WO2022028193A1 - 应变检测装置及其制造方法 - Google Patents

应变检测装置及其制造方法 Download PDF

Info

Publication number
WO2022028193A1
WO2022028193A1 PCT/CN2021/104956 CN2021104956W WO2022028193A1 WO 2022028193 A1 WO2022028193 A1 WO 2022028193A1 CN 2021104956 W CN2021104956 W CN 2021104956W WO 2022028193 A1 WO2022028193 A1 WO 2022028193A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
signal processing
processing module
detection device
sensing module
Prior art date
Application number
PCT/CN2021/104956
Other languages
English (en)
French (fr)
Inventor
张秋阳
邓登峰
高旻
Original Assignee
广东高标电子科技有限公司
杭州士兰微电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东高标电子科技有限公司, 杭州士兰微电子股份有限公司 filed Critical 广东高标电子科技有限公司
Publication of WO2022028193A1 publication Critical patent/WO2022028193A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits

Definitions

  • the present application relates to the technical field of mechanical quantity detection, for example, to a strain detection device and a manufacturing method thereof.
  • the strain sensing chip is used to measure the strain generated by the mechanical deformation under force, and convert the change of the strain on the mechanical component into the resistance change.
  • the strain gauges mostly metal strain gauges
  • the strain gauges are usually fixed on the carrier to be tested, then the strain gauges are electrically connected to the external circuit board, and then the detection signals of the strain gauges are amplified and AD converted, and finally detection data can be obtained. Due to the long space transmission distance from the strain gauge to the external circuit board, the signal is easily attenuated or subject to external interference during the transmission process, which affects the accuracy of the detection results. In the process of signal amplification, noise and interference will also be amplified, which is not conducive to Acquisition of real signals. In addition, since the strain gauge is very sensitive to temperature changes, when the ambient temperature changes, its resistance will change, which is likely to adversely affect the measurement results and affect the accuracy of the detection results.
  • the present application provides a strain detection device, which can reduce the attenuation and external interference in the signal transmission process, reduce the influence of self-generated heat on the detection result, and improve the accuracy and reliability of the detection result.
  • the present application also provides a method for manufacturing a strain detection device, which can reduce the interference of the signal transmission process, reduce the influence of self-generated heat on the detection result, and improve the accuracy and reliability of the detection result.
  • a strain detection device comprising:
  • a substrate configured to be mounted on the carrier under test
  • the detection component fixed on the substrate, the detection component includes a strain sensing module and a signal processing module arranged at intervals, and the strain sensing module and the signal processing module are electrically connected;
  • An output terminal one end of which is fixed on the substrate and is electrically connected to the signal processing module, and the other end of which is configured to be electrically connected to an external controller.
  • the strain sensing module includes a temperature detection element, and the temperature detection element is used to detect the temperature of the strain sensing module, and transmit the detection result to the signal processing module.
  • the strain sensing module further includes a sensing resistor, and the four sensing resistors are connected to form a Wheatstone bridge.
  • the strain detection device further includes an encapsulation member, the encapsulation member is bonded and fixed on the substrate, and the encapsulation member covers the detection component and the output terminal and the The part where the signal processing module is connected.
  • the package includes:
  • the first encapsulation part is arranged around the peripheral side of the detection component, and the first encapsulation part covers the part of the output terminal connected to the signal processing module; the first encapsulation part is formed of high-strength glue;
  • the second encapsulation part is filled in the area surrounded by the first encapsulation part, and the second encapsulation part is formed of a material with low thermal expansion coefficient and low curing stress.
  • the output terminal includes a circuit board and a contact terminal, one end of the circuit board is fixed on the substrate and is electrically connected to the signal processing module, and the other end of the circuit board is connected to the signal processing module.
  • the contact terminals are fixedly connected, and the contact terminals are configured to be connected to an external controller.
  • the circuit board is a flexible circuit board.
  • the minimum distance between the strain sensing module and the signal processing module is between 0.1 mm and 1 mm.
  • a method for manufacturing a strain detection device comprising the steps of:
  • strain sensing module and the signal processing module are fixed on the substrate at intervals, the strain sensing module and the signal processing module are electrically connected by a first wire, and the signal processing module and the output terminal are connected by a second wire one end is electrically connected;
  • the substrate is fixed on the carrier to be tested, and the other end of the output terminal is connected to an external controller, so as to perform mechanical quantity detection on the carrier to be tested.
  • encapsulation with encapsulation material includes the following steps:
  • a high-strength glue is used to form a cofferdam shape around the strain sensing module and the signal processing module, and then the cofferdam is filled with a material with low thermal expansion coefficient and low curing stress.
  • a temperature detection element for detecting the temperature of the strain sensing module is integrated on the strain sensing module, and the signal processing module can process the temperature detection element according to the detection result of the temperature detection element.
  • the signal is temperature compensated.
  • FIG. 1 is an exploded schematic diagram of a strain detection device and a tested carrier provided by an embodiment of the application;
  • FIG. 2 is a schematic structural diagram of a strain detection device (with the package removed) provided by an embodiment of the present application;
  • FIG. 3 is a partial enlarged view of the strain detection device (with the package removed) provided by the embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of a strain detection device provided by an embodiment of the present application.
  • FIG. 5 is a cross-sectional view of a strain detection device provided by an embodiment of the present application.
  • 2-detection component 21-strain sensing module; 211-temperature detection element; 212-sensing resistance; 22-signal processing module;
  • the terms “upper”, “lower”, “left”, “right”, “vertical”, “horizontal”, “inner”, “outer”, etc. indicate the orientation or The positional relationship is based on the orientation or positional relationship shown in the attached drawings, or the orientation or positional relationship that is usually placed when the product is used, and is only for the convenience of describing the application, rather than indicating or implying that the device or element referred to must have The particular orientation, construction and operation in the particular orientation are therefore not to be construed as limitations of the present application.
  • the terms “first” and “second” are used for descriptive purposes only or to distinguish different structures or components, and should not be construed to indicate or imply relative importance.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of two components.
  • this embodiment provides a strain detection device, including a substrate 1 , a detection component 2 and an output terminal 3 .
  • the substrate 1 is configured to be mounted on a carrier 100 under test; the detection component 2 is fixed on On the substrate 1, the detection assembly 2 includes a strain sensing module 21 and a signal processing module 22 arranged at intervals, and the strain sensing module 21 and the signal processing module 22 are electrically connected; one end of the output terminal 3 is fixed on the substrate 1 and is electrically connected to the signal processing module 22. connected, the other end of which is configured to be electrically connected to an external controller.
  • the strain sensing module 21 and the signal processing module 22 are arranged at intervals to reduce the power consumption of the strain sensing module 21, and at the same time reduce the influence of the heat generated by the signal processing module 22 on the strain sensing module 21, Improve the accuracy and reliability of test results.
  • the principle of the strain detection device is as follows: the strain sensing module 21 is fixed on the substrate 1, and the substrate 1 is fixed on the measured carrier 100. When the measured carrier 100 is deformed by force, the deformation is transmitted to the strain sensing module 21 through the substrate 1, and the strain The resistance in the sensing module 21 changes due to the piezoresistive effect, and the change of the resistance is sensed through the circuit, and the change of the mechanical quantity is converted into an analog signal, and the analog signal is transmitted to the signal processing module 22, and the analog signal is processed by the signal processing module 22. Processing, converts the analog signal into a digital signal output.
  • the strain detection device can be used to detect the tensile force, pressure, bending moment or torque on the measured carrier 100 .
  • the strain sensing module 21 and the tested carrier 100 are arranged at an angle of 45°, which can improve the sensitivity of the strain sensing module 21 .
  • the strain sensing module 21 is arranged in parallel with the measured object 100 , which can improve the sensitivity of the strain sensing module 21 .
  • the substrate 1 is fixed on the tested carrier 100 by the fixing glue 200 .
  • the strain sensing module 21 includes a temperature detection element 211 , and the temperature detection element 211 is used to detect the temperature of the strain sensing module 21 and transmit the detection result to the signal processing module 22 .
  • the signal processing module 22 can perform temperature compensation on the signal processed by the signal processing module 22 according to the detection result of the temperature detection element 211, so as to improve the detection accuracy and reliability of the strain detection device.
  • the thermal expansion coefficient of the strain sensing module 21 is inconsistent with the thermal expansion coefficient of the measured carrier 100 and the thermal expansion coefficient of the adhesive that bonds and fixes the strain sensing module 21, strain will be generated when the temperature changes, and the strain detection device outputs the The strain value is the temperature zero drift, which affects the detection accuracy of the strain detection device. Therefore, the temperature of the strain sensing module 21 can be detected in real time through the temperature detection element 211 , and the temperature strain calibration of the strain sensing module 21 can be performed in the early stage, so as to eliminate the influence of temperature zero drift and ensure that the signal output by the strain detection device is derived from The strain caused by the force of the carrier 100 under test is not the strain caused by temperature.
  • the temperature detection element 211 may be a negative temperature coefficient (Negative Temperature Coefficient, NTC) temperature sensor, or a positive temperature coefficient (Positive Temperature Coefficient, PTC) thermistor, or a triode (using the PN thermal characteristic of a triode).
  • NTC Negative Temperature Coefficient
  • PTC Positive Temperature Coefficient
  • the strain sensing module 21 further includes a sensing resistor 212 , and the four sensing resistors 212 are connected to form a Wheatstone bridge, so as to improve the sensitivity of the strain sensing module 21 .
  • the inductive resistor 212 and the bridge circuit are integrated into one module to avoid errors and interference caused by the bridge circuit construction line.
  • the detection principle of the sensing resistor 212 is based on the semiconductor piezoresistive effect, and its strain detection sensitivity is dozens of times that of the metal film strain gauge, and the analog signal on the bridge circuit is almost Analog to Digital (AD) conversion can be performed directly without amplification to improve the accuracy and reliability of the detection results.
  • AD Analog to Digital
  • the resistances of the four sensing resistors 212 are equal, and two adjacent sensing resistors 212 of the four sensing resistors 212 are vertically arranged.
  • the signal output is 0.
  • the bridge is unbalanced and the signal output is not 0.
  • the sensing resistor 212 and the temperature detection element 211 are integrated in the strain sensing module 21, which can perform temperature compensation on the detection result and improve the accuracy of the measurement result.
  • the zero point of the strain detection device at different temperatures is determined. In actual work, the zero point can be calculated according to the temperature point read in real time, and the measured torque value minus the zero point is the actual loading torque.
  • the working temperature is taken as 10 points
  • the measurement value is taken as 10 points.
  • the minimum distance between the strain sensing module 21 and the signal processing module 22 is between 0.1 mm and 1 mm, which reduces signal transmission attenuation and external interference, and at the same time prevents the heat generated by the signal processing module 22 from affecting the strain sensing module 21.
  • the resistance has an impact; in addition, it can also facilitate the bonding process of the wires.
  • the strain sensing module 21 is fixed in the middle position of the substrate 1 to reduce the installation stress.
  • the strain sensing module 21 is fixedly bonded on the substrate 1 through glue.
  • the strain detection device further includes a package 4 , which is bonded and fixed on the substrate 1 , and the package 4 covers the detection component 2 and the part of the output terminal 3 connected to the signal processing module 22 . , is used to protect the electrical connection inside the detection component 2 and the electrical connection between the output terminal 3 and the signal processing module 22 , and ensure the stability of the strain detection device.
  • the package 4 includes a first package part 41 and a second package part 42 , the first package part 41 is surrounded on the peripheral side of the detection component 2 , and the first package part 41 covers the output terminal 3 and the signal processing module. 22 connecting parts, the first encapsulation part 41 is formed of high-strength glue; the second encapsulation part 42 is filled in the area surrounded by the first encapsulation part 41 , and the second encapsulation part 42 is formed of a material with low thermal expansion coefficient and low stress.
  • the output terminal 3 includes a circuit board 31 and a contact terminal 32 , one end of the circuit board 31 is fixed on the substrate 1 and is electrically connected to the signal processing module 22 , and the other end of the circuit board 31 is connected to the contact terminal 32 .
  • the terminals 32 are fixedly connected, and the contact terminals 32 are configured to be connected to an external controller.
  • the circuit board 31 is a flexible circuit board, and the flexible characteristics of the circuit board 31 can be compatible with installation requirements in different locations.
  • the contact terminal 32 can be pluggably connected to the external controller, so as to realize convenient and quick installation for later connection.
  • the strain detection device includes a substrate 1, a detection component 2 and an output terminal 3.
  • the distance between the two is shortened.
  • the signal transmission distance can be reduced to reduce the attenuation and interference in the signal transmission process;
  • the strain sensing module 21 and the signal processing module 22 are arranged at intervals to reduce the influence of the heat generated by the signal processing module 22 on the strain sensing module 21 and improve the accuracy of the detection results. and reliability.
  • this embodiment also provides a method for manufacturing a strain detection device, including the following steps:
  • the substrate 1 is fixed on the tested carrier 100, and the other end of the output terminal 3 is connected to an external controller, so as to perform mechanical quantity detection on the tested carrier 100.
  • the interference of the signal transmission process can be reduced, the influence of self-generated heat on the detection result can be reduced, and the accuracy and reliability of the detection result can be improved.
  • step S2 the first wire 5 is used to electrically connect the electrode terminal of the strain sensing module 21 to the electrode terminal of one end of the signal processing module 22, and the second wire 6 is used to connect the electrode terminal of the other end of the signal processing module 22 to the output terminal 3.
  • the electrode terminal of one end is electrically connected.
  • step S4 one surface of the substrate 1 is fixed on the carrier 100 to be tested.
  • step S3 includes the following steps:
  • High-strength glue is used to form a cofferdam shape around the strain sensing module 21 and the signal processing module 22, and then the cofferdam is filled with materials with low thermal expansion coefficient and low curing stress to achieve high reliability and low curing stress.
  • a temperature detection element 211 for detecting the temperature of the strain sensing module 21 is integrated on the strain sensing module 21, and the signal processing module 22 can perform temperature compensation on the signal processed by the signal processing module 22 according to the detection result of the temperature detection element 211, The accuracy of the detection result of the strain detection device manufactured by the strain detection device manufacturing method is improved.
  • the manufacturing method of the strain detection device provided by the present application can reduce the interference of the signal transmission process, reduce the influence of self-generated heat on the detection result, and improve the accuracy and reliability of the detection result.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种应变检测装置,包括基板(1)、检测组件(2)和输出端子(3),基板(1)被配置为安装在被测载体(100)上;检测组件(2)固定在基板(1)上,检测组件(2)包括间隔设置的应变感应模块(21)和信号处理模块(22),应变感应模块(21)和信号处理模块(22)电连接;输出端子(3)的一端固定在基板(1)上并与信号处理模块(22)电连接,其另一端被配置为与外部控制器电连接。该装置能够降低信号传输过程的干扰,减小自身产热对检测结果的影响,提高检测结果的准确度和可靠性。

Description

应变检测装置及其制造方法
本申请要求在2020年08月06日提交中国专利局、申请号为202010783159.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及力学量检测技术领域,例如,涉及一种应变检测装置及其制造方法。
背景技术
应变感应芯片用于测量机械构件受力变形所产生的应变,并将机械构件上应变的变化转换为电阻变化。相关技术中,通常是将应变片(大都采用金属应变片)固定在被测载体上,然在将应变片与外部电路板电连接,然后对应变片的检测信号进行放大、AD转换,最后才能够得到检测数据。由于从应变片到外部电路板的空间传输距离较远,使得信号传输过程中容易衰减或受到外部干扰,影响检测结果的精确度,且信号放大过程中,同样会将噪声和干扰放大,不利于真实信号的采集。此外,由于应变片对温度变化十分敏感,当环境温度发生变化时,其电阻会发生变化,容易对测量结果产生不良影响,影响检测结果的精确度。
因此,亟待需要一种应变检测装置以解决上述问题。
发明内容
本申请提供一种应变检测装置,能够降低信号传输过程的衰减与外部干扰,减小自身产热对检测结果的影响,提高检测结果的精确度和可靠性。
本申请还提供一种应变检测装置制造方法,能够降低信号传输过程的干扰,减小自身产热对检测结果的影响,提高检测结果的精确度和可靠性。
一方面,提供了一种应变检测装置,包括:
基板,被配置为安装在被测载体上;
检测组件,固定在所述基板上,所述检测组件包括间隔设置的应变感应模块和信号处理模块,所述应变感应模块和所述信号处理模块电连接;
输出端子,其一端固定在所述基板上并与所述信号处理模块电连接,其另一端被配置为与外部控制器电连接。
作为应变检测装置的可选方案,所述应变感应模块包括温度检测元件,所述温度检测元件用于检测所述应变感应模块的温度,并检测结果传送给所述信号处理模块。
作为应变检测装置的可选方案,所述应变感应模块还包括感应电阻,四个所述感应电阻连接成惠斯通电桥。
作为应变检测装置的可选方案,所述应变检测装置还包括封装件,所述封装件粘结固定在所述基板上,且所述封装件覆盖所述检测组件以及所述输出端子上与所述信号处理模块连接的部位。
作为应变检测装置的可选方案,所述封装件包括:
第一封装部,围设在所述检测组件的周侧,且所述第一封装部覆盖所述输出端子上与所述信号处理模块连接的部位所述第一封装部由高强度胶形成;
第二封装部,填充在所述第一封装部围设的区域内,所述第二封装部由低热膨胀系数低固化应力材料形成。
作为应变检测装置的可选方案,所述输出端子包括电路板和接触端子,所述电路板的一端固定在所述基板上并与所述信号处理模块电连接,所述电路板的另一端与所述接触端子固定连接,所述接触端子被配置为连接在外部控制器上。
作为应变检测装置的可选方案,电路板为柔性电路板。
作为应变检测装置的可选方案,所述应变感应模块与所述信号处理模块之间的最小间距在0.1mm到1mm之间。
另一方面,提供了一种应变检测装置制造方法,包括如下步骤:
将输出端子预固定在基板上;
将应变感应模块和信号处理模块间隔固定在所述基板上,采用第一导线将所述应变感应模块与所述信号处理模块电连接,采用第二导线将所述信号处理模块与所述输出端子的一端电连接;
用封装材料对所述应变感应模块、所述信号处理模块、第一导线和第二导线进行封装;
将基板固定在被测载体上,将输出端子的另一端连接到外部控制器上,以对所述被测载体进行力学量检测。
作为应变检测方法的可选方案,用封装材料进行封装包括如下步骤:
采用高强度胶在所述应变感应模块和所述信号处理模块的周围形成围堰状, 然后采用低热膨胀系数低固化应力材料填充围堰。
作为应变检测方法的可选方案,在所述应变感应模块上集成用于检测所述应变感应模块温度的温度检测元件,所述信号处理模块能够根据所述温度检测元件的检测结果对其处理的信号进行温度补偿。
附图说明
图1为本申请实施例提供的应变检测装置与被测载体的爆炸示意图;
图2为本申请实施例提供的应变检测装置(去除封装件)的结构示意图;
图3为本申请实施例提供的应变检测装置(去除封装件)的局部放大图;
图4为本申请实施例提供的应变检测装置的结构示意图;
图5为本申请实施例提供的应变检测装置的剖视图。
附图标记:
100-被测载体;200-固定胶;
1-基板;
2-检测组件;21-应变感应模块;211-温度检测元件;212-感应电阻;22-信号处理模块;
3-输出端子;31-电路板;32-接触端子;
4-封装件;41-第一封装部;42-第二封装部;
5-第一导线;
6-第二导线。
具体实施方式
在本申请的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或是本产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,或者用于区分不同结构或部件,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是 可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
如图1-图2所示,本实施例提供了一种应变检测装置,包括基板1、检测组件2和输出端子3,基板1被配置为安装在被测载体100上;检测组件2固定在基板1上,检测组件2包括间隔设置的应变感应模块21和信号处理模块22,应变感应模块21和信号处理模块22电连接;输出端子3的一端固定在基板1上并与信号处理模块22电连接,其另一端被配置为与外部控制器电连接。
该应变检测装置,一方面,通过将应变感应模块21和信号处理模块22均安装在被测载体100上,以缩短应变感应模块21和信号处理模块22之间的信号传输距离,降低信号传输过程中的衰减和干涉;另一方面,将应变感应模块21和信号处理模块22间隔设置,以降低应变感应模块21的功耗,同时降低信号处理模块22产生的热量对应变感应模块21的影响,提高检测结果的精确度和可靠性。
该应变检测装置的原理是:应变感应模块21固定在基板1上,基板1固定在被测载体100上,当被测载体100受力变形时,变形通过基板1传递至应变感应模块21,应变感应模块21内的电阻因压阻效应发生变化,通过电路感受到电阻的变化,将力学量变化转化为模拟信号,并将模拟信号传递给信号处理模块22,利用信号处理模块22对模拟信号进行处理,将模拟信号转化为数字信号输出。
可选地,应变检测装置可用于检测被测载体100所受到的拉力、压力、弯矩或扭矩。示例性地,当该应变检测装置用于检测被测载体100的扭矩时,应变感应模块21与被测载体100呈45°夹角设置,能够提高应变感应模块21的灵敏度。示例性地,当该应变检测装置用于检测被测载体100的拉力时,应变感应模块21与被测物体100平行设置,能够提高应变感应模块21的灵敏度。
可选地,基板1通过固定胶200固定在被测载体100上。
结合图2与图3所示,应变感应模块21包括温度检测元件211,温度检测元件211用于检测应变感应模块21的温度,并检测结果传送给信号处理模块22。信号处理模块22能够根据温度检测元件211的检测结果对信号处理模块22处理的信号进行温度补偿,以提高该应变检测装置的检测精确度和可靠性。
由于应变感应模块21的热膨胀系数与被测载体100的热膨胀系数以及粘结固定应变感应模块21的粘结胶的热膨胀系数不一致,当温度变化时,会导致应变的产生,该应变检测装置输出该应变值即为温度零点漂移,影响该应变检测 装置的检测精确度。因此,可通过温度检测元件211实时检测应变感应模块21的温度,同时通过前期对应变感应模块21进行温度应变标定,从而能够消除温度零点漂移的影响,保证该应变检测装置输出的信号是来源于被测载体100的受力产生的应变,而非因温度作用产生的应变。示例性地,温度检测元件211可以是负温度系数(Negative Temperature Coefficient,NTC)温度传感器、或正温度系数(Positive Temperature Coefficient,PTC)热敏电阻、或三极管(利用三极管的PN热敏特性)。
可选地,如图3所示,应变感应模块21还包括感应电阻212,四个感应电阻212连接成惠斯通电桥,以提高应变感应模块21的灵敏度。将感应电阻212和桥电路集成在一个模块上,避免桥式电路搭建线路带来的误差及干扰。
在本实施例提供的高灵敏度的应变检测装置中,感应电阻212的检测原理是基于半导体压阻效应,其应变检测灵敏度是金属薄膜应变片的几十倍,桥式电路上的模拟信号,几乎不需要放大就可以直接进行模拟数字(Analog to Digital,AD)转换,提高检测结果的精确度和可靠性。
此外,四个感应电阻212的电阻相等,且四个感应电阻212中相邻两个感应电阻212垂直设置,当被测载体100没有受力变形时,信号输出为0,当被测载体100有应变时,电桥不平衡,信号输出不为0。
在本实施例中,在应变感应模块21中集成感应电阻212和温度检测元件211,能够对检测结果进行温度补偿,提高测量结果的精确度,
温度补偿原理是:首先对该应变检测装置在0负载下,不同温度作用下,读取该测量值N(测量值可以是扭矩值、拉力值、压力值等),温度值T,对这组数据进行拟合,温度值T与测量值N的关系式为T=a*N^2+b*N+c,其中,a、b、c为拟合系数。从而确定该应变检测装置在不同温度下的零点。在实际工作中,就可以根据实时读取到的温度点,算出零点,测量的扭矩值减去零点就是实际加载扭矩。
可选地,标定时,工作温度取10个点,测量值取10个点。将该组10*10个数据点,拟合到一个工作曲面。在实际工作时,针对每一个测量出来的测量点和温度点,可以对应到一个实际的测量值,从而得到补偿温度带来的零点漂移和增益漂移。
可选地,应变感应模块21与信号处理模块22之间的最小间距在0.1mm到1mm之间,减小信号传输衰减与外部干扰,同时避免信号处理模块22产生的热量对应变感应模块21的电阻产生影响;此外,还能够方便实现导线的绑定工艺。
可选地,应变感应模块21固定在基板1的中间位置,以降低安装应力。
可选地,应变感应模块21通过胶水固定粘结在基板1上。
如图4-图5所示,应变检测装置还包括封装件4,封装件4粘结固定在基板1上,且封装件4覆盖检测组件2以及输出端子3上与信号处理模块22连接的部位,用于保护检测组件2内部的电连接以及输出端子3与信号处理模块22的电连接,保证该应变检测装置的稳定性。
可选地,封装件4包括第一封装部41和第二封装部42,第一封装部41围设在检测组件2的周侧,且第一封装部41覆盖输出端子3上与信号处理模块22连接的部位,第一封装部41由高强度胶形成;第二封装部42填充在第一封装部41围设的区域内,第二封装部42由低热膨胀系数低应力材料形成。通过第一封装部41和第二封装部42的配合,可实现高可靠性和低固化应力封装,既能够保证将检测组件2稳定地固定在基板1上,又避免封装材料对模块性能的影响,实现对模块及导线的保护。
可选地,结合图2和图4,输出端子3包括电路板31和接触端子32,电路板31的一端固定在基板1上并与信号处理模块22电连接,电路板31的另一端与接触端子32固定连接,接触端子32被配置为连接在外部控制器上。示例性地,电路板31为柔性电路板,电路板31的柔性特点可兼容不同位置的安装需要。
可选地,接触端子32可插拔连接在外部控制器上,以实现后期连接的方便快速安装。
与相关技术相比,本申请提供的应变检测装置,包括基板1、检测组件2和输出端子3,通过将应变感应模块21和信号处理模块22均安装在被测载体,以缩短两者之间的信号传输距离,降低信号传输过程中的衰减和干涉;将应变感应模块21和信号处理模块22间隔设置,降低信号处理模块22产生的热量对应变感应模块21的影响,提高检测结果的精确度和可靠性。
如图4-图5所示,本实施例还提供了一种应变检测装置制造方法,包括如下步骤:
S1、将输出端子3预固定在基板1上;
S2、将应变感应模块21和信号处理模块22间隔固定在基板1上,采用第一导线5将应变感应模块21与信号处理模块22电连接,采用第二导线6将信号处理模块22与输出端子3的一端电连接;
S3、用封装材料对应变感应模块21、信号处理模块22、第一导线5和第二导线6进行封装;
S4、以上步骤完成后,将基板1固定在被测载体100上,将输出端子3的 另一端连接到外部控制器上,以对被测载体100进行力学量检测。
通过该应变检测装置制造方法,能够降低信号传输过程的干扰,减小自身产热对检测结果的影响,提高检测结果的精确度和可靠性。
在步骤S2中,采用第一导线5将应变感应模块21的电极端与信号处理模块22一端的电极端电连接,采用第二导线6将信号处理模块22的另一端的电极端和输出端子3一端的电极端电连接。在步骤S4中,将基板1的一个面固定在被测载体100上。
可选地,步骤S3包括如下步骤:
采用高强度胶在应变感应模块21和信号处理模块22的周围形成围堰状,然后采用低热膨胀系数低固化应力材料填充围堰,以实现高可靠性和低固化应力的封装,更好地保护应变感应模块21、信号处理模块22、第一导线5以及第二导线6。
可选地,在应变感应模块21上集成用于检测应变感应模块21温度的温度检测元件211,信号处理模块22能够根据温度检测元件211的检测结果对信号处理模块22处理的信号进行温度补偿,提高该应变检测装置制造方法制造的应变检测装置的检测结果的精确度。
与相关技术相比,本申请提供的应变检测装置制造方法,能够降低信号传输过程的干扰,减小自身产热对检测结果的影响,提高检测结果的精确度和可靠性。

Claims (11)

  1. 一种应变检测装置,包括:
    基板(1),被配置为安装在被测载体(100)上;
    检测组件(2),固定在所述基板(1)上,所述检测组件(2)包括间隔设置的应变感应模块(21)和信号处理模块(22),所述应变感应模块(21)和所述信号处理模块(22)电连接;
    输出端子(3),其一端固定在所述基板(1)上并与所述信号处理模块(22)电连接,其另一端被配置为与外部控制器电连接。
  2. 根据权利要求1所述的应变检测装置,其中,所述应变感应模块(21)包括温度检测元件(211),所述温度检测元件(211)用于检测所述应变感应模块(21)的温度,并检测结果传送给所述信号处理模块(22)。
  3. 根据权利要求1所述的应变检测装置,其中,所述应变感应模块(21)还包括四个感应电阻(212),四个所述感应电阻(212)连接成惠斯通电桥。
  4. 根据权利要求1所述的应变检测装置,还包括封装件(4),所述封装件(4)粘结固定在所述基板(1)上,且所述封装件(4)覆盖所述检测组件(2)以及所述输出端子(3)上与所述信号处理模块(22)连接的部位。
  5. 根据权利要求4所述的应变检测装置,其中,所述封装件(4)包括:
    第一封装部(41),围设在所述检测组件(2)的周侧,且所述第一封装部(41)覆盖所述输出端子(3)上与所述信号处理模块(22)连接的部位,所述第一封装部(41)由高强度胶形成;
    第二封装部(42),填充在所述第一封装部(41)围设的区域内,所述第二封装部(42)由低热膨胀系数低固化应力材料形成。
  6. 根据权利要求1-5任一项所述的应变检测装置,其中,所述输出端子(3)包括电路板(31)和接触端子(32),所述电路板(31)的一端固定在所述基板(1)上并与所述信号处理模块(22)电连接,所述电路板(31)的另一端与所述接触端子(32)固定连接,所述接触端子(32)被配置为连接在外部控制器上。
  7. 根据权利要求6所述的应变检测装置,其中,所述电路板(31)为柔性电路板。
  8. 根据权利要求1-5任一项所述的应变检测装置,其中,所述应变感应模块(21)与所述信号处理模块(22)之间的最小间距在0.1mm与1mm之间。
  9. 一种应变检测装置制造方法,包括:
    将输出端子(3)预固定在基板(1)上;
    将应变感应模块(21)和信号处理模块(22)间隔固定在所述基板(1)上,采用第一导线(5)将所述应变感应模块(21)与所述信号处理模块(22)电连接,采用第二导线(6)将所述信号处理模块(22)与所述输出端子(3)的一端电连接;
    用封装材料对所述应变感应模块(21)、所述信号处理模块(22)、第一导线(5)和第二导线(6)进行封装;
    将基板(1)固定在被测载体(100)上,将输出端子(3)的另一端连接到外部控制器上,以对所述被测载体(100)进行力学量检测。
  10. 根据权利要求9所述的应变检测装置制造方法,其中,所述用封装材料进行封装包括:
    采用高强度胶在所述应变感应模块(21)和所述信号处理模块(22)的周围形成围堰状,然后采用低热膨胀系数低固化应力材料填充围堰。
  11. 根据权利要求9所述的应变检测装置制造方法,还包括,在所述应变感应模块(21)上集成用于检测所述应变感应模块(21)温度的温度检测元件(211),所述信号处理模块(22)能够根据所述温度检测元件(211)的检测结果对所述信号处理模块(22)处理的信号进行温度补偿。
PCT/CN2021/104956 2020-08-06 2021-07-07 应变检测装置及其制造方法 WO2022028193A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010783159.0A CN111928771A (zh) 2020-08-06 2020-08-06 一种应变检测装置及应变检测方法
CN202010783159.0 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022028193A1 true WO2022028193A1 (zh) 2022-02-10

Family

ID=73307180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104956 WO2022028193A1 (zh) 2020-08-06 2021-07-07 应变检测装置及其制造方法

Country Status (2)

Country Link
CN (1) CN111928771A (zh)
WO (1) WO2022028193A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928771A (zh) * 2020-08-06 2020-11-13 广东高标电子科技有限公司 一种应变检测装置及应变检测方法
CN113654635B (zh) * 2021-08-13 2023-07-21 中车青岛四方机车车辆股份有限公司 用于磁浮车辆的称重系统及装置
CN113465529B (zh) * 2021-08-31 2021-11-23 武汉飞恩微电子有限公司 一种基于视觉识别的芯片应变测量方法与系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1122631A (zh) * 1993-05-05 1996-05-15 罗斯蒙德公司 具有完整温度信号的应变仪传感器
US20070205475A1 (en) * 2003-10-06 2007-09-06 Hiroyuki Ohta Apparatus for measuring a mechanical quantity
CN201449300U (zh) * 2009-07-17 2010-05-05 昆山诺金传感技术有限公司 可编程压力传感器
CN109084926A (zh) * 2018-08-08 2018-12-25 武汉理工大学 基于无线技术的旋转轴扭矩测量方法与系统
CN109186819A (zh) * 2018-09-10 2019-01-11 博脉有限公司 一种mems压力传感器模组
CN110595655A (zh) * 2019-10-22 2019-12-20 广东高标电子科技有限公司 一种电动助力车扭矩检测装置及电动助力车
CN111928771A (zh) * 2020-08-06 2020-11-13 广东高标电子科技有限公司 一种应变检测装置及应变检测方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3534205B2 (ja) * 1995-04-21 2004-06-07 株式会社共和電業 ひずみゲージ式変換器における過渡温度特性の補償回路およびその補償方法
US6272936B1 (en) * 1998-02-20 2001-08-14 Tekscan, Inc Pressure sensor
JP2006220574A (ja) * 2005-02-14 2006-08-24 Hitachi Ltd 回転体力学量測定装置および回転体力学量計測システム
CN102565309B (zh) * 2011-12-12 2016-01-20 上海兰宝传感科技股份有限公司 幕墙玻璃爆裂倾向的检测设备及其检测方法
JP5802824B2 (ja) * 2012-03-02 2015-11-04 株式会社日立製作所 力学量測定装置
CN108027291B (zh) * 2015-09-30 2020-04-24 日立汽车系统株式会社 力学量测量装置和使用它的压力传感器
CN205141013U (zh) * 2015-11-05 2016-04-06 深圳市未林森科技有限公司 一种led灯围胶封装结构及led灯
EP3499204A1 (en) * 2017-12-14 2019-06-19 Koninklijke Philips N.V. An apparatus for determining a force applied thereto
CN209617354U (zh) * 2018-12-04 2019-11-12 杭州骑客智能科技有限公司 压力采集电路及人机互动体感车
CN110146201A (zh) * 2019-04-13 2019-08-20 复旦大学 一种具有温度补偿的传感信号调理系统及温度补偿方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1122631A (zh) * 1993-05-05 1996-05-15 罗斯蒙德公司 具有完整温度信号的应变仪传感器
US20070205475A1 (en) * 2003-10-06 2007-09-06 Hiroyuki Ohta Apparatus for measuring a mechanical quantity
CN201449300U (zh) * 2009-07-17 2010-05-05 昆山诺金传感技术有限公司 可编程压力传感器
CN109084926A (zh) * 2018-08-08 2018-12-25 武汉理工大学 基于无线技术的旋转轴扭矩测量方法与系统
CN109186819A (zh) * 2018-09-10 2019-01-11 博脉有限公司 一种mems压力传感器模组
CN110595655A (zh) * 2019-10-22 2019-12-20 广东高标电子科技有限公司 一种电动助力车扭矩检测装置及电动助力车
CN111928771A (zh) * 2020-08-06 2020-11-13 广东高标电子科技有限公司 一种应变检测装置及应变检测方法

Also Published As

Publication number Publication date
CN111928771A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2022028193A1 (zh) 应变检测装置及其制造方法
US8230745B2 (en) Wet/wet differential pressure sensor based on microelectronic packaging process
US8297125B2 (en) Media isolated differential pressure sensor with cap
US8770034B2 (en) Packaged sensor with multiple sensors elements
JP4617943B2 (ja) 力学量測定装置
EP0354479A2 (en) Semiconductor pressure sensor
CN111238698B (zh) 一种mems压阻传感器的内建自测试装置及测试方法
US10768069B2 (en) Pressure measuring device for protection of pressure sensor from thermomechanical stress
US8459104B2 (en) Pressure measuring glow plug
EP2273247A2 (en) Pressure sensor package assembly having an unconstrained sense die
US7930944B2 (en) ASIC compensated pressure sensor with soldered sense die attach
EP1969334A2 (en) Pressure sensor with silicon frit bonded cap
EP2735855A1 (en) A measuring device for measuring a physical quantity
CN111638002A (zh) 一种mems压力传感器充油芯体及其封装方法
US8552514B2 (en) Semiconductor physical quantity sensor
US7698951B2 (en) Pressure-sensor apparatus
CN111337083A (zh) 一种高温石墨烯压力/温度一体化传感器
KR101808928B1 (ko) 스트레인 전송기
CN113049172A (zh) 一种多通道压力测量单元及压力测量装置
US7418871B2 (en) Method for detecting a pressure of a medium and pressure measuring device
JP6540397B2 (ja) 圧脈波センサの検査方法及び圧脈波センサの製造方法
US11344207B2 (en) Pressure pulse wave sensor and biological information measurement device
CN215064999U (zh) 一种多通道压力测量单元及压力测量装置
CN215893878U (zh) 一种耐高温充油压力检测装置
CN211877098U (zh) 一种高温石墨烯压力/温度一体化传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21854167

Country of ref document: EP

Kind code of ref document: A1