WO2022028292A1 - 波束训练方法、装置、终端设备及网络设备 - Google Patents

波束训练方法、装置、终端设备及网络设备 Download PDF

Info

Publication number
WO2022028292A1
WO2022028292A1 PCT/CN2021/108993 CN2021108993W WO2022028292A1 WO 2022028292 A1 WO2022028292 A1 WO 2022028292A1 CN 2021108993 W CN2021108993 W CN 2021108993W WO 2022028292 A1 WO2022028292 A1 WO 2022028292A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
auxiliary device
measurement information
optimal
information
Prior art date
Application number
PCT/CN2021/108993
Other languages
English (en)
French (fr)
Inventor
杨坤
姜大洁
刘昊
塔玛拉卡拉盖施
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020237007604A priority Critical patent/KR20230047161A/ko
Priority to EP21854343.7A priority patent/EP4191896A4/en
Priority to JP2023507449A priority patent/JP2023536485A/ja
Publication of WO2022028292A1 publication Critical patent/WO2022028292A1/zh
Priority to US18/163,334 priority patent/US20230179277A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0682Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using phase diversity (e.g. phase sweeping)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • H04B7/0897Space-time diversity using beamforming per multi-path, e.g. to cope with different directions of arrival [DOA] at different multi-paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a beam training method, device, terminal equipment and network equipment.
  • Future wireless communication systems will involve wireless communication networks assisted by smart surface devices.
  • the terminal device receives the signal directly from the network device and the signal forwarded by the smart surface device, and the superposition of the multi-channel signals received by the terminal device causes frequency selective fading.
  • the beam scanning function defined by 5G New Radio (NR) can be applied to the beam scanning process of smart surfaces.
  • NR 5G New Radio
  • the purpose of the embodiments of the present application is to provide a beam training method, device, terminal equipment and network equipment, which can solve the problem that due to the influence of the multipath environment, in the actual data transmission process, the terminal will still be affected by the frequency selective fading caused by the multipath.
  • the problem due to the influence of the multipath environment, in the actual data transmission process, the terminal will still be affected by the frequency selective fading caused by the multipath.
  • a beam training method applied to a terminal device, including:
  • the forwarding mode of the auxiliary device is determined by the beam direction of the signal being forwarded by the auxiliary device and the beam phase of the signal being forwarded;
  • a beam training method applied to a network device, including:
  • the forwarding mode is determined by the beam direction of the signal being forwarded by the auxiliary device and the beam phase of the signal being forwarded;
  • the optimal forwarding mode of the auxiliary device is determined.
  • a beam training apparatus applied to terminal equipment, including:
  • a first acquisition module configured to measure at least two reference signals used for beam training forwarded by the auxiliary device in at least two forwarding modes, to obtain measurement information, where the measurement information is used to indicate the optimal value of the auxiliary device a forwarding mode, where the forwarding mode of the auxiliary device is determined by the beam direction of the signal to be forwarded by the auxiliary device and the beam phase of the signal to be forwarded;
  • a first reporting module configured to report the measurement information to the network device.
  • a beam training apparatus applied to network equipment, including:
  • a first sending module configured to send at least two reference signals for beam training
  • the second acquisition module is configured to acquire measurement information reported by the terminal device, where the measurement information is obtained after the terminal device measures the at least two reference signals used for beam training forwarded by the auxiliary device in at least two forwarding modes , the forwarding mode of the auxiliary device is determined by the beam direction of the signal to be forwarded by the auxiliary device and the beam phase of the signal to be forwarded;
  • a first determining module configured to determine the optimal forwarding mode of the auxiliary device according to the measurement information.
  • a terminal device in a fifth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor When implementing the steps of the method as described in the first aspect.
  • a network device in a sixth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being processed by the processor. The steps of the method as described in the second aspect are implemented when the processor is executed.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect, or the The steps of the method of the second aspect.
  • a chip in an eighth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a network device program or instruction, and the implementation is as described in the first aspect method, or implement the method described in the second aspect.
  • At least two reference signals for beam training forwarded by an auxiliary device in at least two forwarding modes are measured to obtain measurement information; the measurement information is reported to the network device, so that the network The device can determine the optimal beam direction and optimal beam phase of the signal transmitted by the auxiliary device, and then can reduce the influence of frequency selective fading caused by the multipath environment based on the optimal beam direction and beam phase.
  • FIG. 1 is a structural diagram of a network system to which an embodiment of the application can be applied;
  • FIG. 2 shows one of the schematic flowcharts of the beam training method according to the embodiment of the present application
  • FIG. 3 shows the second schematic flowchart of the beam training method according to the embodiment of the present application
  • FIG. 4 shows one of the schematic diagrams of the modules of the beam training apparatus according to the embodiment of the present application
  • FIG. 5 shows a structural block diagram of a communication device according to an embodiment of the present application
  • FIG. 6 shows a structural block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 shows the second schematic diagram of the modules of the beam training apparatus according to the embodiment of the present application.
  • FIG. 8 shows a structural block diagram of a network device according to an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LIS Large Intelligent Surfaces
  • LIS can dynamically or semi-statically adjust its own electromagnetic properties, affecting the reflection or refraction behavior of electromagnetic waves incident on the LIS.
  • LIS can manipulate the reflected/refracted signals of electromagnetic signals to realize functions such as beam scanning or beamforming.
  • the principle of beam steering based on the smart surface 13 is as follows. Taking the phase-controlled smart surface as an example, the ideal control phase of the device unit (m, n) is:
  • the ideal compensation phase is mapped to the discrete phase through the discretization process, for example:
  • the function of analog beam scanning is provided in the 5G NR protocol.
  • the basic process is that the base station transmits signals with beams in different directions in different time periods in turn, and the terminal receives signals with a fixed receive beam, and selects the most suitable transmit beam to report to the base station.
  • the beam scanning function defined by 5G NR can be applied to the beam scanning process of smart surfaces. However, after the beam direction is determined, due to the influence of the multipath environment, in the actual data transmission process, the terminal will still be affected by the frequency selective fading caused by the multipath.
  • the smart surface device provides the terminal with a portion of the multipath signal and can control the phase of the multipath channel. By changing the phase of some multipath channels, the terminal can reduce the influence of frequency selective fading.
  • the multipath phase and amplitude variation of the wireless channel is random, slowly varying, and affected by the moving/changing speed of the terminal and environmental objects (usually expressed as channel coherence time). That is to say, in the frequency domain, if a section of RB resources falls into frequency selective fading, then this section of RB will be in frequency selective fading for a period of time, and the communication quality is very poor, until the multipath channel changes to Other cases.
  • Traditional communication systems avoid frequency selective fading through frequency scheduling. After the introduction of the smart surface, the frequency selective fading of the target RB is changed by controlling the phase of the partial multipath in the multipath channel.
  • the multipath phase control of the smart surface is discrete, such as 0 or ⁇ phase control for 1-bit control, in a multipath channel with a slow phase change, after determining the optimal multipath phase of the smart surface once, it can be used within a certain period of time. Effective (avoiding target RBs in frequency selective fading). That is, the multipath phase adjustment of the optimal smart surface is not particularly frequent.
  • an embodiment of the present application provides a beam training method, which is applied to a terminal device. As shown in FIG. 2 , the method includes:
  • Step 201 Measure at least two reference signals for beam training forwarded by an auxiliary device in at least two forwarding modes to obtain measurement information, where the measurement information is used to indicate the optimal forwarding mode of the auxiliary device, so
  • the retransmission mode of the auxiliary device is determined by the beam direction of the retransmitted signal and the beam phase of the retransmitted signal by the auxiliary device.
  • the beam direction of the auxiliary device represents the spatial energy distribution characteristics of the retransmitted signal
  • the beam phase of the auxiliary device represents the relative phase of the retransmitted signal in the target direction or in the direction with the strongest energy, that is, in the target direction.
  • the difference between the signal phase of the same observation point and the phase of the signal transmitted by the network device, the difference between the different beam phases satisfies an integer multiple of 2 ⁇ /M, where M is the number of beam phases.
  • the above reference signal is sent by the network device, forwarded by the auxiliary device, and received by the terminal device.
  • the above-mentioned auxiliary device may specifically be a smart surface, or other devices that can implement frequency coherent forwarding.
  • the above-mentioned reference signal is a signal used for beam training.
  • the above-mentioned reference signal is a signal used to determine the beam direction and beam phase of the auxiliary equipment, or the reference signal includes a beam used to determine the auxiliary equipment.
  • the above measurement information may include at least one of the following:
  • the number of the optimal beam phase or the time slot number of the corresponding reference signal or other information that can uniquely determine the beam phase is not limited.
  • Step 202 Report the measurement information to the network device.
  • the above measurement information is reported to a network device, such as a base station, so that the network device can determine the optimal beam direction and optimal beam phase of the beam forwarded by the auxiliary device, and then can reduce the number of beams based on the optimal beam direction and optimal beam phase.
  • a network device such as a base station
  • the beam training method measures at least two reference signals used for beam training forwarded by an auxiliary device in at least two forwarding modes to obtain measurement information; and reports the measurement information to the network device,
  • the network device can determine the optimal beam direction and optimal beam phase of the signal transmitted by the auxiliary device, and then can reduce the influence of frequency selective fading caused by the multipath environment based on the optimal beam direction and beam phase.
  • the reference signal includes a first reference signal and a second reference signal
  • the first reference signal is a reference signal sent by the network device and used to determine the beam direction of the auxiliary device;
  • the second reference signal is a reference signal sent by the network device and used for determining the beam phase of the auxiliary device.
  • the method before the measuring the at least two reference signals used for beam training forwarded by the auxiliary device in the at least two forwarding modes, the method further includes:
  • the first indication information is the time-frequency resource configuration information of the first reference signal, and the first indication information corresponds to at least N transmission opportunities, and N is less than or equal to the number of beam directions of the auxiliary device forwarding signals;
  • the second indication information is time-frequency resource configuration information of the second reference signal, and the second indication information corresponds to at least M transmission occasions, where M is less than or equal to the number of beam phases of the signal forwarded by the auxiliary device, wherein , N and M are positive integers.
  • the beam directions of the auxiliary device retransmission signals corresponding to the N transmission timings of the first reference signal are a subset of the actual maximum number of beam directions of the auxiliary device retransmission signals; the M transmission times of the second reference signal
  • the beam phase of the signal transmitted by the auxiliary device corresponding to the timing is a subset of the actual maximum number of beam phases of the signal transmitted by the auxiliary device.
  • the bandwidth of the first reference signal is greater than or equal to a preset bandwidth threshold.
  • the first reference signal is a broadband signal.
  • the bandwidth of the first reference signal may be the full bandwidth or greater than a preset bandwidth threshold, so as to ensure that the multipath resolution is sufficiently large and the accuracy of beam training is as high as possible. Not affected by multipath frequency selective fading and beam phase.
  • the first frequency range corresponding to the second reference signal is greater than or equal to the second frequency range
  • the second frequency range is the frequency range corresponding to the data transmission between the terminal device and the network device.
  • the second reference signal may be a narrowband signal, and the range of frequency resources of the second reference signal is the same as the range of frequency resources used for data transmission (for example, frequency resources configured for semi-persistent scheduling transmission), or includes The frequency resource range for data transmission.
  • the measurement information is obtained by measuring at least two reference signals used for beam training forwarded by the auxiliary device in at least two forwarding modes, including:
  • the first measurement information is used to indicate the optimal beam direction of the signal transmitted by the auxiliary device within the bandwidth of the first reference signal
  • the optimal beam direction and optimal beam phase of the auxiliary device are determined through two-stage beam training.
  • the network equipment sends multiple signals (broadband signals are recommended), and the auxiliary equipment uses different forwarding beams (that is, different beam directions are required, and the beam phase is not limited) to forward to the terminal equipment, and the terminal equipment measures for the network equipment to determine. optimal beam direction.
  • the network device sends multiple signals (recommended narrowband signals, corresponding to or including frequency resources for data transmission), and the auxiliary device uses the optimal beam direction in the first stage and forwards it to the terminal device using different forwarding beam phases. The device performs measurements for the network device to determine the optimal beam phase corresponding to the optimal beam direction.
  • the beam training in the above two stages may be performed periodically or dynamically triggered aperiodically.
  • the period of the beam phase training and the period of the beam direction training may be different, and the period of the beam phase training is less than or equal to the period of the beam direction training.
  • the received strength of the second reference signal is less than the first strength threshold, report first application information, where the first application information is information used to apply for ending beam phase training, or, Information for applying for beam direction training.
  • the second application information is reported, where the second application information is information for applying for beam direction training.
  • the network device transmits the first reference signal multiple times with the same transmit beam
  • the smart surface forwards the first reference signal to the terminal device using different forwarding modes
  • the terminal device uses the same beam to receive the first reference signal transmitted multiple times by the smart surface.
  • a reference signal measure the first reference signal, obtain the strength of each first reference signal, and report the strength of each first reference and/or the number of the optimal beam direction to the network as the first measurement information equipment.
  • the optimal beam direction refers to the beam direction corresponding to the first reference signal with the strongest signal strength; then, the network device configures the optimal beam direction to the smart surface, and the smart surface uses the optimal beam direction to forward the network device for multiple transmissions and measure the second reference signal to obtain the strength of each second reference signal, and use the strength of each second reference signal and/or the number of the optimal forwarding phase as the above-mentioned second measurement information reported to the network device.
  • the optimal forwarding phase refers to the forwarding phase corresponding to the second reference signal with the strongest signal strength.
  • the reference signal used for beam training is a third reference signal
  • the third reference signal is a reference signal sent by the network device and used to determine the beam direction and beam phase of the auxiliary device, and the number of sending occasions of the third reference signal is M*N;
  • N is the number of beam directions of the forwarding signal of the auxiliary device configured by the network device
  • M is the number of beam phases of each forwarding beam configured by the network device
  • the sending timing of each third reference signal corresponds to one of the auxiliary devices.
  • the beam direction and one beam phase, and the forwarding beams and/or beam phases corresponding to different beam training signals are different.
  • the method before the measuring the at least two reference signals used for beam training forwarded by the auxiliary device in the at least two forwarding modes, the method further includes:
  • the third indication information is the time-frequency resource configuration information of the third reference signal, the third indication information corresponds to at least M*N transmission opportunities, and N is less than or equal to the number of beam directions of the signal transmitted by the auxiliary device , M is less than or equal to the number of beam phases of the signal transmitted by the auxiliary device.
  • the measuring at least two reference signals used for beam training forwarded by the auxiliary device in at least two forwarding modes includes:
  • Measure the third reference signal to obtain third measurement information, where the third measurement information is used to indicate the beam direction, beam phase, and sub-unit of the signal transmitted by the auxiliary device within the bandwidth of the third reference signal information about the optimal combination of bands;
  • measuring the third reference signal to obtain fourth measurement information, where the fourth measurement information is used to indicate an optimal beam for the auxiliary device to transmit signals within the bandwidth of the third reference signal Information of the optimal subbands corresponding to the M beam phases corresponding to the directions.
  • the network device can configure M*N third reference signals, corresponding to M*N forwarding modes of the auxiliary device (each forwarding mode includes beam direction and beam phase), and the M*N third reference signals The configuration information of the three reference signals is notified to the terminal device.
  • the M*N*K subbands included in the third reference signal are measured, and each measurement result corresponds to a combination of beam direction, beam phase and a subband, and the measurement with the strongest signal strength is selected.
  • the beam direction, beam phase and subband corresponding to the result are taken as the above optimal combination.
  • one-stage beam training is used to obtain information on the beam direction and beam phase of the auxiliary device forwarded signal and the optimal combination of sub-bands, as well as the information on the optimal combination of the third reference signal within the bandwidth of the third reference signal.
  • the auxiliary device transmits the information of the optimal subbands corresponding to the M beam phases corresponding to the optimal beam directions of the signal.
  • the measuring at least two reference signals used for beam training forwarded by the auxiliary device in at least two forwarding modes includes:
  • For the semi-persistently scheduled service measure the reference signal according to the beam training period or after receiving the beam training instruction to obtain measurement information;
  • the reference signal includes the first reference signal and the second reference signal, or the reference signal includes the second reference signal;
  • the measurement information includes the above-mentioned first measurement information and the above-mentioned second measurement information
  • the measurement information includes the above-mentioned second measurement information.
  • the first reference signal and/or the second reference signal forwarded by the auxiliary device in at least two forwarding modes is measured.
  • the measuring at least two reference signals used for beam training forwarded by the auxiliary device in at least two forwarding modes includes:
  • For dynamically scheduled services measure the reference signal according to the beam training period or after receiving the beam training instruction to obtain measurement information;
  • the reference signal includes the first reference signal and the second reference signal, or the reference signal includes the third reference signal;
  • the measurement information includes the first measurement information and the second measurement information
  • the measurement information includes the third measurement information and/or the fourth measurement information.
  • the beam training method in the embodiment of the present application further includes:
  • CSI Channel State Information
  • different sending occasions of the second reference signal or the third reference signal correspond to different forwarding modes of the auxiliary device.
  • the reporting of the CSI of the subband at different transmission timings of the second reference signal or the third reference signal to the network device includes:
  • the CSI of the optimal subband at each transmission opportunity of the third reference signal is reported.
  • the reporting of the CSI of the subband at different transmission timings of the second reference signal or the third reference signal to the network device includes:
  • the optimal subband combination CSI According to the subband CSI of the M transmission occasions, determine the optimal subband combination CSI and report it to the network device;
  • the subband combination includes M frequency hopping subbands paired according to the frequency hopping rule, and the M frequency hopping subbands correspond to M transmission occasions of the second reference signal, or M frequency hopping subbands The subbands correspond to the M transmission occasions of the third reference signal.
  • the CSI includes a target indication message, where the target indication message is used to indicate the beam phase corresponding to the CSI.
  • a reference signal or a time slot number or other information is added to the CSI to indicate the beam phase corresponding to the CSI.
  • Embodiment 1 For semi-persistent scheduling (Semi-Persistent Scheduling, SPS), the base station configures periodic and effective time-frequency resources for the terminal, and the terminal sends a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) or Physical Uplink Shared Channel (PUSCH).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the base station notifies the terminal of the period of the beam direction training of the smart surface, or sends a message to trigger the aperiodic beam direction training process.
  • the base station determines the number of candidate beams of the smart surface; optionally, the number of supported beams reported by the smart surface is used; optionally, the base station selects several beams from the configurable beams of the smart surface according to the actual communication situation and notifies the smart surface .
  • the base station configures the parameters of the corresponding reference signal (first reference signal) (such as time-frequency resources, reference signal sequence generation parameters, ports, etc.) according to the number of candidate beams of the smart surface, and the reference signal should be time-division multiplexed.
  • the base station notifies the terminal of the number of candidate beams of the smart surface and/or the corresponding reference signal configuration parameters.
  • the bandwidth of the reference signal may be the full bandwidth or greater than a certain bandwidth threshold to ensure that the multipath resolution is sufficiently large and the accuracy of beam training is not affected by multipath frequency selective fading and beam phase as much as possible.
  • the terminal receives the reference signal according to the configuration information of the base station, measures the signal strength, and feeds back the measurement result or the number of the optimal beam direction.
  • the base station determines the optimal beam direction of the smart surface according to the report message of the terminal, and configures it for the smart surface.
  • the base station configures the terminal and the smart surface for beam phase training.
  • Beam phase training can be periodic, or a message-triggered aperiodic beam phase training process.
  • the smart surface Notify the smart surface of the number of candidate beam phases, or determine the number of beam phases by the capabilities of the smart surface (for example, the smart surface intelligently supports 1-bit controlled 0 or ⁇ phase adjustment, two phase states), and the corresponding reference signal configuration parameters (same as above) ).
  • the reference signal (second reference signal) for beam phase training is the same as or includes the frequency resource range used for data transmission (eg, frequency resources configured for SPS transmission).
  • the base station transmits the above-mentioned reference signal with the same transmit beam, and the smart surface forwards the above-mentioned reference signal with different phases at different times according to the beam direction specified by the base station.
  • the terminal receives the reference signal according to the information of the base station, measures the strength of each signal, and feeds back the measurement result or the beam number corresponding to the optimal beam phase.
  • the base station notifies the smart surface to adjust the beam phase according to the measurement result reported by the terminal.
  • Embodiment 2 For dynamically scheduled terminal services, the terminal needs to measure sub-band CSI of different phases of the same smart surface beam to determine the optimal communication mode.
  • the beam training process of the smart surface is as follows:
  • the base station conducts beam direction training of the smart surface.
  • the terminal selects the optimal beam direction according to the strength of the reference signal RSRP, and reports it to the base station.
  • the specific process is the same as the above-mentioned first embodiment.
  • the base station conducts beam phase training of the smart surface.
  • the base station sends the reference signal in the full bandwidth (sent once or according to sub-band time division), and configures the number of reference signals correspondingly according to the number of smart surface beam phases to be measured.
  • the configuration and implementation are the same as those in the first embodiment.
  • the terminal receives the above reference signal and measures the subband CSI and reports it.
  • the terminal separately reports the optimal sub-band CSI according to the number of beam phases of the smart surface, that is, for each beam phase, respectively reports the optimal sub-band CSI under the beam phase.
  • the terminal measures the frequency difference between subband 1 of phase 1 of the smart surface beam and phase 2 of the smart surface beam according to the rules of frequency hopping (the pairing method of frequency hopping subbands, that is, frequency hopping is performed between subband 1 and subband 2).
  • the CSI of subband 2 reports the optimal frequency hopping subband.
  • the CSI of the subband 1 and the CSI of the subband 2 may be weighted to obtain a subband CSI and report it.
  • the base station schedules the PDSCH according to the reporting result of the terminal.
  • the base station selects the optimal beam phase according to the reporting results of multiple beam phases, and configures it to the smart surface; the base station transmits the PDSCH on the corresponding optimal subband.
  • the base station configures the switching time and switching sequence of the smart surface beam phase; the base station schedules the frequency-hopping PDSCH for the terminal according to the switching time and switching sequence.
  • the frequency hopping subband is determined by the information reported by the terminal.
  • the beam phase at the smart surface is switched from phase 1 to phase 2 at the first time, while at phase 1, the optimal subband is the first subband, and at phase 2, the optimal subband is the second subband , the PDSCH is sent on the first subband before the first time, and the PDSCH is sent on the second subband after the first time.
  • Embodiment 3 For a dynamically scheduled communication service, a one-stage process is used to complete measurement scheduling.
  • the base station determines the beam direction and number of beams of the smart surface.
  • the base station configures the beam direction and beam phase for all smart surfaces.
  • the base station configures M*N reference signals, respectively corresponding to M*N forwarding modes of the smart surface, the base station notifies the terminal of the configuration parameters of the reference signals, and indicates which smart surface beam each reference signal corresponds to.
  • the terminal receives the above reference signal, and performs subband CSI measurement and reporting.
  • the measurement reporting method is the same as that of the second embodiment.
  • optimal subbands and corresponding optimal beam directions and beam phases select multiple optimal subbands for frequency hopping and corresponding optimal subbands
  • the optimal beam direction and optimal beam phase, or multiple optimal subbands and corresponding beam phases for frequency hopping are selected within M beam phases in one beam direction.
  • the base station configures the smart surface according to the report result of the terminal and schedules the PDSCH of the terminal.
  • the beam training method of the embodiment of the present application measures at least two reference signals used for beam training forwarded by an auxiliary device in at least two forwarding modes to obtain measurement information; and reports the measurement information to the network device,
  • the network device can determine the optimal beam direction and optimal beam phase of the signal transmitted by the auxiliary device, and then can reduce the influence of frequency selective fading caused by the multipath environment based on the optimal beam direction and beam phase.
  • an embodiment of the present application further provides a beam training method, which is applied to a network side device, and the method includes:
  • Step 301 Send at least two reference signals for beam training.
  • the above-mentioned reference signal is a signal used for beam training.
  • the above-mentioned reference signal is a signal used to determine the beam direction and beam phase of the auxiliary equipment, or the reference signal includes a beam used to determine the auxiliary equipment.
  • Step 302 Obtain measurement information reported by the terminal device, where the measurement information is obtained after the terminal device measures the at least two reference signals used for beam training forwarded by the auxiliary device in at least two forwarding modes, and the The retransmission mode of the auxiliary device is determined by the beam direction of the retransmitted signal and the beam phase of the retransmitted signal by the auxiliary device.
  • the above measurement information may include at least one of the following:
  • the number of the optimal beam phase is the number of the optimal beam phase.
  • Step 303 Determine the optimal forwarding mode of the auxiliary device according to the measurement information.
  • the network device can determine the optimal beam direction and optimal beam phase of the forwarding beam of the auxiliary device, that is, obtain the optimal forwarding mode of the auxiliary device, so that the frequency selectivity can be improved by controlling the multipath phase. The effects of decline.
  • the beam training method of the embodiment of the present application at least two reference signals for beam training are sent; the measurement information reported by the terminal equipment is obtained; and the optimal forwarding mode of the auxiliary equipment is determined according to the measurement information, that is, the Optimal beam direction and optimal beam phase for auxiliary equipment, so that the effects of frequency selective fading can be improved by controlling the multipath phase.
  • the reference signal includes a first reference signal and a second reference signal
  • the first reference signal is a reference signal used to determine the beam direction of the auxiliary device
  • the second reference signal is a reference signal for determining the beam phase of the auxiliary device.
  • the method further includes:
  • the first indication information is time-frequency resource configuration information of the first reference signal, and the first indication information corresponds to at least N transmission occasions, and N is less than or equal to the number of beam directions of the signal forwarded by the auxiliary device;
  • the second indication information is time-frequency resource configuration information of the second reference signal, and the second indication information corresponds to at least M transmission occasions, where M is less than or equal to the number of beam phases of the signal forwarded by the auxiliary device.
  • the method before acquiring the measurement information reported by the terminal device, the method further includes:
  • the first configuration information is time domain configuration information of beam directions of N forwarding signals of the auxiliary device, and the time domain configuration information is in one-to-one correspondence with N transmission timings of the first reference signal;
  • the second configuration information is the time-domain configuration information of M beam phases corresponding to the optimal beam direction of the auxiliary device, and the time-domain configuration information is in one-to-one correspondence with the M transmission timings of the second reference signal,
  • the optimal beam direction is determined by the first reference signal.
  • the measurement information includes first measurement information and second measurement information
  • the first measurement information is used to indicate the optimal beam direction of the signal transmitted by the auxiliary device within the bandwidth of the first reference signal
  • the second measurement information is used to indicate the optimal beam phase corresponding to the optimal beam direction of the signal transmitted by the auxiliary device within the bandwidth of the second reference signal.
  • the reference signal used for beam training is a third reference signal
  • the third reference signal is a reference signal used to determine the beam direction and beam phase of the auxiliary device, and the number of transmission occasions of the third reference signal is M*N;
  • N is the number of beam directions of the auxiliary device forwarding signals configured by the network device
  • M is the number of beam phases of each forwarding beam configured by the network device
  • the sending timing of each third reference signal corresponds to one of the auxiliary devices.
  • the beam direction and one beam phase, and the forwarding beams and/or beam phases corresponding to different beam training signals are different.
  • the method before acquiring the measurement information reported by the terminal device, the method further includes:
  • the third indication information sent to the terminal device is the third indication information sent to the terminal device.
  • the third indication information is the time-frequency resource configuration information of the third reference signal, the third indication information corresponds to at least M*N transmission opportunities, and N is less than or equal to the number of beam directions of the signal transmitted by the auxiliary device , M is less than or equal to the number of beam phases of the signal transmitted by the auxiliary device.
  • the beam training method in the embodiment of the present application further includes:
  • the third configuration information is the time domain configuration information of the beam directions and beam phases of the M*N forwarding signals of the auxiliary device, and the time domain configuration information is related to the M*N sending occasions of the third reference signal.
  • One-to-one correspondence is the time domain configuration information of the beam directions and beam phases of the M*N forwarding signals of the auxiliary device, and the time domain configuration information is related to the M*N sending occasions of the third reference signal.
  • the measurement information includes third measurement information and/or fourth measurement information,
  • the third measurement information is information used to indicate the optimal combination of beam direction and beam phase and sub-bands of the auxiliary device retransmission signal within the bandwidth of the third reference signal;
  • the fourth measurement information is information used to indicate optimal subbands corresponding to M beam phases corresponding to optimal beam directions of the auxiliary device to forward signals within the bandwidth of the third reference signal.
  • the reference signal includes a first reference signal and a second reference signal, or the reference signal includes a second reference signal;
  • the measurement information includes first measurement information and second measurement information
  • the measurement information includes second measurement information.
  • the reference signal for a dynamically scheduled service, includes a first reference signal and a second reference signal; or, the reference signal includes a third reference signal;
  • the measurement information includes first measurement information and second measurement information
  • the measurement information includes third measurement information and/or fourth measurement information
  • the third measurement information is information used to indicate the optimal combination of beam direction and beam phase and sub-bands of the auxiliary device retransmission signal within the bandwidth of the third reference signal;
  • the fourth measurement information is information used to indicate optimal subbands corresponding to M beam phases corresponding to the optimal beam directions of the auxiliary device retransmitting signals within the bandwidth of the third reference signal.
  • the beam training method in the embodiment of the present application further includes:
  • the subband CSI information reported by the terminal equipment is received, where the subband CSI information corresponds to the measurement information of the subband CSI at different transmission occasions of the second reference signal or the third reference signal.
  • the subband CSI information includes the CSI of the optimal subband at each transmission opportunity of the second reference signal
  • the subband CSI information includes the CSI of the optimal subband at each transmission opportunity of the third reference signal
  • the subband combination includes M frequency hopping subbands paired according to the frequency hopping rule, and the M frequency hopping subbands correspond to M transmission occasions of the second reference signal, or M frequency hopping subbands The subbands correspond to the M transmission occasions of the third reference signal.
  • the method further includes:
  • Data transmissions are scheduled using the optimal combination of subbands and the optimal forwarding mode.
  • the scheduling of data transmission using the optimal combination of the subband and the optimal forwarding mode includes:
  • data transmission is sequentially performed on the M frequency hopping subbands of the subband combination in a frequency hopping manner.
  • the method before the scheduling of data transmission using the optimal combination of the subband and the optimal forwarding mode, the method further includes:
  • the auxiliary device send fifth configuration information to the auxiliary device, where the fifth configuration information indicates forwarding modes of the M auxiliary devices corresponding to the M subbands used for data transmission.
  • the beam training method in the embodiment of the present application further includes:
  • the array information of the beams forwarded by the auxiliary device is calculated according to different discretization indexes.
  • the principle of beam generation of the smart surface is realized by the phase difference of the outgoing signals of each smart surface device.
  • the state of the array can be changed as a whole, and the beam phase can be controlled.
  • a smart surface is a 1-bit controlled device that achieves a phase inversion of 0 or ⁇ .
  • the control of the beam phase can also be realized by the index of the phase discretization of the outgoing signal of the device.
  • the range of ⁇ mn in the following formula is (0, ⁇ ) and ( ⁇ , 2 ⁇ ), then the beam phase of the expected outgoing signal should be superimposed as and That is, take the intermediate value of (0, ⁇ ) and ( ⁇ , 2 ⁇ ) respectively.
  • the range of ⁇ mn in the formula is and Then the beam phase of the expected outgoing signal should be superimposed as 0 and ⁇ .
  • Smart devices implement different beam phases according to different discretization indexes. Combining the above two discretization indicators, the number of outgoing beam phases of the smart surface can be more than the number of device states of the smart device.
  • the beam training method of the embodiment of the present application at least two reference signals for beam training are sent; the measurement information reported by the terminal equipment is obtained; and the optimal forwarding mode of the auxiliary equipment is determined according to the measurement information, that is, the Optimal beam direction and optimal beam phase for auxiliary equipment, so that the effects of frequency selective fading can be improved by controlling the multipath phase.
  • the above beam training method describes the downlink related process.
  • the terminal device sends at least two reference signals for beam training, or One part of the reference is sent by the network device, and the other part is sent by the terminal device;
  • the network device measures at least two reference signals used for beam training forwarded by the auxiliary device in at least two forwarding modes, obtains measurement information and sends it to the terminal device ;
  • the terminal device determines the optimal forwarding mode of the auxiliary device according to the measurement information.
  • the execution subject may be a beam training apparatus, or a control module in the beam training apparatus for executing the beam training method.
  • the beam training method provided by the embodiments of the present application is described by taking the beam training method performed by the beam training device as an example.
  • an embodiment of the present application provides a beam training apparatus 400, which is applied to a terminal device and includes:
  • the first acquisition module 401 is configured to measure at least two reference signals used for beam training forwarded by an auxiliary device in at least two forwarding modes, to obtain measurement information, where the measurement information is used to indicate the maximum value of the auxiliary device.
  • an optimal forwarding mode where the forwarding mode of the auxiliary device is determined by the beam direction of the signal to be forwarded by the auxiliary device and the beam phase of the signal to be forwarded;
  • the first reporting module 402 is configured to report the measurement information to the network device.
  • the beam training apparatus measures at least two reference signals used for beam training forwarded by an auxiliary device in at least two forwarding modes to obtain measurement information; and reports the measurement information to the network device,
  • the network device can determine the optimal beam direction and optimal beam phase of the signal transmitted by the auxiliary device, and then can reduce the influence of frequency selective fading caused by the multipath environment based on the optimal beam direction and beam phase.
  • the reference signal includes a first reference signal and a second reference signal
  • the first reference signal is a reference signal sent by the network device and used to determine the beam direction of the auxiliary device;
  • the second reference signal is a reference signal sent by the network device and used for determining the beam phase of the auxiliary device.
  • a first receiving module configured to receive the first indication information and the second indication sent by the network device before the first obtaining module measures the at least two reference signals used for beam training forwarded by the auxiliary device in the at least two forwarding modes information;
  • the first indication information is time-frequency resource configuration information of the first reference signal, and the first indication information corresponds to at least N transmission occasions, and N is less than or equal to the number of beam directions of the signal forwarded by the auxiliary device;
  • the second indication information is time-frequency resource configuration information of the second reference signal, and the second indication information corresponds to at least M transmission occasions, where M is less than or equal to the number of beam phases of the signal forwarded by the auxiliary device.
  • the bandwidth of the first reference signal is greater than or equal to a preset bandwidth threshold.
  • the first frequency range corresponding to the second reference signal is greater than or equal to the second frequency range
  • the second frequency range is the frequency range corresponding to the data transmitted by the terminal device and the network device.
  • the first acquisition module includes:
  • a first acquisition sub-module configured to measure the first reference signal to obtain first measurement information, where the first measurement information is used to indicate the frequency of the signal forwarded by the auxiliary device within the bandwidth of the first reference signal optimal beam direction;
  • the second obtaining sub-module is configured to measure the second reference signal to obtain second measurement information, where the second measurement information is used to indicate the frequency of the signal forwarded by the auxiliary device within the bandwidth of the second reference signal.
  • the optimal beam phase corresponding to the optimal beam direction.
  • the reference signal used for beam training is a third reference signal
  • the third reference signal is a reference signal sent by the network device and used to determine the beam direction and beam phase of the auxiliary device, and the number of sending occasions of the third reference signal is M*N;
  • N is the number of beam directions of the auxiliary device forwarding signals configured by the network device
  • M is the number of beam phases of each forwarding beam configured by the network device
  • the sending timing of each third reference signal corresponds to one of the auxiliary devices.
  • the beam direction and one beam phase, and the forwarding beams and/or beam phases corresponding to different beam training signals are different.
  • a second receiving module configured to receive the third indication information sent by the network device before the first obtaining module measures the at least two reference signals used for beam training forwarded by the auxiliary device in the at least two forwarding modes;
  • the third indication information is the time-frequency resource configuration information of the third reference signal, the third indication information corresponds to at least M*N transmission opportunities, and N is less than or equal to the number of beam directions of the signal forwarded by the auxiliary device , M is less than or equal to the number of beam phases of the signal transmitted by the auxiliary device.
  • the first acquisition module is configured to measure the third reference signal to obtain third measurement information, where the third measurement information is used to indicate that the third reference signal is The information of the beam direction and beam phase of the signal transmitted by the auxiliary device and the optimal combination of sub-bands within the bandwidth of the auxiliary device;
  • measuring the third reference signal to obtain fourth measurement information, where the fourth measurement information is used to indicate an optimal beam for the auxiliary device to transmit signals within the bandwidth of the third reference signal Information of the optimal subbands corresponding to the M beam phases corresponding to the directions.
  • the first acquisition module is configured to measure the reference signal according to the beam training period or after receiving the beam training instruction for the semi-statically scheduled service to obtain measurement information;
  • the reference signal includes a first reference signal and a second reference signal, or, the reference signal includes a second reference signal;
  • the measurement information includes first measurement information and second measurement information
  • the measurement information includes second measurement information.
  • the first acquisition module is configured to measure the reference signal according to a beam training period or after receiving a beam training instruction for dynamically scheduled services to obtain measurement information;
  • the reference signal includes a first reference signal and a second reference signal, or, the reference signal includes a third reference signal;
  • the measurement information includes first measurement information and second measurement information
  • the measurement information includes third measurement information and/or fourth measurement information.
  • a measurement module configured to measure the channel state information CSI of each subband under different transmission occasions of the second reference signal or the third reference signal;
  • a second reporting module configured to report the CSI of the subband at different transmission timings of the second reference signal or the third reference signal to the network device;
  • different sending occasions of the second reference signal or the third reference signal correspond to different forwarding modes of the auxiliary device.
  • the second reporting module is configured to report the CSI of the optimal subband at each transmission opportunity of the second reference signal
  • the CSI of the optimal subband at each transmission opportunity of the third reference signal is reported.
  • the second reporting module is configured to determine, according to the subband CSI of the M transmission occasions, the CSI of the optimal subband combination and report it to the network device;
  • the subband combination includes M frequency hopping subbands paired according to the frequency hopping rule, and the M frequency hopping subbands correspond to M transmission occasions of the second reference signal, or M frequency hopping subbands The subbands correspond to the M transmission occasions of the third reference signal.
  • the beam training apparatus measures at least two reference signals used for beam training forwarded by an auxiliary device in at least two forwarding modes to obtain measurement information; and reports the measurement information to the network device,
  • the network device can determine the optimal beam direction and optimal beam phase of the signal transmitted by the auxiliary device, and then can reduce the influence of frequency selective fading caused by the multipath environment based on the optimal beam direction and beam phase.
  • the beam training apparatus in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the beam training device in this embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the beam training apparatus provided in this embodiment of the present application can implement each process implemented by the method embodiment in FIG. 2 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 500, including a processor 501, a memory 502, a program or instruction stored in the memory 502 and executable on the processor 501,
  • a communication device 500 including a processor 501, a memory 502, a program or instruction stored in the memory 502 and executable on the processor 501
  • the communication device 500 is a terminal device
  • the program or instruction is executed by the processor 501
  • each process of the above embodiments of the beam training method applied to the terminal can be achieved, and the same technical effect can be achieved.
  • the communication device 500 is a network device
  • the program or instruction is executed by the processor 501
  • each process of the above-mentioned embodiment of the beam training method applied to the network device can be achieved, and the same technical effect can be achieved. Repeat.
  • FIG. 6 is a schematic diagram of a hardware structure of a terminal device implementing an embodiment of the present application.
  • the terminal device 600 includes but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, a memory 609, and a processor 610, etc. part.
  • the terminal device 600 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 610 through a power management system, so as to manage charging, discharging, and power management through the power management system. consumption management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 6 does not constitute a limitation on the terminal device, and the terminal device may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 604 may include a graphics processor (Graphics Processing Unit, GPU) 6041 and a microphone 6042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 606 may include a display panel 6061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 607 includes a touch panel 6071 and other input devices 6072 .
  • the touch panel 6071 is also called a touch screen.
  • the touch panel 6071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 6072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the radio frequency unit 601 receives the downlink data from the network side device, and then processes it to the processor 610; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 609 may be used to store software programs or instructions as well as various data.
  • the memory 609 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.).
  • the memory 609 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 610 may include one or more processing units; optionally, the processor 610 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 610.
  • the processor 610 is configured to measure at least two reference signals used for beam training forwarded by the auxiliary device in at least two forwarding modes, and obtain measurement information, where the measurement information is used to indicate the maximum value of the auxiliary device.
  • An optimal forwarding mode, the forwarding mode of the auxiliary device is determined by the beam direction of the signal forwarded by the auxiliary device and the beam phase of the forwarded signal; the radio frequency unit 601 reports the measurement information to the network device.
  • the terminal device measures at least two reference signals used for beam training forwarded by the auxiliary device in at least two forwarding modes to obtain measurement information; and reports the measurement information to the network device, so that The network device can determine the optimal beam direction and optimal beam phase of the signal transmitted by the auxiliary device, and then can reduce the influence of frequency selective fading caused by the multipath environment based on the optimal beam direction and beam phase.
  • the reference signal includes a first reference signal and a second reference signal
  • the first reference signal is a reference signal sent by the network device and used to determine the beam direction of the auxiliary device;
  • the second reference signal is a reference signal sent by the network device and used for determining the beam phase of the auxiliary device.
  • the processor 610 is further configured to receive, through the radio frequency unit, the first indication information and the second indication information sent by the network device;
  • the first indication information is time-frequency resource configuration information of the first reference signal, and the first indication information corresponds to at least N transmission occasions, and N is less than or equal to the number of beam directions of the signal forwarded by the auxiliary device;
  • the second indication information is time-frequency resource configuration information of the second reference signal, and the second indication information corresponds to at least M transmission occasions, where M is less than or equal to the number of beam phases of the signal forwarded by the auxiliary device.
  • the bandwidth of the first reference signal is greater than or equal to a preset bandwidth threshold.
  • the first frequency range corresponding to the second reference signal is greater than or equal to the second frequency range
  • the second frequency range is the frequency range corresponding to the data transmission between the terminal device and the network device.
  • the processor 610 is further configured to measure the first reference signal to obtain first measurement information, where the first measurement information is used to indicate the auxiliary device within the bandwidth of the first reference signal The optimal beam direction of the forwarded signal;
  • the reference signal used for beam training is a third reference signal
  • the third reference signal is a reference signal sent by the network device and used to determine the beam direction and beam phase of the auxiliary device, and the number of sending occasions of the third reference signal is M*N;
  • N is the number of beam directions of the forwarding signal of the auxiliary device configured by the network device
  • M is the number of beam phases of each forwarding beam configured by the network device
  • the sending timing of each third reference signal corresponds to one of the auxiliary devices.
  • the beam direction and one beam phase, and the forwarding beams and/or beam phases corresponding to different beam training signals are different.
  • the processor 610 is further configured to receive, through the radio frequency unit, third indication information sent by the network device;
  • the third indication information is the time-frequency resource configuration information of the third reference signal, the third indication information corresponds to at least M*N transmission opportunities, and N is less than or equal to the number of beam directions of the signal transmitted by the auxiliary device , M is less than or equal to the number of beam phases of the signal transmitted by the auxiliary device.
  • the processor 610 is further configured to measure the third reference signal to obtain third measurement information, where the third measurement information is used to indicate the auxiliary signal within the bandwidth of the third reference signal.
  • measuring the third reference signal to obtain fourth measurement information, where the fourth measurement information is used to indicate an optimal beam for the auxiliary device to transmit signals within the bandwidth of the third reference signal Information of the optimal subbands corresponding to the M beam phases corresponding to the directions.
  • the processor 610 is further configured to measure the reference signal according to the beam training period or after receiving the beam training instruction for the semi-persistently scheduled service, to obtain measurement information;
  • the reference signal includes a first reference signal and a second reference signal, or, the reference signal includes a second reference signal;
  • the measurement information includes first measurement information and second measurement information
  • the measurement information includes second measurement information.
  • the processor 610 is further configured to, for dynamically scheduled services, measure the reference signal according to the beam training period or after receiving the beam training instruction to obtain measurement information;
  • the reference signal includes a first reference signal and a second reference signal, or, the reference signal includes a third reference signal;
  • the measurement information includes first measurement information and second measurement information
  • the measurement information includes third measurement information and/or fourth measurement information.
  • the processor 610 is further configured to measure the channel state information CSI of each subband at different transmission timings of the second reference signal or the third reference signal; The CSI under different transmission timings of the three reference signals is reported to the network device;
  • different sending occasions of the second reference signal or the third reference signal correspond to different forwarding modes of the auxiliary device.
  • the processor 610 is further configured to report the CSI of the optimal subband under each transmission opportunity of the second reference signal;
  • the CSI of the optimal subband at each transmission opportunity of the third reference signal is reported.
  • the processor 610 is further configured to determine, according to the subband CSI of the M sending occasions, the CSI of the optimal subband combination and report it to the network device;
  • the subband combination includes M frequency hopping subbands paired according to the frequency hopping rule, and the M frequency hopping subbands correspond to M transmission occasions of the second reference signal, or M frequency hopping subbands The subbands correspond to the M transmission occasions of the third reference signal.
  • the terminal device measures at least two reference signals used for beam training forwarded by the auxiliary device in at least two forwarding modes to obtain measurement information; and reports the measurement information to the network device, so that The network device can determine the optimal beam direction and optimal beam phase of the signal transmitted by the auxiliary device, and then can reduce the influence of frequency selective fading caused by the multipath environment based on the optimal beam direction and beam phase.
  • an embodiment of the present application further provides a beam training apparatus 700, which is applied to network equipment, including:
  • a first sending module 701 configured to send at least two reference signals for beam training
  • the second obtaining module 702 is configured to obtain measurement information reported by the terminal device, where the measurement information is obtained after the terminal device measures the at least two reference signals used for beam training forwarded by the auxiliary device in at least two forwarding modes Obtained, the forwarding mode of the auxiliary device is determined by the beam direction of the signal to be forwarded by the auxiliary device and the beam phase of the signal to be forwarded;
  • the first determining module 703 is configured to determine the optimal forwarding mode of the auxiliary device according to the measurement information.
  • the beam training apparatus sends at least two reference signals for beam training; obtains measurement information reported by terminal equipment; and determines the optimal forwarding mode of the auxiliary equipment according to the measurement information, that is, determines the Optimal beam direction and optimal beam phase for auxiliary equipment, so that the effects of frequency selective fading can be improved by controlling the multipath phase.
  • the reference signal includes a first reference signal and a second reference signal
  • the first reference signal is a reference signal used to determine the beam direction of the auxiliary device
  • the second reference signal is a reference signal for determining the beam phase of the auxiliary device.
  • the second sending module is configured to send the first indication information and the second indication information to the terminal device before the second obtaining module obtains the measurement information reported by the terminal device:
  • the first indication information is time-frequency resource configuration information of the first reference signal, and the first indication information corresponds to at least N transmission occasions, and N is less than or equal to the number of beam directions of the signal forwarded by the auxiliary device;
  • the second indication information is time-frequency resource configuration information of the second reference signal, and the second indication information corresponds to at least M transmission occasions, where M is less than or equal to the number of beam phases of the signal forwarded by the auxiliary device.
  • the third sending module is configured to send the first configuration information and the second configuration information to the auxiliary device before the second obtaining module obtains the measurement information reported by the terminal device:
  • the first configuration information is time-domain configuration information of beam directions of N forwarding signals of the auxiliary device, and the time-domain configuration information is in one-to-one correspondence with N transmission timings of the first reference signal;
  • the second configuration information is the time-domain configuration information of M beam phases corresponding to the optimal beam direction of the auxiliary device, and the time-domain configuration information is in one-to-one correspondence with the M transmission timings of the second reference signal,
  • the optimal beam direction is determined by the first reference signal.
  • the measurement information includes first measurement information and second measurement information
  • the first measurement information is used to indicate the optimal beam direction of the signal transmitted by the auxiliary device within the bandwidth of the first reference signal
  • the second measurement information is used to indicate the optimal beam phase corresponding to the optimal beam direction of the signal transmitted by the auxiliary device within the bandwidth of the second reference signal.
  • the reference signal is a third reference signal
  • the third reference signal is a reference signal used to determine the beam direction and beam phase of the auxiliary device, and the number of transmission occasions of the third reference signal is M*N;
  • N is the number of beam directions of the forwarding signal of the auxiliary device configured by the network device
  • M is the number of beam phases of each forwarding beam configured by the network device
  • the sending timing of each third reference signal corresponds to one of the auxiliary devices.
  • the beam direction and one beam phase, and the forwarding beams and/or beam phases corresponding to different beam training signals are different.
  • the fourth sending module is used for the third indication information sent to the terminal device before the second obtaining module obtains the measurement information reported by the terminal device:
  • the third indication information is the time-frequency resource configuration information of the third reference signal, the third indication information corresponds to at least M*N transmission opportunities, and N is less than or equal to the number of beam directions of the signal transmitted by the auxiliary device , M is less than or equal to the number of beam phases of the signal transmitted by the auxiliary device.
  • a fifth sending module configured to send third configuration information to the auxiliary device:
  • the third configuration information is the time domain configuration information of the beam directions and beam phases of the M*N forwarding signals of the auxiliary device, and the time domain configuration information is related to the M*N sending occasions of the third reference signal.
  • One-to-one correspondence is the time domain configuration information of the beam directions and beam phases of the M*N forwarding signals of the auxiliary device, and the time domain configuration information is related to the M*N sending occasions of the third reference signal.
  • the measurement information includes third measurement information and/or fourth measurement information
  • the third measurement information is information used to indicate the optimal combination of beam direction and beam phase and sub-bands of the auxiliary device retransmission signal within the bandwidth of the third reference signal;
  • the fourth measurement information is information used to indicate optimal subbands corresponding to M beam phases corresponding to optimal beam directions of the auxiliary device to forward signals within the bandwidth of the third reference signal.
  • the reference signal for a semi-persistently scheduled service, includes a first reference signal and a second reference signal, or the reference signal includes a second reference signal;
  • the measurement information includes first measurement information and second measurement information
  • the measurement information includes second measurement information.
  • the reference signal for a dynamically scheduled service, includes a first reference signal and a second reference signal; or, the reference signal includes a third reference signal;
  • the measurement information includes first measurement information and second measurement information
  • the measurement information includes third measurement information and/or fourth measurement information
  • the third measurement information is information used to indicate the optimal combination of beam direction and beam phase and sub-bands of the auxiliary device retransmission signal within the bandwidth of the third reference signal;
  • the fourth measurement information is information used to indicate optimal subbands corresponding to M beam phases corresponding to optimal beam directions of the auxiliary device retransmitting signals within the bandwidth of the third reference signal.
  • the third receiving module is configured to receive the subband CSI information reported by the terminal equipment, where the subband CSI information corresponds to the measurement information of the second reference signal or the subband CSI at different transmission timings of the third reference signal.
  • the sub-band CSI information includes the CSI of the optimal sub-band at each transmission occasion of the second reference signal
  • the subband CSI information includes the CSI of the optimal subband at each transmission opportunity of the third reference signal
  • the subband combination includes M frequency hopping subbands paired according to the frequency hopping rule, and the M frequency hopping subbands correspond to M transmission occasions of the second reference signal, or M frequency hopping subbands The subbands correspond to the M transmission occasions of the third reference signal.
  • a transmission module configured for the first determination module to use the optimal combination of the subband and the optimal forwarding mode to schedule data transmission after determining the optimal forwarding mode of the auxiliary device according to the measurement information.
  • the transmission module is configured to perform data transmission on an optimal subband, and the optimal subband is a subband in the optimal combination;
  • data transmission is sequentially performed on the M frequency hopping subbands of the subband combination in a frequency hopping manner.
  • the method before the data transmission is scheduled using the optimal combination of the subband and the optimal forwarding mode, the method further includes:
  • a sixth sending module configured to send fourth configuration information to the auxiliary device, where the fourth configuration information indicates the optimal forwarding mode of the auxiliary device corresponding to the optimal subband used for data transmission;
  • the auxiliary device send fifth configuration information to the auxiliary device, where the fifth configuration information indicates forwarding modes of the M auxiliary devices corresponding to the M subbands used for data transmission.
  • a control module configured to control the beam phase of the auxiliary device in at least one of the following ways;
  • the array information of the beams forwarded by the auxiliary device is calculated according to different discretization indexes.
  • the beam training apparatus sends at least two reference signals for beam training; obtains measurement information reported by terminal equipment; and determines the optimal forwarding mode of the auxiliary equipment according to the measurement information, that is, determines the Optimal beam direction and optimal beam phase for auxiliary equipment, so that the effects of frequency selective fading can be improved by controlling the multipath phase.
  • the embodiment of the present application further provides a network device.
  • the network device 800 includes: an antenna 801, a radio frequency device 802, and a baseband device 803.
  • the antenna 801 is connected to the radio frequency device 802 .
  • the radio frequency device 802 receives information through the antenna 801, and sends the received information to the baseband device 803 for processing.
  • the baseband device 803 processes the information to be sent and sends it to the radio frequency device 802
  • the radio frequency device 802 processes the received information and sends it out through the antenna 81 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 803 , and the method performed by the network device in the above embodiments may be implemented in the baseband apparatus 803 .
  • the baseband apparatus 803 includes a processor 804 and a memory 805 .
  • the baseband device 803 may include, for example, at least one baseband board on which multiple chips are arranged. As shown in FIG. 8 , one of the chips is, for example, the processor 804 , which is connected to the memory 805 to call the program in the memory 805 to execute The network devices shown in the above method embodiments operate.
  • the baseband device 803 may further include a network interface 806 for exchanging information with the radio frequency device 802, and the interface is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network device in the embodiment of the present invention further includes: instructions or programs stored in the memory 805 and executable on the processor 804, and the processor 804 invokes the instructions or programs in the memory 805 to execute the modules shown in FIG. 7 to execute method, and achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium.
  • a program or an instruction is stored on the readable storage medium.
  • the processor is the processor in the terminal device described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used for running a network device program or instruction to implement the above beam training method In order to avoid repetition, the details are not repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开了一种波束训练方法、装置、终端设备及网络设备。本申请的波束训练方法包括:对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息,所述测量信息用于指示所述辅助设备的最优转发模式,所述辅助设备的转发模式由所述辅助设备转发信号的波束方向和转发信号的波束相位确定;将所述测量信息上报给所述网络设备。

Description

波束训练方法、装置、终端设备及网络设备
相关申请的交叉引用
本申请主张在2020年8月3日在中国提交的中国专利申请号No.202010769022.X的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,特别涉及一种波束训练方法、装置、终端设备及网络设备。
背景技术
未来的无线通信系统会涉及到基于智能表面设备辅助的无线通信网络。终端设备接收到直接来自网络设备的信号以及经过智能表面设备转发的信号,终端设备收到的多路信号的叠加导致频率选择性衰落。5G新空口(New Radio,NR)定义的波束扫描功能可以应用于智能表面的波束扫描流程。但是确定了波束方向后,由于多径环境的影响,实际数据传输过程中,终端仍然会受到多径导致的频率选择衰落的影响。
发明内容
本申请实施例的目的是提供一种波束训练方法、装置、终端设备及网络设备,能够解决由于多径环境的影响,实际数据传输过程中,终端仍然会受到多径导致的频率选择衰落的影响的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,提供了一种波束训练方法,应用于终端设备,包括:
对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息,所述测量信息用于指示所述辅助设备的最优转发模式,所述辅助设备的转发模式由所述辅助设备转发信号的波束方向和转发信号的波束相位确定;
将所述测量信息上报给所述网络设备。
第二方面,提供了一种波束训练方法,应用于网络设备,包括:
发送至少两个用于波束训练的参考信号;
获取终端设备上报的测量信息,所述测量信息是终端设备对辅助设备在至少两个转发模式下转发的所述至少两个用于波束训练的参考信号进行测量后得到的,所述辅助设备的转发模式由所述辅助设备转发信号的波束方向和转发信号的波束相位确定;
根据所述测量信息,确定所述辅助设备的最优转发模式。
第三方面,提供了一种波束训练装置,应用于终端设备,包括:
第一获取模块,用于对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息,所述测量信息用于指示所述辅助设备的最优转发模式,所述辅助设备的转发模式由所述辅助设备转发信号的波束方向和转发信号的波束相位确定;
第一上报模块,用于将所述测量信息上报给所述网络设备。
第四方面,提供了一种波束训练装置,应用于网络设备,包括:
第一发送模块,用于发送至少两个用于波束训练的参考信号;
第二获取模块,用于获取终端设备上报的测量信息,所述测量信息是终端设备对辅助设备在至少两个转发模式下转发的所述至少两个用于波束训练的参考信号进行测量后得到的,所述辅助设备的转发模式由所述辅助设备转发信号的波束方向和转发信号的波束相位确定;
第一确定模块,用于根据所述测量信息,确定所述辅助设备的最优转发模式。
第五方面,提供了一种终端设备,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种网络设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤, 或者实现如第二方面所述的方法的步骤。
第八方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
在本申请实施例中,对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息;将所述测量信息上报给所述网络设备,使得网络设备可以确定出辅助设备转发信号的最优波束方向和最优波束相位,进而能够基于该最优波束方向和波束相位减少多径环境导致的频率选择性衰落的影响。
附图说明
图1为本申请实施例可应用的一种网络系统的结构图;
图2表示本申请实施例的波束训练方法的流程示意图之一;
图3表示本申请实施例的波束训练方法的流程示意图之二;
图4表示本申请实施例的波束训练装置的模块示意图之一;
图5表示本申请实施例的通信设备的结构框图;
图6表示本申请实施例的终端设备的结构框图;
图7表示本申请实施例的波束训练装置的模块示意图之二;
图8表示本申请实施例的网络设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并 不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
在未来的通信场景中,存在热点业务覆盖增强的情况,例如VR,AR业务、视频业务等。在这类业务场景中,仅使用基站的波束赋形技术不足以给终端提供足够的通信速率。因此,需要在网络中引入新的辅助节点,增强终端接收信号强度。
大型智能表面(Large Intelligent Surfaces,LIS)是一种新兴的人造材料设备;LIS可以动态地或半静态地调整自身的电磁特性,影响入射到LIS的电磁波的反射或折射行为。如图1所示,LIS可以对电磁信号的反射波/折射信号进行操控,实现波束扫描或波束赋形等功能。
基于智能表面13的波束控制原理如下。以相位控制型智能表面为例,器件单元(m,n)的理想控制相位为:
Figure PCTCN2021108993-appb-000001
其中,
Figure PCTCN2021108993-appb-000002
分别为基站11,终端12,器件单元(m,n)的坐标向量。如果终端与智能表面的相对位置满足远场辐射条件,智能表面到终端的信号近似为平行信号,
Figure PCTCN2021108993-appb-000003
在满足远场辐射条件时,基站11与智能表面13之间也可以进行相应近似操作。
对于1bit离散相位控制型智能表面,通过离散化处理将理想补偿相位映射离散相位上,例如:
Figure PCTCN2021108993-appb-000004
在5G NR协议中提供了模拟波束扫描的功能。其基本流程是基站依次在不同时间段用不同方向的波束发送信号,终端用固定的接收波束接收信号,选择最合适的发送波束上报给基站。
5G NR定义的波束扫描功能可以应用于智能表面的波束扫描流程。但是确定了波束方向后,由于多径环境的影响,实际数据传输过程中,终端仍然 会受到多径导致的频率选择衰落的影响。
基站的信号相位发送变化时,会影响多径环境中所有多径的相位变化,因此无法实现单独控制部分多径的目的。
智能表面设备为终端提供了一部分多径信号,并且可以控制多径信道的相位。通过改变部分多径信道的相位,可以使终端降低频率选择性衰落的影响。
无线信道的多径相位和幅度的变化是随机的、慢变的、受终端和环境物体的移动/变化速度影响的(通常表示为信道相干时间)。也就是说,在频域上,如果一段RB资源陷入了频率选择性衰落,那么在之后的一段时间内这一段RB将会一直处于频率选择性衰落,通信质量很差,直到多径信道变化到其他情况。传统通信系统通过频率调度来避免频率选择性衰落。在引入智能表面后,通过控制多径信道中部分多径的相位来改变目标RB的频率选择性衰落。由于智能表面的多径相位控制是离散的,例如1bit控制的0或π相位控制,在相位慢变的多径信道中,确定一次最优的智能表面的多径相位后可以在之后一段时间内有效(避免目标RB处于频率选择性衰落)。即最优的智能表面的多径相位调整不会特别频繁。
基于上述描述,本申请实施例提供了一种波束训练方法,应用于终端设备,如图2所示,该方法包括:
步骤201:对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息,所述测量信息用于指示所述辅助设备的最优转发模式,所述辅助设备的转发模式由所述辅助设备转发信号的波束方向和转发信号的波束相位确定。可以理解的,辅助设备的波束方向表示了转发信号的空间能量分布特征;辅助设备的波束相位表示了转发信号在目标方向上或者在能量最强的方向上的相对相位,即在目标方向上的同一个观察点的信号相位相对于网络设备发射信号的相位的差异,所述不同波束相位间的差异满足2π/M的整数倍,M为波束相位的数量。
上述参考信号由网络设备发送,经过所述辅助设备转发,由所述终端设备接收。本申请实施例中,上述辅助设备可具体为智能表面,或者其他可以实现频率相干转发的设备。
本步骤中,上述参考信号为用于进行波束训练的信号,具体的,上述参考信号为用于确定辅助设备的波束方向和波束相位的信号,或者,该参考信号包括用于确定辅助设备的波束方向的第一参考信号和用于确定辅助设备的波束相位的第二参考信号。
上述测量信息可以包括以下至少一项:
所述参考信号的信号强度;
最优波束方向的编号或者相应参考信号的时隙编号或者其他可以唯一确定波束方向的信息;
最优波束相位的编号或者相应参考信号的时隙编号或者其他可以唯一确定波束相位的信息。
步骤202:将所述测量信息上报给所述网络设备。
这里,将上述测量信息上报给网络设备,如基站,使得网络设备可以确定出辅助设备转发波束的最优波束方向和最优波束相位,进而能够基于该最优波束方向和最优波束相位减少多径环境导致的频率选择性衰落的影响。
本申请实施例的波束训练方法,对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息;将所述测量信息上报给所述网络设备,使得网络设备可以确定出辅助设备转发信号的最优波束方向和最优波束相位,进而能够基于该最优波束方向和波束相位减少多径环境导致的频率选择性衰落的影响。
作为第一种可选的实现方式,所述参考信号包括第一参考信号和第二参考信号;
所述第一参考信号为所述网络设备发送的用于确定所述辅助设备的波束方向的参考信号;
所述第二参考信号为所述网络设备发送的用于确定所述辅助设备的波束相位的参考信号。
基于此,所述对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量之前,还包括:
接收网络设备发送的第一指示信息和第二指示信息;
所述第一指示信息为所述第一参考信号的时频资源配置信息,所述第一 指示信息对应至少N个发送时机,N小于或者等于所述辅助设备转发信号的波束方向的数量;
所述第二指示信息为所述第二参考信号的时频资源配置信息,所述第二指示信息对应至少M个发送时机,M小于或者等于所述辅助设备转发信号的波束相位的数量,其中,N和M为正整数。可以理解的,第一参考信号的N个发送时机对应的所述辅助设备转发信号的波束方向是所述辅助设备转发信号的波束方向实际最大数量的一个子集;第二参考信号的M个发送时机对应的所述辅助设备转发信号的波束相位是所述辅助设备转发信号的波束相位实际最大数量的一个子集。
可选的,所述第一参考信号的带宽大于或者等于预设带宽阈值。
本申请实施例中,该第一参考信号为宽带信号,例如,上述第一参考信号的带宽可以是全带宽或大于预设带宽阈值,以保证多径分辨率足够大以及波束训练的准确性尽量不受多径频选衰落和波束相位的影响。
可选的,所述第二参考信号对应的第一频率范围大于或等于第二频率范围,所述第二频率范围为终端设备与网络设备传输数据对应的频率范围。
本申请实施例中,该第二参考信号可以为窄带信号,该第二参考信号的频率资源范围与用于数据传输的频率资源(例如半静态调度传输配置的频率资源)范围相同,或者包含用于数据传输的频率资源范围。
该第一种可选的实现方式,所述对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息,包括:
对所述第一参考信号进行测量,得到第一测量信息,所述第一测量信息用于指示在所述第一参考信号的带宽内所述辅助设备转发信号的最优波束方向;
对所述第二参考信号进行测量,得到第二测量信息,所述第二测量信息用于指示在所述第二参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的最优波束相位。
该第一种可选的实现方式中,通过两个阶段的波束训练,来确定辅助设备的最优波束方向和最优波束相位。第一阶段,网络设备发送多次信号(推荐宽带信号),辅助设备使用不同的转发波束(即要求不同波束方向,不限制 波束相位)转发给终端设备,终端设备进行测量,以供网络设备确定最优波束方向。第二阶段,网络设备发送多次信号(推荐窄带信号,对应于或者包含数据传输的频率资源),辅助设备使用第一阶段的最优波束方向并采用不同的转发波束相位转发给终端设备,终端设备进行测量,以供网络设备确定最优波束方向对应的最优波束相位。
可选地,上述两个阶段的波束训练可以是周期执行的或者非周期动态触发的。
可选的,上述波束相位训练的周期和波束方向训练的周期可以不同,上述波束相位训练的周期小于或者等于波束方向训练的周期。
可选的,在接收到的所述第二参考信号的强度小于第一强度阈值的情况下,上报第一申请信息,所述第一申请信息为用于申请结束波束相位训练的信息,或者,为用于申请波束方向训练的信息。
可选的,在每个所述第二参考信号的强度均小于第二强度阈值的情况下,或者,在所述终端设备与所述网络设备传输数据的信号的强度小于第二强度阈值的情况下,上报第二申请信息,所述第二申请信息为用于申请波束方向训练的信息。
该实现方式中,网络设备以相同的发送波束多次发送第一参考信号,智能表面使用不同的转发模式将第一参考信号转发给终端设备,终端设备使用同一波束接收智能表面多次转发的第一参考信号,并对第一参考信号进行测量,得出每个第一参考信号的强度,将每个第一参考的强度和/或最优波束方向的编号作为上述第一测量信息上报给网络设备。其中,最优波束方向是指信号强度最强的第一参考信号对应的波束方向;接着,网络设备将最优波束方向配置给智能表面,智能表面使用该最优波束方向转发网络设备多次发送的第二参考信号,并对第二参考信号进行测量,得出每个第二参考信号的强度,将每个第二参考信号的强度和/或最优转发相位的编号作为上述第二测量信息上报给网络设备。其中,最优转发相位是指信号强度最强的第二参考信号对应的转发相位。
作为第二种可选的实现方式,所述用于波束训练的参考信号为第三参考信号;
所述第三参考信号为网络设备发送的用于确定所述辅助设备的波束方向和波束相位的参考信号,所述第三参考信号的发送时机的数量为M*N个;
其中,N为网络设备配置的所述辅助设备转发信号的波束方向的数量,M为网络设备配置的每个转发波束的波束相位的数量,每个第三参考信号的发送时机对应辅助设备的一个波束方向和一个波束相位,且不同的波束训练信号对应的转发波束和/或波束相位不同。
基于此,所述对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量之前,还包括:
接收网络设备发送的第三指示信息:
所述第三指示信息为所述第三参考信号的时频资源配置信息,所述第三指示信息对应至少M*N个发送时机,N小于或者等于所述辅助设备转发信号的波束方向的数量,M小于或者等于所述辅助设备转发信号的波束相位的数量。
可选的,所述对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,包括:
对所述第三参考信号进行测量,得到第三测量信息,所述第三测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的波束方向和波束相位以及子带的最优组合的信息;
和/或,对所述第三参考信号进行测量,得到第四测量信息,所述第四测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的M个波束相位对应的最优子带的信息。
该实现方式中,网络设备可配置M*N个第三参考信号,分别对应于辅助设备的M*N个转发模式(每种转发模式包括波束方向和波束相位),并将M*N个第三参考信号的配置信息通知给终端设备。
假设包括K个子带,则对第三参考信号包含的M*N*K个子带进行测量,每个测量结果对应一个波束方向、波束相位以及一个子带的组合,则选取信号强度最强的测量结果对应的波束方向、波束相位以及子带作为上述最优组合。
该第二种可选的实现方式中,使用一个阶段的波束训练得出辅助设备转 发信号的波束方向和波束相位以及子带的最优组合的信息,以及所述第三参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的M个波束相位对应的最优子带的信息。
可选的,所述对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,包括:
对于半静态调度的业务,根据波束训练周期或者在接收到波束训练指示后,对所述参考信号进行测量,得到测量信息;
其中,所述参考信号包括上述第一参考信号和上述第二参考信号,或者,所述参考信号包括上述第二参考信号;
在所述参考信号包括第一参考信号和第二参考信号的情况下,所述测量信息包括上述第一测量信息和上述第二测量信息;
在所述参考信号包括所述第二参考信号的情况下,所述测量信息包括上述第二测量信息。
可选的,在半静态调度的业务激活之前,或者,在半静态调度的业务激活时,对辅助设备在至少两个转发模式下转发的第一参考信号和/或第二参考信号进行测量。
可选的,本申请实施例的波束训练方法,所述对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,包括:
对于动态调度的业务,根据波束训练周期或者在接收到波束训练指示后,对所述参考信号进行测量,得到测量信息;
其中,所述参考信号包括上述第一参考信号和上述第二参考信号,或者,所述参考信号包括上述第三参考信号;
在所述参考信号包括上述第一参考信号和上述第二参考信号的情况下,所述测量信息包括上述第一测量信息和上述第二测量信息;
在所述参考信号为上述第三参考信号的情况下,所述测量信息包括上述第三测量信息和/或上述第四测量信息。
可选的,本申请实施例的波束训练方法,还包括:
测量所述第二参考信号或者所述第三参考信号不同发送时机下每个子带的信道状态信息(Channel State Information,CSI);
将所述子带在第二参考信号或者第三参考信号不同发送时机下的CSI上报给网络设备;
其中,所述第二参考信号或者所述第三参考信号的不同发送时机对应于所述辅助设备的不同转发模式。
进一步可选的,所述将所述子带在第二参考信号或者第三参考信号不同发送时机下的CSI上报给网络设备,包括:
上报每个所述第二参考信号的发送时机下的最优子带的CSI;
或者,上报每个所述第三参考信号的发送时机下的最优子带的CSI。
进一步可选的,所述将所述子带在第二参考信号或者第三参考信号不同发送时机下的CSI上报给网络设备,包括:
根据M个发送时机的子带CSI,确定最优的子带组合的CSI上报给网络设备;
其中,所述子带组合包括按照跳频规则配对的M个跳频子带,且所述M个跳频子带对应于所述第二参考信号的M个发送时机,或者,M个跳频子带对应于所述第三参考信号的M个发送时机。
可选的,所述CSI中包括目标指示消息,所述目标指示消息用于指示所述CSI对应的波束相位。
例如,在CSI中增加一条参考信号或者时隙编号或其他信息用于指示该CSI对应的波束相位。
本申请实施例中,通过对子带的CSI进行测量,以保证对于动态调度的业务采用最优的通信方式。
下面结合具体的实施例对本申请的波束训练方法进行说明。
实施例一:对于半静态调度(Semi-Persistent Scheduling,SPS),基站为终端配置周期性有效的时频资源,终端在固定的时隙固定的时频资源上发送物理下行共享信道(Physical Downlink Shared Channel,PDSCH)或者物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。对于这类时频资源相对固定或者调度相对不灵活不频繁的终端业务,采用以下的波束训练流程。
1、基站通知终端智能表面的波束方向训练的周期,或者发送消息触发非周期的波束方向训练流程。
基站确定智能表面的候选波束数量;可选的,使用智能表面上报的可支持的波束数量;可选的,基站根据实际通信情况,从智能表面的可配置波束中选择若干个波束并通知智能表面。
基站根据智能表面的候选波束数量,配置相应的参考信号(第一参考信号)的参数(例如时频资源,参考信号序列生成参数,端口等),参考信号应时分复用。可选的,基站将智能表面的候选波束数量和/或相应的参考信号配置参数通知终端。可选的,参考信号的带宽可以是全带宽或者大于某个带宽门限,以保证多径分辨率足够大以及波束训练的准确性尽量不受多径频选衰落和波束相位的影响。
2、终端按照基站的配置信息接收参考信号,测量信号强度,反馈测量结果或者反馈最优波束方向的编号。
基站根据终端的上报消息确定智能表面的最优波束方向,并配置给智能表面。
3、基站配置终端和智能表面进行波束相位训练。波束相位训练可以是周期的,或者消息触发的非周期的波束相位训练流程。
通知智能表面的候选波束相位数量,或者由智能表面的能力(例如智能表面智能支持1bit控制的0或者π的相位调整,两个相位状态)确定波束相位数量,相应的参考信号的配置参数(同上)。
波束相位训练的参考信号(第二参考信号)与用于数据传输(例如SPS传输配置的频率资源)的频率资源范围相同,或者包含该频率资源范围。
基站以相同的发送波束发送上述参考信号,智能表面按照基站指定的波束方向在不同的时刻以不同的相位转发上述参考信号。
4、终端按照基站的信息接收参考信号,测量各个信号强度,反馈测量结果或者反馈最优波束相位对应的波束编号。
5、基站按照终端上报的测量结果,通知智能表面调整波束相位。
实施例二:对于动态调度的终端业务,终端需要测量同一个智能表面波束的不同相位的子带CSI,以确定最优的通信方式。智能表面的波束训练流程具体如下:
1、基站进行智能表面的波束方向训练。
终端通过参考信号的强度RSRP选择最优波束方向,并上报给基站。具体过程与上述实施例一相同。
2、基站进行智能表面的波束相位训练。
基站在全带宽发送参考信号(一次发送或者按照子带时分发送),按照需要测量的智能表面波束相位数量,相应配置参考信号数量。配置和实现方式同实施例一。
3、终端接收上述参考信号并测量子带CSI并上报。
可选的,终端按照智能表面的波束相位数量,分别上报最优子带CSI,即针对每个波束相位,分别上报该波束相位下的最优子带CSI。
可选的,终端按照跳频的规则(跳频子带的配对方式,即子带1和子带2之间进行跳频),测量智能表面波束相位1的子带1和智能表面波束相位2的子带2的CSI,上报最优的跳频子带。
进一步可选的,可将上述子带1的CSI和子带2的CSI进行加权后,得到一个子带CSI并上报。
4、基站根据终端的上报结果调度PDSCH。
可选的,基站根据多个波束相位的上报结果,选择最优的波束相位,并配置给智能表面;基站在相应的最优子带上发送PDSCH。
可选的,基站配置智能表面波束相位的切换时间和切换顺序;基站根据切换时间和切换顺序为终端调度跳频的PDSCH。其中,跳频的子带由终端上报信息决定。
例如,在智能表面的波束相位在第一时间由相位1切换至相位2,而在相位1时,最优子带为第一子带,在相位2时,最优子带为第二子带,则在第一时间之前在第一子带上发送PDSCH,在第一时间之后,在第二子带上发送PDSCH。
实施例三:对于动态调度的通信业务,使用一个阶段的流程完成测量调度。
假设智能表面的波束方向数量是N,每个波束方向的相位数量是M。
1、基站确定智能表面的波束方向和波束数量。
2、基站为所有智能表面的波束方向和波束相位进行配置。
具体的,基站配置M*N个参考信号,分别对应于智能表面的M*N个转发模式,基站将参考信号的配置参数通知给终端,并且指示各个参考信号对应于哪个智能表面波束。
3、终端接收上述参考信号,并进行子带CSI测量和上报。
测量上报方法同实施例二。
这里,根据M*N个参考信号,选择最优子带和相应最优波束方向和波束相位,或者,根据M*N个参考信号,选择多个用于跳频的最优子带和相应最优波束方向和最优波束相位,或者,在一个波束方向的M个波束相位内选择多个用于跳频的最优子带和相应波束相位。
4、基站按照终端的上报结果配置智能表面并调度终端PDSCH。
本申请实施例的波束训练方法,对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息;将所述测量信息上报给所述网络设备,使得网络设备可以确定出辅助设备转发信号的最优波束方向和最优波束相位,进而能够基于该最优波束方向和波束相位减少多径环境导致的频率选择性衰落的影响。
如图3所示,本申请实施例还提供了一种波束训练方法,应用于网络侧设备,该方法包括:
步骤301:发送至少两个用于波束训练的参考信号。
本步骤中,上述参考信号为用于进行波束训练的信号,具体的,上述参考信号为用于确定辅助设备的波束方向和波束相位的信号,或者,该参考信号包括用于确定辅助设备的波束方向的第一参考信号和用于确定辅助设备的波束相位的第二参考信号。
步骤302:获取终端设备上报的测量信息,所述测量信息是终端设备对辅助设备在至少两个转发模式下转发的所述至少两个用于波束训练的参考信号进行测量后得到的,所述辅助设备的转发模式由所述辅助设备转发信号的波束方向和转发信号的波束相位确定。
上述测量信息可以包括以下至少一项:
所述参考信号的信号强度;
最优波束方向的编号;
最优波束相位的编号。
步骤303:根据所述测量信息,确定所述辅助设备的最优转发模式。
这里,网络设备根据测量信息,可以确定出辅助设备转发波束的最优波束方向和最优波束相位,即得到所述辅助设备的最优转发模式,从而可通过控制多径相位来改善频率选择性衰落的影响。
本申请实施例的波束训练方法,发送至少两个用于波束训练的参考信号;获取终端设备上报的测量信息;根据所述测量信息,确定所述辅助设备的最优转发模式,即确定所述辅助设备的最优波束方向和最优波束相位,从而可通过控制多径相位来改善频率选择性衰落的影响。
作为第一种可选的实现方式,所述参考信号包括第一参考信号和第二参考信号;
所述第一参考信号为用于确定所述辅助设备的波束方向的参考信号;
所述第二参考信号为用于确定所述辅助设备的波束相位的参考信号。
基于此,所述获取终端设备上报的测量信息之前,还包括:
向所述终端设备发送第一指示信息和第二指示信息:
所述第一指示信息为所述第一参考信号的时频资源配置信息,所述第一指示信息对应至少N个发送时机,N小于或者等于所述辅助设备转发信号的波束方向的数量;
所述第二指示信息为所述第二参考信号的时频资源配置信息,所述第二指示信息对应至少M个发送时机,M小于或者等于所述辅助设备转发信号的波束相位的数量。
可选的,所述获取终端设备上报的测量信息之前,还包括:
向所述辅助设备发送第一配置信息和第二配置信息:
所述第一配置信息为所述辅助设备的N个转发信号的波束方向的时域配置信息,所述时域配置信息与所述第一参考信号的N个发送时机一一对应;
所述第二配置信息为所述辅助设备的最优波束方向对应的M个波束相位的时域配置信息,所述时域配置信息与所述第二参考信号的M个发送时机一一对应,所述最优波束方向由所述第一参考信号确定。
可选的,所述测量信息包括第一测量信息和第二测量信息;
所述第一测量信息用于指示在所述第一参考信号的带宽内所述辅助设备转发信号的最优波束方向;
所述第二测量信息用于指示在所述第二参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的最优波束相位。
作为第二种可选的实现方式,所述用于波束训练的参考信号为第三参考信号;
所述第三参考信号为用于确定所述辅助设备的波束方向和波束相位的参考信号,所述第三参考信号的发送时机的数量为M*N个;
其中,N为网络设备配置的所述辅助设备转发信号的波束方向的数量,M为网络设备配置的每个转发波束的波束相位的数量,每个第三参考信号的发送时机对应辅助设备的一个波束方向和一个波束相位,且不同的波束训练信号对应的转发波束和/或波束相位不同。
可选的,所述获取终端设备上报的测量信息之前,还包括:
向终端设备发送的第三指示信息:
所述第三指示信息为所述第三参考信号的时频资源配置信息,所述第三指示信息对应至少M*N个发送时机,N小于或者等于所述辅助设备转发信号的波束方向的数量,M小于或者等于所述辅助设备转发信号的波束相位的数量。
可选的,本申请实施例的波束训练方法,还包括:
向所述辅助设备发送第三配置信息:
所述第三配置信息为所述辅助设备的M*N个转发信号的波束方向和波束相位的时域配置信息,所述时域配置信息与所述第三参考信号的M*N个发送时机一一对应。
可选的,所述测量信息包括第三测量信息和/或第四测量信息,
所述第三测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的波束方向和波束相位以及子带的最优组合的信息;
第四测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的M个波束相位对应的最优子带的信息。
可选的,本申请实施例中,对于半静态调度的业务,所述参考信号包括 第一参考信号和第二参考信号,或者,所述参考信号包括第二参考信号;
在所述参考信号包括第一参考信号和第二参考信号的情况下,所述测量信息包括第一测量信息和第二测量信息;
在所述参考信号包括所述第二参考信号的情况下,所述测量信息包括第二测量信息。
可选的,本申请实施例中,对于动态调度的业务,所述参考信号包括第一参考信号和第二参考信号;或者,所述参考信号包括第三参考信号;
在所述参考信号包括第一参考信号和第二参考信号的情况下,所述测量信息包括第一测量信息和第二测量信息;
在所述参考信号为第三参考信号的情况下,所述测量信息包括第三测量信息和/或第四测量信息;
所述第三测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的波束方向和波束相位以及子带的最优组合的信息;
所述第四测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的M个波束相位对应的最优子带的信息。
进一步可选的,本申请实施例的波束训练方法,还包括:
接收终端设备上报的子带CSI信息,所述子带CSI信息对应于所述第二参考信号或者所述第三参考信号不同发送时机下的子带CSI的测量信息。
可选的,所述子带CSI信息包括每个所述第二参考信号的发送时机下的最优子带的CSI;
或者,所述子带CSI信息包括每个所述第三参考信号的发送时机下的最优子带的CSI;
或者,所述子带CSI信息最优的子带组合的CSI;
其中,所述子带组合包括按照跳频规则配对的M个跳频子带,且所述M个跳频子带对应于所述第二参考信号的M个发送时机,或者,M个跳频子带对应于所述第三参考信号的M个发送时机。
可选的,所述根据所述测量信息,确定所述辅助设备的最优转发模式之后,还包括:
使用子带和所述最优转发模式的最优组合调度数据传输。
可选的,所述使用子带和所述最优转发模式的最优组合调度数据传输,包括:
在最优子带上进行数据传输,所述最优子带为所述最优组合中的子带;
或者,以跳频的方式依次在所述子带组合的M个跳频子带上进行数据传输。
可选的,所述使用子带和所述最优转发模式的最优组合调度数据传输之前,还包括:
向所述辅助设备发送第四配置信息,所述第四配置信息指示用于数据传输的最优子带对应的辅助设备的最优转发模式;
或者,向所述辅助设备发送第五配置信息,所述第五配置信息指示用于数据传输的M个子带对应的M个辅助设备的转发模式。
可选的,本申请实施例的波束训练方法,还包括:
通过以下至少一种方式对所述辅助设备的波束相位进行控制;
对所述辅助设备转发波束的阵列信息进行偏置处理;
根据不同的离散化指标计算所述辅助设备转发波束的阵列信息。
本申请实施例中,智能表面的波束生成原理是通过各个智能表面器件的出射信号的相位差实现的。在保证器件之间的相位差不变的前提下,整体改变阵列的状态,可以实现波束相位的控制。
例如,如图1,智能表面是1bit控制的设备,实现0或者π的相位反转。当前波束的阵列信息是A=(1000,0100,0001,1010),将阵列信息整体增加一个偏置1,
Figure PCTCN2021108993-appb-000005
此时出射波束方向不变,但是波束相位翻转了π。
波束相位的控制还可以通过器件出射信号相位离散化的指标来实现。
例如,以下公式中Δφ mn的范围为(0,π)和(π,2π),则预期的出射信号的波束相位应叠加为
Figure PCTCN2021108993-appb-000006
Figure PCTCN2021108993-appb-000007
即分别取(0,π)和(π,2π)的中间值。
Figure PCTCN2021108993-appb-000008
又例如公式中Δφ mn的范围为
Figure PCTCN2021108993-appb-000009
Figure PCTCN2021108993-appb-000010
则预期的出射信号的波束相位应叠加为0和π。
Figure PCTCN2021108993-appb-000011
智能设备根据不同的离散化指标实现不同的波束相位。将上述两种离散化指标结合,可以使智能表面的出射波束相位数量多于智能设备器件状态数量。
本申请实施例的波束训练方法,发送至少两个用于波束训练的参考信号;获取终端设备上报的测量信息;根据所述测量信息,确定所述辅助设备的最优转发模式,即确定所述辅助设备的最优波束方向和最优波束相位,从而可通过控制多径相位来改善频率选择性衰落的影响。
需要说明的是,上述波束训练方法描述的是下行的相关流程,当然本申请实施例中也可以通过上行的波束训练流程来实现,即终端设备发送至少两个用于波束训练的参考信号,或者一部分参考由网络设备发送,另一部分由终端设备发送;网络设备对对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息并发送给终端设备;终端设备根据测量信息,确定所述辅助设备的最优转发模式。
需要说明的是,本申请实施例提供的波束训练方法,执行主体可以为波束训练装置,或者,该波束训练装置中的用于执行波束训练方法的控制模块。本申请实施例中以波束训练装置执行波束训练方法为例,说明本申请实施例提供的波束训练装置。
如图4所示,本申请实施例提供了一种波束训练装置400,应用于终端设备,包括:
第一获取模块401,用于对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息,所述测量信息用于指示所述辅助设备的最优转发模式,所述辅助设备的转发模式由所述辅助设备转发信号的波束方向和转发信号的波束相位确定;
第一上报模块402,用于将所述测量信息上报给所述网络设备。
本申请实施例的波束训练装置,对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息;将所述测量信息上报给所述网络设备,使得网络设备可以确定出辅助设备转发信号的最优波束方向和最优波束相位,进而能够基于该最优波束方向和波束相位减少多径环境导致的频率选择性衰落的影响。
本申请实施例的波束训练装置,所述参考信号包括第一参考信号和第二参考信号;
所述第一参考信号为所述网络设备发送的用于确定所述辅助设备的波束方向的参考信号;
所述第二参考信号为所述网络设备发送的用于确定所述辅助设备的波束相位的参考信号。
本申请实施例的波束训练装置,还包括:
第一接收模块,用于第一获取模块对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量之前,接收网络设备发送的第一指示信息和第二指示信息;
所述第一指示信息为所述第一参考信号的时频资源配置信息,所述第一指示信息对应至少N个发送时机,N小于或者等于所述辅助设备转发信号的波束方向的数量;
所述第二指示信息为所述第二参考信号的时频资源配置信息,所述第二指示信息对应至少M个发送时机,M小于或者等于所述辅助设备转发信号的波束相位的数量。
本申请实施例的波束训练装置,所述第一参考信号的带宽大于或者等于预设带宽阈值。
本申请实施例的波束训练装置,所述第二参考信号对应的第一频率范围大于或等于第二频率范围,所述第二频率范围为终端设备与网络设备传输数据对应的频率范围。
本申请实施例的波束训练装置,所述第一获取模块包括:
第一获取子模块,用于对所述第一参考信号进行测量,得到第一测量信息,所述第一测量信息用于指示在所述第一参考信号的带宽内所述辅助设备 转发信号的最优波束方向;
第二获取子模块,用于对所述第二参考信号进行测量,得到第二测量信息,所述第二测量信息用于指示在所述第二参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的最优波束相位。
本申请实施例的波束训练装置,所述用于波束训练的参考信号为第三参考信号;
所述第三参考信号为网络设备发送的用于确定所述辅助设备的波束方向和波束相位的参考信号,所述第三参考信号的发送时机的数量为M*N个;
其中,N为网络设备配置的所述辅助设备转发信号的波束方向的数量,M为网络设备配置的每个转发波束的波束相位的数量,每个第三参考信号的发送时机对应辅助设备的一个波束方向和一个波束相位,且不同的波束训练信号对应的转发波束和/或波束相位不同。
本申请实施例的波束训练装置,还包括:
第二接收模块,用于第一获取模块对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量之前,接收网络设备发送的第三指示信息;
所述第三指示信息为所述第三参考信号的时频资源配置信息,所述第三指示信息对应至少M*N个发送时机,N小于或者等于所述辅助设备转发信号的波束方向的数量,M小于或者等于所述辅助设备转发信号的波束相位的数量。
本申请实施例的波束训练装置,所述第一获取模块用于对所述第三参考信号进行测量,得到第三测量信息,所述第三测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的波束方向和波束相位以及子带的最优组合的信息;
和/或,对所述第三参考信号进行测量,得到第四测量信息,所述第四测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的M个波束相位对应的最优子带的信息。
本申请实施例的波束训练装置,所述第一获取模块用于对于半静态调度的业务,根据波束训练周期或者在接收到波束训练指示后,对所述参考信号 进行测量,得到测量信息;
其中,所述参考信号包括第一参考信号和第二参考信号,或者,所述参考信号包括第二参考信号;
在所述参考信号包括第一参考信号和第二参考信号的情况下,所述测量信息包括第一测量信息和第二测量信息;
在所述参考信号包括所述第二参考信号的情况下,所述测量信息包括第二测量信息。
本申请实施例的波束训练装置,所述第一获取模块用于对于动态调度的业务,根据波束训练周期或者在接收到波束训练指示后,对所述参考信号进行测量,得到测量信息;
其中,所述参考信号包括第一参考信号和第二参考信号,或者,所述参考信号包括第三参考信号;
在所述参考信号包括第一参考信号和第二参考信号的情况下,所述测量信息包括第一测量信息和第二测量信息;
在所述参考信号为第三参考信号的情况下,所述测量信息包括第三测量信息和/或第四测量信息。
本申请实施例的波束训练装置,还包括:
测量模块,用于测量所述第二参考信号或者所述第三参考信号不同发送时机下每个子带的信道状态信息CSI;
第二上报模块,用于将所述子带在第二参考信号或者第三参考信号不同发送时机下的CSI上报给网络设备;
其中,所述第二参考信号或者所述第三参考信号的不同发送时机对应于所述辅助设备的不同转发模式。
本申请实施例的波束训练装置,所述第二上报模块用于上报每个所述第二参考信号的发送时机下的最优子带的CSI;
或者,上报每个所述第三参考信号的发送时机下的最优子带的CSI。
本申请实施例的波束训练装置,所述第二上报模块用于根据M个发送时机的子带CSI,确定最优的子带组合的CSI上报给网络设备;
其中,所述子带组合包括按照跳频规则配对的M个跳频子带,且所述M 个跳频子带对应于所述第二参考信号的M个发送时机,或者,M个跳频子带对应于所述第三参考信号的M个发送时机。
本申请实施例的波束训练装置,对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息;将所述测量信息上报给所述网络设备,使得网络设备可以确定出辅助设备转发信号的最优波束方向和最优波束相位,进而能够基于该最优波束方向和波束相位减少多径环境导致的频率选择性衰落的影响。
本申请实施例中的波束训练装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的波束训练装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的波束训练装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图5所示,本申请实施例还提供一种通信设备500,包括处理器501,存储器502,存储在存储器502上并可在所述处理器501上运行的程序或指令,例如,该通信设备500为终端设备时,该程序或指令被处理器501执行时实现上述应用于终端的波束训练方法实施例的各个过程,且能达到相同的技术效果。该通信设备500为网络设备时,该程序或指令被处理器501执行时实现上述应用于网络设备的波束训练方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图6为实现本申请实施例的一种终端设备的硬件结构示意图。
该终端设备600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609、以及处理器610等部件。
本领域技术人员可以理解,终端设备600还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图6中示出的终端结构并不构成对终端设备的限定,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元604可以包括图形处理器(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元606可包括显示面板6061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板6061。用户输入单元607包括触控面板6071以及其他输入设备6072。触控面板6071,也称为触摸屏。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元601将来自网络侧设备的下行数据接收后,给处理器610处理;另外,将上行的数据发送给网络侧设备。通常,射频单元601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器609可用于存储软件程序或指令以及各种数据。存储器609可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器609可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器610可包括一个或多个处理单元;可选的,处理器610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界 面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
其中,处理器610,用于对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息,所述测量信息用于指示所述辅助设备的最优转发模式,所述辅助设备的转发模式由所述辅助设备转发信号的波束方向和转发信号的波束相位确定;射频单元601将所述测量信息上报给所述网络设备。
本申请实施例的终端设备,对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息;将所述测量信息上报给所述网络设备,使得网络设备可以确定出辅助设备转发信号的最优波束方向和最优波束相位,进而能够基于该最优波束方向和波束相位减少多径环境导致的频率选择性衰落的影响。
可选的,所述参考信号包括第一参考信号和第二参考信号;
所述第一参考信号为所述网络设备发送的用于确定所述辅助设备的波束方向的参考信号;
所述第二参考信号为所述网络设备发送的用于确定所述辅助设备的波束相位的参考信号。
可选的,处理器610,还用于通过射频单元接收网络设备发送的第一指示信息和第二指示信息;
所述第一指示信息为所述第一参考信号的时频资源配置信息,所述第一指示信息对应至少N个发送时机,N小于或者等于所述辅助设备转发信号的波束方向的数量;
所述第二指示信息为所述第二参考信号的时频资源配置信息,所述第二指示信息对应至少M个发送时机,M小于或者等于所述辅助设备转发信号的波束相位的数量。
可选的,所述第一参考信号的带宽大于或者等于预设带宽阈值。
可选的,所述第二参考信号对应的第一频率范围大于或等于第二频率范围,所述第二频率范围为终端设备与网络设备传输数据对应的频率范围。
可选的,处理器610,还用于对所述第一参考信号进行测量,得到第一测 量信息,所述第一测量信息用于指示在所述第一参考信号的带宽内所述辅助设备转发信号的最优波束方向;
对所述第二参考信号进行测量,得到第二测量信息,所述第二测量信息用于指示在所述第二参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的最优波束相位。
可选的,所述用于波束训练的参考信号为第三参考信号;
所述第三参考信号为网络设备发送的用于确定所述辅助设备的波束方向和波束相位的参考信号,所述第三参考信号的发送时机的数量为M*N个;
其中,N为网络设备配置的所述辅助设备转发信号的波束方向的数量,M为网络设备配置的每个转发波束的波束相位的数量,每个第三参考信号的发送时机对应辅助设备的一个波束方向和一个波束相位,且不同的波束训练信号对应的转发波束和/或波束相位不同。
可选的,处理器610,还用于通过射频单元接收网络设备发送的第三指示信息;
所述第三指示信息为所述第三参考信号的时频资源配置信息,所述第三指示信息对应至少M*N个发送时机,N小于或者等于所述辅助设备转发信号的波束方向的数量,M小于或者等于所述辅助设备转发信号的波束相位的数量。
可选的,处理器610,还用于对所述第三参考信号进行测量,得到第三测量信息,所述第三测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的波束方向和波束相位以及子带的最优组合的信息;
和/或,对所述第三参考信号进行测量,得到第四测量信息,所述第四测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的M个波束相位对应的最优子带的信息。
可选的,处理器610,还用于对于半静态调度的业务,根据波束训练周期或者在接收到波束训练指示后,对所述参考信号进行测量,得到测量信息;
其中,所述参考信号包括第一参考信号和第二参考信号,或者,所述参考信号包括第二参考信号;
在所述参考信号包括第一参考信号和第二参考信号的情况下,所述测量 信息包括第一测量信息和第二测量信息;
在所述参考信号包括所述第二参考信号的情况下,所述测量信息包括第二测量信息。
可选的,处理器610,还用于对于动态调度的业务,根据波束训练周期或者在接收到波束训练指示后,对所述参考信号进行测量,得到测量信息;
其中,所述参考信号包括第一参考信号和第二参考信号,或者,所述参考信号包括第三参考信号;
在所述参考信号包括第一参考信号和第二参考信号的情况下,所述测量信息包括第一测量信息和第二测量信息;
在所述参考信号为第三参考信号的情况下,所述测量信息包括第三测量信息和/或第四测量信息。
可选的,处理器610,还用于测量所述第二参考信号或者所述第三参考信号不同发送时机下每个子带的信道状态信息CSI;将所述子带在第二参考信号或者第三参考信号不同发送时机下的CSI上报给网络设备;
其中,所述第二参考信号或者所述第三参考信号的不同发送时机对应于所述辅助设备的不同转发模式。
可选的,处理器610,还用于上报每个所述第二参考信号的发送时机下的最优子带的CSI;
或者,上报每个所述第三参考信号的发送时机下的最优子带的CSI。
可选的,处理器610,还用于根据M个发送时机的子带CSI,确定最优的子带组合的CSI上报给网络设备;
其中,所述子带组合包括按照跳频规则配对的M个跳频子带,且所述M个跳频子带对应于所述第二参考信号的M个发送时机,或者,M个跳频子带对应于所述第三参考信号的M个发送时机。
本申请实施例的终端设备,对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息;将所述测量信息上报给所述网络设备,使得网络设备可以确定出辅助设备转发信号的最优波束方向和最优波束相位,进而能够基于该最优波束方向和波束相位减少多径环境导致的频率选择性衰落的影响。
如图7所示,本申请实施例还提供了一种波束训练装置700,应用于网络设备,包括:
第一发送模块701,用于发送至少两个用于波束训练的参考信号;
第二获取模块702,用于获取终端设备上报的测量信息,所述测量信息是终端设备对辅助设备在至少两个转发模式下转发的所述至少两个用于波束训练的参考信号进行测量后得到的,所述辅助设备的转发模式由所述辅助设备转发信号的波束方向和转发信号的波束相位确定;
第一确定模块703,用于根据所述测量信息,确定所述辅助设备的最优转发模式。
本申请实施例的波束训练装置,发送至少两个用于波束训练的参考信号;获取终端设备上报的测量信息;根据所述测量信息,确定所述辅助设备的最优转发模式,即确定所述辅助设备的最优波束方向和最优波束相位,从而可通过控制多径相位来改善频率选择性衰落的影响。
本申请实施例的波束训练装置,所述参考信号包括第一参考信号和第二参考信号;
所述第一参考信号为用于确定所述辅助设备的波束方向的参考信号;
所述第二参考信号为用于确定所述辅助设备的波束相位的参考信号。
本申请实施例的波束训练装置,还包括:
第二发送模块,用于第二获取模块获取终端设备上报的测量信息之前,向所述终端设备发送第一指示信息和第二指示信息:
所述第一指示信息为所述第一参考信号的时频资源配置信息,所述第一指示信息对应至少N个发送时机,N小于或者等于所述辅助设备转发信号的波束方向的数量;
所述第二指示信息为所述第二参考信号的时频资源配置信息,所述第二指示信息对应至少M个发送时机,M小于或者等于所述辅助设备转发信号的波束相位的数量。
本申请实施例的波束训练装置,还包括:
第三发送模块,用于第二获取模块获取终端设备上报的测量信息之前,向所述辅助设备发送第一配置信息和第二配置信息:
所述第一配置信息为所述辅助设备的N个转发信号的波束方向的时域配置信息,所述时域配置信息与所述第一参考信号的N个发送时机一一对应;
所述第二配置信息为所述辅助设备的最优波束方向对应的M个波束相位的时域配置信息,所述时域配置信息与所述第二参考信号的M个发送时机一一对应,所述最优波束方向由所述第一参考信号确定。
本申请实施例的波束训练装置,所述测量信息包括第一测量信息和第二测量信息;
所述第一测量信息用于指示在所述第一参考信号的带宽内所述辅助设备转发信号的最优波束方向;
所述第二测量信息用于指示在所述第二参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的最优波束相位。
本申请实施例的波束训练装置,所述参考信号为第三参考信号;
所述第三参考信号为用于确定所述辅助设备的波束方向和波束相位的参考信号,所述第三参考信号的发送时机的数量为M*N个;
其中,N为网络设备配置的所述辅助设备转发信号的波束方向的数量,M为网络设备配置的每个转发波束的波束相位的数量,每个第三参考信号的发送时机对应辅助设备的一个波束方向和一个波束相位,且不同的波束训练信号对应的转发波束和/或波束相位不同。
本申请实施例的波束训练装置,还包括:
第四发送模块,用于第二获取模块获取终端设备上报的测量信息之前,向终端设备发送的第三指示信息:
所述第三指示信息为所述第三参考信号的时频资源配置信息,所述第三指示信息对应至少M*N个发送时机,N小于或者等于所述辅助设备转发信号的波束方向的数量,M小于或者等于所述辅助设备转发信号的波束相位的数量。
本申请实施例的波束训练装置,还包括:
第五发送模块,用于向所述辅助设备发送第三配置信息:
所述第三配置信息为所述辅助设备的M*N个转发信号的波束方向和波束相位的时域配置信息,所述时域配置信息与所述第三参考信号的M*N个发 送时机一一对应。
本申请实施例的波束训练装置,所述测量信息包括第三测量信息和/或第四测量信息,
所述第三测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的波束方向和波束相位以及子带的最优组合的信息;
第四测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的M个波束相位对应的最优子带的信息。
本申请实施例的波束训练装置,对于半静态调度的业务,所述参考信号包括第一参考信号和第二参考信号,或者,所述参考信号包括第二参考信号;
在所述参考信号包括第一参考信号和第二参考信号的情况下,所述测量信息包括第一测量信息和第二测量信息;
在所述参考信号包括所述第二参考信号的情况下,所述测量信息包括第二测量信息。
本申请实施例的波束训练装置,对于动态调度的业务,所述参考信号包括第一参考信号和第二参考信号;或者,所述参考信号包括第三参考信号;
在所述参考信号包括第一参考信号和第二参考信号的情况下,所述测量信息包括第一测量信息和第二测量信息;
在所述参考信号为第三参考信号的情况下,所述测量信息包括第三测量信息和/或第四测量信息;
所述第三测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的波束方向和波束相位以及子带的最优组合的信息;
所述第四测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的M个波束相位对应的最优子带的信息。
本申请实施例的波束训练装置,还包括:
第三接收模块,用于接收终端设备上报的子带CSI信息,所述子带CSI信息对应于所述第二参考信号或者所述第三参考信号不同发送时机下的子带CSI的测量信息。
本申请实施例的波束训练装置,所述子带CSI信息包括每个所述第二参考信号的发送时机下的最优子带的CSI;
或者,所述子带CSI信息包括每个所述第三参考信号的发送时机下的最优子带的CSI;
或者,所述子带CSI信息最优的子带组合的CSI;
其中,所述子带组合包括按照跳频规则配对的M个跳频子带,且所述M个跳频子带对应于所述第二参考信号的M个发送时机,或者,M个跳频子带对应于所述第三参考信号的M个发送时机。
本申请实施例的波束训练装置,还包括:
传输模块,用于第一确定模块根据所述测量信息,确定所述辅助设备的最优转发模式之后,使用子带和所述最优转发模式的最优组合调度数据传输。
本申请实施例的波束训练装置,所述传输模块用于在最优子带上进行数据传输,所述最优子带为所述最优组合中的子带;
或者,以跳频的方式依次在所述子带组合的M个跳频子带上进行数据传输。
本申请实施例的波束训练装置,所述使用子带和所述最优转发模式的最优组合调度数据传输之前,还包括:
第六发送模块,用于向所述辅助设备发送第四配置信息,所述第四配置信息指示用于数据传输的最优子带对应的辅助设备的最优转发模式;
或者,向所述辅助设备发送第五配置信息,所述第五配置信息指示用于数据传输的M个子带对应的M个辅助设备的转发模式。
本申请实施例的波束训练装置,还包括:
控制模块,用于通过以下至少一种方式对所述辅助设备的波束相位进行控制;
对所述辅助设备转发波束的阵列信息进行偏置处理;
根据不同的离散化指标计算所述辅助设备转发波束的阵列信息。
本申请实施例的波束训练装置,发送至少两个用于波束训练的参考信号;获取终端设备上报的测量信息;根据所述测量信息,确定所述辅助设备的最优转发模式,即确定所述辅助设备的最优波束方向和最优波束相位,从而可通过控制多径相位来改善频率选择性衰落的影响。
具体地,本申请实施例还提供了一种网络设备。如图8所示,该网络设 备800包括:天线801、射频装置802、基带装置803。天线801与射频装置802连接。在上行方向上,射频装置802通过天线801接收信息,将接收的信息发送给基带装置803进行处理。在下行方向上,基带装置803对要发送的信息进行处理,并发送给射频装置802,射频装置802对收到的信息进行处理后经过天线81发送出去。
上述频带处理装置可以位于基带装置803中,以上实施例中网络设备执行的方法可以在基带装置803中实现,该基带装置803包括处理器804和存储器805。
基带装置803例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为处理器804,与存储器805连接,以调用存储器805中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置803还可以包括网络接口806,用于与射频装置802交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络设备还包括:存储在存储器805上并可在处理器804上运行的指令或程序,处理器804调用存储器805中的指令或程序执行图7所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述波束训练实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现上述波束训练方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片, 芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (44)

  1. 一种波束训练方法,应用于终端设备,包括:
    对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息,所述测量信息用于指示所述辅助设备的最优转发模式,所述辅助设备的转发模式由所述辅助设备转发信号的波束方向和转发信号的波束相位确定;
    将所述测量信息上报给网络设备。
  2. 根据权利要求1所述的波束训练方法,其中,所述参考信号包括第一参考信号和第二参考信号;
    所述第一参考信号为所述网络设备发送的用于确定所述辅助设备的波束方向的参考信号;
    所述第二参考信号为所述网络设备发送的用于确定所述辅助设备的波束相位的参考信号。
  3. 根据权利要求2所述的波束训练方法,其中,所述对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量之前,还包括:
    接收网络设备发送的第一指示信息和第二指示信息;
    所述第一指示信息为所述第一参考信号的时频资源配置信息,所述第一指示信息对应至少N个发送时机,N小于或者等于所述辅助设备转发信号的波束方向的数量;
    所述第二指示信息为所述第二参考信号的时频资源配置信息,所述第二指示信息对应至少M个发送时机,M小于或者等于所述辅助设备转发信号的波束相位的数量。
  4. 根据权利要求2或3所述的波束训练方法,其中,所述第一参考信号的带宽大于或者等于预设带宽阈值。
  5. 根据权利要求2或3所述的波束训练方法,其中,所述第二参考信号对应的第一频率范围大于或等于第二频率范围,所述第二频率范围为终端设备与网络设备传输数据对应的频率范围。
  6. 根据权利要求2所述的波束训练方法,其中,所述对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息,包括:
    对所述第一参考信号进行测量,得到第一测量信息,所述第一测量信息用于指示在所述第一参考信号的带宽内所述辅助设备转发信号的最优波束方向;
    对所述第二参考信号进行测量,得到第二测量信息,所述第二测量信息用于指示在所述第二参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的最优波束相位。
  7. 根据权利要求1所述的波束训练方法,其中,所述参考信号为第三参考信号;
    所述第三参考信号为网络设备发送的用于确定所述辅助设备的波束方向和波束相位的参考信号,所述第三参考信号的发送时机的数量为M*N个;
    其中,N为网络设备配置的所述辅助设备转发信号的波束方向的数量,M为网络设备配置每个转发波束的波束相位的数量,每个第三参考信号的发送时机对应辅助设备的一个波束方向和一个波束相位,且不同的波束训练信号对应的转发波束和/或波束相位不同。
  8. 根据权利要求7所述的波束训练方法,其中,所述对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量之前,还包括:
    接收网络设备发送的第三指示信息;
    所述第三指示信息为所述第三参考信号的时频资源配置信息,所述第三指示信息对应至少M*N个发送时机,N小于或者等于所述辅助设备转发信号的波束方向的数量,M小于或者等于所述辅助设备转发信号的波束相位的数量。
  9. 根据权利要求7所述的波束训练方法,其中,所述对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,包括:
    对所述第三参考信号进行测量,得到第三测量信息,所述第三测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的波束方向 和波束相位以及子带的最优组合的信息;
    和/或,对所述第三参考信号进行测量,得到第四测量信息,所述第四测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的M个波束相位对应的最优子带的信息。
  10. 根据权利要求2所述的波束训练方法,其中,所述对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,包括:
    对于半静态调度的业务,根据波束训练周期或者在接收到波束训练指示后,对所述参考信号进行测量,得到测量信息;
    其中,所述参考信号包括第一参考信号和第二参考信号,或者,所述参考信号包括第二参考信号;
    在所述参考信号包括第一参考信号和第二参考信号的情况下,所述测量信息包括第一测量信息和第二测量信息;
    在所述参考信号包括所述第二参考信号的情况下,所述测量信息包括第二测量信息。
  11. 根据权利要求1所述的波束训练方法,其中,所述对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,包括:
    对于动态调度的业务,根据波束训练周期或者在接收到波束训练指示后,对所述参考信号进行测量,得到测量信息;
    其中,所述参考信号包括第一参考信号和第二参考信号,或者,所述参考信号包括第三参考信号;
    在所述参考信号包括第一参考信号和第二参考信号的情况下,所述测量信息包括第一测量信息和第二测量信息;
    在所述参考信号为第三参考信号的情况下,所述测量信息包括第三测量信息和/或第四测量信息。
  12. 根据权利要求11所述的波束训练方法,还包括:
    测量所述第二参考信号或者所述第三参考信号不同发送时机下每个子带的信道状态信息CSI;
    将所述子带在第二参考信号或者第三参考信号不同发送时机下的CSI上报给网络设备;
    其中,所述第二参考信号或者所述第三参考信号的不同发送时机对应于所述辅助设备的不同转发模式。
  13. 根据权利要求12所述的波束训练方法,其中,所述将所述子带在第二参考信号或者第三参考信号不同发送时机下的CSI上报给网络设备,包括:
    上报每个所述第二参考信号的发送时机下的最优子带的CSI;
    或者,上报每个所述第三参考信号的发送时机下的最优子带的CSI。
  14. 根据权利要求12所述的波束训练方法,其中,所述将所述子带在第二参考信号或者第三参考信号不同发送时机下的CSI上报给网络设备,包括:
    根据M个发送时机的子带CSI,确定最优的子带组合的CSI上报给网络设备;
    其中,所述子带组合包括按照跳频规则配对的M个跳频子带,且所述M个跳频子带对应于所述第二参考信号的M个发送时机,或者,M个跳频子带对应于所述第三参考信号的M个发送时机。
  15. 一种波束训练方法,应用于网络设备,包括:
    发送至少两个用于波束训练的参考信号;
    获取终端设备上报的测量信息,所述测量信息是终端设备对辅助设备在至少两个转发模式下转发的所述至少两个用于波束训练的参考信号进行测量后得到的,所述辅助设备的转发模式由所述辅助设备转发信号的波束方向和转发信号的波束相位确定;
    根据所述测量信息,确定所述辅助设备的最优转发模式。
  16. 根据权利要求15所述的波束训练方法,其中,所述参考信号包括第一参考信号和第二参考信号;
    所述第一参考信号为用于确定所述辅助设备的波束方向的参考信号;
    所述第二参考信号为用于确定所述辅助设备的波束相位的参考信号。
  17. 根据权利要求16所述的波束训练方法,其中,所述获取终端设备上报的测量信息之前,还包括:
    向所述终端设备发送第一指示信息和第二指示信息:
    所述第一指示信息为所述第一参考信号的时频资源配置信息,所述第一指示信息对应至少N个发送时机,N小于或者等于所述辅助设备转发信号的 波束方向的数量;
    所述第二指示信息为所述第二参考信号的时频资源配置信息,所述第二指示信息对应至少M个发送时机,M小于或者等于所述辅助设备转发信号的波束相位的数量。
  18. 根据权利要求17所述的波束训练方法,其中,所述获取终端设备上报的测量信息之前,还包括:
    向所述辅助设备发送第一配置信息和第二配置信息:
    所述第一配置信息为所述辅助设备的N个转发信号的波束方向的时域配置信息,所述时域配置信息与所述第一参考信号的N个发送时机一一对应;
    所述第二配置信息为所述辅助设备的最优波束方向对应的M个波束相位的时域配置信息,所述时域配置信息与所述第二参考信号的M个发送时机一一对应,所述最优波束方向由所述第一参考信号确定。
  19. 根据权利要求16所述的波束训练方法,其中,所述测量信息包括第一测量信息和第二测量信息;
    所述第一测量信息用于指示在所述第一参考信号的带宽内所述辅助设备转发信号的最优波束方向;
    所述第二测量信息用于指示在所述第二参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的最优波束相位。
  20. 根据权利要求15所述的波束训练方法,其中,所述参考信号为第三参考信号;
    所述第三参考信号为用于确定所述辅助设备的波束方向和波束相位的参考信号,所述第三参考信号的发送时机的数量为M*N个;
    其中,N为网络设备配置的所述辅助设备转发信号的波束方向的数量,M为网络设备配置的每个转发波束的波束相位的数量,每个第三参考信号的发送时机对应辅助设备的一个波束方向和一个波束相位,且不同的波束训练信号对应的转发波束和/或波束相位不同。
  21. 根据权利要求20所述的波束训练方法,其中,所述获取终端设备上报的测量信息之前,还包括:
    向终端设备发送的第三指示信息:
    所述第三指示信息为所述第三参考信号的时频资源配置信息,所述第三指示信息对应至少M*N个发送时机,N小于或者等于所述辅助设备转发信号的波束方向的数量,M小于或者等于所述辅助设备转发信号的波束相位的数量。
  22. 根据权利要求21所述的波束训练方法,还包括:
    向所述辅助设备发送第三配置信息:
    所述第三配置信息为所述辅助设备的M*N个转发信号的波束方向和波束相位的时域配置信息,所述时域配置信息与所述第三参考信号的M*N个发送时机一一对应。
  23. 根据权利要求20所述的波束训练方法,其中,所述测量信息包括第三测量信息和/或第四测量信息,
    所述第三测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的波束方向和波束相位以及子带的最优组合的信息;
    第四测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的M个波束相位对应的最优子带的信息。
  24. 根据权利要求15所述的波束训练方法,其中,对于半静态调度的业务,所述参考信号包括第一参考信号和第二参考信号,或者,所述参考信号包括第二参考信号;
    在所述参考信号包括第一参考信号和第二参考信号的情况下,所述测量信息包括第一测量信息和第二测量信息;
    在所述参考信号包括所述第二参考信号的情况下,所述测量信息包括第二测量信息。
  25. 根据权利要求15所述的波束训练方法,其中,对于动态调度的业务,所述参考信号包括第一参考信号和第二参考信号;或者,所述参考信号包括第三参考信号;
    在所述参考信号包括第一参考信号和第二参考信号的情况下,所述测量信息包括第一测量信息和第二测量信息;
    在所述参考信号为第三参考信号的情况下,所述测量信息包括第三测量信息和/或第四测量信息;
    所述第三测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的波束方向和波束相位以及子带的最优组合的信息;
    所述第四测量信息为用于指示在所述第三参考信号的带宽内所述辅助设备转发信号的最优波束方向对应的M个波束相位对应的最优子带的信息。
  26. 根据权利要求25所述的波束训练方法,还包括:
    接收终端设备上报的子带CSI信息,所述子带CSI信息对应于所述第二参考信号或者所述第三参考信号不同发送时机下的子带CSI的测量信息。
  27. 根据权利要求26所述的波束训练方法,其中,所述子带CSI信息包括每个所述第二参考信号的发送时机下的最优子带的CSI;
    或者,所述子带CSI信息包括每个所述第三参考信号的发送时机下的最优子带的CSI;
    或者,所述子带CSI信息最优的子带组合的CSI;
    其中,所述子带组合包括按照跳频规则配对的M个跳频子带,且所述M个跳频子带对应于所述第二参考信号的M个发送时机,或者,M个跳频子带对应于所述第三参考信号的M个发送时机。
  28. 根据权利要求27所述的波束训练方法,其中,所述根据所述测量信息,确定所述辅助设备的最优转发模式之后,还包括:
    使用子带和所述最优转发模式的最优组合调度数据传输。
  29. 根据权利要求28所述的波束训练方法,其中,所述使用子带和所述最优转发模式的最优组合调度数据传输,包括:
    在最优子带上进行数据传输,所述最优子带为所述最优组合中的子带;
    或者,以跳频的方式依次在所述子带组合的M个跳频子带上进行数据传输。
  30. 根据权利要求29所述的波束训练方法,其中,所述使用子带和所述最优转发模式的最优组合调度数据传输之前,还包括:
    向所述辅助设备发送第四配置信息,所述第四配置信息指示用于数据传输的最优子带对应的辅助设备的最优转发模式;
    或者,向所述辅助设备发送第五配置信息,所述第五配置信息指示用于数据传输的M个子带对应的M个辅助设备的转发模式。
  31. 根据权利要求15所述的波束训练方法,还包括:
    通过以下至少一种方式对所述辅助设备的波束相位进行控制;
    对所述辅助设备转发波束的阵列信息进行偏置处理;
    根据不同的离散化指标计算所述辅助设备转发波束的阵列信息。
  32. 一种波束训练装置,应用于终端设备,包括:
    第一获取模块,用于对辅助设备在至少两个转发模式下转发的至少两个用于波束训练的参考信号进行测量,得到测量信息,所述测量信息用于指示所述辅助设备的最优转发模式,所述辅助设备的转发模式由所述辅助设备转发信号的波束方向和转发信号的波束相位确定;
    第一上报模块,用于将所述测量信息上报给网络设备。
  33. 根据权利要求32所述的波束训练装置,其中,所述参考信号包括第一参考信号和第二参考信号;
    所述第一参考信号为所述网络设备发送的用于确定所述辅助设备的波束方向的参考信号;
    所述第二参考信号为所述网络设备发送的用于确定所述辅助设备的波束相位的参考信号。
  34. 根据权利要求32所述的波束训练装置,其中,所述用于波束训练的参考信号为第三参考信号;
    所述第三参考信号为网络设备发送的用于确定所述辅助设备的波束方向和波束相位的参考信号,所述第三参考信号的发送时机的数量为M*N个;
    其中,N为网络设备配置的所述辅助设备转发信号的波束方向的数量,M为网络设备配置的每个转发波束的波束相位的数量,每个第三参考信号的发送时机对应辅助设备的一个波束方向和一个波束相位,且不同的波束训练信号对应的转发波束和/或波束相位不同。
  35. 一种波束训练装置,应用于网络设备,包括:
    第一发送模块,用于发送至少两个用于波束训练的参考信号;
    第二获取模块,用于获取终端设备上报的测量信息,所述测量信息是终端设备对辅助设备在至少两个转发模式下转发的所述至少两个用于波束训练的参考信号进行测量后得到的,所述辅助设备的转发模式由所述辅助设备转 发信号的波束方向和转发信号的波束相位确定;
    第一确定模块,用于根据所述测量信息,确定所述辅助设备的最优转发模式。
  36. 根据权利要求35所述的波束训练装置,其中,所述参考信号包括第一参考信号和第二参考信号;
    所述第一参考信号为用于确定所述辅助设备的波束方向的参考信号;
    所述第二参考信号为用于确定所述辅助设备的波束相位的参考信号。
  37. 根据权利要求36所述的波束训练装置,其中,所述参考信号为第三参考信号;
    所述第三参考信号为用于确定所述辅助设备的波束方向和波束相位的参考信号,所述第三参考信号的发送时机的数量为M*N个;
    其中,N为网络设备配置的所述辅助设备转发信号的波束方向的数量,M为网络设备配置的每个转发波束的波束相位的数量,每个第三参考信号的发送时机对应辅助设备的一个波束方向和一个波束相位,且不同的波束训练信号对应的转发波束和/或波束相位不同。
  38. 一种终端设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至14任一项所述的波束训练方法的步骤。
  39. 一种网络设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求15至31任一项所述的波束训练方法的步骤。
  40. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至14中任一项所述的波束训练方法的步骤或者实现如权利要求15至31中任一项所述的波束训练方法的步骤。
  41. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至14中任一项所述的波束训练方法的步骤或者实现如权利要求15至31中任一项所述的波束训练方法的步骤。
  42. 一种计算机程序产品,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至14中任一项所述的波束训练方法的步骤或者实现如权利要求15至31中任一项所述的波束训练方法的步骤。
  43. 一种终端设备,被配置成用于执行如权利要求1至14任一项所述的波束训练方法。
  44. 一种网络设备,被配置成用于执行如权利要求15至31任一项所述的波束训练方法。
PCT/CN2021/108993 2020-08-03 2021-07-28 波束训练方法、装置、终端设备及网络设备 WO2022028292A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237007604A KR20230047161A (ko) 2020-08-03 2021-07-28 빔 훈련 방법, 장치, 단말 장치 및 네트워크 장치
EP21854343.7A EP4191896A4 (en) 2020-08-03 2021-07-28 BEAM TRAINING METHOD AND DEVICE AS WELL AS TERMINAL DEVICE AND NETWORK DEVICE
JP2023507449A JP2023536485A (ja) 2020-08-03 2021-07-28 ビームトレーニング方法、装置、端末機器及びネットワーク機器
US18/163,334 US20230179277A1 (en) 2020-08-03 2023-02-02 Beam training method and apparatus, terminal device, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010769022.X 2020-08-03
CN202010769022.XA CN114070370A (zh) 2020-08-03 2020-08-03 波束训练方法、装置、终端设备及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/163,334 Continuation US20230179277A1 (en) 2020-08-03 2023-02-02 Beam training method and apparatus, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2022028292A1 true WO2022028292A1 (zh) 2022-02-10

Family

ID=80119903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108993 WO2022028292A1 (zh) 2020-08-03 2021-07-28 波束训练方法、装置、终端设备及网络设备

Country Status (6)

Country Link
US (1) US20230179277A1 (zh)
EP (1) EP4191896A4 (zh)
JP (1) JP2023536485A (zh)
KR (1) KR20230047161A (zh)
CN (1) CN114070370A (zh)
WO (1) WO2022028292A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023160119A1 (zh) * 2022-02-23 2023-08-31 华为技术有限公司 一种通信方法及设备
WO2024109697A1 (zh) * 2022-11-21 2024-05-30 华为技术有限公司 波束生成方法与通信装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115441912A (zh) * 2021-06-03 2022-12-06 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质
US20230078537A1 (en) * 2021-09-16 2023-03-16 Qualcomm Incorporated Channel state information reporting for reconfigurable intelligent surfaces
WO2023216193A1 (en) * 2022-05-12 2023-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for communication over ris
CN117119473A (zh) * 2022-05-12 2023-11-24 维沃移动通信有限公司 无线辅助设备的波束控制方法、装置及网络侧设备
WO2023225927A1 (en) * 2022-05-26 2023-11-30 Qualcomm Incorporated Reflective intelligent surface reference signals
CN117858111A (zh) * 2022-09-30 2024-04-09 维沃移动通信有限公司 传输方法、参数确定方法、装置和通信设备
CN117998390A (zh) * 2022-11-03 2024-05-07 维沃移动通信有限公司 波束处理方法、装置、通信设备及可读存储介质
CN117997398A (zh) * 2022-11-03 2024-05-07 维沃移动通信有限公司 级联链路中的信号测量处理方法、装置及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110278017A (zh) * 2019-06-27 2019-09-24 广东工业大学 一种基于智能反射面的多天线无线能量传输系统与方法
CN111245493A (zh) * 2020-01-10 2020-06-05 北京邮电大学 智能反射面辅助毫米波通信系统的高效波束训练方法
CN111245492A (zh) * 2020-01-10 2020-06-05 北京邮电大学 基于接收功率排序的联合波束训练和智能反射面选择方法
CN111917448A (zh) * 2020-08-13 2020-11-10 深圳大学 一种毫米波通信的波束训练方法、装置、系统及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102528468B1 (ko) * 2017-10-17 2023-05-04 삼성전자주식회사 무선 통신 시스템에서 빔 기반 협력 통신을 지원하는 방법 및 장치
CN110401475B (zh) * 2018-04-25 2021-10-15 华为技术有限公司 下行波束训练方法、网络设备和终端设备
CN109996265B (zh) * 2019-04-02 2021-08-03 华为技术有限公司 波束测量方法、装置、系统、网络设备和终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110278017A (zh) * 2019-06-27 2019-09-24 广东工业大学 一种基于智能反射面的多天线无线能量传输系统与方法
CN111245493A (zh) * 2020-01-10 2020-06-05 北京邮电大学 智能反射面辅助毫米波通信系统的高效波束训练方法
CN111245492A (zh) * 2020-01-10 2020-06-05 北京邮电大学 基于接收功率排序的联合波束训练和智能反射面选择方法
CN111917448A (zh) * 2020-08-13 2020-11-10 深圳大学 一种毫米波通信的波束训练方法、装置、系统及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP4191896A4 *
ZHENG BEIXIONG; ZHANG RUI: "Intelligent Reflecting Surface-Enhanced OFDM: Channel Estimation and Reflection Optimization", IEEE WIRELESS COMMUNICATIONS LETTERS, IEEE, PISCATAWAY, NJ, USA, vol. 9, no. 4, 20 December 2019 (2019-12-20), Piscataway, NJ, USA , pages 518 - 522, XP011782311, ISSN: 2162-2337, DOI: 10.1109/LWC.2019.2961357 *
ZHOU RUYA, TANG WANKAI;LI XIAO;JIN SHI: "A Brief Survey of Mobile Communications through Reconfigurable Intelligent Surfaces", MOBILE COMMUNICATIONS, YIDONG TONGXIN ZAZHISHE, CN, vol. 44, no. 6, 15 June 2020 (2020-06-15), CN , pages 63 - 69, XP055894598, ISSN: 1006-1010, DOI: 10.3969/j.issn.1006-1010.2020.06.010 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023160119A1 (zh) * 2022-02-23 2023-08-31 华为技术有限公司 一种通信方法及设备
WO2024109697A1 (zh) * 2022-11-21 2024-05-30 华为技术有限公司 波束生成方法与通信装置

Also Published As

Publication number Publication date
EP4191896A4 (en) 2024-02-14
CN114070370A (zh) 2022-02-18
JP2023536485A (ja) 2023-08-25
US20230179277A1 (en) 2023-06-08
KR20230047161A (ko) 2023-04-06
EP4191896A1 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2022028292A1 (zh) 波束训练方法、装置、终端设备及网络设备
US10574304B2 (en) Method, system and apparatus of beam selection
CN110278016B (zh) 一种信号传输方法和网络设备以及终端设备
CN114337953B (zh) 上行信道参数的确定和配置方法及装置
CN114071690B (zh) 信息上报方法、信息接收方法及相关设备
KR20230074558A (ko) 빔 처리 방법, 장치 및 관련 장비
US11444677B2 (en) Communication devices for efficient beam management
WO2015154223A1 (zh) 通信控制方法及相关装置
WO2023011545A1 (zh) 小区切换方法、装置、用户设备及存储介质
WO2022233323A1 (zh) 智能表面设备的波束控制方法、装置及电子设备
US20240089939A1 (en) Wireless Communication Method and Device
WO2023116756A1 (zh) 感知测量方法、装置、通信设备及可读存储介质
WO2023025133A1 (zh) 传输方法、装置、通信设备及计算机存储介质
WO2019041310A1 (zh) 确定cqi信息的方法、基站及用户设备
WO2023198152A1 (zh) 感知测量方法、装置及相关设备
CN114390539B (zh) 传输方法、装置、终端及网络侧设备
WO2024017190A1 (zh) 感知信号的路径确定方法、装置、通信设备、系统及存储介质
WO2023066333A1 (zh) 信道状态信息csi测量方法、终端及网络侧设备
WO2023280212A9 (zh) 信道状态信息csi上报处理方法、接收方法及相关设备
CN115333581B (zh) 终端天线面板信息的传输方法、终端及网络侧设备
WO2022253271A1 (zh) Srs资源发送方法、装置、用户设备及存储介质
CN114205015B (zh) 测量方法、发送方法及相关设备
WO2023072020A1 (zh) 信道信息的上报方法、终端及网络侧设备
WO2023198062A1 (zh) Csi测量和上报方法、装置、设备、系统及存储介质
WO2024027536A1 (zh) 感知处理方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023507449

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237007604

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021854343

Country of ref document: EP

Effective date: 20230303