WO2022028381A1 - 驱动电机、具有该驱动电机的驱动系统和车辆 - Google Patents

驱动电机、具有该驱动电机的驱动系统和车辆 Download PDF

Info

Publication number
WO2022028381A1
WO2022028381A1 PCT/CN2021/110150 CN2021110150W WO2022028381A1 WO 2022028381 A1 WO2022028381 A1 WO 2022028381A1 CN 2021110150 W CN2021110150 W CN 2021110150W WO 2022028381 A1 WO2022028381 A1 WO 2022028381A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
drive motor
core
degrees
groove
Prior art date
Application number
PCT/CN2021/110150
Other languages
English (en)
French (fr)
Inventor
王飞
陈金涛
蒲晓敏
胡义明
Original Assignee
安徽威灵汽车部件有限公司
广东威灵汽车部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010771190.2A external-priority patent/CN114069971B/zh
Priority claimed from CN202021586557.5U external-priority patent/CN212695852U/zh
Priority claimed from CN202010768996.6A external-priority patent/CN114069915B/zh
Priority claimed from CN202021586558.XU external-priority patent/CN213185796U/zh
Application filed by 安徽威灵汽车部件有限公司, 广东威灵汽车部件有限公司 filed Critical 安徽威灵汽车部件有限公司
Priority to EP21853343.8A priority Critical patent/EP4131744A4/en
Publication of WO2022028381A1 publication Critical patent/WO2022028381A1/zh
Priority to US18/095,734 priority patent/US20230187999A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/15Mounting arrangements for bearing-shields or end plates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present application relates to the technical field of electric motors, and in particular, to a drive motor, a drive system having the drive motor, and a vehicle.
  • the main drive motor is an important part of electric vehicles. Unlike traditional motors used in equipment such as compressors, when the drive motor works, a large amount of heat is generated due to the iron loss and copper loss of the stator components. If the cooling is not good, it will cause the stator components. The temperature of the rotor and the rotor assembly is too high, resulting in the demagnetization of the rotor magnetic steel and the burning of the stator coil, which affects the normal operation of the motor. Therefore, the heat dissipation design of the drive motor cannot meet the heat dissipation requirements of the drive motor. In the related art, it is proposed to set a cut edge on the outer wall of the stator iron core to improve the heat dissipation effect. However, the inventor of the present application found that the cooling effect of the driving motor still cannot meet the requirements by studying the design solution, and there is room for improvement.
  • the present application aims to solve one of the technical problems in the related art at least to a certain extent.
  • the embodiments of the present application propose a drive motor with improved cooling effect.
  • the embodiment of the present application also proposes a drive system having the above-mentioned drive motor.
  • Embodiments of the present application also provide a vehicle having the above-mentioned drive motor.
  • a drive motor includes a motor housing and a stator iron core installed in the motor housing, the motor housing has a liquid inlet and a liquid outlet, and an outer peripheral wall of the stator iron core There is a cut edge extending along the axial direction of the stator core, wherein the space between the cut edge and the inner peripheral wall of the motor housing forms a cooling liquid flow channel, the liquid inlet and the outlet The liquid port is communicated with the cooling liquid flow channel, and the depth of the trimmed edge satisfies the relational expression: where b is the depth of the cut edge, R out is the outer diameter of the stator core, R in is the inner diameter of the stator core, L is the yoke thickness of the stator core, h is the stack thickness of the stator core, k 2 is the coefficient and is 0.05-0.1.
  • the drive motor of the embodiment of the present application by setting the trimming edge, the contact area between the cooling liquid and the stator iron core is increased, and the heat dissipation efficiency of the motor under high power is improved, and the depth of the trimming edge is limited within the above-mentioned range. , can obtain better heat dissipation effect.
  • the outer peripheral wall of the stator iron core is provided with a stator groove extending along the axial direction of the stator iron core, and the stator groove communicates with the liquid inlet and the liquid outlet.
  • the stator groove is rectangular, and the depth of the stator groove satisfies the relationship: where a is the depth of the stator groove, R out is the outer diameter of the stator core, R in is the inner diameter of the stator core, L is the yoke thickness of the stator core, h is the stack thickness of the stator core, and k 1 is the coefficient And is 0.05-0.1.
  • stator grooves are divided into multiple groups, and the multiple groups of stator grooves are evenly spaced along the circumferential direction of the stator core, and the central angle ⁇ 1 corresponding to the interval between adjacent groups is 1- 5 degrees.
  • the plurality of sets of stator grooves are divided into first-type slot groups and second-type slot groups, and the first-type slot groups and the second-type slot groups alternate along the circumferential direction of the stator core layout,
  • Each second-type slot group is divided into two first sections adjacent to the first-type slot group and two second sections adjacent to the cut edge, and the stator grooves in the first sections
  • the number is greater than the number of stator grooves in the second section
  • the central angle ⁇ 32 corresponding to the interval between the adjacent first section and the second section is 1-5 degrees
  • the gap between the stator grooves in each section is 1-5 degrees.
  • the corresponding central angle ⁇ 42 of the interval is 0.5-2 degrees
  • the central angle ⁇ 52 corresponding to each stator groove is 0.5-2 degrees
  • Each first-type slot group is divided into multiple teams, each team includes multiple sections, the central angle ⁇ 21 corresponding to the interval slot between adjacent teams is 1-5 degrees, and the interval between adjacent sections in each team is The corresponding central angle ⁇ 31 is 1-5 degrees, the central angle ⁇ 41 corresponding to the interval between the stator grooves in each section in each team is 0.5-2 degrees, and the central angle corresponding to each stator groove is 0.5-2 degrees.
  • Theta 51 is 0.5-2 degrees.
  • the depth of the stator grooves is 1.5-2.5 mm.
  • the liquid inlets are multiple and spirally distributed along the motor housing.
  • an inner peripheral wall of the motor casing is provided with a casing groove, the casing groove extends along the circumference of the motor casing, the liquid inlet and the outlet The liquid ports are respectively communicated with the grooves of the casing.
  • the plurality of liquid inlets are distributed along the circumferential direction of the motor housing, and the included angle ⁇ between the central axes of adjacent liquid inlets is less than or equal to 180 degrees, the central angle ⁇ between the center of the liquid inlet and the projection of the center of the nearest cut edge on the cross section of the stator core is 0-5 degrees.
  • the number of cut edges is four, the number of liquid inlets is four, and the central angle ⁇ is 0 degrees.
  • the liquid inlets are spaced apart in the axial direction of the motor housing.
  • the stator iron core is formed by stacking stator punching sheets, and the outer peripheral wall of the stator iron core is provided with at least one stator circumferential groove, and the at least one stator circumferential groove is along the direction of the stator iron core. Circumferentially extending so that the stator core is axially divided into a plurality of non-grooved core segments and at least one grooved core segment.
  • the number of the grooved iron core segments is one, and the number of the non-slotted iron core segments is two, and the stator grooves and /or said trimming.
  • one of the grooved core segments is located at an axially intermediate position of the stator core.
  • the central axis of the liquid inlet is located within the central cross-section of the one grooved core segment.
  • An embodiment of the second aspect of the present application proposes a drive system, including a drive motor, a reducer, and a controller, the reducer is connected to a motor shaft of the drive motor, the controller is connected to the drive motor, and the The drive motor is the drive motor described in any of the above embodiments.
  • An embodiment of the third aspect of the present application provides a vehicle, including the drive motor described in any of the foregoing embodiments.
  • FIG. 1 is a schematic diagram of a drive motor according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a stator core of a drive motor according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a motor housing of a drive motor according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a stator core of a drive motor according to another embodiment of the present application.
  • FIG. 5 is a schematic diagram of a stator punch of a stator core of a drive motor according to an embodiment of the present application
  • Fig. 6 is the partial enlarged schematic diagram of the stator punching piece shown in Fig. 5;
  • Fig. 7 is another partial enlarged schematic diagram of the stator punching piece shown in Fig. 5;
  • Fig. 8 is another partial enlarged schematic diagram of the stator punching piece shown in Fig. 5;
  • FIG. 9 is a graph of coefficient k 1 and pressure drop and the maximum temperature rise rate of the motor according to an embodiment of the present application.
  • FIG. 10 is a graph of coefficient k 2 versus pressure drop and the maximum temperature rise rate of the motor according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a driving motor according to another embodiment of the present application.
  • FIG. 12 is a schematic diagram of a stator punch according to another embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a stator core of a drive motor according to yet another embodiment of the present application.
  • FIG. 14 is a schematic diagram of a stator core of a driving motor according to still another embodiment of the present application.
  • 15 is a graph of the central angle between the projection of the center of the liquid inlet of the driving motor and the center of the trimmed edge on the cross section of the stator core and the pressure drop and the maximum temperature rise rate of the motor according to an embodiment of the present application .
  • stator core 2 The stator core 2, the cut edge 21, the stator groove 22, the stator circumferential groove 23, the first type of slot group 221, the second type of slot group 222, the first section 2221, and the second section 2222.
  • the driving motor includes a motor housing 1 and a stator iron core 2 .
  • a rotor (not shown) may be provided in the stator iron core 2, and stator windings (not shown) are wound around the stator teeth of the stator iron core 2, thereby constituting a stator of the driving motor.
  • the stator core 2 is installed in the motor housing 1 .
  • the motor housing 1 has a machine liquid inlet 12 and a liquid outlet (not shown).
  • the liquid outlet is usually provided on the end cover (not shown) of the motor housing 1 .
  • the outer peripheral wall of the stator iron core 2 is provided with a cut edge 21 extending along the axial direction of the stator iron core.
  • the space between the cut edge 21 and the inner peripheral wall of the motor housing 1 forms a cooling liquid flow channel.
  • the liquid outlet is communicated with the cooling liquid flow channel.
  • the depth of the cut edge 21 satisfies the relation: where b is the depth of the cut edge, R out is the outer diameter of the stator core, R in is the inner diameter of the stator core, L is the yoke thickness of the stator core, h is the stack thickness of the stator core, k 2 is the coefficient and is 0.05-0.1.
  • the inventor found that, as shown in Figure 10, with the increase of the coefficient k 2 , the pressure drop of the coolant increases (that is, the flow resistance increases), and the maximum temperature rise of the motor gradually decreases. The better the effect, the smaller the maximum temperature rise of the motor, the better the life and performance of the motor.
  • the selection coefficient k 2 is 0.05-0.1, so that the thermal performance of the motor is good, and by setting the trimming can save raw materials, such as reducing raw material costs. 5.3%.
  • the outer peripheral wall of the stator iron core 2 is provided with a stator groove 22 extending along the axial direction of the stator iron core 2 , and the stator groove 22 communicates with the liquid inlet 12 and the liquid outlet.
  • the inner peripheral wall of the motor housing 1 and the stator groove 22 define a part of the cooling liquid flow channel, which increases the contact area between the cooling liquid and the stator core 2 and improves the heat dissipation efficiency.
  • the stator groove 22 is set as a rectangle, and the depth of the stator groove 22 satisfies the relationship: where a is the depth of the stator groove, R out is the outer diameter of the stator iron core, R in is the inner diameter of the stator iron core, L is the yoke thickness of the iron core, h is the stack thickness of the stator iron core, k 1 is the coefficient and is 0.05-0.1.
  • the inventor found through research that, as shown in FIG. 9 , with the gradual increase of the coefficient k 1 , the pressure drop of the cooling liquid increases (that is, the flow resistance of the cooling liquid increases), and the temperature rise of the motor decreases. Moreover, when k 1 is in the range of 0-0.05, the pressure drop of the coolant increases rapidly. When k 1 is greater than 0.1, the pressure drop of the coolant increases, but the temperature rise of the motor decreases basically unchanged.
  • the depth a of the stator groove 22 is greater than or equal to 1.5 mm and less than or equal to 2.5 mm.
  • the inventors found that when the depth a of the stator groove is 1mm, the electromagnetic performance of the motor is reduced by 0.67%, and when the depth a of the stator groove is 2mm, the electromagnetic performance of the motor is reduced by 1.5%, when the depth a of the stator groove is At 3mm, the electromagnetic performance is reduced by 4.83%, so it is advantageous to set the depth a of the stator groove to be between 1.5mm and 2.5mm.
  • the depth a of the stator groove 22 is preferably 2 mm, and the width a of the stator groove 22 is preferably 1 mm.
  • the electromagnetic The performance is reduced by 1.5%. Although it has a certain impact on the electromagnetic performance, the impact is small. At the same time, the contact area between the coolant and the stator core is also large, which can effectively improve the cooling efficiency of the motor.
  • stator grooves 22 are divided into multiple groups, and the multiple groups of stator grooves 22 are evenly spaced along the circumferential direction of the stator core 2 , and the intervals between adjacent groups correspond to The central angle ⁇ 1 is 1-5 degrees.
  • the stator grooves 22 are divided into a first-type slot group 221 and a second-type slot group 222, the cut edges 21 are located in the second-type slot group 222, the first-type slot group 221 and the second-type slot group 222 Alternately arranged along the circumferential direction of the stator core 2, the first-type slot group 221 and the second-type slot group 222 are spaced apart, wherein the second-type slot group 222 includes a first section 2221 and a second section 2222, and the first section 2221 is Close to the slots of the first type of slot group 221 , the second segment 2222 is a slot close to the cut edge 21 , and the number of stator grooves 22 in the first segment 2221 is greater than the number of stator grooves 22 in the second segment 2222 .
  • each second type groove group 222 has two The first section 2221 and the two second sections 2222, the central angle ⁇ 32 corresponding to the interval between the adjacent first section 2221 and the second section 2222 is 1-5 degrees, and the gap between the stator grooves 22 in each section is 1-5 degrees.
  • the central angle ⁇ 42 corresponding to the interval between them is 0.5-2 degrees, and the central angle ⁇ 52 corresponding to each stator groove 22 is 0.5-2 degrees.
  • each first-type slot group 221 is divided into multiple teams, two teams in FIG. 8 , each team includes multiple sections, and three sections in FIG. 8 , the center of the circle corresponding to the interval slot between adjacent teams
  • the angle ⁇ 21 is 1-5 degrees
  • the central angle ⁇ 31 corresponding to the interval between adjacent sections in each team is 1-5 degrees
  • the interval between the stator grooves 22 in each section in each team is
  • the corresponding central angle ⁇ 41 is 0.5-2 degrees
  • the corresponding central angle ⁇ 51 of each stator groove 22 is 0.5-2 degrees.
  • the central angle corresponding to the cut edge 21 is 23 degrees.
  • the plurality of liquid inlets 12 are arranged at intervals along the axial direction of the motor housing 1 , in other words, the plurality of liquid inlets 12 are arranged at intervals along the circumference of the motor housing 1 and also along the motor housing 1 .
  • the axial spacing of the housings 1 is, for example, a helical distribution on the motor housing 1 .
  • a casing groove 11 is provided on the inner peripheral wall of the motor casing 1, and the casing groove 11 extends along the circumferential direction of the motor casing.
  • the liquid outlets are respectively communicated with the casing grooves 11, and the casing grooves 11 form a part of the cooling liquid flow channel, thereby further improving the cooling effect.
  • liquid inlets 12 for the driving motor, and the liquid inlets 12 are distributed at intervals along the circumferential direction of the motor housing 1 .
  • the angle ⁇ between the central axes of the liquid port 12 is less than or equal to 180 degrees, and the central angle ⁇ between the center of the liquid inlet 12 and the projection of the center of the nearest cut edge 21 on the cross section of the stator core 2 0-5 degrees.
  • the central angle ⁇ refers to the line connecting the center of the liquid inlet 12 and the center of the stator core 2, and the center point of the cut edge 21 closest to the liquid inlet 12 is connected to the center of the stator core 2.
  • Line, the angle between the projections on the cross section of the stator core 2 is 0-5 degrees.
  • the horizontal axis is the central angle ⁇
  • the left vertical axis is the pressure drop
  • the right vertical axis is the maximum temperature rise ⁇ T of the motor, when the central angle ⁇ gradually increases from 0 to 5 degrees.
  • the pressure drop curve shown in solid line
  • the maximum temperature rise of the motor curve shown in dotted line
  • the central angle ⁇ is greater than 5 degrees
  • the pressure increases gradually.
  • the speed of decrease and the increase of the maximum temperature rise of the motor is obviously accelerated (the slope of the two curves increases), that is, the thermal performance of the motor is not good. Therefore, the center of the liquid inlet 12 and the center of the nearest cut edge 21 are in the stator core. It is advantageous to set the central angle between projections on the cross section of 2 to 0-5 degrees.
  • the number of cut edges 21 is four, the number of liquid inlets 12 is two, and the center of the liquid inlet 12 and the center of the nearest cut edge 21 are located in the stator.
  • the central angle between the projections on the cross section of the iron core 2 is ⁇ , preferably, ⁇ is 0 degrees.
  • the number of cutting edges 21 is four, the number of liquid inlets 12 is four, and the center of the liquid inlet 12 and the nearest cutting edge 21 are separated from each other.
  • the central angle ⁇ between the projections of the center on the cross section of the stator core 2 is 0 degrees.
  • the number of liquid inlets is less than the number of cut edges, and each liquid inlet corresponds to one cut edge.
  • the stator core 2 is formed by stacking stator punching sheets, and the stator punching sheets are usually made of silicon steel sheets.
  • the outer peripheral wall of the stator core 2 is provided with at least one stator circumferential groove 23 , and the stator circumferential groove 23 extends along the circumference of the stator core 2 .
  • the stator core segments where the stator circumferential grooves 23 are located are called groove core segments, and the remaining stator core segments are called non-grooved core segments.
  • the number of groove core segments is the same as the number of stator circumferential grooves 23 .
  • stator circumferential groove 23 increases the contact area between the cooling liquid and the stator core 2 , improves the heat dissipation efficiency, saves materials for manufacturing the stator core, and effectively reduces the cost of raw materials.
  • FIG. 14 there are one grooved iron core segment and two non-slotted iron core segments, and the outer peripheral walls of the two non-slotted iron cores are provided with grooves 23 in the circumferential direction of the stator. Connected stator grooves 22 .
  • FIG. 2 in some other specific embodiments, there are one grooved iron core segment and two non-grooved iron core segments, and the outer peripheral walls of the two non-grooved iron cores are provided with cut edges 21 .
  • FIG. 13 in some other specific embodiments, there are one grooved iron core segment and two non-groove iron core segments, and stator grooves 22 are provided on the outer peripheral walls of the two non-groove iron cores. and trimming 21
  • grooved core segments is not limited to one, but can also be multiple.
  • a grooved core segment is communicated with the liquid inlet 12, that is, a stator circumferential groove is communicated with the liquid inlet 12, and the grooved core segment is located at an axial middle position of the stator core 2. Specifically, The central axis of the liquid inlet 12 is located within the central cross-section of the grooved core segment.
  • the grooved iron core segment is communicated with the liquid inlet 12.
  • the coolant enters the motor housing, it first fills the stator circumferential groove 23 at the grooved iron core segment, and then passes through the stator groove 22 and the cut edge 21 to the stator iron.
  • the outer peripheral wall of the core 2 is fully contacted and finally discharged from the liquid outlet 13.
  • the overall flow of the cooling liquid is from the middle to the two ends. The cooling liquid can quickly and completely contact the stator core 2 for heat dissipation, which improves the heat dissipation efficiency.
  • a drive system includes a drive motor, a speed reducer, and a controller, the speed reducer is connected to a motor shaft of the drive motor, the controller is connected to the drive motor, and the drive The motor is the above-mentioned drive motor.
  • the vehicle according to the embodiment of the third aspect of the present application includes the drive motor according to the embodiment of the present application, and the vehicle may be a new energy vehicle, wherein the new energy vehicle includes a pure electric vehicle, an extended-range electric vehicle, a hybrid electric vehicle, Fuel cell electric vehicles, hydrogen engine vehicles, etc.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • the terms “one embodiment,” “some embodiments,” “example,” “specific example,” or “some examples,” etc. mean the specific features, structures, materials, or characteristics described in connection with the embodiment or example. Features are included in at least one embodiment or example of the present application. In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请公开了一种驱动电机,驱动系统和车辆。所述驱动电机包括电机壳体和安装在所述电机壳体内的定子铁芯,所述电机壳体具有进液口和出液口,所述定子铁芯的外周壁设有沿所述定子铁芯的轴向延伸的切边,其中所述切边与所述电机机壳的内周壁之间的空间形成冷却液流道,所述进液口和所述出液口与所述冷却液流道相连通,所述切边的深度满足关系式(aa),其中b为切边的深度,Rout为定子铁芯的外径,Rin为定子铁芯的内径,L为定子铁芯的轭厚,h为定子铁芯的叠厚,k2为系数且为0.05-0.1。根据本申请实施例的驱动电机冷却效率高,散热效果好。

Description

驱动电机、具有该驱动电机的驱动系统和车辆
相关申请的交叉引用
本申请要求申请号为202010771190.2、申请号为202021586557.5、申请号为202010768996.6和申请号为202021586558.X的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本申请。
技术领域
本申请涉及电机技术领域,具体地,涉及一种驱动电机、具有该驱动电机的驱动系统和车辆。
背景技术
主驱动电机是电动汽车的重要部件,与诸如压缩机等设备使用的传统电机不同,驱动电机工作时,由于定子组件的铁损、铜损产生大量的热量,如果冷却不好,会造成定子组件和转子组件温度过高,导致转子磁钢退磁、定子线包烧毁等,影响电机的正常运转。因此传动电机的散热设计无法满足驱动电机的散热要求。相关技术中提出了一种在定子铁芯的外壁上设置切边,以提高散热效果。但是,本申请的发明人通过研究该设计方案,发现对于驱动电机冷却效果仍不能满足要求,存在改进的空间。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的实施例提出一种冷却效果提高的驱动电机。
本申请的实施例还提出了一种具有上述驱动电机的驱动系统。
本申请的实施例还提出一种具有上述驱动电机的车辆。
根据本申请实施例的驱动电机包括电机壳体和安装在所述电机壳体内的定子铁芯,所述电机壳体具有进液口和出液口,所述定子铁芯的外周壁设有沿所述定子铁芯的轴向延伸的切边,其中所述切边与所述电机壳体的内周壁之间的空间形成冷却液流道,所述进液口和所述出液口与所述冷却液流道相连通,所述切边的深度满足关系式:
Figure PCTCN2021110150-appb-000001
其中b为切边的深度,R out为定子铁芯的外径,R in为定子铁芯的内径,L为定子铁芯的轭厚,h为定子铁芯的叠厚,k 2为系数且为0.05-0.1。
根据本申请实施例的驱动电机,通过设置切边,增大冷却液与定子铁芯的接触面积,提高了电机在大功率下的散热效率,而且,通过将切边的深度限定在上述范围内,能够获 得更佳的散热效果。
在一些实施例中,所述定子铁芯的外周壁设有沿所述定子铁芯的轴向延伸的定子凹槽,所述定子凹槽与所述进液口和所述出液口连通。
在一些实施例中,所述定子凹槽为矩形,所述定子凹槽的深度满足关系式:
Figure PCTCN2021110150-appb-000002
其中a为定子凹槽的深度,R out为定子铁芯的外径,R in为定子铁芯的内径,L为定子铁芯的轭厚,h为定子铁芯的叠厚,k 1为系数且为0.05-0.1。
在一些实施例中,所述定子凹槽分为多组,多组定子凹槽沿所述定子铁芯的周向均匀间隔分布,相邻组之间的间隔对应的圆心角θ 1为1-5度。
在一些实施例中,多组定子凹槽分为第一类槽组和第二类槽组,所述第一类槽组和所述第二类槽组沿所述定子铁芯的周向交替布置,
其中所述切边位于所述第二类槽组内,
每个第二类槽组分为与所述第一类槽组相邻的两个第一节和与所述切边相邻的两个第二节,所述第一节内的定子凹槽数量大于所述第二节内的定子凹槽数量,相邻的第一节和第二节之间的间隔对应的圆心角θ 32为1-5度,每一节内的定子凹槽之间的间隔对应的圆心角θ 42为0.5-2度,每个定子凹槽对应的圆心角θ 52为0.5-2度,
每个第一类槽组分为多队,每一队包括多节,相邻队之间的间隔槽对应的圆心角θ 21为1-5度,每一队内相邻节之间的间隔对应的圆心角θ 31为1-5度,每一队内的每一节内的定子凹槽之间的间隔对应的圆心角θ 41为0.5-2度,每个定子凹槽对应的圆心角θ 51为0.5-2度。
在一些实施例中,所述定子凹槽的深度为1.5-2.5毫米。
在一些实施例中,所述进液口为多个且沿所述电机壳体螺旋分布。
在一些实施例中,所述电机壳体的内周壁上设有机壳凹槽,所述机壳凹槽沿所述电机壳体的周向延伸,所述进液口和所述出液口分别与所述机壳凹槽连通。
在一些实施例中,所述进液口为多个,多个所述进液口沿所述电机壳体的周向分布,相邻进液口的中心轴线之间的夹角θ小于等于180度,所述进液口的中心和距其最近的切边的中心在所述定子铁芯的横截面上的投影之间的圆心角β为0-5度。
在一些实施例中,所述切边为四个,所述进液口为两个,所述圆心角β为0度。
在一些实施例中,所述切边为四个,所述进液口为四个,所述圆心角β为0度。
在一些实施例中,所述进液口在所述电机壳体的轴向上间隔布置。
在一些实施例中,所述定子铁芯由定子冲片叠置而成,所述定子铁芯的外周壁设有至少一个定子周向凹槽,所述至少一个定子周向凹槽沿所述定子铁芯的周向延伸,以便所述 定子铁芯沿其轴向分为多个非凹槽铁芯段和至少一个凹槽铁芯段。
在一些实施例中,所述凹槽铁芯段为一个,所述非凹槽铁芯段为两个,两个所述非凹槽铁芯的外周壁上均设有所述定子凹槽和/或所述切边。
在一些实施例中,一个所述凹槽铁芯段位于所述定子铁芯的轴向中间位置。
在一些实施例中,所述进液口的中心轴线位于所述一个凹槽铁芯段的中心横截面内。
本申请第二方面的实施例提出一种驱动系统,包括驱动电机、减速器和控制器,所述减速器与所述驱动电机的电机轴相连,所述控制器与所述驱动电机相连,所述驱动电机为上述任一实施例所述的驱动电机。
本申请第三方面的实施例提出一种车辆,包括上述任一实施例所述的驱动电机。
附图说明
图1是根据本申请实施例的驱动电机的示意图;
图2是根据本申请实施例的驱动电机的定子铁芯的示意图;
图3是根据本申请实施例的驱动电机的电机壳体的示意图;
图4是根据本申请另一实施例的驱动电机的定子铁芯的示意图;
图5是根据本申请实施例的驱动电机的定子铁芯的定子冲片的示意图;
图6是图5所示定子冲片的局部放大示意图;
图7是图5所示定子冲片的另一局部放大示意图;
图8是图5所示定子冲片的又一局部放大示意图;
图9是根据本申请实施例的系数k 1与压降和电机最大温升率的曲线图;
图10是根据本申请实施例的系数k 2与压降和电机最大温升率的曲线图;
图11是根据本申请另一实施例的驱动电机的示意图;
图12是根据本实发明另一实施例的定子冲片的示意图;
图13是根据本申请又一实施例的驱动电机的定子铁芯的示意图;
图14是根据本申请再一实施例的驱动电机的定子铁芯的示意图;
图15是根据本申请实施例的驱动电机的进液口的中心和切边中心在定子铁芯的横截面上的投影之间的圆心角与压降和电机最大温升率之间的曲线图。
附图标记:
电机壳体1,机壳凹槽11,进液口12,
定子铁芯2,切边21,定子凹槽22,定子周向凹槽23,第一类槽组221,第二类槽组222,第一节2221,第二节2222。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出。下面通过参考附图 描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面结合附图1-15描述根据实用新型实施例的电机。
如图1-图4所示,根据本申请实施例的驱动电机包括电机壳体1和定子铁芯2。定子铁芯2内可以设有转子(未示出),定子铁芯2的定子齿上绕设有定子绕组(未示出),由此构成驱动电机的定子。定子铁芯2安装在电机壳体1内。
电机壳体1具有机进液口12和出液口(未示出)。出液口通常设在电机壳体1的端盖(未示出)上。
定子铁芯2的外周壁设有沿定子铁芯的轴向延伸的切边21,切边21与电机壳体1的内周壁之间的空间形成冷却液流道,进液口12和所述出液口与所述冷却液流道相连通。切边21的深度满足关系式:
Figure PCTCN2021110150-appb-000003
其中b为切边的深度,R out为定子铁芯的外径,R in为定子铁芯的内径,L为定子铁芯的轭厚,h为定子铁芯的叠厚,k 2为系数且为0.05-0.1。
发明人通过研究发现,如图10所示,随着系数k 2的增加,冷却液的压降增大(即流阻增大),电机的最大温升逐渐减小,压降越低,冷却效果越好,电机最大温升越小,电机寿命、性能越好,经综合考虑,选择系数k 2为0.05-0.1,以便电机热性能好,并且通过设置切边能节省原料,例如降低原料成本5.3%。
定子铁芯2的外周壁设有沿定子铁芯2的轴向延伸的定子凹槽22,定子凹槽22与进液口12和出液口连通。电机壳体1的内周壁面与定子凹槽22限定出一部分冷却液流道,增大了冷却液与定子铁芯2的接触面积,提高散热效率。
如图5-8所示,定子凹槽22设为矩形,定子凹槽22的深度满足关系式:
Figure PCTCN2021110150-appb-000004
其中a为定子凹槽的深度,R out为定子铁芯的外径,R in为定子铁芯的内径,L铁芯的轭厚,h为定子铁芯的叠厚,k 1为系数且为0.05-0.1。
发明人通过研究发现,如图9所示,随着系数k 1的逐渐增加,冷却液的压降增大(即冷却液的流阻增大),电机温升减小。而且,k 1在0-0.05的范围内时,冷却液的压降增大较快,k 1大于0.1时,冷却液的压降增大,但电机温升减小基本不变。
从上述关系式可以看出,随着k 1的增加,定子凹槽的深度增加,定子凹槽与冷却液的接触面积随之增加,由于对流热阻和对流传热系数、冷却液与机壳的接触面积成反比,对热热阻越小,换热能力越强,因此冷却液与定子铁芯2接触面积越大越好。但是接触面积越大,流速越高,流阻越大。综合考虑上述因素,k 1的取值设为0.05-0.1是有利的。
在一些实施例中,定子凹槽22的深度a大于等于1.5毫米且小于等于2.5毫米。发明人发现,当定子凹槽的深度a为1mm时,电机的电磁性能降低0.67%,当定子凹槽的深度 a为2mm时,电机的电磁性能降低1.5%,当定子凹槽的深度a为3mm时,电磁性能降低4.83%,因此将定子凹槽的深度a设为1.5毫米到2.5毫米之间是有利的。
在一些具体实施例中,定子凹槽22的深度a优选选为2毫米,定子凹槽22的宽度a优选为1毫米,如上所述,当定子凹槽的深度a为2mm时,电机的电磁性能降低1.5%,虽然对电磁性能具有一定的影响,但影响较小,同时冷却液与定子铁芯的接触面积也较大,可有效提高电机的冷却效率。
如图5-图8所示,在一些实施例中,定子凹槽22分为多组,多组定子凹槽22沿定子铁芯2的周向均匀间隔分布,相邻组之间的间隔对应的圆心角θ 1为1-5度。
在一些实施例中,定子凹槽22分成第一类槽组221和第二类槽组222,切边21位于第二类槽组222内,第一类槽组221和第二类槽组222沿定子铁芯2的周向交替布置,第一类槽组221与第二类槽组222间隔分布,其中第二类槽组222包括第一节2221和第二节2222,第一节2221为靠近第一类槽组221的槽,第二节2222为靠近切边21的槽,且第一节2221内的定子凹槽22数量大于第二节2222内的定子凹槽22数量。由于切边21设置在第二类槽组222内,因此,切边21的两侧各具有一个第一节2221和第二节2222,也就是说,每个第二类槽组222具有两个第一节2221和两个第二节2222,相邻的第一节2221和第二节2222之间的间隔对应的圆心角θ 32为1-5度,每一节内的定子凹槽22之间的间隔对应的圆心角θ 42为0.5-2度,每个定子凹槽22对应的圆心角θ 52为0.5-2度。
如图8所示,每个第一类型槽组221分为多队,图8中为两队,每一队包括多节,图8中为三节,相邻队之间的间隔槽对应的圆心角θ 21为1-5度,每一队内相邻节之间的间隔对应的圆心角θ 31为1-5度,每一队内的每一节内的定子凹槽22之间的间隔对应的圆心角θ 41为0.5-2度,每个定子凹槽22对应的圆心角θ 51为0.5-2度。优选地,切边21所对应的圆心角为23度。
通过如上所述对定子凹槽进行划分,可以有效地提高冷却效果。
在一些实施例中,进液口为多个且沿电机壳体螺旋分布,发明人经研究发现,越靠近进液口12,冷却效果越好。因此,通过设置多个进液口12,加强了冷却液的冷却能力,提高了电机的散热效果。在另一些实施例中,多个进液口12沿电机壳体1的轴向间隔布置,换言之,多个进液口12既沿电机壳体1的周向间隔布置,也沿电机壳体1的轴向间隔布置,例如在电机壳体1上螺旋分布。
如图3所示,在一些实施例中,电机壳体1的内周壁上设有机壳凹槽11,机壳凹槽11沿电机壳体的周向延伸,进液口12和所述出液口分别与机壳凹槽11连通,机壳凹槽11形成一部分冷却液流道,由此进一步提高冷却效果。
如图1和图12所示,驱动电机的进液口12为多个,进液口12沿电机壳体1的周向间 隔分布,在电机壳体1的横截面上,相邻进液口12的中心轴线之间的夹角θ小于等于180度,进液口12的中心和距其最近的切边21的中心在定子铁芯2的横截面上的投影之间的圆心角β为0-5度。
如图1所示,圆心角β是指进液口12的中心与定子铁芯2的圆心连线,和与进液口12距离最近的切边21的中点与定子铁芯2的圆心连线,在定子铁芯2横截面上的投影之间的夹角为0-5度。
发明人通过研究发现,如图15所示,横轴为圆心角β,左侧纵轴为压降,右侧纵轴为电机最大温升△T,当圆心角β在0-5度逐渐增加时,压降(实线所示曲线)和电机最大温升(虚线所示曲线)增大的速度较慢(两条曲线的斜率较小),当圆心角β大于5度逐渐增加时,压降和电机最大温升增大速度明显加快(两条曲线的斜率增大),即电机热性能不佳,因此,进液口12的中心和距其最近的切边21的中心在定子铁芯2的横截面上的投影之间的圆心角设为0-5度是有利的。
如图1所示,在一些具体实施例中,切边21的数量为四个,进液口12的数量为两个,进液口12的中心和距其最近的切边21的中心在定子铁芯2的横截面上的投影之间的圆心角为β,优选地,β为0度。在另一些具体实施例中,如图12所示,切边21的数量为四个,进液口12的数量为四个,所述进液口12的中心和距其最近的切边21的中心在定子铁芯2的横截面上的投影之间的圆心角β为0度。在一些实施例中,进液口的数量小于切边的数量,且每个进液口与一个切边相对应。
定子铁芯2由定子冲片叠置而成,定子冲片通常采用硅钢片制成。定子铁芯2的外周壁设有至少一个定子周向凹槽23,定子周向凹槽23沿定子铁芯2的周向延伸。定子周向凹槽23所在的定子铁芯段称为凹槽铁芯段,其余的定子铁芯段称为非凹槽铁芯段,凹槽铁芯段的数量与定子周向凹槽23的数量相同。
设置定子周向凹槽23,增加了冷却液与定子铁芯2的接触面积,提高散热效率,还可以节省制造定子铁芯的材料,有效降低原料成本。
如图14所示,在一些具体实施例中,凹槽铁芯段为一个,非凹槽铁芯段为两个,两个非凹槽铁芯的外周壁上均设有与定子周向凹槽23连通的定子凹槽22。如图2所示,在另一些具体实施例中,凹槽铁芯段为一个,非凹槽铁芯段为两个,两个非凹槽铁芯的外周壁上均设有切边21。如图13所示,在另一些具体实施例中,凹槽铁芯段为一个,非凹槽铁芯段为两个,两个非凹槽铁芯的外周壁上均设有定子凹槽22和切边21
当然,凹槽铁芯段的数量并不仅局限于一个,也可以为多个。
在一些实施例中,一个凹槽铁芯段与进液口12连通,即一个定子周向凹槽与进液口12连通,凹槽铁芯段位于定子铁芯2的轴向中间位置,具体地,进液口12的中心轴线位 于凹槽铁芯段的中心横截面内。
凹槽铁芯段与进液口12连通,例如,冷却液进入电机壳体后,首先充满凹槽铁芯段处的定子周向凹槽23,之后经由定子凹槽22以及切边21与定子铁芯2的外周壁充分接触,最终由出液口13排出,冷却液的整体流动过程为由中间向两端流动,冷却液可快速与定子铁芯2完全接触进行散热,提高了散热效率。
根据本申请的第二方面实施例的驱动系统包括驱动电机、减速器和控制器,所述减速器与所述驱动电机的电机轴相连,所述控制器与所述驱动电机相连,所述驱动电机为上述驱动电机。
根据本申请的第三方面实施例的车辆包括根据本申请实施例的驱动电机,所述车辆可以为新能源车,其中所述新能源车包括纯电动车、增程式电动车、混合动力车、燃料电池电动车、氢发动机车等。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (18)

  1. 一种驱动电机,其特征在于,包括电机壳体和安装在所述电机壳体内的定子铁芯,所述电机壳体具有进液口和出液口,所述定子铁芯的外周壁设有沿所述定子铁芯的轴向延伸的切边,其中所述切边与所述电机壳体的内周壁之间的空间形成冷却液流道,所述进液口和所述出液口与所述冷却液流道相连通,所述切边的深度满足关系式:
    Figure PCTCN2021110150-appb-100001
    其中b为切边的深度,R out为定子铁芯的外径,R in为定子铁芯的内径,L为定子铁芯的轭厚,h为定子铁芯的叠厚,k 2为系数且为0.05-0.1。
  2. 根据权利要求1所述的驱动电机,其特征在于,所述定子铁芯的外周壁设有沿所述定子铁芯的轴向延伸的定子凹槽,所述定子凹槽与所述进液口和所述出液口连通。
  3. 根据权利要求2所述的驱动电机,其特征在于,所述定子凹槽为矩形,所述定子凹槽的深度满足关系式:
    Figure PCTCN2021110150-appb-100002
    其中a为定子凹槽的深度,R out为定子铁芯的外径,R in为定子铁芯的内径,L为定子铁芯的轭厚,h为定子铁芯的叠厚,k 1为系数且为0.05-0.1。
  4. 根据权利要求2或3所述的驱动电机,其特征在于,所述定子凹槽分为多组,多组定子凹槽沿所述定子铁芯的周向均匀间隔分布,相邻组之间的间隔对应的圆心角θ 1为1-5度。
  5. 根据权利要求4所述的驱动电机,其特征在于,多组定子凹槽分为第一类槽组和第二类槽组,所述第一类槽组和所述第二类槽组沿所述定子铁芯的周向交替布置,
    其中所述切边位于所述第二类槽组内,
    每个第二类槽组分为与所述第一类槽组相邻的两个第一节和与所述切边相邻的两个第二节,所述第一节内的定子凹槽数量大于所述第二节内的定子凹槽数量,相邻的第一节和第二节之间的间隔对应的圆心角θ 32为1-5度,每一节内的定子凹槽之间的间隔对应的圆心角θ 42为0.5-2度,每个定子凹槽对应的圆心角θ 52为0.5-2度,
    每个第一类槽组分为多队,每一队包括多节,相邻队之间的间隔槽对应的圆心角θ 21为1-5度,每一队内相邻节之间的间隔对应的圆心角θ 31为1-5度,每一队内的每一节内的定子凹槽之间的间隔对应的圆心角θ 41为0.5-2度,每个定子凹槽对应的圆心角θ 51为0.5-2度。
  6. 根据权利要求2-5中任一项所述的驱动电机,其特征在于,所述定子凹槽的深度为1.5-2.5毫米。
  7. 根据权利要求1-6中任一项所述的驱动电机,其特征在于,所述进液口为多个且沿所述电机壳体螺旋分布。
  8. 根据权利要求1-7中任一项所述的驱动电机,其特征在于,所述电机壳体的内周壁上设有机壳凹槽,所述机壳凹槽沿所述电机壳体的周向延伸,所述进液口和所述出液口分别与所述机壳凹槽连通。
  9. 根据权利要求1-8中任一项所述的驱动电机,其特征在于,所述进液口为多个,多个所述进液口沿所述电机壳体的周向分布,相邻进液口的中心轴线之间的夹角θ小于等于180度,所述进液口的中心和距其最近的切边的中心在所述定子铁芯的横截面上的投影之间的圆心角β为0-5度。
  10. 根据权利要求9所述驱动电机,其特征在于,所述切边为四个,所述进液口为两个,所述圆心角β为0度。
  11. 根据权利要求9所述的驱动电机,其特征在于,所述切边为四个,所述进液口为四个,所述圆心角β为0度。
  12. 根据权利要求11所述的驱动电机,其特征在于,所述进液口在所述电机壳体的轴向上间隔布置。
  13. 根据权利要求1-12中任一项所述的驱动电机,其特征在于,所述定子铁芯由定子冲片叠置而成,所述定子铁芯的外周壁设有至少一个定子周向凹槽,所述至少一个定子周向凹槽沿所述定子铁芯的周向延伸,以便所述定子铁芯沿其轴向分为多个非凹槽铁芯段和至少一个凹槽铁芯段。
  14. 根据权利要求13所述的驱动电机,其特征在于,所述凹槽铁芯段为一个,所述非凹槽铁芯段为两个,两个所述非凹槽铁芯的外周壁上均设有所述定子凹槽和/或所述切边。
  15. 根据权利要求14所述的驱动电机,其特征在于,一个所述凹槽铁芯段位于所述定子铁芯的轴向中间位置。
  16. 根据权利要求15所述的驱动电机,其特征在于,所述进液口的中心轴线位于所述一个凹槽铁芯段的中心横截面内。
  17. 一种驱动系统,其特征在于,包括驱动电机、减速器和控制器,所述减速器与所述驱动电机的电机轴相连,所述控制器与所述驱动电机相连,所述驱动电机为根据权利要求1-16中任一项所述的驱动电机。
  18. 一种车辆,其特征在于,包括根据权利要求1-17中任一项所述的驱动电机。
PCT/CN2021/110150 2020-08-03 2021-08-02 驱动电机、具有该驱动电机的驱动系统和车辆 WO2022028381A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21853343.8A EP4131744A4 (en) 2020-08-03 2021-08-02 DRIVE MOTOR, DRIVE SYSTEM WITH THIS DRIVE MOTOR AND VEHICLE
US18/095,734 US20230187999A1 (en) 2020-08-03 2023-01-11 Drive motor, drive system having drive motor and vehicle

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202010771190.2A CN114069971B (zh) 2020-08-03 2020-08-03 驱动电机、具有该驱动电机的驱动系统和车辆
CN202021586557.5U CN212695852U (zh) 2020-08-03 2020-08-03 驱动电机、具有该驱动电机的驱动系统和车辆
CN202010768996.6 2020-08-03
CN202010768996.6A CN114069915B (zh) 2020-08-03 2020-08-03 车用驱动电机和车辆
CN202021586557.5 2020-08-03
CN202021586558.XU CN213185796U (zh) 2020-08-03 2020-08-03 用于车辆的驱动电机、驱动系统和车辆
CN202010771190.2 2020-08-03
CN202021586558.X 2020-08-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/095,734 Continuation US20230187999A1 (en) 2020-08-03 2023-01-11 Drive motor, drive system having drive motor and vehicle

Publications (1)

Publication Number Publication Date
WO2022028381A1 true WO2022028381A1 (zh) 2022-02-10

Family

ID=80119994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110150 WO2022028381A1 (zh) 2020-08-03 2021-08-02 驱动电机、具有该驱动电机的驱动系统和车辆

Country Status (3)

Country Link
US (1) US20230187999A1 (zh)
EP (1) EP4131744A4 (zh)
WO (1) WO2022028381A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075011A (ja) * 2008-09-22 2010-04-02 Mitsubishi Electric Corp 電動機の固定子及び電動機及び圧縮機
CN106300853A (zh) * 2016-08-12 2017-01-04 合肥国轩高科动力能源有限公司 一种电动汽车用永磁同步电机定子
CN206575298U (zh) * 2017-03-01 2017-10-20 上海英磁新能源科技有限公司 一种用于冷却电机定子的系统
CN212695852U (zh) * 2020-08-03 2021-03-12 安徽威灵汽车部件有限公司 驱动电机、具有该驱动电机的驱动系统和车辆
CN212909262U (zh) * 2020-08-03 2021-04-06 安徽威灵汽车部件有限公司 电机和车辆
CN213185796U (zh) * 2020-08-03 2021-05-11 安徽威灵汽车部件有限公司 用于车辆的驱动电机、驱动系统和车辆
CN213243760U (zh) * 2020-08-03 2021-05-18 安徽威灵汽车部件有限公司 油冷电机和车辆

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204243921U (zh) * 2014-11-20 2015-04-01 上海日立电器有限公司 一种压缩机用电机定子外形结构
JP7090605B2 (ja) * 2017-05-25 2022-06-24 三菱電機株式会社 電動機、圧縮機および空気調和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075011A (ja) * 2008-09-22 2010-04-02 Mitsubishi Electric Corp 電動機の固定子及び電動機及び圧縮機
CN106300853A (zh) * 2016-08-12 2017-01-04 合肥国轩高科动力能源有限公司 一种电动汽车用永磁同步电机定子
CN206575298U (zh) * 2017-03-01 2017-10-20 上海英磁新能源科技有限公司 一种用于冷却电机定子的系统
CN212695852U (zh) * 2020-08-03 2021-03-12 安徽威灵汽车部件有限公司 驱动电机、具有该驱动电机的驱动系统和车辆
CN212909262U (zh) * 2020-08-03 2021-04-06 安徽威灵汽车部件有限公司 电机和车辆
CN213185796U (zh) * 2020-08-03 2021-05-11 安徽威灵汽车部件有限公司 用于车辆的驱动电机、驱动系统和车辆
CN213243760U (zh) * 2020-08-03 2021-05-18 安徽威灵汽车部件有限公司 油冷电机和车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4131744A4 *

Also Published As

Publication number Publication date
EP4131744A4 (en) 2023-09-06
EP4131744A1 (en) 2023-02-08
US20230187999A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
CN212695852U (zh) 驱动电机、具有该驱动电机的驱动系统和车辆
CN213243760U (zh) 油冷电机和车辆
US11577600B2 (en) Motor, motor cooling system, and electric vehicle
US10903701B2 (en) Motor cooling system utilizing axial cooling channels
CN112636499A (zh) 油冷定子、电机、电驱动桥和汽车
CN102447342A (zh) 旋转电机的壳体
CN213185796U (zh) 用于车辆的驱动电机、驱动系统和车辆
CN114069915B (zh) 车用驱动电机和车辆
WO2022028381A1 (zh) 驱动电机、具有该驱动电机的驱动系统和车辆
CN114069971B (zh) 驱动电机、具有该驱动电机的驱动系统和车辆
CN218276240U (zh) 一种油冷电机
CN212588185U (zh) 电机机壳、电机和具有该电机的车辆
CN213879402U (zh) 油冷定子、电机、电驱动桥和汽车
CN114069934A (zh) 电机机壳、电机和具有该电机的车辆
CN116014928A (zh) 定子组件、电机和车辆
CN115459494A (zh) 一种高效油冷电机
WO2022028382A1 (zh) 电机和车辆
CN116418165A (zh) 用于电机的定子铁心、电机及车辆
CN220210038U (zh) 定子冲片、定子组件、电机以及车辆
CN110690773A (zh) 电机组件、压缩机和空调器
CN217984694U (zh) 定子铁芯、定子、电机和车辆
CN220210039U (zh) 定子冲片、定子组件、电机以及车辆
CN217159441U (zh) 一种油水混合冷却的电机机壳
CN219812015U (zh) 油冷电机
CN216599147U (zh) 电机、压缩机以及具有其的空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021853343

Country of ref document: EP

Effective date: 20221026

NENP Non-entry into the national phase

Ref country code: DE