WO2022028128A1 - 一种大调制电流直流耦合型激光器驱动电路 - Google Patents

一种大调制电流直流耦合型激光器驱动电路 Download PDF

Info

Publication number
WO2022028128A1
WO2022028128A1 PCT/CN2021/100963 CN2021100963W WO2022028128A1 WO 2022028128 A1 WO2022028128 A1 WO 2022028128A1 CN 2021100963 W CN2021100963 W CN 2021100963W WO 2022028128 A1 WO2022028128 A1 WO 2022028128A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
npn transistor
current source
collector
base
Prior art date
Application number
PCT/CN2021/100963
Other languages
English (en)
French (fr)
Inventor
李景虎
罗志聪
涂航辉
Original Assignee
厦门亿芯源半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门亿芯源半导体科技有限公司 filed Critical 厦门亿芯源半导体科技有限公司
Priority to US17/621,421 priority Critical patent/US20220360042A1/en
Publication of WO2022028128A1 publication Critical patent/WO2022028128A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06808Stabilisation of laser output parameters by monitoring the electrical laser parameters, e.g. voltage or current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06213Amplitude modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06832Stabilising during amplitude modulation

Definitions

  • the invention relates to a driving circuit of a DFB laser, belonging to the field of laser drivers in optical communication integrated circuits.
  • the laser driver (Laser Diode Driver) turns on or off the laser according to the logic value of the data stream, and uses the optical fiber to transmit the optical signal to the optical line terminal OLT over a long distance, and then transmits the optical signal through the transimpedance amplifier (TIA).
  • the current signal is converted into a voltage signal.
  • the laser must be biased near the threshold in order to reduce the randomness of the laser turn-on delay and reduce jitter, so the laser driver must provide a bias current (IBIAS) and modulation current (IMOD).
  • IBIAS bias current
  • MWD modulation current
  • the bias current of the laser needs to be continuously adjusted for temperature changes and aging, and the modulation current also needs to change the luminous efficiency (ER) of the laser.
  • Figure 1 shows the structure of a commonly used laser driving circuit.
  • D0 is a laser, which is biased near the threshold light-emitting point by the current source Ib, the current source Im provides a modulation current to the laser driver, and the data streams TINP and TINN are replaced by the modulation current to drive the laser D0 to turn on and off to transmit data.
  • the threshold current and luminous efficiency of semiconductor lasers vary with temperature and duration of use. The threshold current of semiconductor lasers increases significantly with the increase of temperature, and the luminous efficiency decreases with the increase of temperature. The drift of threshold current and luminous efficiency of semiconductor laser brings great inconvenience to its application. In order to overcome these drawbacks, the output power must be controlled so that the work of the laser can be maintained at the correct operating point.
  • the photodiode D1 converts the light emitted by the laser D0 into a monitoring current Ic and converts the current into a voltage through the on-chip resistor R2.
  • the off-chip capacitor C1 filters out the AC component in the current signal Ic and retains the DC component, which is the laser D0 average optical power (AP).
  • the average optical power voltage is compared with the reference voltage Vref, and the error amplifier A1 outputs the error voltage to adjust the bias current Ib of the laser D0, so that the average optical power meets the design requirements.
  • the ambient temperature detector TS detects the operating temperature of the laser driver to characterize the operating temperature of the laser.
  • the compensation range of the modulation current is set in advance according to the use requirements, and the modulation current source Im is adjusted by the digital-to-analog conversion module DAC and the voltage-current conversion module V2I.
  • the size of the current makes the laser meet certain luminous efficiency (ER) requirements.
  • the traditional laser driver circuit shown in Figure 1 connects the laser by DC coupling, which has the advantages of multi-rate compatibility, low power consumption, and fewer off-chip components. According to the modulation current output formula;
  • V CC is the supply voltage
  • V D is the laser voltage drop
  • V CE(Q2) is the transistor Q2 collector and emitter voltage drop
  • V D(Im) is the current source voltage drop
  • R LOAD is the laser's internal resistance. Equation 1 shows that when the internal resistance R LOAD of the laser is constant, reducing the voltage drop V D(Im) of the current source can increase the maximum modulation current Imod of the laser driving circuit.
  • Differential pairs require transistors as tail current sources to control the magnitude of the modulation current.
  • the transistor tail current source in this method consumes a large amount of voltage margin, resulting in an excessively small maximum modulation current.
  • the purpose of the present invention is to provide a large modulation current DC-coupled laser drive circuit to solve the problem that the commonly used laser drive circuit consumes too much voltage margin due to the use of transistors as the tail current source, resulting in a small modulation current.
  • the large modulation current DC-coupled laser driving circuit of the present invention includes a negative feedback unit, an adaptive driving unit, a mirror tail current source, a resistor R11, a resistor R12, a bias current source IBIAS and a diode D2;
  • Resistor R12, laser D1, resistor R11, and bias current source IBIAS are connected in series between voltage VCC and ground in sequence;
  • the input end of the negative feedback unit is connected to the data signal input ports TINP and TINN, the output end of the negative feedback unit is connected to the input end of the adaptive drive unit, and the output end of the adaptive drive unit is connected to the control signal input end of the mirror tail current source,
  • One drive signal output end of the mirror type tail current source is connected to the anode of the laser D1 through the diode D2, and the other drive signal output end of the mirror type tail current source is connected to the cathode of the laser D1.
  • an inductor L1 is also included, and the mirror type tail current source is grounded through the inductor L1.
  • the negative feedback unit includes NPN transistors Q1-Q2, NPN transistor Q12, resistor R1, resistor R2, resistor R8, resistor R10, variable resistor R13, error amplifier A1, current source I3 and current source I4;
  • the adaptive driving unit includes NPN transistors Q3-Q7, NPN transistor Q13, resistors R3-R5, current source I1 and current source I2;
  • the mirror tail current source includes NPN transistors Q8-Q10, resistor R6 and resistor R7;
  • the base of the NPN transistor Q1 is connected to the data signal input port TINP;
  • the base of the NPN transistor Q2 is connected to the data signal input port TINN;
  • the emitter of the NPN transistor Q1 and the emitter of the NPN transistor Q2 are connected to the positive terminal of the current source I4 at the same time, and the negative terminal of the current source 14 is connected to the ground;
  • the collector of the NPN transistor Q1 is simultaneously connected to one end of the resistor R1 and the base of the NPN transistor Q7;
  • the collector of the NPN transistor Q2 is simultaneously connected to one end of the resistor R2 and the base of the NPN transistor Q6;
  • the other end of the resistor R1 is simultaneously connected to the other end of the resistor R2, the base of the NPN transistor Q13 and the output end of the error amplifier A1;
  • the collector VOUT of the NPN transistor Q13 is simultaneously connected to the collector of the NPN transistor Q6, the collector of the NPN transistor Q7, the positive terminal of the controllable current source IBIAS and one terminal of the resistor R11;
  • the emitter of NPN transistor Q13 is simultaneously connected to the collector and base of NPN transistor Q3, the base of NPN transistor Q4 and the base of NPN transistor Q5;
  • NPN transistor Q3 The emitter of NPN transistor Q3 is grounded through resistor R3;
  • NPN transistor Q4 The emitter of NPN transistor Q4 is grounded through resistor R4;
  • NPN transistor Q5 The emitter of NPN transistor Q5 is grounded through resistor R5;
  • the collector of the NPN transistor Q4 is simultaneously connected to the emitter of the NPN transistor Q6, the positive terminal of the current source I1, the base of the NPN transistor Q9 and the base of the NPN transistor Q11;
  • the collector of the NPN transistor Q5 is simultaneously connected to the emitter of the NPN transistor Q7, the positive terminal of the current source I2, the base of the NPN transistor Q8 and the base of the NPN transistor Q10;
  • One end of the resistor R6 is connected to the emitter of the NPN transistor Q8 and the emitter of the NPN transistor Q9 at the same time;
  • One end of the resistor R8 is connected to the collector of the NPN transistor Q8 and the collector of the NPN transistor Q9 at the same time, and the other end of the resistor R8 is connected to the emitter of the NPN transistor Q12;
  • the other end of the resistor R6 and one end of the resistor R7 are connected to one end of the inductor L1 at the same time, and the other end of the inductor L1 is grounded;
  • the collector of the NPN transistor Q10 is connected to the cathode of the laser D1, its output port TOUTN, and the other end of the resistor R11 through the matching network 1;
  • the collector of the NPN transistor Q11 is connected to the cathode of the diode D2; the anode of the diode D2 is connected to the anode of the laser D1 and its output port TOUTP and one end of the resistor R12 through the matching network 2;
  • the other end of the resistor R12 is connected to the power supply VCC;
  • the negative pole of the controllable current source IBIAS is connected to the ground
  • the base of the NPN transistor Q12 is connected to the voltage port VB;
  • the collector of the NPN transistor Q12 is simultaneously connected to the non-inverting input terminal of the error amplifier A1 and one terminal of the variable resistor R13;
  • variable resistor R13 The other end of the variable resistor R13 is connected to the power supply VCC;
  • the inverting input end of the error amplifier A1 is connected to the positive end of the current source I3 and one end of the resistor R10 at the same time;
  • the other end of the resistor R10 is connected to the power supply VCC;
  • the negative terminal of the current source I3 is grounded.
  • variable resistor R13 is adjusted to make the voltages of the non-inverting input terminal and the inverting input terminal of the error amplifier A1 equal.
  • the resistance value of the resistor R7 is less than 3 ⁇ .
  • the base voltages of the control transistors Q8-Q11 are between 0.7V and 0.8V.
  • a large modulated current laser driving circuit is proposed, which abandons the traditional method of using a transistor-type tail current source to provide modulation current, and adopts a novel mirror-type tail current source circuit structure, which greatly reduces the power consumption of the tail current source. voltage drop, maximizing the modulation current to meet the performance requirements of DFB lasers. It has been verified by simulation results.
  • Figure 1 is a schematic diagram of a commonly used laser driver.
  • FIG. 2 is a schematic diagram of a large modulated current DC-coupled laser driver according to the present invention.
  • FIG. 3 is a simulation diagram of key nodes of a large modulation current DC-coupled laser driver circuit according to the present invention.
  • the differential pair needs to use a transistor as the tail current source to realize the control of the modulation current.
  • the transistor tail current source in this method consumes a large amount of voltage margin, resulting in an excessively small maximum modulation current.
  • the large modulation current laser drive circuit proposed in Figure 2 solves the problem that the tail current source will consume a large amount of voltage margin, greatly improves the modulation current that the driver stage can output, and meets the operating conditions of DFB lasers.
  • Embodiment 1 The present embodiment will be described below with reference to FIG. 2 and FIG. 3 .
  • the large modulation current DC-coupled laser drive circuit described in this embodiment includes a negative feedback unit, an adaptive drive unit, a mirror-type tail current source, Resistor R11, resistor R12, bias current source IBIAS and diode D2;
  • the negative feedback unit includes NPN transistors Q1-Q2, NPN transistor Q12, resistor R1, resistor R2, resistor R8, resistor R10, variable resistor R13, error amplifier A1, current source I3 and current source I4;
  • the adaptive driving unit includes NPN transistors Q3-Q7, NPN transistor Q13, resistors R3-R5, current source I1 and current source I2;
  • the mirror tail current source includes NPN transistors Q8-Q10, resistor R6 and resistor R7;
  • the base of the NPN transistor Q1 is connected to the data signal input port TINP;
  • the base of the NPN transistor Q2 is connected to the data signal input port TINN;
  • the emitter of the NPN transistor Q1 and the emitter of the NPN transistor Q2 are connected to the positive terminal of the current source I4 at the same time, and the negative terminal of the current source 14 is connected to the ground;
  • the collector of the NPN transistor Q1 is simultaneously connected to one end of the resistor R1 and the base of the NPN transistor Q7;
  • the collector of the NPN transistor Q2 is simultaneously connected to one end of the resistor R2 and the base of the NPN transistor Q6;
  • the other end of the resistor R1 is simultaneously connected to the other end of the resistor R2, the base of the NPN transistor Q13 and the output end of the error amplifier A1;
  • the collector VOUT of the NPN transistor Q13 is simultaneously connected to the collector of the NPN transistor Q6, the collector of the NPN transistor Q7, the positive terminal of the controllable current source IBIAS and one terminal of the resistor R11;
  • the emitter of NPN transistor Q13 is simultaneously connected to the collector and base of NPN transistor Q3, the base of NPN transistor Q4 and the base of NPN transistor Q5;
  • NPN transistor Q3 The emitter of NPN transistor Q3 is grounded through resistor R3;
  • NPN transistor Q4 The emitter of NPN transistor Q4 is grounded through resistor R4;
  • NPN transistor Q5 The emitter of NPN transistor Q5 is grounded through resistor R5;
  • the collector of the NPN transistor Q4 is simultaneously connected to the emitter of the NPN transistor Q6, the positive terminal of the current source I1, the base of the NPN transistor Q9 and the base of the NPN transistor Q11;
  • the collector of the NPN transistor Q5 is simultaneously connected to the emitter of the NPN transistor Q7, the positive terminal of the current source I2, the base of the NPN transistor Q8 and the base of the NPN transistor Q10;
  • One end of the resistor R6 is connected to the emitter of the NPN transistor Q8 and the emitter of the NPN transistor Q9 at the same time;
  • One end of the resistor R8 is connected to the collector of the NPN transistor Q8 and the collector of the NPN transistor Q9 at the same time, and the other end of the resistor R8 is connected to the emitter of the NPN transistor Q12;
  • the other end of the resistor R6 and one end of the resistor R7 are connected to one end of the inductor L1 at the same time, and the other end of the inductor L1 is grounded;
  • the collector of the NPN transistor Q10 is connected to the cathode of the laser D1, its output port TOUTN, and the other end of the resistor R11 through the matching network 1;
  • the collector of the NPN transistor Q11 is connected to the cathode of the diode D2; the anode of the diode D2 is connected to the anode of the laser D1 and its output port TOUTP and one end of the resistor R12 through the matching network 2;
  • the other end of the resistor R12 is connected to the power supply VCC;
  • the negative pole of the controllable current source IBIAS is connected to the ground
  • the base of the NPN transistor Q12 is connected to the voltage port VB;
  • the collector of the NPN transistor Q12 is simultaneously connected to the non-inverting input terminal of the error amplifier A1 and one terminal of the variable resistor R13;
  • variable resistor R13 The other end of the variable resistor R13 is connected to the power supply VCC;
  • the inverting input end of the error amplifier A1 is connected to the positive end of the current source I3 and one end of the resistor R10 at the same time;
  • the other end of the resistor R10 is connected to the power supply VCC;
  • the negative terminal of the current source I3 is grounded.
  • the data streams TINP and TINN of the electrical signal are transmitted along the signal path, and finally the transistors Q10 and Q11 are controlled to be turned on and off, thereby realizing the switching of the flow direction of the modulation current.
  • the negative feedback unit, transistors Q6, Q7, Q8, Q9, resistor R6, and current sources I1-I2 together form a negative feedback loop.
  • Set the current value of the current source I3 to determine the voltage value at point A of the positive terminal of the current source I3. Under the action of the negative feedback loop, the voltages of points A and B are equal.
  • Transistors Q8-Q11, resistors R6 and R7 form a current mirror circuit, which is a new type of mirror tail current source circuit structure.
  • the formula for calculating the modulation current Imod is:
  • the transistors Q10 and Q11 Compared with the traditional laser driving circuit, the transistors Q10 and Q11 not only mirror the currents of the transistors Q8 and Q9 but also act as signal input tubes.
  • the base voltage of the transistors Q8-Q11 is just a little bit larger than the turn-on threshold voltage of the triode, which is 0.7V.
  • the purpose is to make the transistors Q8-Q11 quickly turn off and on in response to changes in the data flow .
  • the AC signal will be quickly transmitted to the ground through the resistor R7, so the inductor L1 must be added to prevent the AC signal from being conducted to the ground. ground, so that all the modulation current acts on the laser D1, and the luminous efficiency of the laser is improved.
  • the function of adding the diode D2 is to eliminate the offset, so that the working environment of the transistors Q10 and Q11 is consistent, and the signal error is reduced.
  • FIG. 3 is a simulation diagram of the present invention.
  • the TOUTP terminal of the curve can output a modulation current of 89.7mA.
  • Curve Z is the voltage drop across resistor R7, which is 125mV.
  • Curve XY is the eye diagram of the data flow to the bases of transistors Q10 and Q11 with a DC level of approximately 900mV. It can be seen from the above data that the present invention solves the drawbacks brought by the traditional laser driver.
  • the large modulation current laser driver circuit proposed by the present invention removes the transistor-type tail current source with huge consumption voltage margin in the driver, and uses a small resistor instead to output a large modulation current.
  • the low bias voltage value of the input tube is conducive to the rapid change of the signal, and the feedback loop embedded in the present invention increases the bias current when the laser modulation current increases, thereby enhancing the driving capability.
  • the above improvements can well meet the performance requirements of long-distance laser transmission.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种大调制电流直流耦合型激光器驱动电路,包括负反馈单元、自适应驱动单元、镜像式尾电流源、电阻R11、电阻R12、偏置电流源IBIAS和二极管D2。电阻R12、激光器D1、电阻R11、偏置电流源IBIAS依次串联在电压VCC和地之间。负反馈单元输入端连接数据信号输入端口TINP、TINN,负反馈单元的输出端与自适应驱动单元的输入端相连,自适应驱动单元的输出端与镜像式尾电流源的控制信号输入端相连,镜像式尾电流源的一个驱动信号输出端通过二极管D2与激光器D1的阳极相连,镜像式尾电流源的另一个驱动信号输出端与激光器D1的阴极相连,解决了常用激光器驱动电路因为采用晶体管作为尾电流源而消耗了过多电压裕度导致调制电流较小的问题。

Description

一种大调制电流直流耦合型激光器驱动电路 技术领域
本发明涉及一种DFB激光器的驱动电路,属于光通讯集成电路中的激光器驱动器领域。
背景技术
在光纤通信集成电路的发射端,激光驱动器(Laser Diode Driver)按照数据流的逻辑值开启或者关闭激光器,并使用光纤远距离传递光信号到光线路终端OLT,再通过跨阻放大器(TIA)将电流信号转换为电压信号。激光器必须被偏置在阈值附近,以便减少激光器导通时延的随机性,降低抖动,因此激光驱动器必须提供一个偏置电流(IBIAS)和调制电流(IMOD)。激光器的偏置电流需要不断的对温度变化和老化做出调整,调制电流也需要对激光器的发光效率(ER)做出改变。
图1给出了常用的激光器驱动电路的结构。图1中,D0为激光器,其被电流源Ib偏置在阈值发光点附近,电流源Im给激光驱动器提供调制电流,数据流TINP、TINN换成调制电流驱动激光器D0开启和关闭传递数据。半导体激光器的阈值电流和发光效率会随温度和使用时长而变化。半导体激光器的阈值电流随着温度的升高而明显增大,发光效率会随着温度的升高而降低。半导体激光器阈值电流和发光效率的漂移,给其应用带来很大不便。为了克服这些弊病,必须对输出功率进行控制,使激光器的工作能够维持在正确的工作点上。
光电二极管D1将激光器D0发出的光转化成监视电流Ic通过片内电阻R2将电流转化成电压,片外电容C1滤除电流信号Ic中的交流分量,保留直流分量,该直流分量即为激光器D0的平均光功率(AP)。平均光功率电压与参考电压Vref进行比较,误差放大器A1输出误差电压来调整激光器D0的偏置电流Ib大小,从而使得平均光功率满足设计要求。
环境温度探测器TS检测激光驱动器的工作温度,用以表征激光器的工作温度,根据使用需求提前设定调制电流的补偿范围,通过数模转换模块DAC和电压电流转换模块V2I调整调制电流源Im的电流大小,从而使得激光器满足一定的发光效率(ER)要求。
实际应用中,图1所示传统的激光器驱动电路连接激光器的方式是直流耦合,其优点是多速率兼容、低功耗、更少的片外元件。根据调制电流输出公式;
Figure PCTCN2021100963-appb-000001
V CC是电源电压,V D是激光器的压降,V CE(Q2)是晶体管Q2集电极和发射级压降,V D(Im)是电流源的压降,R LOAD是激光器的内阻。公式1表明,当激光器内阻R LOAD一定时,降低电流源压降V D(Im)能够提高激光器驱动电路最大的调制电流Imod。
差分对需要用晶体管作为尾电流源,以实现对调制电流大小的控制。该方法中的晶体管尾电流源会消耗大量的电压裕度,致使最大调制电流过小。
发明内容
本发明目的是为了解决常用激光器驱动电路因为采用晶体管作为尾电流源而消耗了过多电压裕度导致调制电流较小的问题,提供了一种大调制电流直流耦合型激光器驱动电路。
本发明所述一种大调制电流直流耦合型激光器驱动电路包括负反馈单元、自适应驱动单元、镜像式尾电流源、电阻R11、电阻R12、偏置电流源IBIAS和二极管D2;
电阻R12、激光器D1、电阻R11、偏置电流源IBIAS依次串联在电压VCC和地之间;
负反馈单元输入端连接数据信号输入端口TINP、TINN,负反馈单元的输出端与自适应驱动单元的输入端相连,自适应驱动单元的输出端与镜像式尾电流源的控制信号输入端相连,镜像式尾电流源的一个驱动信号输出端通过二极管D2与激光器D1的阳极相连,镜像式尾电流源的另一个驱动信号输出端与激光器D1的阴极相连。
优选地,还包括电感L1,镜像式尾电流源通过电感L1接地。
优选地,负反馈单元包括NPN晶体管Q1~Q2、NPN晶体管Q12、电阻R1、电阻R2、电阻R8、电阻R10、可变电阻R13、误差放大器A1、电流源I3和电流源I4;
自适应驱动单元包括NPN晶体管Q3~Q7、NPN晶体管Q13、电阻R3~R5、电流源I1和电流源I2;
镜像式尾电流源包括NPN晶体管Q8~Q10、电阻R6和电阻R7;
NPN晶体管Q1的基极连接数据信号输入端口TINP;
NPN晶体管Q2的基极连接数据信号输入端口TINN;
NPN晶体管Q1的发射极和NPN晶体管Q2的发射极同时连接电流源I4的正端,电流源14的负端连接地;
NPN晶体管Q1的集电极同时连接电阻R1一端和NPN晶体管Q7的基极;
NPN晶体管Q2的集电极同时连接电阻R2一端和NPN晶体管Q6的基极;
电阻R1的另一端同时连接电阻R2的另一端、NPN晶体管Q13的基极和误差放大器A1的输出端;
NPN晶体管Q13的集电极VOUT同时连接NPN晶体管Q6的集电极、NPN晶体管Q7的集电极、可控电流源IBIAS的正端和电阻R11的一端;
NPN晶体管Q13的发射极同时连接NPN晶体管Q3的集电极及基极、NPN晶体管Q4的基极和NPN晶体管Q5的基极;
NPN晶体管Q3的发射极通过电阻R3接地;
NPN晶体管Q4的发射极通过电阻R4接地;
NPN晶体管Q5的发射极通过电阻R5接地;
NPN晶体管Q4的集电极同时连接NPN晶体管Q6的发射极、电流源I1的正端、NPN晶体管Q9的基极和NPN晶体管Q11的基极;
NPN晶体管Q5的集电极同时连接NPN晶体管Q7的发射极、电流源I2的正端、NPN晶体管Q8的基极和NPN晶体管Q10的基极;
电流源I1和I2的另一端同时接地;
电阻R6的一端同时连接NPN晶体管Q8的发射极和NPN晶体管Q9的发射极;
电阻R8的一端同时连接NPN晶体管Q8的集电极和NPN晶体管Q9的集电极,电阻R8的另一端连接NPN晶体管Q12的发射极;
电阻R6的另一端和电阻R7的一端同时连接电感L1的一端,电感L1的另一端接地;
NPN晶体管Q10的集电极通过匹配网络1连接激光器D1的阴极及其输出端口TOUTN、电阻R11的另一端;
NPN晶体管Q11的集电极连接二极管D2的阴极;二极管D2的阳极通过匹配网络2连接激光器D1的阳极及其输出端口TOUTP、电阻R12的一端;
电阻R12的另一端连接电源VCC;
可控电流源IBIAS的负极连接地;
NPN晶体管Q12的基极连接电压端口VB;
NPN晶体管Q12的集电极同时连接误差放大器A1的正相输入端和可变电阻R13的一端;
可变电阻R13的另一端连接电源VCC;
误差放大器A1的反相输入端同时连接电流源I3的正端和电阻R10的一端;
电阻R10的另一端连接电源VCC;
电流源I3的负端接地。
优选地,调整可变电阻R13令误差放大器A1的正相输入端和反相输入端的电压相等。
优选地,电阻R7的阻值小于3Ω。
优选地,控制晶体管Q8-Q11的基极电压在0.7V~0.8V之间。
本发明的有益效果:提出一种大调制电流激光器驱动电路,摒弃传统激光驱动器采用晶体管型尾电流源提供调制电流的方法,采用新型的镜像式尾电流源电路结构,大大降低了尾电流源的压降,最大程度的提高调制电流以满足DFB激光器的性能需求。已经通过了仿真结果验证。
附图说明
图1是常用的激光驱动器原理图。
图2是本发明的一种大调制电流直流耦合型激光驱动器原理图。
图3是本发明一种大调制电流直流耦合型激光驱动器电路关键节点仿真图。
具体实施方式
在阐述常用的激光器驱动电路中,差分对需要用晶体管作为尾电流源,以实现对调制电流大小的控制。该方法中的晶体管尾电流源会消耗大量的电压裕度,致使最大调制电流过小。图2提出的大调制电流激光器驱动电路,解决了尾电流源会消耗大量电压裕度的问题,大大提高了驱动级所能输出的调制电流,满足DFB激光器的使用条件。
具体实施方式一:下面结合图2和图3说明本实施方式,本实施方式所述一种大调制电流直流耦合型激光器驱动电路,包括负反馈单元、自适应驱动单元、镜像式尾电流源、电阻R11、电阻R12、偏置电流源IBIAS和二极管D2;
负反馈单元包括NPN晶体管Q1~Q2、NPN晶体管Q12、电阻R1、电阻R2、电阻R8、电阻R10、可变电阻R13、误差放大器A1、电流源I3和电流源I4;
自适应驱动单元包括NPN晶体管Q3~Q7、NPN晶体管Q13、电阻R3~R5、电流源I1和电流源I2;
镜像式尾电流源包括NPN晶体管Q8~Q10、电阻R6和电阻R7;
NPN晶体管Q1的基极连接数据信号输入端口TINP;
NPN晶体管Q2的基极连接数据信号输入端口TINN;
NPN晶体管Q1的发射极和NPN晶体管Q2的发射极同时连接电流源I4的正端,电流源14的负端连接地;
NPN晶体管Q1的集电极同时连接电阻R1一端和NPN晶体管Q7的基极;
NPN晶体管Q2的集电极同时连接电阻R2一端和NPN晶体管Q6的基极;
电阻R1的另一端同时连接电阻R2的另一端、NPN晶体管Q13的基极和误差放大器A1的输出端;
NPN晶体管Q13的集电极VOUT同时连接NPN晶体管Q6的集电极、NPN晶体管Q7的集电极、可控电流源IBIAS的正端和电阻R11的一端;
NPN晶体管Q13的发射极同时连接NPN晶体管Q3的集电极及基极、NPN晶体管Q4的基极和NPN晶体管Q5的基极;
NPN晶体管Q3的发射极通过电阻R3接地;
NPN晶体管Q4的发射极通过电阻R4接地;
NPN晶体管Q5的发射极通过电阻R5接地;
NPN晶体管Q4的集电极同时连接NPN晶体管Q6的发射极、电流源I1的正端、NPN晶体管Q9的基极和NPN晶体管Q11的基极;
NPN晶体管Q5的集电极同时连接NPN晶体管Q7的发射极、电流源I2的正端、NPN晶体管Q8的基极和NPN晶体管Q10的基极;
电流源I1和I2的另一端同时接地;
电阻R6的一端同时连接NPN晶体管Q8的发射极和NPN晶体管Q9的发射极;
电阻R8的一端同时连接NPN晶体管Q8的集电极和NPN晶体管Q9的集电极,电阻R8的另一端连接NPN晶体管Q12的发射极;
电阻R6的另一端和电阻R7的一端同时连接电感L1的一端,电感L1的另一端接地;
NPN晶体管Q10的集电极通过匹配网络1连接激光器D1的阴极及其输出端口TOUTN、电阻R11的另一端;
NPN晶体管Q11的集电极连接二极管D2的阴极;二极管D2的阳极通过匹配网络2连接激光器D1的阳极及其输出端口TOUTP、电阻R12的一端;
电阻R12的另一端连接电源VCC;
可控电流源IBIAS的负极连接地;
NPN晶体管Q12的基极连接电压端口VB;
NPN晶体管Q12的集电极同时连接误差放大器A1的正相输入端和可变电阻R13的一端;
可变电阻R13的另一端连接电源VCC;
误差放大器A1的反相输入端同时连接电流源I3的正端和电阻R10的一端;
电阻R10的另一端连接电源VCC;
电流源I3的负端接地。
将电信号的数据流TINP、TINN,沿着信号通路传递,最终控制晶体管Q10和Q11的导通与关闭,从而实现调制电流流向的切换。负反馈单元、晶体管Q6、Q7、Q8、Q9、电阻R6,电流源I1-I2共同构成负反馈环路。设定电流源I3的电流值,以确定电流源I3正端的A点电压值。在负反馈环路作用下,A、B两点电压相等。当可变电阻R13阻值减小,则流过晶体管Q12的电流增大。当可变电阻R13阻值增大,则流过晶体管Q12的电流减小。晶体管Q8-Q11、电阻R6和R7构成电流镜电路,该电路是一种新型的镜像式尾电流源电路结构,其调制电流Imod的计算公式为:
Figure PCTCN2021100963-appb-000002
晶体管Q10、Q11相比于传统结构的激光器驱动电路,它们既镜像晶体管Q8、Q9的电流,又充当信号的输入管。晶体管Q10和Q11的发射极连接一个小阻R7取代了晶体管型尾电流源,假如R7=2Ω,调制电流Imod=90mA,电阻R7的压降仅仅是180mV,根据公式(1)此方法能提高激光器驱动电路最大的调制电流Imod。
在负反馈环路作用下,晶体管Q8-Q11的基极电压刚好大于三极管的导通阈值电压0.7V一点点儿,此目的是为了让晶体管Q8-Q11快速的关闭和开启以响应数据流的变化。
由于电阻R7的阻值很小,晶体管Q10、Q11基极接收到快速变化的数据流时,将会很快的将交流信号通过电阻R7传递给地,因此必须增加电感L1,防止交流信号传导到地,使得调制电流全部作用于激光器D1,提高激光器的发光效率。
增加二极管D2的作用是失调消除,使得晶体管Q10、Q11的工作环境一致,减小信号误差。
随着调制电流Imod增大,晶体管Q10和Q11的跨导增大,因此加在Q10和Q11基级端的米勒等效电容也会增大。晶体管Q3、Q4、Q5、Q6、Q7和Q13,电阻R3-R5构成了自适应驱动电路,当调制电流Imod增加时,误差放大器A1输出电压增加,因此Q13发射级电流增加,在电流镜的作用下,晶体管Q6和Q7的发射级电流增加,因此驱动能力增加,有效地驱动Q10和Q11基级端的较大的米勒等效电容,改善输出眼图。在激光器的输出端有寄生电容的存在,会影响传递信号速率的提升,反射或者削减传递信号。因此增加匹配网络1和2消除寄生电容带来的影响。
图3是本发明的仿真图。曲线TOUTP端能够输出89.7mA的调制电流。曲线Z为电阻R7的压降,为125mV。曲线XY是达到晶体管Q10和Q11的基极的数据流构成的眼图,其DC电平大约为900mV。由以上数据可知,本发明解决了传统激光驱动器所带来的弊端。
本发明提出的大调制电流激光器驱动器电路,在驱动器中去除了消耗电压裕度巨大的晶体管型尾电流源,使用小电阻代替,输出大调制电流。输入管的低偏置电压值有利于信号的快速变化,本发明中嵌入的反馈环路,在激光器调制电流增大的同时也增大偏置电流,驱动能力得到增强。以上改进能够很好地满足激光器远距传输的性能要求。

Claims (6)

  1. 一种大调制电流直流耦合型激光器驱动电路,其特征在于,包括负反馈单元、自适应驱动单元、镜像式尾电流源、电阻R11、电阻R12、偏置电流源IBIAS和二极管D2;
    电阻R12、激光器D1、电阻R11、偏置电流源IBIAS依次串联在电压VCC和地之间;
    负反馈单元输入端连接数据信号输入端口TINP、TINN,负反馈单元的输出端与自适应驱动单元的输入端相连,自适应驱动单元的输出端与镜像式尾电流源的控制信号输入端相连,镜像式尾电流源的一个驱动信号输出端通过二极管D2与激光器D1的阳极相连,镜像式尾电流源的另一个驱动信号输出端与激光器D1的阴极相连。
  2. 根据权利要求1所述一种大调制电流直流耦合型激光器驱动电路,其特征在于,还包括电感L1,镜像式尾电流源通过电感L1接地。
  3. 根据权利要求2所述一种大调制电流直流耦合型激光器驱动电路,其特征在于,负反馈单元包括NPN晶体管Q1~Q2、NPN晶体管Q12、电阻R1、电阻R2、电阻R8、电阻R10、可变电阻R13、误差放大器A1、电流源I3和电流源I4;
    自适应驱动单元包括NPN晶体管Q3~Q7、NPN晶体管Q13、电阻R3~R5、电流源I1和电流源I2;
    镜像式尾电流源包括NPN晶体管Q8~Q10、电阻R6和电阻R7;
    NPN晶体管Q1的基极连接数据信号输入端口TINP;
    NPN晶体管Q2的基极连接数据信号输入端口TINN;
    NPN晶体管Q1的发射极和NPN晶体管Q2的发射极同时连接电流源I4的正端,电流源14的负端连接地;
    NPN晶体管Q1的集电极同时连接电阻R1一端和NPN晶体管Q7的基极;
    NPN晶体管Q2的集电极同时连接电阻R2一端和NPN晶体管Q6的基极;
    电阻R1的另一端同时连接电阻R2的另一端、NPN晶体管Q13的基极和误差放大器A1的输出端;
    NPN晶体管Q13的集电极VOUT同时连接NPN晶体管Q6的集电极、NPN晶体管Q7的集电极、可控电流源IBIAS的正端和电阻R11的一端;
    NPN晶体管Q13的发射极同时连接NPN晶体管Q3的集电极及基极、NPN晶体管Q4的基极和NPN晶体管Q5的基极;
    NPN晶体管Q3的发射极通过电阻R3接地;
    NPN晶体管Q4的发射极通过电阻R4接地;
    NPN晶体管Q5的发射极通过电阻R5接地;
    NPN晶体管Q4的集电极同时连接NPN晶体管Q6的发射极、电流源I1的正端、NPN晶体管Q9的基极和NPN晶体管Q11的基极;
    NPN晶体管Q5的集电极同时连接NPN晶体管Q7的发射极、电流源I2的正端、NPN晶体管Q8的基极和NPN晶体管Q10的基极;
    电流源I1和I2的另一端同时接地;
    电阻R6的一端同时连接NPN晶体管Q8的发射极和NPN晶体管Q9的发射极;
    电阻R8的一端同时连接NPN晶体管Q8的集电极和NPN晶体管Q9的集电极,电阻R8的另一端连接NPN晶体管Q12的发射极;
    电阻R6的另一端和电阻R7的一端同时连接电感L1的一端,电感L1的另一端接地;
    NPN晶体管Q10的集电极通过匹配网络1连接激光器D1的阴极及其输出端口TOUTN、电阻R11的另一端;
    NPN晶体管Q11的集电极连接二极管D2的阴极;二极管D2的阳极通过匹配网络2连接激光器D1的阳极及其输出端口TOUTP、电阻R12的一端;
    电阻R12的另一端连接电源VCC;
    可控电流源IBIAS的负极连接地;
    NPN晶体管Q12的基极连接电压端口VB;
    NPN晶体管Q12的集电极同时连接误差放大器A1的正相输入端和可变电阻R13的一端;
    可变电阻R13的另一端连接电源VCC;
    误差放大器A1的反相输入端同时连接电流源I3的正端和电阻R10的一端;
    电阻R10的另一端连接电源VCC;
    电流源I3的负端接地。
  4. 根据权利要求3所述一种大调制电流直流耦合型激光器驱动电路,其特征在于,调整可变电阻R13令误差放大器A1的正相输入端和反相输入端的电压相等。
  5. 根据权利要求3所述一种大调制电流直流耦合型激光器驱动电路,其特征在于,电阻R7的阻值小于3Ω。
  6. 根据权利要求1所述一种大调制电流直流耦合型激光器驱动电路,其特征在于,控制晶体管Q8-Q11的基极电压在0.7V~0.8V之间。
PCT/CN2021/100963 2020-08-03 2021-06-18 一种大调制电流直流耦合型激光器驱动电路 WO2022028128A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/621,421 US20220360042A1 (en) 2020-08-03 2021-06-18 DC-coupled Laser Diode Driver Circuit with Large Modulation Current

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010767443.9A CN111916996B (zh) 2020-08-03 2020-08-03 一种大调制电流直流耦合型激光器驱动电路
CN202010767443.9 2020-08-03

Publications (1)

Publication Number Publication Date
WO2022028128A1 true WO2022028128A1 (zh) 2022-02-10

Family

ID=73286915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100963 WO2022028128A1 (zh) 2020-08-03 2021-06-18 一种大调制电流直流耦合型激光器驱动电路

Country Status (3)

Country Link
US (1) US20220360042A1 (zh)
CN (1) CN111916996B (zh)
WO (1) WO2022028128A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916996B (zh) * 2020-08-03 2021-09-03 厦门亿芯源半导体科技有限公司 一种大调制电流直流耦合型激光器驱动电路
CN112615676B (zh) * 2020-12-18 2021-10-01 厦门亿芯源半导体科技有限公司 带有相位延迟补偿功能的高速光收发一体芯片驱动电路
CN113644541B (zh) * 2021-06-21 2022-07-12 义乌协同创新研究院 面向高速光电互连的直接调制激光器驱动电路
CN114243450B (zh) * 2021-12-16 2023-06-09 厦门亿芯源半导体科技有限公司 一种dfb激光器直流耦合输出电源配置方法
CN114284860B (zh) * 2021-12-16 2023-06-13 厦门亿芯源半导体科技有限公司 压差可调整的dfb激光器直流耦合输出电源配置方法
CN114089149B (zh) * 2022-01-21 2022-04-01 成都明夷电子科技有限公司 一种光通信激光驱动器自动功率控制功能测试系统及方法
CN114844509A (zh) * 2022-05-23 2022-08-02 广东人工智能与先进计算研究院 一种dac直流耦合输出电路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2257824A (en) * 1991-07-03 1993-01-20 Northern Telecom Ltd Laser modulator and amplifier
EP1313185A2 (en) * 2001-10-25 2003-05-21 Kabushiki Kaisha Toshiba Temperature dependent constant-current generating circuit
US20060255838A1 (en) * 2005-05-10 2006-11-16 Atmel Germany Gmbh Driver circuit for electronic components
CN102593713A (zh) * 2012-03-07 2012-07-18 山东大学 一种模拟半导体激光器自动功率控制的电路
CN202930744U (zh) * 2012-11-12 2013-05-08 华南理工大学 一种同轴尾纤型激光器驱动电路
CN109066290A (zh) * 2018-09-18 2018-12-21 杭州洪芯微电子科技有限公司 应用于激光驱动器的低电压空间精确电流镜像电路
CN110676688A (zh) * 2019-08-27 2020-01-10 上海禾赛光电科技有限公司 驱动电路、激光雷达系统和驱动方法
CN111916996A (zh) * 2020-08-03 2020-11-10 厦门亿芯源半导体科技有限公司 一种大调制电流直流耦合型激光器驱动电路

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2773447B2 (ja) * 1991-03-15 1998-07-09 日本電気株式会社 レーザダイオードの出力制御回路
JP4520109B2 (ja) * 2003-05-26 2010-08-04 パナソニック株式会社 レーザーパワー制御回路
US20050041706A1 (en) * 2003-08-20 2005-02-24 Vikram Magoon Laser driver circuit
KR101658783B1 (ko) * 2010-05-26 2016-09-23 삼성전자주식회사 영전류 검출 회로를 포함하는 전력 변환기 및 전력 변환 방법
CN102064468B (zh) * 2010-12-15 2012-08-22 烽火通信科技股份有限公司 一种低电压自适应光通信激光驱动器电路
CN102468603B (zh) * 2011-11-29 2013-07-03 厦门优迅高速芯片有限公司 一种稳定消光比的激光器驱动电路
CN102437507B (zh) * 2011-12-02 2013-03-13 烽火通信科技股份有限公司 一种用于光通信激光器驱动的自动功率控制电路
CN103248324B (zh) * 2013-04-23 2016-05-18 南京邮电大学 一种高线性度低噪声放大器
CN103441741B (zh) * 2013-08-30 2016-05-04 江苏物联网研究发展中心 基于带隙基准的减小失调电压的运放电路结构
JP6484962B2 (ja) * 2014-08-29 2019-03-20 住友電気工業株式会社 進行波型増幅器
CN105529994B (zh) * 2016-01-08 2019-01-29 南京亿芯源半导体科技有限公司 带有增益自举功能的跨阻放大器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2257824A (en) * 1991-07-03 1993-01-20 Northern Telecom Ltd Laser modulator and amplifier
EP1313185A2 (en) * 2001-10-25 2003-05-21 Kabushiki Kaisha Toshiba Temperature dependent constant-current generating circuit
US20060255838A1 (en) * 2005-05-10 2006-11-16 Atmel Germany Gmbh Driver circuit for electronic components
CN102593713A (zh) * 2012-03-07 2012-07-18 山东大学 一种模拟半导体激光器自动功率控制的电路
CN202930744U (zh) * 2012-11-12 2013-05-08 华南理工大学 一种同轴尾纤型激光器驱动电路
CN109066290A (zh) * 2018-09-18 2018-12-21 杭州洪芯微电子科技有限公司 应用于激光驱动器的低电压空间精确电流镜像电路
CN110676688A (zh) * 2019-08-27 2020-01-10 上海禾赛光电科技有限公司 驱动电路、激光雷达系统和驱动方法
CN111916996A (zh) * 2020-08-03 2020-11-10 厦门亿芯源半导体科技有限公司 一种大调制电流直流耦合型激光器驱动电路

Also Published As

Publication number Publication date
US20220360042A1 (en) 2022-11-10
CN111916996A (zh) 2020-11-10
CN111916996B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
WO2022028128A1 (zh) 一种大调制电流直流耦合型激光器驱动电路
US6272160B1 (en) High-speed CMOS driver for vertical-cavity surface-emitting lasers
CN101702489B (zh) 一种电吸收调制激光器的偏置电路及其调试方法
US20120301151A1 (en) Low Power Consumption, Long Range, Pluggable Transceiver, Circuits and Devices Therefor, and Method(s) of Using the Same
US9153936B2 (en) Power-efficient high-speed driver for a vertical-cavity surface-emitting laser
CN205646432U (zh) 一种半导体激光器驱动电路
JPH11103108A (ja) 温度依存型定電流発生回路およびこれを用いた光半導体素子の駆動回路
CN110417480B (zh) 基于3抽头前馈均衡预加重的光发射机驱动电路
CN113708212B (zh) 一种基于apc和aer环路电学测量电路的测试方法
US20180337732A1 (en) Driver circuit, optical transmission module and optical transmission device
JP2016052016A (ja) 光受信回路および光結合装置
CN110086082B (zh) 一种电容耦合预加重的vcsel激光器高速驱动电路
US7480463B2 (en) LED drive circuit
CN115001523A (zh) 基于epon搭配eml的10g速率olt端收发一体芯片
US10700490B2 (en) Pseudo-balanced driver
CN102299478B (zh) 光通信激光驱动器调制电流比例补偿电路
CN106953697B (zh) 模拟可编程的olt收发一体芯片
Lee et al. The LED driver IC of visible light communication with high data rate and high efficiency
CN109088306B (zh) 激光二极管驱动器消光比控制的控制电路及其方法
CN103956650A (zh) 一种应用于激光驱动器的温度补偿电路
WO2023108794A1 (zh) 压差可调整的dfb激光器直流耦合输出电源配置方案
US11837847B2 (en) DFB laser DC-coupled output power configuration scheme
CN215221267U (zh) 一种激光器消光比检测电路
JP2018186112A (ja) Dmlドライバ
CN109326954B (zh) 一种用于量子通信单光子源的激光器高速驱动模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853240

Country of ref document: EP

Kind code of ref document: A1