WO2022027889A1 - 一种环氧树脂浸渍玻璃纤维直流套管研制方法 - Google Patents

一种环氧树脂浸渍玻璃纤维直流套管研制方法 Download PDF

Info

Publication number
WO2022027889A1
WO2022027889A1 PCT/CN2020/134362 CN2020134362W WO2022027889A1 WO 2022027889 A1 WO2022027889 A1 WO 2022027889A1 CN 2020134362 W CN2020134362 W CN 2020134362W WO 2022027889 A1 WO2022027889 A1 WO 2022027889A1
Authority
WO
WIPO (PCT)
Prior art keywords
core body
bushing
flange
epoxy resin
glass fiber
Prior art date
Application number
PCT/CN2020/134362
Other languages
English (en)
French (fr)
Inventor
邓建钢
徐卓林
兰贞波
宋友
柯磊
聂宇
唐程
王珊珊
彭亚凯
毛月飞
蔡超
石悠旖
Original Assignee
国网电力科学研究院武汉南瑞有限责任公司
国网电力科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网电力科学研究院武汉南瑞有限责任公司, 国网电力科学研究院有限公司 filed Critical 国网电力科学研究院武汉南瑞有限责任公司
Priority to US17/913,873 priority Critical patent/US20230343489A1/en
Publication of WO2022027889A1 publication Critical patent/WO2022027889A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators
    • H01B17/28Capacitor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/42Means for obtaining improved distribution of voltage; Protection against arc discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/58Tubes, sleeves, beads, or bobbins through which the conductor passes
    • H01B17/583Grommets; Bushings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/64Insulating bodies with conductive admixtures, inserts or layers

Definitions

  • the present disclosure relates to the technical field of DC bushings, in particular to a development method of epoxy resin impregnated glass fiber DC bushings.
  • the DC bushing passes through the box or wall with different potentials, plays the role of insulation and mechanical support, and is one of the key equipment to ensure the safe and stable operation of the system.
  • Traditional (converter transformer) DC bushings mostly use oil-impregnated paper and rubber-impregnated paper production processes, but oil-impregnated paper bushings have the risk of oil leakage, rubber-impregnated paper bushings are easy to absorb moisture, and multiple sets occur during system operation. Tube failures and accidents.
  • the DC bushing (converter transformer) produced by epoxy resin impregnated glass fiber process is a pure solid structure, which is oil-free, non-decomposition, maintenance-free, and has excellent mechanical strength and shock resistance. , No danger of combustion and explosion; the casing core is made of non-moisture-absorbing material, and the dielectric loss is low.
  • the purpose of the embodiments of the present disclosure is to provide a method for developing an epoxy resin impregnated glass fiber DC bushing.
  • a method for developing an epoxy resin impregnated glass fiber DC bushing comprising:
  • the design parameters of the casing are selected, the winding machine program is determined according to the design parameters of the casing, and the core body is wound according to the winding machine program; During the winding process, the core body begins to solidify initially;
  • the core body is wound, the core body is cured by the oven according to the preset oven temperature and duration;
  • the cured core is machined according to the preset core design drawings.
  • every two layers of capacitive screen or resistive screen have the same thickness, and the thickness of each layer of capacitive screen or resistive screen takes the design parameters of the bushing within 2.5mm-5mm.
  • the winding temperature in the winding machine program is 90°C-120°C.
  • the rough machining feed amount is not greater than 0.5 mm, and the finishing machining amount is not greater than 0.1 mm.
  • the method further includes: after the glue injection is performed at the position of the glue injection hole of the flange, it is allowed to stand for 24 hours.
  • the method further includes: after grinding and cleaning the inner wall of the flange, evenly applying adhesive to the inner wall of the flange.
  • the method further includes: after pretreatment by heating in an oven, fixing a flange and installing a sealing ring on the core body.
  • the method further includes: sequentially assembling a bus ring, a hollow composite insulator, and a pressure-equalizing sealing cover to the core body that has been glued, and before installing the conductive rod, the wiring board and the pressure-equalizing ball, Finished core body oil immersed end is painted.
  • the embodiments of the present disclosure provide a method for developing an epoxy resin impregnated glass fiber DC bushing. Has the following beneficial effects:
  • epoxy resin impregnated glass fiber is used for winding at a high temperature of 90°C-120°C, which promotes the initial curing process of the core;
  • the thickness of the capacitive screen or resistive screen is designed to be 2.5mm-5mm, which realizes the reasonable distribution of the field strength of the casing, and the equal thickness design method reduces the difficulty of the casing core winding process;
  • the casing is connected to the end screen near the flange or
  • the bus ring connected to the voltage screen is grounded to release the accumulated charge (or space accumulated charge) generated during operation to ensure reliable operation of the product.
  • FIG. 1 is a schematic flow chart of a method for developing an epoxy resin impregnated glass fiber DC bushing according to an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of a DC bushing core body according to an embodiment of the present disclosure (converter transformer);
  • FIG 3 is a schematic diagram of the connection between the end screen of the DC bushing core body or the indoor end of the voltage screen and the bus ring according to an embodiment of the present disclosure (converter transformer);
  • FIG. 4 is a schematic diagram of the connection between the end screen of the DC bushing core body or the outer end of the voltage screen and the bus ring according to an embodiment of the disclosure (converter transformer);
  • FIG. 1 is a schematic flowchart of a method for developing an epoxy resin-impregnated glass fiber DC bushing according to an embodiment of the present disclosure; as shown in FIG. The methods described include:
  • Step 11 According to the length parameters of each layer of capacitive screen or resistive screen designed according to the insulation requirements, select the design parameters of the casing, determine the winding machine program according to the casing design parameters, and perform core winding according to the winding machine program; wherein, During the core winding process, the core begins to solidify initially;
  • Step 12 After the core body is wound, the core body is cured by the oven according to the preset oven temperature and duration;
  • Step 13 Machining the cured core body according to the preset core body design drawing
  • Step 14 After grinding and cleaning the inner wall of the flange and pre-heating it in an oven, inject glue at the position of the flange injection hole to glue the core body and the flange;
  • Step 15 Assemble the bus ring, hollow composite insulator, pressure-equalizing sealing cover, and install the conductive rod, the terminal board and the pressure-equalizing ball in sequence to the core body that has been glued;
  • Step 16 Carry out various detection tests of the casing according to the preset standard of casing for the DC system.
  • Fig. 2 is a schematic diagram of the DC bushing core according to an embodiment of the disclosure (converter transformer); as shown in Fig. 2, a represents the thickness of every two layers of capacitive screens (or resistive screens) in the DC bushing core, and b1 and b2 represent the DC bushing A two-layer capacitive screen (or resistive screen) of the die body.
  • the upper and lower sides of the “rectangle” in FIG. 2 are capacitive screens (or resistive screens), and a represents the thickness of two layers of capacitive screens (or resistive screens).
  • every two layers of capacitive screen or resistive screen have the same thickness, and the thickness of each layer of capacitive screen or resistive screen takes the design parameters of the bushing within 2.5 millimeters (mm)-5 mm.
  • the winding temperature obtained in the winding machine program is 90°C-120°C.
  • the rough machining feed amount is not greater than 0.5 mm, and the finishing machining amount is not greater than 0.1 mm.
  • the method further includes: after the glue injection is performed at the position of the glue injection hole of the flange, it is allowed to stand for 24 hours.
  • the method further includes: after grinding and cleaning the inner wall of the flange, evenly applying adhesive to the inner wall of the flange.
  • the method further includes: after pretreatment by heating in an oven, fixing a flange and installing a sealing ring on the core body.
  • the method further includes: sequentially assembling a bus ring, a hollow composite insulator, and a pressure-equalizing sealing cover to the core body that has been glued, and before installing the conductive rod, the wiring board and the pressure-equalizing ball, Finished core body oil immersed end is painted.
  • FIG. 3 is a schematic diagram of the connection between the end screen of the DC bushing core body or the indoor end of the voltage screen and the bus ring according to the embodiment of the present disclosure (converter transformer);
  • FIG. 4 is the end screen of the DC bushing core body according to the embodiment of the present disclosure (converter transformer). Or a schematic diagram of the connection between the outdoor end of the voltage screen and the bus ring;
  • the various detection tests of the casing are carried out according to the preset standard of the casing for the DC system.
  • the preset GB/T22674-2008 standard can be used to carry out the various detection tests of the casing; among which, the GB/T22674 -The 2008 standard is the national standard of the People's Republic of China and the standard for bushings for DC systems.
  • the embodiments of the present disclosure are not limited to the above-mentioned bushing standards for DC systems.
  • the embodiment of the present disclosure provides a method for developing an epoxy resin impregnated glass fiber DC bushing, and the method includes:
  • Core winding according to the length parameters of each layer of capacitive screen or resistive screen designed according to the insulation requirements, select the thickness of every two layers of capacitive screen or resistive screen is equal and the thickness of each layer of capacitive screen or resistive screen is 2.5mm. parameters, determine the winding machine program according to the casing design parameter settings, and perform core winding according to the winding machine program; wherein, the winding temperature in the winding machine program is 90 ° C, and during the core winding process, the core body is also gradually and initially solidified;
  • the core body is cured; after the core body is wound, it is sent to the oven, and cured according to the pre-set reasonable oven temperature and duration to ensure that the core body is completely cured;
  • Embodiments of the present disclosure also provide a method for developing an epoxy resin impregnated glass fiber DC bushing, the method comprising:
  • Core winding according to the length parameters of each layer of capacitive screen or resistive screen designed according to insulation requirements, select the bushing design parameters with equal thickness of each two layers of capacitors and the thickness of each layer of capacitive screen or resistive screen as 3mm.
  • the design parameters determine the winding machine program, and the core body is wound according to the winding machine program; wherein, the winding temperature in the winding machine program is 95 ° C, and the core body is also gradually and initially solidified during the winding process of the core body;
  • the core body is cured; after the core body is wound, it is sent to the oven, and cured according to the pre-set reasonable oven temperature and duration to ensure that the core body is completely cured;
  • Embodiments of the present disclosure also provide a method for developing an epoxy resin impregnated glass fiber DC bushing, the method comprising:
  • Core winding according to the length parameters of each layer of capacitive screen or resistive screen designed according to the insulation requirements, select the thickness of every two layers of capacitive screen or resistive screen is equal and the thickness of each layer of capacitive screen or resistive screen is 3.5mm. parameters, determine the winding machine program according to the casing design parameters, and perform the core winding according to the winding machine program; wherein, the winding temperature in the winding machine program is 100 °C, and the core body is also in the process of winding the core body. gradually solidified;
  • the core body is cured; after the core body is wound, it is sent to the oven, and cured according to the pre-set reasonable oven temperature and duration to ensure that the core body is completely cured;
  • Embodiments of the present disclosure also provide a method for developing an epoxy resin impregnated glass fiber DC bushing, the method comprising:
  • Core winding according to the length parameters of each layer of capacitive screen or resistive screen designed according to the insulation requirements, select the design parameters of the casing with the thickness of each two layers of capacitors being equal and the thickness of each layer of capacitive screen or resistive screen taking 4mm, according to the casing design parameters.
  • the design parameters determine the winding machine program, and the core body is wound according to the winding machine program; wherein, the winding temperature in the winding machine program is 110 ° C, and the core body is also gradually and initially solidified during the winding process of the core body;
  • the core body is cured; after the core body is wound, it is sent to the oven, and a reasonable oven temperature and duration are set to ensure that the core body is completely cured;
  • the solidified core body is processed by machining; according to the core body design drawing, the rough machining feed is 0.4mm, and the finishing feed is 0.08mm, and the core body machining is completed;
  • Embodiments of the present disclosure also provide a method for developing an epoxy resin impregnated glass fiber DC bushing, the method comprising:
  • Core winding according to the length parameters of each layer of capacitive screen or resistive screen designed according to the insulation requirements, select the bushing design parameters that each two layers of capacitive screen or resistive screen have the same thickness and the thickness of each layer of capacitive screen or resistive screen is 5mm , determine the winding machine program according to the casing design parameters, and perform the core winding according to the winding machine program; wherein, the winding temperature in the winding machine program is 120 ° C, in the process of core winding, the core is gradually initial curing;
  • the core body is cured; after the core body is wound, it is sent to the oven, and cured according to the pre-set reasonable oven temperature and duration to ensure that the core body is completely cured;
  • (converter transformer) DC bushing adopts flange to support the capacitor core body of the overall structure.
  • the core body, the pressure insulating tube with bellows, and the end cover are sealed and locked to form SF6 gas. cavity. Not in the same cavity as the conductive tube.
  • the core body expands and contracts independently through the bellows, and the conductive rod can expand and contract freely in the central cavity.
  • the two materials are different and the expansion ratio is different, so they cannot produce equivalent expansion and contraction, so expansion and contraction in different cavities do not affect each other, and do not affect the sealing structure in the two cavities.
  • One end of the conductor is directly fixed with the pressure equalizing cover to form a single cavity of SF6, and all the sealing structures are static sealing.
  • the conductor is in plane contact with the pressure equalizing cover to increase the diversion contact area.
  • the current density of the plane contact is designed to be 0.2-0.35A/mm2.
  • epoxy resin impregnated glass fiber is used for winding at a high temperature of 90°C-120°C, which promotes the initial curing process of the core;
  • the thickness of each layer of capacitive screen (or resistive screen) is designed to be 2.5mm-5mm, to achieve a reasonable distribution of the field strength of the casing, and the equal thickness design method reduces the difficulty of the casing core winding process; the inside of the casing is close to the flange
  • the aforementioned program may be stored in a computer-readable storage medium, and when the program is executed, execute Including the steps of the above method embodiment; and the aforementioned storage medium includes: a mobile storage device, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk and other various A medium on which program code can be stored.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk and other various A medium on which program code can be stored.
  • the above-mentioned integrated units of the present disclosure are implemented in the form of software functional modules and sold or used as independent products, they may also be stored in a computer-readable storage medium.
  • the computer software products are stored in a storage medium and include several instructions for A computer device (which may be a personal computer, a server, or a network device, etc.) is caused to execute all or part of the methods described in the various embodiments of the present invention.
  • the aforementioned storage medium includes: a removable storage device, a ROM, a RAM, a magnetic disk or an optical disk and other mediums that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulators (AREA)

Abstract

一种环氧树脂浸渍玻璃纤维直流套管研制方法,包括:依据绝缘要求设计的每层电容屏或电阻屏长度参数,选取套管设计参数,根据所述套管设计参数确定缠绕机程序,按照所述缠绕机程序进行芯体绕制;其中,在芯体绕制过程中,芯体开始初步固化;芯体绕制完成后,按照预先设置的烘箱温度和持续时间,通过烘箱对芯体进行固化;对固化后的芯体,按照预设芯体设计图纸进行机械加工;对法兰内壁打磨清理、且通过烘箱加热预处理之后,在法兰注胶孔位置进行注胶,进行芯体与法兰的胶装;对胶装完成的芯体依次装配汇流环、空心复合绝缘子、均压密封盖,安装导电杆及接线板和均压球;依据预设直流系统用套管标准进行套管各项检测试验。

Description

一种环氧树脂浸渍玻璃纤维直流套管研制方法
相关申请的交叉引用
本公开基于申请号为202010782781.X、申请日为2020年08月06日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本公开。
技术领域
本公开涉及直流套管技术领域,具体涉及一种环氧树脂浸渍玻璃纤维直流套管研制方法。
背景技术
直流套管作为载流导体穿过与其电位不等的箱体或墙体,起绝缘和机械支撑作用,是保证系统安全稳定运行的关键设备之一。传统的(换流变压器)直流套管多采用油浸纸和胶浸纸生产工艺,但油浸纸套管存在漏油风险、胶浸纸套管易吸潮,在系统运行中发生多起套管故障和事故。与这两类套管相比,采用环氧树脂浸渍玻璃纤维工艺生产的(换流变压器)直流套管为纯固体结构,无油、无分解、免维护、具有极佳的机械强度及抗震性能、无燃烧及爆炸危险;套管芯体为不吸潮材料,介质损耗较低。采用该种工艺存在的技术难点有:(1)环氧树脂浸渍玻璃纤维缠绕温度会影响套管芯体的初步固化过程;(2)(换流变压器)直流套管芯体电容屏长度与厚度设计会影响套管场强分布;(3)(换流变压器)直流套管芯体末屏或电压屏与套管外部的连接设计,会影响套管介质交接面存在的空间电荷累积效应。
发明内容
本公开实施例的目的在于提供了一种环氧树脂浸渍玻璃纤维直流套管研制方法。
为实现上述目的,本公开实施例提供如下技术方案:一种环氧树脂浸渍玻璃纤维直流套管研制方法,所述方法包括:
依据绝缘要求设计的每层电容屏或电阻屏长度参数,选取套管设计参数,根据所述套管设计参数确定缠绕机程序,按照所述缠绕机程序进行芯体绕制;其中,在芯体绕制过程中,芯体开始初步固化;
芯体绕制完成后,按照预先设置的烘箱温度和持续时间,通过烘箱对芯体进行固化;
对固化后的芯体,按照预设芯体设计图纸进行机械加工;
对法兰内壁打磨清理、且通过烘箱加热预处理之后,在法兰注胶孔位置进行注胶,进行芯体与法兰的胶装;
对胶装完成的芯体依次装配汇流环、空心复合绝缘子、均压密封盖,安装导电杆及接线板和均压球;
依据预设直流系统用套管标准进行套管各项检测试验。
在一些可选实施例中,每两层电容屏或电阻屏厚度相等且每层电容屏或电阻屏的厚度取2.5mm-5mm内的套管设计参数。
在一些可选实施例中,所述缠绕机程序中的缠绕温度为90℃-120℃。
在一些可选实施例中,对固化后的芯体进行机械加工过程中,粗加工进刀量不大于0.5mm,精加工进刀量不大于0.1mm。
在一些可选实施例中,所述方法还包括:在法兰注胶孔位置进行注胶之后,静放24小时。
在一些可选实施例中,所述方法还包括:对法兰内壁打磨清理后,法兰内壁均匀涂抹粘接剂。
在一些可选实施例中,所述方法还包括:通过烘箱加热预处理后,在芯体固定法兰并安装密封圈。
在一些可选实施例中,所述方法还包括:对胶装完成的芯体依次装配汇流环、空心复合绝缘子、均压密封盖,安装导电杆及接线板和均压球之前,将胶装完成的芯体浸油端进行喷漆处理。
本公开实施例提供了一种环氧树脂浸渍玻璃纤维直流套管研制方法。具备以下有益效果:
本公开实施例采用环氧树脂浸渍玻璃纤维高温90℃-120℃下缠绕,促进了芯体的初步固化进程;半导电带绕制的电容屏或电阻屏每层长度根据绝缘要求设计,每层电容屏或电阻屏厚度设计在2.5mm-5mm,实现了套管场强的合理分布,等厚度设计方法降低了套管芯体缠绕工艺难度;套管内部靠近法兰处有与末屏连接或电压屏连接的汇流环,接地释放运行过程中产生的累积电荷(或空间累积电荷),保证产品可靠运行。
附图说明
图1为本公开实施例的环氧树脂浸渍玻璃纤维直流套管研制方法的流程示意图;
图2为本公开实施例(换流变压器)直流套管芯体示意图;
图3为本公开实施例(换流变压器)直流套管芯体末屏或电压屏户内端与汇流环连接示意图;
图4为本公开实施例(换流变压器)直流套管芯体末屏或电压屏户外端与汇流环连接示意图;
图中:a-直流套管芯体每两层电容屏(或电阻屏)厚度、b1和b2-表示直流套管芯体的某两层电容屏(或电阻屏)。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
本公开实施例提供了一种环氧树脂浸渍玻璃纤维直流套管研制方法,图1为本公开实施例的环氧树脂浸渍玻璃纤维直流套管研制方法的流程示意图;如图1所示,所述方法包括:
步骤11:依据绝缘要求设计的每层电容屏或电阻屏长度参数,选取套管设计参数,根据所述套管设计参数确定缠绕机程序,按照所述缠绕机程序进行芯体绕制;其中,在芯体绕制过程中,芯体开始初步固化;
步骤12:芯体绕制完成后,按照预先设置的烘箱温度和持续时间,通过烘箱对芯体进行固化;
步骤13:对固化后的芯体,按照预设芯体设计图纸进行机械加工;
步骤14:对法兰内壁打磨清理、且通过烘箱加热预处理之后,在法兰注胶孔位置进行注胶,进行芯体与法兰的胶装;
步骤15:对胶装完成的芯体依次装配汇流环、空心复合绝缘子、均压密封盖,安装导电杆及接线板和均压球;
步骤16:依据预设直流系统用套管标准进行套管各项检测试验。
图2为本公开实施例(换流变压器)直流套管芯体示意图;如图2所示,a表示直流套管芯体每两层电容屏(或电阻屏)厚度、b1和b2表示直流套管芯体的某两层电容屏(或电阻屏)。示例性的,图2中的“长方形”上下两条边为电容屏(或电阻屏),a表示两层电容屏(或电阻屏)厚度。
在一些可选实施例中,每两层电容屏或电阻屏厚度相等且每层电容屏或电阻屏的厚度取2.5毫米(mm)-5mm内的套管设计参数。
在一些可选实施例中,所述缠绕机程序中得到缠绕温度为90℃-120℃。
在一些可选实施例中,对固化后的芯体进行机械加工过程中,粗加工进刀量不大于0.5mm,精加工进刀量不大于0.1mm。
在一些可选实施例中,所述方法还包括:在法兰注胶孔位置进行注胶之后,静放24小时。
在一些可选实施例中,所述方法还包括:对法兰内壁打磨清理后,法兰内壁均匀涂抹粘接剂。
在一些可选实施例中,所述方法还包括:通过烘箱加热预处理后,在芯体固定法兰并安装密封圈。
在一些可选实施例中,所述方法还包括:对胶装完成的芯体依次装配汇流环、空心复合绝缘子、均压密封盖,安装导电杆及接线板和均压球之前,将胶装完成的芯体浸油端进行喷漆处理。
图3为本公开实施例(换流变压器)直流套管芯体末屏或电压屏户内端与汇流环连接示意图;图4为本公开实施例(换流变压器)直流套管芯体末屏或电压屏户外端与汇流环连接示意图;
其中,示例性的,所述依据预设直流系统用套管标准进行套管各项检测试验,具体可采用预设的GB/T22674-2008标准进行套管各项检测试验;其中,GB/T22674-2008标准为中华人民共和国国家标准中、直流系统用套管标准。当然,本公开实施例中不限于上述直流系统用套管标准。
下面结合具体的示例对本公开实施例的环氧树脂浸渍玻璃纤维直流套管研制方法进行说明。
示例一
本公开实施例提供了一种环氧树脂浸渍玻璃纤维直流套管研制方法,所诉方法包括:
S1、芯体绕制;依据绝缘要求设计的每层电容屏或电阻屏长度参数,选取每两层电容屏或电阻屏厚度相等且每层电容屏或电阻屏的厚度取2.5mm的套管设计参数,根据套管设计参数设置确定缠绕机程序,按照所述缠绕机程序进行芯体绕制;其中,缠绕机程序中的缠绕温度为90℃,在芯体绕制的过程中,芯体也在逐渐初步固化;
S2、芯体固化;芯体绕制完成后,送入烘箱,按照预先设置好合理的烘箱温度和持续时间进行固化,确保芯体完全固化;
S3、对固化后的芯体进行机械加工;按照预设芯体设计图纸进行机械加工;机械加工过程中,粗加工进刀量为0.1mm,精加工进刀量为0.02mm,完成芯体机械加工;
S4、芯体与法兰的胶装;对法兰内壁打磨清理、法兰内壁均匀涂抹粘接剂,并通过烘箱加热预处理之后,在芯体合适位置固定法兰并安装密封圈,使用注胶枪在法兰注胶孔位置进行注胶,进行芯体与法兰的胶装,静放24小时;
S5、零部件装配;胶装完成的芯体浸油端进行喷漆处理(换流变压器直流套管),依次装配汇流环、空心复合绝缘子、均压密封盖,安装导电杆及接线板和均压球;
S6、套管试验;依据GB/T22674-2008标准(国家直流系统用套管标准)进行套管各项检测试验。
示例二
本公开实施例还提供了一种环氧树脂浸渍玻璃纤维直流套管研制方法,所述方法包括:
S1、芯体绕制;依据绝缘要求设计的每层电容屏或电阻屏长度参数,选取每两层电容厚度相等且每层电容屏或电阻屏的厚度取3mm的套管设计参数,根据套管设计参数确定缠绕机程序,按照所述缠绕机程序进行芯体绕制;其中,缠绕机程序中的缠绕温度为95℃,在芯体绕制的过程中,芯 体也在逐渐初步固化;
S2、芯体固化;芯体绕制完成后,送入烘箱,按照预先设置好合理的烘箱温度和持续时间进行固化,确保芯体完全固化;
S3、对固化后的芯体进行机械加工;按照预设芯体设计图纸进行机械加工;机械加工过程中,粗加工进刀量为0.2mm,精加工进刀量为0.04mm,完成芯体机械加工;
S4、芯体与法兰的胶装;对法兰内壁打磨清理、法兰内壁均匀涂抹粘接剂,并通过烘箱加热预处理之后,在芯体合适位置固定法兰并安装密封圈,使用注胶枪在法兰注胶孔位置进行注胶,进行芯体与法兰的胶装,静放24小时;
S5、零部件装配;胶装完成的芯体浸油端进行喷漆处理(换流变压器直流套管),依次装配汇流环、空心复合绝缘子、均压密封盖,安装导电杆及接线板和均压球;
S6、套管试验;依据GB/T22674-2008标准(国家直流系统用套管标准)进行套管各项检测试验。
示例三
本公开实施例还提供了一种环氧树脂浸渍玻璃纤维直流套管研制方法,所述方法包括:
S1、芯体绕制;依据绝缘要求设计的每层电容屏或电阻屏长度参数,选取每两层电容屏或电阻屏厚度相等且每层电容屏或电阻屏的厚度取3.5mm的套管设计参数,根据套管设计参数确定缠绕机程序,按照所述缠绕机程序进行芯体绕制;其中,缠绕机程序中的缠绕温度为100℃,在芯体绕制的过程中,芯体也在逐渐初步固化;
S2、芯体固化;芯体绕制完成后,送入烘箱,按照预先设置好合理的烘箱温度和持续时间进行固化,确保芯体完全固化;
S3、对固化后的芯体进行机械加工;按照预设芯体设计图纸进行机械 加工;机械加工过程中,粗加工进刀量为0.3mm,精加工进刀量为0.06mm,完成芯体机械加工;
S4、芯体与法兰的胶装;对法兰内壁打磨清理、法兰内壁均匀涂抹粘接剂,并通过烘箱加热预处理之后,在芯体合适位置固定法兰并安装密封圈,使用注胶枪在法兰注胶孔位置进行注胶,进行芯体与法兰的胶装,静放24小时;
S5、零部件装配;胶装完成的芯体浸油端进行喷漆处理(换流变压器直流套管),依次装配汇流环、空心复合绝缘子、均压密封盖,安装导电杆及接线板和均压球;
S6、套管试验;依据GB/T22674-2008标准(国家直流系统用套管标准)进行套管各项检测试验。
示例四
本公开实施例还提供了一种环氧树脂浸渍玻璃纤维直流套管研制方法,所述方法包括:
S1、芯体绕制;依据绝缘要求设计的每层电容屏或电阻屏长度参数,选取每两层电容厚度相等且每层电容屏或电阻屏的厚度取4mm的套管设计参数,根据套管设计参数确定缠绕机程序,按照所述缠绕机程序进行芯体绕制;其中,缠绕机程序中的缠绕温度为110℃,在芯体绕制的过程中,芯体也在逐渐初步固化;
S2、芯体固化;芯体绕制完成后,送入烘箱,设置好合理的烘箱温度和持续时间,确保芯体完全固化;
S3、固化后的芯体进械加工;根据芯体设计图纸进行加工,粗加工进刀量为0.4mm,精加工进刀量为0.08mm,完成芯体机械加工;
S4、芯体与法兰的胶装;对法兰内壁打磨清理、法兰内壁均匀涂抹粘接剂,并通过烘箱加热预处理之后,在芯体合适位置固定法兰并安装密封圈,使用注胶枪在法兰注胶孔位置进行注胶,进行芯体与法兰的胶装,静 放24小时;
S5、零部件装配;胶装完成的芯体浸油端进行喷漆处理(换流变压器直流套管),依次装配汇流环、空心复合绝缘子、均压密封盖,安装导电杆及接线板和均压球;
S6、套管试验;依据GB/T22674-2008标准(国家直流系统用套管标准)进行套管各项检测试验。
示例五
本公开实施例还提供了一种环氧树脂浸渍玻璃纤维直流套管研制方法,所述方法包括:
S1、芯体绕制;依据绝缘要求设计的每层电容屏或电阻屏长度参数,选取每两层电容屏或电阻屏厚度相等且每层电容屏或电阻屏的厚度取5mm的套管设计参数,根据套管设计参数确定缠绕机程序,按照所述缠绕机程序进行芯体绕制;其中,缠绕机程序中的缠绕温度为120℃,在芯体绕制的过程中,芯体也在逐渐初步固化;
S2、芯体固化;芯体绕制完成后,送入烘箱,按照预先设置好合理的烘箱温度和持续时间进行固化,确保芯体完全固化;
S3、对固化后的芯体进行机械加工,按照预设芯体设计图纸进行机械加工;机械加工过程中,粗加工进刀量为0.5mm,精加工进刀量为0.1mm,完成芯体机械加工;
S4、芯体与法兰的胶装;对法兰内壁打磨清理、法兰内壁均匀涂抹粘接剂,并通过烘箱加热预处理之后,在芯体合适位置固定法兰并安装密封圈,使用注胶枪在法兰注胶孔位置进行注胶,进行芯体与法兰的胶装,静放24小时;
S5、零部件装配;胶装完成的芯体浸油端进行喷漆处理(换流变压器直流套管),依次装配汇流环、空心复合绝缘子、均压密封盖,安装导电杆及接线板和均压球;
S6、套管试验;依据GB/T22674-2008标准(国家直流系统用套管标准)进行套管各项检测试验。
参照图3和图4所示,(换流变压器)直流套管采用法兰支撑整体结构的电容芯体,芯体、带波纹管的绝压管、端盖之间密封锁紧,形成SF6气体空腔。与导电管不在同一空腔内。在热胀冷缩状态下,芯体是通过波纹管独立伸缩,导电杆可在中心空腔内自由伸缩。两者材料不同,伸缩比例不同,不能产生等效应伸缩,所以在不同空腔内伸缩互不影响,且不影响两个空腔内的密封结构。导体一端与均压盖直接固定,形成SF6单一空腔,所有密封结构为静密封。导体与均压盖平面接触,增加导流接触面积,一般设计平面接触的电流密度为0.2-0.35A/mm2。芯体内部靠近法兰处有与末屏连接或电压屏连接的汇流环,接地释放运行过程中产生的累积电荷(或空间累积电荷),保证产品可靠运行。
综上,本公开实施例采用环氧树脂浸渍玻璃纤维高温90℃-120℃下缠绕,促进了芯体的初步固化进程;半导电带绕制的电容屏(或电阻屏)每层长度根据绝缘要求设计,每层电容屏(或电阻屏)厚度设计在2.5mm-5mm,实现了套管场强的合理分布,等厚度设计方法降低了套管芯体缠绕工艺难度;套管内部靠近法兰处有与末屏连接或电压屏连接的汇流环,接地释放运行过程中产生的累积电荷(或空间累积电荷),保证产品可靠运行。
本公开所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本公开上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (8)

  1. 一种环氧树脂浸渍玻璃纤维直流套管研制方法,所述方法包括:
    依据绝缘要求设计的每层电容屏或电阻屏长度参数,选取套管设计参数,根据所述套管设计参数确定缠绕机程序,按照所述缠绕机程序进行芯体绕制;其中,在芯体绕制过程中,芯体开始初步固化;
    芯体绕制完成后,按照预先设置的烘箱温度和持续时间,通过烘箱对芯体进行固化;
    对固化后的芯体,按照预设芯体设计图纸进行机械加工;
    对法兰内壁打磨清理、且通过烘箱加热预处理之后,在法兰注胶孔位置进行注胶,进行芯体与法兰的胶装;
    对胶装完成的芯体依次装配汇流环、空心复合绝缘子、均压密封盖,安装导电杆及接线板和均压球;
    依据预设直流系统用套管标准进行套管各项检测试验。
  2. 根据权利要求1所述的一种环氧树脂浸渍玻璃纤维直流套管研制方法,其中,每两层电容屏或电阻屏厚度相等且每层电容屏或电阻屏的厚度取2.5mm-5mm内的套管设计参数。
  3. 根据权利要求1所述的一种环氧树脂浸渍玻璃纤维直流套管研制方法,其中,所述缠绕机程序中的缠绕温度为90℃-120℃。
  4. 根据权利要求1所述的一种环氧树脂浸渍玻璃纤维直流套管研制方法,其中,对固化后的芯体进行机械加工过程中,粗加工进刀量不大于0.5mm,精加工进刀量不大于0.1mm。
  5. 根据权利要求1所述的一种环氧树脂浸渍玻璃纤维直流套管研制方法,其中,所述方法还包括:在法兰注胶孔位置进行注胶之后,静放24小时。
  6. 根据权利要求1所述的一种环氧树脂浸渍玻璃纤维直流套管研制方 法,其中,所述方法还包括:对法兰内壁打磨清理后,法兰内壁均匀涂抹粘接剂。
  7. 根据权利要求1所述的一种环氧树脂浸渍玻璃纤维直流套管研制方法,其中,所述方法还包括:
    通过烘箱加热预处理后,在芯体固定法兰并安装密封圈。
  8. 根据权利要求1所述的一种环氧树脂浸渍玻璃纤维直流套管研制方法,其中,所述方法还包括:
    对胶装完成的芯体依次装配汇流环、空心复合绝缘子、均压密封盖,安装导电杆及接线板和均压球之前,将胶装完成的芯体浸油端进行喷漆处理。
PCT/CN2020/134362 2020-08-06 2020-12-07 一种环氧树脂浸渍玻璃纤维直流套管研制方法 WO2022027889A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/913,873 US20230343489A1 (en) 2020-08-06 2020-12-07 Method for developing epoxy resin impregnated glass fiber dc bushing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010782781.XA CN112002504A (zh) 2020-08-06 2020-08-06 一种环氧树脂浸渍玻璃纤维直流套管研制方法
CN202010782781.X 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022027889A1 true WO2022027889A1 (zh) 2022-02-10

Family

ID=73462771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134362 WO2022027889A1 (zh) 2020-08-06 2020-12-07 一种环氧树脂浸渍玻璃纤维直流套管研制方法

Country Status (3)

Country Link
US (1) US20230343489A1 (zh)
CN (1) CN112002504A (zh)
WO (1) WO2022027889A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112002504A (zh) * 2020-08-06 2020-11-27 国网电力科学研究院武汉南瑞有限责任公司 一种环氧树脂浸渍玻璃纤维直流套管研制方法
CN114420393A (zh) * 2022-01-11 2022-04-29 国网电力科学研究院武汉南瑞有限责任公司 一种gis出线套管的生产方法、记录媒体及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201402952Y (zh) * 2009-04-03 2010-02-10 褚斌 干式高压套管
CN102146195A (zh) * 2010-02-04 2011-08-10 苏州国宇碳纤维科技有限公司 改性碳纤维增强环氧树脂基复合棒材
US20180144846A1 (en) * 2015-05-26 2018-05-24 Hyosung Corporation Capacitor bushing and manufacturing method therefor
CN207883411U (zh) * 2017-12-18 2018-09-18 临泽县锐翔科技开发有限责任公司 一种耐低氟化合物腐蚀的胶浸玻璃纤维绝缘套管
CN112002504A (zh) * 2020-08-06 2020-11-27 国网电力科学研究院武汉南瑞有限责任公司 一种环氧树脂浸渍玻璃纤维直流套管研制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101315834B (zh) * 2008-06-23 2011-04-27 南京电气(集团)有限责任公司 不等电容、不等台阶、分段等厚度电容芯子的设计方法
CN105070428A (zh) * 2015-07-24 2015-11-18 南京电气高压套管有限公司 交直流互换型玻璃钢穿墙套管及其生产方法
CN107508224B (zh) * 2016-06-14 2023-10-20 沈阳和新套管有限公司 一种直流穿墙套管中气体绝缘端的芯体胶装结构及方法
CN108492945A (zh) * 2018-05-03 2018-09-04 江苏神马电力股份有限公司 绝缘套管
EP3579252A1 (en) * 2018-06-04 2019-12-11 ABB Schweiz AG Removable bushing flange
CN110783721A (zh) * 2019-02-02 2020-02-11 搏世因(北京)高压电气有限公司 ±160kV低温超导套管
CN209544034U (zh) * 2019-03-11 2019-10-25 江苏神马电力股份有限公司 电容芯子以及变压器套管
CN209461225U (zh) * 2019-03-20 2019-10-01 西安高缘立达电气有限公司 一种固体绝缘高压电容套管芯

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201402952Y (zh) * 2009-04-03 2010-02-10 褚斌 干式高压套管
CN102146195A (zh) * 2010-02-04 2011-08-10 苏州国宇碳纤维科技有限公司 改性碳纤维增强环氧树脂基复合棒材
US20180144846A1 (en) * 2015-05-26 2018-05-24 Hyosung Corporation Capacitor bushing and manufacturing method therefor
CN207883411U (zh) * 2017-12-18 2018-09-18 临泽县锐翔科技开发有限责任公司 一种耐低氟化合物腐蚀的胶浸玻璃纤维绝缘套管
CN112002504A (zh) * 2020-08-06 2020-11-27 国网电力科学研究院武汉南瑞有限责任公司 一种环氧树脂浸渍玻璃纤维直流套管研制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Assembly Process Of Transformer", 30 June 1998, XINHUA BOOKSTORE BEIJING PUBLISHING OFFICE, CN, ISBN: 7-111-06069-5, article LOCAL RECORDS OF TRANSFORMER MANUFACTURING TECHNOLOGY, EDITORIAL BOARD: "Passage; Transformer Assembly Process", pages: 70 - 71, XP009534118 *

Also Published As

Publication number Publication date
CN112002504A (zh) 2020-11-27
US20230343489A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
WO2022027889A1 (zh) 一种环氧树脂浸渍玻璃纤维直流套管研制方法
US8402636B2 (en) Method of manufacturing ground-burial type solid insulated transformer
US3513253A (en) Cast condenser bushing having tubular metal coated mesh plates
KR20100112772A (ko) 완전고체절연 몰드 변압기 및 이의 제조 방법
EP3576108B1 (en) Capacitive graded high voltage bushing
RU2732855C1 (ru) Изготовление конденсаторной сердцевины силовой втулки посредством аддитивного производства
US3801730A (en) High voltage cable splice with provision for testing the insulation thereof and method of making same
CN109754959A (zh) 具有纤维增强层的胶浸纸高压套管
CN104362565A (zh) 一种特高压胶浸纸电容式穿墙套管
CN205304157U (zh) 一种干式高压穿墙套管
CN104655897B (zh) 一种对流散热分压器
CN105144320A (zh) Hv干式仪器变压器
US3300843A (en) Self-bonding magnet wire and method
CN106057384B (zh) 复合绝缘管及其制备方法和应用
CA3134996A1 (en) Cable fitting
US2320922A (en) High-voltage coil insulation
CN204732278U (zh) 一种环氧树脂浇注干式变压器高压线圈
CN104540345B (zh) 一种防静电的金属蜂窝芯复合材料箱体结构
JP2007335725A (ja) モールドコイル
CN209461225U (zh) 一种固体绝缘高压电容套管芯
US2392790A (en) Electrical transformer and coil
CN103000359B (zh) 互感器及其互感器的封装制造方法
KR100371067B1 (ko) 전기절연체를제조하기위한층상지지체및앵글아이언조립방법
CN114420393A (zh) 一种gis出线套管的生产方法、记录媒体及系统
US3086073A (en) High voltage liquid-free insulating bushing with improved voltage distribution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948083

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20948083

Country of ref document: EP

Kind code of ref document: A1