WO2022027844A1 - 基于压缩机中间吸气的液化空气储能调峰系统和方法 - Google Patents

基于压缩机中间吸气的液化空气储能调峰系统和方法 Download PDF

Info

Publication number
WO2022027844A1
WO2022027844A1 PCT/CN2020/126290 CN2020126290W WO2022027844A1 WO 2022027844 A1 WO2022027844 A1 WO 2022027844A1 CN 2020126290 W CN2020126290 W CN 2020126290W WO 2022027844 A1 WO2022027844 A1 WO 2022027844A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
valve
compressor
cooling
cascade refrigeration
Prior art date
Application number
PCT/CN2020/126290
Other languages
English (en)
French (fr)
Inventor
张建元
居文平
常东锋
王伟
雒青
范庆伟
黄嘉驷
Original Assignee
西安西热节能技术有限公司
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安西热节能技术有限公司, 西安热工研究院有限公司 filed Critical 西安西热节能技术有限公司
Publication of WO2022027844A1 publication Critical patent/WO2022027844A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/08Adaptations for driving, or combinations with, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0251Intermittent or alternating process, so-called batch process, e.g. "peak-shaving"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0282Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/90Hot gas waste turbine of an indirect heated gas for power generation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop

Definitions

  • the invention belongs to the technical field of energy storage and peak regulation, and in particular relates to a liquefied air energy storage peak regulation system and method based on the intermediate suction of a compressor, which is suitable for various thermal power plants typified by coal-fired units, and can improve the performance of coal-fired units. Peak shaving capacity and economics of energy storage systems.
  • the technologies for improving the peak regulation capacity of coal-fired units mainly include electric boiler heat storage technology, water tank heat storage technology, steam turbine steam process transformation technology, electrochemical battery energy storage technology, etc. It is used for heating, with strong peak shaving ability, but the energy quality is greatly reduced, and it is only suitable for cogeneration units.
  • the water tank heat storage technology and the steam turbine steam process transformation technology have good thermal economy and relatively low investment, but the peak shaving capacity is limited. , and only applies to cogeneration units.
  • Electrochemical battery energy storage technology has fast response, small size, and short construction period, but has short lifespan, high average cost, and high safety risks. Whether it is suitable for large-scale energy storage implementation still needs engineering Demonstration verification.
  • the present invention proposes a liquefied air energy storage peak regulation system and method based on the intermediate suction of the compressor. It is converted into heat energy, resulting in high energy consumption of the compressor, deterioration of working conditions, and reduced energy storage efficiency of the system. In addition, in the process of cryogenic production, energy consumption is large and COP is very low, which is also the key to affecting the economy of Air Liquide energy storage system. factors, the present invention can effectively solve these problems.
  • the unit generates a large amount of excess steam with working power, which is used to drive the small steam turbine and then drive the refrigeration compressor to compress the refrigerant.
  • the production cost of the air compressor is basically zero; part of the high-pressure air at the outlet of the air compressor is cooled to a certain extent by the cooling storage system, and then sent to different working stages inside the compressor through the form of intermediate suction, thereby reducing the air temperature and realizing the overall compression process.
  • the temperature rise is smaller and the power consumption is smaller, thereby improving the energy storage efficiency.
  • there is no need to set up an interstage cooler which reduces the system investment and floor space.
  • the present invention adopts the following technical solutions.
  • the liquefied air energy storage peak shaving system based on the intermediate suction of the compressor is composed of the first steam turbine unit 1, the first valve 2, the second valve 3, the second steam turbine unit 4, the condenser 5, the refrigeration compressor 6, the air compressor machine 7, third valve 8, fourth valve 9, fifth valve 10, cascade refrigeration/cold storage system 11, sixth valve 12, liquid air storage tank 13, seventh valve 14, air heating device 15 and air expansion Composed of 16 machines;
  • the first steam turbine unit 1 includes a high-pressure cylinder, a medium-pressure cylinder and a low-pressure cylinder which are connected in sequence. It is connected with the steam inlet of the second steam turbine unit 4; the second steam turbine unit 4 directly drives the refrigeration compressor 6 to rotate through the connecting shaft, the refrigeration compressor 6 drives the cascade refrigeration/cooling storage system 11, and the outlet of the second steam turbine unit 4 is connected to the condenser. 5.
  • the inlet is connected; the outlet of the air compressor 7 is connected to the inlet a of the air supply cooling side between the 11 stages of the cascade refrigeration/cooling storage system and the outlet b of the air supply cooling side between the 11 stages of the cascade refrigeration/cooling storage system through the third valve 8.
  • the outlet b of the air supply cooling side between the 11 stages of the cascade refrigeration/cooling storage system is connected to the suction inlet a of the first stage of the air compressor 7 through the fourth valve 9, and is connected to the second stage of the air compressor 7 through the fifth valve 10
  • the outlet of the air compressor 7 is connected to the cooling and liquefaction side inlet c of the cascade refrigeration/cooling storage system 11, the cooling and liquefaction side outlet d of the cascade refrigeration/cooling storage system 11, the sixth valve 12 and the liquid air storage system.
  • the tank 13 is connected; the outlet of the liquid air storage tank 13 is sequentially connected with the inlet e of the cooling energy recovery side of the cascade refrigeration/cooling storage system 11, the outlet f of the cold energy recovery side of the cascade refrigeration/cooling storage system 11, and the air heating device through the seventh valve 14. 15 is connected to the air expander 16; the system uses excess steam to drive the cascade refrigeration/storage system, which reduces energy transfer losses and greatly reduces the cost of cryogenic production. A small part of the air at the air compressor outlet passes through the cascade refrigeration/storage system. After the cooling system is cooled to a certain extent, it re-enters the different working stages inside the air compressor, which reduces the temperature rise and power consumption during the compression process, and improves the energy storage efficiency of the system. land area.
  • the second valve 3 is connected to the outlet of the medium pressure cylinder of the first steam turbine unit 1, or the extraction position is optimized and screened according to the conditions of the generator unit.
  • the cascade refrigeration/cold storage system 11 is driven by the steam-driven refrigeration compressor 6, and operates at high load during peak shaving periods and basically does not operate during off-peak shaving periods.
  • the first interstage suction inlet a and the second interstage suction inlet b of the air compressor 7 represent a plurality of interstage suction inlets, and the air compressor is driven by electricity or steam.
  • the air heating device 15 uses the extraction steam of the first steam turbine unit 1 as a heat source.
  • the air heating device 15 and the air expander 16 are in one or more stages, and the number of the air heating device 15 and the air expander 16 corresponds one-to-one, and the corresponding air expander is connected in series after each stage of the air heating device.
  • the system is suitable for cogeneration units and pure condensing units, and the cost of cryogenic production is greatly reduced.
  • a small part of the air at the outlet of the air compressor 7 passes through the cascade refrigeration/cooling storage system 11 to be cooled to a certain extent and then re-enters the air compressor. 7 Different working stages inside, the air temperature rise during the compression process is small, the compression power consumption per unit mass of air is small, and it has high energy storage efficiency and economy.
  • the operation method of the liquefied air energy storage peak regulation system based on the intermediate suction of the compressor includes an energy storage mode and an energy release mode, and the details are as follows:
  • Energy storage mode When the power consumption of the grid is low and the coal-fired unit needs to reduce the power generation load, the energy storage mode is turned on, and the second valve 3, the third valve 8, the fourth valve 9, the fifth valve 10 and the sixth valve 12 are opened, and the first valve is adjusted.
  • the opening of the first valve 2 closes the seventh valve 14; a part of the steam from the outlet of the pressure cylinder of the first steam turbine unit 1 enters the second steam turbine unit 4 through the second valve 3 to promote its high-speed rotation, and the second steam turbine unit 4 is driven by the connecting shaft
  • the refrigeration compressor 6 rotates to drive the cascade refrigeration/cooling storage system 11 to operate, the generated cooling capacity is directly stored in the cascade refrigeration/cooling storage system 11, and the exhausted steam from the exit of the second steam turbine unit 4 enters the condenser 5 to release heat to generate heat Condensate water; the remaining steam at the outlet of the medium pressure cylinder of the first steam turbine unit 1 first enters the low pressure cylinder of the first steam turbine unit 1 to do work, and then enters the condenser 5 to release heat to generate condensate water; the air compressor 7 is compressed by electric energy or steam driven Air, a small part of high-pressure air enters the cascade refrigeration/cooling storage system 11 through the third valve 8 for cooling, and the cooled air enters the
  • Energy release mode Turn on the energy release mode when the power grid peaks and the coal-fired unit needs to increase the power generation load, close the second valve 3, the third valve 8, the fourth valve 9, the fifth valve 10 and the sixth valve 12, open the first valve 3, the third valve 8, the fourth valve 9, the fifth valve 10 and the sixth valve 12 A valve 2 and a seventh valve 14; the low temperature liquid air flows out from the liquid air storage tank 13, and the normal temperature and high pressure air generated after the cold energy recovery by the cascade refrigeration/cooling storage system 11 enters the air heating device 15 to absorb heat, and the high temperature and high pressure The air enters the air expander 16 to expand and output electric energy, and the outlet of the air expander 16 is normal pressure and normal temperature air, which is discharged into the surrounding environment.
  • the present invention has the following advantages:
  • the liquefied air energy storage peak regulation system and method based on the intermediate suction of the compressor is suitable for various thermal power plants typical of coal-fired units, and can improve the peak regulation capacity of the coal-fired unit and the economy of the energy storage system.
  • the system uses excess steam to drive the cascade refrigeration/cooling storage system, which reduces the loss of energy transfer and greatly reduces the cost of cryogenic production.
  • a small part of the air at the outlet of the air compressor passes through the cascade refrigeration/cooling storage system to cool down to a certain extent and then re-enters
  • the different working stages inside the air compressor reduce the temperature rise and power consumption during the compression process, and improve the energy storage efficiency of the system.
  • FIG. 1 is a schematic diagram of the system of the present invention.
  • the first steam turbine unit The first valve 3-The second valve 4-The second steam turbine unit 5-Condenser 6-Refrigeration compressor 7-Air compressor 8-The third valve 9-The fourth valve 10-The first Five valves 11-cascading refrigeration/cold storage system 12-sixth valve 13-liquid air storage tank 14-seventh valve 15-air heating device 16-air expander
  • the present invention is based on the liquefied air energy storage peak regulation system based on the intermediate suction of the compressor. , refrigeration compressor 6, air compressor 7, third valve 8, fourth valve 9, fifth valve 10, cascade refrigeration/cold storage system 11, sixth valve 12, liquid air storage tank 13, seventh valve 14 , the air heating device 15 and the air expander 16 are composed.
  • the first steam turbine unit 1 includes a high-pressure cylinder, a medium-pressure cylinder and a low-pressure cylinder connected in sequence.
  • the outlet of the medium-pressure cylinder is connected to the low-pressure cylinder and the condenser 5 in sequence through the first valve 2, and the outlet of the medium-pressure cylinder is connected to the first valve through the second valve 3.
  • the second steam turbine unit 4 is connected to the steam inlet; the second steam turbine unit 4 directly drives the refrigeration compressor 6 to rotate through the connecting shaft, the refrigeration compressor 6 drives the cascade refrigeration/cooling storage system 11, the outlet of the second steam turbine unit 4 and the inlet of the condenser 5 connection; the outlet of the air compressor 7 is connected to the air supply cooling side inlet a of the cascade refrigeration/cooling storage system 11 stages and the air supply cooling side outlet b of the cascade refrigeration/cooling storage system 11 stages through the third valve 8 in turn,
  • the outlet b on the cooling side of the 11 interstage air supply of the stack refrigeration/storage system is connected to the suction inlet a of the first stage of the air compressor 7 through the fourth valve 9, and is connected to the suction inlet a of the second stage of the air compressor 7 through the fifth valve 10.
  • the air inlet b is connected; the outlet of the air compressor 7 is sequentially connected to the cooling and liquefaction side inlet c of the cascade refrigeration/cooling storage system 11, the cooling and liquefaction side outlet d of the cascade refrigeration/cooling storage system 11, the sixth valve 12 and the liquid air storage tank 13 connection; the outlet of the liquid air storage tank 13 is connected to the cascade refrigeration/cold storage system 11 cold energy recovery side inlet e, the cascade refrigeration/cold storage system 11 cold energy recovery side outlet f, air heating device 15 and
  • the air expander 16 is connected; the system uses excess steam to drive the cascade refrigeration/storage system, reducing energy transfer losses and greatly reducing the cost of cryogenic production, and a small portion of air from the air compressor outlet passes through the cascade refrigeration/storage system After a certain cooling, it re-enters the different working stages inside the air compressor, which reduces the temperature rise and power consumption during the compression process, improves the energy storage efficiency of the system, and at the same time does not need to set up inter
  • the liquefied air energy storage peak regulation system based on the intermediate suction of the compressor of the present invention can operate in the following energy storage mode and energy release mode.
  • Energy storage mode When the power consumption of the grid is low and the coal-fired unit needs to reduce the power generation load, the energy storage mode is turned on, and the second valve 3, the third valve 8, the fourth valve 9, the fifth valve 10 and the sixth valve 12 are opened, and the first valve is adjusted.
  • the opening of the first valve 2 closes the seventh valve 14; a part of the steam from the outlet of the pressure cylinder of the first steam turbine unit 1 enters the second steam turbine unit 4 through the second valve 3 to promote its high-speed rotation, and the second steam turbine unit 4 is driven by the connecting shaft
  • the refrigeration compressor 6 rotates to drive the cascade refrigeration/cooling storage system 11 to operate, the generated cooling capacity is directly stored in the cascade refrigeration/cooling storage system 11, and the exhausted steam from the exit of the second steam turbine unit 4 enters the condenser 5 to release heat to generate heat Condensate water; the remaining steam at the outlet of the medium pressure cylinder of the first steam turbine unit 1 first enters the low pressure cylinder of the first steam turbine unit 1 to do work, and then enters the condenser 5 to release heat to generate condensate water; the air compressor 7 is compressed by electric energy or steam driven Air, a small part of high-pressure air enters the cascade refrigeration/cooling storage system 11 through the third valve 8 for cooling, and the cooled air enters the
  • Energy release mode Turn on the energy release mode when the power grid peaks and the coal-fired unit needs to increase the power generation load, close the second valve 3, the third valve 8, the fourth valve 9, the fifth valve 10 and the sixth valve 12, open the first valve 3, the third valve 8, the fourth valve 9, the fifth valve 10 and the sixth valve 12 A valve 2 and a seventh valve 14; the low temperature liquid air flows out from the liquid air storage tank 13, and the normal temperature and high pressure air generated after the cold energy recovery by the cascade refrigeration/cooling storage system 11 enters the air heating device 15 to absorb heat, and the high temperature and high pressure The air enters the air expander 16 to expand and output electric energy, and the outlet of the air expander 16 is normal pressure and normal temperature air, which is discharged into the surrounding environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种基于压缩机中间吸气的液化空气储能调峰系统和方法,该系统由第一汽轮机组(1)、第二汽轮机组(4)、凝汽器(5)、制冷压缩机(6)、空气压缩机(7)、复叠制冷/储冷系统(11)、液体空气储罐(13)、空气加热装置(15)、空气膨胀机(16)和和控制阀门组成,该系统的运行方法包括储能模式和释能模式;该系统利用多余蒸汽驱动复叠制冷/储冷系统(11),降低了能量传递损失并且大幅度降低深冷生产成本,空气压缩机(7)出口一小部分空气通过复叠制冷/储冷系统(11)进行一定的降温后重新进入空气压缩机(7)内部不同工作级,降低了压缩过程的温升和耗功,提高了系统储能效率,同时无需再设置级间冷却器,降低了系统投资和占地面积。

Description

基于压缩机中间吸气的液化空气储能调峰系统和方法 技术领域
本发明属于储能调峰技术领域,具体涉及基于压缩机中间吸气的液化空气储能调峰系统和方法,适用于以燃煤机组为典型的各种热发电厂,能够提高燃煤机组的调峰能力和储能系统的经济性。
背景技术
目前我国风能、太阳能等可再生能源逐年迅猛发展,加之全社会用电量逐年攀升,电网用电峰谷差日益增大,电网对燃煤机组调峰次数及深度的要求均大幅提升。
目前提高燃煤机组调峰能力的技术主要有电锅炉蓄热技术、水罐蓄热技术、汽轮机蒸汽流程改造技术、电化学电池储能技术等,电锅炉蓄热技术是将电能转化为热能后用于供暖,调峰能力强,但能量品质大幅度降低、只适用于热电联产机组,水罐蓄热技术和汽轮机蒸汽流程改造技术热经济性较好、投资相对低,但调峰能力有限,也只适用于热电联产机组,电化学电池储能技术响应快、体积小、建设周期短,但寿命短、平均成本很高、安全风险大,是否适合建设大规模储能实施仍需工程示范验证。
发明内容
为克服现有燃煤机组调峰技术的不足,本发明提出基于压缩机中间吸气的液化空气储能调峰系统和方法,空气压缩过程中压力和温度迅速升高,大部分高品位电能因此转化为热能,造成压缩机耗能很大、 工况恶化,系统储能效率降低,此外深冷制取过程中耗能很大、COP很低,这也是影响液化空气储能系统经济性的关键因素,本发明可以有效解决这些问题。调峰期间机组产生大量多余的具备作功能力的蒸汽,利用该部分蒸汽驱动小汽轮机再带动制冷压缩机压缩制冷工质,最终通过复叠制冷系统获得所需冷量并储存,该部分冷量的生产成本基本为零;空气压缩机出口处部分高压空气经过储冷系统进行一定的降温后,通过中间吸气的形式送至压缩机内部不同工作级,以此降低空气温度,实现整体压缩过程温升较小、耗功较少,进而提高储能效率,同时无需再设置级间冷却器,降低了系统投资和占地面积。
为了达到上述目的,本发明采用如下技术方案。
基于压缩机中间吸气的液化空气储能调峰系统,由第一汽轮机组1、第一阀门2、第二阀门3、第二汽轮机组4、凝汽器5、制冷压缩机6、空气压缩机7、第三阀门8、第四阀门9、第五阀门10、复叠制冷/储冷系统11、第六阀门12、液体空气储罐13、第七阀门14、空气加热装置15和空气膨胀机16所组成;
所述第一汽轮机组1包括依次连接的高压缸、中压缸和低压缸,中压缸出口通过第一阀门2依次与低压缸和凝汽器5连接,中压缸出口通过第二阀门3与第二汽轮机组4蒸汽入口连接;第二汽轮机组4通过连接轴直接带动制冷压缩机6转动,制冷压缩机6驱动复叠制冷/储冷系统11,第二汽轮机组4出口与凝汽器5入口连接;空气压缩机7出口通过第三阀门8依次与复叠制冷/储冷系统11级间供气冷却侧入口a、复叠制冷/储冷系统11级间供气冷却侧出口b连接,复叠 制冷/储冷系统11级间供气冷却侧出口b通过第四阀门9与空气压缩机7第一级间吸气入口a连接、通过第五阀门10与空气压缩机7第二级间吸气入口b连接;空气压缩机7出口依次与复叠制冷/储冷系统11降温液化侧入口c、复叠制冷/储冷系统11降温液化侧出口d、第六阀门12和液体空气储罐13连接;液体空气储罐13出口通过第七阀门14依次与复叠制冷/储冷系统11冷能回收侧入口e、复叠制冷/储冷系统11冷能回收侧出口f、空气加热装置15和空气膨胀机16连接;该系统利用多余蒸汽驱动复叠制冷/储冷系统,降低了能量传递损失并且大幅度降低深冷生产成本,空气压缩机出口一小部分空气通过复叠制冷/储冷系统进行一定的降温后重新进入空气压缩机内部不同工作级,降低了压缩过程的温升和耗功,提高了系统储能效率,同时无需再设置级间冷却器,降低了系统投资和占地面积。
所述第二阀门3与第一汽轮机组1的中压缸出口连接,或根据发电机组情况优化筛选抽汽位置。
所述复叠制冷/储冷系统11通过蒸汽驱动的制冷压缩机6来带动,调峰期间高负荷运行,非调峰期间基本不运行。
所述空气压缩机7第一级间吸气入口a和第二级间吸气入口b表示多个级间吸气入口,空气压缩机由电能或蒸汽驱动。
所述空气加热装置15由第一汽轮机组1的抽汽作为热源。
所述空气加热装置15和空气膨胀机16为一级或者多级,空气加热装置15和空气膨胀机16数量一一对应,每级空气加热装置后串联对应的空气膨胀机。
该系统适用于热电联产机组和纯凝机组,深冷制取成本大幅度降低,空气压缩机7出口一小部分空气通过复叠制冷/储冷系统11进行一定的降温后重新进入空气压缩机7内部不同工作级,压缩过程空气温升较小、单位质量空气的压缩耗功较小,具有较高的储能效率和经济性。
所述的基于压缩机中间吸气的液化空气储能调峰系统的运行方法,包括储能模式和释能模式,具体如下:
储能模式:电网用电低谷、需要燃煤机组降低发电负荷时开启储能模式,打开第二阀门3、第三阀门8、第四阀门9、第五阀门10和第六阀门12,调整第一阀门2的开度,关闭第七阀门14;第一汽轮机组1中压缸出口的一部分蒸汽通过第二阀门3进入第二汽轮机组4推动其高速转动,第二汽轮机组4通过连接轴带动制冷压缩机6旋转从而驱动复叠制冷/储冷系统11运行,产生的冷量直接储存在复叠制冷/储冷系统11中,第二汽轮机组4出口乏汽进入凝汽器5放热生成凝结水;第一汽轮机组1中压缸出口的其余蒸汽先进入第一汽轮机组1的低压缸作功,再进入凝汽器5放热生成凝结水;通过电能或者蒸汽驱动空气压缩机7压缩空气,一小部分高压空气通过第三阀门8进入复叠制冷/储冷系统11进行降温,降温后的空气分别通过第四阀门9和第五阀门10进入空气压缩机7的不同工作级,以降低空气压缩过程中的温升、减小单位质量空气的压缩耗功,其余空气进入复叠制冷/储冷系统11进行降温液化,液态空气通过第六阀门12进入液体空气储罐13进行储存;
释能模式:电网用电高峰、需要燃煤机组提升发电负荷时开启释能模式,关闭第二阀门3、第三阀门8、第四阀门9、第五阀门10和第六阀门12,打开第一阀门2和第七阀门14;低温液态空气从液体空气储罐13流出,经复叠制冷/储冷系统11进行冷能回收后生成的常温高压空气再进入空气加热装置15吸收热量,高温高压空气进入空气膨胀机16膨胀作功输出电能,空气膨胀机16出口为常压常温空气,排入周围环境。
和现有技术相比较,本发明具备如下优点:
基于压缩机中间吸气的液化空气储能调峰系统和方法,适用于以燃煤机组为典型的各种热发电厂,能够提高燃煤机组的调峰能力和储能系统的经济性,该系统利用多余蒸汽驱动复叠制冷/储冷系统,降低了能量传递损失并且大幅度降低深冷生产成本,空气压缩机出口一小部分空气通过复叠制冷/储冷系统进行一定的降温后重新进入空气压缩机内部不同工作级,降低了压缩过程的温升和耗功,提高了系统储能效率,同时无需再设置级间冷却器,降低了系统投资和占地面积。
附图说明
图1是本发明的系统示意图。
图中:
1-第一汽轮机组 2-第一阀门 3-第二阀门 4-第二汽轮机组 5-凝汽器 6-制冷压缩机 7-空气压缩机 8-第三阀门 9-第四阀门 10-第五阀门 11-复叠制冷/储冷系统 12-第六阀门 13-液体空气储罐 14-第七阀门 15-空气加热装置 16-空气膨胀机
具体实施方式
下面结合附图和具体实施方式对本发明专利作进一步详细说明,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明基于压缩机中间吸气的液化空气储能调峰系统,由第一汽轮机组1、第一阀门2、第二阀门3、第二汽轮机组4、凝汽器5、制冷压缩机6、空气压缩机7、第三阀门8、第四阀门9、第五阀门10、复叠制冷/储冷系统11、第六阀门12、液体空气储罐13、第七阀门14、空气加热装置15和空气膨胀机16所组成。
第一汽轮机组1包括依次连接的高压缸、中压缸和低压缸,中压缸出口通过第一阀门2依次与低压缸和凝汽器5连接,中压缸出口通过第二阀门3与第二汽轮机组4蒸汽入口连接;第二汽轮机组4通过连接轴直接带动制冷压缩机6转动,制冷压缩机6驱动复叠制冷/储冷系统11,第二汽轮机组4出口与凝汽器5入口连接;空气压缩机7出口通过第三阀门8依次与复叠制冷/储冷系统11级间供气冷却侧入口a、复叠制冷/储冷系统11级间供气冷却侧出口b连接,复叠制冷/储冷系统11级间供气冷却侧出口b通过第四阀门9与空气压缩机7第一级间吸气入口a连接、通过第五阀门10与空气压缩机7第二级间吸气入口b连接;空气压缩机7出口依次与复叠制冷/储冷系统11降温液化侧入口c、复叠制冷/储冷系统11降温液化侧出口d、第六阀门12和液体空气储罐13连接;液体空气储罐13出口通过第七阀门14依次与复叠制冷/储冷系统11冷能回收侧入口e、复叠制冷/储 冷系统11冷能回收侧出口f、空气加热装置15和空气膨胀机16连接;该系统利用多余蒸汽驱动复叠制冷/储冷系统,降低了能量传递损失并且大幅度降低深冷生产成本,空气压缩机出口一小部分空气通过复叠制冷/储冷系统进行一定的降温后重新进入空气压缩机内部不同工作级,降低了压缩过程的温升和耗功,提高了系统储能效率,同时无需再设置级间冷却器,降低了系统投资和占地面积。
本发明基于压缩机中间吸气的液化空气储能调峰系统可以按照以下储能模式和释能模式运行。
储能模式:电网用电低谷、需要燃煤机组降低发电负荷时开启储能模式,打开第二阀门3、第三阀门8、第四阀门9、第五阀门10和第六阀门12,调整第一阀门2的开度,关闭第七阀门14;第一汽轮机组1中压缸出口的一部分蒸汽通过第二阀门3进入第二汽轮机组4推动其高速转动,第二汽轮机组4通过连接轴带动制冷压缩机6旋转从而驱动复叠制冷/储冷系统11运行,产生的冷量直接储存在复叠制冷/储冷系统11中,第二汽轮机组4出口乏汽进入凝汽器5放热生成凝结水;第一汽轮机组1中压缸出口的其余蒸汽先进入第一汽轮机组1的低压缸作功,再进入凝汽器5放热生成凝结水;通过电能或者蒸汽驱动空气压缩机7压缩空气,一小部分高压空气通过第三阀门8进入复叠制冷/储冷系统11进行降温,降温后的空气分别通过第四阀门9和第五阀门10进入空气压缩机7的不同工作级,以降低空气压缩过程中的温升、减小单位质量空气的压缩耗功,其余空气进入复叠制冷/储冷系统11进行降温液化,液态空气通过第六阀门12进入液体 空气储罐13进行储存。
释能模式:电网用电高峰、需要燃煤机组提升发电负荷时开启释能模式,关闭第二阀门3、第三阀门8、第四阀门9、第五阀门10和第六阀门12,打开第一阀门2和第七阀门14;低温液态空气从液体空气储罐13流出,经复叠制冷/储冷系统11进行冷能回收后生成的常温高压空气再进入空气加热装置15吸收热量,高温高压空气进入空气膨胀机16膨胀作功输出电能,空气膨胀机16出口为常压常温空气,排入周围环境。
尽管上面结合附图对本发明进行了描述,但本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以作出很多变形,这些均属于本发明的保护之内。凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护范围的行为。

Claims (8)

  1. 基于压缩机中间吸气的液化空气储能调峰系统,其特征在于:由第一汽轮机组(1)、第一阀门(2)、第二阀门(3)、第二汽轮机组(4)、凝汽器(5)、制冷压缩机(6)、空气压缩机(7)、第三阀门(8)、第四阀门(9)、第五阀门(10)、复叠制冷/储冷系统(11)、第六阀门(12)、液体空气储罐(13)、第七阀门(14)、空气加热装置(15)和空气膨胀机(16)所组成;
    所述第一汽轮机组(1)包括依次连接的高压缸、中压缸和低压缸,中压缸出口通过第一阀门(2)依次与低压缸和凝汽器(5)连接,中压缸出口通过第二阀门(3)与第二汽轮机组(4)蒸汽入口连接;第二汽轮机组4通过连接轴直接带动制冷压缩机(6)转动,制冷压缩机(6)驱动复叠制冷/储冷系统(11),第二汽轮机组(4)出口与凝汽器(5)入口连接;空气压缩机(7)出口通过第三阀门(8)依次与复叠制冷/储冷系统(11)级间供气冷却侧入口(a)、复叠制冷/储冷系统(11)级间供气冷却侧出口(b)连接,复叠制冷/储冷系统(11)级间供气冷却侧出口(b)通过第四阀门(9)与空气压缩机(7)第一级间吸气入口(a)连接、通过第五阀门(10)与空气压缩机(7)第二级间吸气入口(b)连接;空气压缩机(7)出口依次与复叠制冷/储冷系统(11)降温液化侧入口(c)、复叠制冷/储冷系统(11)降温液化侧出口(d)、第六阀门(12)和液体空气储罐(13)连接;液体空气储罐(13)出口通过第七阀门(14)依次与复叠制冷/储冷系统(11)冷能回收侧入口(e)、复叠制冷/储冷系统(11)冷能回收侧出口(f)、空气加热装置(15)和空气膨胀机(16)连接;该系统利用多余蒸汽驱动复叠制冷/储冷系统,降低了能量传递损失并且大幅度降低深冷生产成本,空气压缩机出口一小部分空气通过复叠制冷/储冷系统进行一定的降温后重新进入空气压缩机内部不同工作级,降低了压缩过程的温升和耗功,提高 了系统储能效率,同时无需再设置级间冷却器,降低了系统投资和占地面积。
  2. 根据权利要求1所述的基于压缩机中间吸气的液化空气储能调峰系统,其特征在于:所述第二阀门(3)与第一汽轮机组(1)的中压缸出口连接,或根据发电机组情况优化筛选抽汽位置。
  3. 根据权利要求1所述的基于压缩机中间吸气的液化空气储能调峰系统,其特征在于:所述复叠制冷/储冷系统(11)通过蒸汽驱动的制冷压缩机(6)来带动,调峰期间高负荷运行,非调峰期间基本不运行。
  4. 根据权利要求1所述的基于压缩机中间吸气的液化空气储能调峰系统,其特征在于:所述空气压缩机(7)第一级间吸气入口(a)和第二级间吸气入口(b)表示多个级间吸气入口,空气压缩机由电能或蒸汽驱动。
  5. 根据权利要求1所述的基于压缩机中间吸气的液化空气储能调峰系统,其特征在于:所述空气加热装置(15)由第一汽轮机组(1)的抽汽作为热源。
  6. 根据权利要求1所述的基于压缩机中间吸气的液化空气储能调峰系统,其特征在于:所述空气加热装置(15)和空气膨胀机(16)为一级或者多级,空气加热装置(15)和空气膨胀机(16)数量一一对应,每级空气加热装置后串联对应的空气膨胀机。
  7. 根据权利要求1所述的基于压缩机中间吸气的液化空气储能调峰系统,其特征在于:该系统适用于热电联产机组和纯凝机组,深冷制取成本大幅度降低,空气压缩机(7)出口一小部分空气通过复叠制冷/储冷系统(11)进行一定的降温后重新进入空气压缩机(7)内部不同工作级,压缩过程空气温升较小、单位质量空气的压缩耗功较小,具有较高的储能效率和经济性。
  8. 权利要求1至7任一项所述的基于压缩机中间吸气的液化空气储能调峰系统的运行方法,其特征在于:包括储能模式和释能模式,具体如下:
    储能模式:电网用电低谷、需要燃煤机组降低发电负荷时开启储能模式,打开第二阀门(3)、第三阀门(8)、第四阀门(9)、第五阀门(10)和第六阀门(12),调整第一阀门(2)的开度,关闭第七阀门(14);第一汽轮机组(1)中压缸出口的一部分蒸汽通过第二阀门(3)进入第二汽轮机组(4)推动其高速转动,第二汽轮机组(4)通过连接轴带动制冷压缩机(6)旋转从而驱动复叠制冷/储冷系统(11)运行,产生的冷量直接储存在复叠制冷/储冷系统(11)中,第二汽轮机组(4)出口乏汽进入凝汽器(5)放热生成凝结水;第一汽轮机组(1)中压缸出口的其余蒸汽先进入第一汽轮机组(1)的低压缸作功,再进入凝汽器(5)放热生成凝结水;通过电能或者蒸汽驱动空气压缩机(7)压缩空气,一小部分高压空气通过第三阀门(8)进入复叠制冷/储冷系统(11)进行降温,降温后的空气分别通过第四阀门(9)和第五阀门(10)进入空气压缩机(7)的不同工作级,以降低空气压缩过程中的温升、减小单位质量空气的压缩耗功,其余空气进入复叠制冷/储冷系统(11)进行降温液化,液态空气通过第六阀门(12)进入液体空气储罐(13)进行储存;
    释能模式:电网用电高峰、需要燃煤机组提升发电负荷时开启释能模式,关闭第二阀门(3)、第三阀门(8)、第四阀门(9)、第五阀门(10)和第六阀门(12),打开第一阀门(2)和第七阀门(14);低温液态空气从液体空气储罐(13)流出,经复叠制冷/储冷系统(11)进行冷能回收后生成的常温高压空气再进入空气加热装置(15)吸收热量,高温高压空气进入空气膨胀机(16)膨胀作功输出电能,空气膨胀机(16)出口为常压常温空气,排入周围环境。
PCT/CN2020/126290 2020-08-07 2020-11-03 基于压缩机中间吸气的液化空气储能调峰系统和方法 WO2022027844A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010790621.XA CN111928511B (zh) 2020-08-07 2020-08-07 基于压缩机中间吸气的液化空气储能调峰系统和方法
CN202010790621.X 2020-08-07

Publications (1)

Publication Number Publication Date
WO2022027844A1 true WO2022027844A1 (zh) 2022-02-10

Family

ID=73307592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126290 WO2022027844A1 (zh) 2020-08-07 2020-11-03 基于压缩机中间吸气的液化空气储能调峰系统和方法

Country Status (2)

Country Link
CN (1) CN111928511B (zh)
WO (1) WO2022027844A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592937A (zh) * 2022-04-11 2022-06-07 中国科学院工程热物理研究所 一种压缩空气和热泵储电耦合的储电系统及方法
CN114592929A (zh) * 2022-03-04 2022-06-07 西安热工研究院有限公司 一种用于煤电机组深度调峰的梯级储热系统及方法
CN114776401A (zh) * 2022-05-23 2022-07-22 西安热工研究院有限公司 一种干湿联合冷端的运行优化方法及系统
CN114856735A (zh) * 2022-04-25 2022-08-05 中国能源建设集团江苏省电力设计院有限公司 一种基于压缩空气储能的空气透平耦合燃气轮机发电系统
CN114991959A (zh) * 2022-06-23 2022-09-02 西安热工研究院有限公司 一种新型燃气轮机耦合压缩空气储能灵活高效调峰系统及方法
CN115075895A (zh) * 2022-06-30 2022-09-20 西安热工研究院有限公司 耦合液化空气储能和火力发电的综合能源供应系统
CN115218608A (zh) * 2022-07-21 2022-10-21 北京中科富海低温科技有限公司 一种液空储气的工艺方法
CN115306500A (zh) * 2022-08-03 2022-11-08 哈尔滨工业大学 跨临界压缩二氧化碳储能系统及其运行方法
CN117432490A (zh) * 2023-09-27 2024-01-23 华能核能技术研究院有限公司 一种核电机组耦合熔盐储能发电系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114810250A (zh) * 2022-04-14 2022-07-29 重庆赛迪热工环保工程技术有限公司 一种降低汽轮机排汽热损失的发电热力系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4347706A (en) * 1981-01-07 1982-09-07 The United States Of America As Represented By The United States Department Of Energy Electric power generating plant having direct coupled steam and compressed air cycles
CN103410616A (zh) * 2013-08-22 2013-11-27 华北电力大学 大容量压缩空气储能高效发电系统
CN108194153A (zh) * 2018-02-27 2018-06-22 葛洲坝中科储能技术有限公司 提升压缩空气储能系统能量转化效率的方法及装置
CN209344796U (zh) * 2018-12-29 2019-09-03 西安西热节能技术有限公司 一种应用于燃煤发电机组的空气储能调峰系统
CN209516640U (zh) * 2018-12-12 2019-10-18 赫普科技发展(北京)有限公司 一种火电厂压缩液化空气储能调峰调频系统
CN111305920A (zh) * 2020-03-20 2020-06-19 西安西热节能技术有限公司 一种汽驱空气储能调峰系统及方法
CN111305919A (zh) * 2020-03-20 2020-06-19 西安西热节能技术有限公司 一种发电厂空气储能灵活性调峰系统及方法
CN111305918A (zh) * 2020-03-20 2020-06-19 西安西热节能技术有限公司 一种无冷源损失的汽驱空气储能调峰系统及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8074458B2 (en) * 2008-07-31 2011-12-13 General Electric Company Power plant heat recovery system having heat removal and refrigerator systems
CN206440032U (zh) * 2017-01-12 2017-08-25 奥福能源股份有限公司 一种基于热泵的回收汽轮机组乏汽余热系统
FR3066809B1 (fr) * 2017-05-24 2020-01-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil pour la separation de l'air par distillation cryogenique
KR102614152B1 (ko) * 2018-11-09 2023-12-13 현대자동차주식회사 히트펌프 시스템
CN109506383A (zh) * 2018-12-25 2019-03-22 天津商业大学 三级复叠直接接触冷凝制冷循环系统
CN109779704B (zh) * 2018-12-25 2020-04-10 西安交通大学 降低空冷机组背压并对烟气除湿消白的系统及方法
CN109883078A (zh) * 2019-01-23 2019-06-14 山东科技大学 一种复叠制冷系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4347706A (en) * 1981-01-07 1982-09-07 The United States Of America As Represented By The United States Department Of Energy Electric power generating plant having direct coupled steam and compressed air cycles
CN103410616A (zh) * 2013-08-22 2013-11-27 华北电力大学 大容量压缩空气储能高效发电系统
CN108194153A (zh) * 2018-02-27 2018-06-22 葛洲坝中科储能技术有限公司 提升压缩空气储能系统能量转化效率的方法及装置
CN209516640U (zh) * 2018-12-12 2019-10-18 赫普科技发展(北京)有限公司 一种火电厂压缩液化空气储能调峰调频系统
CN209344796U (zh) * 2018-12-29 2019-09-03 西安西热节能技术有限公司 一种应用于燃煤发电机组的空气储能调峰系统
CN111305920A (zh) * 2020-03-20 2020-06-19 西安西热节能技术有限公司 一种汽驱空气储能调峰系统及方法
CN111305919A (zh) * 2020-03-20 2020-06-19 西安西热节能技术有限公司 一种发电厂空气储能灵活性调峰系统及方法
CN111305918A (zh) * 2020-03-20 2020-06-19 西安西热节能技术有限公司 一种无冷源损失的汽驱空气储能调峰系统及方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592929A (zh) * 2022-03-04 2022-06-07 西安热工研究院有限公司 一种用于煤电机组深度调峰的梯级储热系统及方法
CN114592929B (zh) * 2022-03-04 2023-09-29 西安热工研究院有限公司 一种用于煤电机组深度调峰的梯级储热系统及方法
CN114592937B (zh) * 2022-04-11 2023-08-29 中国科学院工程热物理研究所 一种压缩空气和热泵储电耦合的储电系统及方法
CN114592937A (zh) * 2022-04-11 2022-06-07 中国科学院工程热物理研究所 一种压缩空气和热泵储电耦合的储电系统及方法
CN114856735A (zh) * 2022-04-25 2022-08-05 中国能源建设集团江苏省电力设计院有限公司 一种基于压缩空气储能的空气透平耦合燃气轮机发电系统
CN114856735B (zh) * 2022-04-25 2023-11-17 中国能源建设集团江苏省电力设计院有限公司 一种基于压缩空气储能的空气透平耦合燃气轮机发电系统
CN114776401A (zh) * 2022-05-23 2022-07-22 西安热工研究院有限公司 一种干湿联合冷端的运行优化方法及系统
CN114991959A (zh) * 2022-06-23 2022-09-02 西安热工研究院有限公司 一种新型燃气轮机耦合压缩空气储能灵活高效调峰系统及方法
CN115075895A (zh) * 2022-06-30 2022-09-20 西安热工研究院有限公司 耦合液化空气储能和火力发电的综合能源供应系统
CN115218608A (zh) * 2022-07-21 2022-10-21 北京中科富海低温科技有限公司 一种液空储气的工艺方法
CN115306500A (zh) * 2022-08-03 2022-11-08 哈尔滨工业大学 跨临界压缩二氧化碳储能系统及其运行方法
CN117432490A (zh) * 2023-09-27 2024-01-23 华能核能技术研究院有限公司 一种核电机组耦合熔盐储能发电系统
CN117432490B (zh) * 2023-09-27 2024-06-04 华能核能技术研究院有限公司 一种核电机组耦合熔盐储能发电系统

Also Published As

Publication number Publication date
CN111928511B (zh) 2021-09-07
CN111928511A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2022027844A1 (zh) 基于压缩机中间吸气的液化空气储能调峰系统和方法
WO2021184773A1 (zh) 一种发电厂空气储能灵活性调峰系统及方法
CN110374838B (zh) 一种基于lng冷量利用的跨临界二氧化碳储能系统及方法
CN111305918A (zh) 一种无冷源损失的汽驱空气储能调峰系统及方法
CN111927584A (zh) 提升火电机组运行灵活性的液态压缩空气储能系统及方法
CN112963207A (zh) 一种液化空气混合储能与发电一体化系统及方法
CN111305920B (zh) 一种汽驱空气储能调峰系统及方法
CN112302746A (zh) 一种高效利用压缩热的空气储能系统和方法
CN212054838U (zh) 一种蒸汽补热空气储能调峰系统
CN111022139A (zh) 一种燃煤发电机组耦合液化空气储能发电系统
CN110905747A (zh) 一种利用高温太阳能和lng冷能的联合动力循环发电系统
CN211900716U (zh) 一种无冷源损失的汽驱空气储能调峰系统
CN212054842U (zh) 一种汽驱空气储能调峰系统
CN113700628A (zh) 一种多联供液化空气储能系统及优化控制方法
CN114033517A (zh) 一种基于二氧化碳压缩储能的地热发电和冷热供应系统及运行方法
CN113339774A (zh) 基于热电机组蒸汽梯级利用的多能联供系统及调节方法
CN112254369A (zh) 采用吸收式进气预冷的液态空气储能系统
CN114033516B (zh) 耦合高背压供热机组的液态压缩空气储能方法及系统
CN113309612B (zh) 耦合压力能、压缩空气储能和太阳能的冷热电联供系统
CN215002381U (zh) 一种高效吸收式热泵
CN216044241U (zh) 一种多联供液化空气储能系统
CN212406828U (zh) 提升火电机组运行灵活性的液态压缩空气储能系统
CN111928525A (zh) 一种基于弃热制冷的液化空气储能调峰系统和方法
CN111928524A (zh) 一种基于级前冷却的液化空气储能调峰系统和方法
CN209875313U (zh) 集成超临界二氧化碳循环与氨吸收制冷的发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948707

Country of ref document: EP

Kind code of ref document: A1