WO2022028499A1 - 传输控制信令的方法和装置 - Google Patents

传输控制信令的方法和装置 Download PDF

Info

Publication number
WO2022028499A1
WO2022028499A1 PCT/CN2021/110712 CN2021110712W WO2022028499A1 WO 2022028499 A1 WO2022028499 A1 WO 2022028499A1 CN 2021110712 W CN2021110712 W CN 2021110712W WO 2022028499 A1 WO2022028499 A1 WO 2022028499A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
transmission mode
bandwidth part
bandwidth
multicast
Prior art date
Application number
PCT/CN2021/110712
Other languages
English (en)
French (fr)
Inventor
刘南南
张向东
常俊仁
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022028499A1 publication Critical patent/WO2022028499A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and apparatus for transmitting control signaling.
  • Multimedia broadcast multicast services can effectively utilize communication resources, which in communication
  • the network provides a point-to-multipoint service in which a data source sends data to multiple users, realizes resource sharing, and improves resource utilization, especially air interface resources.
  • information can be broadcast to all users or sent to a group of paid subscribers for viewing, which can help operators develop multimedia advertisements, free and premium TV channels, and MMS group sending.
  • BWP Bandwidth part
  • NR new radio
  • BWP and transmission mode have a corresponding relationship.
  • different multicasts can be respectively transmitted on their corresponding BWPs, or unicast and multicast can also be transmitted on corresponding BWPs respectively.
  • only the data or signaling corresponding to the transmission mode can be transmitted on the BWP corresponding to one transmission mode, and the communication efficiency is low.
  • the present application provides a method and apparatus for transmitting control signaling, which can help improve transmission efficiency.
  • a first aspect provides a method for transmitting control signaling, the method comprising: receiving control signaling from a second device, the control signaling including first information, and the first information is used to indicate a first transmission mode, the scrambling information of the control signaling corresponds to the second transmission mode.
  • the first device receives control signaling including first information from the second device, where the first information is used to indicate the first transmission mode, and the scrambling information of the control signaling corresponds to the second transmission mode.
  • the first transmission mode is indicated by the control signaling corresponding to the second transmission mode, which helps to improve communication efficiency. It is avoided that the terminal cannot receive the control signaling indicating the first transmission mode and/or the target first bandwidth portion corresponding to the first transmission mode sent by the network device, and it is also avoided that the terminal cannot know the first transmission mode and/or the first transmission mode.
  • the transmission situation of the target first bandwidth part corresponding to the mode may miss the reception of data or increase the delay of data reception, thereby helping to reduce the transmission delay.
  • the terminal may perform any one or more of the following: BWP switching (for example, switching to the target first bandwidth portion corresponding to the first transmission mode), activating the target first bandwidth portion corresponding to the first transmission mode, and further.
  • BWP switching for example, switching to the target first bandwidth portion corresponding to the first transmission mode
  • activating the target first bandwidth portion corresponding to the first transmission mode and further.
  • Receive data corresponding to the first transmission mode for example, data scheduled by the first control signaling
  • the network device separately sends the control signaling indicating the target first bandwidth portion corresponding to the first transmission mode to the terminal.
  • the terminal receives the control signaling that is sent by the network device and indicates the target first bandwidth part corresponding to the first transmission mode. It is also avoided that the terminal always searches for the control signaling scrambled by the scrambling information corresponding to the first transmission mode, which is beneficial to the energy saving of the terminal. It also prevents the terminal from always working on multiple BWPs to receive control signaling corresponding to different transmission modes, which is beneficial for the terminal to save energy. It also helps that the first device can flexibly select an appropriate transmission mode from the first transmission mode or the second transmission mode for communication. In addition, the first device can flexibly communicate in the first transmission mode and/or communicate in the second transmission mode, which improves the flexibility of communication.
  • the embodiment of the present application avoids that the terminal cannot receive the control signaling sent by the network device indicating the first transmission mode and/or the target first bandwidth part corresponding to the first transmission mode and misses the reception of data, and also prevents the terminal from being unable to receive data.
  • the first transmission mode and/or the transmission situation of the target first bandwidth portion corresponding to the first transmission mode is known, and data reception is missed, thereby helping to improve the reliability of data transmission.
  • the method further includes: determining, according to the control signaling, to communicate with the second device on a bandwidth portion corresponding to the first transmission mode and/or to communicate with the second device on the bandwidth portion corresponding to the first transmission mode. communicate with the second device on the bandwidth portion corresponding to the transmission mode.
  • the first device determines, according to the control signaling, to communicate with the second device on the bandwidth portion corresponding to the first transmission mode and/or to communicate with the second device on the bandwidth portion corresponding to the second transmission mode. communication. That is, the first device can flexibly communicate in the first transmission mode or communicate in the second transmission mode, so that communication efficiency can be improved.
  • the first information includes second identification information and/or a preset field
  • the second identification information is used to schedule transmission corresponding to the first transmission mode
  • the preset field is the same as the The first transmission mode is associated.
  • the content indicated by the first information may be implemented through the second identification information or a preset field, that is, an implementation manner of indicating the first transmission mode is provided, thereby improving the flexibility of indicating the first transmission mode.
  • the first information includes a bandwidth part BWP field, where the BWP field is used to indicate the first transmission mode.
  • the content indicated by the first information may also be implemented through the BWP field, that is, another implementation manner of indicating the first transmission mode is provided, thereby improving the flexibility of indicating the first transmission mode.
  • control signaling further includes indication information, where the indication information is used to indicate the target first bandwidth portion corresponding to the first transmission mode.
  • control signaling may also indicate the bandwidth part corresponding to the first transmission mode, so that the first device can determine the bandwidth part corresponding to the first transmission mode, and further can be used in the first transmission mode.
  • the communication is performed on the corresponding bandwidth portion, so that signaling overhead is saved compared to indicating the bandwidth portion corresponding to the first transmission mode through independent signaling.
  • the indication information includes C bits
  • the method further includes: determining the target first bandwidth portion according to the values of some bits in the C bits; or The target first bandwidth portion is determined according to the values of the C bits.
  • the first device may indicate the bandwidth part according to the value of some or all of the C bits. That is to say, different values of the bits can indicate different bandwidth parts, so that the bandwidth part can be indicated by the values of the bits, that is, an implementation manner of indicating the bandwidth part is provided.
  • the index of the target first bandwidth part is the difference between the value of the C bits and the number of the second bandwidth part, and the second bandwidth part is related to the second transmission mode joint;
  • the index of the target first bandwidth part is the difference between the value of the C bits and the number of the second bandwidth part+a, the second bandwidth part is associated with the second transmission mode, and a is an integer; or
  • the index of the target first bandwidth part is the value of the C bits
  • the index of the target first bandwidth part is the value of the C bits +b, where b is an integer;
  • the index of the target first bandwidth part is the difference between the value of the C bits and R, and R is the maximum value of the bits determined according to the number of the second bandwidth part;
  • the index of the target first bandwidth part is the difference between the value of the C bits and R+c, where R is the maximum value of the bits determined according to the number of the second bandwidth part, and c is an integer.
  • the target first bandwidth portion may be represented by an index.
  • the representation of the index can be associated with the starting value of the index. In this way, the index of the bandwidth portion is indicated by the value of the bit, and the first bandwidth portion is indicated by the index, thereby reducing the resource occupation of the indicated bandwidth portion.
  • the method further includes: determining the number of the C bits according to the number of the first bandwidth portion, the first bandwidth portion being associated with the first transmission mode ; Or, determine the number of the C bits according to the number of the first bandwidth part and the number of the second bandwidth part, the first bandwidth part is associated with the first transmission mode, the second bandwidth The portion is associated with the second transmission mode.
  • the first device may determine the number of bits occupied by the indication information indicating the first bandwidth part according to the number of the first bandwidth part, or the number of the first bandwidth part and the second bandwidth part. That is to say, the size of the bits occupied by the indication information indicating the first bandwidth part can be flexibly controlled, thereby avoiding resource waste and improving resource utilization.
  • the determining the number of C bits according to the number of the first bandwidth part and the number of the second bandwidth part includes: according to the number of the first bandwidth part and the second bandwidth part The sum of the number of bandwidth parts determines the number of the C bits; or according to the sum of the number of the first bits and the number of the second bits, the number of the C bits is determined, so The number of the first bits is determined according to the number of the first bandwidth parts, and the number of the second bits is determined according to the number of the second bandwidth parts.
  • the number of the C bits is determined by the sum of the number of the first bandwidth part and the number of the second bandwidth part, that is, the first bandwidth part and the second bandwidth part are indicated by the same indication information. In this way, the number of bits occupied by the first indication information and the second indication information can be reduced relative to indicating the first bandwidth part and the second bandwidth part respectively.
  • the second transmission mode is unicast, and the first transmission mode is multicast.
  • the second transmission mode is a first multicast
  • the first transmission mode is a second multicast
  • the second transmission mode is multicast, and the first transmission mode is unicast.
  • a second aspect provides a method for transmitting control signaling, the method comprising: sending control signaling to a first device, the control signaling including first information, where the first information is used to indicate a first transmission mode , the scrambling information of the control signaling corresponds to the second transmission mode.
  • the second device sends control signaling including first information to the first device, where the first information is used to indicate the first transmission mode, and the scrambling information of the control signaling corresponds to the second transmission mode.
  • the first transmission mode is indicated by the control signaling corresponding to the second transmission mode, which helps the first device to flexibly communicate in the first transmission mode or communicate in the second transmission mode, thereby helping to improve communication efficiency.
  • the first information includes second identification information and/or a preset field
  • the second identification information is used to schedule transmission corresponding to the first transmission mode
  • the preset field is the same as the The first transmission mode is associated.
  • the first information includes second identification information and/or a preset field
  • the network device sends control signaling including the first information, so that the first device determines the bandwidth portion corresponding to the first transmission mode according to the control signaling communicate with the second device over a bandwidth portion corresponding to the second transmission mode and/or communicate with the second device over a portion of the bandwidth corresponding to the second transmission mode. That is to say, this helps the first device to flexibly communicate in the first transmission mode or communicate in the second transmission mode, so that communication efficiency can be improved.
  • the first information includes a bandwidth part BWP field, where the BWP field is used to indicate the first transmission mode.
  • the content indicated by the first information may be implemented through the second identification information or a preset field, that is, an implementation manner of indicating the first transmission mode is provided, thereby improving the flexibility of indicating the first transmission mode.
  • control signaling further includes indication information, where the indication information is used to indicate the target first bandwidth part for transmission in the first transmission mode.
  • control signaling may also indicate the bandwidth part corresponding to the first transmission mode, so that the first device can communicate on the bandwidth part corresponding to the first transmission mode, which is relatively Independent signaling indicates the bandwidth portion corresponding to the first transmission mode, which saves signaling overhead.
  • control signaling includes C bits, and values of some of the C bits are used to determine the target first bandwidth portion, or the C bits The value of the bit is used to determine the first bandwidth portion.
  • control signaling may also indicate the bandwidth part corresponding to the first transmission mode, so that the first device can communicate on the bandwidth part corresponding to the first transmission mode, which is relatively Independent signaling indicates the bandwidth portion corresponding to the first transmission mode, which saves signaling overhead.
  • the index of the target first bandwidth part is the difference between the value of the C bits and the number of the second bandwidth part, and the second bandwidth part is related to the second transmission mode joint;
  • the index of the target first bandwidth part is the difference between the value of the C bits and the number of the second bandwidth part+a, the second bandwidth part is associated with the second transmission mode, and a is an integer; or
  • the index of the target first bandwidth part is the value of the C bits
  • the index of the target first bandwidth part is the value of the C bits +b, where b is an integer;
  • the index of the target first bandwidth part is the difference between the value of the C bits and R, and R is the maximum value of the bits determined according to the number of the second bandwidth part;
  • the index of the target first bandwidth part is the difference between the value of the C bits and R+c, where R is the maximum value of the bits determined according to the number of the second bandwidth part, and c is an integer.
  • the target first bandwidth portion may be represented by an index.
  • the representation of the index can be associated with the starting value of the index. In this way, the index of the bandwidth portion is indicated by the value of the bit, and the first bandwidth portion is indicated by the index, thereby reducing the resource occupation of the indicated bandwidth portion.
  • the second transmission mode is unicast, and the first transmission mode is multicast.
  • the second transmission mode is a first multicast
  • the first transmission mode is a second multicast
  • the second transmission mode is multicast, and the first transmission mode is unicast.
  • a third aspect provides a method for transmitting control signaling, the method comprising:
  • Receive control signaling on the first bandwidth portion where the control signaling is used to schedule data to be transmitted on the second bandwidth portion, the first transmission mode corresponding to the first bandwidth portion and the second bandwidth portion
  • the second transmission mode is different.
  • the terminal may receive control signaling on the second bandwidth portion for scheduling data for transmission on the second bandwidth portion or for scheduling resources on the second bandwidth portion.
  • the control signaling can also be used to schedule data to be transmitted on the first bandwidth part or to schedule resources on the first bandwidth part, which helps the terminal to be able to schedule data on the first bandwidth part by receiving the scheduling on the second bandwidth part Control signaling for data transmission on the part, which helps the terminal to switch from the second bandwidth part to the first bandwidth part for data transmission, and avoids switching to other bandwidth parts to obtain the control signaling corresponding to other bandwidth parts. , thereby improving the efficiency of data transmission.
  • the method further includes transmitting the second data on the second bandwidth portion.
  • the terminal can receive the control signaling for scheduling data transmission on the first bandwidth part on the second bandwidth part, thereby helping the terminal to switch from the second bandwidth part to the first bandwidth part for data transmission, avoiding switching to the first bandwidth part.
  • Control signaling corresponding to other bandwidth parts can be obtained only on other bandwidth parts, thereby improving the efficiency of data transmission.
  • the first transmission mode is unicast, and the second transmission mode is multicast.
  • the first transmission mode is a first multicast
  • the second transmission mode is a second multicast
  • the first transmission mode is multicast, and the second transmission mode is unicast.
  • an apparatus in a fourth aspect, is provided, and the apparatus may be a first device or a chip in the first device.
  • the apparatus has the function of implementing the above-mentioned first aspect or the third aspect, and various possible implementation manners. This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device includes: a transceiver module, where the transceiver module includes a receiving module and a sending module.
  • the apparatus further includes a processing module, and the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter, and the receiving module and the transmitting module may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the apparatus further includes a storage module, which may be, for example, a memory. When included, the memory module is used to store the instructions.
  • the processing module is connected to the storage module, and the processing module can execute the instructions stored in the storage module or other instructions, so that the apparatus can perform the above-mentioned first aspect or the third aspect, and the communication of various possible implementation manners method.
  • the device may be the first device.
  • the chip when the device is a chip, the chip includes: a receiving module and a sending module, optionally, the device further includes a processing module, and the receiving module and the sending module can be, for example, inputs on the chip /Output interface, pin or circuit, etc.
  • the processing module may be, for example, a processor.
  • the processing module can execute instructions to cause the chip in the first device to execute the above-mentioned first aspect or the third aspect, and any possible communication method.
  • the processing module may execute instructions in a storage module, and the storage module may be an in-chip storage module, such as a register, a cache, and the like.
  • the memory module can also be located in the communication device, but located outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM), etc.
  • the processor mentioned in any of the above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more of the above
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • an apparatus for determining transmission resources may be a second device or a chip in the second device.
  • the device has the function of implementing the above-mentioned second aspect and various possible implementation manners. This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device includes: a transceiver module, where the transceiver module includes a receiving module and a sending module.
  • the apparatus further includes a processing module.
  • the receiving module and the sending module may be, for example, at least one of a transceiver, a receiver, and a transmitter, and the transceiver module may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the apparatus further includes a storage module, which may be, for example, a memory.
  • a storage module which may be, for example, a memory.
  • the memory module is used to store the instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or instructions derived from other instructions, so that the apparatus executes the method of the second aspect or any one thereof.
  • the chip when the device is a chip, the chip includes: a receiving module and a sending module, and optionally, the chip further includes a processing module.
  • the receiving module and the sending module can be, for example, input/output interfaces, pins or circuits on the chip.
  • the processing module may be, for example, a processor.
  • the processing module can execute instructions to cause the chip in the second device to execute the above-mentioned second aspect and any possible communication method.
  • the processing module may execute instructions in a storage module
  • the storage module may be an in-chip storage module, such as a register, a cache, and the like.
  • the memory module can also be located in the communication device, but located outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM), etc.
  • the processor mentioned in any one of the above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more of the above A second aspect, and an integrated circuit for program execution of any possible implementation of the communication method.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a computer storage medium is provided, and program codes are stored in the computer storage medium, and the program codes are used to instruct instructions for executing the methods in the above-mentioned first aspect or the third aspect and any possible implementations thereof. .
  • a computer storage medium is provided, and program codes are stored in the computer storage medium, and the program codes are used to instruct instructions for executing the methods in the second aspect and any possible implementations thereof.
  • a computer program product comprising instructions, which, when run on a computer, cause the computer to execute the method of the first aspect or the third aspect, or any possible implementations thereof.
  • a computer program product comprising instructions, which, when run on a computer, cause the computer to execute the method of the second aspect above, or any possible implementations thereof.
  • a communication system in a tenth aspect, includes a device having functions for implementing the methods and various possible designs of the above-mentioned first aspect, and the above-mentioned device having the functions of implementing the methods and various possible designs of the above-mentioned second aspect. functional device.
  • a chip including a processor and an interface, where the processor is configured to read an instruction to execute the method in the first aspect or the third aspect, or any possible implementation manner thereof.
  • a chip including a processor and an interface, where the processor is configured to read an instruction to execute the method of the second aspect or any possible implementation manner thereof.
  • the first device receives control signaling including first information from the second device, where the first information is used to indicate the first transmission mode, and the scrambling information of the control signaling corresponds to the second transmission mode.
  • the second device indicates the first transmission mode through the control signaling corresponding to the second transmission mode, so that the first device can flexibly communicate in the first transmission mode and/or communicate in the second transmission mode, thereby helping to improve communication efficiency .
  • FIG. 1 is a schematic diagram of a possible communication system to which this application is applicable;
  • FIG. 2 is a schematic flowchart of a method for transmitting control signaling according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for transmitting control signaling according to another embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for message transmission according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of an apparatus for transmitting control signaling according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an apparatus for transmitting control signaling according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of an apparatus for transmitting control signaling according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an apparatus for transmitting control signaling according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an apparatus for transmitting control signaling according to another specific embodiment of the present application.
  • FIG. 10 is a schematic diagram of an apparatus for transmitting control signaling according to another specific embodiment of the present application.
  • FIG. 11 is a schematic diagram of an apparatus for transmitting control signaling according to another specific embodiment of the present application.
  • FIG. 12 is a schematic diagram of an apparatus for transmitting control signaling according to another specific embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5th generation new radio
  • NR new radio
  • Multimedia Broadcast Multicast Service (MBMS), Single cell point to multipoint (SC-PTM), multicast broadcast Services (Multicast and Broadcast Services, or, Multicast/Broadcast Services, or, Multicast-Broadcast Services, MBS), Multimedia Broadcast Multicast Service Single Frequency Network (Multimedia Broadcast multicast service Single Frequency Network, MBSFN), dual-channel intelligent unicast ( Dual-channel intelligent unicast, DC-IU), broadcast (Broadcast), multicast (Multicast), broadcast multicast (Multicast Broadcast), multicast (Groupcast), vehicle networking (vehicle to everything, V2X), public safety (public safety), mission critical, IPv4/IPv6 multicast transparent transmission (transparent IPv4/IPv6 multicast delivery), IPTV, software delivery over wireless, group communications, Internet of Things ( Internet of things, IoT), TV Video, TV, linear TV, Live, radio services, etc.
  • Internet of Things Internet of things, IoT
  • TV Video TV, linear TV, Live, radio services, etc.
  • the terminal in this embodiment of the present application may refer to a device with a wireless transceiver function, which may be referred to as a terminal device (terminal), a user equipment (UE), a mobile station (mobile station, MS), or a mobile terminal device (mobile terminal). terminal, MT), vehicle terminal equipment, remote station, remote terminal equipment, etc.
  • the specific form of the terminal device can be a mobile phone (mobile phone), a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wearable device tablet computer (pad), a desktop computer, a notebook computer, an all-in-one computer, a car Terminal equipment, wireless local loop (wireless local loop, WLL) station, personal digital assistant (personal digital assistant, PDA), etc.
  • Terminal equipment can be applied to the following scenarios: virtual reality (VR), augmented reality (AR), industrial control (industrial control), unmanned driving (self driving), remote medical surgery (remote medical surgery), intelligent Power grid (smart grid), transportation safety (transportation safety), smart city (smart city), smart home (smart home), etc.
  • Terminal devices can be stationary or mobile. It should be noted that the terminal device may support at least one wireless communication technology, such as LTE, NR, wideband code division multiple access (WCDMA), and the like.
  • the network device in this embodiment of the present application may be a device that provides a wireless communication function for a terminal device, and may also be referred to as a radio access network (radio access network, RAN) device or the like.
  • Network equipment includes but is not limited to: next generation node B (gNB), evolved node B (evolved node B, eNB), baseband unit (BBU), transmitting and receiving point (transmitting and receiving point, TRP), transmitting point (TP), relay station, access point, etc.
  • the network device may also be a wireless controller, a centralized unit (centralized unit, CU), a distributed unit (distributed unit, DU), etc. in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device may support at least one wireless communication technology, such as LTE, NR, WCDMA, and the like.
  • the gNB may include centralized units CU and DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implementing functions of radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, the media access control (MAC) layer and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the higher-layer signaling such as the RRC layer signaling
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the terminal or network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program that records the codes of the methods provided by the embodiments of the present application can be executed to provide the methods provided by the embodiments of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal or a network device, or a functional module in the terminal or network device that can call and execute a program.
  • computer readable media may include, but are not limited to, magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CDs), digital versatile discs (DVDs) etc.), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), card, stick or key drives, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • network equipment and terminals can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of wireless access network devices and terminals.
  • FIG. 1 is a schematic diagram of a possible communication system to which the present application applies.
  • the communication system in FIG. 1 may include terminals (eg, terminal 10 , terminal 20 , terminal 30 , terminal 40 , terminal 50 , and terminal 60 ) and network equipment 70 .
  • the terminal 10 , the terminal 20 , the terminal 30 , the terminal 40 and the terminal 60 in FIG. 1 can perform uplink and downlink transmission with the network device 70 .
  • network device 70 can send downlink signals/data to terminal 10, terminal 20, terminal 30, terminal 40 and terminal 60, and can also receive uplink signals/data sent by terminal 10, terminal 20, terminal 30, terminal 40 and terminal 60 .
  • the communication system in FIG. 1 may also include a terminal.
  • terminal 40, terminal 50 and terminal 60 can also be regarded as a communication system
  • terminal 60 can send signals/data to terminal 40 and terminal 50, and can also receive signals/data sent by terminal 40 and terminal 50. That is to say, the embodiments of the present application may be applicable to downlink transmission, uplink transmission, and sideline transmission.
  • a wireless communication link in which a terminal sends data (ie, uplink data) or uplink control information to a network device may be referred to as an uplink or an uplink (UL).
  • the wireless communication link in which the network device transmits data (ie, downlink data) or downlink control information to the terminal may be referred to as a downlink or a downlink (downlink, DL).
  • a communication link for direct communication between terminals may be referred to as a side link or a sidelink (SL).
  • SL data transmitted between terminals may be referred to as SL data.
  • the embodiments of the present application do not limit the transmission direction of signals/data.
  • the technical solutions of the embodiments of the present application may be implemented by two communication apparatuses, and the two communication apparatuses are illustrated by taking the first device and the second device as examples.
  • the first device may be a terminal or a communication device capable of supporting the functions required to implement the method.
  • the first device may also be other communication means, such as a chip system.
  • the second device may be a network device or a terminal or a communication device capable of supporting functions required to implement the method, and of course other communication devices, such as a chip system.
  • the first device may be a terminal and the second device may be a network device; or the first device may be a terminal, and the second device may be required to support the implementation of the method. functional communication devices, etc.
  • the embodiments of the present application take the first device as an example to describe the specific implementation process. In practical applications, the embodiments of the present application may also be executed by the MAC entity and/or the PHY layer of the first device.
  • the embodiments of the present application may be applied to a communication system including one or more second devices, and may also be applied to a communication system including one or more first devices, which is not limited in this application.
  • One of the second devices may send data and/or first control signaling to one or more of the first devices.
  • Multiple second devices may also send data and/or first control signaling to one or more first devices.
  • Multicast may include any one or more of the following: Broadcast in MBMS or MBS; Multicast in MBMS or MBS; Multicast in MBMS or MBS; Multicast in V2X; Multicast in V2X; broadcast; multicast; broadcast; multicast; groupcast; broadcast.
  • the second device sends data 1, and multiple first devices can receive the data 1.
  • multicast can be understood as multicast transmission.
  • Unicast may include any one or more of the following: unicast in V2X; unicast.
  • unicast can be understood as unicast transmission.
  • multicast can be understood as: for a piece of data 1, the second device sends it once, and multiple first devices can receive the data 1.
  • unicast can be understood as: for one piece of data 1, if the second device wants to send data 1 to multiple first devices, the second device needs to send data 1 to each first device individually.
  • the wireless network temporary identity (radio network temporary identity, RNTI).
  • the multicast RNTI can be used for any one or more of the following: for scheduling dynamic resources; for scheduling retransmission resources for dynamic resources; for activating configuration resources; for reactivating configuration resources; for deactivating configuration resources ;Retransmission resources used for scheduling configuration resources; used for multicast; used for multicast scheduling; used for configuration scheduling multicast transmission; used for activation; used for deactivation; used for reactivation; used for retransmission; Used to dynamically schedule multicast transmissions.
  • the multicast RNTI may include any one or more of the following: group-RNTI (for example, group-RNTI, G-RNTI), group-configured scheduling-RNTI (for example, group-configured scheduling-RNTI, G-CS-RNTI), group-cell-RNTI (eg, group-cell-RNTI, GC-RNTI), group-RNTI (eg, multicast-RNTI, M-RNTI), group-configured scheduling-RNTI (eg , multicast-configured scheduling-RNTI, M-CS-RNTI), group-cell-RNTI (eg, multicast-cell-RNTI, MC-RNTI), etc.
  • group-RNTI for example, group-RNTI, G-RNTI
  • group-configured scheduling-RNTI for example, group-configured scheduling-RNTI, G-CS-RNTI
  • group-cell-RNTI eg, group-cell-RNTI, GC-RNTI
  • group-RNTI eg, multicast-RNTI, M-RNTI
  • Unicast RNTI may be used for any one or more of the following: for scheduling dynamic resources; for scheduling retransmission resources for dynamic resources; for activating configuration resources; for reactivating configuration resources; for deactivating configuration resources ;Retransmission resources for scheduling configuration resources; for unicast; for unicast scheduling; for configuration scheduling unicast transmission; for activation; for deactivation; for reactivation; for retransmission; For dynamic scheduling unicast transmission; for contention resolution; for MSG3 transmission.
  • the unicast RNTI may include any one or more of the following: cell radio network temporary identifier (C-RNTI), configured scheduling radio network temporary identifier (CS-RNTI) -RNTI), temporary cell radio network temporary identifier (temporary cell radio network temporary identifier, TC-RNTI).
  • C-RNTI cell radio network temporary identifier
  • CS-RNTI configured scheduling radio network temporary identifier
  • TC-RNTI temporary cell radio network temporary identifier
  • the first RNTI is used for any one or more of the following: paging, notification of system information change, notification of PWS, broadcast of system information.
  • the unicast RNTI may include any one or more of the following: paging RNTI (paging RNTI, P-RNTI), system information RNTI (system information RNTI, SI-RNTI).
  • paging RNTI paging RNTI, P-RNTI
  • system information RNTI system information RNTI
  • SI-RNTI system information RNTI
  • Dynamic resources may include any one or more of the following: dynamically allocated resources for downlink; dynamic grant resources for uplink; dynamic grant resources for sidelinks; dynamic resources for unicast; Dynamic resources.
  • Configuration resources may include any one or more of the following: configuration allocation resources for downlink; configuration grant resources for uplink; configuration grant resources for sidelinks; configuration resources for unicast; Configure resources.
  • Index or index or index may be understood/replaced with any of the following: identification (eg, identity, ID) or indication (eg, indicator).
  • the bandwidth part can be understood/replaced with part of the bandwidth.
  • BWP can be understood as a subset of cell bandwidth.
  • the BWP can be understood as a part of the cell bandwidth, or the cell bandwidth includes the BWP.
  • the BWP can also be equal to the cell bandwidth.
  • the index of the bandwidth part or the index of the BWP or the BWP index can be understood/replaced with any of the following: the identification of the bandwidth part or the identification of the BWP or the ID of the bandwidth part or the BWP ID.
  • Fields can be understood/replaced with domains or fields.
  • BWP is supported in NR.
  • multicast is introduced in NR, there may be a corresponding relationship between BWP and transmission mode.
  • different multicasts can be transmitted on their corresponding BWPs respectively.
  • unicast and multicast are also transmitted on corresponding BWPs, respectively.
  • the traditional solution only the data or signaling corresponding to the transmission mode can be transmitted on the BWP corresponding to one transmission mode, and the communication efficiency is low.
  • the first device eg, terminal
  • the first device works on BWP1, and BWP1 corresponds to transmission mode 1; the first device cannot obtain control information (eg, DCI) corresponding to data transmitted on BWP2, and BWP2 corresponds to transmission mode 2 Correspondingly; the first device cannot know whether the second device (eg, network device) has performed data transmission in BWP2.
  • control information eg, DCI
  • BWP2 corresponds to transmission mode 2
  • the second device eg, network device
  • FIG. 2 shows a schematic flowchart of a method for transmitting control signaling according to an embodiment of the present application.
  • a first device receives first control signaling from a second device, where the first control signaling includes first information, where the first information is used to indicate a first transmission mode, scrambled information (or scrambled information of the first control signaling) , the first control signaling) corresponds to the second transmission mode.
  • the second device sends the first control signaling to the first device.
  • the first device determines to communicate with the second device on the bandwidth portion corresponding to the first transmission mode and/or determines to communicate with the second device on the bandwidth portion corresponding to the second transmission mode.
  • the second device communicates.
  • the first device communicates with the second device on the bandwidth portion corresponding to the first transmission mode and communicates with the second device on the bandwidth portion corresponding to the second transmission mode.
  • the device communicates with the second device on the bandwidth part corresponding to the first transmission mode and the bandwidth part corresponding to the second transmission mode, and the present application does not limit the communication at the same time.
  • the present application is introduced by taking the first control signaling as the first DCI, the first device as the terminal, and the second device as the network device as an example.
  • the first device receives the first control signaling from the second device, the first control signaling includes the first information, the first information is used to indicate the first transmission mode, and the addition of the first control signaling
  • the scrambling information corresponds to the second transmission mode.
  • the second device sends the first control signaling to the first device.
  • the terminal receives the first DCI from the network device. , the first DCI includes first information, the first information is used to indicate the first transmission mode, and the scrambling information (or, the first DCI) of the first DCI corresponds to the second transmission mode.
  • the network device sends the information to the terminal. Send the first DCI.”
  • the terminal receives the first DCI from the network device, and the scrambling information of the first DCI (or the first DCI) corresponds to the second transmission mode" may include/replace as: the terminal receives the first DCI on the BWP corresponding to the second transmission mode. a DCI.
  • the scrambling information of the first DCI corresponds to the second transmission mode can be understood as: the first DCI is scrambled by the scrambling information, and the scrambling information corresponds to the second transmission mode; or, the first DCI is scrambled by the scrambling information , the first DCI corresponds to the second transmission mode; or, the first DCI is scrambled by scrambling information, and the scrambling information, the first DCI, and the second transmission mode correspond.
  • “Scrambling the first DCI with the scrambling information” may include: scrambling the cyclic redundancy check (CRC) of the first DCI with the scrambling information, or, scrambling the CRC of the first DCI by the scrambling information (The first DCI with CRC scrambled by scrambled information).
  • CRC cyclic redundancy check
  • the scrambling information may be understood as a scrambling identifier.
  • the scrambling information may include any one or more of the following: multicast RNTI; unicast RNTI; RNTI for scheduling; temporary mobile group identity (for example, temporary mobile group identity, TMGI); session identity ( For example, multicast session identification); transmission identification (eg, multicast identification, or unicast identification); first RNTI.
  • the multicast identity may include any one or more of the following: multicast RNTI; TMGI; session identity (eg, multicast session identity).
  • the scrambling information corresponding to the first DCI is multicast RNTI, and the first DCI/multicast RNTI corresponds to multicast.
  • the scrambling information corresponding to the first DCI is unicast RNTI, and the first DCI/unicast RNTI corresponds to unicast.
  • the scrambling information corresponding to the first DCI is multicast RNTI1, and the first DCI/multicast RNTI1 corresponds to multicast 1.
  • the scrambling information corresponding to the first DCI is the first RNTI, and the first DCI/first RNTI corresponds to the transmission corresponding to the first RNTI.
  • the transmission corresponding to the first RNTI may include/is idle/inactive transmission.
  • the first information may indicate the first transmission mode explicitly or implicitly, which is not limited in this application.
  • the first DCI may represent the first information through a reserved field or a newly added field, which is not limited in this application.
  • first transmission mode and the second transmission mode are the first possible situation or the second possible situation or the third possible situation or the fourth possible situation
  • the cases of the first transmission mode and the second transmission mode are not limited to only these four cases.
  • the first possible situation the second transmission mode is unicast, and the first transmission mode is multicast.
  • the first DCI when the scrambling information of the first DCI/the first DCI corresponds to unicast, the first DCI further includes first information for indicating multicast.
  • the BWP corresponding to the second transmission mode is a unicast BWP.
  • the terminal receives the first DCI on the unicast BWP, and the first DCI further includes first information for indicating multicast.
  • the multicast can be understood as a certain multicast (for example, multicast 2).
  • the G-RNTI corresponding to the multicast can also be understood as the G-RNTI2 corresponding to the multicast 2 .
  • the terminal obtains the information related to the reception of the multicast service through the first information carried in the first DCI corresponding to the unicast service, thereby providing a possibility for the terminal to switch from the unicast BWP to the multicast BWP to receive the multicast service , which increases the flexibility of receiving different types of services, and at the same time obtains the multicast reception information in the process of unicast reception to quickly switch to multicast, which also reduces the delay of multicast reception and improves the efficiency of data transmission.
  • the second possible situation the second transmission mode is multicast, and the first transmission mode is unicast.
  • the first DCI further includes first information for indicating unicast.
  • the BWP corresponding to the second transmission mode is a multicast BWP.
  • the terminal receives the first DCI on the multicast BWP, and the first DCI further includes first information for indicating unicast.
  • the third possible situation the second transmission mode is the first multicast, and the first transmission mode is the second multicast.
  • multicast can be divided into different multicasts.
  • the objects corresponding to the multicast are different, and the quantity corresponding to the multicast is different.
  • the BWP corresponding to the second transmission mode is the BWP corresponding to the first multicast.
  • the terminal receives the first DCI on the BWP corresponding to the first multicast, and the first DCI further includes first information for indicating the second multicast.
  • the first DCI when the scrambling information of the first DCI/the first DCI corresponds to the first multicast, the first DCI further includes the first information used to indicate the second multicast.
  • the second transmission mode is transmission corresponding to the first RNTI, and the first transmission mode is multicast.
  • the BWP corresponding to the second transmission mode is the initial BWP.
  • the terminal receives the first DCI on the initial BWP, and the first DCI further includes first information for indicating multicast.
  • the first DCI when the scrambling information of the first DCI/the first DCI corresponds to the transmission corresponding to the first RNTI, or when the scrambling information of the first DCI is the first RNTI, the first DCI further includes an indicator for indicating The first information of multicast.
  • the first transmission mode is different from the second transmission mode.
  • any one or more of the first information, the second identification information, and the preset field may also be used to indicate C bits or indicated by the BWP field.
  • the BWP is the BWP associated with the first transmission mode.
  • any one or more of the first information/second identification information/first value of the preset field is used to indicate that the C bits or the BWP indicated by the BWP field is Multicast the associated BWP.
  • any one or more of the first information/second identification information/first value of the preset field is used to indicate that the C bits or the BWP indicated by the BWP field is Unicast associated BWP.
  • any one or more of the first information/second identification information/first value of the preset field is used to indicate that the C bits or the BWP indicated by the BWP field is The second multicast is associated with the BWP.
  • the first information includes second identification information or the first information is second identification information, and the second identification information/second identification is used for scheduling the first transmission mode or corresponding to the first transmission mode
  • the transmission/data/resource, or the second identification information/second identification is associated with the first transmission mode.
  • the first information is the second identification information: the second identification information is used to indicate the first transmission mode.
  • "for scheduling the first transmission mode or the transmission/data/resource corresponding to the first transmission mode” may include any one or more of the following: for scheduling dynamic resources; for retransmission resources for dynamic resources for activating configuration resources; for reactivating configuration resources; for deactivating configuration resources; for scheduling retransmission resources of configuration resources; for first transmission mode; for scheduling in first transmission mode; for configuration scheduling first transmission mode transmission; for activation; for deactivation; for reactivation; for retransmission; for dynamically scheduling first transmission mode transmission.
  • the second identification information/second identification may include any one or more of the following: multicast RNTI; unicast RNTI; RNTI used for scheduling; TMGI; Transmission identification (eg, multicast identification, unicast identification); multicast group identification.
  • a multicast group can be understood as: a multicast group can include one or more multicasts. For example, multicasts belonging to the same multicast group correspond to the same BWP (eg, the same one or more BWPs) or other same parameters.
  • a multicast group corresponds to a multicast group ID.
  • the correspondence between the multicast group and the multicast may be configured or pre-configured by the base station, or may be specified by a protocol.
  • the terminal or network device may determine the corresponding BWP according to the multicast group identifier/multicast group.
  • the first transmission mode is unicast
  • the second identifier may include any one or more of the following: unicast RNTI (eg, C-RNTI or CS-RNTI), transmission identifier (eg, unicast identifier).
  • unicast RNTI eg, C-RNTI or CS-RNTI
  • transmission identifier eg, unicast identifier
  • the first transmission mode is multicast
  • the second identification information may include any one or more of the following: multicast RNTI, TMGI; session identification (for example, multicast session identification); transmission identification (for example, multicast ID); multicast group ID.
  • the second identification information may indicate the first transmission mode explicitly or implicitly, which is not limited in this application.
  • the second identification information may be a second identification.
  • the first information includes/is G-RNTI (ie, the second identification information is G-RNTI), and the scrambling information of the first DCI is C-RNTI or CS-RNTI.
  • the terminal receives the C-RNTI or the first DCI scrambled by the CS-RNTI, and can also obtain multicast-related information (eg, G-RNTI).
  • the terminal may determine the BWP corresponding to the multicast (for example, the multicast corresponds to BWP1, or the multicast corresponding to G-RNTI corresponds to BWP1, or the G-RNTI corresponds to BWP1).
  • the terminal may perform any one or more of the following based on the obtained multicast-related information: BWP switching (for example, switching to the BWP corresponding to the multicast), activating the BWP corresponding to the multicast, and further receiving the multicast
  • the corresponding data is determined to communicate with the network device on the BWP corresponding to the multicast.
  • this implementation manner may be applicable to multicast (for example, multicast corresponding to G-RNTI, or all multicasts)/G-RNTI (for example, G-RNTI included in the first DCI) corresponding to a BWP. condition.
  • the first information includes/is C-RNTI or CS-RNTI (that is, the second identification information is C-RNTI or CS-RNTI), and the scrambling information of the first DCI is G - RNTI, G-RNTI is associated with multicast.
  • the terminal receives the first DCI scrambled by the G-RNTI, and can also obtain unicast-related information (eg, C-RNTI or CS-RNTI).
  • the terminal can determine the BWP corresponding to the unicast (for example, the initial BWP).
  • the terminal may perform any one or more of the following based on the obtained unicast-related information: BWP switching (for example, switching to the BWP corresponding to unicast), activating the BWP corresponding to unicast, and further receiving unicast
  • BWP switching for example, switching to the BWP corresponding to unicast
  • activating the BWP corresponding to unicast and further receiving unicast
  • the corresponding data is determined to communicate with the network device on the BWP corresponding to the unicast.
  • the first information includes/is G-RNTI2 (that is, the second identification information is G-RNTI2), the scrambling information of the first DCI is G-RNTI1, and G-RNTI1 and the group Associated with broadcast 1.
  • the terminal receives the first DCI scrambled by G-RNTI1, and can also obtain information related to multicast 2 (eg, G-RNTI2).
  • the terminal may determine the BWP corresponding to the multicast 2 (for example, the multicast 2 corresponds to the BWP2, or the multicast 2 corresponding to the G-RNT2 corresponds to the BWP2, or the G-RNT2 corresponds to the BWP2).
  • the terminal may perform any one or more of the following based on the obtained information related to multicast 2: BWP switching (for example, switching to the BWP corresponding to multicast 2), activating the BWP corresponding to multicast 2, and further. Receive data corresponding to multicast 2, and determine to communicate with the network device on the BWP corresponding to multicast 2.
  • this implementation manner may be applicable to the case where multicast 2/G-RNT2 corresponds to one BWP.
  • the second identification information may be an index (index) of the second identification.
  • the terminal acquires the first DCI, the first DCI includes the index of the second identifier, there is a correspondence between the second identifier and the index of the second identifier, and the terminal may determine the second identifier.
  • the number of bits occupied by the second identifier information in the first DCI can be reduced, or in other words, the transmission overhead can be reduced.
  • the index of the second identifier may include any one or more of the following: multicast RNTI index (for example, G-RNTI index); unicast RNTI index (for example, C-RNTI index, CS-RNTI index) ; RNTI index for scheduling; Temporary mobile group identification index (for example, TMGI index); Session identification index (for example, multicast session identification index); Transmission identification index (for example, multicast identification index, unicast identification index); Multicast group identifier index.
  • multicast RNTI index for example, G-RNTI index
  • unicast RNTI index for example, C-RNTI index, CS-RNTI index
  • RNTI index for scheduling Temporary mobile group identification index (for example, TMGI index)
  • Session identification index for example, multicast session identification index
  • Transmission identification index for example, multicast identification index, unicast identification index
  • Multicast group identifier index for example, Multicast group identifier index.
  • the first information includes/is a G-RNTI index (that is, the second identification information is a G-RNTI index), and the scrambling information of the first DCI is C-RNTI or CS-RNTI.
  • the terminal receives the C-RNTI or the first DCI scrambled by the CS-RNTI, and can also obtain multicast-related information (eg, G-RNTI index). The terminal can determine the corresponding G-RNTI/multicast.
  • the terminal can determine the BWP corresponding to the multicast (for example, the multicast corresponds to BWP1, or the multicast corresponding to G-RNTI/G-RNTI index corresponds to BWP1, or the G-RNTI/G-RNTI index corresponds to BWP1. correspond).
  • the terminal may perform any one or more of the following based on the obtained multicast-related information: BWP switching (for example, switching to the BWP corresponding to the multicast), activating the BWP corresponding to the multicast, and further receiving the multicast
  • the corresponding data is determined to communicate with the network device on the BWP corresponding to the multicast.
  • this possible implementation may be applicable to multicast (for example, the multicast corresponding to G-RNTI/G-RNTI index, or all multicasts)/G-RNTI (for example, the G-RNTI included in the first DCI -RNTI)/G-RNTI index corresponds to the case of a BWP.
  • multicast for example, the multicast corresponding to G-RNTI/G-RNTI index, or all multicasts
  • G-RNTI for example, the G-RNTI included in the first DCI -RNTI
  • G-RNTI index corresponds to the case of a BWP.
  • the first information includes/is the G-RNTI2 index (that is, the second identification information is the G-RNTI2 index), the scrambling information of the first DCI is G-RNTI1, and G-RNTI1 and Multicast 1 is associated.
  • the terminal receives the first DCI scrambled by G-RNTI1, and can also obtain information related to multicast 2 (for example, G-RNTI2 index).
  • the terminal can determine the corresponding G-RNTI2/multicast.
  • the terminal can determine BWP2 corresponding to multicast 2 (for example, multicast 2 corresponds to BWP2, or, multicast 2 corresponding to G-RNTI2/G-RNTI2 index corresponds to BWP2, or, G-RNTI2/G-RNTI2 index Corresponding to BWP2).
  • the terminal may perform any one or more of the following based on the obtained information related to multicast 2: BWP switching (for example, switching to BWP2 corresponding to multicast 2), activating BWP2 corresponding to multicast 2, and further.
  • BWP switching for example, switching to BWP2 corresponding to multicast 2
  • activating BWP2 corresponding to multicast 2 and further.
  • Receive the data corresponding to the multicast 2 and determine to communicate with the network device on the BWP2 corresponding to the multicast 2.
  • this possible implementation manner may be applicable to the case where the multicast 2/G-RNTI2/G-RNTI2 index corresponds to one BWP.
  • the second possible situation is similar to the first possible situation and the third possible situation, and will not be repeated here.
  • the second identifier is G-RNTI
  • G-RNTI usually occupies 16 bits, and one G-RNTI may correspond to one multicast. If G-RNTI is included in the first DCI, G-RNTI occupies more bits.
  • the G-RNTI index can be included in the first DCI, there is a correspondence between G-RNTI/multicast and G-RNTI index, the terminal can also determine the corresponding G-RNTI/multicast, and the second identification information is reduced. The number of bits occupied in the first DCI, or in other words, the transmission overhead is reduced.
  • the terminal and/or the network device may determine the correspondence between the second identifier and the index of the second identifier according to the second information.
  • the second information may include/be used to indicate the correspondence between the second identifier and the index of the second identifier.
  • the correspondence between the second identifier and the index of the second identifier can be any one or more of the following: the correspondence between the unicast identifier and the index; the correspondence between the multicast identifier of the interested multicast and the index; The correspondence between the multicast identifier and the index of the multicast that is no longer of interest; the correspondence between the unicast and the index; the unicast identifier; the multicast identifier of the multicast that the terminal is interested in.
  • Interested multicasts may include multicasts that the terminal is interested in receiving and/or multicasts that the terminal is receiving.
  • the terminal sends a second message to the network device, where the second message includes the second information.
  • the second message is used to indicate to the network device the multicast that the terminal is interested in and/or is no longer interested in.
  • the second message may be an indication of interest.
  • the second information may include/be used to indicate the correspondence between the second identifier and the index of the second identifier
  • the terminal sends the second message to the network device, and the terminal and/or the network device may determine the index of the second identifier according to the sequence of the second identifier in the second message.
  • the index of the second identification corresponding to the first second identification is 1
  • the index of the second identification corresponding to the second second identification is 2
  • the index of the second identification corresponding to the Nth second identification is N.
  • the index of the second logo corresponding to the first second logo is 0, the index of the second logo corresponding to the second second logo is 1, and the index of the second logo corresponding to the Nth second logo is N -1.
  • the terminal may send the second message to the network device, but the network device may not receive the second message.
  • the network device may still determine the correspondence between the second identifier and the index of the second identifier based on the second information in the second message previously received, but the terminal may determine the correspondence between the second identifier and the index of the second identifier based on the second information in the newly sent second message.
  • the second information determines the correspondence between the second identifier and the index of the second identifier. For the same index of the second identifier, the terminal and the network device will determine a different second identifier or different unicast/multicast, which will cause misalignment between the terminal and the network device, which may affect the terminal and the network device. transmission between.
  • the network device believes that there is a correspondence between index1 and multicast 1/BWP1, the first DCI contains index1, and the network device expects the terminal to switch to BWP1 for communication; but the terminal considers that index1 and multicast 2/BWP2 There is a corresponding relationship between them, the first DCI includes index1, and the terminal switches to BWP2 for communication.
  • the network device communicates (for example, sends data) with the terminal on BWP1, but the terminal works on BWP2, so that there is no way for normal communication between the two.
  • the terminal receives the confirmation information sent by the network device.
  • the network device sends confirmation information to the terminal.
  • the confirmation information can be used for any one or more of the following: used to instruct the network device to receive the second message; used to instruct the network device to apply/determine the second identifier and the first message according to the second information in the second message.
  • the correspondence between the indices of the two identifiers; used to indicate that the terminal can apply/determine the correspondence between the second identifier and the index of the second identifier according to the second information in the second message; used to instruct the network device to apply the second identifier The correspondence between the second identifier indicated by the second information in the message and the index of the second identifier; it is used to indicate that the terminal can apply the relationship between the second identifier indicated by the second information in the second message and the index of the second identifier corresponding relationship.
  • the network device receives the second message, and sends confirmation information to the terminal, where the confirmation information is used for the network device to indicate that the second message is received.
  • the terminal can determine that the network device has received the second message.
  • the terminal and/or the network device may apply/determine the correspondence between the second identifier and the index of the second identifier according to the second information in the second message, or the terminal and/or the network device may apply the first index in the second message.
  • the correspondence between the second identifier indicated by the second information and the index of the second identifier In this case, for the same second identifier, the terminal and the network device will determine the same second identifier or the same unicast/multicast.
  • the confirmation information may be carried in RRC messages, RLC messages (for example, RLC PDUs), MAC messages (for example, MAC CE), PHY messages (for example, DCI or PDCCH), broadcast messages (for example, system information), in the multicast message.
  • RRC messages for example, RLC PDUs
  • MAC messages for example, MAC CE
  • PHY messages for example, DCI or PDCCH
  • broadcast messages for example, system information
  • the confirmation information is carried in the first RLC PDU.
  • the first RLC PDU is an RLC control PDU, such as a status PDU, STATUS PDU.
  • the confirmation information is carried in the first MAC CE.
  • the first MAC CE may be identified by a logical channel identification (logical channel identification, LCID) or an extended logical channel identification (extended logical channel identification, eLCID).
  • LCID logical channel identification
  • eLCID extended logical channel identification
  • the LCID is 5 bits.
  • the eLCID is 8bit or 16bit.
  • the size of the first MAC CE may be fixed (for example, 0 bit) or variable.
  • the content related to the confirmation information can be implemented as a separate manner and does not depend on step 201 and/or step 202 .
  • the first information includes a preset field or the first information is a preset field, and the preset field is associated with the first transmission mode.
  • the first information is a preset field: the preset field is used to indicate the first transmission mode.
  • the first value of the preset field or the existence of the preset field may be associated with the first transmission mode.
  • the preset field may occupy/correspond to one or more bits. Taking the preset field occupied/corresponding to one bit as an example, the first value of the preset field is "1", which means that the first information indicates the first transmission mode; or, the first value of the preset field is "1". If the value is "0", it means that the first information indicates the first transmission mode.
  • the second value of the preset field (for example, taking the preset field occupied/corresponding to one bit as an example, the first value of the preset field is "0" or "1") It can be understood that the first information is not used to indicate the first transmission mode.
  • the first value and the second value may be different values of one bit respectively. For example, the first value is “1" and the second value is "0"; or the first value is "0" and the second value is "1".
  • the second value of the preset field indicates that the C bits or the BWP indicated by the BWP field is the BWP associated with the second transmission mode.
  • the scrambling information of the first DCI is C-RNTI or CS-RNTI, and a preset field in the first DCI indicates multicast.
  • the terminal receives the C-RNTI or the first DCI scrambled by the CS-RNTI, and can also obtain the multicast-related information.
  • the terminal may determine the BWP corresponding to the multicast (for example, the multicast corresponds to BWP1).
  • the terminal may perform any one or more of the following based on the obtained multicast-related information: BWP switching (for example, switching to the BWP corresponding to the multicast), activating the BWP corresponding to the multicast, and further receiving the multicast
  • BWP switching for example, switching to the BWP corresponding to the multicast
  • activating the BWP corresponding to the multicast and further receiving the multicast
  • the corresponding data is determined to communicate with the network device on the BWP corresponding to the multicast.
  • this design can be applied to the situation that multicast corresponds to one BWP.
  • the scrambling information of the first DCI is a multicast RNTI, and a preset field in the first DCI indicates unicast.
  • the terminal receives the first DCI scrambled by the G-RNTI, and can also obtain unicast-related information.
  • the terminal can determine the BWP corresponding to the unicast (for example, the initial BWP).
  • the terminal may perform any one or more of the following based on the obtained unicast-related information: BWP switching (for example, switching to the BWP corresponding to unicast), activating the BWP corresponding to unicast, and further receiving unicast
  • BWP switching for example, switching to the BWP corresponding to unicast
  • activating the BWP corresponding to unicast and further receiving unicast
  • the corresponding data is determined to communicate with the network device on the BWP corresponding to the unicast.
  • the scrambling information of the first DCI is G-RNTI1, and the preset field in the first DCI indicates multicast 2.
  • the terminal receives the first DCI scrambled by G-RNTI1, and can also obtain information related to multicast 2.
  • the terminal may determine the BWP corresponding to multicast 2 (eg, multicast 2 corresponds to BWP2).
  • the terminal may perform any one or more of the following based on the obtained information related to multicast 2: BWP switching (for example, switching to the BWP corresponding to multicast 2), activating the BWP corresponding to multicast 2, and further.
  • BWP switching for example, switching to the BWP corresponding to multicast 2
  • activating the BWP corresponding to multicast 2 activating the BWP corresponding to multicast 2
  • Receive data corresponding to multicast 2 and determine to communicate with the network device on the BWP corresponding to multicast 2.
  • this design can be applied to the situation where multicast corresponds to two BWPs, wherein BWP1 corresponds to one or more multicasts (for example, multicast 1), and BWP2 corresponds to another or more multicasts (for example, group broadcast 2).
  • the preset field may indicate the first transmission mode explicitly or implicitly, which is not limited in this application.
  • the first information includes a BWP field or the first information is a BWP field, where the BWP field is used to indicate the first transmission mode.
  • the first information is the BWP field: the BWP field is used to indicate the first transmission mode.
  • the BWP field can be understood as a field for indicating the bandwidth part.
  • the BWP field may be used to indicate the BWP index, or the location and bandwidth of the BWP.
  • the BWP field may be a BWP indicator field.
  • BWP field is a description of a name, which can also be replaced/referred to as the first field or other names, etc.
  • the BWP field is C bits.
  • the BWP field is used to indicate any one or more of the following: first transmission mode, target first bandwidth portion, first bandwidth portion.
  • the first bandwidth portion and/or the target first bandwidth portion is associated with the first transmission mode.
  • the BWP field is used to indicate that the first transmission mode may include any one or more of the following:
  • the BWP field is used to indicate the BWP/BWP index corresponding to the first transmission mode, then the BWP field is used to indicate the first transmission mode.
  • the first transmission mode corresponds to a separate BWP field, where the BWP field is used to indicate the first transmission mode.
  • the BWP field exists, or the value of the BWP field is valid, and the BWP field is used to indicate the first transmission mode.
  • the first transmission mode and the second transmission mode correspond to the same BWP field.
  • the first part of the bits in the BWP field exists, or the value of the first part of the bits in the BWP field is valid, and the BWP field is used to indicate the first transmission mode.
  • bit-related content of the first part of the BWP field reference may be made to the bit-related content of the first part of the C bits, which will not be repeated here.
  • the BWP field can be used to indicate the transmission mode.
  • the BWP field may indicate the first transmission mode explicitly or implicitly, which is not limited in this application.
  • the BWP/BWP index and the transmission mode there is a corresponding relationship between the BWP/BWP index and the transmission mode, through the BWP field/the BWP indicated by the BWP field/the BWP index indicated by the BWP field, and the corresponding relationship between the BWP/BWP index and the transmission mode, as far as The transmission mode corresponding to the BWP field can be known.
  • the BWP field in the first DCI indicates multicast
  • the scrambling information of the first DCI is C-RNTI or CS-RNTI.
  • the terminal receives the C-RNTI or the first DCI scrambled by the CS-RNTI, and can also obtain multicast-related information (eg, BWP information).
  • the terminal can determine the BWP corresponding to the multicast.
  • the terminal may perform any one or more of the following based on the obtained multicast-related information: BWP switching (for example, switching to the BWP corresponding to the multicast), activating the BWP corresponding to the multicast, and further receiving the multicast
  • BWP switching for example, switching to the BWP corresponding to the multicast
  • activating the BWP corresponding to the multicast and further receiving the multicast
  • the corresponding data is determined to communicate with the network device on the BWP corresponding to the multicast.
  • the design can be applied to a situation where multicast (eg, all multicasts) corresponds to a group of BWPs (eg, one or more BWPs).
  • the BWP field in the first DCI indicates unicast
  • the scrambling information of the first DCI is G-RNTI
  • the G-RNTI is associated with multicast.
  • the terminal receives the first DCI scrambled by the G-RNTI, and can also obtain unicast-related information (eg, BWP information).
  • the terminal can determine the BWP corresponding to the unicast.
  • the terminal may perform any one or more of the following based on the obtained unicast-related information: BWP switching (for example, switching to the BWP corresponding to unicast), activating the BWP corresponding to unicast, and further receiving unicast
  • BWP switching for example, switching to the BWP corresponding to unicast
  • activating the BWP corresponding to unicast and further receiving unicast
  • the corresponding data is determined to communicate with the network device on the BWP corresponding to the unicast.
  • the BWP field in the first DCI indicates multicast 2
  • the scrambling information of the first DCI is G-RNTI1
  • G-RNTI1 is associated with multicast 1.
  • the terminal receives the first DCI scrambled by G-RNTI1, and can also obtain information related to multicast 2 (eg, BWP information).
  • the terminal can determine the BWP corresponding to multicast 2.
  • the terminal may perform any one or more of the following based on the obtained information related to multicast 2: BWP switching (for example, switching to the BWP corresponding to multicast 2), activating the BWP corresponding to multicast 2, and further.
  • this design can be applied to a situation where multicast corresponds to two groups of BWPs (for example, each group of BWPs may include one or more BWPs), wherein the first group of BWPs corresponds to one or more multicasts (for example, multicast 1), the second group of BWPs corresponds to another or more multicasts (for example, multicast 2).
  • this design can be applied to a situation where multicast 2 corresponds to one or more BWPs.
  • the first information includes/is the second identification information and a preset field.
  • the first information is the second identification information and the preset field: the second identification information and the preset field are used to indicate the first transmission mode.
  • the terminal receives the C-RNTI or the first DCI scrambled by the CS-RNTI, and the first DCI includes the G-RNTI (that is, the second identification information is the G-RNTI) and a preset field,
  • the preset field indicates multicast.
  • the terminal may obtain information related to the multicast, specifically, the terminal determines the multicast according to the preset field, and determines that the multicast is the multicast associated with the G-RNTI according to the second identification information.
  • the terminal may determine the BWP corresponding to the multicast (for example, the multicast corresponds to BWP1, or the multicast corresponding to G-RNTI corresponds to BWP1, or the G-RNTI corresponds to BWP1).
  • the terminal may perform any one or more of the following based on the obtained multicast-related information: BWP switching (for example, switching to the BWP corresponding to the multicast), activating the BWP corresponding to the multicast, and further receiving the multicast
  • the corresponding data is determined to communicate with the network device on the BWP corresponding to the multicast.
  • the design may be applicable to multicast (for example, each multicast, or, the multicast corresponding to each G-RNTI, or, the multicast corresponding to the G-RNTI, or, all multicasts)/G-
  • the RNTI (eg, the G-RNTI included in the first DCI) corresponds to the case of one BWP.
  • the first information includes/is the second identification information and a BWP field.
  • the first information is the second identification information and the BWP field: the second identification information and the BWP field are used to indicate the first transmission mode.
  • the terminal receives the C-RNTI or the first DCI scrambled by the CS-RNTI, and the first DCI includes the G-RNTI (ie, the second identification information is G-RNTI) and the BWP field.
  • the terminal can obtain multicast-related information, specifically, the terminal determines the multicast associated with the G-RNTI according to the second identification information, and determines the BWP corresponding to the multicast associated with the G-RNTI according to the BWP field (for example, the G-RNTI corresponds to The multicast/G-RNTI corresponding to BWP1, BWP2, BWP3, the BWP field indicates BWP1).
  • the terminal may perform any one or more of the following based on the obtained multicast-related information: BWP switching (for example, switching to the BWP corresponding to the multicast), activating the BWP corresponding to the multicast, and further receiving the multicast
  • BWP switching for example, switching to the BWP corresponding to the multicast
  • activating the BWP corresponding to the multicast and further receiving the multicast
  • the corresponding data is determined to communicate with the network device on the BWP corresponding to the multicast.
  • the design may be applicable to multicast (for example, each multicast, or, the multicast corresponding to each G-RNTI, or, the multicast corresponding to the G-RNTI, or, all multicasts)/G-
  • the RNTI eg, the G-RNTI included in the first DCI
  • the first information includes/is a preset field and a BWP field.
  • the first information being the preset field and the BWP field can be understood as: the preset field and the BWP field are used to indicate the first transmission mode.
  • the terminal receives the first DCI scrambled by C-RNTI or CS-RNTI, the first DCI includes a preset field and a BWP field, and the preset field indicates multicast.
  • the terminal can obtain information related to multicast, specifically, the terminal determines the multicast according to the preset field, and determines the BWP corresponding to the multicast according to the BWP field (for example, the multicast corresponds to BWP1, BWP2, and BWP3, and the BWP field indicates BWP1).
  • the terminal may perform any one or more of the following based on the obtained multicast-related information: BWP switching (for example, switching to the BWP corresponding to the multicast), activating the BWP corresponding to the multicast, and further receiving the multicast
  • BWP switching for example, switching to the BWP corresponding to the multicast
  • activating the BWP corresponding to the multicast and further receiving the multicast
  • the corresponding data is determined to communicate with the network device on the BWP corresponding to the multicast.
  • the design can be applied to a situation where multicast (eg, all multicasts) corresponds to a group of BWPs (eg, one or more BWPs).
  • the first information includes/is the second identification information and a preset field and a BWP field.
  • the first information being the second identification information and the preset field and the BWP field can be understood as: the second identification information, the preset field and the BWP field are used to indicate the first transmission mode.
  • the terminal receives the C-RNTI or the first DCI scrambled by the CS-RNTI, and the first DCI includes the G-RNTI (that is, the second identification information is the G-RNTI) and the preset fields and BWP field, the preset field indicates multicast.
  • the terminal can obtain information related to the multicast, specifically, the terminal determines the multicast according to the preset field, and according to the second identification information, determines that the multicast is the multicast associated with the G-RNTI, and determines the group associated with the G-RNTI according to the BWP field.
  • the terminal may perform any one or more of the following based on the obtained multicast-related information: BWP switching (for example, switching to the BWP corresponding to the multicast), activating the BWP corresponding to the multicast, and further receiving the multicast
  • BWP switching for example, switching to the BWP corresponding to the multicast
  • activating the BWP corresponding to the multicast and further receiving the multicast
  • the corresponding data is determined to communicate with the network device on the BWP corresponding to the multicast.
  • the design may be applicable to multicast (for example, each multicast, or, the multicast corresponding to each G-RNTI, or, the multicast corresponding to the G-RNTI, or, all multicasts)/G-
  • the RNTI eg, the G-RNTI included in the first DCI
  • the first information when the second transmission mode is multicast and the first transmission mode is unicast, includes/is an identifier of the terminal.
  • the identifier of the terminal may include any one or more of the following: a unique identifier of the terminal, an identifier of the terminal in a cell, and a unique identifier of the terminal in a cell.
  • the identifier of the terminal may be: unicast RNTI (eg, C-RNTI or CS-RNTI).
  • the terminal receives the first DCI scrambled by the G-RNTI, the G-RNTI is associated with multicast, and the C-RNTI included in the first DCI is the same as the C-RNTI of the terminal.
  • the terminal may determine that the first DCI is for the terminal.
  • the terminal can obtain unicast-related information (eg, C-RNTI).
  • the terminal can determine the BWP corresponding to the unicast.
  • the terminal may perform any one or more of the following based on the obtained unicast-related information: BWP switching (for example, switching to the BWP corresponding to unicast), activating the BWP corresponding to unicast, and further receiving unicast
  • BWP switching for example, switching to the BWP corresponding to unicast
  • activating the BWP corresponding to unicast and further receiving unicast
  • the corresponding data is determined to communicate with the network device on the BWP corresponding to the unicast. It can be understood that, if other terminals receive the first DCI, the C-RNTI in the first DCI is different from the C-RNTI of other terminals, and other terminals can ignore the first DCI.
  • the first information includes/is the identification of the terminal and the second identification information, or the first information includes/is the identification of the terminal and the preset information.
  • the field, or, the first information includes/is the identification of the terminal and the BWP field, or, the first information includes/is the identification of the terminal and the second identification information and preset fields, or, the first information includes/is the identification of the terminal and the second identification information and the BWP field, or, the first information includes/is the identification of the terminal and the preset field and the BWP field, or, the first information includes/is the identification of the terminal and the second identification information and the preset field and the BWP field.
  • the specific content can be understood with reference to the above-mentioned content, which will not be repeated here.
  • the first DCI may further include the identifier of the terminal.
  • the terminal receives the first DCI scrambled by G-RNTI, the G-RNTI is associated with multicast, and the first DCI includes The C-RNTI of the terminal is the same as the C-RNTI of the terminal.
  • the terminal may determine that the first DCI is for the terminal. It can be understood that, if other terminals receive the first DCI, the C-RNTI in the first DCI is different from the C-RNTI of other terminals, and other terminals can ignore the first DCI.
  • the first DCI may further include third indication information, where the third indication information may be used to indicate the target first bandwidth part and/or the first bandwidth part.
  • the first DCI may be used to indicate the target first bandwidth portion and/or for scheduling data transmitted on the target first bandwidth portion.
  • the third indication information may also be used to indicate the target second bandwidth portion and/or the second bandwidth portion.
  • the third indication information may include/are/used to indicate the first indication information and the second indication information; or the third indication information may include/are/used to indicate the first indication information.
  • the first indication information is used to indicate/target the first bandwidth portion and/or the first bandwidth portion.
  • the second indication information is used to indicate/be the target second bandwidth portion and/or the second bandwidth portion.
  • the first bandwidth portion is a bandwidth portion associated with the first transmission mode.
  • the number of the first bandwidth parts may be one or more.
  • the target first bandwidth portion is a certain bandwidth portion (BWP) of the "first bandwidth portion”.
  • the second bandwidth portion is the bandwidth portion associated with the second transmission mode.
  • the number of second bandwidth portions may be one or more.
  • the target second bandwidth portion is a certain bandwidth portion of the "second bandwidth portion”.
  • the third indication information can be used to indicate the target first bandwidth part and/or the first bandwidth part.
  • the third indication information can also be used to indicate the target second bandwidth part and/or the second bandwidth
  • the same first DCI indicates not only the target first bandwidth part and/or the first bandwidth part, but also the target second bandwidth part and/or the second bandwidth part; it can also be understood as different In the first DCI, the target first bandwidth portion and/or the first bandwidth portion may be indicated, and the target second bandwidth portion and/or the second bandwidth portion may also be indicated, which is not limited in this application.
  • the first DCI includes first information, and may further include third indication information. It is avoided that the terminal cannot receive the control signaling sent by the network device indicating the target first bandwidth part corresponding to the first transmission mode. It is helpful for the terminal to determine the transmission situation on the BWP corresponding to the first transmission mode. It is helpful for the terminal to determine the target first bandwidth part.
  • the terminal may perform any one or more of the following: BWP switching (for example, switching to the target first bandwidth portion corresponding to the first transmission mode), activating the target first bandwidth portion corresponding to the first transmission mode, and further. Receive data corresponding to the multicast, and determine to communicate with the network device on the target first bandwidth portion corresponding to the first transmission mode.
  • the terminal can use the first transmission mode for transmission on the target first bandwidth part, which is beneficial for the terminal to flexibly switch/change the transmission mode. It is also avoided that the network device separately sends the control signaling indicating the target first bandwidth portion corresponding to the first transmission mode to the terminal. Correspondingly, it is also avoided that the terminal receives the control signaling that is sent by the network device and indicates the target first bandwidth part corresponding to the first transmission mode. It also avoids the terminal retrieving the control signaling scrambled by the scrambling information corresponding to the first transmission mode, which is beneficial to the energy saving of the terminal.
  • the second indication information and the first indication information may respectively correspond to two independent fields, or may correspond to one field, which is not limited in this application.
  • the second indication information and the first indication information may correspond to one field can be understood as different bits of the field correspond to the second indication information and the first indication information respectively; it can also be understood as based on other information (for example, the first information) , to determine whether the field corresponds to the second indication information or the first indication information; it can also be understood that different values of the field correspond to the second indication information and the first indication information respectively.
  • the first DCI includes first information indicating the first transmission mode, and the first indication information is determined according to some bits in the field (bits corresponding to the first indication information).
  • the first DCI includes first information indicating the first transmission mode, and this field corresponds to the first indication information.
  • the first DCI includes this field, the value of the first part of the field corresponds to the first transmission mode and/or the first indication information, and the value of the second part of the field corresponds to the second transmission mode and/or the second indication information .
  • the first DCI may contain a field 1, or a field 2 and a field 3.
  • Field 1 indicates the first indication information, or the second indication information, or the first indication information and the second indication information.
  • Field 2 indicates the first indication information.
  • Field 3 indicates second indication information.
  • the second bandwidth part and the first bandwidth part may respectively correspond to two independent fields, or may correspond to one field, which is not limited in this application.
  • the first DCI may contain a field 1, or a field 2 and a field 3.
  • Field 1 indicates/corresponds to the first bandwidth portion, or, the second bandwidth portion, or, the first bandwidth portion and the second bandwidth portion.
  • Field 2 indicates/corresponds to the first bandwidth portion.
  • Field 3 indicates the second bandwidth portion.
  • the third indication information includes the first indication information
  • the first indication information corresponds to an independent field
  • the third indication information includes the first indication information and the second indication information
  • the second indication information and the first indication information correspond to one field.
  • the first DCI may not include the second indication information, that is, the first DCI may be used to indicate the target first bandwidth portion and/or be used to schedule data transmitted on the target first bandwidth portion.
  • the first indication information may specifically include any one or more of the following:
  • the terminal determines the target first bandwidth portion according to the third indication information.
  • determining the first bandwidth portion of the target may include: determining the index of the first bandwidth portion of the target, or determining the position and/or bandwidth of the first bandwidth portion of the target.
  • the third indication information includes C bits or the third indication information is C bits, and the terminal determines the target first bandwidth part according to the third indication information. Specifically, the terminal may determine the target first bandwidth according to the C bits. The value of the part of the bits determines the first bandwidth part of the target.
  • C bits is a description of a name, which can also be replaced/referred to as the second field or other names or the like.
  • the number of the C bits may be 0 bit or 1 bit or multiple bits.
  • the number of the first bandwidth part is 0, or the number of the first bandwidth part and the number of the second bandwidth part are both 0, and C may be 0.
  • the C bits are the BWP field.
  • the C bits are used to indicate any one or more of the following: a first transmission mode, a target first bandwidth portion, a first bandwidth portion.
  • C bits can be understood as D bits, where D ⁇ C.
  • this design may be applicable to the case where the second indication information and the first indication information correspond to one field.
  • some of the C bits may be used to determine the target first bandwidth portion.
  • the third indication information includes first indication information and second indication information, and the first indication information and the second indication information may respectively correspond to different bits.
  • C bits For example, another part of the C bits can be understood as C-D bits, where (C-D) ⁇ C.
  • the third indication information includes/is C bits, the first part of the C bits is used to indicate the first bandwidth part, and the second part of the C bits is used to indicate the second Bandwidth section. That is to say, the first indication information/bit for indicating the first bandwidth part and the second indication information/bit for indicating the second bandwidth part in the first DCI are independently set, so that the terminal can The corresponding bandwidth part is obtained by bit, which improves the flexibility of indicating the bandwidth part.
  • the first partial bits among the C bits are partial bits among the C bits.
  • the second part of the C bits is another part of the C bits.
  • first part of the C bits and the second part of the C bits may be all the C bits, or may be the C bits. Some bits are not limited in this application.
  • the different values of the first part of the C bits can respectively indicate different first bandwidth parts
  • the different values of the second part of the C bits can respectively indicate different values. the second bandwidth part.
  • a certain value of the first part of the C bits is used to indicate the target first bandwidth part.
  • a certain value of the second part of the C bits may be used to indicate the target second bandwidth part.
  • the first part of the C bits is the high-order bits of the C bits
  • the second part of the C bits is the low-order bits of the C bits.
  • the first bandwidth part/first indication information and the second bandwidth part/second indication information respectively occupy/correspond to different bits of the C bits.
  • the first part of the C bits is the low-order bits of the C bits
  • the second part of the C bits is the high-order bits of the C bits.
  • the number of bits occupied by the first bandwidth part/the first indication information/corresponding bits may be determined according to the number of the first bandwidth part.
  • m is the number of bits occupied by the first bandwidth part/the first indication information/corresponding
  • P 1 is the number of the first bandwidth part.
  • the terminal and/or the network device may determine the number of bits occupied by the first bandwidth part/the first indication information/corresponding to the number of the first bandwidth part.
  • the first bandwidth part/the first indication information occupied/corresponding bit is the first part of the C bits.
  • the number of first bandwidth parts may include any one or more of the following: the number of first bandwidth parts configured through RRC signaling (for example, RRC dedicated signaling), the number of first bandwidth parts configured through broadcast/multicast signaling ( For example, the number of first bandwidth parts configured by system information, or RRC broadcast/multicast information, or, MCCH message), or the number of preconfigured first bandwidth parts.
  • RRC signaling for example, RRC dedicated signaling
  • broadcast/multicast signaling For example, the number of first bandwidth parts configured by system information, or RRC broadcast/multicast information, or, MCCH message
  • MCCH message the number of preconfigured first bandwidth parts.
  • the number of the first bandwidth part does not include the initial bandwidth part or the number of the initial bandwidth part.
  • the initial bandwidth part is: the initial downlink bandwidth part, or the initial first transmission mode bandwidth part, or the initial downlink first transmission mode bandwidth part.
  • the number of bits occupied by the second bandwidth part/second indication information/corresponding bits may be determined according to the number of the second bandwidth part.
  • L is the number of bits occupied by the second bandwidth part/the second indication information/corresponding
  • P 2 is the number of the second bandwidth part.
  • the terminal and/or the network device may also determine the number of bits occupied by the second bandwidth part/second indication information/corresponding to the number of the second bandwidth part.
  • the bits occupied by the second bandwidth part/the second indication information/corresponding bits are the bits of the second part of the C bits.
  • the number of second bandwidth parts may include any one or more of the following: the number of second bandwidth parts configured through RRC signaling (for example, RRC dedicated signaling), the number of second bandwidth parts configured through broadcast/multicast signaling (for example, the number of second bandwidth parts configured by system information, or, RRC broadcast/multicast information, or, MCCH message), and the number of pre-configured second bandwidth parts.
  • RRC signaling for example, RRC dedicated signaling
  • broadcast/multicast signaling For example, the number of second bandwidth parts configured by system information, or, RRC broadcast/multicast information, or, MCCH message
  • MCCH message the number of pre-configured second bandwidth parts.
  • the number of the second bandwidth part does not include the initial bandwidth part or the number of the initial bandwidth part.
  • the initial bandwidth portion is: an initial downlink bandwidth portion, or an initial second transmission mode bandwidth portion, or an initial downlink second transmission mode bandwidth portion.
  • the network device and/or the terminal can respectively determine the number of bits occupied by the first bandwidth part/the first indication information/corresponding bits, and the number of bits occupied by the second bandwidth part/the second indication information/corresponding bits. and the first indication information and the second indication information can be determined respectively, thereby improving the flexibility of indicating the bandwidth part.
  • the number of bits occupied by the first bandwidth part/the first indication information/corresponding bit may be 2 bits.
  • the number of the second bandwidth part is 4, then the number of bits occupied by the second bandwidth part/second indication information/corresponding may be 2 bits.
  • the number of C bits may be determined according to the number of the first bandwidth part and the number of the second bandwidth part.
  • the number of C bits may be determined according to the number of bits corresponding to the first bandwidth part/the number of bits occupied by the first indication information and the number of bits corresponding to the number of bits occupied by the second bandwidth part/the second indication information/ .
  • the number of bits can be understood as the number of bits (occupied by) bits.
  • the number of C bits may be understood as the number of bits (occupied by) of the C bits.
  • the index of the target bandwidth portion is determined as follows:
  • the index of the target first bandwidth part is the first bandwidth part/the first indication information occupied/corresponding bit value.
  • the first indication information may indicate 2m bandwidth parts. If the number of the first bandwidth parts P 1 ⁇ 2 m , then The index of the target first bandwidth part may be the first bandwidth part/the first indication information occupied/corresponding bit value.
  • the index of the target first bandwidth part is the first bandwidth part/the first indication information occupied/corresponding bit value+e.
  • the index of the BWP can be numbered from 0, or can be numbered from e (for example, 1).
  • the above scheme is described by taking the numbering from 1 as an example, but this application does not limit it.
  • the number P1 of the first bandwidth parts is 4, and the indices of the first bandwidth parts are 1, 2, 3, and 4, respectively.
  • the first bandwidth part/the number of bits occupied by the first indication information/corresponding is 2.
  • the index of the first bandwidth is numbered from 1.
  • the index of the first bandwidth part is the value of the first bandwidth part/occupied by the first indication information/corresponding bit+1.
  • the number of the second bandwidth parts P 2 3, and the indices of the second bandwidth parts are 0, 1, and 2, respectively.
  • the number of bits occupied by the second bandwidth part/the second indication information/corresponding is 2.
  • the index of the second bandwidth is numbered from 0.
  • the index of the second bandwidth part is the value of the corresponding bit position/occupancy of the second bandwidth part/second indication information. As shown in table 2.
  • the indices of the bandwidth parts corresponding to the bit values "00", "01", and "10" may be 0, 1, and 2, respectively.
  • the third indication information includes/is C bits, and the terminal determines according to the third indication information that the target first bandwidth part may specifically be the terminal according to all the bits of the C bits. The value determines the first bandwidth part of the target.
  • all or all of the C bits are C bits. All or all of the C bits may be understood/replaced as C bits. For example, the value of the first part of all bits can be understood/replaced with the value of the first part of C bits.
  • this possible design may be applicable to the case where the second indication information and the first indication information correspond to one field, or may be applicable to the case where the first indication information corresponds to an independent field.
  • the terminal may determine the first bandwidth part according to all the bits of the C bits.
  • the value of the first part of all bits may be used to indicate the first bandwidth part, and/or the value of the second part of all bits is used to indicate the second bandwidth part.
  • the value of the first part of all bits may also be used to indicate the first transmission mode.
  • the value of the second part of all bits may also be used to indicate the second transmission mode.
  • the value of the first part of all the bits and the value of the second part of all the bits may be all the values of the bits, or may be the partial values of all the bits. This application Not limited.
  • the indication information used to indicate the first bandwidth part and the indication information used to indicate the second bandwidth part in the first DCI can be set uniformly, thereby saving bit occupancy.
  • a certain value of all the C bits in the indication information may be used to indicate the target first bandwidth part (ie, a certain first bandwidth part among one or more first bandwidth parts).
  • the terminal may determine the number of the C bits according to the number of the first bandwidth part and the number of the second bandwidth part.
  • the values of the first part of all the bits include: the values of the C bits are less than or equal to the first threshold.
  • the value of the second part of all bits includes: the value of the C bits is greater than the first threshold.
  • the first threshold may be any one or more of the following, or the first threshold may be determined according to any one or more of the following: a value configured by a network device, or a preconfigured value, Or, the value defined by the protocol, or, the number of the first bandwidth part-1, or, the number of the first bandwidth part.
  • the values of the first part of all the bits include: the values of the C bits are greater than the second threshold.
  • the value of the second part of all the bits includes: the value of the C bits is less than or equal to the second threshold.
  • the second threshold may be any one or more of the following, or the second threshold may be determined according to any one or more of the following: a value configured by the network device, or a preconfigured value, Or, the value defined by the protocol, or, the number of the second bandwidth part-1, or, the number of the second bandwidth part, or, H.
  • H is the maximum value that q 2 bits can take
  • q 2 is the number of bits determined according to the number of the second bandwidth part.
  • z is an integer, eg, 0.
  • P 2 is the number of second bandwidth parts.
  • the value of the first part of all the bits may be used to indicate the first bandwidth part.
  • the value of the first part of all the bits may be the entire value of all the bits, or may be the value of part of the all bits, which is not limited in this application.
  • the number of the C bits is determined according to the sum of the number of the first bandwidth part and the number of the second bandwidth part.
  • x is an integer, eg, 0.
  • q may be the number of bits occupied/corresponding to the third indication information (ie, the first indication information and the second indication information, or the first bandwidth part and the second bandwidth part).
  • this implementation can reduce the number of C bits/the number of bits occupied by the third indication information/corresponding to the transmission rate. Control signaling overhead.
  • the number of the C bits is determined according to the sum of the number of the first bits and the number of the second bits, and the number of the first bits is based on the The number of the first bandwidth parts is determined, and the number of the second bits is determined according to the number of the second bandwidth parts.
  • the network device and/or the terminal may determine the number q 1 of the first bits according to the number P 1 of the first bandwidth portion.
  • the number of the first bits may be the first bandwidth part/the number of bits occupied by the first indication information/the corresponding bits.
  • the network device and/or the terminal may determine the number q 2 of the second bits according to the number P 2 of the second bandwidth portion.
  • the number of the second bits may be the second bandwidth part/the number of bits occupied by the second indication information/the corresponding bits.
  • the C bits can be used to indicate the total number of bandwidth parts/the total number of values of the C bits can be greater than or equal to the number of the first bandwidth part and the number of the second bandwidth part. Sum. Wherein, the value of the C bits used to indicate the first bandwidth part and the value of the C bits used to indicate the second bandwidth part may be continuous or discontinuous/interval. The application is not limited.
  • the 2bit can be used to indicate 4 kinds of bandwidth parts or the value of the 2bit has 4 possibilities, and in this case, only two of the values need to be used to indicate a first bandwidth part and 1 second bandwidth part.
  • 00 may be used to indicate the first bandwidth portion
  • 10 may be used to indicate the second bandwidth portion (in this case, it can be understood that the values of the bits are discontinuous/interval).
  • 00 may be used to indicate the first bandwidth portion
  • 01 may be used to indicate the second bandwidth portion (in this case, it can be understood that the values of the bits are continuous).
  • the index of the target bandwidth portion is determined as follows:
  • the index of the target first bandwidth part is the value of the C bits.
  • the first indication information and the second indication information are indicated by C bits
  • the first indication information can be represented by the smaller value of the C bits
  • the second indication information can be represented by the smaller value of the C bits.
  • the larger value of the C bits is represented.
  • the terminal may use the smaller value of C bits as the index of the target first bandwidth part.
  • the value of the C bits received by the terminal is less than or equal to the first threshold, the value of the C bits is used as the index of the target first bandwidth part.
  • the number of the C bits is 2 bits, and if the number of the first bandwidth portion is 1, then in the case where the value of the C bits is 0, 0 can be used as the target first bandwidth portion. index of.
  • the first indication information may be represented by the value of the C bits.
  • the terminal may use the value of C bits as the index of the target first bandwidth part.
  • the number of the first bandwidth parts may be less than or equal to J.
  • J is the maximum value that can be taken by q 1 bits + 1.
  • the index of the target first bandwidth part is the value of the C bits+b.
  • b is an integer, or a positive integer, or, a non-negative integer.
  • b may be understood as the starting number value or the minimum number of the first bandwidth part, or the minimum value or the starting value of the index of the first bandwidth part.
  • the index of the target first bandwidth part is the value of the C bits+b.
  • J is the maximum value that can be taken by q1 bits + 1.
  • the index of the target first bandwidth part is the value of the C bits+1.
  • the value of the C bits + b is used as the index of the target first bandwidth part.
  • the index of the target first bandwidth part is the difference between the value of the C bits and the number of the second bandwidth part.
  • the first indication information and the second indication information are indicated by C bits
  • the first indication information can be represented by the larger value of the C bits
  • the second indication information can be represented by the larger value of the C bits.
  • the smaller value of the C bits is represented.
  • the terminal may use the difference between the larger value of C bits and the number of the second bandwidth portion as the index of the target first bandwidth portion.
  • the value of the C bits received by the terminal is greater than the second threshold, the value of the C bits minus the number of the second bandwidth portion is taken as the index of the target first bandwidth portion.
  • the value of the C bits received by the terminal is less than or equal to the second threshold
  • the value of the C bits or the value of the C bits + t is used as the index of the target second bandwidth part.
  • the index of the target second bandwidth part is the value of the C bits+1.
  • the number of the first bandwidth part is 2, and the indices of the first bandwidth part are 0, 1.
  • the number of the second bandwidth parts is 2, and the indices of the second bandwidth parts are 0 and 1.
  • the number of C bits is 2 bits (for example, according to or according to determined), the C bits can take four values of 0, 1, 2, and 3, as shown in Table 3.
  • the value of the C bits is 0, 1 (for example, the value of the C bits is less than or equal to (the number of the second bandwidth part-1)) can be used to indicate the second bandwidth part.
  • the value of the C bits is 2, 3 (eg, the value of the C bits is greater than (the number of the second bandwidth portion-1)) can be used to indicate the first bandwidth portion.
  • the value of the C bits is 3
  • the value of the C bits is 0, the value corresponds to the second bandwidth part, and the index of the second bandwidth part is 0.
  • the value of the C bits is 1
  • the value corresponds to the second bandwidth part, and the index of the second bandwidth part is 1.
  • the index of the target first bandwidth part is the difference between the value of the C bits and the number of the second bandwidth part+a, the second bandwidth part and the Two transmission modes are associated.
  • a is an integer, or a positive integer, or, a non-negative integer.
  • a may be understood as the starting number value or the minimum number of the first bandwidth part, or the minimum value or the starting value of the index of the first bandwidth part.
  • the index of the target first bandwidth part is the value of the C bits and the second bandwidth part. Quantity difference + a.
  • J is the maximum value that can be taken by q 1 bits + 1.
  • the index of the target first bandwidth part is the difference between the value of the C bits and the number of the second bandwidth part+1.
  • the value of the C bits received by the terminal is greater than the second threshold, the value of the C bits minus the number of the second bandwidth portion + a is taken as the index of the target first bandwidth portion.
  • the value of the C bits received by the terminal is less than or equal to the second threshold
  • the value of the C bits or the value of the C bits + t is used as the index of the target second bandwidth part.
  • the index of the target second bandwidth part is the value of the C bits+1.
  • the number of the first bandwidth part is 2, and the indices of the first bandwidth part are 1 and 2.
  • the number of the second bandwidth parts is 2, and the indices of the second bandwidth parts are 0 and 1.
  • the number of C bits is 2 bits (for example, according to or according to determined), the C bits can take four values of 0, 1, 2, and 3, as shown in Table 4.
  • the value of the C bits is 0, 1 may be used to indicate the second bandwidth portion (eg, the value of the C bits is less than or equal to (the number of the second bandwidth portion-1)).
  • the value of the C bits of 2 and 3 may be used to indicate the first bandwidth portion (eg, the value of the C bits is greater than (the number of the second bandwidth portion-1)).
  • the value of the C bits is 0, the value corresponds to the second bandwidth part, and the index of the second bandwidth part is 0.
  • the value of the C bits is 1, the value corresponds to the second bandwidth part, and the index of the second bandwidth part is 1.
  • the index of the target first bandwidth part is the difference between the value of the C bits and R.
  • R is the maximum value that can be taken by q 2 bits or the maximum value that can be taken by q 2 bits+c
  • q 2 is the number of bits determined according to the number of the second bandwidth portion.
  • z is an integer, eg, 0.
  • P 2 is the number of second bandwidth parts.
  • the first indication information and the second indication information are indicated by C bits
  • the first indication information can be represented by the larger value of the C bits
  • the second indication information can be represented by the larger value of the C bits.
  • the smaller value of the C bits is represented.
  • the terminal may use the difference between the larger value of C bits and R as the index of the target first bandwidth part.
  • the value of the C bits received by the terminal is greater than H
  • the value of the C bits minus R is taken as the index of the target first bandwidth part.
  • the value of the C bits received by the terminal is less than or equal to R
  • the value of the C bits or the value of the C bits + t is used as the index of the target second bandwidth part.
  • the index of the target second bandwidth part is the value of the C bits+1.
  • the number of the first bandwidth part is 2, and the indices of the first bandwidth part are 0, 1.
  • the number of the second bandwidth parts is 3, and the indices of the second bandwidth parts are 0, 1, and 2.
  • the number of C bits is 3 bits (for example, according to or according to determined), the C bits can take 8 values of 0, 1, 2, 3, 4, 5, 6, and 7, as shown in Table 5.
  • the value of C bits of the first DCI received by the terminal 4
  • the value corresponds to the first bandwidth part
  • the value of the C bits is 5
  • the value corresponds to the first bandwidth part
  • the value of the C bits is 0, the value corresponds to the second bandwidth part, and the index of the second bandwidth part is 0.
  • the value of the C bits is 1
  • the value corresponds to the second bandwidth part, and the index of the second bandwidth part is 1.
  • the value of the C bits is 2
  • the value corresponds to the second bandwidth part, and the index of the second bandwidth part is 2.
  • the index of the target first bandwidth part is the difference between the value of the C bits and R+a.
  • R is the maximum value that can be taken by q 2 bits or the maximum value that can be taken by q 2 bits ++c
  • q 2 is the number of bits determined according to the number of the second bandwidth portion.
  • z is an integer, eg, 0.
  • P 2 is the number of second bandwidth parts.
  • a is an integer, or a positive integer, or, a non-negative integer.
  • a may be understood as the starting number value or the minimum number of the first bandwidth part, or the minimum value or the starting value of the index of the first bandwidth part.
  • the index of the target first bandwidth part is the value of the C bits+1.
  • the first indication information and the second indication information are indicated by C bits
  • the first indication information can be represented by the larger value of the C bits
  • the second indication information can be represented by the larger value of the C bits.
  • the smaller value of the C bits is represented.
  • the terminal may use the difference value+a between the larger value of C bits and R as the index of the target first bandwidth part.
  • the value of the C bits received by the terminal is greater than H
  • the value of the C bits minus R+a is taken as the index of the target first bandwidth part.
  • the value of the C bits received by the terminal is less than or equal to H
  • the value of the C bits or the value of the C bits + t is used as the index of the target second bandwidth part.
  • the index of the target second bandwidth part is the value of the C bits+1.
  • the number of the first bandwidth part is 2, and the indices of the first bandwidth part are 1 and 2.
  • the number of the second bandwidth parts is 3, and the indices of the second bandwidth parts are 0, 1, and 2.
  • the number of C bits is 3 bits (for example, according to or according to determined), the C bits can take 8 values of 0, 1, 2, 3, 4, 5, 6, and 7, as shown in Table 6.
  • the value of C bits of the first DCI received by the terminal 4
  • the value corresponds to the first bandwidth part
  • the value of the C bits is 5
  • the value corresponds to the first bandwidth part
  • the value of the C bits is 0, the value corresponds to the second bandwidth part, and the index of the second bandwidth part is 0.
  • the value of the C bits is 1
  • the value corresponds to the second bandwidth part
  • the index of the second bandwidth part is 1.
  • the value of the C bits is 2
  • the value corresponds to the second bandwidth part, and the index of the second bandwidth part is 2.
  • the terminal acquires first bandwidth part information (eg, the location and/or bandwidth of the first bandwidth part, the index of the first bandwidth part, the number of the first bandwidth part).
  • the terminal may acquire the first bandwidth part information through pre-configuration or according to regulations.
  • the terminal may also receive a third message sent by the network device, where the third message is used to indicate the first bandwidth part information.
  • the terminal acquires second bandwidth part information (for example, the position and/or bandwidth of the second bandwidth part, the index of the second bandwidth part, the number of the second bandwidth part).
  • the terminal may acquire the second bandwidth part information through pre-configuration or according to regulations.
  • the terminal may also receive a fourth message sent by the network device, where the fourth message is used to indicate the second bandwidth part information.
  • third message and the fourth message may be different signaling, or may be the same signaling, which is not limited in this application.
  • Step 202 is optional.
  • the communication between the terminal and the network device using the second transmission mode and/or using the first transmission mode may specifically be data transmission or signaling interaction, which is not limited in this application.
  • the bandwidth portion corresponding to the first transmission mode may be the target first BWP corresponding to the first transmission mode.
  • determining that the terminal communicates with the network device on the bandwidth portion corresponding to the first transmission mode may include any one or more of the following:
  • the terminal activates the bandwidth part corresponding to the first transmission mode.
  • the terminal deactivates the bandwidth part corresponding to the second transmission mode.
  • the terminal receives the data scheduled by the first DCI on the bandwidth part corresponding to the first transmission mode.
  • the terminal receives the first DCI, and may determine, according to the first DCI, to communicate with the network device on the bandwidth portion corresponding to the first transmission mode. For example, the terminal may send data to the network device or receive data on the bandwidth portion corresponding to the first transmission mode.
  • the bandwidth portion corresponding to the second transmission mode may be the target second BWP corresponding to the second transmission mode.
  • determining that the terminal communicates with the network device on the bandwidth portion corresponding to the second transmission mode may include any one or more of the following:
  • the terminal activates the bandwidth part corresponding to the second transmission mode.
  • the terminal receives the data scheduled by the first DCI on the bandwidth portion corresponding to the second transmission mode.
  • the terminal may also determine to communicate with the network device on the bandwidth portion corresponding to the second transmission mode. For example, the terminal may send data to the network device or receive data on the bandwidth portion corresponding to the second transmission mode.
  • the first DCI may include the third indication information, but not the first information. That is, the information is optional.
  • the terminal receives the first DCI from the network device, and the scrambling information (or, the first DCI) of the first DCI corresponds to the second transmission mode, or the terminal receives the first DCI on the BWP corresponding to the second transmission mode DCI;
  • the first DCI includes first information and/or third indication information, where the first information is used to indicate the first transmission mode, and the third indication information may be used to indicate the target first bandwidth part and/or the first bandwidth part. It is avoided that the terminal cannot receive the control signaling indicating the first transmission mode and/or the target first bandwidth portion corresponding to the first transmission mode sent by the network device, and it is also avoided that the terminal cannot know the first transmission mode and/or the first transmission mode.
  • the transmission situation of the target first bandwidth part corresponding to the mode may miss the reception of data or increase the delay of data reception, thereby helping to reduce the transmission delay. It is helpful for the terminal to determine the transmission situation on the BWP corresponding to the first transmission mode. It is helpful for the terminal to determine the first transmission mode and/or the target first bandwidth portion. Optionally, the terminal may perform any one or more of the following: BWP switching (for example, switching to the target first bandwidth portion corresponding to the first transmission mode), activating the target first bandwidth portion corresponding to the first transmission mode, and further. Receive data corresponding to the first transmission mode (for example, data scheduled by the first control signaling), and determine to communicate with the network device on the target first bandwidth portion corresponding to the first transmission mode.
  • the network device separately sends the control signaling indicating the target first bandwidth portion corresponding to the first transmission mode to the terminal. This helps to improve communication efficiency.
  • the terminal receives the control signaling that is sent by the network device and indicates the target first bandwidth part corresponding to the first transmission mode.
  • the terminal always searches for the control signaling scrambled by the scrambling information corresponding to the first transmission mode, which is beneficial to the energy saving of the terminal. It also prevents the terminal from always working on multiple BWPs to receive control signaling corresponding to different transmission modes, which is beneficial for the terminal to save energy.
  • the terminal may use the first transmission mode for communication on the target first bandwidth portion, which is beneficial for the terminal to flexibly switch/change the transmission mode. It also helps that the first device can flexibly select an appropriate transmission mode from the first transmission mode or the second transmission mode for communication. In addition, the first device can flexibly communicate in the first transmission mode and/or communicate in the second transmission mode, which improves the flexibility of communication. It is avoided that the terminal cannot receive the control signaling indicating the first transmission mode and/or the target first bandwidth portion corresponding to the first transmission mode sent by the network device, and it is also avoided that the terminal cannot know the first transmission mode and/or the first transmission mode. The transmission situation of the target first bandwidth part corresponding to the mode may miss the reception of data, thereby helping to improve the reliability of data transmission.
  • the first control signaling may be first sidelink control information (sidelink control information, SCI).
  • SCI sidelink control information
  • the first device is a first terminal
  • the second device is a second terminal.
  • the first SCI may be a first-level SCI.
  • the first level SCI is used to schedule the second level SCI and/or PSSCH/data.
  • the second SCI can be used to decode PSSCH/data.
  • the present application may also include other possible implementations.
  • only the terminal is replaced by the first device, the network device is replaced by the second device, and the first DCI is replaced by the first device. It is enough to understand the control signaling, which will not be repeated here.
  • the first control signaling can be used for any one or more of the following:
  • the data includes any one or more of the following: downlink data, uplink data, and SL data.
  • the second control signaling is the second level SCI.
  • the first control signaling contains a BWP indication.
  • the first control signaling may be understood as the first control information.
  • FIG. 3 shows a schematic flowchart of a method for transmitting control signaling according to another embodiment of the present application.
  • the first device receives first control signaling on the second bandwidth part, where the first control signaling is used to schedule data to be transmitted on the first bandwidth part or to schedule resources on the first bandwidth part.
  • the first transmission mode corresponding to the first bandwidth part is different from the second transmission mode corresponding to the second bandwidth part.
  • the first device communicates with the second device on the bandwidth portion corresponding to the first transmission mode and/or communicates with the second device on the bandwidth portion corresponding to the second transmission mode.
  • this embodiment is described by taking the first control signaling as the first DCI, the first device as the terminal, and the second device as the network device as an example.
  • the terminal may receive, on the second bandwidth portion, a first DCI for scheduling data to be transmitted on the second bandwidth portion or for scheduling resources on the second bandwidth portion.
  • the first DCI may also be used to schedule data to be transmitted on the first bandwidth part or to schedule resources on the first bandwidth part, which helps the terminal to receive data on the second bandwidth part Scheduling the DCI for transmitting data on the first bandwidth part or scheduling the resources on the first bandwidth part, thereby helping the terminal to obtain the first DCI corresponding to the data transmitted on the first bandwidth part from the second bandwidth part, which helps After the terminal determines the first transmission mode and/or the transmission situation of the target first bandwidth portion corresponding to the first transmission mode, the terminal may further receive the data scheduled by the first DCI on the first bandwidth portion.
  • the terminal can obtain the first DCI corresponding to the data transmitted by the other bandwidth parts only after switching to other bandwidth parts, thereby improving the efficiency of data transmission, reducing the transmission delay, and also helping the terminal to save energy. It also prevents the terminal from always working on multiple BWPs to receive control signaling corresponding to different transmission modes, which is beneficial for the terminal to save energy.
  • the first transmission mode is unicast, and the second transmission mode is multicast.
  • the second BWP is a multicast BWP.
  • the scrambling information of the first DCI is unicast RNTI.
  • the first device receives first control signaling on the second bandwidth portion, where the first control signaling is used to schedule data to be transmitted on the first bandwidth portion or to schedule resources on the first bandwidth portion, the first control signaling
  • the transmission mode corresponding to one bandwidth part is unicast, and the transmission mode corresponding to the second bandwidth part is multicast. In this way, the first device can communicate with the second device on the bandwidth portion corresponding to the unicast.
  • the first BWP is a unicast BWP or an initial BWP.
  • the first transmission mode is a first multicast
  • the second transmission mode is a second multicast
  • the second BWP is the BWP corresponding to the second multicast.
  • the scrambling information of the first DCI is the RNTI corresponding to the first multicast.
  • the first device receives first control signaling on the second bandwidth portion, where the first control signaling is used to schedule data to be transmitted on the first bandwidth portion or to schedule resources on the first bandwidth portion, the first control signaling
  • the transmission mode corresponding to a bandwidth part is the first multicast
  • the transmission mode corresponding to the second bandwidth part is the second multicast. In this way, the first device can communicate with the second device on the bandwidth portion corresponding to the first multicast.
  • the first BWP is the BWP corresponding to the first multicast.
  • the first transmission mode is multicast, and the second transmission mode is unicast.
  • the second BWP is a unicast BWP or an initial BWP.
  • the scrambling information of the first DCI is a multicast RNTI.
  • the first device receives first control signaling on the second bandwidth portion, where the first control signaling is used to schedule data to be transmitted on the first bandwidth portion or to schedule resources on the first bandwidth portion, the first control signaling
  • the transmission mode corresponding to one bandwidth part is multicast, and the transmission mode corresponding to the second bandwidth part is unicast. In this way, the first device can communicate with the second device on the bandwidth portion corresponding to the multicast.
  • the first BWP is a multicast BWP.
  • the first transmission mode is multicast
  • the second transmission mode is transmission corresponding to the first RNTI.
  • the second BWP is the initial BWP.
  • the scrambling information of the first DCI is a multicast RNTI.
  • the first device receives first control signaling on the second bandwidth portion, where the first control signaling is used to schedule data to be transmitted on the first bandwidth portion or to schedule resources on the first bandwidth portion, the first control signaling
  • the transmission mode corresponding to one bandwidth part is multicast, and the transmission mode corresponding to the second bandwidth part is unicast. In this way, the first device can communicate with the second device on the bandwidth portion corresponding to the multicast.
  • the first BWP is a multicast BWP.
  • the terminal acquires the information of the first bandwidth part (eg, the position and/or bandwidth of the first bandwidth part, the index of the first bandwidth part, the number of the first bandwidth part).
  • the information of the first bandwidth part eg, the position and/or bandwidth of the first bandwidth part, the index of the first bandwidth part, the number of the first bandwidth part.
  • the terminal acquires second bandwidth part information (eg, the position and/or bandwidth of the second bandwidth part, the index of the second bandwidth part, the number of the second bandwidth part).
  • second bandwidth part information eg, the position and/or bandwidth of the second bandwidth part, the index of the second bandwidth part, the number of the second bandwidth part.
  • first transmission mode the second transmission mode
  • first control signaling may be similar to those described in the embodiment shown in FIG. 2 , and in order to avoid repetition, detailed descriptions are not repeated here.
  • FIG. 4 shows a schematic flowchart of a method for message transmission according to an embodiment of the present application.
  • the terminal sends a second message to a network device.
  • the network device sends confirmation information to the terminal.
  • the terminal may apply/determine the correspondence between the second identifier and the index of the second identifier according to the second information in the second message, or the terminal may apply the second information indicated by the second information in the second message.
  • the correspondence between the identifier and the index of the second identifier may be applied/determine the correspondence between the second identifier and the index of the second identifier according to the second information in the second message, or the terminal may apply the second information indicated by the second information in the second message.
  • step 403 is optional.
  • FIG. 4 may also include other possible implementations, as long as the terminal is replaced by the first device and the network device is replaced by the second device for understanding, which will not be repeated here.
  • each device may also be implemented by a component (for example, a chip or a circuit) of a corresponding device.
  • each network element such as a transmitter device or a receiver device
  • each network element includes hardware structures and/or software modules corresponding to performing each function in order to implement the above functions.
  • Those skilled in the art should realize that the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the transmitting-end device or the receiving-end device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware, or can be implemented in the form of software function modules. It should be noted that the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. The following description will be given by using the division of each function module corresponding to each function as an example.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • FIG. 5 shows a schematic block diagram of an apparatus 500 for transmitting control signaling according to an embodiment of the present application.
  • the apparatus 500 may correspond to the terminal in the embodiment shown in FIG. 2 , and may have any function of the terminal in the method.
  • the apparatus 500 includes a transceiver module 510 .
  • the apparatus 500 further includes a processing module 520 .
  • the transceiver module 510 is configured to receive control signaling from the second device, where the control signaling includes first information, where the first information is used to indicate a first transmission mode, and the scrambling information of the control signaling corresponds to The second transmission mode.
  • the processing module 520 is configured to determine, according to the control signaling, to communicate with the second device on the bandwidth portion corresponding to the first transmission mode and/or to communicate with the second device in the second transmission mode communicates with the second device on the portion of the bandwidth.
  • the first information includes second identification information and/or a preset field
  • the second identification information is used to schedule transmission corresponding to the first transmission mode
  • the preset field is the same as the first transmission mode. associated with the transport mode.
  • the first information includes a bandwidth part BWP field, where the BWP field is used to indicate the first transmission mode.
  • control signaling further includes indication information, where the indication information is used to indicate the target first bandwidth part corresponding to the first transmission mode.
  • the indication information includes C bits, and the method further includes:
  • the target first bandwidth portion is determined according to the values of the C bits.
  • the index of the target first bandwidth part is the difference between the value of the C bits and the number of the second bandwidth part, and the second bandwidth part is associated with the second transmission mode;
  • the index of the target first bandwidth part is the difference between the value of the C bits and the number of the second bandwidth part+a, the second bandwidth part is associated with the second transmission mode, and a is an integer; or
  • the index of the target first bandwidth part is the value of the C bits
  • the index of the target first bandwidth part is the value of the C bits +b, where b is an integer;
  • the index of the target first bandwidth part is the difference between the value of the C bits and R, and R is the maximum value of the bits determined according to the number of the second bandwidth part;
  • the index of the target first bandwidth part is the difference between the value of the C bits and R+c, where R is the maximum value of the bits determined according to the number of the second bandwidth part, and c is an integer.
  • the method further includes:
  • the first bandwidth part is associated with the first transmission mode
  • the number of the C bits is determined according to the number of the first bandwidth portion and the number of the second bandwidth portion, the first bandwidth portion is associated with the first transmission mode, and the second bandwidth portion is associated with the first bandwidth portion. Two transmission modes are associated.
  • determining the number of C bits according to the number of the first bandwidth part and the number of the second bandwidth part including:
  • the number of the C bits is determined according to the sum of the number of the first bits and the number of the second bits, and the number of the first bits is determined according to the number of the first bandwidth part Yes, the number of the second bits is determined according to the number of the second bandwidth part.
  • the second transmission mode is unicast, and the first transmission mode is multicast.
  • the second transmission mode is a first multicast
  • the first transmission mode is a second multicast
  • the second transmission mode is multicast, and the first transmission mode is unicast.
  • FIG. 6 shows an apparatus 600 for transmitting control signaling provided by an embodiment of the present application, where the apparatus 600 may be a first device.
  • the first device is the terminal described in FIG. 2 .
  • the device may adopt the hardware architecture shown in FIG. 6 .
  • the apparatus may include a processor 610 and a transceiver 630, and optionally, the apparatus may further include a memory 640, and the processor 610, the transceiver 630 and the memory 640 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 520 in FIG. 5 can be implemented by the processor 610
  • the related functions implemented by the transceiver module 510 can be implemented by the processor 610 controlling the transceiver 630 .
  • the processor 610 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), a special-purpose processor, or one or more An integrated circuit for implementing the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • it may be a baseband processor, or a central processing unit.
  • the baseband processor can be used to process the communication protocol and communication data
  • the central processing unit can be used to control the device for transmitting control signaling, execute the software program, and process the data of the software program.
  • the processor 610 may include one or more processors, such as one or more central processing units (CPUs).
  • processors such as one or more central processing units (CPUs).
  • the CPU may be a single Core CPU, can also be a multi-core CPU.
  • the transceiver 630 is used to transmit and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter for transmitting data and/or signals and a receiver for receiving data and/or signals.
  • the memory 640 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable memory (EPROM), read-only memory (EPROM), and erasable programmable memory (EPROM).
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable memory
  • EPROM read-only memory
  • EPROM erasable programmable memory
  • EPROM erasable programmable memory
  • EPROM erasable programmable memory
  • EPROM erasable programmable memory
  • EPROM erasable programmable memory
  • EPROM erasable programmable memory
  • EPROM erasable programmable memory
  • EPROM erasable programmable memory
  • EPROM erasable programmable memory
  • a compact disc read-only memory (CD-ROM) the memory 640 is used to store related instructions and data.
  • the memory 640 is used to store program codes and data of the first device, and may be a separate device or integrated in the processor 610 .
  • the processor 610 is configured to control the transceiver to perform information transmission with the second device.
  • the processor 610 is configured to control the transceiver to perform information transmission with the second device.
  • the apparatus 600 may further include an output device and an input device.
  • the output device communicates with the processor 610 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector), etc.
  • the input device communicates with the processor 601 and can receive user input in a variety of ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device, or the like.
  • FIG. 6 only shows a simplified design of the apparatus for transmitting control signaling.
  • the device may also include other necessary elements, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all the first devices that can implement the present application are included in the present application. within the scope of protection.
  • the apparatus 600 may be a chip, for example, a communication chip that can be used in the first device, for implementing the related functions of the processor 610 in the first device.
  • the chip can be a field programmable gate array, an application-specific integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes, and when the codes are executed, make the processor implement corresponding functions.
  • An embodiment of the present application further provides an apparatus, and the apparatus may be a terminal or a circuit.
  • the apparatus may be configured to perform the actions performed by the terminal in the foregoing method embodiments.
  • FIG. 7 shows a schematic block diagram of an apparatus 700 for transmitting control signaling according to an embodiment of the present application.
  • the apparatus 700 may correspond to a second device, and the second device may be the network device in the embodiment shown in FIG. 2 .
  • the apparatus 700 may have any function of the second device in the method.
  • the apparatus 700 includes a transceiver module 710 .
  • the apparatus 700 further includes a processing module 720 .
  • the transceiver module 710 sends control signaling to the first device, where the control signaling includes first information, the first information is used to indicate a first transmission mode, and the scrambling information of the control signaling corresponds to the second transmission mode .
  • the processing module 720 is further configured to communicate with the first device on the bandwidth portion corresponding to the first transmission mode, and or perform communication with the first device on the bandwidth portion corresponding to the second transmission mode. communication.
  • the first information includes second identification information and/or a preset field
  • the second identification information is used to schedule transmission corresponding to the first transmission mode
  • the preset field is the same as the first transmission mode. associated with the transport mode.
  • the first information includes a bandwidth part BWP field, where the BWP field is used to indicate the first transmission mode.
  • control signaling further includes indication information, where the indication information is used to indicate the target first bandwidth part for transmission in the first transmission mode.
  • control signaling includes C bits, and the value of some bits in the C bits is used to determine the target first bandwidth part, or the value of the C bits. for determining the first bandwidth portion.
  • the index of the target first bandwidth part is the difference between the value of the C bits and the number of the second bandwidth part, and the second bandwidth part is associated with the second transmission mode;
  • the index of the target first bandwidth part is the difference between the value of the C bits and the number of the second bandwidth part+a, the second bandwidth part is associated with the second transmission mode, and a is an integer; or
  • the index of the target first bandwidth part is the value of the C bits
  • the index of the target first bandwidth part is the value of the C bits +b, where b is an integer;
  • the index of the target first bandwidth part is the difference between the value of the C bits and R, and R is the maximum value of the bits determined according to the number of the second bandwidth part;
  • the index of the target first bandwidth part is the difference between the value of the C bits and R+c, where R is the maximum value of the bits determined according to the number of the second bandwidth part, and c is an integer.
  • the second transmission mode is unicast, and the first transmission mode is multicast.
  • the second transmission mode is a first multicast
  • the first transmission mode is a second multicast
  • the second transmission mode is multicast, and the first transmission mode is unicast.
  • FIG. 8 shows an apparatus 800 for transmitting control signaling provided by an embodiment of the present application, where the apparatus 800 may be a second device.
  • the apparatus may adopt the hardware architecture shown in FIG. 8 .
  • the apparatus may include a processor 810 and a transceiver 820, and optionally, the apparatus may further include a memory 830, and the processor 810, the transceiver 820 and the memory 830 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 720 in FIG. 7 can be implemented by the processor 810
  • the related functions implemented by the transceiver module 710 can be implemented by the processor 810 controlling the transceiver 820 .
  • processor 810 may be a general-purpose central processing unit (CPU), microprocessor, application-specific integrated circuit (ASIC), special-purpose processor, or one or more An integrated circuit for implementing the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • it can be a baseband processor, or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control a device (such as a base station, terminal, or chip, etc.) that transmits control signaling, execute software programs, and process software programs. data.
  • the processor 810 may include one or more processors, such as one or more central processing units (CPUs).
  • processors such as one or more central processing units (CPUs).
  • the processor may be a single Core CPU, can also be a multi-core CPU.
  • the transceiver 820 is used to transmit and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter for transmitting data and/or signals and a receiver for receiving data and/or signals.
  • the memory 830 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read only memory (EPROM), read-only memory (EPROM).
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read only memory
  • EPROM read-only memory
  • CD-ROM compact disc read-only memory
  • the memory 830 is used to store program codes and data of the terminal, and can be a separate device or integrated in the processor 810 .
  • the processor 810 is configured to control the transceiver and the terminal to perform information transmission. For details, refer to the description in the method embodiment, which is not repeated here.
  • the apparatus 800 may further include an output device and an input device.
  • the output device communicates with the processor 810 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector), etc.
  • the input device communicates with the processor 701 and can receive user input in a variety of ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device, or the like.
  • FIG. 8 only shows a simplified design of the apparatus for transmitting control signaling.
  • the device may also include other necessary elements, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all terminals that can implement the present application are within the protection scope of the present application. within.
  • the apparatus 800 may be a chip, for example, a communication chip that can be used in a terminal, for implementing the relevant functions of the processor 810 in the terminal.
  • the chip can be a field programmable gate array, an application-specific integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes, and when the codes are executed, make the processor implement corresponding functions.
  • An embodiment of the present application further provides an apparatus, and the apparatus may be a network device or a circuit.
  • the apparatus may be configured to perform the actions performed by the network device in the foregoing method embodiments.
  • FIG. 9 shows a schematic structural diagram of a simplified terminal.
  • the terminal takes a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminals, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminals may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 9 only one memory and processor are shown in FIG. 9 . In an actual end product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • an antenna with a transceiver function and a radio frequency circuit may be regarded as a transceiver unit of the terminal, and a processor with a processing function may be regarded as a processing unit of the terminal.
  • the terminal includes a transceiver unit 910 and a processing unit 920 .
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
  • the processing unit may also be referred to as a processor, a processing single board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 910 may be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 910 may be regarded as a transmitting unit, that is, the transceiver unit 910 includes a receiving unit and a transmitting unit.
  • the transceiver unit may also sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • transceiving unit 910 is configured to perform the sending and receiving operations on the terminal side in the above method embodiments
  • processing unit 920 is configured to perform other operations on the terminal except the transceiving operations in the above method embodiments.
  • the processing unit 920 is configured to execute the processing step 202 on the terminal side in FIG. 2 .
  • the transceiving unit 910 is configured to perform the transceiving operation of step 201 in FIG. 2 , and/or the transceiving unit 910 is further configured to perform other transceiving steps on the terminal side in this embodiment of the present application.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, a microprocessor or an integrated circuit integrated on the chip.
  • the apparatus when the apparatus is a terminal, reference may also be made to the device shown in FIG. 10 .
  • the device may perform functions similar to processor 610 in Figure 6 .
  • the device includes a processor 1001 , a transmit data processor 1003 , and a receive data processor 1005 .
  • the processing module 520 in the above-mentioned embodiment may be the processor 1001 in FIG. 10 and perform corresponding functions.
  • the transceiver module 510 in the above embodiment may be the sending data processor 1003 and the receiving data processor 1005 in FIG. 10 .
  • the channel encoder and the channel decoder are shown in FIG. 10 , it can be understood that these modules do not constitute a limitative description of this embodiment, but are only illustrative.
  • FIG. 11 shows another form of this embodiment.
  • the processing device 1100 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment may serve as a modulation subsystem therein.
  • the modulation subsystem may include a processor 1103 and an interface 1104 .
  • the processor 1103 completes the functions of the above-mentioned processing module 510
  • the interface 1104 implements the functions of the above-mentioned transceiver module 511 .
  • the modulation subsystem includes a memory 1106, a processor 1103, and a program stored in the memory and executable on the processor, and the processor implements the method shown in FIG. 2 when the processor executes the program. example.
  • the memory 1106 may be non-volatile or volatile, and its location may be inside the modulation subsystem or in the processing device 1100, as long as the memory 1106 can be connected to the The processor 1103 is sufficient.
  • the network device may be as shown in FIG. 12
  • the apparatus 1200 includes one or more radio frequency units, such as a remote radio unit (remote radio unit, RRU) 1210 and one or more radio frequency units
  • a baseband unit (BBU) may also be referred to as a digital unit, digital unit, DU) 1220 .
  • the RRU 1210 may be called a transceiver module, which corresponds to the transceiver module 710 in FIG. 7 , and optionally, the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1216. and RF unit 1217.
  • the part of the RRU 1210 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending indication information to terminal equipment.
  • the part of the BBU 1210 is mainly used to perform baseband processing, control the base station, and the like.
  • the RRU 1210 and the BBU 1220 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1220 is the control center of the base station, and can also be called a processing module, which can correspond to the processing module 720 in FIG. 7 , and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and the like.
  • the BBU processing module
  • the BBU may be used to control the base station to perform the operation procedure of the network device in the foregoing method embodiments, for example, to generate the foregoing indication information and the like.
  • the BBU 1220 may be composed of one or more boards, and the multiple boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may respectively support a wireless access network of different access standards.
  • Wireless access network (such as LTE network, 5G network or other network).
  • the BBU 1220 also includes a memory 1221 and a processor 1222.
  • the memory 1221 is used to store necessary instructions and data.
  • the processor 1222 is configured to control the base station to perform necessary actions, for example, to control the base station to perform the operation flow of the network device in the foregoing method embodiments.
  • the memory 1221 and the processor 1222 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state disks, SSD)) etc.
  • the processor may be an integrated circuit chip, which has signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA), or other possible solutions. Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programming logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • synchronous link dynamic random access memory synchronous link DRAM, SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • At least one means one or more, and “plurality” means two or more.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one item (a) of a, b, or c may represent: a, b, c, ab, ac, bc, or abc, where a, b, and c may be single or multiple .
  • references throughout the specification to "embodiments,” “possible designs,” or “possible implementations” mean that a particular feature, structure, or characteristic associated with the embodiment is included in at least one embodiment of the present invention .
  • appearances of "in one embodiment,” “in one possible design,” or “in one possible implementation” in various places throughout this specification are not necessarily necessarily referring to the same embodiment.
  • the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments. It should be understood that, in various embodiments of the present invention, the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, rather than the embodiments of the present invention. implementation constitutes any limitation.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as stand-alone products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输控制信令的方法。第一设备接收来自第二设备的包括第一信息的控制信令,该第一信息用于指示第一传输模式,该控制信令的加扰信息对应第二传输模式。这样通过第二传输模式对应的控制信令指示了第一传输模式,有助于提高通信效率。

Description

传输控制信令的方法和装置
本申请要求于2020年8月6日提交中国专利局、申请号为202010784130.4、发明名称为“传输控制信令的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及一种传输控制信令的方法和装置。
背景技术
多媒体广播多播业务(multimedia broadcast multicast service,MBMS)或组播广播服务(multicast and broadcast services,或,multicast/broadcast services,或,multicast-broadcast services,MBS)可以有效地利用通信资源,其在通信网络中提供一个数据源向多个用户发送数据的点到多点业务,实现资源共享,提高资源利用率,尤其是空口接口资源。一般的,在MBMS或MBS场景下,既可以将信息向所有用户广播,也可以发送给一组收费的签约用户收看,可以帮助运营商开展多媒体广告、免费和收费电视频道、彩信群发等多种商业应用。
新无线(new radio,NR)中支持带宽部分(bandwidth part,BWP),在NR中引入组播之后,BWP和传输模式具有对应关系。例如,不同的组播可以分别在各自对应的BWP上进行传输,或者单播和组播也分别在对应的BWP上传输。传统方案中,在一种传输模式对应的BWP上只能传输该传输模式对应的数据或信令,通信效率较低。
发明内容
本申请提供一种传输控制信令的方法和装置,能够有助于提高传输效率。
第一方面,提供了一种传输控制信令的方法,该方法包括:接收来自第二设备的控制信令,所述控制信令包括第一信息,所述第一信息用于指示第一传输模式,所述控制信令的加扰信息对应第二传输模式。
第一设备接收来自第二设备的包括第一信息的控制信令,该第一信息用于指示第一传输模式,该控制信令的加扰信息对应第二传输模式。这样通过第二传输模式对应的控制信令指示了第一传输模式,有助于提高通信效率。避免了终端接收不到网络设备发送的指示第一传输模式和/或第一传输模式对应的目标第一带宽部分的控制信令,也避免了终端无法获知第一传输模式和/或第一传输模式对应的目标第一带宽部分的传输情况而错过数据的接收或增加数据接收的时延,从而有助于降低传输时延。有助于终端确定第一传输模式对应的BWP上的传输情况。有助于终端确定第一传输模式和/或目标第一带宽部分。可选的,终端可能会进行以下任一项或多项:BWP切换(例如,切换到第一传输模式对应的目标第一带宽部分)、激活第一传输模式对应的目标第一带宽部分、进一步接收第一传输模式对应的数据(例如,该第一控制信令调度的数据)、确定在第一传输模式对应的目标 第一带宽部分上与网络设备进行通信。也避免了网络设备单独向终端发送指示第一传输模式对应的目标第一带宽部分的控制信令。对应的,也避免了终端接收网络设备单独发送的指示第一传输模式对应的目标第一带宽部分的控制信令。也避免了终端一直检索第一传输模式对应的加扰信息加扰的控制信令,有利于终端的节能。也避免了终端一直工作在多个BWP上接收不同传输模式对应的控制信令,有利于终端节能。也有助于第一设备可以灵活的从第一传输模式或第二传输模式中选择合适的传输模式进行通信。此外,第一设备可以灵活采用第一传输模式通信和/或采用第二传输模式通信,提高了通信的灵活性。另外,本申请实施例避免了终端接收不到网络设备发送的指示第一传输模式和/或第一传输模式对应的目标第一带宽部分的控制信令而错过数据的接收,也避免了终端无法获知第一传输模式和/或第一传输模式对应的目标第一带宽部分的传输情况而错过数据的接收,从而有助于提高数据传输的可靠性。
在一些可能的实现方式中,所述方法还包括:根据所述控制信令,确定在所述第一传输模式对应的带宽部分上与所述第二设备进行通信和/或在所述第二传输模式对应的带宽部分上与所述第二设备进行通信。
第一设备根据控制信令确定在所述第一传输模式对应的带宽部分上与所述第二设备进行通信和/或在所述第二传输模式对应的带宽部分上与所述第二设备进行通信。也就是说,第一设备可以灵活采用第一传输模式通信或采用第二传输模式通信,从而能够提高通信效率。
在一些可能的实现方式中,所述第一信息包括第二标识信息和/或预设字段,所述第二标识信息用于调度所述第一传输模式对应的传输,所述预设字段与所述第一传输模式相关联。
第一信息指示的内容可以通过第二标识信息或预设字段实现,即提供了一种指示第一传输模式的实现方式,从而提高了指示第一传输模式的灵活性。
在一些可能的实现方式中,所述第一信息包括带宽部分BWP字段,所述BWP字段用于指示所述第一传输模式。
第一信息指示的内容还可以通过BWP字段实现,即提供了另一种指示第一传输模式的实现方式,从而提高了指示第一传输模式的灵活性。
在一些可能的实现方式中,所述控制信令还包括指示信息,所述指示信息用于指示所述第一传输模式对应的目标第一带宽部分。
控制信令在指示第一传输模式的情况下,还可以指示该第一传输模式对应的带宽部分,这样使得第一设备能够确定第一传输模式对应的带宽部分,进一步可以在该第一传输模式对应的带宽部分上进行通信,这样相对于通过独立的信令指示该第一传输模式对应的带宽部分,节省了信令开销。
在一些可能的实现方式中,所述指示信息包括C个比特位,所述方法还包括:根据所述C个比特位中的部分比特位的取值,确定所述目标第一带宽部分;或根据所述C个比特位的取值,确定所述目标第一带宽部分。
第一设备可以根据该C个比特位的部分比特位或全部比特位的取值指示带宽部分。也就是说,比特位的不同取值可以分别指示不同的带宽部分,这样通过比特位的取值实现指示带宽部分,即提供了一种指示带宽部分的实现方式。
在一些可能的实现方式中,所述目标第一带宽部分的索引为所述C个比特位的取值与第二带宽部分的数量的差值,所述第二带宽部分与第二传输模式相关联;或
所述目标第一带宽部分的索引为所述C个比特位的取值与第二带宽部分的数量的差值+a,所述第二带宽部分与第二传输模式相关联,a为整数;或
所述目标第一带宽部分的索引为所述C个比特位的取值;或
所述目标第一带宽部分的索引为所述C个比特位的取值+b,b为整数;
所述目标第一带宽部分的索引为所述C个比特位的取值与R的差值,R为根据第二带宽部分的数量确定的比特位的最大取值;或
所述目标第一带宽部分的索引为所述C个比特位的取值与R的差值+c,R为根据第二带宽部分的数量确定的比特位的最大取值,c为整数。
目标第一带宽部分可以通过索引表示。索引的表示方式可以与索引的起始取值相关联。这样通过比特位的取值指示带宽部分的索引,再通过索引指示第一带宽部分,从而减少了指示带宽部分的资源占用。
在一些可能的实现方式中,所述方法还包括:根据所述第一带宽部分的数量,确定所述C个比特位的个数,所述第一带宽部分与所述第一传输模式相关联;或,根据第一带宽部分的数量和第二带宽部分的数量,确定所述C个比特位的个数,所述第一带宽部分与所述第一传输模式相关联,所述第二带宽部分与第二传输模式相关联。
第一设备可以根据第一带宽部分的数量,或者第一带宽部分和第二带宽部分的数量确定指示第一带宽部分的指示信息占用的比特位的个数。也就是说,指示第一带宽部分的指示信息占用的比特位的大小可以灵活控制,避免了资源浪费,从而提高了资源利用率。
在一些可能的实现方式中,所述根据第一带宽部分的数量和第二带宽部分的数量,确定C个比特位的个数,包括:根据所述第一带宽部分的数量和所述第二带宽部分的数量之和,确定所述C个比特位的个数;或根据第一比特位的个数和第二比特位的个数之和,确定所述C个比特位的个数,所述第一比特位的个数是根据所述第一带宽部分的数量确定的,所述第二比特位的个数是根据所述第二带宽部分的数量确定的。
通过第一带宽部分的数量和第二带宽部分的数量之和确定该C个比特位的个数,即通过同一个指示信息指示该第一带宽部分和该第二带宽部分。这样相对于分别指示第一带宽部分和第二带宽部分,可以减少第一指示信息和第二指示信息共同占用的比特位的个数。
在一些可能的实现方式中,所述第二传输模式为单播,所述第一传输模式为组播。
在一些可能的实现方式中,所述第二传输模式为第一组播,所述第一传输模式为第二组播。
在一些可能的实现方式中,所述第二传输模式为组播,所述第一传输模式为单播。
第二方面,提供了一种传输控制信令的方法,该方法包括:向第一设备发送控制信令,所述控制信令包括第一信息,所述第一信息用于指示第一传输模式,所述控制信令的加扰信息对应第二传输模式。
第二设备向第一设备发送包括第一信息的控制信令,该第一信息用于指示第一传输模式,该控制信令的加扰信息对应第二传输模式。这样通过第二传输模式对应的控制信令指示了第一传输模式,有助于第一设备可以灵活采用第一传输模式通信或采用第二传输模式通信,从而有助于提高通信效率。
在一些可能的实现方式中,所述第一信息包括第二标识信息和/或预设字段,所述第二标识信息用于调度所述第一传输模式对应的传输,所述预设字段与所述第一传输模式相关联。
所述第一信息包括第二标识信息和/或预设字段,网络设备发送包括该第一信息的控制信令,使得第一设备根据控制信令确定在所述第一传输模式对应的带宽部分上与所述第二设备进行通信和/或在所述第二传输模式对应的带宽部分上与所述第二设备进行通信。也就是说,这样有助于第一设备灵活采用第一传输模式通信或采用第二传输模式通信,从而能够提高通信效率。
在一些可能的实现方式中,第一信息包括带宽部分BWP字段,所述BWP字段用于指示所述第一传输模式。
第一信息指示的内容可以通过第二标识信息或预设字段实现,即提供了一种指示第一传输模式的实现方式,从而提高了指示第一传输模式的灵活性。
在一些可能的实现方式中,所述控制信令还包括指示信息,所述指示信息用于指示采用所述第一传输模式进行传输的目标第一带宽部分。
控制信令在指示第一传输模式的情况下,还可以指示该第一传输模式对应的带宽部分,这样使得第一设备能够在该第一传输模式对应的带宽部分上进行通信,这样相对于通过独立的信令指示该第一传输模式对应的带宽部分,节省了信令开销。
在一些可能的实现方式中,所述控制信令包括C个比特位,所述C个比特位中的部分比特位的取值用于确定所述目标第一带宽部分,或所述C个比特位的取值用于确定所述第一带宽部分。
控制信令在指示第一传输模式的情况下,还可以指示该第一传输模式对应的带宽部分,这样使得第一设备能够在该第一传输模式对应的带宽部分上进行通信,这样相对于通过独立的信令指示该第一传输模式对应的带宽部分,节省了信令开销。
在一些可能的实现方式中,所述目标第一带宽部分的索引为所述C个比特位的取值与第二带宽部分的数量的差值,所述第二带宽部分与第二传输模式相关联;或
所述目标第一带宽部分的索引为所述C个比特位的取值与第二带宽部分的数量的差值+a,所述第二带宽部分与第二传输模式相关联,a为整数;或
所述目标第一带宽部分的索引为所述C个比特位的取值;或
所述目标第一带宽部分的索引为所述C个比特位的取值+b,b为整数;
所述目标第一带宽部分的索引为所述C个比特位的取值与R的差值,R为根据第二带宽部分的数量确定的比特位的最大取值;或
所述目标第一带宽部分的索引为所述C个比特位的取值与R的差值+c,R为根据第二带宽部分的数量确定的比特位的最大取值,c为整数。
目标第一带宽部分可以通过索引表示。索引的表示方式可以与索引的起始取值相关联。这样通过比特位的取值指示带宽部分的索引,再通过索引指示第一带宽部分,从而减少了指示带宽部分的资源占用。
在一些可能的实现方式中,所述第二传输模式为单播,所述第一传输模式为组播。
在一些可能的实现方式中,所述第二传输模式为第一组播,所述第一传输模式为第二组播。
在一些可能的实现方式中,所述第二传输模式为组播,所述第一传输模式为单播。
第三方面,提供了一种传输控制信令的方法,该方法包括:
在第一带宽部分上接收控制信令,所述控制信令用于调度在第二带宽部分上传输的数据,所述第一带宽部分对应的第一传输模式与所述第二带宽部分对应的第二传输模式不同。
终端可以在第二带宽部分上接收用于调度在该第二带宽部分上传输的数据或用于调度第二带宽部分上的资源的控制信令。该控制信令还可以用于调度在该第一带宽部分上传输的数据或用于调度第一带宽部分上的资源,这样有助于终端能够通过在第二带宽部分上接收调度在第一带宽部分上传输数据的控制信令,从而有助于终端从第二带宽部分上切换到第一带宽部分上进行数据传输,避免了切换到其他带宽部分上才能获取到其他带宽部分对应的控制信令,从而提高了数据传输的效率。
在一些可能的实现方式中,所述方法还包括:在所述第二带宽部分上传输所述第二数据。
终端能够通过在第二带宽部分上接收调度在第一带宽部分上传输数据的控制信令,从而有助于终端从第二带宽部分上切换到第一带宽部分上进行数据传输,避免了切换到其他带宽部分上才能获取到其他带宽部分对应的控制信令,从而提高了数据传输的效率。
在一些可能的实现方式中,所述第一传输模式为单播,所述第二传输模式为组播。
在一些可能的实现方式中,所述第一传输模式为第一组播,所述第二传输模式为第二组播。
在一些可能的实现方式中,所述第一传输模式为组播,所述第二传输模式为单播。
第四方面,提供了一种装置,该装置可以是第一设备,也可以是第一设备内的芯片。该装置具有实现上述第一方面或第三方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:收发模块,该收发模块包括接收模块和发送模块。可选地,该装置还包括处理模块,所述收发模块例如可以是收发器、接收器、发射器中的至少一种,该接收模块和发送模块可以包括射频电路或天线。该处理模块可以是处理器。可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第一方面或第三方面,及各种可能的实现方式的通信方法。在本设计中,该装置可以为第一设备。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:接收模块和发送模块,可选地,该装置还包括处理模块,接收模块和发送模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该第一设备内的芯片执行上述第一方面或第三方面,以及任意可能的实现的通信方法。可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器, 特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面或第三方面,及各种可能的实现方式的通信方法的程序执行的集成电路。
第五方面,提供了一种确定传输资源的装置,该装置可以是第二设备,也可以是第二设备内的芯片。该装置具有实现上述第二方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:收发模块,该收发模块包括接收模块和发送模块。可选地,该装置还包括处理模块。所述接收模块和发送模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括射频电路或天线。该处理模块可以是处理器。
可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第二方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:接收模块和发送模块,可选地,该芯片还包括处理模块。接收模块和发送模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该第二设备内的芯片执行上述第二方面,以及任意可能的实现的通信方法。
可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第二方面,以及任意可能的实现的通信方法的程序执行的集成电路。
第六方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面或第三方面,及其任意可能的实现方式中的方法的指令。
第七方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第二方面,及其任意可能的实现方式中的方法的指令。
第八方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面或第三方面,或其任意可能的实现方式中的方法。
第九方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第二方面,或其任意可能的实现方式中的方法。
第十方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面的各方法及各种可能设计的功能的装置和上述具有实现上述第二方面的各方法及各种可能设计的功能的装置。
第十一方面,提供了一种芯片,包括处理器和接口,所述处理器用于读取指令以执行上述第一方面或第三方面,或其任意可能的实现方式中的方法。
第十二方面,提供了一种芯片,包括处理器和接口,所述处理器用于读取指令以执行上述第二方面,或其任意可能的实现方式中的方法。
基于上述技术方案,第一设备接收来自第二设备的包括第一信息的控制信令,该第一信息用于指示第一传输模式,该控制信令的加扰信息对应第二传输模式。这样第二设备通过第二传输模式对应的控制信令指示了第一传输模式,使得第一设备可以灵活采用第一传输模式通信和/或采用第二传输模式通信,从而有助于提高通信效率。
附图说明
图1是本申请适用的一种可能的通信系统的示意图;
图2是本申请实施例的传输控制信令的方法的示意性流程图;
图3是本申请另一个实施例的传输控制信令的方法的示意性流程图;
图4是本申请实施例的消息传输的方法的示意性流程图;
图5是本申请实施例的传输控制信令的装置的示意性框图;
图6是本申请实施例的传输控制信令的装置的示意性结构图;
图7是本申请实施例的传输控制信令的装置的示意性框图;
图8是本申请实施例的传输控制信令的装置的示意性结构图;
图9是本申请另一个具体实施例的传输控制信令的装置的示意图;
图10是本申请另一个具体实施例的传输控制信令的装置的示意图;
图11是本申请另一个具体实施例的传输控制信令的装置的示意图;
图12是本申请另一个具体实施例的传输控制信令的装置的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)系统或新无线(new radio,NR)以及未来的移动通信系统等。
本申请实施例提供的方法可适用但不限于如下领域:多媒体广播多播业务(Multimedia Broadcast Multicast Service,MBMS)、单小区点到多点(Single cell point to multipoint,SC-PTM)、组播广播服务(Multicast and Broadcast Services,或,Multicast/Broadcast Services,或,Multicast-Broadcast Services,MBS)、多媒体广播多播服务单频网络(Multimedia Broadcast multicast service Single Frequency Network,MBSFN)、双通道智能单播(Dual-channel intelligent unicast,DC-IU)、广播(Broadcast)、多播(Multicast)、广播多播(Multicast Broadcast)、组播(Groupcast)、车联网(vehicle to everything,V2X)、公共安全(public safety)、关键任务(mission critical)、IPv4/IPv6多播透传(transparent IPv4/IPv6 multicast delivery)、IPTV、通过无线的软件交付(software delivery over wireless)、组通信(group communications)、物联网(Internet of things,IoT)、电视视频(TV Video)、电视(TV)、线性电视(linear TV)、直播(Live)、广播服务(radio services)等。
本申请实施例中的终端可以指一种具有无线收发功能的设备,可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)、车载终端设备、远方站、远程终端设备等。终端设备具 体的形态可以是手机(mobile phone)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、可穿戴设备平板电脑(pad)、台式机、笔记本电脑、一体机、车载终端设备、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等。终端设备可以应用于如下场景:虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程手术(remote medical surgery)、智能电网(smart grid)、运输安全(transportation safety)、智慧城市(smart city)、智慧家庭(smart home)等。终端设备可以是固定的或者移动的。需要说明的是,终端设备可以支持至少一种无线通信技术,例如LTE、NR、宽带码分多址(wideband code division multiple access,WCDMA)等。
本申请实施例中的网络设备可以是一种为终端设备提供无线通信功能的设备,也可称之为无线接入网(radio access network,RAN)设备等。网络设备包括但不限于:5G中的下一代基站(next generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、中继站、接入点等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)、分布单元(distributed unit,DU)等。其中,网络设备可以支持至少一种无线通信技术,例如LTE、NR、WCDMA等。
在一些部署中,gNB可以包括集中式单元CU和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
在本申请实施例中,终端或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端或网络设备,或者,是终端或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
可以理解的是,网络设备和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对无线接入网设备和终端的应用场景不做限定。
图1是本申请适用的一种可能的通信系统的示意图。图1中的通信系统可以包括终端(例如终端10、终端20、终端30、终端40、终端50和终端60)和网络设备70。图1中的终端10、终端20、终端30、终端40和终端60可以与网络设备70进行上下行传输。例如,网络设备70可以向终端10、终端20、终端30、终端40和终端60发送下行信号/数据,也可以接收终端10、终端20、终端30、终端40和终端60发送的上行信号/数据。此外,图1中的通信系统也可以包括终端。例如,终端40、终端50和终端60也可以看作一个通信系统,终端60可以向终端40和终端50发送信号/数据,也可以接收终端40和终端50发送的信号/数据。也就是说,本申请的实施例可以适用于下行传输,也可以适用于上行传输,还可以适用于侧行传输。
终端向网络设备发送数据(即上行数据)或上行控制信息的无线通信链路可以称为上行或上行链路(uplink,UL)。网络设备向终端发送数据(即下行数据)或下行控制信息的无线通信链路可以称为下行或下行链路(downlink,DL)。终端和终端之间的直连通信的通信链路可以称为边链路或侧行链路(sidelink,SL)。终端和终端之间传输的数据可以称为SL数据。
本申请的实施例对信号/数据的传输方向不做限定。
本申请实施例的技术方案可由两个通信装置执行,这两个通信装置以第一设备和第二设备为例说明。第一设备可以是终端或能够支持实现该方法所需的功能的通信装置。第一设备还可以是其他通信装置,例如芯片系统。对于第二设备也是同样,第二设备可以是网络设备或终端或能够支持实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。
对于第一设备和第二设备的实现方式均不做限制,例如第一设备可以是终端,第二设备是网络设备;或者第一设备是终端,第二设备是能够支持实现该方法所需的功能的通信装置等。
需要说明的是,本申请实施例中以第一设备为例说明了具体的实施过程,实际应用中,也可以是由第一设备的MAC实体和/或PHY层来执行本申请实施例。
需要说明的是,本申请实施例可以应用于包括一个或多个第二设备的通信系统中,也可以应用于包括一个或多个第一设备的通信系统中,本申请对此不进行限定。其中一个第二设备可以向一个或多个第一设备发送数据和/或第一控制信令。多个第二设备也可以向一个或多个第一设备发送数据和/或第一控制信令。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
一、组播和单播
组播可以包括以下任一项或多项:MBMS或MBS中的广播;MBMS或MBS中的组播;MBMS或MBS中的多播;V2X中的组播;V2X中的多播;V2X中的广播;多播;广播;multicast;groupcast;broadcast。例如,组播中,第二设备发送数据1,多个第一设备可以接收该数据1。可选的,组播可理解为组播传输。
单播可以包括以下任一项或多项:V2X中的单播;unicast。可选的,单播可理解为单播传输。
例如,组播可以理解为:针对一个数据1,第二设备发送一次,多个第一设备均可接收数据1。例如,而单播可以理解为:针对一个数据1,第二设备若要发送给多个第一设备,第二设备需要给每个第一设备单独的发送数据1。
二、无线网络临时标识(radio network temporary identity,RNTI)。
A、组播RNTI
组播RNTI可以用于以下任一项或任多项:用于调度动态资源;用于调度动态资源的重传资源;用于激活配置资源;用于重激活配置资源;用于去激活配置资源;用于调度配置资源的重传资源;用于组播;用于组播的调度;用于配置调度组播传输;用于激活;用于去激活;用于重激活;用于重传;用于动态调度组播传输。
示例性的,组播RNTI可以包括以下任一项或任多项:组-RNTI(例如,group-RNTI,G-RNTI)、组-配置的调度-RNTI(例如,group-configured scheduling-RNTI,G-CS-RNTI)、组-小区-RNTI(例如,group-cell-RNTI,G-C-RNTI)、组-RNTI(例如,multicast-RNTI,M-RNTI)、组-配置的调度-RNTI(例如,multicast-configured scheduling-RNTI,M-CS-RNTI)、组-小区-RNTI(例如,multicast-cell-RNTI,M-C-RNTI)等。
B、单播RNTI
单播RNTI可以用于以下任一项或任多项:用于调度动态资源;用于调度动态资源的重传资源;用于激活配置资源;用于重激活配置资源;用于去激活配置资源;用于调度配置资源的重传资源;用于单播;用于单播的调度;用于配置调度单播传输;用于激活;用于去激活;用于重激活;用于重传;用于动态调度单播传输;用于竞争解决;用于MSG3传输。
示例性的,单播RNTI可以包括以下任一项或任多项:小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)、配置调度无线网络临时标识(configured scheduling radio network temporary identifier,CS-RNTI)、临时小区无线网络临时标识(temporary cell radio network temporary identifier,TC-RNTI)。
C、第一RNTI
第一RNTI用于以下任一项或多项:寻呼、系统信息变更通知、PWS通知、系统信息的广播。
示例性的,单播RNTI可以包括以下任一项或任多项:寻呼RNTI(paging RNTI,P-RNTI)、系统信息RNTI(system information RNTI,SI-RNTI)。
三、动态资源、配置资源
动态资源可以包括以下任一项或多项:下行链路的动态分配资源;上行链路的动态授 权资源;侧行链路的动态授权资源;用于单播的动态资源;用于组播的动态资源。
配置资源可以包括以下任一项或多项:下行链路的配置分配资源;上行链路的配置授权资源;侧行链路的配置授权资源;用于单播的配置资源;用于组播的配置资源。
四、其他
索引(index)或索引或index可以理解/替换为以下任一项:标识(例如,identity,ID)或指示(例如,indicator)。
带宽部分可以理解/替换为部分带宽。
需要说明的是,本文以BWP进行说明,但并不限定其名称一定为BWP,也可以是其他名称,例如,频率范围,或,频域范围,或,频率资源,或,频域资源。例如,BWP可以理解为小区带宽的子集。例如,BWP可以理解为小区带宽的一部分,或小区带宽包含BWP。例如,BWP也可以等于小区带宽。
带宽部分的索引或BWP的索引或BWP index可以理解/替换为以下任一项:带宽部分的标识或BWP的标识或带宽部分的ID或BWP ID。
字段可以理解/替换为域或field。
NR中支持BWP,在NR中引入组播之后,BWP和传输模式可能具有对应关系。例如,不同的组播可以分别在各自对应的BWP上进行传输。再例如,单播和组播也分别在对应的BWP上传输。传统方案中,在一种传输模式对应的BWP上只能传输该传输模式对应的数据或信令,通信效率较低。另外,第一设备(例如,终端)工作在一种传输模式对应的BWP上时,无法获知/知道另一种传输模式对应的BWP上的传输情况(例如,是否有数据传输)。也就是说,按照现有技术,第一设备工作在BWP1上,BWP1与传输模式1相对应;第一设备无法获取在BWP2上传输数据对应的控制信息(例如,DCI),BWP2与传输模式2相对应;第一设备也就无法知道第二设备(例如,网络设备)是否在BWP2进行了数据传输。
图2示出了本申请实施例的传输控制信令的方法的示意性流程图。
201,第一设备接收来自第二设备的第一控制信令,该第一控制信令包括第一信息,第一信息用于指示第一传输模式,第一控制信令的加扰信息(或,第一控制信令)对应第二传输模式。相应地,该第二设备向该第一设备发送第一控制信令。
202,该第一设备根据该第一控制信令,确定在该第一传输模式对应的带宽部分上与该第二设备进行通信和/或确定在该第二传输模式对应的带宽部分上与该第二设备进行通信。
可以理解的是,第一设备在该第一传输模式对应的带宽部分上与该第二设备进行通信和在该第二传输模式对应的带宽部分上与该第二设备进行通信可以理解为第一设备在第一传输模式对应的带宽部分第二传输模式对应的带宽部分上与该第二设备进行通信,本申请并不限定在同一时间进行通信。
为了更清楚的说明本申请,以第一控制信令为第一DCI、第一设备为终端,第二设备为网络设备为例,介绍本申请一种可能的实现。
可以理解的是,“第一设备接收来自第二设备的第一控制信令,该第一控制信令包括第一信息,第一信息用于指示第一传输模式,第一控制信令的加扰信息(或,第一控制信令)对应第二传输模式。相应地,该第二设备向该第一设备发送第一控制信令。”可以为: “终端接收来自网络设备的第一DCI,该第一DCI包括第一信息,第一信息用于指示第一传输模式,第一DCI的加扰信息(或,第一DCI)对应第二传输模式。相应地,该网络设备向该终端发送第一DCI。”
“终端接收来自网络设备的第一DCI,第一DCI的加扰信息(或,第一DCI)对应第二传输模式”可以包括/替换为:终端在该第二传输模式对应的BWP上接收第一DCI。
“第一DCI的加扰信息对应第二传输模式”可以理解为:通过加扰信息加扰第一DCI,加扰信息与第二传输模式相对应;或,通过加扰信息加扰第一DCI,第一DCI与第二传输模式相对应;或,通过加扰信息加扰第一DCI,加扰信息、第一DCI、第二传输模式相对应。
“通过加扰信息加扰第一DCI”可以包括:通过加扰信息加扰第一DCI的循环冗余校验(cyclic redundancy check,CRC),或,第一DCI的CRC被加扰信息加扰(第一DCI with CRC scrambled by加扰信息)。
可以理解的是,不同的传输模式可以对应不同的加扰信息。
可选的,加扰信息可以理解为加扰标识。
可选的,加扰信息可以包括以下任一项或任多项:组播RNTI;单播RNTI;用于调度的RNTI;临时移动组标识(例如,temporary mobile group identity,TMGI);会话标识(例如,组播会话标识);传输标识(例如,组播标识,或,单播标识);第一RNTI。
组播标识可以包括以下任一项或多项:组播RNTI;TMGI;会话标识(例如,组播会话标识)。
例如,第一DCI对应的加扰信息为组播RNTI,第一DCI/组播RNTI与组播相对应。
例如,第一DCI对应的加扰信息为单播RNTI,第一DCI/单播RNTI与单播相对应。
例如,第一DCI对应的加扰信息为组播RNTI1,第一DCI/组播RNTI1与组播1相对应。
例如,第一DCI对应的加扰信息为第一RNTI,第一DCI/第一RNTI与第一RNTI对应的传输相对应。
可选的,第一RNTI对应的传输可以包括/为idle/inactive的传输。
可以理解的是,第一信息可以显式或隐式指示第一传输模式,本申请对此不进行限定。
可以理解的是,第一DCI可以通过预留字段或新增字段来表示该第一信息,本申请对此不进行限定。
本申请以第一传输模式和第二传输模式的情况为第一种可能的情况或第二种可能的情况或第三种可能的情况或第四种可能的情况为例进行说明,但是本申请并不限定第一传输模式和第二传输模式的情况仅为这四种情况。
第一种可能的情况:该第二传输模式为单播,该第一传输模式为组播。
具体地,第一DCI的加扰信息/第一DCI对应单播的情况下,第一DCI还包括用于指示组播的第一信息。例如,第二传输模式对应的BWP为单播BWP。例如,终端在该单播BWP上接收第一DCI,第一DCI还包括用于指示组播的第一信息。
可选的,对于第一传输模式为组播,组播可以理解为某一个组播(例如,组播2)。其中,组播对应的G-RNTI也可以理解为组播2对应的G-RNTI2。
终端通过单播业务对应的的第一DCI里携带的第一信息获取了组播业务接收相关的 信息,从而为终端提供了一种从单播BWP切换到组播BWP上接收组播业务的可能,增加了不同类型业务接收的灵活性,同时在单播接收过程中获取组播接收信息从而迅速切换到组播上,也降低了组播接收的时延,提升了数据传输的效率。
第二种可能的情况:该第二传输模式为组播,该第一传输模式为单播。
具体地,第一DCI的加扰信息/第一DCI对应组播的情况下,第一DCI还包括用于指示单播的第一信息。例如,第二传输模式对应的BWP为组播BWP。例如,终端在该组播BWP上接收第一DCI,第一DCI还包括用于指示单播的第一信息。
第三种可能的情况:该第二传输模式为第一组播,该第一传输模式为第二组播。
具体地,组播可以分为不同的组播。例如,组播对应的对象不同,组播对应的数量不同等。例如,第二传输模式对应的BWP为第一组播对应的BWP。例如,终端在该第一组播对应的BWP上接收第一DCI,第一DCI还包括用于指示第二组播的第一信息。
例如,第一DCI的加扰信息/第一DCI对应第一组播的情况下,第一DCI还包括用于指示第二组播的第一信息。
第四种可能的情况:该第二传输模式为第一RNTI对应的传输,该第一传输模式为组播。例如,第二传输模式对应的BWP为initial BWP。例如,终端在该initial BWP上接收第一DCI,第一DCI还包括用于指示组播的第一信息。
具体地,第一DCI的加扰信息/第一DCI对应第一RNTI对应的传输的情况下,或,第一DCI的加扰信息为第一RNTI的情况下,第一DCI还包括用于指示组播的第一信息。
可以理解的是,第一传输模式与第二传输模式不同。
可选的,第一信息、第二标识信息、预设字段(例如,预设字段的第一取值)中的任一种或多种还可以用于指示C个比特位或BWP字段所指示的BWP为第一传输模式相关联的BWP。
例如,对于第一种可能的情况,第一信息/第二标识信息/预设字段的第一取值中的任一种或多种用于指示C个比特位或BWP字段所指示的BWP为组播相关联的BWP。
例如,对于第二种可能的情况,第一信息/第二标识信息/预设字段的第一取值中的任一种或多种用于指示C个比特位或BWP字段所指示的BWP为单播相关联的BWP。
例如,对于第三种可能的情况,第一信息/第二标识信息/预设字段的第一取值中的任一种或多种用于指示C个比特位或BWP字段所指示的BWP为第二组播相关联的BWP。
在一个可能的设计中,该第一信息包括第二标识信息或第一信息为第二标识信息,该第二标识信息/第二标识用于调度该第一传输模式或该第一传输模式对应的传输/数据/资源,或,第二标识信息/第二标识与第一传输模式相关联。
第一信息为第二标识信息可以理解为:第二标识信息用于指示第一传输模式。
具体地,“用于调度该第一传输模式或该第一传输模式对应的传输/数据/资源”可以包括以下任一项或多项:用于调度动态资源;用于动态资源的重传资源;用于激活配置资源;用于重激活配置资源;用于去激活配置资源;用于调度配置资源的重传资源;用于第一传输模式;用于第一传输模式的调度;用于加扰;用于配置调度第一传输模式传输;用于激活;用于去激活;用于重激活;用于重传;用于动态调度第一传输模式传输。
可选的,第二标识信息/第二标识可以包括以下任一项或任多项:组播RNTI;单播RNTI;用于调度的RNTI;TMGI;会话标识(例如,组播会话标识);传输标识(例如, 组播标识、单播标识);组播组标识。
对于组播组可以理解为:一个组播组可以包括一个或多个组播。例如,属于同一个组播组的组播对应相同的BWP(例如,同一个或多个BWP)或其他的相同的参数。一个组播组对应一个组播组标识。可选的,该组播组和组播之间的对应关系可以是基站配置或预配置的,也可以是协议规定的。终端或网络设备可以根据组播组标识/组播组确定对应的BWP。
示例性的,第一传输模式为单播,第二标识可以包括以下任一项或多项:单播RNTI(例如,C-RNTI或CS-RNTI)、传输标识(例如,单播标识)。
示例性的,第一传输模式为组播,第二标识信息可以包括以下任一项或多项:组播RNTI、TMGI;会话标识(例如,组播会话标识);传输标识(例如,组播标识);组播组标识。
可以理解的是,第二标识信息可以显式或隐式指示第一传输模式,本申请对此不进行限定。
一种实现方式中,该第二标识信息可以是第二标识。
例如,对于第一种可能的情况,第一信息包括/为G-RNTI(即,第二标识信息为G-RNTI),第一DCI的加扰信息为C-RNTI或CS-RNTI。在这种情况下,终端接收C-RNTI或CS-RNTI加扰的第一DCI,也可以获得组播相关的信息(例如,G-RNTI)。终端可以确定组播对应的BWP(例如,组播与BWP1相对应,或,G-RNTI对应的组播与BWP1相对应,或,G-RNTI与BWP1相对应)。可选的,终端可能会基于获得的组播相关的信息,进行以下任一项或多项:BWP切换(例如,切换到组播对应的BWP)、激活组播对应的BWP、进一步接收组播对应的数据、确定在组播对应的BWP上与网络设备进行通信。可选的,该实现方式可以适用于组播(例如,G-RNTI对应的组播,或,所有组播)/G-RNTI(例如,第一DCI中包含的G-RNTI)对应一个BWP的情况。
再例如,对于第二种可能的情况,第一信息包括/为C-RNTI或CS-RNTI(即,第二标识信息为C-RNTI或CS-RNTI),第一DCI的加扰信息为G-RNTI,G-RNTI与组播相关联。在这种情况下,终端接收G-RNTI加扰的第一DCI,也可以获得单播相关的信息(例如,C-RNTI或CS-RNTI)。终端可以确定单播对应的BWP(例如,initial BWP)。可选的,终端可能会基于获得的单播相关的信息,进行以下任一项或多项:BWP切换(例如,切换到单播对应的BWP)、激活单播对应的BWP、进一步接收单播对应的数据、确定在单播对应的BWP上与网络设备进行通信。
又例如,对于第三种可能的情况,第一信息包括/为G-RNTI2(即,第二标识信息为G-RNTI2),第一DCI的加扰信息为G-RNTI1,G-RNTI1与组播1相关联。在这种情况下,终端接收G-RNTI1加扰的第一DCI,也可以获得组播2相关的信息(例如,G-RNTI2)。终端可以确定组播2对应的BWP(例如,组播2与BWP2相对应,或,G-RNT2对应的组播2与BWP2相对应,或,G-RNT2与BWP2相对应)。可选的,终端可能会基于获得的组播2相关的信息,进行以下任一项或多项:BWP切换(例如,切换到组播2对应的BWP)、激活组播2对应的BWP、进一步接收组播2对应的数据、确定在组播2对应的BWP上与网络设备进行通信。可选的,该实现方式可以适用于组播2/G-RNT2对应一个BWP的情况。
另一种实现方式中,该第二标识信息可以是第二标识的索引(index)。
可以理解的是,第二标识与第二标识的index之间存在对应关系。具体的,终端获取第一DCI,第一DCI包括第二标识的index,第二标识与第二标识的index之间存在对应关系,终端可以确定第二标识。
通过在第一DCI中包括第二标识的index,可以降低第二标识信息在第一DCI中占用的bit数,或者说,降低传输的开销。
可选的,第二标识的index可以包括以下任一项或任多项:组播RNTI index(例如,G-RNTI index);单播RNTI index(例如,C-RNTI index、CS-RNTI index);用于调度的RNTI index;临时移动组标识index(例如,TMGI index);会话标识index(例如,组播会话标识index);传输标识index(例如,组播标识index、单播标识index);组播组标识index。
例如,对于第一种可能的情况,第一信息包括/为G-RNTI index(即,第二标识信息为G-RNTI index),第一DCI的加扰信息为C-RNTI或CS-RNTI。在这种情况下,终端接收C-RNTI或CS-RNTI加扰的第一DCI,也可以获得组播相关的信息(例如,G-RNTI index)。终端可以确定对应的G-RNTI/组播。终端可以确定组播对应的BWP(例如,组播与BWP1相对应,或,G-RNTI/G-RNTI index对应的组播与BWP1相对应,或,G-RNTI/G-RNTI index与BWP1相对应)。可选的,终端可能会基于获得的组播相关的信息,进行以下任一项或多项:BWP切换(例如,切换到组播对应的BWP)、激活组播对应的BWP、进一步接收组播对应的数据、确定在组播对应的BWP上与网络设备进行通信。可选的,该可能的实现方式可以适用于组播(例如,G-RNTI/G-RNTI index对应的组播,或,所有组播)/G-RNTI(例如,第一DCI中包含的G-RNTI)/G-RNTI index对应一个BWP的情况。
例如,对于第三种可能的情况,第一信息包括/为G-RNTI2 index(即,第二标识信息为G-RNTI2 index),第一DCI的加扰信息为G-RNTI1,G-RNTI1与组播1相关联。在这种情况下,终端接收G-RNTI1加扰的第一DCI,也可以获得组播2相关的信息(例如,G-RNTI2 index)。终端可以确定对应的G-RNTI2/组播。终端可以确定组播2对应的BWP2(例如,组播2与BWP2相对应,或,G-RNTI2/G-RNTI2 index对应的组播2与BWP2相对应,或,G-RNTI2/G-RNTI2 index与BWP2相对应)。可选的,终端可能会基于获得的组播2相关的信息,进行以下任一项或多项:BWP切换(例如,切换到组播2对应的BWP2)、激活组播2对应的BWP2、进一步接收组播2对应的数据、确定在组播2对应的BWP2上与网络设备进行通信。可选的,该可能的实现方式可以适用于组播2/G-RNTI2/G-RNTI2 index对应一个BWP的情况。
对于第二种可能的情况,与第一种可能的情况和第三种可能的情况类似,此处不再赘述。
示例性的,第二标识为G-RNTI,G-RNTI通常占用16bit,一个G-RNTI可以对应一个组播,若在第一DCI中包括G-RNTI,G-RNTI占用的比特数较多。可以在第一DCI中包括G-RNTI index,G-RNTI/组播与G-RNTI index之间存在对应关系,终端也能确定出对应的G-RNTI/组播,并且降低了第二标识信息在第一DCI中占用的bit数,或者说,降低传输的开销。
可选的,终端和/或网络设备可以根据第二信息确定第二标识和第二标识的index之间的对应关系。
第二信息可以包括/用于指示第二标识和第二标识的index之间的对应关系。例如,第二标识和第二标识的index之间的对应关系可以为以下任一项或多项:单播标识和index的对应关系;感兴趣的组播的组播标识和index的对应关系;不再感兴趣的组播的组播标识和index的对应关系;单播和index的对应关系;单播标识;终端感兴趣的组播的组播标识。
感兴趣的组播可以包括终端感兴趣接收的组播和/或终端正在接收的组播。
可选的,终端向网络设备发送第二消息,第二消息包括第二信息。
可选的,第二消息用于向网络设备指示终端感兴趣和/或不再感兴趣的组播。例如,第二消息可以为感兴趣的指示。
需要说明的是,“第二信息可以包括/用于指示第二标识和第二标识的index之间的对应关系”可以是显式或隐式指示“第二标识和第二标识的index之间的对应关系”,本文并不限定。
示例性的,终端向网络设备发送第二消息,终端和/或网络设备可以根据第二消息中第二标识的顺序确定第二标识的index。例如,第一个第二标识对应的第二标识的index为1,第二个第二标识对应的第二标识的index为2,第N个第二标识对应的第二标识的index为N。再例如,第一个第二标识对应的第二标识的index为0,第二个第二标识对应的第二标识的index为1,第N个第二标识对应的第二标识的index为N-1。
可以理解的是,终端可以向网络设备发送第二消息,但网络设备可能没有收到该第二消息。在这种情况下,网络设备可能还是基于之前收到的第二消息中的第二信息确定第二标识和第二标识的index之间的对应关系,但是终端基于最新发送的第二消息中的第二信息确定第二标识和第二标识的index之间的对应关系。对于相同的第二标识的index,终端和网络设备会确定出不同的第二标识或不同的单播/组播,将会造成终端和网络设备之间理解不对齐,可能会影响终端和网络设备之间的传输。例如,对于index1,网络设备认为index1和组播1/BWP1之间存在对应关系,第一DCI中包含index1,网络设备希望终端切换到BWP1上进行通信;但是终端认为index1和组播2/BWP2之间存在对应关系,第一DCI中包含index1,终端切换到BWP2上进行通信。这种情况下,网络设备在BWP1上与终端进行通信(例如,发送数据),但终端却工作在BWP2上,导致两者之间没有办法正常通信。
可选的,终端接收网络设备发送的确认信息。相应地,网络设备向终端发送确认信息。
可选的,该确认信息可以用于以下任一项或多项:用于指示网络设备接收第二消息;用于指示网络设备应用/根据第二消息中的第二信息确定第二标识和第二标识的index之间的对应关系;用于指示终端可以应用/根据第二消息中的第二信息确定第二标识和第二标识的index之间的对应关系;用于指示网络设备应用第二消息中的第二信息指示的第二标识和第二标识的index之间的对应关系;用于指示终端可以应用第二消息中的第二信息指示的第二标识和第二标识的index之间的对应关系。
示例性的,网络设备收到第二消息,向终端发送确认信息,该确认信息用于网络设备指示接收到第二消息。终端接收到该确认信息,可以确定网络设备已经接收到第二消息。 终端和/或网络设备可以应用/根据该第二消息中的第二信息确定第二标识和第二标识的index之间的对应关系或终端和/或网络设备可以应用该第二消息中的第二信息指示的第二标识和第二标识的index之间的对应关系。在这种情况下,对于相同的第二标识,终端和网络设备会确定出相同的第二标识或相同的单播/组播。
可选的,该确认信息可以携带在RRC消息、RLC消息(例如,RLC PDU)、MAC消息(例如,MAC CE)、PHY消息(例如,DCI或PDCCH)、广播消息(例如,系统信息)、组播消息中。
示例性的,该确认信息携带在第一RLC PDU中。例如,第一RLC PDU为RLC控制PDU,例如,状态PDU、STATUS PDU。
示例性的,该确认信息携带在第一MAC CE中。
可选的,第一MAC CE可以通过一个逻辑信道标识(logical channel identify,LCID)或一个扩展逻辑信道标识(extended logical channel identify,eLCID)来标识。
例如,该LCID为5bit。
例如,该eLCID为8bit或16bit。
可选的,第一MAC CE的大小可以为固定的(例如,0bit)或可变的。
需要说明的是,与确认信息相关的内容,可以作为单独的实现方式,并不依赖于步骤201和/或步骤202。
在另一个可能的设计中,该第一信息包括预设字段或第一信息为预设字段,该预设字段与该第一传输模式相关联。
第一信息为预设字段可以理解为:预设字段用于指示第一传输模式。
可选的,该预设字段的第一取值或预设字段的存在可以与该第一传输模式相关联。例如,该预设字段可以占用/对应一个或多个比特。以该预设字段占用/对应一个比特为例进行说明,该预设字段的第一取值为“1”,则表示该第一信息指示第一传输模式;或,该预设字段的第一取值为“0”,则表示该第一信息指示第一传输模式。
可以理解的是,该预设字段的第二取值(例如,以该预设字段占用/对应一个比特为例进行说明,该预设字段的第一取值为“0”或“1”)可以理解为第一信息未用于指示第一传输模式。其中,第一取值和第二取值可以分别是一个比特位的不同的取值。例如,该第一取值为“1”,该第二取值为“0”;或该第一取值为“0”,该第二取值为“1”。
例如,该预设字段的第二取值表示C个比特位或BWP字段所指示的BWP为第二传输模式相关联的BWP。
例如,对于第一种可能的情况,第一DCI的加扰信息为C-RNTI或CS-RNTI,且第一DCI中的预设字段指示组播。在这种情况下,终端接收C-RNTI或CS-RNTI加扰的第一DCI,也可以获得组播相关的信息。终端可以确定组播对应的BWP(例如,组播与BWP1相对应)。可选的,终端可能会基于获得的组播相关的信息,进行以下任一项或多项:BWP切换(例如,切换到组播对应的BWP)、激活组播对应的BWP、进一步接收组播对应的数据、确定在组播对应的BWP上与网络设备进行通信。可选的,该设计可以适用于组播对应一个BWP的情况。
例如,对于第二种可能的情况,第一DCI的加扰信息为组播RNTI,且第一DCI中的预设字段指示单播。在这种情况下,终端接收G-RNTI加扰的第一DCI,也可以获得单播 相关的信息。终端可以确定单播对应的BWP(例如,initial BWP)。可选的,终端可能会基于获得的单播相关的信息,进行以下任一项或多项:BWP切换(例如,切换到单播对应的BWP)、激活单播对应的BWP、进一步接收单播对应的数据、确定在单播对应的BWP上与网络设备进行通信。
例如,对于第三种可能的情况,第一DCI的加扰信息为G-RNTI1,且第一DCI中的预设字段指示组播2。在这种情况下,终端接收G-RNTI1加扰的第一DCI,也可以获得组播2相关的信息。终端可以确定组播2对应的BWP(例如,组播2与BWP2相对应)。可选的,终端可能会基于获得的组播2相关的信息,进行以下任一项或多项:BWP切换(例如,切换到组播2对应的BWP)、激活组播2对应的BWP、进一步接收组播2对应的数据、确定在组播2对应的BWP上与网络设备进行通信。可选的,该设计可以适用于组播对应2个BWP的情况,其中,BWP1对应一个或多个组播(例如,组播1),BWP2对应另一个或另多个组播(例如,组播2)。
可以理解的是,预设字段可以显式或隐式指示第一传输模式,本申请对此不进行限定。
在又一个可能的设计中,该第一信息包括BWP字段或第一信息为BWP字段,该BWP字段用于指示第一传输模式。
第一信息为BWP字段可以理解为:BWP字段用于指示第一传输模式。
具体地,BWP字段可以理解为用于指示带宽部分的字段。
可选的,该BWP字段可以用于指示BWP index,或,BWP的位置和带宽。
可选的,该BWP字段可以是BWP指示(indicator)字段。
可以理解的是,“BWP字段”是一个名称的描述,其也可以也可以替换/称为第一字段或其他的名称等。
可选的,BWP字段即为C个比特位。BWP字段用于指示以下任一项或多项:第一传输模式、目标第一带宽部分、第一带宽部分。第一带宽部分和/或目标第一带宽部分与第一传输模式相关联。
可选的,该BWP字段用于指示第一传输模式可以包括以下任一项或多项:
(1)该BWP字段用于指示与第一传输模式相对应的BWP/BWP index,则该BWP字段用于指示第一传输模式。
例如,第一传输模式对应单独的BWP字段,该BWP字段用于指示第一传输模式。
例如,该BWP字段存在,或该BWP字段的取值有效,该BWP字段用于指示第一传输模式。
(2)该BWP字段的第一部分取值与第一传输模式相对应。
例如,第一传输模式和第二传输模式对应相同的BWP字段。
BWP字段的第一部分取值相关的内容可以参考C个比特位的第一部分取值或全部比特位的第一部分取值相关的内容,此处不再赘述。
(3)该BWP字段中的第一部分比特位与第一传输模式相对应。
例如,BWP字段中的第一部分比特位存在,或,BWP字段中的第一部分比特位的取值有效,该BWP字段用于指示第一传输模式。
BWP字段中的第一部分比特位相关的内容可以参考C个比特位中的第一部分比特位相关的内容,此处不再赘述。
(4)该BWP字段可以用于指示传输模式。
可以理解的是,BWP字段可以显式或隐式指示第一传输模式,本申请对此不进行限定。
示例性的,BWP/BWP index和传输模式存在对应关系,通过该BWP字段/该BWP字段指示的BWP/该BWP字段指示的BWP index,以及BWP/BWP index和传输模式之间的对应关系,就可以获知该BWP字段对应的传输模式。
例如,对于第一种可能的情况,第一DCI中的BWP字段指示组播,第一DCI的加扰信息为C-RNTI或CS-RNTI。在这种情况下,终端接收C-RNTI或CS-RNTI加扰的第一DCI,也可以获得组播相关的信息(例如,BWP信息)。终端可以确定组播对应的BWP。可选的,终端可能会基于获得的组播相关的信息,进行以下任一项或多项:BWP切换(例如,切换到组播对应的BWP)、激活组播对应的BWP、进一步接收组播对应的数据、确定在组播对应的BWP上与网络设备进行通信。可选的,该设计可以适用于组播(例如,所有组播)对应一组BWP(例如,一个或多个BWP)的情况。
再例如,对于第二种可能的情况,第一DCI中的BWP字段指示单播,第一DCI的加扰信息为G-RNTI,G-RNTI与组播相关联。在这种情况下,终端接收G-RNTI加扰的第一DCI,也可以获得单播相关的信息(例如,BWP信息)。终端可以确定单播对应的BWP。可选的,终端可能会基于获得的单播相关的信息,进行以下任一项或多项:BWP切换(例如,切换到单播对应的BWP)、激活单播对应的BWP、进一步接收单播对应的数据、确定在单播对应的BWP上与网络设备进行通信。
又例如,对于第三种可能的情况,第一DCI中的BWP字段指示组播2,第一DCI的加扰信息为G-RNTI1,G-RNTI1与组播1相关联。在这种情况下,终端接收G-RNTI1加扰的第一DCI,也可以获得组播2相关的信息(例如,BWP信息)。终端可以确定组播2对应的BWP。可选的,终端可能会基于获得的组播2相关的信息,进行以下任一项或多项:BWP切换(例如,切换到组播2对应的BWP)、激活组播2对应的BWP、进一步接收组播2对应的数据、确定在组播2对应的BWP上与网络设备进行通信。可选的,该设计可以适用于组播对应2组BWP(例如,每组BWP可以包括一个或多个BWP)的情况,其中,第一组BWP对应一个或多个组播(例如,组播1),第二组BWP对应另一个或另多个组播(例如,组播2)。可选的,该设计可以适用于组播2对应一个或多个BWP的情况。
在又一个可能的设计中,第一信息包括/为第二标识信息和预设字段。
第一信息为第二标识信息和预设字段可以理解为:第二标识信息和预设字段用于指示第一传输模式。
例如,对于第一种可能的情况,终端接收C-RNTI或CS-RNTI加扰的第一DCI,第一DCI包括G-RNTI(即,第二标识信息为G-RNTI)和预设字段,预设字段指示组播。终端可以获得组播相关的信息,具体为终端根据预设字段确定组播,并根据第二标识信息确定组播为G-RNTI关联的组播。终端可以确定组播对应的BWP(例如,组播与BWP1相对应,或,G-RNTI对应的组播与BWP1相对应,或,G-RNTI与BWP1相对应)。可选的,终端可能会基于获得的组播相关的信息,进行以下任一项或多项:BWP切换(例如,切换到组播对应的BWP)、激活组播对应的BWP、进一步接收组播对应的数据、确定在 组播对应的BWP上与网络设备进行通信。可选的,该设计可以适用于组播(例如,每个组播,或,每个G-RNTI对应的组播,或,G-RNTI对应的组播,或,所有组播)/G-RNTI(例如,第一DCI中包含的G-RNTI)对应一个BWP的情况。
在又一个可能的设计中,第一信息包括/为第二标识信息和BWP字段。
第一信息为第二标识信息和BWP字段可以理解为:第二标识信息和BWP字段用于指示第一传输模式。
例如,对于第一种可能的情况,终端接收C-RNTI或CS-RNTI加扰的第一DCI,第一DCI包括G-RNTI(即,第二标识信息为G-RNTI)和BWP字段。终端可以获得组播相关的信息,具体为终端根据第二标识信息确定G-RNTI关联的组播,并根据BWP字段确定该G-RNTI关联的组播对应的BWP(例如,该G-RNTI对应的组播/G-RNTI与BWP1、BWP2、BWP3相对应,BWP字段指示BWP1)。可选的,终端可能会基于获得的组播相关的信息,进行以下任一项或多项:BWP切换(例如,切换到组播对应的BWP)、激活组播对应的BWP、进一步接收组播对应的数据、确定在组播对应的BWP上与网络设备进行通信。可选的,该设计可以适用于组播(例如,每个组播,或,每个G-RNTI对应的组播,或,G-RNTI对应的组播,或,所有组播)/G-RNTI(例如,第一DCI中包含的G-RNTI)对应一组BWP(例如,一个或多个BWP)的情况。
在又一个可能的设计中,第一信息包括/为预设字段和BWP字段。
第一信息为预设字段和BWP字段可以理解为:预设字段和BWP字段用于指示第一传输模式。
例如,对于第一种可能的情况,终端接收C-RNTI或CS-RNTI加扰的第一DCI,第一DCI包括预设字段和BWP字段,预设字段指示组播。终端可以获得组播相关的信息,具体为终端根据预设字段确定组播,并根据BWP字段确定组播对应的BWP(例如,组播与BWP1、BWP2、BWP3相对应,BWP字段指示BWP1)。可选的,终端可能会基于获得的组播相关的信息,进行以下任一项或多项:BWP切换(例如,切换到组播对应的BWP)、激活组播对应的BWP、进一步接收组播对应的数据、确定在组播对应的BWP上与网络设备进行通信。可选的,该设计可以适用于组播(例如,所有组播)对应一组BWP(例如,一个或多个BWP)的情况。
在又一个可能的设计中,第一信息包括/为第二标识信息和预设字段和BWP字段。
第一信息为第二标识信息和预设字段和BWP字段可以理解为:第二标识信息和预设字段和BWP字段用于指示第一传输模式。
例如,对于第一种可能的情况,终端接收C-RNTI或CS-RNTI加扰的第一DCI,第一DCI包括G-RNTI(即,第二标识信息为G-RNTI)和预设字段和BWP字段,预设字段指示组播。终端可以获得组播相关的信息,具体为终端根据预设字段确定组播,并根据第二标识信息确定组播为G-RNTI关联的组播,并根据BWP字段确定该G-RNTI关联的组播对应的BWP(例如,该G-RNTI对应的组播/G-RNTI与BWP1、BWP2、BWP3相对应,BWP字段指示BWP1)。可选的,终端可能会基于获得的组播相关的信息,进行以下任一项或多项:BWP切换(例如,切换到组播对应的BWP)、激活组播对应的BWP、进一步接收组播对应的数据、确定在组播对应的BWP上与网络设备进行通信。可选的,该设计可以适用于组播(例如,每个组播,或,每个G-RNTI对应的组播,或,G-RNTI对 应的组播,或,所有组播)/G-RNTI(例如,第一DCI中包含的G-RNTI)对应一组BWP(例如,一个或多个BWP)的情况。
需要说明的是,此处仅以第一种可能的情况为例对几种可能的设计进行了说明,其他情况(例如,第二种可能的情况,第三种可能的情况)类似,相关的解释可以参考上文中的描述,此处不再赘述。
在又一个可能的设计中,在该第二传输模式为组播,该第一传输模式为单播的情况下,该第一信息包括/为终端的标识。
可选的,终端的标识可以包括以下任一项或多项:终端的唯一标识、终端在一个小区内的标识、终端在一个小区内的唯一标识。
示例性的,终端的标识可以为:单播RNTI(例如,C-RNTI或CS-RNTI)。
例如,终端接收G-RNTI加扰的第一DCI,G-RNTI与组播相关联,第一DCI中包括的C-RNTI与该终端的C-RNTI相同。终端可以确定该第一DCI是针对该终端的。可选的,终端可以获得单播相关的信息(例如,C-RNTI)。终端可以确定单播对应的BWP。可选的,终端可能会基于获得的单播相关的信息,进行以下任一项或多项:BWP切换(例如,切换到单播对应的BWP)、激活单播对应的BWP、进一步接收单播对应的数据、确定在单播对应的BWP上与网络设备进行通信。可以理解的是,其他终端若接收到该第一DCI,第一DCI中的C-RNTI与其他终端的C-RNTI不同,其他终端可以忽略该第一DCI。
需要说明的是,该可能的设计可与其他可能的设计以任意方式结合,例如,第一信息包括/为终端的标识和第二标识信息,或,第一信息包括/为终端的标识和预设字段,或,第一信息包括/为终端的标识和BWP字段,或,第一信息包括/为终端的标识和第二标识信息和预设字段,或,第一信息包括/为终端的标识和第二标识信息和BWP字段,或,第一信息包括/为终端的标识和预设字段和BWP字段,或,第一信息包括/为终端的标识和第二标识信息和预设字段和BWP字段。具体的内容可以参考上述内容进行理解,此处不再赘述。
可选的,该第一DCI还可以包括终端的标识。
例如,在该第二传输模式为组播,该第一传输模式为单播的情况下,终端接收G-RNTI加扰的第一DCI,G-RNTI与组播相关联,第一DCI中包括的C-RNTI与该终端的C-RNTI相同。终端可以确定该第一DCI是针对该终端的。可以理解的是,其他终端若接收到该第一DCI,第一DCI中的C-RNTI与其他终端的C-RNTI不同,其他终端可以忽略该第一DCI。
可选地,该第一DCI还可以包括第三指示信息,第三指示信息可用于指示目标第一带宽部分和/或第一带宽部分。
第一DCI可以用于指示目标第一带宽部分和/或用于调度目标第一带宽部分上传输的数据。
可选的,第三指示信息还可用于指示目标第二带宽部分和/或第二带宽部分。
可选的,第三指示信息可以包括/为/用于指示第一指示信息和第二指示信息;或者第三指示信息可以包括/为/用于指示第一指示信息。
第一指示信息用于指示/为目标第一带宽部分和/或第一带宽部分。
第二指示信息用于指示/为目标第二带宽部分和/或第二带宽部分。
其中,第一带宽部分为与第一传输模式相关联的带宽部分。第一带宽部分的数量可以是一个或多个。目标第一带宽部分为“第一带宽部分”的某一个带宽部分(BWP)。
第二带宽部分为与第二传输模式相关联的带宽部分。第二带宽部分的数量可以是一个或多个。目标第二带宽部分为“第二带宽部分”的某一个带宽部分。
需要说明的是,对于“第三指示信息可用于指示目标第一带宽部分和/或第一带宽部分。可选的,第三指示信息还可用于指示目标第二带宽部分和/或第二带宽部分”,可以理解为同一个第一DCI中既指示了目标第一带宽部分和/或第一带宽部分,又指示了目标第二带宽部分和/或第二带宽部分;也可以理解为不同的第一DCI中,可以指示了目标第一带宽部分和/或第一带宽部分,也可以指示了目标第二带宽部分和/或第二带宽部分,本申请并未限定。
示例性的,该第一DCI包括第一信息,还可以包括第三指示信息。避免了终端接收不到网络设备发送的指示第一传输模式对应的目标第一带宽部分的控制信令。有助于终端确定第一传输模式对应的BWP上的传输情况。有助于终端确定目标第一带宽部分。可选的,终端可能会进行以下任一项或多项:BWP切换(例如,切换到第一传输模式对应的目标第一带宽部分)、激活第一传输模式对应的目标第一带宽部分、进一步接收组播对应的数据、确定在第一传输模式对应的目标第一带宽部分上与网络设备进行通信。终端可以在该目标第一带宽部分上采用第一传输模式进行传输,有利于终端灵活切换/变换传输模式。也避免了网络设备单独向终端发送指示第一传输模式对应的目标第一带宽部分的控制信令。对应的,也避免了终端接收网络设备单独发送的指示第一传输模式对应的目标第一带宽部分的控制信令。也避免了终端检索第一传输模式对应的加扰信息加扰的控制信令,有利于终端的节能。
需要理解的是,第二指示信息和第一指示信息可以分别对应两个独立的字段,也可以对应一个字段,本申请对此不进行限定。“第二指示信息和第一指示信息可以对应一个字段”可以理解为该字段的不同比特位分别对应第二指示信息和第一指示信息;也可以理解为基于其他信息(例如,第一信息),确定该字段对应第二指示信息还是第一指示信息;也可以理解为该字段的不同取值分别对应第二指示信息和第一指示信息。例如,第一DCI中包含第一信息,指示第一传输模式,根据该字段中部分比特位(与第一指示信息相对应的比特位)确定第一指示信息。例如,第一DCI中包含第一信息,指示第一传输模式,该字段对应第一指示信息。例如,第一DCI中包括该字段,该字段的第一部分取值对应第一传输模式和/或第一指示信息,该字段的第二部分取值对应第二传输模式和/或第二指示信息。
例如,第一DCI可能包含一个字段1,或者包含字段2和字段3。字段1指示第一指示信息,或,第二指示信息,或,第一指示信息和第二指示信息。字段2指示第一指示信息。字段3指示第二指示信息。
或者,需要理解的是,第二带宽部分和第一带宽部分可以分别对应两个独立的字段,也可以对应一个字段,本申请对此不进行限定。例如,第一DCI可能包含一个字段1,或者包含字段2和字段3。字段1指示/对应第一带宽部分,或,第二带宽部分,或,第一带宽部分和第二带宽部分。字段2指示/对应第一带宽部分。字段3指示第二带宽部分。
例如,第三指示信息包括第一指示信息的情况下,第一指示信息对应独立的字段。
例如,第三指示信息包括第一指示信息和第二指示信息的情况下,第二指示信息和第一指示信息对应一个字段。
还可以理解的是,第一DCI可以不包括第二指示信息,即第一DCI可以用于指示目标第一带宽部分和/或用于调度目标第一带宽部分上传输的数据。
可选的,第一指示信息具体可以包括以下任一项或多项:
(1)目标第一带宽部分的index。
(2)目标第一带宽部分的位置和/或带宽。
(3)第一带宽部分的index。
(4)第一带宽部分的位置和/或带宽。终端根据第三指示信息确定该目标第一带宽部分。
可选的,“确定该目标第一带宽部分”可以包括:确定目标第一带宽部分的index,或,确定目标第一带宽部分的位置和/或带宽。
在一个可能的设计中,第三指示信息包括C个比特位或第三指示信息为C个比特位,终端根据该第三指示信息确定该目标第一带宽部分具体可以是终端根据该C个比特位中的部分比特位的取值确定该目标第一带宽部分。
可以理解的是,“C个比特位”是一个名称的描述,其也可以替换/称为第二字段或其他的名称等。该C个比特位的个数可以为0bit或1bit或多个bit。例如,该第三指示信息可以包括/为C个比特位,其中C>=0或C为非负整数。一种可能的情况,第一带宽部分的数量为0,或者第一带宽部分的数量和第二带宽部分的数量均为0,C可以为0。可选的,C=0可以理解为终端/网络设备在确定不需要指示该第一带宽部分和/或目标第一带宽部分的情况下,可以确定该第三指示信息包括/为0个比特位。
可选的,可以理解的是,C个比特位即为BWP字段。C个比特位用于指示以下任一项或多项:第一传输模式、目标第一带宽部分、第一带宽部分。
例如,C个比特位中的部分比特位可以理解为D个比特位,其中,D<C。
可选的,该设计可以适用于第二指示信息和第一指示信息对应一个字段的情况。
具体地,该C个比特位中的部分比特位可以用于确定目标第一带宽部分。
可选的,C个比特位中的另一部分比特位可以用于确定目标第二带宽部分。或者该第三指示信息包括第一指示信息和第二指示信息,该第一指示信息和该第二指示信息可以分别对应不同的比特位。
例如,C个比特位中的另一部分比特位可以理解为C-D个比特位,其中,(C-D)<C。
例如,第三指示信息包括/为C个比特位,该C个比特位中的第一部分比特位用于指示第一带宽部分,该C个比特位中的第二部分比特位用于指示第二带宽部分。也就是说,第一DCI中用于指示第一带宽部分的第一指示信息/比特位和用于指示第二带宽部分的第二指示信息/比特位独立设置,这样终端可以分别从对应的比特位获取对应的带宽部分,提高了指示带宽部分的灵活性。
C个比特位中的第一部分比特位为C个比特位中的部分比特位。
C个比特位中的第二部分比特位为C个比特位中的另一部分比特位。
需要说明的是,该C个比特位中的第一部分比特位和该C个比特位中的第二部分比特位可以为该C个比特位的全部比特位,也可以为该C个比特位的部分比特位,本申请 并不限定。
可以理解的是,该C个比特位中的第一部分比特位的不同取值可以分别指示不同的第一带宽部分,该C个比特位中的第二部分比特位的不同取值可以分别指示不同的第二带宽部分。该C个比特位中的第一部分比特位的某个取值用于指示目标第一带宽部分。该C个比特位中的第二部分比特位的某个取值可以用于指示目标第二带宽部分。例如,C个比特位中的第一部分比特位为C个比特位中的高位比特位,C个比特位中的第二部分比特位为C个比特位中的低位比特位。
具体地,第一带宽部分/第一指示信息和第二带宽部分/第二指示信息分别占用/对应C个比特位的不同比特位。例如,C个比特位中的第一部分比特位为C个比特位中的低位比特位,C个比特位中的第二部分比特位为C个比特位中的高位比特位。
可选的,可以根据第一带宽部分的数量,确定该第一带宽部分/第一指示信息占用/对应的比特位的个数。例如,
Figure PCTCN2021110712-appb-000001
Figure PCTCN2021110712-appb-000002
Figure PCTCN2021110712-appb-000003
y为整数,例如,y=0。其中,m为第一带宽部分/第一指示信息占用/对应的比特位的个数,P 1为第一带宽部分的数量。例如,终端和/或网络设备可以根据第一带宽部分的数量,确定该第一带宽部分/第一指示信息占用/对应的比特位的个数。
第一带宽部分/第一指示信息占用/对应的比特位为C个比特位中的第一部分比特位。
可选的,第一带宽部分的数量可以包括以下任一项或多项:通过RRC信令(例如,RRC专有信令)配置的第一带宽部分的数量、通过广播/组播信令(例如,系统信息、或,RRC广播/组播信息、或,MCCH消息)配置的第一带宽部分的数量、预配置的第一带宽部分的数量。
可选的,第一带宽部分的数量不包括初始带宽部分或初始带宽部分的数量。例如,初始带宽部分为:初始下行带宽部分、或,初始第一传输模式带宽部分、或,初始下行第一传输模式带宽部分。
可选的,可以根据第二带宽部分的数量,确定第二带宽部分/第二指示信息占用/对应的比特位的个数。例如,
Figure PCTCN2021110712-appb-000004
Figure PCTCN2021110712-appb-000005
Figure PCTCN2021110712-appb-000006
z为整数,例如,z=0。其中,L为第二带宽部分/第二指示信息占用/对应的比特位的个数,P 2为第二带宽部分的数量。例如,终端和/或网络设备也可以根据第二带宽部分的数量,确定第二带宽部分/第二指示信息占用/对应的比特位的个数。
第二带宽部分/第二指示信息占用/对应的比特位为C个比特位中的第二部分比特位。
可选的,第二带宽部分的数量可以包括以下任一项或多项:通过RRC信令(例如,RRC专有信令)配置的第二带宽部分的数量、通过广播/组播信令(例如,系统信息、或,RRC广播/组播信息、或,MCCH消息)配置的第二带宽部分的数量、预配置的第二带宽部分的数量。
可选的,第二带宽部分的数量不包括初始带宽部分或初始带宽部分的数量。例如,初始带宽部分为:初始下行带宽部分、或,初始第二传输模式带宽部分、或,初始下行第二传输模式带宽部分。
在这种情况下,网络设备和/或终端可以分别确定第一带宽部分/第一指示信息占用/对应的比特位的个数,和第二带宽部分/第二指示信息占用/对应的比特位的个数,且可以分别确定第一指示信息和第二指示信息,从而提高了指示带宽部分的灵活性。
例如,第一带宽部分的数量为3,则该第一带宽部分/第一指示信息占用/对应的比特位的个数可以是2bit。
例如,第二带宽部分的数量为4,则该第二带宽部分/第二指示信息占用/对应的比特位的个数可以是2bit。
可选的,可以根据第一带宽部分的数量和第二带宽部分的数量,确定C个比特位的个数。
例如,可以根据第一带宽部分/第一指示信息占用/对应的比特位的个数和第二带宽部分/第二指示信息占用/对应的比特位的个数,确定C个比特位的个数。例如,网络设备和/或终端可以将第一带宽部分/第一指示信息占用/对应的比特位的个数和第二带宽部分/第二指示信息占用/对应的比特位的个数之和作为该C个比特位的个数q。例如,q=m+L。例如,网络设备和/或终端可以将第一带宽部分/第一指示信息占用/对应的比特位的个数和第二带宽部分/第二指示信息占用/对应的比特位的个数之和+k作为该C个比特位的个数。例如,q=m+L+k,k为整数,例如,0。
本申请中,还可以理解的是,比特位的个数可以理解为比特位(所占)的比特数。例如,该C个比特位的个数可以理解为该C个比特位(所占)的比特数。
确定目标带宽部分的索引的方式如下:
在一种可能的实现方式中,所述目标第一带宽部分的索引为第一带宽部分/第一指示信息占用/对应的比特位的取值。
可选地,若第一带宽部分的数量小于第一带宽部分/第一指示信息占用/对应的比特位能够指示的带宽部分的数量。例如,第一带宽部分/第一指示信息占用/对应的比特位的个数为m,则该第一指示信息可以指示2m个带宽部分,若第一带宽部分的数量P 1<2 m,则目标第一带宽部分的索引可以为该第一带宽部分/第一指示信息占用/对应的比特位的取值。
在另一种可能的实现方式中,所述目标第一带宽部分的索引为第一带宽部分/第一指示信息占用/对应的比特位的取值+e。
可选地,若第一带宽部分的数量等于第一带宽部分/第一指示信息占用/对应的比特位能够指示的带宽部分的数量。例如,第一带宽部分/第一指示信息占用/对应的比特位的个数为m,则该第一指示信息可以指示2 m个带宽部分,若第一带宽部分的数量P 1=2 m,则目标第一带宽部分的索引可以为该第一带宽部分/第一指示信息占用/对应的比特位的取值+e。其中e可以为第一带宽部分的起始编号值或最小编号,或,第一带宽部分的索引的最小值或起始值,例如,e=1。
可以理解的是,BWP的索引可以是从0可以编号,也可以是从e(例如,1)开始编号。上述方案以从1开始编号为例进行说明,但本申请对此不进行限定。
例如,第一带宽部分的数量P1=4,第一带宽部分的索引分别为1、2、3、4。第一带宽部分/第一指示信息占用/对应的比特位的个数为2。第一带宽的索引从1开始编号。第一带宽部分的索引为该第一带宽部分/第一指示信息占用/对应的比特位的取值+1。如表1所示。例如,比特位的取值“00”、“01”、“10”、“11”对应的带宽部分的索引分别可以是0+1=1、1+1=2、2+1=3、3+1=4。
表1
Figure PCTCN2021110712-appb-000007
例如,可以理解的是,第二带宽部分的数量P 2=3,第二带宽部分的索引分别为0、1、2。第二带宽部分/第二指示信息占用/对应的比特位的个数为2。第二带宽的索引从0开始编号。第二带宽部分的索引为该第二带宽部分/第二指示信息占用/对应的比特位的取值。如表2所示。例如,比特位的取值“00”、“01”、“10”对应的带宽部分的索引分别可以是0、1、2。
表2
Figure PCTCN2021110712-appb-000008
例如,根据表1和表2所示的例子,C个比特位的个数为2+2=4bit。
在另一个可能的设计中,该第三指示信息包括/为C个比特位,终端根据该第三指示信息确定该目标第一带宽部分具体可以是终端根据该C个比特位的全部比特位的取值确定该目标第一带宽部分。
可以理解的是,C个比特位的全部比特位或全部比特位即为C个比特位。C个比特位的全部比特位或全部比特位可以理解/替换为C个比特位。例如,全部比特位的第一部分取值可以理解/替换为C个比特位的第一部分取值。可选的,该可能的设计可以适用于第二指示信息和第一指示信息对应一个字段的情况,也可以适用于第一指示信息对应独立的字段的情况。
具体地,终端根据该C个比特位的全部比特位可以确定第一带宽部分。
在一种可能的实现方式中,该全部比特位的第一部分取值可以用于指示第一带宽部分,和/或,该全部比特位的第二部分取值用于指示第二带宽部分。
可选的,全部比特位的第一部分取值还可以用于指示第一传输模式。
可选的,全部比特位的第二部分取值还可以用于指示第二传输模式。
需要说明的是,该全部比特位的第一部分取值和该全部比特位的第二部分取值可以为该全部比特位的全部取值,也可以为该全部比特位的部分取值,本申请并不限定。
这样第一DCI中用于指示第一带宽部分和用于指示第二带宽部分的指示信息可以统一设置,从而节省比特位占用。该指示信息中的C个比特位的全部比特位的某一个取值可以用于指示目标第一带宽部分(即一个或多个第一带宽部分中的某一个第一带宽部分)。
可选地,终端可以根据第一带宽部分的数量和第二带宽部分的数量,确定该C个比特位的个数。
例如,全部比特位的第一部分取值包括:C个比特位的取值小于等于第一阈值。全部 比特位的第二部分取值包括:C个比特位的取值大于第一阈值。
可选的,本申请中,第一阈值可以为以下任一项或多项,或,可以根据以下任一项或多项确定第一阈值:网络设备配置的值,或,预配置的值,或,协议定义的值,或,第一带宽部分的数量-1,或,第一带宽部分的数量。
例如,全部比特位的第一部分取值包括:C个比特位的取值大于第二阈值。全部比特位的第二部分取值包括:C个比特位的取值小于等于第二阈值。
可选的,本申请中,第二阈值可以为以下任一项或多项,或,可以根据以下任一项或多项确定第二阈值:网络设备配置的值,或,预配置的值,或,协议定义的值,或,第二带宽部分的数量-1,或,第二带宽部分的数量,或,H。
其中,H为q 2个比特位所能取值的最大值,q 2为根据第二带宽部分的数量确定的比特位的个数。
例如,
Figure PCTCN2021110712-appb-000009
例如,
Figure PCTCN2021110712-appb-000010
Figure PCTCN2021110712-appb-000011
z为整数,例如,0。
P 2为第二带宽部分的数量。
例如,
Figure PCTCN2021110712-appb-000012
例如,
Figure PCTCN2021110712-appb-000013
Figure PCTCN2021110712-appb-000014
z为整数,例如,z=0。
在一种可能的实现方式中,该全部比特位的第一部分取值可以用于指示第一带宽部分。
需要说明的是,该全部比特位的第一部分取值可以为该全部比特位的全部取值,也可以为该全部比特位的部分取值,本申请并不限定。
确定C个比特位的bit数的方式如下:
在一种可能的实现方式中,根据所述第一带宽部分的数量和所述第二带宽部分的数量之和,确定所述C个比特位的个数。
示例性的,网络设备和/或终端根据第一带宽部分的数量和第二带宽部分的数量之和P确定C个比特位的个数q,其中,P=P 1+P 2,P 1为第一带宽部分的数量,P 2为第二带宽部分的数量。
例如,
Figure PCTCN2021110712-appb-000015
例如,
Figure PCTCN2021110712-appb-000016
Figure PCTCN2021110712-appb-000017
x为整数,例如,0。
可选的,q可为第三指示信息(即,第一指示信息和第二指示信息,或第一带宽部分和第二带宽部分)占用/对应的比特位的个数。
该实现方式相对于分别基于第一带宽部分的数量、第二带宽部分的数量确定比特位的个数,可以减少C个比特位/第三指示信息占用/对应的比特位的个数,降低传输控制信令的开销。
在另一种可能的实现方式中,根据第一比特位的个数和第二比特位的个数之和,确定该C个比特位的个数,该第一比特位的个数是根据该第一带宽部分的数量确定的,该第二比特位的个数是根据该第二带宽部分的数量确定的。
示例性的,网络设备和/或终端可以根据该第一带宽部分的数量P 1确定第一比特位的个数q 1。例如,
Figure PCTCN2021110712-appb-000018
例如,
Figure PCTCN2021110712-appb-000019
Figure PCTCN2021110712-appb-000020
y为整数,例如,y=0。可选的,第一比特位的个数可以为第一带宽部分/第一指示信息占用/对应的比特位的个数。
示例性的,网络设备和/或终端可以根据该第二带宽部分的数量P 2确定第二比特位的 个数q 2。例如,
Figure PCTCN2021110712-appb-000021
例如,
Figure PCTCN2021110712-appb-000022
Figure PCTCN2021110712-appb-000023
z为整数,例如,z=0。可选的,第二比特位的个数可以为第二带宽部分/第二指示信息占用/对应的比特位的个数。
例如,网络设备和/或终端可以将第一比特位的个数和第二比特位的个数之和作为该C个比特位的个数q。例如,q=q 1+q 2。例如,网络设备和/或终端可以将第一比特位的个数和第二比特位的个数之和+k作为该C个比特位的个数。例如,q=q 1+q 2+k,k为整数,例如,0。
可以理解的是,该C个比特位可以用于指示的带宽部分的总数量/该C个比特位的取值的总数量可以大于等于该第一带宽部分的数量和该第二带宽部分的数量之和。其中,用于指示第一带宽部分的该C个比特位的取值与用于指示第二带宽部分的该C个比特位的取值可以是连续的,也可以是不连续/间隔的,本申请对此不进行限定。
例如,若第一带宽部分的数量为1,第二带宽部分的数量为1,则该第一比特位的个数为1个,该第二比特位的个数为1个。这样,该2bit可以用于指示4种带宽部分或者说该2bit的取值有4种可能性,而在这种情况下,只需要利用其中两种取值来分别指示1个第一带宽部分和1个第二带宽部分。例如,00可以用于指示第一带宽部分,10可以用于指示第二带宽部分(这种情况下,可以理解为比特位的取值不连续/间隔的)。例如,00可以用于指示第一带宽部分,01可以用于指示第二带宽部分(这种情况下,可以理解为比特位的取值连续的)。
确定目标带宽部分的索引的方式如下:
在一种可能的实现方式中,所述目标第一带宽部分的索引为所述C个比特位的取值。
示例性的,在通过C个比特位指示第一指示信息和第二指示信息的情况下,第一指示信息可以通过该C个比特位的较小的取值进行表示,第二指示信息可以通过该C个比特位的较大的取值进行表示。例如,终端可以将C个比特位的较小的取值作为目标第一带宽部分的索引。
例如,终端接收到C个比特位的取值小于等于第一阈值,则将该C个比特位的取值作为目标第一带宽部分的索引。
再例如,该C个比特位的个数为2bit,若第一带宽部分的个数为1,则在该C个比特位的取值为0的情况下,0可以作为该目标第一带宽部分的索引。
示例性的,在通过C个比特位指示第一指示信息的情况下,第一指示信息可以通过该C个比特位的取值进行表示。例如,终端可以将C个比特位的取值作为目标第一带宽部分的索引。
还可以理解的是,第一带宽部分的数量可以小于等于J。J为q 1个比特位所能取值的最大值+1。q 1为根据该第一带宽部分的数量P 1确定的比特位的个数。例如,
Figure PCTCN2021110712-appb-000024
例如,
Figure PCTCN2021110712-appb-000025
Figure PCTCN2021110712-appb-000026
y为整数,例如,y=0。
在另一种可能的实现方式中,所述目标第一带宽部分的索引为所述C个比特位的取值+b。
可选的,b为整数,或正整数,或,非负整数。
可选的,b可以理解为第一带宽部分的起始编号值或最小编号,或,第一带宽部分的索引的最小值或起始值。
示例性的,若第一带宽部分的数量等于J,则在第一带宽部分从b开始编号的情况下,目标第一带宽部分的索引为该C个比特位的取值+b。
J为q1个比特位所能取值的最大值+1。q1为根据该第一带宽部分的数量P 1确定的比特位的个数。例如,
Figure PCTCN2021110712-appb-000027
例如,
Figure PCTCN2021110712-appb-000028
Figure PCTCN2021110712-appb-000029
y为整数,例如,y=0。
例如,b=1,即第一带宽部分从1开始编号,则目标第一带宽部分的索引为该C个比特位的取值+1。
例如,终端接收到C个比特位的取值小于等于第一阈值,则将该C个比特位的取值+b作为目标第一带宽部分的索引。
在又一种可能的实现方式中,所述目标第一带宽部分的索引为所述C个比特位的取值与第二带宽部分的数量的差值。
示例性的,在通过C个比特位指示第一指示信息和第二指示信息的情况下,第一指示信息可以通过该C个比特位的较大的取值进行表示,第二指示信息可以通过该C个比特位的较小的取值进行表示。例如,终端可以将C个比特位的较大的取值与第二带宽部分的数量的差值作为目标第一带宽部分的索引。
例如,终端接收到C个比特位的取值大于第二阈值,则将该C个比特位的取值减第二带宽部分的数量作为目标第一带宽部分的索引。
可以理解的是,终端接收到C个比特位的取值小于等于第二阈值,则将该C个比特位的取值或该C个比特位的取值+t作为目标第二带宽部分的索引。例如,t=1,即第二带宽部分从1开始编号,则目标第二带宽部分的索引为该C个比特位的取值+1。
例如,第一带宽部分的数量为2,第一带宽部分的索引为0、1。第二带宽部分的数量为2个,第二带宽部分的索引为0、1。C个比特位的个数为2bit(例如,根据
Figure PCTCN2021110712-appb-000030
或根据
Figure PCTCN2021110712-appb-000031
确定的),C个比特位可以取0、1、2、3这4个取值,如表3所示。C个比特位的取值为0、1(例如,C个比特位的取值小于等于(第二带宽部分的数量-1))可用于指示该第二带宽部分。C个比特位取值为2、3(例如,C个比特位的取值大于(第二带宽部分的数量-1))可用于指示该第一带宽部分。这样,终端接收第一DCI,C个比特位的取值为2的情况下,该取值对应第一带宽部分,第一带宽部分的索引为0(2-2=0)。C个比特位的取值为3的情况下,该取值对应第一带宽部分,第一带宽部分的索引为1(3-2=1)。C个比特位的取值为0的情况下,该取值对应第二带宽部分,第二带宽部分的索引为0。C个比特位的取值为1的情况下,该取值对应第二带宽部分,第二带宽部分的索引为1。
表3
Figure PCTCN2021110712-appb-000032
在另一种可能的实现方式中,所述目标第一带宽部分的索引为所述C个比特位的取值与第二带宽部分的数量的差值+a,所述第二带宽部分与第二传输模式相关联。
可选的,a为整数,或正整数,或,非负整数。
可选的,a可以理解为第一带宽部分的起始编号值或最小编号,或,第一带宽部分的索引的最小值或起始值。
示例性的,若第一带宽部分的数量等于J,则在第一带宽部分从a开始编号的情况下,目标第一带宽部分的索引为该C个比特位的取值与第二带宽部分的数量的差值+a。
J为q 1个比特位所能取值的最大值+1。q 1为根据该第一带宽部分的数量P 1确定的比特位的个数。例如,
Figure PCTCN2021110712-appb-000033
例如,
Figure PCTCN2021110712-appb-000034
Figure PCTCN2021110712-appb-000035
y为整数,例如,y=0。
例如,a=1,即第一带宽部分从1开始编号,则目标第一带宽部分的索引为该C个比特位的取值与第二带宽部分的数量的差值+1。
例如,终端接收到C个比特位的取值大于第二阈值,则将该C个比特位的取值减第二带宽部分的数量+a作为目标第一带宽部分的索引。
可以理解的是,终端接收到C个比特位的取值小于等于第二阈值,则将该C个比特位的取值或该C个比特位的取值+t作为目标第二带宽部分的索引。例如,t=1,即第二带宽部分从1开始编号,则目标第二带宽部分的索引为该C个比特位的取值+1。
例如,第一带宽部分的数量为2,第一带宽部分的索引为1、2。第二带宽部分的数量为2个,第二带宽部分的索引为0、1。C个比特位的个数为2bit(例如,根据
Figure PCTCN2021110712-appb-000036
或根据
Figure PCTCN2021110712-appb-000037
确定的),C个比特位可以取0、1、2、3这4个取值,如表4所示。C个比特位的取值为0、1可用于指示该第二带宽部分(例如,C个比特位的取值小于等于(第二带宽部分的数量-1))。C个比特位取值为2、3可用于指示该第一带宽部分(例如,C个比特位的取值大于(第二带宽部分的数量-1))。这样,终端接收第一DCI,C个比特位的取值为2的情况下,该取值对应第一带宽部分,第一带宽部分的索引为1(2-2+1=1)。C个比特位的取值为3的情况下,该取值对应第一带宽部分,第一带宽部分的索引为2(3-2+1=2)。C个比特位的取值为0的情况下,该取值对应第二带宽部分,第二带宽部分的索引为0。C个比特位的取值为1的情况下,该取值对应第二带宽部分,第二带宽部分的索引为1。
表4
Figure PCTCN2021110712-appb-000038
在又一种可能的实现方式中,所述目标第一带宽部分的索引为所述C个比特位的取值与R的差值。R为q 2个比特位所能取值的最大值或q 2个比特位所能取值的最大值+c,q 2为根据第二带宽部分的数量确定的比特位的个数。其中,c为整数,例如,c=1。
例如,
Figure PCTCN2021110712-appb-000039
例如,
Figure PCTCN2021110712-appb-000040
Figure PCTCN2021110712-appb-000041
z为整数,例如,0。
P 2为第二带宽部分的数量。
例如,
Figure PCTCN2021110712-appb-000042
例如,
Figure PCTCN2021110712-appb-000043
Figure PCTCN2021110712-appb-000044
z为整数,例如,z=0。
例如,
Figure PCTCN2021110712-appb-000045
例如,
Figure PCTCN2021110712-appb-000046
Figure PCTCN2021110712-appb-000047
z为整数,例如,z=0。
示例性的,在通过C个比特位指示第一指示信息和第二指示信息的情况下,第一指示信息可以通过该C个比特位的较大的取值进行表示,第二指示信息可以通过该C个比特位的较小的取值进行表示。例如,终端可以将C个比特位的较大的取值与R的差值作为目标第一带宽部分的索引。
例如,终端接收到C个比特位的取值大于H,则将该C个比特位的取值减R作为目标第一带宽部分的索引。
可以理解的是,终端接收到C个比特位的取值小于等于R,则将该C个比特位的取值或该C个比特位的取值+t作为目标第二带宽部分的索引。例如,t=1,即第二带宽部分从1开始编号,则目标第二带宽部分的索引为该C个比特位的取值+1。
例如,第一带宽部分的数量为2,第一带宽部分的索引为0、1。第二带宽部分的数量为3个,第二带宽部分的索引为0、1、2。C个比特位的个数为3bit(例如,根据
Figure PCTCN2021110712-appb-000048
或根据
Figure PCTCN2021110712-appb-000049
确定的),C个比特位可以取0、1、2、3、4、5、6、7这8个取值,如表5所示。根据第二带宽部分的数量确定的比特位的个数为2(例如,根据
Figure PCTCN2021110712-appb-000050
),2个bit位所能取的最大值为3(例如,R=3+1=4)。C个比特位取值为4、5可用于指示该第一带宽部分(例如,C个比特位的取值大于H,H=3)。C个比特位取值为0、1、2可用于指示该第二带宽部分(例如,C个比特位的取值小于等于H,H=3)。这样,终端接收到的第一DCI,C个比特位的取值为4的情况下,该取值对应第一带宽部分,第一带宽部分的索引为0(4-4=0)。C个比特位的取值为5的情况下,该取值对应第一带宽部分,第一带宽部分的索引为1(5-4=1)。C个比特位的取值为0的情况下,该取值对应第二带宽部分,第二带宽部分的索引为0。C个比特位的取值为1的情况下,该取值对应第二带宽部分,第二带宽部分的索引为1。C个比特位的取值为2的情况下,该取值对应第二带宽部分,第二带宽部分的索引为2。
表5
Figure PCTCN2021110712-appb-000051
在又一种可能的实现方式中,所述目标第一带宽部分的索引为所述C个比特位的取值与R的差值+a。R为q 2个比特位所能取值的最大值或q 2个比特位所能取值的最大值++c,q 2为根据第二带宽部分的数量确定的比特位的个数。其中,c为整数,例如,c=1。
例如,
Figure PCTCN2021110712-appb-000052
例如,
Figure PCTCN2021110712-appb-000053
Figure PCTCN2021110712-appb-000054
z为整数,例如,0。
P 2为第二带宽部分的数量。
例如,
Figure PCTCN2021110712-appb-000055
例如,
Figure PCTCN2021110712-appb-000056
Figure PCTCN2021110712-appb-000057
z为整数,例如,z=0。
例如,
Figure PCTCN2021110712-appb-000058
例如,
Figure PCTCN2021110712-appb-000059
Figure PCTCN2021110712-appb-000060
z为整数,例如,z=0。
可选的,a为整数,或正整数,或,非负整数。
可选的,a可以理解为第一带宽部分的起始编号值或最小编号,或,第一带宽部分的索引的最小值或起始值。
例如,a=1,即第一带宽部分从1开始编号,则目标第一带宽部分的索引为该C个比特位的取值+1。
示例性的,在通过C个比特位指示第一指示信息和第二指示信息的情况下,第一指示信息可以通过该C个比特位的较大的取值进行表示,第二指示信息可以通过该C个比特位的较小的取值进行表示。例如,终端可以将C个比特位的较大的取值与R的差值+a作为目标第一带宽部分的索引。
例如,终端接收到C个比特位的取值大于H,则将该C个比特位的取值减R+a作为目标第一带宽部分的索引。
可以理解的是,终端接收到C个比特位的取值小于等于H,则将该C个比特位的取值或该C个比特位的取值+t作为目标第二带宽部分的索引。例如,t=1,即第二带宽部分从1开始编号,则目标第二带宽部分的索引为该C个比特位的取值+1。
例如,第一带宽部分的数量为2,第一带宽部分的索引为1、2。第二带宽部分的数量为3个,第二带宽部分的索引为0、1、2。C个比特位的个数为3bit(例如,根据
Figure PCTCN2021110712-appb-000061
或根据
Figure PCTCN2021110712-appb-000062
确定的),C个比特位可以取0、1、2、3、4、5、6、7这8个取值,如表6所示。根据第二带宽部分的数量确定的比特位的个数为2(例如,根据
Figure PCTCN2021110712-appb-000063
),2个bit位所能取的最大值为3(例如,R=3+1=4)。C个比特位取值为4、5可用于指示该第一带宽部分(例如,C个比特位的取值大于H,H=3)。C个比特位取值为0、1、2可用于指示该第二带宽部分(例如,C个比特位的取值小于等于H,H=3)。这样,终端接收到的第一DCI,C个比特位的取值为4的情况下,该取值对应第一带宽部分,第一带宽部分的索引为1(4-4+1=1)。C个比特位的取值为5的情况下,该取值对应第一带宽部分,第一带宽部分的索引为2(5-4+1=2)。C个比特位的取值为0的情况下,该取值对应第二带宽部分,第二带宽部分的索引为0。C个比特位的取值为1的情况下,该取值对应第二带宽部分,第二带宽部分的索引为1。C个比特位的取值为2的情况下,该取值对应第二带宽部分,第二带宽部分的索引为2。
表6
Figure PCTCN2021110712-appb-000064
可选的,可以理解的是,在步骤201之前,终端获取第一带宽部分信息(例如,第一带宽部分的位置和/或带宽、第一带宽部分的索引、第一带宽部分的数量)。例如,终端可以通过预配置或根据规定获取第一带宽部分信息。例如,终端还可以接收到网络设备发送的第三消息,该第三消息用于指示第一带宽部分信息。可选的,在步骤201之前,终端 获取第二带宽部分信息(例如,第二带宽部分的位置和/或带宽、第二带宽部分的索引、第二带宽部分的数量)。例如,终端可以通过预配置或根据规定获取第二带宽部分信息。例如,终端还可以接收到网络设备发送的第四消息,该第四消息用于指示第二带宽部分信息。
还可以理解的是,该第三消息可以与该第四消息为不同的信令,也可以是同一个信令,本申请对此不进行限定。
步骤202是可选的。
还可以理解的是,终端与网络设备之间采用第二传输模式和/或采用第一传输模式进行通信具体可以是进行数据传输,也可以是进行信令交互,本申请对此不进行限定。
例如,该第一传输模式对应的带宽部分可以为该第一传输模式对应的目标第一BWP。
可选的,终端确定在该第一传输模式对应的带宽部分上与该网络设备进行通信可以包括以下任一项或多项:
(1)终端激活该第一传输模式对应的带宽部分。
(2)终端切换到该第一传输模式对应的带宽部分上。
(3)终端去激活该第二传输模式对应的带宽部分。
(4)终端在第一传输模式对应的带宽部分上接收第一DCI调度的数据。
例如,终端接收第一DCI,可以根据第一DCI确定在该第一传输模式对应的带宽部分上与网络设备进行通信。例如,终端可以在该第一传输模式对应的带宽部分上向网络设备发送数据,或者接收数据。
例如,该第二传输模式对应的带宽部分可以为该第二传输模式对应的目标第二BWP。
可选的,终端确定在该第二传输模式对应的带宽部分上与该网络设备进行通信可以包括以下任一项或多项:
(1)终端激活该第二传输模式对应的带宽部分。
(2)终端切换到该第二传输模式对应的带宽部分上。
(3)终端在第二传输模式对应的带宽部分上接收第一DCI调度的数据。
例如,该终端根据第一DCI,还可以确定在该第二传输模式对应的带宽部分上与该网络设备进行通信。例如,终端可以在该第二传输模式对应的带宽部分上向网络设备发送数据,或者接收数据。
需要说明的是,本申请中,第一DCI可以包括第三指示信息,不包括第一信息。即,信息是可选的。
通过本实施例,终端接收来自网络设备的第一DCI,第一DCI的加扰信息(或,第一DCI)对应第二传输模式,或,终端在第二传输模式对应的BWP上接收第一DCI;该第一DCI包括第一信息和/或第三指示信息,第一信息用于指示第一传输模式,第三指示信息可用于指示目标第一带宽部分和/或第一带宽部分。避免了终端接收不到网络设备发送的指示第一传输模式和/或第一传输模式对应的目标第一带宽部分的控制信令,也避免了终端无法获知第一传输模式和/或第一传输模式对应的目标第一带宽部分的传输情况而错过数据的接收或增加数据接收的时延,从而有助于降低传输时延。有助于终端确定第一传输模式对应的BWP上的传输情况。有助于终端确定第一传输模式和/或目标第一带宽部分。可选的,终端可能会进行以下任一项或多项:BWP切换(例如,切换到第一传输模式对 应的目标第一带宽部分)、激活第一传输模式对应的目标第一带宽部分、进一步接收第一传输模式对应的数据(例如,该第一控制信令调度的数据)、确定在第一传输模式对应的目标第一带宽部分上与网络设备进行通信。也避免了网络设备单独向终端发送指示第一传输模式对应的目标第一带宽部分的控制信令。从而有助于提高通信效率。对应的,也避免了终端接收网络设备单独发送的指示第一传输模式对应的目标第一带宽部分的控制信令。也避免了终端一直检索第一传输模式对应的加扰信息加扰的控制信令,有利于终端的节能。也避免了终端一直工作在多个BWP上接收不同传输模式对应的控制信令,有利于终端节能。终端可以在该目标第一带宽部分上采用第一传输模式进行通信,有利于终端灵活切换/变换传输模式。也有助于第一设备可以灵活的从第一传输模式或第二传输模式中选择合适的传输模式进行通信。此外,第一设备可以灵活采用第一传输模式通信和/或采用第二传输模式通信,提高了通信的灵活性。避免了终端接收不到网络设备发送的指示第一传输模式和/或第一传输模式对应的目标第一带宽部分的控制信令,也避免了终端无法获知第一传输模式和/或第一传输模式对应的目标第一带宽部分的传输情况而错过数据的接收,从而有助于提高数据传输的可靠性。
在本申请另一个传输控制信令的实施例中,该第一控制信令可以为第一侧行控制信息(sidelink control information,SCI)。其中,第一设备为第一终端,第二设备为第二终端。需要说明的是,在不存在逻辑矛盾的的情况下,本实施例可以与图2所示的实施例中的任意一种方案结合,为避免赘述,在此不进行重复。
可选的,第一SCI可以为第一级SCI。第一级SCI用于调度第二级SCI和/或PSSCH/数据。第二SCI可以用于解码PSSCH/数据。
对于该另一种可能的实现,将一种可能的实现中终端替换为第一终端、网络设备替换为第二终端、第一DCI替换为第一SCI进行理解即可,此处不再赘述。
除上述两种可能的实现外,本申请还可以包括其他可能的实现,只需要将一种可能的实现中终端替换为第一设备、网络设备替换为第二设备、第一DCI替换为第一控制信令进行理解即可,此处不再赘述。
可选的,第一控制信令可以用于以下任一项或多项:
(1)调度数据;
例如,数据包括以下任一种或多种:下行数据、上行数据、SL数据。
(2)调度以下任一种或多种:PDSCH、PUSCH、PSSCH、第二控制信令。
例如,第二控制信令为第二级SCI。
(3)指示BWP信息。
例如,第一控制信令包含BWP指示。
可选的,本申请中,第一控制信令可以理解为第一控制信息。
图3示出了本申请另一个实施例的传输控制信令的方法的示意性流程图。
301,第一设备在第二带宽部分上接收第一控制信令,该第一控制信令用于调度在第一带宽部分上传输的数据或用于调度第一带宽部分上的资源。所述第一带宽部分对应的第一传输模式与所述第二带宽部分对应的第二传输模式不同。
302,该第一设备在该第一传输模式对应的带宽部分上与该第二设备进行通信和/或在该第二传输模式对应的带宽部分上与该第二设备进行通信。
为了更清楚的说明图3所示实施例,以第一控制信令为第一DCI、第一设备为终端,第二设备为网络设备为例,介绍本实施例。
“终端在该第一传输模式对应的带宽部分上与该网络设备进行通信”相关的内容可以参考图2所示示例中“终端确定在该第一传输模式对应的带宽部分上与该网络设备进行通信”相关的内容,此处不再赘述。“终端在该第二传输模式对应的带宽部分上与该网络设备进行通信”相关的内容可以参考图2所示示例中“终端确定在该第二传输模式对应的带宽部分上与该网络设备进行通信”相关的内容,此处不再赘述。
现有技术中,终端可以在第二带宽部分上接收用于调度在该第二带宽部分上传输的数据或用于调度第二带宽部分上的资源的第一DCI。本申请实施例中,第一DCI还可以用于调度在该第一带宽部分上传输的数据或用于调度第一带宽部分上的资源,这样有助于终端能够通过在第二带宽部分上接收调度在第一带宽部分上传输数据或调度第一带宽部分上的资源的DCI,从而有助于终端从第二带宽部分上获取在第一带宽部分上传输的数据对应的第一DCI,有助于终端确定第一传输模式和/或第一传输模式对应的目标第一带宽部分的传输情况,进一步终端可以在第一带宽部分上接收该第一DCI调度的数据。有助于提高通信效率。避免了终端切换到其他带宽部分上才能获取到其他带宽部分传输的数据对应的第一DCI,从而提高了数据传输的效率,降低传输时延,也有助于终端节能。也避免了终端一直工作在多个BWP上接收不同传输模式对应的控制信令,有利于终端节能。
可选地,所述第一传输模式为单播,所述第二传输模式为组播。例如,第二BWP为组播BWP。第一DCI的加扰信息为单播RNTI。例如,第一设备在第二带宽部分上接收第一控制信令,该第一控制信令用于调度在第一带宽部分上传输的数据或用于调度第一带宽部分上的资源,该第一带宽部分对应的传输模式为单播,该第二带宽部分对应的传输模式为组播。这样第一设备可以在单播对应的带宽部分上与该第二设备进行通信。例如,第一BWP为单播BWP或initial BWP。
可选地,所述第一传输模式为第一组播,所述第二传输模式为第二组播。例如,第二BWP为第二组播对应的BWP。第一DCI的加扰信息为第一组播对应的RNTI。例如,第一设备在第二带宽部分上接收第一控制信令,该第一控制信令用于调度在第一带宽部分上传输的数据或用于调度第一带宽部分上的资源,该第一带宽部分对应的传输模式为第一组播,该第二带宽部分对应的传输模式为第二组播。这样第一设备可以在第一组播对应的带宽部分上与该第二设备进行通信。例如,第一BWP为第一组播对应的BWP。
可选地,所述第一传输模式为组播,所述第二传输模式为单播。例如,第二BWP为单播BWP或initial BWP。第一DCI的加扰信息为组播RNTI。例如,第一设备在第二带宽部分上接收第一控制信令,该第一控制信令用于调度在第一带宽部分上传输的数据或用于调度第一带宽部分上的资源,该第一带宽部分对应的传输模式为组播,该第二带宽部分对应的传输模式为单播。这样第一设备可以在组播对应的带宽部分上与该第二设备进行通信。例如,第一BWP为组播BWP。
可选地,所述第一传输模式为组播,第二传输模式为第一RNTI对应的传输。例如,第二BWP为initial BWP。第一DCI的加扰信息为组播RNTI。例如,第一设备在第二带宽部分上接收第一控制信令,该第一控制信令用于调度在第一带宽部分上传输的数据或用于调度第一带宽部分上的资源,该第一带宽部分对应的传输模式为组播,该第二带宽部分 对应的传输模式为单播。这样第一设备可以在组播对应的带宽部分上与该第二设备进行通信。例如,第一BWP为组播BWP。
图3所述实施例中的描述可以参考2所示实施例,此处不再赘述。
可选的,步骤301之前,终端获取第一带宽部分信息(例如,第一带宽部分的位置和/或带宽、第一带宽部分的索引、第一带宽部分的数量)。第一带宽部分信息相关的内容可参考图2所述实施例,此处不再赘述。
可选的,步骤301之前,终端获取第二带宽部分信息(例如,第二带宽部分的位置和/或带宽、第二带宽部分的索引、第二带宽部分的数量)。第二带宽部分信息相关的内容可参考图2所述实施例,此处不再赘述。
可以理解的是,该第一传输模式、第二传输模式、第一控制信令可以与图2所示的实施例中描述类似,为避免重复,在此不进行赘述。
图4示出了本申请实施例的消息传输的方法的示意性流程图。
需要说明的是,图4所示的实施例与图2所示的实施例中的相同术语表示的含义相同,为避免重复,在此不进行赘述。
还需要说明的是,在不存在逻辑矛盾的情况下,图4所示的实施例可以与图2所示的任意方案结合。
401,终端向网络设备发送第二消息。
402,网络设备向终端发送确认信息。
403,终端可以应用/根据该第二消息中的第二信息确定第二标识和第二标识的index之间的对应关系,或,终端可以应用该第二消息中的第二信息指示的第二标识和第二标识的index之间的对应关系。
其中,步骤403是可选的。
需要理解的是,图4所示的实施例还可以包括其他可能的实现,只需要终端替换为第一设备、网络设备替换为第二设备进行理解即可,此处不再赘述。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由各个设备实现的方法和操作,也可以由对应设备的部件(例如芯片或者电路)实现。
上述主要从各个交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻 辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图2至图4详细说明了本申请实施例提供的方法。以下,结合图5至图8详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图5示出了本申请实施例的传输控制信令的装置500的示意性框图。
应理解,该装置500可以对应于图2所示的实施例中的终端,可以具有方法中的终端的任意功能。该装置500,包括收发模块510。可选地,该装置500还包括处理模块520。
该收发模块510,用于接收来自第二设备的控制信令,所述控制信令包括第一信息,所述第一信息用于指示第一传输模式,所述控制信令的加扰信息对应第二传输模式。
可选地,该处理模块520,用于根据所述控制信令,确定在所述第一传输模式对应的带宽部分上与所述第二设备进行通信和/或在所述第二传输模式对应的带宽部分上与所述第二设备进行通信。
可选地,所述第一信息包括第二标识信息和/或预设字段,所述第二标识信息用于调度所述第一传输模式对应的传输,所述预设字段与所述第一传输模式相关联。
可选地,所述第一信息包括带宽部分BWP字段,所述BWP字段用于指示所述第一传输模式。
可选地,所述控制信令还包括指示信息,所述指示信息用于指示所述第一传输模式对应的目标第一带宽部分。
可选地,所述指示信息包括C个比特位,所述方法还包括:
根据所述C个比特位中的部分比特位的取值,确定所述目标第一带宽部分;或
根据所述C个比特位的取值,确定所述目标第一带宽部分。
可选地,所述目标第一带宽部分的索引为所述C个比特位的取值与第二带宽部分的数量的差值,所述第二带宽部分与第二传输模式相关联;或
所述目标第一带宽部分的索引为所述C个比特位的取值与第二带宽部分的数量的差值+a,所述第二带宽部分与第二传输模式相关联,a为整数;或
所述目标第一带宽部分的索引为所述C个比特位的取值;或
所述目标第一带宽部分的索引为所述C个比特位的取值+b,b为整数;
所述目标第一带宽部分的索引为所述C个比特位的取值与R的差值,R为根据第二带宽部分的数量确定的比特位的最大取值;或
所述目标第一带宽部分的索引为所述C个比特位的取值与R的差值+c,R为根据第二带宽部分的数量确定的比特位的最大取值,c为整数。
可选地,所述方法还包括:
根据所述第一带宽部分的数量,确定所述C个比特位的个数,所述第一带宽部分与所 述第一传输模式相关联;或,
根据第一带宽部分的数量和第二带宽部分的数量,确定所述C个比特位的个数,所述第一带宽部分与所述第一传输模式相关联,所述第二带宽部分与第二传输模式相关联。
可选地,所述根据第一带宽部分的数量和第二带宽部分的数量,确定C个比特位的个数,包括:
根据所述第一带宽部分的数量和所述第二带宽部分的数量之和,确定所述C个比特位的个数;或
根据第一比特位的个数和第二比特位的个数之和,确定所述C个比特位的个数,所述第一比特位的个数是根据所述第一带宽部分的数量确定的,所述第二比特位的个数是根据所述第二带宽部分的数量确定的。
可选地,所述第二传输模式为单播,所述第一传输模式为组播。
可选地,所述第二传输模式为第一组播,所述第一传输模式为第二组播。
可选地,所述第二传输模式为组播,所述第一传输模式为单播。
图6示出了本申请实施例提供的传输控制信令的装置600,该装置600可以为第一设备。例如,该第一设备为图2中所述的终端。该装置可以采用如图6所示的硬件架构。该装置可以包括处理器610和收发器630,可选地,该装置还可以包括存储器640,该处理器610、收发器630和存储器640通过内部连接通路互相通信。图5中的处理模块520所实现的相关功能可以由处理器610来实现,收发模块510所实现的相关功能可以由处理器610控制收发器630来实现。
可选地,处理器610可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对传输控制信令的装置进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器610可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器630用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器640包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器640用于存储相关指令及数据。
存储器640用于存储第一设备的程序代码和数据,可以为单独的器件或集成在处理器610中。
具体地,所述处理器610用于控制收发器与第二设备进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置600还可以包括输出设备和输入设备。输出设 备和处理器610通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器601通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图6仅仅示出了传输控制信令的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的第一设备都在本申请的保护范围之内。
在一种可能的设计中,该装置600可以是芯片,例如可以为可用于第一设备中的通信芯片,用于实现第一设备中处理器610的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是终端,也可以是电路。该装置可以用于执行上述方法实施例中由终端所执行的动作。
图7示出了本申请实施例的传输控制信令的装置700的示意性框图。
应理解,该装置700可以对应于第二设备,该第二设备可以是图2所示的实施例中的网络设备。该装置700可以具有方法中的第二设备的任意功能。该装置700,包括收发模块710。可选地,该装置700还包括处理模块720。
收发模块710,向第一设备发送控制信令,所述控制信令包括第一信息,所述第一信息用于指示第一传输模式,所述控制信令的加扰信息对应第二传输模式。
可选地,该处理模块720,还用于在该第一传输模式对应的带宽部分上与该第一设备进行通信,和或在该第二传输模式对应的带宽部分上与该第一设备进行通信。
可选地,所述第一信息包括第二标识信息和/或预设字段,所述第二标识信息用于调度所述第一传输模式对应的传输,所述预设字段与所述第一传输模式相关联。
可选地,第一信息包括带宽部分BWP字段,所述BWP字段用于指示所述第一传输模式。
可选地,所述控制信令还包括指示信息,所述指示信息用于指示采用所述第一传输模式进行传输的目标第一带宽部分。
可选地,所述控制信令包括C个比特位,所述C个比特位中的部分比特位的取值用于确定所述目标第一带宽部分,或所述C个比特位的取值用于确定所述第一带宽部分。
可选地,所述目标第一带宽部分的索引为所述C个比特位的取值与第二带宽部分的数量的差值,所述第二带宽部分与第二传输模式相关联;或
所述目标第一带宽部分的索引为所述C个比特位的取值与第二带宽部分的数量的差值+a,所述第二带宽部分与第二传输模式相关联,a为整数;或
所述目标第一带宽部分的索引为所述C个比特位的取值;或
所述目标第一带宽部分的索引为所述C个比特位的取值+b,b为整数;
所述目标第一带宽部分的索引为所述C个比特位的取值与R的差值,R为根据第二带宽部分的数量确定的比特位的最大取值;或
所述目标第一带宽部分的索引为所述C个比特位的取值与R的差值+c,R为根据第二带宽部分的数量确定的比特位的最大取值,c为整数。
可选地,所述第二传输模式为单播,所述第一传输模式为组播。
可选地,所述第二传输模式为第一组播,所述第一传输模式为第二组播。
可选地,所述第二传输模式为组播,所述第一传输模式为单播。
图8示出了本申请实施例提供的传输控制信令的装置800,该装置800可以为第二设备。例如,图2中所述的网络设备。该装置可以采用如图8所示的硬件架构。该装置可以包括处理器810和收发器820,可选地,该装置还可以包括存储器830,该处理器810、收发器820和存储器830通过内部连接通路互相通信。图7中的处理模块720所实现的相关功能可以由处理器810来实现,收发模块710所实现的相关功能可以由处理器810控制收发器820来实现。
可选地,处理器810可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对传输控制信令的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器810可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器820用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器830包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器830用于存储相关指令及数据。
存储器830用于存储终端的程序代码和数据,可以为单独的器件或集成在处理器810中。
具体地,所述处理器810用于控制收发器与终端进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置800还可以包括输出设备和输入设备。输出设备和处理器810通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器701通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图8仅仅示出了传输控制信令的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、 存储器等,而所有可以实现本申请的终端都在本申请的保护范围之内。
在一种可能的设计中,该装置800可以是芯片,例如可以为可用于终端中的通信芯片,用于实现终端中处理器810的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是网络设备,也可以是电路。该装置可以用于执行上述方法实施例中由网络设备所执行的动作。
可选地,本实施例中的装置为终端时,图9示出了一种简化的终端的结构示意图。便于理解和图示方便,图9中,终端以手机作为例子。如图9所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图9中仅示出了一个存储器和处理器。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的收发单元,将具有处理功能的处理器视为终端的处理单元。如图9所示,终端包括收发单元910和处理单元920。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元910中用于实现接收功能的器件视为接收单元,将收发单元910中用于实现发送功能的器件视为发送单元,即收发单元910包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元910用于执行上述方法实施例中终端侧的发送操作和接收操作,处理单元920用于执行上述方法实施例中终端上除了收发操作之外的其他操作。
例如,在一种实现方式中,处理单元920用于执行图2中终端侧的处理步骤202。收发单元910,用于执行图2中的步骤201的收发操作,和/或收发单元910还用于执行本申请实施例中终端侧的其他收发步骤。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
可选地,该装置为终端时,还可以参照图10所示的设备。作为一个例子,该设备可 以完成类似于图6中处理器610的功能。在图10中,该设备包括处理器1001,发送数据处理器1003,接收数据处理器1005。上述实施例中的处理模块520可以是图10中的该处理器1001,并完成相应的功能。上述实施例中的收发模块510可以是图10中的发送数据处理器1003和接收数据处理器1005。虽然图10中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图11示出本实施例的另一种形式。处理装置1100中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信设备可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1103,接口1104。其中处理器1103完成上述处理模块510的功能,接口1104完成上述收发模块511的功能。作为另一种变形,该调制子系统包括存储器1106、处理器1103及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现上述图2所示的方法实施例。需要注意的是,所述存储器1106可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1100中,只要该存储器1106可以连接到所述处理器1103即可。
本实施例中的装置700为网络设备时,该网络设备可以如图12所示,装置1200包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1210和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1220。所述RRU 1210可以称为收发模块,与图7中的收发模块710对应,可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1216和射频单元1217。所述RRU 1210部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 1210部分主要用于进行基带处理,对基站进行控制等。所述RRU 1210与BBU 1220可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1220为基站的控制中心,也可以称为处理模块,可以与图7中的处理模块720对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1220可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1220还包括存储器1221和处理器1222。所述存储器1221用以存储必要的指令和数据。所述处理器1222用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1221和处理器1222可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中, 或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,处理器可以是集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchronous link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,说明书通篇中提到的“实施例”、“可能的设计”或“可能的实现方式”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在 整个说明书各处出现的“在一个实施例中”、“在一种可能的设计中”或“在一种可能的实现方式中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中,单独存在A或B,并不限定A或B的数量。以单独存在A为例,可以理解为具有一个或多个A。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储 在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种传输控制信令的方法,其特征在于,包括:
    接收来自第二设备的控制信令,所述控制信令包括第一信息,所述第一信息用于指示第一传输模式,所述控制信令的加扰信息对应第二传输模式。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述控制信令,确定在所述第一传输模式对应的带宽部分上与所述第二设备进行通信和/或在所述第二传输模式对应的带宽部分上与所述第二设备进行通信。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信息包括第二标识信息和/或预设字段,所述第二标识信息用于调度所述第一传输模式对应的传输,所述预设字段与所述第一传输模式相关联。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一信息包括带宽部分BWP字段,所述BWP字段用于指示所述第一传输模式。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述控制信令还包括指示信息,所述指示信息用于指示所述第一传输模式对应的目标第一带宽部分。
  6. 根据权利要求5所述的方法,其特征在于,所述指示信息包括C个比特位,所述方法还包括:
    根据所述C个比特位中的部分比特位的取值,确定所述目标第一带宽部分;或
    根据所述C个比特位的取值,确定所述目标第一带宽部分。
  7. 根据权利要求6所述的方法,其特征在于,所述目标第一带宽部分的索引为所述C个比特位的取值与第二带宽部分的数量的差值,所述第二带宽部分与第二传输模式相关联;或
    所述目标第一带宽部分的索引为所述C个比特位的取值与第二带宽部分的数量的差值+a,所述第二带宽部分与第二传输模式相关联,a为整数;或
    所述目标第一带宽部分的索引为所述C个比特位的取值;或
    所述目标第一带宽部分的索引为所述C个比特位的取值+b,b为整数;
    所述目标第一带宽部分的索引为所述C个比特位的取值与R的差值,R为根据第二带宽部分的数量确定的比特位的最大取值;或
    所述目标第一带宽部分的索引为所述C个比特位的取值与R的差值+c,R为根据第二带宽部分的数量确定的比特位的最大取值,c为整数。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    根据第一带宽部分的数量,确定所述C个比特位的个数,所述第一带宽部分与所述第一传输模式相关联;或,
    根据第一带宽部分的数量和第二带宽部分的数量,确定所述C个比特位的个数,所述第一带宽部分与所述第一传输模式相关联,所述第二带宽部分与第二传输模式相关联。
  9. 根据权利要求8所述的方法,其特征在于,所述根据第一带宽部分的数量和第二带宽部分的数量,确定C个比特位的个数,包括:
    根据所述第一带宽部分的数量和所述第二带宽部分的数量之和,确定所述C个比特位 的个数;或
    根据第一比特位的个数和第二比特位的个数之和,确定所述C个比特位的个数,所述第一比特位的个数是根据所述第一带宽部分的数量确定的,所述第二比特位的个数是根据所述第二带宽部分的数量确定的。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第二传输模式为单播,所述第一传输模式为组播。
  11. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第二传输模式为第一组播,所述第一传输模式为第二组播。
  12. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第二传输模式为组播,所述第一传输模式为单播。
  13. 一种传输控制信令的方法,其特征在于,包括:
    向第一设备发送控制信令,所述控制信令包括第一信息,所述第一信息用于指示第一传输模式,所述控制信令的加扰信息对应第二传输模式。
  14. 根据权利要求13所述的方法,其特征在于,所述第一信息包括第二标识信息和/或预设字段,所述第二标识信息用于调度所述第一传输模式对应的传输,所述预设字段与所述第一传输模式相关联。
  15. 根据权利要求13所述的方法,其特征在于,第一信息包括带宽部分BWP字段,所述BWP字段用于指示所述第一传输模式。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述控制信令还包括指示信息,所述指示信息用于指示采用所述第一传输模式进行传输的目标第一带宽部分。
  17. 根据权利要求16所述的方法,其特征在于,所述控制信令包括C个比特位,所述C个比特位中的部分比特位的取值用于确定所述目标第一带宽部分,或所述C个比特位的取值用于确定所述第一带宽部分。
  18. 根据权利要求17所述的方法,其特征在于,所述目标第一带宽部分的索引为所述C个比特位的取值与第二带宽部分的数量的差值,所述第二带宽部分与第二传输模式相关联;或
    所述目标第一带宽部分的索引为所述C个比特位的取值与第二带宽部分的数量的差值+a,所述第二带宽部分与第二传输模式相关联,a为整数;或
    所述目标第一带宽部分的索引为所述C个比特位的取值;或
    所述目标第一带宽部分的索引为所述C个比特位的取值+b,b为整数;
    所述目标第一带宽部分的索引为所述C个比特位的取值与R的差值,R为根据第二带宽部分的数量确定的比特位的最大取值;或
    所述目标第一带宽部分的索引为所述C个比特位的取值与R的差值+c,R为根据第二带宽部分的数量确定的比特位的最大取值,c为整数。
  19. 根据权利要求13至18中任一项所述的方法,其特征在于,所述第二传输模式为单播,所述第一传输模式为组播。
  20. 根据权利要求13至18中任一项所述的方法,其特征在于,所述第二传输模式为第一组播,所述第一传输模式为第二组播。
  21. 根据权利要求13至18中任一项所述的方法,其特征在于,所述第二传输模式为 组播,所述第一传输模式为单播。
  22. 一种通信装置,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至12中任一项所述的方法。
  23. 一种通信装置,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求13至21中任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1至12中任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求13至21中任一项所述的方法。
  26. 一种芯片,其特征在于,包括处理器和接口;
    所述处理器用于读取指令以执行权利要求1至12中任一项所述的数据传输的方法。
  27. 一种芯片,其特征在于,包括处理器和接口;
    所述处理器用于读取指令以执行权利要求13至21中任一项所述的数据传输的方法。
  28. 一种通信系统,其特征在于,包括权利要求22所述的通信装置和权利要求23所述的通信装置。
PCT/CN2021/110712 2020-08-06 2021-08-05 传输控制信令的方法和装置 WO2022028499A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010784130.4 2020-08-06
CN202010784130.4A CN114071736A (zh) 2020-08-06 2020-08-06 传输控制信令的方法和装置

Publications (1)

Publication Number Publication Date
WO2022028499A1 true WO2022028499A1 (zh) 2022-02-10

Family

ID=80120024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110712 WO2022028499A1 (zh) 2020-08-06 2021-08-05 传输控制信令的方法和装置

Country Status (2)

Country Link
CN (1) CN114071736A (zh)
WO (1) WO2022028499A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109788563A (zh) * 2017-11-15 2019-05-21 维沃移动通信有限公司 Bwp指示方法、获取方法、网络侧设备及用户终端
WO2019153142A1 (zh) * 2018-02-07 2019-08-15 华为技术有限公司 一种信道传输方法及装置
WO2019227467A1 (zh) * 2018-06-01 2019-12-05 富士通株式会社 带宽部分指示的配置方法、装置和通信系统
CN111277358A (zh) * 2018-12-28 2020-06-12 维沃移动通信有限公司 序列生成方法、信号接收方法及装置、终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109788563A (zh) * 2017-11-15 2019-05-21 维沃移动通信有限公司 Bwp指示方法、获取方法、网络侧设备及用户终端
WO2019153142A1 (zh) * 2018-02-07 2019-08-15 华为技术有限公司 一种信道传输方法及装置
WO2019227467A1 (zh) * 2018-06-01 2019-12-05 富士通株式会社 带宽部分指示的配置方法、装置和通信系统
CN111277358A (zh) * 2018-12-28 2020-06-12 维沃移动通信有限公司 序列生成方法、信号接收方法及装置、终端

Also Published As

Publication number Publication date
CN114071736A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
US9232498B2 (en) Techniques for traffic delivery to a group of devices
WO2020143617A1 (zh) 一种下行控制信道的传输方法、终端和网络侧设备
WO2014000514A1 (zh) 设备间通信方法、用户设备和基站
WO2021057829A1 (zh) 时域资源确定方法、装置、设备及存储介质
CN113271180A (zh) 混合自动重传请求harq位图信息的反馈方法及相关设备
US20230049911A1 (en) Method for transmitting automatic repeat request acknowledgement feedback information supporting multicast service and apparatus
WO2021204094A1 (zh) 一种通信方法、装置及系统
WO2022028464A1 (zh) 资源调度方法、装置及设备
JP2023078303A (ja) V2xトラフィックに対応するための制御チャネル構造設計
US20230114940A1 (en) Resource assignment method, terminal, and network side device
WO2021031906A1 (zh) 配置时域资源的方法和装置
EP4012963A1 (en) Multicast control channel sending method and apparatus
WO2022028499A1 (zh) 传输控制信令的方法和装置
US20220368505A1 (en) Data feedback method and apparatus
WO2020097835A1 (zh) 一种多媒体业务的传输方法及装置
WO2022028521A1 (zh) Sps pdsch的类型指示方法、装置、终端及网络侧设备
WO2021114148A1 (zh) 一种通信方法及通信装置
WO2022077479A1 (zh) 一种通信方法及装置
WO2021226851A1 (zh) Harq-ack码本的反馈方法、终端设备和网络设备
WO2021068202A1 (zh) 一种通信方法及通信装置
CN115118382A (zh) Harq-ack反馈方法、装置、终端及网络侧设备
EP4178287A1 (en) Method, apparatus and system for determining bwp
WO2023151619A1 (zh) 一种监控方法、装置、芯片及模组设备
WO2024026832A1 (zh) 无线通信的方法及装置
WO2023155151A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852423

Country of ref document: EP

Kind code of ref document: A1