 (en) Prosthetic valve and method for making same
WO2021209046A1 (zh) 一种心脏瓣膜假体及其构成的人工瓣膜和制备方法
CN212913479U (zh) 一种心脏瓣膜假体及其构成的人工瓣膜
WO2022028564A1 (zh) 一种心脏瓣膜组件及其制备方法
CN110090094B (zh) 人工瓣膜和制造人工瓣膜的方法
CN217409070U (zh) 可植入医疗装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853961

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508056

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021853961

Country of ref document: EP

Effective date: 20230307