WO2022028379A1 - 资源感知方法及通信装置 - Google Patents

资源感知方法及通信装置 Download PDF

Info

Publication number
WO2022028379A1
WO2022028379A1 PCT/CN2021/110145 CN2021110145W WO2022028379A1 WO 2022028379 A1 WO2022028379 A1 WO 2022028379A1 CN 2021110145 W CN2021110145 W CN 2021110145W WO 2022028379 A1 WO2022028379 A1 WO 2022028379A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
resource
offset
time
priority
Prior art date
Application number
PCT/CN2021/110145
Other languages
English (en)
French (fr)
Inventor
杨帆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21854033.4A priority Critical patent/EP4192050A4/en
Publication of WO2022028379A1 publication Critical patent/WO2022028379A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a resource sensing method and a communication device.
  • resource scheduling mode 1 Resource Allocation Mode-1, RA mode-1
  • RA mode-2 Resource Allocation Mode-2
  • RA mode-2 resource Allocation Mode-2
  • the terminal device uses RAmode-1 for resource scheduling, the resources for sending the Physical Sidelink Control Channel (PSCCH) or the Pysical Sidelink Share Channel (PSSCH) on the sidelink are determined by the base station. Scheduled and controlled.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Pysical Sidelink Share Channel
  • the terminal device will sense the available resources on the sidelink resources configured by the base station or the network device, or pre-defined, and select the resources among them to send PSCCH or PSSCH.
  • sensing window When RA mode-2 is used for resource scheduling, there will be two time windows: sensing window and selection window.
  • the terminal device will sense the occupancy of sidelink resources in the sensing window, and According to the sensing result, select appropriate resources in the selection window to send PSSCH/PSCCH.
  • Embodiments of the present application provide a resource sensing method and a communication device, which can be applied to the Internet of Vehicles, such as V2X communication, long term evolution-vehicle (LTE-V) technology for vehicle-to-vehicle communication, vehicle to vehicle (vehicle to vehicle, V2V) communication, etc., or can be used in intelligent driving, intelligent networked vehicles and other fields, which can improve the accuracy of resource perception, avoid the probability of resource collision, and improve communication efficiency.
  • V2X communication long term evolution-vehicle (LTE-V) technology for vehicle-to-vehicle communication, vehicle to vehicle (vehicle to vehicle, V2V) communication, etc.
  • LTE-V long term evolution-vehicle
  • an embodiment of the present application provides a resource sensing method, where the method may be executed by a first terminal device, or may be executed by a component (eg, a processor, a chip, or a chip system, etc.) of the first terminal device.
  • the resource sensing method may include: a first terminal device determining a first candidate resource set for sideline transmission in a first selection window, and the first terminal device determining a second candidate resource according to a resource sensing result in the first sensing window set, and the second candidate resource set is a full set or a subset of the first candidate resource set.
  • the first terminal device excludes the sideline transmission resources occupied in the first selection window from the first candidate resource set according to the resource sensing result in the first sensing window to obtain a second unoccupied candidate resource set.
  • the first terminal equipment further senses the sidelink resources within the second sensing window, and sends the resource sensing result within the second sensing window to the second terminal equipment at the first moment, wherein the first moment It may be determined according to the second candidate resource set.
  • the first time is the start time of the resource selected by the first terminal for sideline transmission in the second candidate resource set, and the resource for sideline transmission is used to send the resource sensing result in the second sensing window.
  • the second terminal device may determine a third candidate resource set for sideline transmission in the second selection window, and the second terminal device may further determine the resource sensing result within the second sensing window sent by the first terminal device. And/or the second terminal's own resource sensing result determines the fourth candidate resource set, so as to determine the sidelink resources for sending data according to the fourth candidate resource set.
  • the first terminal device can not only transmit sensing resources for its own sideline within the first sensing window, but also transmit sensing resources for the sideline of the second terminal device within the second sensing window, and send the resource sensing result in the second sensing window to the second terminal device, so that the second terminal device can determine the fourth candidate resource set according to the resource sensing result in the second sensing window, and further determine the fourth candidate resource set according to the resource sensing result in the second sensing window.
  • Sidelink resources for sending data In some scenarios, the sensing resources of the second terminal device are not comprehensive enough. For example, when another terminal device sends sidelink control information (SCI) and sidelink data, the second terminal device is sending data but not receiving it.
  • SCI sidelink control information
  • the second terminal device is far away from the terminal device that sends the SCI and sideline data, and the SCI and sideline data are not received, and so on.
  • the second terminal device may determine the sidelink resources for sending data by using the result of resource sensing performed by the first terminal device for the second terminal device within the second sensing window. Thereby, the accuracy of resource perception is improved, the probability of resource collision is avoided, and the communication efficiency is improved.
  • the starting time domain position of the second sensing window may be determined according to the first moment and the first offset, and the ending time domain position of the second sensing window may be based on The first moment and the second offset are determined.
  • the first offset is greater than the second offset. For example, if the first offset is Ty , the second offset is T proc,y , and the first moment when the first terminal device sends PSSCH/PSCCH is moment m, the starting time domain position of the second sensing window can be is mT y , and the end time domain position of the second perception window may be mT proc,y .
  • the second sensing window is determined according to the first moment when the first terminal device sends data, which can facilitate the second terminal device to determine the position of the second sensing window.
  • the first offset and/or the second offset are determined according to the first perception window.
  • the first offset and/or the second offset may be determined according to a configuration parameter of the first sensing window.
  • the second sensing window can be determined by using the configuration parameters of the first sensing window, without the need to configure parameters for the second sensing window, that is, the first sensing window and the second sensing window share the same set of configuration parameters, saving information make overhead.
  • the first offset may be T 0 +C
  • the second offset may be T proc,0 +C.
  • T 0 is the offset of the starting time domain position of the first perception window relative to the second moment
  • T proc,0 is the offset of the end time domain position of the first perception window relative to the second moment
  • the first The second time is the time when the first terminal device triggers resource selection; C may be a constant greater than or equal to zero.
  • the second sensing window can be determined by using the configuration parameters of the first sensing window, without the need to configure parameters for the second sensing window, that is, the first sensing window and the second sensing window share the same set of configuration parameters, saving information make overhead.
  • the second offset is T proc,0 , where T proc,0 is the offset of the end time domain position of the first perception window relative to the second moment, and the first The second time is the time when the first terminal device triggers the resource selection.
  • the first offset may be determined by the proportional relationship between the length of the first sensing window and the length of the second sensing window; or, the first offset may be the data priority and/or the data priority sent by the first terminal device
  • the priority of the data sent by the second terminal device is determined. For example, different priorities correspond to different lengths of the sensing window, and the first offset is determined by the length of the second sensing window and the end time domain position of the second sensing window. .
  • the position of the second sensing window can be determined by defining the proportional relationship between the length of the first sensing window and the length of the second sensing window, and there is no need to configure parameters for the second sensing window, saving signaling overhead .
  • the position of the second sensing window may be determined according to the data priority sent by the first terminal device and/or the data priority sent by the second terminal device, so as to ensure the transmission of high-priority data.
  • the first offset and/or the second offset may be configured by the network device; or, the first offset and/or the second offset may be is sent by the second terminal device to the first terminal device.
  • the parameters of the second sensing window can be configured for the second sensing window, so that the first terminal device can perform resource sensing in the second sensing window in a targeted manner.
  • the perceived sidelink resources may be located in one or more resource pools, and the sidelink resources included in the resource pools may be divided into at least one time-frequency resource region , a time-frequency resource region consists of one or more time slots and one or more sub-channels.
  • the resource perception result may include one or more of the following information: resource occupancy information and/or resource unoccupied information;
  • the resource occupancy information may include identifications of time-frequency resource regions that are unavailable in at least one time-frequency resource region.
  • the resource unoccupied information may include the identification of available time-frequency resource regions in the at least one time-frequency resource region.
  • the resource occupancy information and the resource unoccupied information may be represented by a bitmap, and the bitmap may include at least one bit, and one bit corresponds to one time-frequency resource region in the at least one time-frequency resource region , the value of the bit can be used to indicate whether the time-frequency resource region corresponding to the bit is available.
  • the resource sensing result in the second sensing window can be fed back at the granularity of the time-frequency resource region, thereby reducing the bit overhead of the resource sensing result.
  • the first terminal device may receive one or more priorities from the second terminal device; further, the first terminal device may determine, according to the one or more priorities, first priority.
  • the first terminal device may receive a reference signal received power threshold or a reference signal received power threshold range from the second terminal device; further, the first terminal device may, according to the one reference signal received power threshold or the reference signal received power threshold range, A first reference signal received power threshold is determined.
  • the first terminal device When the first terminal device senses the sidelink resources within the second sensing window, it can use the first priority and the first reference signal received power threshold to sense the sidelink resources within the second sensing window. perception.
  • the first terminal device can be made to specify the priority and reference signal received power threshold used when performing resource sensing within the second sensing window.
  • the first priority is a priority in which the value of the priority in one or more priorities sent by the second terminal device is the same as the value of the second priority; or,
  • the first priority is the priority with the smallest priority value among the multiple priorities.
  • the first priority is the priority with the smallest priority value among the second priority and one or more priorities sent by the second terminal device;
  • the second priority is used for the first terminal device to perform resource sensing within the first sensing window.
  • the first reference signal received power threshold is M+ ⁇ a*k; the first reference signal received power threshold satisfies the target condition.
  • the target condition may include: the ratio between the number of available time-frequency resource regions and the total number of the at least one time-frequency resource region sensed within the second sensing window using the second reference signal received power threshold is less than the first threshold, And the ratio between the number of available time-frequency resource regions and the total number of the at least one time-frequency resource region sensed in the second sensing window using the first reference signal received power threshold is greater than or equal to the first threshold, and the second The reference signal received power threshold is M+ ⁇ a*(k-1);
  • the M is the one reference signal received power threshold or the minimum value of the reference signal received power threshold range, the ⁇ a is the power increment, the k is an integer greater than or equal to 0, and the first A reference signal received power threshold M+ ⁇ a*k is within the range of the reference signal received power threshold.
  • the first terminal device sends the first priority and/or the first reference signal received power threshold to the second terminal device.
  • the second terminal device can be made to specify the priority and the reference signal received power threshold used by the first terminal device to sense resources within the second sensing window.
  • an embodiment of the present application provides a resource sensing method, where the method may be executed by a second terminal device, or may be executed by a component (eg, a processor, a chip, or a chip system, etc.) of the second terminal device.
  • the resource sensing method may include: a second terminal device receiving a resource sensing result within a second sensing window from the first terminal device at a first moment, where the first moment is determined according to a second candidate resource set, the second candidate resource set Determined by the first terminal device according to the resource perception result in the first perception window, and the second candidate resource set is the full set or subset of the first candidate resource set, and the first candidate resource set is the first terminal device in the first selection window.
  • the resource set for sideline transmission determined in .
  • the second terminal device determines a third candidate resource set for sideline transmission in the second selection window, and the second terminal device determines a fourth candidate resource set according to the resource sensing result in the second perception window.
  • the fourth candidate resource set is the full set or subset of the third candidate resource set.
  • the second terminal device determines sidelink resources for sending data according to the fourth candidate resource set.
  • the starting time domain position of the second sensing window is determined according to the first moment and the first offset
  • the ending time domain position of the second sensing window is determined according to the first time
  • the time and the second offset are determined, and the first offset is greater than the second offset.
  • an embodiment of the present application provides a communication apparatus, including each module or unit for executing the method of the first aspect or the second aspect.
  • an embodiment of the present application provides a communication apparatus, including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method of the first aspect or the second aspect above.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • an embodiment of the present application provides a processor, including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive signals through the input circuit and transmit signals through the output circuit, causing the processor to perform the method of the first aspect or the second aspect.
  • the above-mentioned processor may be one or more chips
  • the input circuit may be input pins
  • the output circuit may be output pins
  • the processing circuit may be transistors, gate circuits, flip-flops and various logic circuits, etc. .
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter
  • the circuit can be the same circuit that acts as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • an embodiment of the present application provides a processing apparatus, including a processor and a memory.
  • the processor is used to read the instructions stored in the memory, and can receive signals through the receiver and transmit signals through the transmitter, so as to perform the method of the first aspect or the second aspect.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the memory can be a non-transitory memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be separately set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting manner of the memory and the processor.
  • ROM read only memory
  • sending the resource sensing result may be a process of outputting the resource sensing result from the processor
  • receiving the resource sensing result may be the process of the processor receiving the resource sensing result.
  • the data output by the processor can be output to the transmitter, and the input data received by the processor can be from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the processing device in the above sixth aspect may be one or more chips.
  • the processor in the processing device may be implemented by hardware or by software.
  • the processor can be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor can be a general-purpose processor, implemented by reading software codes stored in a memory, which can Integrated in the processor, can be located outside the processor, independent existence.
  • an embodiment of the present application provides a computer program product, the computer program product includes: a computer program (also referred to as code, or an instruction), when the computer program is executed, the computer executes the above-mentioned first step.
  • a computer program also referred to as code, or an instruction
  • an embodiment of the present application provides a readable storage medium, where the readable storage medium stores a computer program (also referred to as code, or instruction) when it is run on a computer, so that the above-mentioned first aspect is achieved. Or the method of the second aspect is implemented.
  • a computer program also referred to as code, or instruction
  • an embodiment of the present application provides a communication system, including the aforementioned first terminal device and a second terminal device.
  • a tenth aspect provides a chip system
  • the chip system includes a processor and an interface circuit
  • the processor is used to call and run a computer program (also referred to as code, or instruction) stored in the memory from the memory, so as to realize the first
  • the chip system further includes a memory for storing necessary program instructions and data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Fig. 1a is a kind of network system architecture diagram provided by this application.
  • Fig. 1b is another kind of network system architecture diagram provided by this application.
  • FIG. 2 is a schematic flowchart of a resource sensing method provided by the present application.
  • FIG. 3 is a schematic diagram of a first sensing window and a second sensing window provided by the present application
  • FIG. 4 is a schematic diagram of another first sensing window and a second sensing window provided by the present application.
  • FIG. 5 is a schematic diagram of a time-frequency resource region provided by the present application.
  • FIG. 6 is a schematic diagram of another time-frequency resource region provided by the present application.
  • FIG. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to the Internet of Vehicles, such as V2X communication, long term evolution-vehicle (LTE-V), vehicle-to-vehicle (V2V) communication, etc., or can use It can also be used in other wireless networks, such as WiFi network, long term evolution (LTE) network, fifth generation (5th generation, 5G) network, new radio (new radio) , NR) network, device to device (device to device, D2D) network, future network, etc., as well as other new networks that appear with the development of technology.
  • V2X communication such as V2X communication, long term evolution-vehicle (LTE-V), vehicle-to-vehicle (V2V) communication, etc.
  • LTE long term evolution
  • 5G fifth generation
  • new radio new radio
  • NR new radio
  • Figure 1a shows a schematic diagram of a network system that can be applied to the present application.
  • the network system can include a terminal device 1 and a terminal device 2, and the terminal device 1 can communicate with the terminal device 2 in a unicast manner.
  • Fig. 1b shows a schematic diagram of another network system that can be applied to the present application.
  • the network system can include multiple terminal devices.
  • four terminal devices are used as an example, namely, terminal device 1, terminal device 1 and terminal device 1. 2.
  • the communication system may also include other terminal devices, which are not limited in this embodiment of the present application.
  • the terminal device 1 can communicate with the terminal device 2, the terminal device 3 and the terminal device 4 by multicast, or the terminal device 1 can also communicate with each terminal device by unicast.
  • Terminal equipment also known as user equipment UE, access terminal, terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, wireless network equipment, vehicle terminal, user Agents, user devices, access points, and other vehicles with V2V communication capabilities, etc.
  • the terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a handheld wireless communication capable Devices, computing devices or other devices connected to wireless modems, in-vehicle devices, wearable devices or the Internet of Things, end devices in vehicle networks, and any form of end device in future networks, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Terminal devices may communicate with one or more core networks (CNs) via network devices.
  • the terminal device in this embodiment of the present application may also be a virtual reality (virtual reality, VR) terminal device with a wireless transceiver function, an augmented reality (augmented reality, AR) terminal device, Wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, transportation Wireless terminals in transportation safety, wireless terminal devices in smart cities, and wireless terminals in smart homes.
  • the terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • a communication system to which the resource sensing method of this embodiment of the present application can be applied may include more or less network elements or devices.
  • the first terminal device may be the terminal device 1 in the system architecture shown in FIG. 1a and FIG. 1b
  • the second terminal device may be the terminal device 2 and the terminal device in the system architecture shown in FIG. 1a and FIG. 1b. 3 or terminal equipment in terminal equipment 4.
  • the first terminal device may perceive a candidate resource set for transmission of its own data (eg PSCCH/PSSCH), and select a corresponding resource in the candidate resource set to send the PSCCH/PSSCH.
  • the second terminal device can also perceive and select resources for the transmission of its own data, but in some scenarios, the second terminal device perceives resources that are not comprehensive enough. For example, when other terminal devices send SCI and data, the The second terminal device is sending data, resulting in the second terminal device not receiving the SCI and the data. For example, the second terminal device is far away from the terminal device that sent the SCI, resulting in the second terminal device not receiving the SCI, etc. etc. scene.
  • the first terminal device may not only transmit sensing resources for its own data within the first sensing window, but also transmit sensing resources for data of the second terminal device within the second sensing window. Further, the first terminal The device may send the resource sensing result within the second sensing window to the second terminal device in a unicast or multicast manner. Thus, the accuracy of resource perception of the second terminal device is improved, the probability of resource collision is avoided, and the communication efficiency is improved.
  • FIG. 2 is a schematic flowchart of a resource sensing method provided by an embodiment of the present application.
  • FIGS. 1 a and 1 b may be network architecture examples to which the resource sensing method of the embodiment of the present application can be applied.
  • the method may include: S101 , S102 and S103 , and optionally, the method may further include S104 and S105 .
  • the execution sequence of S101, S102, S103, S104, and S105 is not limited in this embodiment of the present application.
  • the resource sensing method of the embodiment of the present application includes but is not limited to the following steps:
  • a first terminal device determines a first candidate resource set for sideline transmission in a first selection window, the first terminal device determines a second candidate resource set according to a resource sensing result in the first sensing window, and the The second candidate resource set is a full set or a subset of the first candidate resource set.
  • the first terminal device senses the sidelink resources in the second perception window, and sends the resource perception result in the second perception window to the second terminal device at the first moment, and the first terminal device A moment is determined according to the second candidate resource set.
  • the first terminal device when the first terminal device uses RA mode-2 to perform resource scheduling, the first terminal device can sense the occupancy of sidelink resources in the first sensing window, and select the occupancy in the first selection window. Based on the resource sensing result in the first sensing window, the sidelink resource for sending PSSCH/PSCCH is selected for the first terminal device.
  • the starting time domain position of the first sensing window in the embodiment of the present application may be nT 0
  • the ending time domain position of the first sensing window may be nT proc,0
  • the first sensing window may be nT proc,0
  • the starting time domain position of the selection window may be n+T1
  • the ending time domain position of the first selection window may be n+T2, where n is the second moment when the terminal device triggers resource selection.
  • the first terminal device may sense the sidelink resources configured by the base station or the network device, or the pre-defined sidelink resources within the first sensing window, and obtain the resources within the first sensing window.
  • the sidelink resource may be located in one or more resource pools.
  • the first terminal device may use the second priority and the second reference signal received power threshold to sense the sidelink resources within the first sensing window, where the second priority may be the waiting time of the first terminal device.
  • the priority of sending data, and the second reference signal received power threshold may be a reference signal received power threshold configured by the network device for the first terminal device.
  • the resource sensing process of the first terminal equipment in the first sensing window may include: the first terminal equipment may measure the reference signal received power of the sidelink resources, and the first terminal equipment may analyze the bearer on the sidelink resources.
  • SCI the SCI may include the priority of the data carried on the sidelink resource and the transmission period of the data, etc.
  • the terminal device can also compare the measured reference signal received power with the second reference signal received power threshold to obtain a reference signal received power comparison result; and calculate the priority contained in the SCI and the second priority, and Compare the priority operation result with the priority threshold to obtain the priority comparison result; further, the first terminal device can obtain the data transmission cycle according to the reference signal received power comparison result, the priority comparison result and the data parsed in the SCI.
  • the resource sensing result in the first sensing window optionally, the resource sensing result may include occupied sidelink resources and/or unoccupied sidelink resources. For example, the measured reference signal received power is less than the second reference signal received power threshold, and the priority calculation result and the priority threshold meet certain conditions, and the corresponding sidelink resource is determined to be unoccupied within the first sensing window. sidelink resources, otherwise it is the occupied sidelink resources.
  • the first terminal device may determine the first candidate resource set for sideline transmission in the first selection window. For example, the first terminal device may be based on the size of the resource to be sensed, and the size of the resource to be sensed may be determined based on the size of the resource occupied by the data to be sent.
  • the first terminal device divides the sidelink resources to be sensed (for example, sidelink resources in one or more resource pools) into multiple resource blocks, and the multiple resource blocks constitute the first candidate Resource set, each resource block is the size of the sending data resource.
  • the size of the resource to be sensed is 1 slot and 1 subchannel, and one resource block is composed of 1 slot and 1 subchannel.
  • the size of the sidelink resources to be sensed is 10 time slots and 5 subchannels, then the sidelink resources to be sensed can be divided into 50 resource blocks, and the 50 resource blocks can constitute the first candidate resource set .
  • the first terminal device may determine a second candidate resource set from the first candidate resource set according to the resource sensing result in the first sensing window, where the second candidate resource set is a full set or a subset of the first candidate resource set.
  • the sidelink resources in the second candidate resource set may be unoccupied resources determined according to the resource sensing result in the first sensing window.
  • the first terminal device may exclude possibly occupied resource blocks from the first candidate resource set according to the resource sensing result in the first sensing window, and call the set formed by the remaining resource blocks in the first candidate resource set as The second candidate resource set.
  • the first terminal device may further select appropriate resources from the second candidate resource set to send the PSSCH/PSCCH.
  • the first terminal device may choose to send the PSSCH/PSCCH at the first moment m.
  • the first terminal device may not only transmit sensing resources for its own data within the first sensing window, and select resources for its own data transmission according to the resource sensing results within the first sensing window within the first selection window, but also In the second perception window, it is the data transmission perception resource of the second terminal device, and the resource perception result in the second perception window is sent to the second terminal device, so that the second terminal device can perceive based on the resource in the second perception window.
  • sidelink resources for transmitting PSSCH/PSCCH are selected for the second terminal device.
  • the starting time domain position of the second sensing window may be determined according to the first moment and the first offset
  • the ending time domain position of the second sensing window may be determined according to the first moment and the second offset
  • the first offset is greater than the second offset.
  • the first offset is Ty
  • the second offset is T proc,y
  • the first moment when the first terminal device sends PSSCH/PSCCH is moment m.
  • the start of the second sensing window The start time domain position may be mT y
  • the end time domain position of the second sensing window may be TT proc,y
  • the length of the second sensing window is Ty -T proc,y
  • the value of the second offset may be greater than the preparation time of PSSCH
  • the preparation time of PSSCH may be equal to the preparation time of sending uplink data PUSCH
  • the preparation time of sending uplink data PUSCH may be:
  • T proc,SL max((N SL +d SL )(2048+144) ⁇ 2 ⁇ ⁇ ⁇ TC ,d BWP,SL )
  • N SL is the number of symbols related to subcarrier spacing and UE capability, d SL is related to the number or pattern of DMRS of PSSCH, T c is the first time unit, T s is the second time unit, ⁇ is T s and T The ratio of c , ⁇ is the subcarrier interval, the first time unit T c may specifically refer to the basic time unit of NR, and the second time unit T s may specifically refer to the basic time unit of LTE.
  • N is a constant that can be equal to zero, and the value of N can be agreed in a protocol or configured through signaling. For example, the value of N can be indicated through RRC or DCI.
  • the second sensing window is determined by taking the first moment when the first terminal device sends the PSSCH/PSCCH as a reference, so as to facilitate the second terminal device to confirm the position of the second sensing window.
  • the first offset and/or the second offset may be determined according to the first sensing window, that is, the first offset and/or the second offset may be It is determined according to the configuration parameters T 0 and/or T proc,0 of the first sensing window.
  • T 0 and T proc,0 can be configured by high-level parameters.
  • the second sensing window can be determined by using the configuration parameters of the first sensing window, and it is not necessary to configure parameters for the second sensing window, thereby saving signaling overhead. Determining the second sensing window according to the first sensing window will be described below with reference to Example 1, Example 2 and Example 3, respectively.
  • the first offset may be T 0 +C
  • the second offset may be T proc,0 +C.
  • the first moment when the first terminal device sends PSSCH/PSCCH is moment m
  • the starting time domain position of the second sensing window may be mT 0 -C
  • the end of the second sensing window The time domain position may be mT proc,0 -C, where C is a constant greater than or equal to zero.
  • the constant C may be agreed in a protocol or configured through signaling, for example, may be indicated through radio resource control (radio resource control, RRC) signaling or downlink control information (downlink control information, DCI).
  • RRC radio resource control
  • DCI downlink control information
  • C may be a specific number of time units, for example, the value of C may be a time slot, or the value of C may also be a specific duration. In some optional implementation manners, the value of C may be 0, and the lengths of the first sensing window and the second sensing window are the same.
  • the second offset may be T proc,0 .
  • the end time domain position of the second sensing window may be mT proc,0 .
  • the starting time domain position of the second sensing window may be determined by the priority of data sent by the first terminal device and/or the priority of data sent by the second terminal device. For example, the higher the priority of the data sent by the first terminal device and/or the priority of the data sent by the second terminal device, the longer the length of the second sensing window, and accordingly, the first offset is can be bigger.
  • each priority and the length of various sensing windows can be pre-defined, and when determining the data priority sent by the first terminal device and/or the data priority sent by the second terminal Find the sensing window length corresponding to the priority in the corresponding relationship, and determine the sensing window length as the length of the second sensing window.
  • the first terminal device may further determine the starting time domain position of the second sensing window according to the ending time domain position of the second sensing window and the length of the second sensing window.
  • the second offset may be T proc,0 .
  • the end time domain position of the second sensing window may be mT proc,0 .
  • the starting time domain position of the second sensing window may be determined by the proportional relationship between the length of the first sensing window and the length of the second sensing window.
  • the proportional relationship between the length of the first sensing window and the length of the second sensing window is P, and the P may be agreed in a protocol or configured through signaling.
  • the first terminal device may determine the starting time domain position of the second sensing window according to the length of the first sensing window, the ending time domain position of the second sensing window, and the proportional relationship P.
  • the first offset Ty and/or the second offset T proc,y may be configured by the network device; or, the first offset Ty and/or The second offset T proc,y may be sent by the second terminal device to the first terminal device. Determining the second perception window will be described below with reference to Example 4 and Example 5, respectively.
  • Ty and T proc,y may be indicated by the network device through high-layer signaling or dynamic signaling.
  • Ty can be the same as T 0
  • T proc,y can be the same as T proc, 0
  • Ty can be different from T 0
  • T proc,y can be different from T proc, 0 , etc.
  • this application The embodiment is not limited. It can be understood that, if Ty is the same as T 0 and T proc,y is the same as T proc,0 , the same set of configuration parameters can be shared with the first sensing window to save signaling overhead.
  • Ty and T proc,y may be sent by the second terminal device to the first terminal device.
  • Ty and T proc,y may be sent by the second terminal device to the first terminal device through SCI.
  • Ty and T proc,y may be sent by the first-level SCI or the second-level SCI.
  • the SCI is sent to the first terminal device.
  • Ty and T proc,y may be sent by the second terminal device to the first terminal device through data, or a control access layer control element (MAC control element, MAC CE), or RRC signaling.
  • Ty and T proc,y may be sent by the second terminal device to the first terminal device through PSCCH or PSSCH.
  • first offset may be determined by the first sensing window
  • second offset may be determined by The shift amount may be configured by the network device or sent by the second terminal device to the first terminal device.
  • the second offset may be determined by the first sensing window
  • the first offset may be configured by the network device or sent by the second terminal device to the first terminal device, and so on.
  • the first terminal device may sense the sidelink resources included in the time-frequency resource region within the second sensing window. Specifically, the first terminal device may use the first priority and the first reference signal received power threshold to sense the sidelink resources within the second sensing window.
  • the first priority may be determined according to one or more priorities received from the second terminal device, and the first reference signal received power threshold may be based on a reference signal received power threshold received from the second terminal device Or determined by the reference signal received power threshold range. The process of determining the first priority and the process of determining the received power threshold of the first reference signal are specifically described below.
  • the first terminal device may determine the first priority by one or more of the following manners 1, 2 and 3. For example, if the first priority cannot be determined by manner 1, Then, the first priority may be determined by the second method or the third method until the first priority is determined.
  • Manner 1 From one or more priorities sent by the second terminal device, a priority that is the same as the priority value of the second priority used in the first perception window is selected.
  • Manner 2 From the multiple priorities sent by the second terminal device, the priority with the highest priority is selected as the first priority, and the highest priority is the priority with the smallest priority value.
  • Manner 3 Select the priority with the smallest priority value among the second priority used by the first terminal device in the first perception window and one or more priorities sent by the second terminal device as the first priority.
  • the first terminal device can also determine the priority as the first priority, or the first terminal device can also use the above three methods. Determine the first priority.
  • Determining process of the first reference signal received power threshold when determining the first reference signal received power threshold, it may start from the reference signal received power threshold M, where M may be the minimum value of the range of the reference signal received power threshold sent by the second terminal device value, or it can be a reference signal received power threshold sent by the second terminal device, if the reference signal received power threshold M is used to sense the sidelink resources contained in at least one time-frequency resource region of the resource pool, the determined If the ratio between the number of available time-frequency resource regions and the total number of time-frequency resource regions contained in the resource pool is less than the first threshold, the power increment ⁇ a is increased on the basis of the reference signal received power threshold M to obtain Reference signal received power threshold M+ ⁇ a; of course, if the determined number of available time-frequency resource regions is greater than or equal to the first threshold, M is determined as the first reference signal received power threshold.
  • M may be the minimum value of the range of the reference signal received power threshold sent by the second terminal device value, or it can be a reference signal received power threshold sent by
  • the reference signal received power threshold M+ ⁇ a When the reference signal received power threshold M+ ⁇ a is obtained, if the reference signal received power threshold M+ ⁇ a is used to sense the sidelink resources included in at least one time-frequency resource region of the resource pool, the determined available time-frequency If the ratio between the number of resource regions and the total number of time-frequency resource regions included in the resource pool is less than the first threshold, then increase the power increment ⁇ a on the basis of the reference signal received power threshold M+ ⁇ a to obtain the reference signal Signal received power threshold M+2* ⁇ a, and so on, until the determined number of available time-frequency resource regions is greater than or equal to the first threshold, so that the corresponding M+ ⁇ a*k is determined as the first reference signal received power Threshold, where k is an integer greater than or equal to 0.
  • ⁇ a may be 3dB.
  • M+ ⁇ a*k is less than or equal to the maximum value of the reference signal received power threshold range.
  • the first terminal device may also determine the reference signal received power threshold as the first reference signal received power threshold, instead of using the above-mentioned received power threshold.
  • the first reference signal received power threshold is determined in an accumulation manner, or the first terminal device may also use the above accumulation manner to determine the first reference signal received power threshold.
  • the first terminal device may also send the resource sensing result to the second terminal device; or, the first terminal device may re-trigger resource sensing after waiting for the time interval Tgap,m . In this way, the implementation complexity of the first terminal device can be reduced, and a reliable sensing result can be provided.
  • the first terminal device may use the first priority and the first reference signal received power threshold, and when sensing the sidelink resources in the second sensing window, the specific sensing process may refer to the first terminal device.
  • the process of sensing the sidelink resources in the first sensing window will not be repeated here. It can be understood that, if this sensing method is adopted, the resource sensing result in the second sensing window sent by the first terminal device to the second terminal device may include the data transmission period obtained by parsing from the SCI, which is convenient for the second terminal device to The second terminal device selects unoccupied sidelink resources.
  • the first terminal device may also use the first priority, the first reference signal received power threshold and the first period to sense the sidelink resources within the second sensing window, and the first period may be the second terminal The period used for resource reservation or the service period of the second terminal.
  • the first terminal device may acquire the first cycle in the following manner: the second terminal may send one or more resource reservation cycles to the first terminal, and the first terminal device may determine the first cycle according to the one or more resource reservation cycles.
  • the first period may be the same period as the second period among multiple resource reservation periods, and the second period is the period used by the first terminal device for resource sensing in the first sensing window, that is, it may be The period during which the first terminal equipment sends data, and the period may be included in the PSCCH sent by the first terminal equipment.
  • the first terminal may select one resource reservation period as the first period among the multiple resource reservation periods.
  • the first terminal device may send the first period to the second terminal, so that the second terminal The terminal device learns a period used by the first terminal device to sense resources within the second sensing window.
  • the first terminal device uses the first priority, the first reference signal received power threshold, and the first period to sense the sidelink resources in the second sensing window.
  • the process may be: the first terminal device is as follows: The reference signal received power of the side link resource can be measured, and the first terminal device can parse the SCI carried on the side link resource, and the SCI can include the priority of the data carried on the side link resource and the data priority. sending cycle, etc.
  • the terminal device can also compare the measured reference signal received power with the first reference signal received power threshold to obtain a reference signal received power comparison result; and calculate the priority contained in the SCI and the first priority, and Compare the result of the priority operation with the priority threshold to obtain a priority comparison result; and compare the transmission cycle of the data parsed in the SCI with the first cycle to determine whether there is an intersection; further, the first terminal device can be based on the reference The signal received power comparison result, the priority comparison result and the period comparison result are used to obtain the resource sensing result within the second sensing window.
  • the resource sensing result may include occupied sidelink resources and/or unoccupied sidelink resources.
  • the measured reference signal received power is smaller than the first reference signal received power threshold, and the priority calculation result and the priority threshold meet certain conditions, and the resources determined according to the transmission period of the data parsed from the SCI are the same as the first reference signal received power threshold.
  • the periodically determined resources do not overlap, and the corresponding sidelink resources are determined as unoccupied sidelink resources within the second sensing window, otherwise they are occupied sidelink resources. It should be noted that the fact that the resources determined according to the transmission period of the data parsed from the SCI and the resources determined according to the first period do not overlap means that there is no overlap in the current second perception window and in the future.
  • the first terminal device can send the first reference signal received power threshold and/or the first priority and the first period to the second terminal device, so that the second terminal device can know that the first terminal device is in the first terminal device.
  • the received power threshold, priority and period of the reference signal used for resource sensing in the second sensing window.
  • the first reference signal received power threshold and/or the first priority, and the first period may be sent to the second terminal device together with the resource sensing result in the second sensing window.
  • the sidelink resources sensed by the first terminal device in the second sensing window may be located in one or more resource pools, and the sidelink resources included in the resource pool may be divided into at least one time-frequency resource. area.
  • a time-frequency resource region can be configured according to the granularity of X time slots and Y sub-channels, that is, a time-frequency resource region can be composed of X time slots and Y sub-channels; the value of X is greater than or equal to 1 and less than Or equal to the total number of time slots in the resource pool; the value of Y is greater than or equal to 1, and less than or equal to the total number of sub-channels in the resource pool.
  • the specific values of X and Y may be configured by the base station through high-layer signaling, or determined by the first terminal device according to the resource size that needs to be sensed, and the resource size that needs to be sensed may be sent by the second terminal device.
  • the resource sensing may be performed with the time-frequency resource unit as the granularity, and the size of the time-frequency resource unit is smaller than the size of the time-frequency resource region.
  • one time-frequency resource unit may be composed of one subchannel and one time slot
  • one time-frequency resource region may be composed of two time slots and two subchannels
  • one time-frequency resource A region may include four time-frequency resource units.
  • the first terminal device may use the first reference signal received power threshold and the first priority to sense the sidelink resources in the time-frequency resource units included in the time-frequency resource region within the second sensing window.
  • the ratio between the number of occupied time-frequency resource units in a time-frequency resource area and the total number of time-frequency resource units contained in a time-frequency resource area is greater than or equal to the second threshold, determine the time-frequency resource area Occupied; if the ratio between the number of occupied time-frequency resource units in a time-frequency resource area and the total number of time-frequency resource units included in a time-frequency resource area is less than the second threshold, then determine the time-frequency resource Area is not occupied.
  • the first terminal device may calculate the average value of the reference signal received power of the uplink resources in the time-frequency resource region , and the highest priority of the priority of the data carried on the uplink resources in the time-frequency resource area, that is, the smallest priority value, and according to the average value of the received power of the reference signal and the highest priority, determine whether the time-frequency resource area is Occupied.
  • the first terminal device may send the resource perception result in the second perception window to the second terminal device, optionally, the resource perception result in the second perception window may be included in the first terminal.
  • the resource sensing result in the second sensing window may be carried in the PSSCH as data information or MAC CE.
  • the resource sensing result information in the second sensing window may include resource occupancy information and/or resource unoccupied information, and the like.
  • the resource occupancy information and resource unoccupied information are introduced as follows:
  • the above-mentioned resource occupation information may include an identifier of an unavailable time-frequency resource area in at least one time-frequency resource area.
  • the above-mentioned resource unoccupied information may include an identifier of an available time-frequency resource region in at least one time-frequency resource region.
  • the first terminal device may be preset to send resource occupancy information or resource unoccupied information, or the first terminal device may also send the resource occupancy information according to the difference between the number of unavailable time-frequency resource regions and the number of available time-frequency resource regions. and comparison, determine to send resource occupancy information or resource unoccupied information.
  • the first terminal device may send resource occupation information. As shown in FIG. 6 , the sidelink resources of the time-frequency resource regions 6, 8, 10, and 12 are occupied, and the first terminal reports and sends the identifiers of the time-frequency resource regions 6, 8, 10, and 12 to the second terminal. equipment.
  • the first terminal device may send resource unoccupied information. As shown in FIG. 5 , the sidelink resources of time-frequency resource regions 3, 5, 7, and 9 are not occupied, and the first terminal reports and sends the identifiers of time-frequency resource regions 3, 5, 7, and 9 to the second terminal. equipment.
  • the resource perception result may include indication information, where the indication information is used to indicate that what the first terminal device sends is resource occupancy information or resource unoccupied information.
  • the indication information may be represented by the bit value of 1 bit in the SCI, or the indication information may be represented by the bit value of the first bit in the resource sensing result.
  • the above-mentioned resource occupancy information and resource unoccupied information can be represented by a bitmap, and the bitmap can include at least one bit, one bit corresponds to one time-frequency resource region in the at least one time-frequency resource region, and the The value is used to indicate whether the time-frequency resource region corresponding to the bit is available. If the time-frequency resource area is occupied, the corresponding bit is set to 1, otherwise, it is 0.
  • the second terminal device receives the resource sensing result within the second sensing window from the first terminal device at the first moment.
  • S104 and S105 can also include S104 and S105:
  • the second terminal device determines a third candidate resource set for sideline transmission in the second selection window, and the second terminal device determines a fourth candidate resource according to the resource perception result in the second perception window set, and the fourth candidate resource set is a full set or a subset of the third candidate resource set.
  • the second terminal device determines, according to the fourth candidate resource set, a sidelink resource for sending data.
  • the second terminal device determines a third candidate resource set for sideline transmission in the second selection window, wherein the manner of determining the third candidate resource set by the second terminal device may be determined by reference to the first terminal device The manner of determining the first candidate resource set will not be repeated here.
  • the second terminal device may determine a fourth candidate resource set according to the resource sensing result in the second sensing window, where the fourth candidate resource set may be a full set or a subset of the third candidate resource set.
  • the sidelink resources in the fourth candidate resource set may be the determined unoccupied resources.
  • the second terminal device may exclude possibly occupied sidelink resources from the third candidate resource set according to the resource sensing result in the second sensing window, and use the remaining sidelink resources in the third candidate resource set
  • the set of resources is called the fourth candidate resource set.
  • the second terminal device may further select an appropriate sidelink resource from the fourth candidate resource set to send the PSSCH/PSCCH.
  • the second terminal device may also sense the sidelink resources within a third sensing window, and the third sensing window may be the same as or different from the second sensing window; and/or other
  • the terminal equipment (excluding the second terminal equipment and the first terminal equipment) may also sense the sidelink resources within a fourth sensing window, and the fourth sensing window may be determined according to the moment when the other terminal equipment sends data, For details, refer to the determination method of the second sensing window.
  • the second terminal device may determine the fourth candidate according to the resource perception result in the second perception window; and/or; the resource perception result in the third perception window; and/or the resource perception result in the fourth perception window Resource set, the second terminal device selects the side link resource for sending data through the sensing result of each terminal device on the side link resource, which can improve the accuracy of resource perception and reduce the collision probability.
  • the first terminal device and the second terminal device include corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in the present application can be implemented in the form of hardware, software, or a combination of hardware and software. Whether a function is performed by hardware, software, or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 7 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 900 may include a processing unit 910 and a transceiver unit 920 .
  • the processing unit 910 and the transceiver unit 920 may be software, hardware, or a combination of software and hardware.
  • the transceiver unit 920 may include a sending unit and a receiving unit, the sending unit is used to implement the sending function, the receiving unit is used to implement the receiving function, and the transceiver unit 920 may implement the sending function and/or the receiving function.
  • the transceiver unit can also be described as a communication unit.
  • the transceiver unit 920 may be configured to receive information sent by other devices, and may also be configured to send information to other devices.
  • the processing unit 910 may be used to perform internal processing of the device.
  • the communication apparatus 900 may correspond to the first terminal equipment in the above method embodiments, for example, the communication apparatus 900 may be the first terminal equipment, or may be a chip in the first terminal equipment.
  • the communication apparatus 900 may include a unit for performing the operations performed by the first terminal device in the above method embodiments, and each unit in the communication apparatus 900 is to implement the operations performed by the first terminal device in the above method embodiments, respectively. action performed.
  • the processing unit 910 is configured to determine a first candidate resource set for sideline transmission in a first selection window; and determine a second candidate resource set according to the resource perception result in the first perception window, the The second candidate resource set is the full set or a subset of the first candidate resource set;
  • the processing unit 910 is further configured to sense the sidelink resources in the second sensing window
  • the transceiver unit 920 is configured to send the resource sensing result within the second sensing window to the second terminal device at a first moment, where the first moment is determined according to the second candidate resource set.
  • the start time domain position of the second perception window is determined according to the first moment and the first offset
  • the end time domain position of the second perception window is determined according to the first moment. and determined by the second offset, the first offset is greater than the second offset.
  • the first offset and/or the second offset are determined according to the first perception window.
  • the first offset is T 0 +C
  • the second offset is T proc,0 +C
  • the T 0 is the offset of the starting time domain position of the first sensing window relative to the second moment
  • the T proc,0 is the ending time domain position of the first sensing window relative to the The offset of the second moment, the second moment is the moment when the first terminal device triggers resource selection
  • the C is a constant greater than or equal to zero.
  • the second offset is T proc,0
  • the T proc,0 is the offset of the end time domain position of the first sensing window relative to a second moment, the second moment Trigger the moment of resource selection for the first terminal device
  • the first offset is determined by the proportional relationship between the length of the first sensing window and the length of the second sensing window; or, the first offset is sent by the first terminal device.
  • the data priority and/or the data priority sent by the second terminal device are determined.
  • the first offset and/or the second offset are configured by the network device; or, the first offset and/or the second offset are configured by the sent by the second terminal device to the first terminal device.
  • the sidelink resources are located in one or more resource pools, and the sidelink resources included in the resource pool are divided into at least one time-frequency resource region, one of the time-frequency resource regions Consists of one or more time slots and one or more sub-channels;
  • the resource perception result includes resource occupancy information and/or resource unoccupied information
  • the resource occupation information includes an identifier of an unavailable time-frequency resource region in the at least one time-frequency resource region;
  • the resource unoccupied information includes an identifier of an available time-frequency resource region in the at least one time-frequency resource region.
  • the resource occupancy information and the resource unoccupied information are represented by a bitmap
  • the bitmap includes at least one bit
  • one bit corresponds to one time-frequency resource in the at least one time-frequency resource region. region, the value of the bit is used to indicate whether the time-frequency resource region corresponding to the bit is available.
  • the transceiver unit 920 is further configured to receive one or more priorities from the second terminal device;
  • the processing unit 910 is further configured to determine the first priority according to the one or more priorities
  • the transceiver unit 920 is further configured to receive a reference signal received power threshold or a reference signal received power threshold range from the second terminal device;
  • the processing unit 910 is further configured to determine the first reference signal received power threshold according to the one reference signal received power threshold or the reference signal received power threshold range;
  • the processing unit 910 is further configured to sense the sidelink resources within the second sensing window by using the first priority and the first reference signal received power threshold.
  • the first priority is a priority whose value of the one or more priorities is the same as the value of the second priority; or,
  • the first priority is the priority with the smallest priority value among the plurality of priorities.
  • the first priority is the priority with the smallest priority value among the second priority and the one or more priorities
  • the second priority is used for the first terminal device to perform resource sensing within the first sensing window.
  • the first reference signal received power threshold is M+ ⁇ a*k; the first reference signal received power threshold meets the target condition;
  • the target conditions include:
  • the ratio between the number of available time-frequency resource regions and the total number of the at least one time-frequency resource region sensed within the second sensing window using the second reference signal received power threshold is less than the first threshold, and using The ratio between the number of available time-frequency resource regions sensed by the first reference signal received power threshold in the second sensing window and the total number of the at least one time-frequency resource region is greater than or equal to the first reference signal received power threshold.
  • a threshold, the received power threshold of the second reference signal is M+ ⁇ a*(k-1);
  • the M is the one reference signal received power threshold or the minimum value of the reference signal received power threshold range, the ⁇ a is the power increment, the k is an integer greater than or equal to 0, and the first A reference signal received power threshold M+ ⁇ a*k is within the range of the reference signal received power threshold.
  • the transceiver unit 920 is further configured to send the first priority and/or the first reference signal received power threshold to the second terminal device.
  • the communication apparatus 900 may correspond to the second terminal device, or may be a chip in the second terminal device.
  • the communication apparatus 900 may be a second terminal device or a chip in the second terminal device.
  • the communication apparatus 900 may include a unit for performing the operations performed by the second terminal device in the above method embodiments, and each unit in the communication apparatus 900 is to implement the operations performed by the second terminal device in the above method embodiments, respectively. action performed.
  • the transceiver unit 920 is configured to receive the resource sensing result within the second sensing window from the first terminal device at a first moment, where the first moment is determined according to a second candidate resource set, and the second candidate resource set is all
  • the first terminal device is determined according to the resource perception result in the first perception window, and the second candidate resource set is a full set or a subset of the first candidate resource set, and the first candidate resource set is the first terminal. a resource set for sideline transmission determined by the device in the first selection window;
  • the processing unit 910 is configured to determine a third candidate resource set for sideline transmission in the second selection window, and determine a fourth candidate resource set according to the resource sensing result in the second sensing window, the fourth The candidate resource set is the full set or a subset of the third candidate resource set;
  • the processing unit 910 is further configured to determine a sidelink resource for sending data according to the fourth candidate resource set.
  • the start time domain position of the second perception window is determined according to the first moment and the first offset
  • the end time domain position of the second perception window is determined according to the first moment. and determined by the second offset, the first offset is greater than the second offset.
  • the transceiver unit 920 in the communication apparatus 900 may be an input/output interface.
  • the transceiver unit 920 in the communication device 900 may correspond to the communication interface 1010 shown in FIG. 8
  • the processing unit 910 may correspond to the communication interface 1010 shown in FIG. 8
  • Processor 1020 is shown.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application. It should be understood that the communication apparatus 1000 shown in FIG. 8 is only an example, and the communication apparatus in this embodiment of the present application may further include other modules or units, or include modules with functions similar to those of the respective modules in FIG. All modules in 8.
  • the communication device 1000 includes a communication interface 1010 and at least one processor 1020 .
  • the communication apparatus 1000 may correspond to the first terminal device or the second terminal device. At least one processor 1020 executes the program instructions, so that the communication apparatus 1000 implements the corresponding process of the method executed by the corresponding terminal device in the above method embodiments.
  • the communication apparatus 1000 may correspond to the first terminal equipment in the above method embodiments, for example, the communication apparatus 100 may be the first terminal equipment, or may be a chip in the first terminal equipment.
  • the communication apparatus 1000 may include components for performing the operations performed by the first terminal device in the foregoing method embodiments.
  • the processor 1020 is configured to determine a first candidate resource set for sideline transmission in the first selection window; and determine a second candidate resource set according to the resource sensing result in the first sensing window, the The second candidate resource set is the full set or subset of the first candidate resource set;
  • the processor 1020 is further configured to sense the sidelink resources within the second sensing window
  • the communication interface 1010 is configured to send the resource sensing result within the second sensing window to the second terminal device at a first moment, where the first moment is determined according to the second candidate resource set.
  • the communication apparatus 1000 may correspond to the second terminal device, or may be a chip in the second terminal device.
  • the communication apparatus 1000 may include components for performing the operations performed by the second terminal device in the above method embodiments, and each component in the communication apparatus 1000 is respectively used to implement the operations performed by the second terminal device in the above method embodiments. action performed.
  • the communication interface 1010 is configured to receive a resource sensing result within the second sensing window from the first terminal device at a first moment, where the first moment is determined according to a second candidate resource set, and the second candidate resource set is the The first terminal device determines according to the resource perception result in the first perception window, and the second candidate resource set is a full set or a subset of the first candidate resource set, and the first candidate resource set is the first terminal device.
  • the resource set for sideline transmission determined in the first selection window;
  • the processor 1020 is configured to determine a third candidate resource set for sideline transmission in the second selection window, and determine a fourth candidate resource set according to the resource perception result in the second perception window, the fourth candidate resource set
  • the resource set is the full set or subset of the third candidate resource set
  • the processor 1020 is further configured to determine sidelink resources for sending data according to the fourth candidate resource set.
  • the communication apparatus 1000 may further include a memory.
  • the memory may store program instructions, and at least one processor 1020 may read the program instructions stored in the memory and execute the program instructions.
  • the communication device may be a chip or a chip system
  • the chip 2000 shown in FIG. 9 includes a processor 2001 and an interface 2002 .
  • the number of processors 2001 may be one or more, and the number of interfaces 2002 may be multiple. It should be noted that the respective functions of the processor 2001 and the interface 2002 can be implemented by hardware design, software design, or a combination of software and hardware, which is not limited here.
  • the processor 2001 is configured to determine the first candidate resource for sideline transmission in the first selection window and determining a second candidate resource set according to the resource sensing result in the first perception window, where the second candidate resource set is a full set or a subset of the first candidate resource set; the processor 2001 is further configured to perform a The sidelink resources are sensed in the second sensing window; the interface 2002 is used to send the resource sensing result in the second sensing window to the second terminal device at the first time, and the first time is based on the first time. Second, the candidate resource set is determined.
  • the interface 2002 is configured to receive the resource sensing result in the second sensing window from the first terminal device at the first moment, where the first moment is Determined according to the second candidate resource set, the second candidate resource set is determined by the first terminal device according to the resource perception result in the first perception window, and the second candidate resource set is the full set of the first candidate resource set or a subset, the first candidate resource set is the resource set determined by the first terminal device in the first selection window for sideline transmission;
  • the processor 2001 is configured to determine in the second selection window the resource set for sideline transmission A third candidate resource set for line transmission, and determining a fourth candidate resource set according to the resource sensing result in the second perception window, where the fourth candidate resource set is the full set or a subset of the third candidate resource set ; and determining a sidelink resource for transmitting data according to the fourth candidate resource set.
  • the chip further includes a memory 2003, where the memory 2003 is used to store necessary program instructions and data.
  • the processor in this embodiment of the present application may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (application specific integrated circuits) integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer is made to execute any of the foregoing method embodiments The method on the first terminal device side or the second terminal device side in .
  • a communication system is further provided, where the communication system includes a first terminal device and a second terminal device.
  • the first terminal device and the second terminal device may be the first terminal device and the second terminal device provided in the embodiment of FIG. 2 , and are used to perform steps performed by corresponding network elements in the embodiment of FIG. 2 .
  • An embodiment of the present application further provides a processing apparatus, including a processor and an interface, where the processor is configured to execute the method in any of the foregoing method embodiments.
  • the above processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC) , off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, can also be system on chip (system on chip, SoC), can also be central processing It can be a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (MCU) , it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • FPGA field programmable gate
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state discs, SSD)) etc.
  • the first terminal device and the second terminal device in the above-mentioned various apparatus embodiments completely correspond to the first terminal device and the second terminal device in the method embodiments, and corresponding steps are performed by corresponding modules or units, such as a communication unit (transmitting and receiving).
  • processor to perform the step of receiving or sending in the method embodiment, and other steps except sending and receiving may be performed by a processing unit (processor).
  • processing unit for functions of specific units, reference may be made to corresponding method embodiments.
  • the number of processors may be one or more.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process or thread of execution, and a component may be localized on one computer or distributed among 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, pass a signal through a local system based on a signal having one or more data packets (such as data from two components interacting with another component between a local system, a distributed system, or a network, such as the Internet interacting with other systems through signals). or remote process to communicate.
  • a signal having one or more data packets (such as data from two components interacting with another component between a local system, a distributed system, or a network, such as the Internet interacting with other systems through signals). or remote process to communicate.
  • B corresponding to A indicates that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is only determined according to A, and B may also be determined according to A and/or other information.
  • an item includes one or more of the following: A, B, and C
  • the item can be any of the following: A; B, unless otherwise specified. ;C;A and B;A and C;B and C;A,B and C;A and A;A,A and A;A,A and B;A,A and C,A,B and B;A , C and C; B and B, B, B and B, B, B and C, C and C; C, C and C, and other combinations of A, B and C.
  • a total of three elements of A, B and C are used as examples above to illustrate the optional items of the item.
  • the first terminal device and the second terminal device may perform some or all of the steps in the embodiments of the present application, these steps or operations are only examples, and the embodiments of the present application may also perform other operations or Variations of various operations.
  • various steps may be performed in different orders presented in the embodiments of the present application, and may not be required to perform all the operations in the embodiments of the present application.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种资源感知方法及通信装置,其中,资源感知方法可以包括: 第一终端设备在第一选择窗中确定用于侧行传输的第一候选资源集合,所述第一终端设备根据第一感知窗内的资源感知结果确定第二候选资源集合,所述第二候选资源集合为所述第一候选资源集合的全集或子集; 所述第一终端设备在第二感知窗内对侧行链路资源进行感知,并在第一时刻向第二终端设备发送在所述第二感知窗内的资源感知结果,所述第一时刻是根据所述第二候选资源集合确定。采用本申请实施例,可以提高资源感知的准确性,减小资源碰撞的概率。

Description

资源感知方法及通信装置
本申请要求于2020年08月06日提交中国专利局、申请号为202010785378.2、申请名称为“资源感知方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种资源感知方法及通信装置。
背景技术
在NR V2X中,支持两种资源调度的方式,一种是基于基站调度的资源调度模式一(Resource Allocation Mode-1,RA mode-1),另一种是基于终端设备在(预)配置资源上感知和选择的资源调度模式二(Resource Allocation Mode-2,RA mode-2)。终端设备在采用RAmode-1进行资源调度时,在侧行链路上发送物理侧行控制信道(PysicalSidelink Control Channel,PSCCH)或物理侧行共享信道(Pysical Sidelink Share Channel,PSSCH)的资源是由基站调度和控制的。在采用RA mode-2进行资源调度时,终端设备会在由基站或网络设备配置,或者预先定义的侧行链路资源上感知可用的资源,并选择其中的资源发送PSCCH或PSSCH。在采用RA mode-2进行资源调度时,会有两个时间窗:感知(sensing)窗和选择(selection)窗,终端设备会在感知窗中对侧行链路资源的占用情况进行感知,并根据感知结果在选择窗中选择合适的资源发送PSSCH/PSCCH。
发明内容
本申请实施例提供了一种资源感知方法及通信装置,可以应用于车联网,例如V2X通信、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车辆与车辆(vehicle to vehicle,V2V)通信等,或可以用于智能驾驶,智能网联车等领域,能够提高资源感知的准确性,避免资源碰撞的概率,提高通信效率。
第一方面,本申请实施例提供一种资源感知方法,其中,该方法可以由第一终端设备执行,也可以由第一终端设备的部件(例如处理器、芯片、或芯片系统等)执行。该资源感知方法可以包括:第一终端设备在第一选择窗中确定用于侧行传输的第一候选资源集合,该第一终端设备根据第一感知窗内的资源感知结果确定第二候选资源集合,该第二候选资源集合为第一候选资源集合的全集或子集。例如,第一终端设备根据第一感知窗内的资源感知结果,从第一候选资源集合中排除在第一选择窗中被占用的侧行传输资源,得到未被占用的第二候选资源集合。
该第一终端设备进一步在第二感知窗内对侧行链路资源进行感知,并在第一时刻向第二终端设备发送在所述第二感知窗内的资源感知结果,其中,第一时刻可以是根据第二候选资源集合确定的。例如,第一时刻为第一终端在第二候选资源集合中选择的用于侧行传输的资源的起始时刻,该侧行传输的资源用于发送第二感知窗内的资源感知结果。
相应的,第二终端设备可以在第二选择窗中确定用于侧行传输的第三候选资源集合,该第二终端设备进一步根据第一终端设备发送的在第二感知窗内的资源感知结果和/或第二终端自己的资源感知结果确定第四候选资源集合,从而根据第四候选资源集合确定发送数据的 侧行链路资源。
通过实施第一方面所描述的方法,第一终端设备不仅可以在第一感知窗内为自身侧行传输感知资源,还可以在第二感知窗内为第二终端设备的侧行传输感知资源,并将在第二感知窗内的资源感知结果发给该第二终端设备,便于第二终端设备根据第二感知窗内的资源感知结果确定第四候选资源集合,进一步根据第四候选资源集合确定发送数据的侧行链路资源。在某些场景下,第二终端设备感知资源不够全面,例如,在其他终端设备发送侧行控制信息(Sidelink Control information,SCI)和侧行数据时,该第二终端设备在发送数据,未接收到该SCI和侧行数据,还例如,该第二终端设备与发送SCI和侧行数据的终端设备距离比较远,未接收到该SCI和侧行数据,等等场景。第二终端设备可以借助第一终端设备在第二感知窗内为该第二终端设备进行资源感知的结果,确定发送数据的侧行链路资源。从而提高资源感知的准确性,避免资源碰撞的概率,提高通信效率。
在第一方面的一种可能的实现方式中,第二感知窗的起始时域位置可以是根据第一时刻和第一偏移量确定的,第二感知窗的结束时域位置可以是根据第一时刻和第二偏移量确定的。该第一偏移量大于第二偏移量。例如,第一偏移量为T y,第二偏移量为T proc,y,第一终端设备发送PSSCH/PSCCH的第一时刻为m时刻,则第二感知窗的起始时域位置可以是m-T y,而第二感知窗的结束时域位置可以是m-T proc,y
通过实施该方法,第二感知窗根据第一终端设备发送数据的第一时刻确定,可以方便第二终端设备确定第二感知窗的位置。
在第一方面的一种可能的实现方式中,所述第一偏移量和/或所述第二偏移量是根据所述第一感知窗确定的。
其中,第一偏移量和/或所述第二偏移量可以是根据第一感知窗的配置参数确定。
通过实施该方法,可以借助第一感知窗的配置参数确定第二感知窗,而不需要专门为第二感知窗配置参数,即第一感知窗和第二感知窗共享同一套配置参数,节省信令开销。
在第一方面的一种可能的实现方式中,第一偏移量可以为T 0+C,第二偏移量可以为T proc,0+C。
其中,T 0为第一感知窗的起始时域位置相对于第二时刻的偏移量,T proc,0为第一感知窗的结束时域位置相对于第二时刻的偏移量,第二时刻为第一终端设备触发进行资源选择的时刻;C可以为大于或者等于零的常数。
通过实施该方法,可以借助第一感知窗的配置参数确定第二感知窗,而不需要专门为第二感知窗配置参数,即第一感知窗和第二感知窗共享同一套配置参数,节省信令开销。
在第一方面的一种可能的实现方式中,第二偏移量为T proc,0,该T proc,0为第一感知窗的结束时域位置相对于第二时刻的偏移量,第二时刻为第一终端设备触发进行资源选择的时刻。
其中,第一偏移量可以由第一感知窗的长度与第二感知窗的长度之间的比例关系确定;或者,第一偏移量可以由第一终端设备发送的数据优先级和/或所述第二终端设备发送的数据优先级确定,例如,不同优先级对应不同的感知窗的长度,而第一偏移量由第二感知窗的长度和第二感知窗的结束时域位置确定。
通过实施该方法,可以通过定义第一感知窗的长度与第二感知窗的长度之间的比例关系 来确定第二感知窗的位置,不需要专门为第二感知窗配置参数,节省信令开销。
可以通过第一终端设备发送的数据优先级和/或所述第二终端设备发送的数据优先级确定第二感知窗的位置,保障高优先级数据的传输。
在第一方面的一种可能的实现方式中,第一偏移量和/或第二偏移量可以是由网络设备配置的;或者,第一偏移量和/或第二偏移量可以是由第二终端设备发送给第一终端设备的。
通过实施该方法,可以为第二感知窗配置第二感知窗的参数,从而可以使得第一终端设备有针对性的在第二感知窗内进行资源感知。
在第一方面的一种可能的实现方式中,被感知的侧行链路资源可以位于一个或多个资源池内,资源池中包含的侧行链路资源可以被划分为至少一个时频资源区域,一个时频资源区域由一个或多个时隙和一个或多个子信道构成。
资源感知结果可以包括以下信息中的一项或多项:资源占用信息和/或资源未被占用信息;
资源占用信息可以包括至少一个时频资源区域中不可用的时频资源区域的标识。
资源未被占用信息可以包括至少一个时频资源区域中可用的时频资源区域的标识。
在一些可选的实施方式中,资源占用信息和资源未被占用信息可以使用比特地图表示,比特地图可以包括至少一个比特位,一个比特位对应至少一个时频资源区域中的一个时频资源区域,比特位的值可以用于指示该比特位对应的时频资源区域是否可用。
通过实施该方法,可以是以时频资源区域的粒度反馈第二感知窗内的资源感知结果,从而减少资源感知结果的比特开销。
在第一方面的一种可能的实现方式中,第一终端设备可以从所述第二终端设备接收一个或多个优先级;进一步,第一终端设备可以根据该一个或多个优先级,确定第一优先级。
第一终端设备可以从所述第二终端设备接收一个参考信号接收功率阈值或者参考信号接收功率阈值范围;进一步,第一终端设备可以根据该一个参考信号接收功率阈值或者参考信号接收功率阈值范围,确定第一参考信号接收功率阈值。
第一终端设备在第二感知窗内对侧行链路资源进行感知时,可以使用第一优先级和第一参考信号接收功率阈值在所述第二感知窗内,对侧行链路资源进行感知。
通过实施该方法,可以使得第一终端设备明确在第二感知窗内进行资源感知时,所使用的优先级和参考信号接收功率阈值。
在第一方面的一种可能的实现方式中,第一优先级为第二终端设备发送的一个或多个优先级中优先级的值与第二优先级的值相同的优先级;或者,
第一优先级为多个优先级中优先级的值最小的优先级;或者,
第一优先级为第二优先级与第二终端设备发送的一个或多个优先级中优先级的值最小的优先级;
其中,第二优先级用于第一终端设备在所述第一感知窗内进行资源感知。
在第一方面的一种可能的实现方式中,第一参考信号接收功率阈值为M+Δa*k;该第一参考信号接收功率阈值满足目标条件。
目标条件可以包括:使用第二参考信号接收功率阈值在第二感知窗内感知得到的可用时频资源区域的数量与该至少一个时频资源区域的总数量之间的占比小于第一阈值,且使用第一参考信号接收功率阈值在第二感知窗内感知得到的可用时频资源区域的数量与该至少一个时频资源区域的总数量之间的占比大于或者等于第一阈值,第二参考信号接收功率阈值为M+Δa*(k-1);
其中,所述M为所述一个参考信号接收功率阈值或者为所述参考信号接收功率阈值范围 的最小值,所述Δa为功率增量,所述k为大于或者等于0的整数,所述第一参考信号接收功率阈值M+Δa*k位于所述参考信号接收功率阈值范围内。
在第一方面的一种可能的实现方式中,第一终端设备将第一优先级和/或第一参考信号接收功率阈值发送给第二终端设备。
通过实施该方法,可以使得第二终端设备明确第一终端设备在第二感知窗内进行资源感知时所使用的优先级和参考信号接收功率阈值。
第二方面,本申请实施例提供一种资源感知方法,其中,该方法可以由第二终端设备执行,也可以由第二终端设备的部件(例如处理器、芯片、或芯片系统等)执行。该资源感知方法可以包括:第二终端设备在第一时刻从第一终端设备接收在第二感知窗内的资源感知结果,该第一时刻是根据第二候选资源集合确定,第二候选资源集合为第一终端设备根据第一感知窗内的资源感知结果确定,且第二候选资源集合为第一候选资源集合的全集或子集,第一候选资源集合是第一终端设备在第一选择窗中确定的用于侧行传输的资源集合。
第二终端设备在第二选择窗中确定用于侧行传输的第三候选资源集合,第二终端设备根据第二感知窗内的资源感知结果确定第四候选资源集合,该第四候选资源集合为第三候选资源集合的全集或子集。
第二终端设备根据第四候选资源集合确定发送数据的侧行链路资源。
在第二方面的一种可能的实现方式中,第二感知窗的起始时域位置是根据第一时刻和第一偏移量确定的,第二感知窗的结束时域位置是根据第一时刻和所述第二偏移量确定的,第一偏移量大于第二偏移量。
第三方面,本申请实施例提供了一种通信装置,包括用于执行第一方面或第二方面的方法的各个模块或单元。
第四方面,本申请实施例提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第二方面的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
第五方面,本申请实施例提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面或第二方面的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第六方面,本申请实施例提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面或第二方面的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送资源感知结果可以为从处理器输出资源感知结果的过程,接收资源感知结果可以为处理器接收资源感知结果的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第六方面中的处理装置可以是一个或多个芯片。该处理装置中的处理器可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第七方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面或第二方面的方法。
第八方面,本申请实施例提供了一种可读存储介质,所述可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得上述第一方面或第二方面的方法被实现。
第九方面,本申请实施例提供了一种通信系统,包括前述第一终端设备和第二终端设备。
第十方面,提供了一种芯片系统,该芯片系统包括处理器和接口电路,处理器用于从存储器中调用并运行存储器中存储的计算机程序(也可以称为代码,或指令),以实现第一方面或第二方面所涉及的功能,在一种可能的设计中,该芯片系统还包括存储器,存储器用于保存必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1a是本申请提供的一种网络系统架构图;
图1b是本申请提供的另一种网络系统架构图;
图2是本申请提供的一种资源感知方法的流程示意图;
图3是本申请提供的一种第一感知窗和第二感知窗的示意图;
图4是本申请提供的另一种第一感知窗和第二感知窗的示意图;
图5是本申请提供的一种时频资源区域的示意图;
图6是本申请提供的另一种时频资源区域的示意图;
图7是本申请实施例提供的通信装置的示意性框图;
图8是本申请实施例提供的另一通信装置的示意性框图;
图9是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
本申请实施例的技术方案可以应用于车联网,例如V2X通信、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车辆与车辆(vehicle to vehicle,V2V)通信等,或可以用于智能驾驶,智能网联车等领域,也可以用于其他无线网络,例如WiFi网络,长期演进(long term evolution,LTE)网络,第五代(5th generation,5G)网络、新无线(new radio,NR)网络,设备到设备(device to device,D2D)网络、未来网络等,以及随着技术的发展出现的其他新的网络等。
图1a示出了一种可以应用于本申请的网络系统的示意图,该网络系统可以包括终端设备 1和终端设备2,该终端设备1可以和终端设备2之间可以通过单播方式进行通信。
图1b示出了另一种可以应用于本申请的网络系统的示意图,该网络系统可以包括多个终端设备,在图1b中以包括4个终端设备作为举例,分别为终端设备1、终端设备2、终端设备3和终端设备4,可以理解的是该通信系统还可以包括其他终端设备,本申请实施例不作限定。其中,该终端设备1可以与终端设备2、终端设备3和终端设备4可以通过组播方式进行通信,或者,终端设备1也可以与各个终端设备通过单播方式进行通信。
终端设备,也可以被称为用户设备UE、接入终端、终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线网络设备、车载终端、用户代理、用户装置、接入点(access point)以及其他具有V2V通信能力的车辆等等。终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless localloop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备或物联网、车辆网中的终端设备以及未来网络中的任意形态的终端设备等。终端设备可以经网络设备与一个或多个核心网(core network,CN)进行通信。可以理解的是,在一些可能的应用场景中,本申请实施例的终端设备还可以是带无线收发功能的虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端。该终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
应理解,本申请实施例并不限定只应用于图1a和图1b所示的系统架构中。例如,可以应用本申请实施例的资源感知方法的通信系统中可以包括更多或更少的网元或设备。
本申请实施例中,第一终端设备可以是图1a和图1b所示系统架构中的终端设备1,第二终端设备可以是图1a和图1b所示系统架构中的终端设备2、终端设备3或终端设备4中的终端设备。
第一终端设备可以为自身数据(例如:PSCCH/PSSCH)的传输去感知得到候选资源集合,并在候选资源集合中选择相应的资源发送PSCCH/PSSCH。同理,第二终端设备也可以为自身数据的传输去感知和选择资源,但是在某些场景中,第二终端设备感知资源不够全面,例如,在其他终端设备发送SCI和数据时,该第二终端设备在发送数据,导致第二终端设备未接收到该SCI和数据,还例如,该第二终端设备与发送SCI的终端设备距离比较远,导致第二终端设备未接收到该SCI,等等场景。
在本申请实施例中,第一终端设备不仅可以在第一感知窗内为自身数据传输感知资源,还可以在第二感知窗内为第二终端设备的数据传输感知资源,进一步,第一终端设备可以通过单播或者组播的方式向第二终端设备发送在第二感知窗内的资源感知结果。从而提高第二终端设备资源感知的准确性,避免资源碰撞的概率,提高通信效率。
请参照图2,为本申请实施例提供的一种资源感知方法的流程示意图,图1a和图1b可以是本申请实施例的资源感知方法可以应用的网络架构示例。如图2所示,该方法可以包括:S101、S102和S103,可选的,该方法还可以包括S104和S105。其中,S101、S102、S103、S104和S105的执行顺序,本申请实施例不作限制。如图所示,本申请实施例的资源感知方 法包括但不限于以下步骤:
S101,第一终端设备在第一选择窗中确定用于侧行传输的第一候选资源集合,所述第一终端设备根据第一感知窗内的资源感知结果确定第二候选资源集合,所述第二候选资源集合为所述第一候选资源集合的全集或子集。
S102,所述第一终端设备在第二感知窗内对侧行链路资源进行感知,并在第一时刻向第二终端设备发送在所述第二感知窗内的资源感知结果,所述第一时刻是根据所述第二候选资源集合确定。
在一个实施例中,第一终端设备在采用RA mode-2进行资源调度时,第一终端设备可以在第一感知窗内对侧行链路资源的占用情况进行感知,并在第一选择窗中基于第一感知窗内的资源感知结果,为该第一终端设备选择发送PSSCH/PSCCH的侧行链路资源。
如图3和图4所示,本申请实施例中的第一感知窗的起始时域位置可以是n-T 0,该第一感知窗的结束时域位置可以是n-T proc,0,该第一选择窗的起始时域位置可以是n+T1,该第一选择窗的结束时域位置可以是n+T2,其中,n是终端设备触发进行资源选择的第二时刻。
具体可选的,第一终端设备可以在第一感知窗内对基站或网络设备配置的侧行链路资源,或者预先定义的侧行链路资源上进行感知,获得第一感知窗内的资源感知结果,可选的,该侧行链路资源可以位于一个或多个资源池中。
可选的,第一终端设备可以使用第二优先级和第二参考信号接收功率阈值,在第一感知窗内对侧行链路资源进行感知,该第二优先级可以是第一终端设备待发送数据的优先级,该第二参考信号接收功率阈值可以是网络设备为第一终端设备配置的参考信号接收功率阈值。其中,第一终端设备在第一感知窗内的资源感知过程可以包括:第一终端设备可以测量侧行链路资源的参考信号接收功率,以及第一终端设备可以解析侧行链路资源上承载的SCI,该SCI可以包括该侧行链路资源上承载的数据的优先级以及数据的发送周期等。进一步,终端设备还可以将测量得到的参考信号接收功率与第二参考信号接收功率阈值进行比较,获得参考信号接收功率比较结果;以及将SCI中包含的优先级与第二优先级进行运算,并将优先级运算结果与优先级阈值进行比较,获得优先级比较结果;进一步,第一终端设备可以根据参考信号接收功率比较结果、优先级比较结果以及在SCI中解析得到的数据的发送周期,获得在第一感知窗内的资源感知结果,可选的,该资源感知结果可以包括被占用的侧行链路资源和/或未被占用的侧行链路资源。例如,测量得到的参考信号接收功率小于第二参考信号接收功率阈值,且优先级运算结果与优先级阈值满足特定条件,相应的侧行链路资源被确定为在第一感知窗内未被占用的侧行链路资源,否则为被占用的侧行链路资源。
第一终端设备可以在第一选择窗中确定用于侧行传输的第一候选资源集合。例如,第一终端设备可以根据需要感知的资源大小,该需要感知的资源大小可以根据待发送的数据占据资源的大小确定。可选的,第一终端设备将待感知的侧行链路资源(例如为一个或多个资源池中的侧行链路资源)划分为多个资源块,该多个资源块构成第一候选资源集合,每个资源块为发送数据资源的大小。例如,需要感知的资源大小为1个时隙和1个子信道,一个资源块由1个时隙和1个子信道构成。待感知的侧行链路资源的大小为10个时隙,5个子信道,则可以将待感知的侧行链路资源划分为50个资源块,该50个资源块可以构成第一候选资源集合。
该第一终端设备可以根据第一感知窗内的资源感知结果,从第一候选资源集合中确定第二候选资源集合,该第二候选资源集合为第一候选资源集合的全集或者子集。其中,该第二 候选资源集合中的侧行链路资源可以是根据第一感知窗内的资源感知结果,确定的未被占用的资源。例如,第一终端设备可以根据第一感知窗内的资源感知结果,从第一候选资源集合中排除可能被占用的资源块,并将第一候选资源集合中剩余的资源块构成的集合称为第二候选资源集合。第一终端设备可以进一步从第二候选资源集合中选择合适的资源发送PSSCH/PSCCH。示例性的,第一终端设备可以选择在第一时刻m发送PSSCH/PSCCH。
本申请实施例中,第一终端设备除了在第一感知窗内为自身数据传输感知资源,以及在第一选择窗内根据第一感知窗内的资源感知结果为自身数据传输选择资源,还可以在第二感知窗内为第二终端设备的数据传输感知资源,并将在第二感知窗内的资源感知结果发送给第二终端设备,便于第二终端设备基于第二感知窗内的资源感知结果,为该第二终端设备选择发送PSSCH/PSCCH的侧行链路资源。
其中,第二感知窗的起始时域位置可以是根据第一时刻和第一偏移量确定的,第二感知窗的结束时域位置可以是根据第一时刻和第二偏移量确定的,第一偏移量大于第二偏移量。例如,第一偏移量为T y,第二偏移量为T proc,y,第一终端设备发送PSSCH/PSCCH的第一时刻为m时刻,如图3所示,第二感知窗的起始时域位置可以是m-T y,而第二感知窗的结束时域位置可以是T-T proc,y,第二感知窗的长度为T y-T proc,y。其中,第二偏移量的取值可以大于PSSCH的准备时间,PSSCH的准备时间可以是等于发送上行数据PUSCH的准备时间,该发送上行数据PUSCH的准备时间可以是:
T proc,SL=max((N SL+d SL)(2048+144)·κ·2 ·T C,d BWP,SL)
或者
N 2+N
N SL是与子载波间隔和UE能力有关的符号个数,d SL与PSSCH的DMRS个数或者图样有关,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔,第一时间单元T c具体可以指NR的基本时间单元,第二时间单元T s具体可以指LTE的基本时间单元。N是可以等于零的常数,N的取值可以是协议约定好的或者通过信令进行配置的,例如,可以通过RRC或者DCI指示N的取值。N可以表示具体的时间单元数量或者也可以具体的时长,例如N=0.5ms。
在本申请实施例中,以第一终端设备发送PSSCH/PSCCH的第一时刻作为参考,确定第二感知窗,从而便于第二终端设备确认第二感知窗的位置。
在第一种可选的实施方式中,该第一偏移量和/或第二偏移量可以是根据第一感知窗确定的,即第一偏移量和/或第二偏移量可以是根据第一感知窗的配置参数T 0和/或T proc,0确定。其中,T 0和T proc,0可以是由高层参数配置的。通过实施本申请实施例,可以借助第一感知窗的配置参数确定第二感知窗,而可以不用专门为第二感知窗配置参数,节省信令开销。下面分别结合示例一、示例二和示例三对根据第一感知窗,确定第二感知窗进行介绍。
示例一,第一偏移量可以为T 0+C,第二偏移量可以为T proc,0+C。例如,第一终端设备 发送PSSCH/PSCCH的第一时刻为m时刻,则如图4所示,该第二感知窗的起始时域位置可以是m-T 0-C,该第二感知窗的结束时域位置可以是m-T proc,0-C,C为大于或者等于零的常数。常数C可以是协议约定好的或者通过信令进行配置,例如,可以通过无线资源控制(radio resource control,RRC)信令或者下行控制信息(downlink control information,DCI)进行指示。C可以是具体的时间单元数量,例如,C的取值可以是一个时隙,或者C的取值也可以具体的时长。在一些可选的实施方式中,C的取值可以为0,则第一感知窗和第二感知窗的长度相同。
示例二,第二偏移量可以为T proc,0,例如,第一终端设备发送PSSCH/PSCCH的第一时刻为m时刻,则第二感知窗的结束时域位置可以是m-T proc,0,而第二感知窗的起始时域位置可以是由第一终端设备发送的数据优先级和/或所述第二终端设备发送的数据优先级确定。例如,第一终端设备发送的数据优先级和/或所述第二终端设备发送的数据优先级越高,则第二感知窗的长度也就越长,相应的,第一偏移量也就可以越大。可选的,可以预先定义各个优先级与各种感知窗长度之间的对应关系,当确定第一终端设备发送的数据优先级和/或第二终端设备发送的数据优先级时,即可从对应关系中查找该优先级对应的感知窗长度,并将该感知窗长度确定为第二感知窗的长度。第一终端设备可以进一步根据第二感知窗的结束时域位置和第二感知窗的长度,确定第二感知窗的起始时域位置。
示例三,第二偏移量可以为T proc,0,例如,第一终端设备发送PSSCH/PSCCH的第一时刻为m时刻,则第二感知窗的结束时域位置可以是m-T proc,0,而第二感知窗的起始时域位置可以是由第一感知窗的长度与第二感知窗的长度之间的比例关系确定。例如,第一感知窗的长度与第二感知窗的长度之间的比例关系为P,该P可以是协议约定好的或者也可以是通过信令进行配置的。第一终端设备可以根据第一感知窗的长度、第二感知窗的结束时域位置和比例关系P,确定第二感知窗的起始时域位置。
在第二种可选的实施方式中,第一偏移量T y和/或第二偏移量T proc,y可以是由网络设备配置的;或者,第一偏移量T y和/或第二偏移量T proc,y可以是由第二终端设备发送给第一终端设备的。下面分别结合示例四和示例五对确定第二感知窗进行介绍。
示例四,T y和T proc,y可以由网络设备通过高层信令或者动态信令指示。可选的,T y可以与T 0相同,T proc,y可以与T proc,0相同,或者,T y可以与T 0不同,T proc,y可以与T proc,0不同等等,本申请实施例不作限定。可以理解的是,如果T y是与T 0相同,T proc,y是与T proc,0相同,则可以与第一感知窗共用同一套配置参数,以节省信令开销。
示例五,T y和T proc,y可以由第二终端设备发送给第一终端设备。可选的,T y和T proc,y可以是第二终端设备通过SCI发送给第一终端设备的,具体可选的,T y和T proc,y可以是通过第一 级SCI或者第二级SCI发送给第一终端设备的。或者,T y和T proc,y可以是第二终端设备通过数据,或者控制接入层控制单元(MAC control element,MAC CE),或者RRC信令发送给第一终端设备的。或者,T y和T proc,y可以是第二终端设备通过PSCCH或者PSSCH发送给第一终端设备的。
需要说明的是,上述第一种可选的实施方式和第二种可选的实施方式可以相互引用和组合,例如,第一偏移量可以是由第一感知窗确定的,而第二偏移量可以是由网络设备配置的或者由第二终端设备发送给第一终端设备的。或者,第二偏移量可以是由第一感知窗确定的,而第一偏移量可以是由网络设备配置的或者由第二终端设备发送给第一终端设备的,等等。
可选的,第一终端设备可以在第二感知窗内对时频资源区域中所包含的侧行链路资源进行感知。具体的,该第一终端设备可以使用第一优先级和第一参考信号接收功率阈值,在第二感知窗内对侧行链路资源进行感知。其中,该第一优先级可以是根据从第二终端设备接收的一个或多个优先级确定的,该第一参考信号接收功率阈值可以是根据从第二终端设备接收的一个参考信号接收功率阈值或者参考信号接收功率阈值范围确定的。下面分别具体阐述第一优先级的确定过程和第一参考信号接收功率阈值的确定过程。
第一优先级的确定过程:第一终端设备可以通过以下方式一、方式二和方式三中的一种或多种方式确定第一优先级,例如,如果通过方式一无法确定第一优先级,则可以继续通过方式二或方式三确定第一优先级,直至确定出第一优先级。
方式一、从第二终端设备发送的一个或多个优先级中,选择与第一感知窗内所使用的第二优先级的优先级值相同的优先级。
方式二、从第二终端设备发送的多个优先级中,选择优先级最高的优先级作为第一优先级,优先级最高即是优先级值最小的优先级。
方式三、选择第一终端设备在第一感知窗内所使用的第二优先级与第二终端设备发送的一个或多个优先级中优先级的值最小的优先级作为第一优先级。
可以理解的是,如果第二终端设备向第一终端设备发送一个优先级,第一终端设备也可以将该优先级确定为第一优先级,或者,第一终端设备也可以通过以上三种方式确定第一优先级。
第一参考信号接收功率阈值的确定过程:在确定第一参考信号接收功率阈值时,可以从参考信号接收功率阈值M开始,该M可以是第二终端设备发送的参考信号接收功率阈值范围的最小值,或者可以是第二终端设备发送的一个参考信号接收功率阈值,如果使用参考信号接收功率阈值M对资源池的至少一个时频资源区域中包含的侧行链路资源进行感知,确定出的可用的时频资源区域的数量与该资源池包含的时频资源区域的总数量之间的占比如果小于第一阈值,则在参考信号接收功率阈值M的基础上增加功率增量Δa,得到参考信号接收功率阈值M+Δa;当然,如果确定出的可用的时频资源区域的数量如果大于或者等于第一阈值,则将M确定为第一参考信号接收功率阈值。其中,关于时频资源区域的定义可以参照后续实施例的描述,暂不赘述。
在得到参考信号接收功率阈值M+Δa时,如果使用参考信号接收功率阈值M+Δa对资源池的至少一个时频资源区域中包含的侧行链路资源进行感知,确定出的可用的时频资源区域的数量与该资源池包含的时频资源区域的总数量之间的占比如果小于第一阈值,则在参考信号接收功率阈值M+Δa的基础上再增加功率增量Δa,得到参考信号接收功率阈值M+2*Δa,以此类推,直至确定出的可用的时频资源区域的数量大于或者等于第一阈值,从而将相应的 M+Δa*k确定为第一参考信号接收功率阈值,其中,k为大于或者等于0的整数。可选的,Δa可以为3dB。可选的,M+Δa*k小于或者等于参考信号接收功率阈值范围的最大值。
可以理解的是,如果第二终端设备向第一终端设备发送一个参考信号接收功率阈值,第一终端设备也可以将该参考信号接收功率阈值确定为第一参考信号接收功率阈值,而不采用上述累加方式确定第一参考信号接收功率阈值,或者,第一终端设备也可以采用上述累加的方式确定第一参考信号接收功率阈值。
在一些可选的实施方式中,如果第一终端设备使用第二终端设备发送的参考信号接收功率阈值,在第二感知窗内对侧行链路资源进行感知,即使确定出的可用的时频资源区域的数量小于第一阈值,该第一终端设备也可以将资源感知结果发送给第二终端设备;或者,第一终端设备可以等待时间间隔T gap,m后重新触发资源感知。通过该方式,可以降低第一终端设备实现的复杂度,提供可靠的感知结果。
具体可选的,第一终端设备可以使用第一优先级和第一参考信号接收功率阈值,在第二感知窗内对侧行链路资源进行感知时,具体的感知过程可以参照第一终端设备在第一感知窗内对侧行链路资源进行感知的过程,在此不再赘述。可以理解的是,如果采用该种感知方式,第一终端设备向第二终端设备发送的第二感知窗内的资源感知结果可以包括从SCI中解析得到的数据发送周期,便于第二终端设备在第二终端设备选择未被占用的侧行链路资源。
或者,第一终端设备也可以使用第一优先级、第一参考信号接收功率阈值以及第一周期,在第二感知窗内对侧行链路资源进行感知,该第一周期可以为第二终端用于资源预留的周期或者是第二终端的业务周期。第一终端设备获取第一周期的获取方式可以是:第二终端可以向第一终端发送一个或者多个资源预留周期,第一终端设备可以根据该一个或者多个资源预留周期确定第一周期,该第一周期可以是多个资源预留周期中与第二周期相同的周期,该第二周期是第一终端设备在第一感知窗内进行资源感知时所使用的周期,即可以是第一终端设备发送数据的周期,该周期可以被包含在第一终端设备发送的PSCCH中。或者,第一终端可以在该多个资源预留周期中自行选择一个资源预留周期作为第一周期,可选的,第一终端设备可以向第二终端发送该第一周期,以使得第二终端设备获知第一终端设备在第二感知窗内进行资源感知时所使用的周期。
具体可选的,第一终端设备使用第一优先级、第一参考信号接收功率阈值以及第一周期,在第二感知窗内对侧行链路资源进行感知的过程可以是:第一终端设备可以测量侧行链路资源的参考信号接收功率,以及第一终端设备可以解析侧行链路资源上承载的SCI,该SCI可以包括该侧行链路资源上承载的数据的优先级以及数据的发送周期等。进一步,终端设备还可以将测量得到的参考信号接收功率与第一参考信号接收功率阈值进行比较,获得参考信号接收功率比较结果;以及将SCI中包含的优先级与第一优先级进行运算,并将优先级运算结果与优先级阈值进行比较,获得优先级比较结果;以及根据SCI中解析得到的数据的发送周期与第一周期进行比较,确定是否有交集;进一步,第一终端设备可以根据参考信号接收功率比较结果、优先级比较结果以及周期的比较结果,获得在第二感知窗内的资源感知结果。可选的,该资源感知结果可以包括被占用的侧行链路资源和/或未被占用的侧行链路资源。例如,测量得到的参考信号接收功率小于第一参考信号接收功率阈值,且优先级运算结果与优先级阈值满足特定条件,且按照从SCI中解析得到的数据的发送周期确定的资源与按照第一周期确定的资源没有重叠,相应的侧行链路资源被确定为在第二感知窗内未被占用的侧行链 路资源,否则为被占用的侧行链路资源。需要说明的是,按照从SCI中解析得到的数据的发送周期确定的资源与按照第一周期确定的资源没有重叠是指在当前第二感知窗内以及未来没有重叠。
可以理解的是,第一终端设备可以将该第一参考信号接收功率阈值和/或第一优先级,以及第一周期发送给第二终端设备,便于第二终端设备获知第一终端设备在第二感知窗内进行资源感知时所使用的参考信号接收功率阈值、优先级以及周期。可选的,该第一参考信号接收功率阈值和/或第一优先级,以及第一周期可以是与第二感知窗内的资源感知结果一起发送给第二终端设备。
示例性的,第一终端设备在第二感知窗内所感知的侧行链路资源可以位于一个或多个资源池内,资源池中包含的侧行链路资源可以被划分为至少一个时频资源区域。例如,可以按照X个时隙,Y个子信道的粒度配置一个时频资源区域,即一个时频资源区域可以由X个时隙,Y个子信道构成;X的取值大于或者等于1,且小于或者等于资源池的时隙总数;Y的取值大于或者等于1,且小于或者等于资源池子信道的总数。可选的,X和Y的具体取值可以是由基站通过高层信令配置,或者由第一终端设备根据需要感知的资源大小决定,该需要感知的资源大小可以是由第二终端设备发送给第一终端设备。可选的,一个时频资源区域的大小可以是需要感知的资源大小或者可以是需要感知的资源大小的整数倍。如图5和图6所示,以X=2和Y=2作为举例,即一个时频资源区域可以由2个子信道和2个时隙构成。
在一种可能的实现方式中,第一终端设备在对时频资源区域内的侧行链路资源进行感知时,可以是以时频资源单元为粒度进行资源感知,时频资源单元的大小是小于时频资源区域的大小。例如,如图5和图6所示,一个时频资源单元可以是由一个子信道和一个时隙构成,一个时频资源区域可以是由2个时隙和2个子信道构成,一个时频资源区域可以包括四个时频资源单元。第一终端设备可以使用第一参考信号接收功率阈值和第一优先级在第二感知窗内对时频资源区域包含的时频资源单元中的侧行链路资源进行感知。如果一个时频资源区域中被占用的时频资源单元的数量与一个时频资源区域包含的时频资源单元的总数量之间的占比大于或者等于第二阈值,则确定该时频资源区域被占用;如果一个时频资源区域中被占用的时频资源单元的数量与一个时频资源区域包含的时频资源单元的总数量之间的占比小于第二阈值,则确定该时频资源区域未被占用。
在另一种可能的实现方式中,第一终端设备在对时频资源区域内的侧行链路资源进行感知时,可以计算该时频资源区域内侧行链路资源的参考信号接收功率平均值,以及该时频资源区域内侧行链路资源上承载数据的优先级的最高优先级,即最小的优先级值,并根据参考信号接收功率平均值、最高优先级,确定该时频资源区域是否被占用。
进一步可选的,第一终端设备可以将在第二感知窗内的资源感知结果发送给第二终端设备,可选的,该在第二感知窗内的资源感知结果可以被包含在第一终端设备在第一时刻发送的PSSCH/PSCCH中。示例性的,第二感知窗内的资源感知结果可以作为数据信息或者MAC CE,承载在PSSCH中。
其中,第二感知窗内的资源感知结果信息可以包括资源占用信息和/或资源未被占用信息等。下面分别对资源占用信息、资源未被占用信息进行介绍:
其中,上述资源占用信息可以包括至少一个时频资源区域中不可用的时频资源区域的标识。
其中,上述资源未被占用信息可以包括至少一个时频资源区域中可用的时频资源区域的标识。
可选的,可以预先设定第一终端设备发送资源占用信息或者资源未占用信息,或者第一终端设备也可以根据不可用的时频资源区域的数量与可用的时频资源区域的数量之间的比较,确定发送资源占用信息或者资源未占用信息。
示例性的,如果资源池的该至少一个时频资源区域中不可用的时频资源区域的数量小于可用的时频资源的数量,则第一终端设备可以发送资源占用信息。如图6所示,时频资源区域6,8,10,12的侧行链路资源被占用了,第一终端上报将时频资源区域6,8,10,12的标识发送给第二终端设备。
示例性的,如果资源池的该至少一个时频资源区域中可用的时频资源区域的数量小于不可用的时频资源的数量,则第一终端设备可以发送资源未被占用信息。如图5所示,时频资源区域3,5,7,9的侧行链路资源未被占用,第一终端上报将时频资源区域3,5,7,9的标识发送给第二终端设备。
需要说明的是,如果是由第一终端设备根据不可用的时频资源区域的数量与可用的时频资源的数量之间的比较,确定发送资源占用信息或者资源未占用信息,则资源感知结果中可以包括指示信息,该指示信息用于指示第一终端设备发送的是资源占用信息或者资源未占用信息。例如,该指示信息可以通过SCI中的1个比特位的比特值表示,或者该指示信息可以通过资源感知结果中的第一个比特位的比特值表示。
其中,上述资源占用信息和资源未被占用信息可以使用比特地图表示,比特地图可以包括至少一个比特位,一个比特位对应该至少一个时频资源区域中的一个时频资源区域,该比特位的值用于指示所述比特位对应的时频资源区域是否可用。如果该时频资源区域被占用,则将相应比特位的比特在设置为1,反之为0。
S103,第二终端设备在第一时刻从第一终端设备接收在第二感知窗内的资源感知结果。
进一步可选的,还可以包括S104和S105:
S104,所述第二终端设备在第二选择窗中确定用于侧行传输的第三候选资源集合,所述第二终端设备根据所述第二感知窗内的资源感知结果确定第四候选资源集合,所述第四候选资源集合为所述第三候选资源集合的全集或子集。
S105,所述第二终端设备根据所述第四候选资源集合确定发送数据的侧行链路资源。
在一个实施例中,第二终端设备在第二选择窗中确定用于侧行传输的第三候选资源集合,其中,第二终端设备确定第三候选资源集合的方式可以参考第一终端设备确定第一候选资源集合的确定方式,在此不再赘述。
第二终端设备可以根据第二感知窗内的资源感知结果确定第四候选资源集合,该第四候选资源集合可以是第三候选资源集合的全集或子集。该第四候选资源集合中的侧行链路资源可以是所确定未被占用的资源。例如,第二终端设备可以根据第二感知窗内的资源感知结果,从第三候选资源集合中排除可能被占用的侧行链路资源,并将第三候选资源集合中剩余的侧行链路资源构成的集合称为第四候选资源集合。第二终端设备可以进一步从第四候选资源集合中选择合适的侧行链路资源发送PSSCH/PSCCH。
在一些可选的实施场景中,第二终端设备也可以在第三感知窗内对侧行链路资源进行感知,该第三感知窗可以与第二感知窗相同或不同;和/或,其他终端设备(不包括第二终端设备和第一终端设备)也可以在第四感知窗内对侧行链路资源进行感知,该第四感知窗可以是根据该其他终端设备发送数据的时刻确定,具体可以参照第二感知窗的确定方式。进一步,第二终端设备可以根据第二感知窗内的资源感知结果;和/或;第三感知窗内的资源感知结果;和/或,第四感知窗内的资源感知结果,确定第四候选资源集合,第二终端设备通过各个终端 设备对侧行链路资源的感知结果,选择发送数据的侧行链路资源,可以提高资源感知的准确性,降低碰撞概率。
以上,结合图2至图6详细说明了本申请实施例提供的方法。以下,结合图7至图9详细说明本申请实施例提供的装置。
可以理解的是,为了实现上述实施例中功能,第一终端设备和第二终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件、软件、或硬件和软件相结合的形式来实现。某个功能究竟以硬件、软件、或是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图7是本申请实施例提供的通信装置的示意性框图。如图7所示,该通信装置900可以包括处理单元910和收发单元920。处理单元910和收发单元920可以是软件,也可以是硬件,或者是软件和硬件结合。
其中,收发单元920可包括发送单元和接收单元,发送单元用于实现发送功能,接收单元用于实现接收功能,收发单元920可以实现发送功能和/或接收功能。收发单元也可以描述为通信单元。
可选的,收发单元920可以用于接收其他装置发送的信息,还可以用于向其他装置发送信息。处理单元910可以用于进行装置的内部处理。
在一种可能的设计中,该通信装置900可对应于上述方法实施例中的第一终端设备,如该通信装置900可以是第一终端设备,也可以是第一终端设备中的芯片。该通信装置900可以包括用于执行上述方法实施例中由第一终端设备所执行的操作的单元,并且,该通信装置900中的各单元分别为了实现上述方法实施例中由第一终端设备所执行的操作。
示例性的,处理单元910,用于在第一选择窗中确定用于侧行传输的第一候选资源集合;以及,根据第一感知窗内的资源感知结果确定第二候选资源集合,所述第二候选资源集合为所述第一候选资源集合的全集或子集;
处理单元910,还用于在第二感知窗内对侧行链路资源进行感知;
收发单元920,用于在第一时刻向第二终端设备发送在所述第二感知窗内的资源感知结果,所述第一时刻是根据所述第二候选资源集合确定。
可选的,所述第二感知窗的起始时域位置是根据所述第一时刻和第一偏移量确定的,所述第二感知窗的结束时域位置是根据所述第一时刻和所述第二偏移量确定的,所述第一偏移量大于所述第二偏移量。
可选的,所述第一偏移量和/或所述第二偏移量是根据所述第一感知窗确定的。
可选的,所述第一偏移量为T 0+C,所述第二偏移量为T proc,0+C;
其中,所述T 0为所述第一感知窗的起始时域位置相对于第二时刻的偏移量,所述T proc,0为所述第一感知窗的结束时域位置相对于所述第二时刻的偏移量,所述第二时刻为所述第一终端设备触发进行资源选择的时刻;所述C为大于或者等于零的常数。
可选的,所述第二偏移量为T proc,0,所述T proc,0为所述第一感知窗的结束时域位置相对于第二时刻的偏移量,所述第二时刻为所述第一终端设备触发进行资源选择的时刻;
所述第一偏移量由所述第一感知窗的长度与所述第二感知窗的长度之间的比例关系确定; 或者,所述第一偏移量由所述第一终端设备发送的数据优先级和/或所述第二终端设备发送的数据优先级确定。
可选的,所述第一偏移量和/或所述第二偏移量是由网络设备配置的;或者,所述第一偏移量和/或所述第二偏移量是由所述第二终端设备发送给所述第一终端设备的。
可选的,所述侧行链路资源位于一个或多个资源池内,所述资源池中包含的所述侧行链路资源被划分为至少一个时频资源区域,一个所述时频资源区域由一个或多个时隙和一个或多个子信道构成;
所述资源感知结果包括资源占用信息和/或资源未被占用信息;
所述资源占用信息包括所述至少一个时频资源区域中不可用的时频资源区域的标识;
所述资源未被占用信息包括所述至少一个时频资源区域中可用的时频资源区域的标识。
可选的,所述资源占用信息和所述资源未被占用信息使用比特地图表示,所述比特地图包括至少一个比特位,一个比特位对应所述至少一个时频资源区域中的一个时频资源区域,所述比特位的值用于指示所述比特位对应的时频资源区域是否可用。
可选的,收发单元920,还用于从所述第二终端设备接收一个或多个优先级;
处理单元910,还用于根据所述一个或多个优先级,确定第一优先级;
收发单元920,还用于从所述第二终端设备接收一个参考信号接收功率阈值或者参考信号接收功率阈值范围;
处理单元910,还用于根据所述一个参考信号接收功率阈值或者参考信号接收功率阈值范围,确定第一参考信号接收功率阈值;
处理单元910,还用于使用第一优先级和第一参考信号接收功率阈值在所述第二感知窗内,对侧行链路资源进行感知。
可选的,所述第一优先级为所述一个或多个优先级中优先级的值与第二优先级的值相同的优先级;或者,
所述第一优先级为所述多个优先级中优先级的值最小的优先级;或者,
所述第一优先级为所述第二优先级与所述一个或多个优先级中优先级的值最小的优先级;
所述第二优先级用于所述第一终端设备在所述第一感知窗内进行资源感知。
可选的,所述第一参考信号接收功率阈值为M+Δa*k;所述第一参考信号接收功率阈值满足目标条件;
所述目标条件包括:
使用第二参考信号接收功率阈值在所述第二感知窗内感知得到的可用时频资源区域的数量与所述至少一个时频资源区域的总数量之间的占比小于第一阈值,且使用所述第一参考信号接收功率阈值在所述第二感知窗内感知得到的可用时频资源区域的数量与所述至少一个时频资源区域的总数量之间的占比大于或者等于所述第一阈值,所述第二参考信号接收功率阈值为M+Δa*(k-1);
其中,所述M为所述一个参考信号接收功率阈值或者为所述参考信号接收功率阈值范围的最小值,所述Δa为功率增量,所述k为大于或者等于0的整数,所述第一参考信号接收功率阈值M+Δa*k位于所述参考信号接收功率阈值范围内。
可选的,收发单元920,还用于将所述第一优先级和/或所述第一参考信号接收功率阈值发送给所述第二终端设备。
在一种可能的设计中,该通信装置900可对应于第二终端设备,也可以是第二终端设备中的芯片。可选的,该通信装置900可以是第二终端设备或第二终端设备中的芯片。该通信 装置900可以包括用于执行上述方法实施例中由第二终端设备所执行的操作的单元,并且,该通信装置900中的各单元分别为了实现上述方法实施例中由第二终端设备所执行的操作。
收发单元920,用于在第一时刻从第一终端设备接收在第二感知窗内的资源感知结果,所述第一时刻是根据第二候选资源集合确定,所述第二候选资源集合为所述第一终端设备根据第一感知窗内的资源感知结果确定,且所述第二候选资源集合为第一候选资源集合的全集或子集,所述第一候选资源集合是所述第一终端设备在第一选择窗中确定的用于侧行传输的资源集合;
处理单元910,用于在第二选择窗中确定用于侧行传输的第三候选资源集合,以及,根据所述第二感知窗内的资源感知结果确定第四候选资源集合,所述第四候选资源集合为所述第三候选资源集合的全集或子集;
处理单元910,还用于根据所述第四候选资源集合确定发送数据的侧行链路资源。
可选的,所述第二感知窗的起始时域位置是根据所述第一时刻和第一偏移量确定的,所述第二感知窗的结束时域位置是根据所述第一时刻和所述第二偏移量确定的,所述第一偏移量大于所述第二偏移量。
应理解,上述通信装置900为配置于第一终端设备或第二终端设备中的芯片时,该通信装置900中的收发单元920可以为输入/输出接口。
应理解,该通信装置900为第一终端设备或第二终端设备时,该通信装置900中的收发单元920可对应于图8中示出的通信接口1010,处理单元910可对应于图8中示出的处理器1020。
请参照图8,是本申请一个实施例的通信装置的示意性结构图。应理解,图8示出的通信装置1000仅是示例,本申请实施例的通信装置还可包括其他模块或单元,或者包括与图8中的各个模块的功能相似的模块,或者并非要包括图8中所有模块。
通信装置1000包括通信接口1010和至少一个处理器1020。
该通信装置1000可以对应第一终端设备或第二终端设备。至少一个处理器1020执行程序指令,使得通信装置1000实现上述方法实施例中由对应终端设备所执行的方法的相应流程。
在一种可能的设计中,该通信装置1000可对应于上述方法实施例中的第一终端设备,如该通信装置100可以是第一终端设备,也可以是第一终端设备中的芯片。该通信装置1000可以包括用于执行上述方法实施例中由第一终端设备所执行的操作的组件。
示例性的,处理器1020用于在第一选择窗中确定用于侧行传输的第一候选资源集合;以及,根据第一感知窗内的资源感知结果确定第二候选资源集合,所述第二候选资源集合为所述第一候选资源集合的全集或子集;
处理器1020还用于在第二感知窗内对侧行链路资源进行感知;
通信接口1010用于在第一时刻向第二终端设备发送在所述第二感知窗内的资源感知结果,所述第一时刻是根据所述第二候选资源集合确定。
在一种可能的设计中,该通信装置1000可对应于第二终端设备,也可以是第二终端设备中的芯片。该通信装置1000可以包括用于执行上述方法实施例中由第二终端设备所执行的操作的组件,并且,该通信装置1000中的各组件分别为了实现上述方法实施例中由第二终端设备所执行的操作。
通信接口1010用于在第一时刻从第一终端设备接收在第二感知窗内的资源感知结果,所述第一时刻是根据第二候选资源集合确定,所述第二候选资源集合为所述第一终端设备根据第一感知窗内的资源感知结果确定,且所述第二候选资源集合为第一候选资源集合的全集或 子集,所述第一候选资源集合是所述第一终端设备在第一选择窗中确定的用于侧行传输的资源集合;
处理器1020用于在第二选择窗中确定用于侧行传输的第三候选资源集合,以及,根据所述第二感知窗内的资源感知结果确定第四候选资源集合,所述第四候选资源集合为所述第三候选资源集合的全集或子集;
处理器1020还用于根据所述第四候选资源集合确定发送数据的侧行链路资源。
可选地,通信装置1000还可以包括存储器。该存储器可以存储程序指令,至少一个处理器1020可以读取存储器所存储的程序指令并执行该程序指令。
对于通信装置可以是芯片或芯片系统的情况,可参见图9所示的芯片的结构示意图。图9所示的芯片2000包括处理器2001和接口2002。其中,处理器2001的数量可以是一个或多个,接口2002的数量可以是多个。需要说明的,处理器2001、接口2002各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
在一种可能的设计中,对于芯片用于实现本申请实施例中的第一终端设备的功能的情况:处理器2001用于在第一选择窗中确定用于侧行传输的第一候选资源集合;以及,根据第一感知窗内的资源感知结果确定第二候选资源集合,所述第二候选资源集合为所述第一候选资源集合的全集或子集;处理器2001还用于在第二感知窗内对侧行链路资源进行感知;接口2002用于在第一时刻向第二终端设备发送在所述第二感知窗内的资源感知结果,所述第一时刻是根据所述第二候选资源集合确定。
对于芯片用于实现本申请实施例中第二终端设备的功能的情况:接口2002用于在第一时刻从第一终端设备接收在第二感知窗内的资源感知结果,所述第一时刻是根据第二候选资源集合确定,所述第二候选资源集合为所述第一终端设备根据第一感知窗内的资源感知结果确定,且所述第二候选资源集合为第一候选资源集合的全集或子集,所述第一候选资源集合是所述第一终端设备在第一选择窗中确定的用于侧行传输的资源集合;处理器2001用于在第二选择窗中确定用于侧行传输的第三候选资源集合,以及,根据所述第二感知窗内的资源感知结果确定第四候选资源集合,所述第四候选资源集合为所述第三候选资源集合的全集或子集;以及根据所述第四候选资源集合确定发送数据的侧行链路资源。
可选的,芯片还包括存储器2003,存储器2003用于存储必要的程序指令和数据。
本申请实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述任一方法实施例中的第一终端设备侧或第二终端设备侧的方法。
本申请的另一实施例中,还提供一种通信系统,该通信系统包括第一终端设备和第二终端设备。示例性的,第一终端设备和第二终端设备可以为图2实施例所提供的第一终端设备和第二终端设备,且用于执行图2实施例中相应网元执行的步骤。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任 一方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中的第一终端设备和第二终端设备与方法实施例中的第一终端设备和第二终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器) 执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程或执行线程中,部件可位于一个计算机上或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地或远程进程来通信。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的网络设备,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下网元会做出相应的处理,并非是限定时间,且也不要求网元实现时一定要有判断的动作,也不意味着存在其它限定。
还应理解,在本申请各实施例中,“A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
可以理解的,本申请实施例中,第一终端设备和第二终端设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置 和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种资源感知方法,其特征在于,包括:
    第一终端设备在第一选择窗中确定用于侧行传输的第一候选资源集合,所述第一终端设备根据第一感知窗内的资源感知结果确定第二候选资源集合,所述第二候选资源集合为所述第一候选资源集合的全集或子集;
    所述第一终端设备在第二感知窗内对侧行链路资源进行感知,并在第一时刻向第二终端设备发送在所述第二感知窗内的资源感知结果,所述第一时刻是根据所述第二候选资源集合确定。
  2. 如权利要求1所述的方法,其特征在于,所述第二感知窗的起始时域位置是根据所述第一时刻和第一偏移量确定的,所述第二感知窗的结束时域位置是根据所述第一时刻和所述第二偏移量确定的,所述第一偏移量大于所述第二偏移量。
  3. 如权利要求2所述的方法,其特征在于,所述第一偏移量和/或所述第二偏移量是根据所述第一感知窗确定的。
  4. 如权利要求3所述的方法,其特征在于,所述第一偏移量为T 0+C,所述第二偏移量为T proc,0+C;
    其中,所述T o为所述第一感知窗的起始时域位置相对于第二时刻的偏移量,所述T proc,0为所述第一感知窗的结束时域位置相对于所述第二时刻的偏移量,所述第二时刻为所述第一终端设备触发进行资源选择的时刻;所述C为大于或者等于零的常数。
  5. 如权利要求2或3所述的方法,其特征在于,所述第二偏移量为T proc,0,所述T proc,0为所述第一感知窗的结束时域位置相对于第二时刻的偏移量,所述第二时刻为所述第一终端设备触发进行资源选择的时刻;
    所述第一偏移量由所述第一感知窗的长度与所述第二感知窗的长度之间的比例关系确定;或者,所述第一偏移量由所述第一终端设备发送的数据优先级和/或所述第二终端设备发送的数据优先级确定。
  6. 如权利要求2和3所述的方法,其特征在于,所述第一偏移量和/或所述第二偏移量是由网络设备配置的;或者,所述第一偏移量和/或所述第二偏移量是由所述第二终端设备发送给所述第一终端设备的。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述侧行链路资源位于一个或多个资源池内,所述资源池中包含的所述侧行链路资源被划分为至少一个时频资源区域,一个所述 时频资源区域由一个或多个时隙和一个或多个子信道构成;
    所述资源感知结果包括资源占用信息和/或资源未被占用信息;
    所述资源占用信息包括所述至少一个时频资源区域中不可用的时频资源区域的标识;
    所述资源未被占用信息包括所述至少一个时频资源区域中可用的时频资源区域的标识。
  8. 如权利要求7所述的方法,其特征在于,所述资源占用信息和所述资源未被占用信息使用比特地图表示,所述比特地图包括至少一个比特位,一个比特位对应所述至少一个时频资源区域中的一个时频资源区域,所述比特位的值用于指示所述比特位对应的时频资源区域是否可用。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备从所述第二终端设备接收一个或多个优先级;
    所述第一终端设备根据所述一个或多个优先级,确定第一优先级;
    所述第一终端设备从所述第二终端设备接收一个参考信号接收功率阈值或者参考信号接收功率阈值范围;
    所述第一终端设备根据所述一个参考信号接收功率阈值或者参考信号接收功率阈值范围,确定第一参考信号接收功率阈值;
    第一终端设备在第二感知窗内对侧行链路资源进行感知,包括:
    所述第一终端设备使用第一优先级和第一参考信号接收功率阈值在所述第二感知窗内,对侧行链路资源进行感知。
  10. 如权利要求9所述的方法,其特征在于,所述第一优先级为所述一个或多个优先级中优先级的值与第二优先级的值相同的优先级;或者,
    所述第一优先级为所述多个优先级中优先级的值最小的优先级;或者,
    所述第一优先级为所述第二优先级与所述一个或多个优先级中优先级的值最小的优先级;
    所述第二优先级用于所述第一终端设备在所述第一感知窗内进行资源感知。
  11. 如权利要求9所述的方法,其特征在于,所述第一参考信号接收功率阈值为M+Δa*k;所述第一参考信号接收功率阈值满足目标条件;
    所述目标条件包括:使用第二参考信号接收功率阈值在所述第二感知窗内感知得到的可用时频资源区域的数量与所述至少一个时频资源区域的总数量之间的占比小于第一阈值,且使用所述第一参考信号接收功率阈值在所述第二感知窗内感知得到的可用时频资源区域的数量与所述至少一个时频资源区域的总数量之间的占比大于或者等于所述第一阈值,所述第二参考信号接收功率阈值为M+Δa*(k-1);
    其中,所述M为所述一个参考信号接收功率阈值或者为所述参考信号接收功率阈值范围的最小值,所述Δa为功率增量,所述k为大于或者等于0的整数,所述第一参考信号接收功率阈值M+Δa*k位于所述参考信号接收功率阈值范围内。
  12. 如权利要求9-11任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备将所述第一优先级和/或所述第一参考信号接收功率阈值发送给所述第二终端设备。
  13. 一种资源感知方法,其特征在于,包括:
    第二终端设备在第一时刻从第一终端设备接收在第二感知窗内的资源感知结果,所述第一时刻是根据第二候选资源集合确定,所述第二候选资源集合为所述第一终端设备根据第一感知窗内的资源感知结果确定,且所述第二候选资源集合为第一候选资源集合的全集或子集,所述第一候选资源集合是所述第一终端设备在第一选择窗中确定的用于侧行传输的资源集合;
    所述第二终端设备在第二选择窗中确定用于侧行传输的第三候选资源集合,所述第二终端设备根据所述第二感知窗内的资源感知结果确定第四候选资源集合,所述第四候选资源集合为所述第三候选资源集合的全集或子集;
    所述第二终端设备根据所述第四候选资源集合确定发送数据的侧行链路资源。
  14. 如权利要求13所述的方法,其特征在于,所述第二感知窗的起始时域位置是根据所述第一时刻和第一偏移量确定的,所述第二感知窗的结束时域位置是根据所述第一时刻和所述第二偏移量确定的,所述第一偏移量大于所述第二偏移量。
  15. 一种通信装置,包括用于执行如权利要求1至12或如权利要求13至14中任一项所述方法的模块。
  16. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于实现如权利要求1至12或如权利要求13至14中任一项所述的方法。
  17. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至12或如权利要求13至14中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至12或如权利要求13至14中任一项所述的方法。
PCT/CN2021/110145 2020-08-06 2021-08-02 资源感知方法及通信装置 WO2022028379A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21854033.4A EP4192050A4 (en) 2020-08-06 2021-08-02 RESOURCE AWARENESS METHOD AND COMMUNICATION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010785378.2 2020-08-06
CN202010785378.2A CN114071405A (zh) 2020-08-06 2020-08-06 资源感知方法及通信装置

Publications (1)

Publication Number Publication Date
WO2022028379A1 true WO2022028379A1 (zh) 2022-02-10

Family

ID=80119992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110145 WO2022028379A1 (zh) 2020-08-06 2021-08-02 资源感知方法及通信装置

Country Status (3)

Country Link
EP (1) EP4192050A4 (zh)
CN (1) CN114071405A (zh)
WO (1) WO2022028379A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115578115A (zh) * 2022-09-21 2023-01-06 支付宝(杭州)信息技术有限公司 资源抽选处理方法及装置
WO2023202298A1 (zh) * 2022-04-19 2023-10-26 华为技术有限公司 数据传输方法和数据传输装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114501396B (zh) * 2022-03-28 2022-10-14 深圳市科思科技股份有限公司 数据传输方法、装置及设备
WO2023184290A1 (en) * 2022-03-30 2023-10-05 Lenovo (Beijing) Limited Methods and apparatuses of resource selection for sidelink communication
CN114710800B (zh) * 2022-04-25 2024-05-03 中国联合网络通信集团有限公司 一种感知处理网元确定方法和装置
CN117200949A (zh) * 2022-05-30 2023-12-08 展讯半导体(南京)有限公司 信号传输方法及装置
WO2023236178A1 (en) * 2022-06-10 2023-12-14 Nec Corporation Method, device and computer readable medium for sidelink communications
CN117320153A (zh) * 2022-06-21 2023-12-29 中兴通讯股份有限公司 资源集合确定方法、通信设备及存储介质
CN117750522A (zh) * 2022-09-20 2024-03-22 华为技术有限公司 一种资源确定方法及通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108112036A (zh) * 2016-11-25 2018-06-01 普天信息技术有限公司 车联网资源的感知方法、终端及基站
WO2020024175A1 (en) * 2018-08-01 2020-02-06 Panasonic Intellectual Property Corporation Of America User equipment and communication methods
WO2020060276A1 (ko) * 2018-09-20 2020-03-26 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신을 수행하는 단말의 동작 방법 및 상기 방법을 이용하는 장치
CN111246426A (zh) * 2020-01-16 2020-06-05 北京展讯高科通信技术有限公司 辅链路通信的资源选择方法及通信装置
CN111294752A (zh) * 2019-01-11 2020-06-16 展讯半导体(南京)有限公司 V2x传输候选资源确定方法及装置、存储介质、用户设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190067242A (ko) * 2016-11-04 2019-06-14 텔레폰악티에볼라겟엘엠에릭슨(펍) 무선 통신 시스템에서 전송 스케줄링을 위한 방법 및 장치
CN109219015B (zh) * 2017-07-06 2021-01-22 电信科学技术研究院 一种资源选择方法及装置
WO2020067675A1 (ko) * 2018-09-28 2020-04-02 엘지전자 주식회사 무선 통신 시스템에서 전송 단말의 사이드링크 동작 방법 및 상기 방법을 이용하는 단말
CN111182639B (zh) * 2020-01-03 2023-04-28 展讯半导体(南京)有限公司 一种传输资源确定方法及相关设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108112036A (zh) * 2016-11-25 2018-06-01 普天信息技术有限公司 车联网资源的感知方法、终端及基站
WO2020024175A1 (en) * 2018-08-01 2020-02-06 Panasonic Intellectual Property Corporation Of America User equipment and communication methods
WO2020060276A1 (ko) * 2018-09-20 2020-03-26 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신을 수행하는 단말의 동작 방법 및 상기 방법을 이용하는 장치
CN111294752A (zh) * 2019-01-11 2020-06-16 展讯半导体(南京)有限公司 V2x传输候选资源确定方法及装置、存储介质、用户设备
CN111246426A (zh) * 2020-01-16 2020-06-05 北京展讯高科通信技术有限公司 辅链路通信的资源选择方法及通信装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Remaining details of sidelink resource allocation mode 2", 3GPP TSG RAN WG1 MEETING #100-E R1-2000183, 6 March 2020 (2020-03-06), XP051853179 *
SAMSUNG: "On Mode 2 for NR Sidelink", 3GPP TSG RAN WG1 #100BIS R1-2002126, 30 April 2020 (2020-04-30), XP051873438 *
See also references of EP4192050A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023202298A1 (zh) * 2022-04-19 2023-10-26 华为技术有限公司 数据传输方法和数据传输装置
CN115578115A (zh) * 2022-09-21 2023-01-06 支付宝(杭州)信息技术有限公司 资源抽选处理方法及装置
CN115578115B (zh) * 2022-09-21 2023-09-08 支付宝(杭州)信息技术有限公司 资源抽选处理方法及装置

Also Published As

Publication number Publication date
CN114071405A (zh) 2022-02-18
EP4192050A1 (en) 2023-06-07
EP4192050A4 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
WO2022028379A1 (zh) 资源感知方法及通信装置
US11470582B2 (en) User device, and method for inter-user-device sending and receiving of positioning signal
EP3424261B1 (en) Apparatus and method for prioritization of random access in a multi-user wireless communication system
US11924674B2 (en) Data transmission method and apparatus
TWI727018B (zh) 用於d2d通信的方法和d2d設備
KR20230066451A (ko) 자원 선택 방법, 장치 및 단말 기기
US20200022181A1 (en) A user equipment and data transmission method thereof
EP3751936B1 (en) Carrier set determination method and device, storage medium and electronic device
US20190342893A1 (en) Data Packet Transmission Method and Terminal
WO2022042489A1 (zh) 资源指示、资源选择方法及装置
WO2019062784A1 (zh) 资源配置方法及装置
US20210185711A1 (en) Information transmission method, communications device, and network device
US11895642B2 (en) Wireless communication method for sidelink resource scheduling, user equipment, and network device
WO2021036834A1 (zh) 资源指示方法及装置
US20230180192A1 (en) Communication method and apparatus, and readable storage medium
WO2023088038A1 (zh) 侧行链路通信方法及相关装置
WO2020024299A1 (zh) 资源使用状况的上报方法及通信装置
WO2021228163A1 (zh) 确定资源的方法、装置及系统
EP4161193A1 (en) Inter-system interference avoidance method, device and system
WO2021212261A1 (zh) 一种通信方法以及通信装置
WO2022082805A1 (zh) 一种通信方法及装置
WO2024099260A1 (zh) 用于资源选择的方法、通信装置和通信系统
US20240155650A1 (en) Resource selection method and apparatus
WO2022198546A1 (en) Methods, apparatuses and systems for triggered transmission opportunity (txop) sharing
US20230017780A1 (en) Resource Configuration Method, Communication Method, and Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021854033

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE