WO2022027524A1 - 一种资源配置方法及装置 - Google Patents

一种资源配置方法及装置 Download PDF

Info

Publication number
WO2022027524A1
WO2022027524A1 PCT/CN2020/107580 CN2020107580W WO2022027524A1 WO 2022027524 A1 WO2022027524 A1 WO 2022027524A1 CN 2020107580 W CN2020107580 W CN 2020107580W WO 2022027524 A1 WO2022027524 A1 WO 2022027524A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
information
rbs
bwp
maximum transmission
Prior art date
Application number
PCT/CN2020/107580
Other languages
English (en)
French (fr)
Inventor
罗之虎
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20948469.0A priority Critical patent/EP4188005A4/en
Priority to PCT/CN2020/107580 priority patent/WO2022027524A1/zh
Priority to CN202080104280.4A priority patent/CN116250311A/zh
Publication of WO2022027524A1 publication Critical patent/WO2022027524A1/zh
Priority to US18/163,601 priority patent/US20230188299A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a resource configuration method and apparatus.
  • a base station can configure one or more downlink bandwidth parts (BWP) for terminal equipment.
  • the base station can transmit a physical downlink shared channel (PDSCH) and a physical downlink control channel (PDCCH) to the terminal device in the BWP.
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • the terminal device needs to demodulate the downlink control information (DCI) carried by the PDCCH to include the relevant information required for receiving the PDSCH.
  • DCI downlink control information
  • the base station in the NR prior art has the problem of resource waste in BWP configuration.
  • the purpose of the embodiments of the present application is to provide a resource configuration method and apparatus to improve resource utilization.
  • an embodiment of the present application provides a resource configuration method, including: a network device determines a BWP configured for a terminal device; the network device sends first information to the terminal device, where the first information is used to indicate the The number of the CRB corresponding to the initial resource block RB of the BWP And the number L RBs of the continuous RB occupied by the BWP; wherein, the number of the CRB corresponding to the starting RB of the BWP And the number of consecutive RBs L RBs occupied by the BWP satisfies one or more of the following conditions: mod is a remainder operation, and the K is a positive integer.
  • the number of the initial CRB of the BWP is guaranteed, and/or the number of the CRB corresponding to the last RB included in the BWP is an integer multiple of K, which can ensure that more RBs can be used for CORESET, thereby improving resource utilization.
  • the L RBs also meet the following conditions: L RBs is less than or equal to L; L is the maximum transmission bandwidth supported by the terminal device or the number of consecutive RBs included in the working bandwidth preferred by the terminal device. number.
  • the method further includes: the network device sends second information to the terminal device, where the second information is used to indicate the frequency domain of the control resource set CORESET configured in the BWP resource, and the number of bits included in the second information is determined according to the maximum transmission bandwidth supported by the terminal device or the preferred working bandwidth of the terminal device.
  • the number of bits included in the second information indicating the frequency domain resources of the CORESET is no longer a fixed 45 bits, but is based on the maximum transmission bandwidth or the preferred working bandwidth supported by the terminal device, thereby reducing the CORESET configuration aspect. signaling overhead.
  • the number of bits included in the second information is or or or wherein, N is the maximum transmission bandwidth supported by the terminal device or the number of consecutive RBs included in the working bandwidth preferred by the terminal device, means round down, Indicates rounded up.
  • the first information is an index value of a resource indication value RIV, or the first information is the RIV.
  • the method further includes: receiving, by the network device, third information from the terminal device, where the third information is used to indicate the maximum transmission bandwidth supported by the terminal device or the terminal device The working bandwidth preferred by the device; the network device determines the maximum transmission bandwidth supported by the terminal device or the preferred working bandwidth of the terminal device according to the third information.
  • the K is a preset value, or the value of the K is sent by the network device to the terminal device.
  • the present application further provides a communication device, the communication device having any of the methods provided in the above-mentioned first aspect.
  • the communication device may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication apparatus includes: a processor configured to support the communication apparatus to perform the corresponding functions of the network device in the method shown above.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication apparatus further includes a communication interface, where the communication interface is used to support communication between the communication apparatus and equipment such as terminal equipment.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication apparatus includes a processing unit and a communication unit, and these units can perform the corresponding functions in the above method examples.
  • these units can perform the corresponding functions in the above method examples.
  • the description of the method provided in the first aspect which is not repeated here.
  • the present application provides a resource configuration method, comprising: a terminal device receiving first information from a network device; the terminal device determining a bandwidth part BWP according to the first information; wherein the first information is used for Indicates the number of the common resource block CRB corresponding to the initial resource block RB of the BWP And the number L RBs of the continuous RB occupied by the BWP; wherein, the number of the CRB corresponding to the starting RB of the BWP And the number of consecutive RBs L RBs occupied by the BWP satisfies one or more of the following conditions: mod is a remainder operation, and the K is a positive integer.
  • the L RBs also meet the following conditions: the L RBs are less than or equal to L;
  • L is the maximum transmission bandwidth supported by the terminal device or the number of consecutive RBs included in the working bandwidth preferred by the terminal device.
  • the method further includes: the terminal device receives second information from the network device, where the second information is used to indicate the frequency of the control resource set CORESET configured in the BWP. Domain resources, the number of bits included in the second information is determined according to the maximum transmission bandwidth supported by the terminal device or the working bandwidth preferred by the terminal device.
  • the number of bits included in the second information is or or or wherein, N is the maximum transmission bandwidth supported by the terminal device or the number of consecutive RBs included in the working bandwidth preferred by the terminal device, means round down, Indicates rounded up.
  • the first information is an index value of a resource indication value RIV, or the first information is the RIV.
  • the K is a preset value, or the value of the K is sent by the network device to the terminal device.
  • the present application further provides a communication device, the communication device having any of the methods provided in the third aspect above.
  • the communication device may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication apparatus includes: a processor, and the processor is configured to support the communication apparatus to perform the corresponding functions of the terminal device in the above-described method.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication apparatus further includes a communication interface, where the communication interface is used to support communication between the communication apparatus and devices such as network equipment.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication apparatus includes a processing unit and a communication unit, and these units can perform the corresponding functions in the above method examples.
  • these units can perform the corresponding functions in the above method examples.
  • a computer-readable storage medium for storing a computer program, the computer program comprising instructions for performing the method in the first aspect or any of the possible implementations of the first aspect.
  • a computer-readable storage medium for storing a computer program, the computer program comprising instructions for executing the third aspect or the method in any possible implementation manner of the third aspect.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, the computer is made to execute the first aspect or any one of the first aspects methods in possible implementations.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, the computer is made to execute any one of the third aspect and the third aspect above methods in possible implementations.
  • the present application provides a chip, comprising a processor, which is coupled to a memory and configured to execute a computer program or instruction stored in the memory, when the processor executes the computer program or instruction , so that the first aspect or the method in any possible implementation manner of the first aspect is implemented.
  • the present application provides a chip, including a processor, which is coupled to a memory and configured to execute a computer program or instruction stored in the memory, when the processor executes the computer program or instruction , so that the third aspect or the method in any possible implementation manner of the third aspect is implemented.
  • the present application provides a communication device, the communication device includes a processor, a memory and a transceiver, the transceiver is used for receiving a signal or sending a signal; the memory is used for storing a computer program or instruction ; the processor, configured to call the computer program or instructions from the memory to execute the method in the first aspect or any one of the possible implementations of the first aspect.
  • the present application provides a communication device, the communication device includes a processor, a memory and a transceiver, the transceiver is used for receiving a signal or sending a signal; the memory is used for storing a computer program or instruction ; the processor, configured to call the computer program or instructions from the memory to execute the method in the third aspect or any one of the possible implementations of the third aspect.
  • the present application provides a communication system, including the communication device provided in the second aspect and the communication device provided in the fourth aspect.
  • FIG. 1 is a schematic diagram of a network architecture suitable for an embodiment of the present application
  • FIG. 2 is a schematic diagram of a BWP configuration provided by an embodiment of the present application.
  • Fig. 3 is the position schematic diagram of a kind of CORESET
  • FIG. 4 is a schematic flowchart of a resource configuration method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a BWP provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a BWP provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a BWP provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a resource configuration method provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G 5th Generation
  • 5G 5th Generation
  • New Radio New Radio
  • the terminal device may be a device with a wireless transceiver function or a chip that can be installed in any device, and may also be referred to as user equipment (user equipment, UE), an access terminal, a subscriber unit, or a subscriber station. , mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user equipment.
  • user equipment user equipment
  • UE user equipment
  • access terminal a subscriber unit
  • subscriber station mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user equipment.
  • the terminal device in this embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial Wireless terminal in industrial control, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • a mobile phone mobile phone
  • a tablet computer (Pad)
  • a computer with a wireless transceiver function a virtual reality (VR) terminal, an augmented reality (AR) terminal
  • an industrial Wireless terminal in industrial control wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the network equipment can be a next generation base station (next Generation node B, gNB) in the NR system, can be an evolved base station (evolutional node B, eNB) in the LTE system, can be a global system of mobile communication (global system of mobile communication, Base station (base transceiver station, BTS) in GSM) system or code division multiple access (code division multiple access, CDMA), it can also be a base station (nodeB) in wideband code division multiple access (wideband code division multiple access, WCDMA) system , NB) etc.
  • the embodiments of the present application may be applied to a network supporting the Internet of things (Internet of things, IoT) technology.
  • IoT Internet of things
  • the network equipment and terminal equipment 1 to terminal equipment 5 form a communication system.
  • the network equipment sends information to one or more terminal equipments among terminal equipment 1 to terminal equipment 5 .
  • the terminal device 4 to the terminal device 5 also form a communication system.
  • the terminal device 5 can send information to the terminal device 4 .
  • Subcarrier In an orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) system, a frequency domain resource is divided into several subresources, and each subresource in the frequency domain may be called a subcarrier. Subcarriers can also be understood as the minimum granularity of frequency domain resources;
  • Subcarrier spacing in the OFDM system, the spacing value between the center positions or peak positions of two adjacent subcarriers in the frequency domain.
  • the subcarrier spacing in the LTE system is 15kHz, etc.
  • the subcarrier spacing in the NR system can be 15kHz, or 30kHz, or 60kHz, or 120kHz, or 240kHz, etc.;
  • the subcarrier spacing can be configured by network equipment.
  • Resource block N consecutive subcarriers in the frequency domain may be called a resource block.
  • one resource block in the LTE system includes 12 subcarriers, and one resource block in the NR system also includes 12 subcarriers.
  • the number of subcarriers included in a resource block can also be other values;
  • the basic time unit of downlink resource scheduling in NR is a time slot (slot).
  • a slot consists of 14 OFDM symbols in time.
  • the data transmission in the NR system is organized into frames with a time length of 10ms, and each frame is divided into 10 subframes of the same size and a length of 1ms, and each subframe can contain a or multiple time slots (determined according to the subcarrier spacing, when the subcarrier is 15kHz, each subframe contains one time slot).
  • Each frame is identified by a System Frame Number (SFN), and the period of SFN is equal to 1024, so SFN repeats itself after 1024 frames.
  • SFN System Frame Number
  • Subframe The time length of a subframe in the NR system is 1ms;
  • Half frame The time length of a half frame in the NR system is 5ms. Each frame can be divided into two half frames, and each half frame contains 5 subframes. For example, half frame 0 includes subframes 0 to 0. Subframe 4, field 1 includes subframe 5 to subframe 9.
  • Frame The time length of a frame in the NR system is 10ms, and each frame includes 10 subframes.
  • OFDM symbol the smallest time unit in the time domain in the OFDM system.
  • one slot includes 14 OFDM symbols.
  • BWP A new concept proposed in the NR standard. It is a continuous bandwidth resource configured by the network side to the terminal device, which can realize flexible transmission bandwidth configuration on the network side and the terminal device side.
  • the BWP is composed of consecutive resource blocks (RBs) in the frequency domain, and the BWP is a subset within the bandwidth of the terminal device.
  • the minimum granularity of BWP in the frequency domain is 1 resource block (RB).
  • the system can configure one or more BWPs for the terminal device, and multiple BWPs can overlap in the frequency domain.
  • the base station configures 3 BWPs for the terminal device, where BWP1 and BWP2 overlap, and BWP1 and BWP3 does not overlap.
  • the BWP can be indicated through the BWP configuration information.
  • the BWP configuration information is notified to the terminal device by the base station through radio resource control (radio resource control, RRC) signaling.
  • the frequency domain location of the BWP is indicated by a location and bandwidth (location And Bandwidth) field.
  • the offset RB start and length L RBs can be determined by the values of the location and bandwidth fields.
  • the number of the common resource block corresponding to the starting resource block (resource block, RB) of the final BWP is O carrier represents the interval between the lowest usable (lowest usable) subcarrier of the carrier where the BWP is located relative to the preset reference point Point A, and the interval is represented by the number of RBs.
  • Control resource set (control-resource set, CORESET):
  • PDCCH is transmitted on a configurable control resource set (control-resource set, CORESET).
  • CORESET is a time-frequency resource for sending PDCCH. Multiple CORESETs can be configured in one BWP, and CORESETs do not necessarily occupy the entire system bandwidth in the frequency domain.
  • CORESET is similar to the control region for PDCCH transmission on a subframe in the LTE system, but the time-frequency structure of CORESET is more flexible.
  • the PDCCH always occupies the entire system bandwidth.
  • the index of the first common resource block (CRB) of the first group containing 6 RBs in the frequency domain resources of CORESET is: It is the starting CRB of BWP. Specifically, as shown in Figure 3, the BWP starting position is separated by X RBs from the starting position of the first RB group in the BWP, and the BWP ending position is separated by Y RBs from the ending position of the last RB group in the BWP. If X and Y are not an integer multiple of 6, then (X+Y) cannot be configured as CORESET, resulting in a waste of resources.
  • the frequency domain resources of the CORESET may be indicated by a frequency domain resource (frequencyDomainResources) field, and the frequency domain resource field is a bitmap (bitmap) with a fixed length of 45.
  • Each bit in the bitmap corresponds to a non-overlapping group containing 6 consecutive PRBs one-to-one, and is numbered in an increasing order of PRB indices in a downlink BWP.
  • Point A It is used to indicate the common reference point of the resource block. The location of Point A is configured by the network device.
  • Common resource block for the subcarrier spacing configuration ⁇ , the CRB starts from 0 and is numbered sequentially from low to high in frequency.
  • Point A corresponds to the center position of subcarrier 0 of CRB0. Therefore, the position of Point A is determined, and the number of each CRB is determined.
  • Each RB within the BWP has a corresponding CRB number In the BWP, each RB also has its own number, and the number of the RB in the BWP is recorded as and The relationship between can refer to the NR prior art, in Indicates the CRB number corresponding to the actual RB of the BWP.
  • At least one means one or more, and “plurality” means two or more.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • “At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one item (a) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be single or multiple .
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the interaction between a terminal device and a network device is used as an example for description.
  • the methods provided in the embodiments of the present application can also be applied to the interaction between other execution subjects, for example, a chip or module of a terminal device, and a
  • a chip or module of a terminal device for example, a chip or module of a terminal device
  • a for the interaction between chips or modules in the network device when the execution body is a chip or a module, reference may be made to the descriptions in the embodiments of this application, and details are not repeated here.
  • FIG. 4 a schematic flowchart of a resource configuration method provided by an embodiment of the present application. Referring to Figure 4, the method includes:
  • Step 401 The network device determines the BWP configured for the terminal device.
  • the network device may be configured with one or more BWPs for the terminal device.
  • one BWP is used as an example for description, which does not mean that only one BWP is configured.
  • the network device configures other BWPs for the terminal device, the configuration and instruction methods of each BWP are the same, and details are not described here.
  • Step 402 The network device sends the first information to the terminal device.
  • the first information is used to indicate the number of the CRB corresponding to the starting RB of the BWP and the number L RBs of consecutive RBs occupied by the BWP.
  • the number of the CRB corresponding to the starting RB of the BWP And the number of consecutive RBs L RBs occupied by the BWP satisfies one or more of the following conditions:
  • mod is the remainder operation
  • K is a positive integer. It can be regarded as the number of the CRB corresponding to the ending RB of the BWP.
  • L RBs can also be viewed as the length of the BWP.
  • L RBs may also satisfy one or more of the following conditions:
  • L RBs is less than or equal to L, where L is the maximum transmission bandwidth supported by the terminal device or the number of consecutive RBs included in the preferred working bandwidth of the terminal device;
  • the K is a preset value, or the value of the K may be sent by the network device to the terminal device.
  • K value is a preset value, optionally, K is 6.
  • the subsequent NR system may introduce narrowband terminal equipment for low-cost IoT scenarios, or terminal equipment with limited working bandwidth, or terminal equipment with limited working bandwidth
  • network equipment needs to be combined with terminal equipment with different working bandwidths
  • the number of RBs occupied by the control channel element (control channel element, CCE) of the control channel, the number of RBs corresponding to the resource block group (resource block group, RBG) used by the data channels of terminal devices with different working bandwidths in resource allocation, to A value of K is determined and notified to the end device, depending on the implementation of the network device.
  • the value of K may be the minimum or maximum value among the number of RBs occupied by the CCE and the number of RBs corresponding to the RBG.
  • the principle adopted by the network device when determining the value of K may be to avoid resource fragmentation during resource allocation as much as possible.
  • Resource fragmentation means that this part of the resource is neither allocated to narrowband terminal equipment, but cannot be allocated to broadband terminal equipment.
  • the broadband terminal device may be a terminal device that supports an enhanced mobile broadband (eMBB) service in NR, and its working bandwidth is a maximum of 100 MHz in FR1 and a maximum of 400 MHz in FR2.
  • the narrowband terminal device may be a terminal device with limited working bandwidth, and the specific bandwidth limitation size is not limited in this embodiment.
  • a band terminal device may be a terminal device less than or equal to 20 MHz at FR1, and/or less than or equal to 50 MHz at FR2.
  • the first information can be sent through RRC signaling, or system messages, or a medium access control layer control element MAC CE, for example, it can be carried through the location and bandwidth (location And Bandwidth) field in RRC signaling.
  • Step 403 The terminal device receives the first information from the network device.
  • Step 404 The terminal device determines the BWP configured by the network device according to the first information.
  • the number of the initial CRB of the BWP is guaranteed, and/or the number of the CRB corresponding to the last RB included in the BWP is an integer multiple of K, which can ensure that more RBs can be used for CORESET, thereby improving resource utilization.
  • the first information may be an index value of a resource indication value (resource indication value, RIV), or the first information may be an RIV.
  • RIV resource indication value
  • the first information may also exist in other implementation manners, which are not limited in the embodiments of the present application.
  • the index value of the RIV that satisfies the above conditions may be 0, 1, 2, . value, N-1 represents the index value of the largest RIV that satisfies the above conditions, where N is the number of RIVs that satisfy the above conditions, and the value indicated by the first information may be one of 0 to N-1.
  • RIV may be determined as follows:
  • the RIV indicated by the first information is 2478, it indicates that the offset RB start of the BWP is 3, and the length L RBs is 10.
  • the terminal device when the terminal device determines that the RIV is 2478 according to the first information, it can determine RB start and L RBs in the following manner.
  • Step 1 Confirm value of .
  • Step 2 If then determine
  • O carrier represents the interval of the lowest usable subcarrier of the carrier where the BWP is located relative to the preset reference point, the interval is represented by the number of RBs, and the value of O carrier may also be preconfigured.
  • the number of the CRB corresponding to the starting RB of the BWP can be determined according to the RB start Thereby, L RBs consecutive RBs starting from the starting RB can be used as RBs included in the BWP.
  • RIV1 and RIV2 and L RBs satisfy the conditions in the flow chart of Figure 4, determined according to RIV3, RIV4 and RIV5 and at least one of the L RBs does not satisfy the conditions in the flow of Figure 4.
  • the network device needs to configure multiple BWPs for the terminal device, the RIV values that do not meet the conditions can be eliminated, and only the RIV values that meet the conditions can be configured, thereby saving signaling overhead.
  • the maximum transmission bandwidth supported by the terminal device or the preferred working bandwidth of the terminal device may be indicated by the terminal device to the network device.
  • the terminal device may send third information to the network device, and the third information is used for Indicates the maximum transmission bandwidth supported by the terminal device or the preferred working bandwidth of the terminal device.
  • the specific implementation manner of the third information is not limited in the embodiments of the present application, and details are not described herein again.
  • the network device may also indicate to the terminal device the frequency domain resources of the CORESET configured in the BWP.
  • FIG. 8 a schematic flowchart of a resource configuration method provided by an embodiment of the present application. Referring to Figure 8, the method includes:
  • Step 801 the network device determines the second information
  • Step 802 The network device sends the second information to the terminal device.
  • the second information is used to indicate the frequency domain resources of CORESET configured in the BWP.
  • Step 803 the terminal device receives the second information from the network device
  • Step 804 The terminal device determines the frequency domain resources of the CORESET configured in the BWP according to the second information shown.
  • the second information may be sent through RRC signaling, for example, may be carried through a frequency domain resources (frequencyDomainResources) field in the RRC signaling.
  • frequencyDomainResources frequency domain resources
  • the second information may be a bitmap including at least one bit, and each bit in the bitmap corresponds to one RB or a non-overlapping group including 6 consecutive RBs. For example, if the corresponding bit in the bitmap is 1, the corresponding RB group is used for CORESET; if the corresponding bit in the bitmap is 0, the corresponding RB group is not used for CORESET.
  • the number of bits included in the second information is determined according to the maximum transmission bandwidth supported by the terminal device or the preferred working bandwidth of the terminal device.
  • the number of bits included in the second information is or or or Wherein, N is the maximum transmission bandwidth supported by the terminal device or the number of consecutive RBs included in the working bandwidth preferred by the terminal device, Indicates rounded up.
  • the second information Since the number of bits included in the second information is determined according to the maximum transmission bandwidth supported by the terminal device or the working bandwidth preferred by the terminal device, compared with the prior art, the second information is always configured according to 270 RBs, which can reduce the number of second information. The number of bits included in the information, thereby reducing signaling overhead.
  • the maximum transmission bandwidth supported by the FR1UE is 20 MHz, and the corresponding maximum supported transmission bandwidth is expressed in RB as 106 RBs.
  • the number of bits included in the second information indicating the CORESET frequency domain resource may be 17 bits, which can significantly reduce signaling overhead compared to the fixed 45 bits in the prior art.
  • the maximum transmission bandwidth supported by the terminal device or the preferred working bandwidth of the terminal device may be indicated by the terminal device to the network device.
  • the terminal device may send third information to the network device.
  • the specific implementation of the third information the embodiments of the present application are not limited, and are not repeated here.
  • the process shown in FIG. 4 and the process shown in FIG. 8 may be implemented independently, or may be implemented in combination, which is not limited in this embodiment of the present application.
  • the network device or the terminal device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module . Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in each embodiment of the present application may be integrated into one processor, or may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • an embodiment of the present application further provides an apparatus 900 for implementing the functions of the network device or the terminal device in the above method.
  • the apparatus may be a software module or a system-on-chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 900 may include: a processing unit 901 and a communication unit 902 .
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, which are respectively configured to perform the sending and receiving steps of the network device or the terminal device in the above method embodiments.
  • a processing unit for determining the bandwidth part BWP configured for the terminal device
  • a communication unit configured to send first information to the terminal device, where the first information is used to indicate the number of the common resource block CRB corresponding to the initial resource block RB of the BWP And the number L RBs of consecutive RBs occupied by the BWP;
  • the number of the CRB corresponding to the starting RB of the BWP And the number of consecutive RBs L RBs occupied by the BWP satisfies one or more of the following conditions:
  • mod is a remainder operation, and the K is a positive integer.
  • the L RBs also meet the following conditions:
  • L RBs is less than or equal to L; L is the maximum transmission bandwidth supported by the terminal device or the number of consecutive RBs included in the working bandwidth preferred by the terminal device.
  • the communication unit is further used for:
  • Send second information to the terminal device where the second information is used to indicate the frequency domain resources of the control resource set CORESET configured in the BWP, and the number of bits included in the second information is based on the number of bits supported by the terminal device.
  • the maximum transmission bandwidth or the preferred working bandwidth of the terminal device is determined.
  • the number of bits included in the second information is or or or
  • N is the maximum transmission bandwidth supported by the terminal device or the number of consecutive RBs included in the working bandwidth preferred by the terminal device, means round down, Indicates rounded up.
  • the first information is an index value of a resource indication value RIV, or the first information is the RIV.
  • a communication unit configured to receive the first information from the network device
  • a processing unit configured to determine the bandwidth part BWP according to the first information
  • the first information is used to indicate the number of the common resource block CRB corresponding to the starting resource block RB of the BWP And the number L RBs of consecutive RBs occupied by the BWP;
  • the number of the CRB corresponding to the starting RB of the BWP And the number of consecutive RBs L RBs occupied by the BWP satisfies one or more of the following conditions:
  • mod is a remainder operation, and the K is a positive integer.
  • the L RBs also meet the following conditions:
  • L RBs is less than or equal to L; L is the maximum transmission bandwidth supported by the terminal device or the number of consecutive RBs included in the working bandwidth preferred by the terminal device.
  • the communication unit is further used for:
  • Receive second information from the network device where the second information is used to indicate the frequency domain resources of the control resource set CORESET configured in the BWP, and the number of bits included in the second information is based on the support of the terminal device The maximum transmission bandwidth or the preferred working bandwidth of the terminal device is determined.
  • the number of bits included in the second information is or or or wherein, N is the maximum transmission bandwidth supported by the terminal device or the number of consecutive RBs included in the working bandwidth preferred by the terminal device, means round down, Indicates rounded up.
  • the first information is an index value of a resource indication value RIV, or the first information is the RIV.
  • a communication unit may also be referred to as a transceiver, transceiver, transceiver, or the like.
  • the processing unit may also be referred to as a processor, a processing single board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the communication unit 902 may be regarded as a receiving unit, and the device for implementing the transmitting function in the communication unit 902 may be regarded as a transmitting unit, that is, the communication unit 902 includes a receiving unit and a transmitting unit.
  • a communication unit may also sometimes be referred to as a transceiver, transceiver, or transceiver circuit, or the like.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • FIG. 10 shows an apparatus 1000 provided by an embodiment of the present application.
  • the apparatus shown in FIG. 10 may be a hardware circuit implementation of the apparatus shown in FIG. 9 .
  • the communication apparatus can be applied to the flow chart shown above to perform the functions of the first user equipment or the second user equipment in the above method embodiments.
  • FIG. 10 only shows the main components of the communication device.
  • the apparatus 1000 may also include at least one memory 1030 for storing program instructions and/or data.
  • Memory 1030 is coupled to processor 1020 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1020 may cooperate with the memory 1030 .
  • Processor 1020 may execute program instructions stored in memory 1030 . At least one of the at least one memory may be included in the processor.
  • the apparatus 1000 shown in FIG. 10 includes at least one processor 1020 and a communication interface 1010 , and the processor 1020 is configured to execute the instructions or programs stored in the memory 1030 .
  • the processor 1020 is used to perform the operations performed by the processing unit 901 in the above embodiments
  • the communication interface 1010 is used to perform the operations performed by the communication unit 902 in the above embodiments.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; it may also be a transceiver integrating a transceiver function, or a communication interface.
  • the apparatus 1000 may also include a communication line 1040 .
  • the communication interface 1010, the processor 1020 and the memory 1030 may be connected to each other through a communication line 1040; the communication line 1040 may be a peripheral component interconnect (PCI for short) bus or an extended industry standard architecture (extended industry standard architecture). , referred to as EISA) bus and so on.
  • the communication line 1040 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种资源配置方法及装置,其中方法包括:网络设备为终端设备配置的BWP的起始资源块RB对应的公共资源块CRB的编号 NBWP start以及所述BWP占用的连续RB的个数LRBs;可以满足以下条件的一项或者多项:NBWP start mod K=0;(NBWP start+LRBs)mod K=0,mod为取余运算,所述K为正整数。根据上面的方法,在配置BWP时,可以保证BWP的起始CRB的编号,和/或,BWP包括的最后一个RB对应的CRB的编号为K的整数倍,可以保证更多的RB可被用于CORESET,从而提高资源利用率。

Description

一种资源配置方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种资源配置方法及装置。
背景技术
在第五代无线接入系统标准新空口(New Radio,NR)中,基站可为终端设备配置一个或多个下行带宽部分(bandwidth part,BWP)。基站可以在BWP中向终端设备传输物理下行共享信道(physical downlink shared channel,PDSCH)和物理下行控制信道(physical downlink control channel,PDCCH)。为了正确接收PDSCH,终端设备需要先解调PDCCH携带的下行控制信息(downlink control information,DCI)中包含接收PDSCH所需要的相关信息。
对于工作带宽受限的终端设备,NR现有技术中基站在BWP配置方面有资源浪费问题。
发明内容
本申请实施方式的目的在于提供一种资源配置方法及装置,用以提高资源利用率。
第一方面,本申请实施例提供一种资源配置方法,包括:网络设备确定为终端设备配置的BWP;所述网络设备向所述终端设备发送第一信息,所述第一信息用于指示所述BWP的起始资源块RB对应的CRB的编号
Figure PCTCN2020107580-appb-000001
以及所述BWP占用的连续RB的个数L RBs;其中,所述BWP的起始RB对应的CRB的编号
Figure PCTCN2020107580-appb-000002
以及所述BWP占用的连续RB的个数L RBs满足以下条件的一项或者多项:
Figure PCTCN2020107580-appb-000003
Figure PCTCN2020107580-appb-000004
mod为取余运算,所述K为正整数。
根据上面的方法,在配置BWP时,保证BWP的起始CRB的编号,和/或,BWP包括的最后一个RB对应的CRB的编号为K的整数倍,可以保证更多的RB可被用于CORESET,从而提高资源利用率。
一种可能的实现方式中,所述L RBs还满足以下条件:L RBs小于或者等于L;L为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数。
根据上面的方法,在配置BWP时,保证BWP小于或等于终端设备支持的最大传输带宽或者首选的工作带宽,有助于将超过终端设备支持的最大传输带宽或者首选的工作带宽部分的无效指示信息剔除,进而降低在BWP配置方面的信令开销。
一种可能的实现方式中,所述L RBs还满足以下条件:L RBsmod K=0。
一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端设备发送第二信息,所述第二信息用于指示在所述BWP中配置的控制资源集合CORESET的频域资源,所述第二信息包括的比特数根据所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽确定。
根据上面的方法,指示CORESET的频域资源的第二信息包括的比特数不再是固定的45比特,而是根据终端设备支持的最大传输带宽或者首选的工作带宽,从而可以减少在CORESET配置方面的信令开销。
一种可能的实现方式中,所述第二信息包括的比特数为
Figure PCTCN2020107580-appb-000005
或者
Figure PCTCN2020107580-appb-000006
或者
Figure PCTCN2020107580-appb-000007
或者
Figure PCTCN2020107580-appb-000008
其中,N为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数,
Figure PCTCN2020107580-appb-000009
表示向下取整,
Figure PCTCN2020107580-appb-000010
表示向上取整。
一种可能的实现方式中,所述第一信息为资源指示值RIV的索引值,或者所述第一信息为所述RIV。
一种可能的实现方式中,所述方法还包括:所述网络设备接收来自所述终端设备的第三信息,所述第三信息用于指示所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽;所述网络设备根据所述第三信息确定所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽。
一种可能的实现方式中,所述K为预设值,或者所述K的取值由所述网络设备发送给所述终端设备。
第二方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中网络设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与终端设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面提供的方法中的描述,此处不做赘述。
第三方面,本申请提供一种资源配置方法,包括:终端设备接收来自网络设备的第一信息;所述终端设备根据所述第一信息确定带宽部分BWP;其中,所述第一信息用于指示所述BWP的起始资源块RB对应的公共资源块CRB的编号
Figure PCTCN2020107580-appb-000011
以及所述BWP占用的连续RB的个数L RBs;其中,所述BWP的起始RB对应的CRB的编号
Figure PCTCN2020107580-appb-000012
以及所述BWP占用的连续RB的个数L RBs满足以下条件的一项或者多项:
Figure PCTCN2020107580-appb-000013
Figure PCTCN2020107580-appb-000014
Figure PCTCN2020107580-appb-000015
mod为取余运算,所述K为正整数。
一种可能的实现方式中,所述L RBs还满足以下条件:L RBs小于或者等于L;
L为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数。
一种可能的实现方式中,所述L RBs还满足以下条件:L RBsmod K=0。
一种可能的实现方式中,所述方法还包括:所述终端设备接收来自所述网络设备的第二信息,所述第二信息用于指示在所述BWP中配置的控制资源集合CORESET的频域资源,所述第二信息包括的比特数根据所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽确定。
一种可能的实现方式中,所述第二信息包括的比特数为
Figure PCTCN2020107580-appb-000016
或者
Figure PCTCN2020107580-appb-000017
或者
Figure PCTCN2020107580-appb-000018
或者
Figure PCTCN2020107580-appb-000019
其中,N为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数,
Figure PCTCN2020107580-appb-000020
表示向下取整,
Figure PCTCN2020107580-appb-000021
表示向上取整。
一种可能的实现方式中,所述第一信息为资源指示值RIV的索引值,或者所述第一信 息为所述RIV。
一种可能的实现方式中,所述K为预设值,或者所述K的取值由所述网络设备发送给所述终端设备。
第四方面,本申请还提供一种通信装置,该通信装置具有实现上述第三方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中终端设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与网络设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第三方面提供的方法中的描述,此处不做赘述。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面中任一种可能实现方式中的方法的指令。
第六方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第三方面或第三方面中任一种可能实现方式中的方法的指令。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第一方面中任一种可能实现方式中的方法。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第三方面及第三方面中任一种可能实现方式中的方法。
第九方面,本申请提供一种芯片,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,使得第一方面或第一方面中任一种可能实现方式中的方法被实现。
第十方面,本申请提供一种芯片,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,使得第三方面或第三方面中任一种可能实现方式中方法被实现。
第十一方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储计算机程序或指令;所述处理器,用于从所述存储器调用所述计算机程序或指令执行如第一方面或第一方面中任一种可能实现方式中的方法。
第十二方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储计算机程序或指令;所述处理器,用于从所述存储器调用所述计算机程序或指令执行如第三方面或第三方面中任一种可能实现方式中的方法。
第十三方面,本申请提供一种通信系统,包括第二方面提供的通信装置以及第四方面 提供的通信装置。
附图说明
图1为适用于本申请实施例的一种网络架构示意图;
图2为本申请实施例提供的一种BWP配置示意图;
图3为一种CORESET的位置示意图;
图4为本申请实施例提供的一种资源配置方法流程示意图;
图5为本申请实施例提供的一种BWP示意图;
图6为本申请实施例提供的一种BWP示意图;
图7为本申请实施例提供的一种BWP示意图;
图8为本申请实施例提供的一种资源配置方法流程示意图;
图9为本申请实施例提供的一种通信装置结构示意图;
图10为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、第五代(5th Generation,5G)系统或新无线(New Radio,NR)等,在此不做限制。
本申请实施例中,终端设备,可以为具有无线收发功能的设备或可设置于任一设备中的芯片,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
网络设备,可以是NR系统中的下一代基站(next Generation node B,gNB),可以是LTE系统中的演进型基站(evolutional node B,eNB),可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(nodeB,NB)等。
本申请实施例可以应用于支持物联网(Internet of things,IoT)技术中网络中。如图1所示,网络设备和终端设备1~终端设备5组成一个通信系统,在该通信系统中,网络设备发送信息给终端设备1~终端设备5中的一个或多个终端设备。此外,终端设备4~终端设备5也组成一个通信系统,在该通信系统中,终端设备5可以发送信息给终端设备4。
下面先解释一些本申请涉及的技术术语。
1、子载波:正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中将频域资源划分为若干个子资源,每个频域上的子资源可称为一个子载波。子载波也可以理解为频域资源的最小粒度;
2、子载波间隔:OFDM系统中,频域上相邻的两个子载波的中心位置或峰值位置之间的间隔值。例如,LTE系统中的子载波间隔为15kHz等;NR系统的子载波间隔可以是15kHz,或30kHz,或60kHz,或120kHz,或240kHz等;
NR系统中子载波间隔可通过网络设备配置,例如子载波间隔配置μ=0对应的子载波间隔为15kHz,子载波间隔配置μ=1对应的子载波间隔为30kHz,子载波间隔配置μ=2对应的子载波间隔为60kHz,子载波间隔配置μ=3对应的子载波间隔为120kHz,子载波间隔配置μ=4对应的子载波间隔为240kHz等。
3、资源块:频域上连续的N个子载波可称为一个资源块。例如,LTE系统中的一个资源块包括12个子载波,NR系统的一个资源块也包括12子载波。随着通信系统的演进,一个资源块包括的子载波个数也可以是其他值;
4、时隙(slot):NR系统中,时隙长度和子载波间隔有关。15kHz子载波间隔对应的一个时隙的长度为1ms,30kHz子载波间隔对应的时隙长度为1/2=0.5ms,60kHz子载波间隔对应的一个时隙的长度为1/4=0.25ms,120kHz子载波间隔对应的一个时隙的长度为1/8=0.125ms,240kHz子载波间隔对应的一个时隙的长度为1/16=0.0625ms。
NR中下行资源调度的基本时间单位是一个时隙(slot),一般而言,一个slot在时间上由14个OFDM符号组成。在时域上,NR系统中的数据传输被组织成时间长度为10ms的帧(frame),每个帧被分成10个相同大小长度为1ms的子帧(subframe),而每个子帧可包含一个或多个时隙(根据子载波间隔决定,当子载波为15kHz时,每个子帧包含一个时隙)。每个帧由一个系统帧号(System Frame Number,SFN)来标识,SFN的周期等于1024,因此SFN在1024个帧后自行重复。
5、子帧(subframe):NR系统中一个子帧的时间长度为1ms;
6、半帧(half frame):NR系统中一个半帧的时间长度为5ms,每个帧可以分为两个半帧,每个半帧包含5个子帧,例如半帧0包含子帧0至子帧4,半帧1包含子帧5至子帧9。
7、帧(frame):NR系统一个帧的时间长度为10ms,每个帧包括10个子帧。
8、OFDM符号:OFDM系统中时域上最小的时间单元,NR系统中,对于常规循环前缀(normal cyclic prefix),一个时隙包括14个OFDM符号。
9、BWP:NR标准中提出的新的概念,是网络侧配置给终端设备的一段连续的带宽资源,可实现网络侧和终端设备侧灵活传输带宽配置。
BWP由频域上连续的资源块(resource block,RB)组成,BWP为终端设备带宽内的一个子集。BWP在频域上的最小粒度为1个资源块(resource block,RB)。系统可为终端设备配置一个或多个BWP,且多个BWP在频域上可以重叠(overlap),如图2所示,基 站为终端设备配置了3个BWP,其中BWP1和BWP2重叠,BWP1和BWP3不重叠。
NR系统中,可以通过BWP配置信息指示BWP。BWP配置信息由基站通过无线资源控制(radio resource control,RRC)信令通知给终端设备。其中,BWP的频域位置是通过位置和带宽(location And Bandwidth)字段进行指示的。通过位置和带宽字段的值可以确定偏置RB start和长度L RBs。最终BWP的起始资源块(resource block,RB)对应的公共资源块的编号为
Figure PCTCN2020107580-appb-000022
O carrier表示BWP所在载波的最低频可用的(lowest usable)子载波相对预设参考点Point A的间隔,该间隔用RB的个数进行表示。
10、控制资源集合(control-resource set,CORESET):在NR中,PDCCH在一个可配置的控制资源集合(control-resource set,CORESET)上传输。CORESET是用于发送PDCCH的时频资源,一个BWP中可以配置多个CORESET,并且CORESET在频域上不一定要占据整个系统带宽。CORESET类似于LTE系统中一个子帧上用于PDCCH传输的控制区域,但CORESET的时频结构更加灵活。LTE中PDCCH始终占据整个系统带宽,NR的PDCCH不需要跨整个系统带宽,CORESET的这种设计使得NR可以支持不同带宽能力的终端设备,例如,某些终端设备可能不支持非常大的带宽,比如100MHz,并且有益于前向兼容。
目前的标准中,CORESET的频域资源中第一个包含6个RB的组的第一个公共资源块(common resource block,CRB)的索引为
Figure PCTCN2020107580-appb-000023
Figure PCTCN2020107580-appb-000024
为BWP的起始CRB。具体的,如图3所示,BWP起始位置距离BWP内第一个RB组的起始位置间隔X个RB,BWP结束位置距离BWP内最后一个RB组的结束位置间隔Y个RB,如果X和Y都不是6的整数倍,那么有(X+Y)不能配置为CORESET,从而造成资源浪费。
CORESET的频域资源可以通过频域资源(frequencyDomainResources)字段进行指示,频域资源字段为一个长度固定为45的比特位图(bitmap)。该比特位图中的每个比特与一个非重叠且包含6个连续PRB的组一一对应,并以一个下行BWP内的PRB索引递增的顺序进行编号。
11、Point A:用来指示资源块的公共参考点,Point A的位置由网络设备配置。
12、公共资源块(common resource block,CRB):对于子载波间隔配置μ,CRB从0开始,按照频率由低到高的顺序依次递增编号。对于子载波配置μ,Point A就对应于CRB0的子载波0的中心位置。因此确定了Point A的位置,也就确定了每个CRB的编号。BWP内的每个RB都有对应的CRB编号
Figure PCTCN2020107580-appb-000025
在BWP内,每个RB也有自己的编号,BWP内的RB的编号记为
Figure PCTCN2020107580-appb-000026
Figure PCTCN2020107580-appb-000027
之间的关系可以参考NR现有技术,
Figure PCTCN2020107580-appb-000028
Figure PCTCN2020107580-appb-000029
其中
Figure PCTCN2020107580-appb-000030
为该BWP其实RB对应的CRB编号。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中,以终端设备和网络设备之间的交互为例进行说明,本申请实施例提 供的方法还可以适用于其他执行主体之间的交互,例如可以是终端设备芯片或模块,与网络设备中的芯片或模块之间的交互,当执行主体为芯片或模块时,可以参考本申请实施例中的描述,在此不再赘述。
结合前面的描述,如图4所示,为本申请实施例提供的一种资源配置方法流程示意图。参见图4,该方法包括:
步骤401:网络设备确定为终端设备配置的BWP。
需要说明的是,网络设备可以为终端设备配置一个或者多个BWP,图4的流程中以一个BWP为例进行说明,不代表只配置了一个BWP。网络设备为终端设备配置其它BWP时,每个BWP的配置以及指示方法相同,在此不再赘述。
步骤402:网络设备向所述终端设备发送第一信息。
其中,所述第一信息用于指示所述BWP的起始RB对应的CRB的编号
Figure PCTCN2020107580-appb-000031
以及所述BWP占用的连续RB的个数L RBs。所述BWP的起始RB对应的CRB的编号
Figure PCTCN2020107580-appb-000032
以及所述BWP占用的连续RB的个数L RBs满足以下条件的一项或者多项:
Figure PCTCN2020107580-appb-000033
Figure PCTCN2020107580-appb-000034
其中,mod为取余运算,K为正整数。
Figure PCTCN2020107580-appb-000035
可以看作是所述BWP的结束RB对应的CRB的编号。L RBs也可以看作是BWP的长度。
进一步可选地,L RBs还可以满足以下条件的一项或者多项:
L RBs小于或者等于L,L为所述终端设备支持的最大传输带宽或者所述终端设备首选(preferred)的工作带宽所包括的连续RB的个数;
L RBsmod K=0。
需要说明的是,所述K为预设值,或者所述K的取值可以由所述网络设备发送给所述终端设备。K值为预设值时,可选地,K为6。
考虑到后续NR系统中可能会针对低成本物联场景,引入窄带终端设备,或者称为工作带宽受限的终端设备,或者,工作带宽有限的终端设备,网络设备需要结合不同工作带宽的终端设备的控制信道的控制信道元素(control channel element,CCE)占用的RB数,不同工作带宽的终端设备的数据信道在资源分配时采用的资源块组(resource block group,RBG)对应的RB数,来确定一个K值,并通知给终端设备,具体取决于网络设备的实现。以下为几个示例,K的取值可以为CCE占用的RB数以及的RBG对应的RB数中的最小值或者最大值等。网络设备在确定K的取值时采用的原则可以是尽可能避免在资源分配时出现资源碎片,资源碎片即该部分资源既没有分配给窄带终端设备使用,但不能分配给宽带终端设备使用。这里宽带终端设备可以是NR支持增强工作带宽(enhanced mobile broadband,eMBB)业务的终端设备,其工作带宽在FR1最大为100MHz,在FR2最大为400MHz。窄带终端设备可以是工作带宽受限的终端设备,具体带宽限制大小在本实施例中不做限定。例如,带终端设备可以是在FR1小于或者等于20MHz,和/或,在FR2小于或者等于50MHz的终端设备。
需要说明的是,第一信息可以通过RRC信令,或者系统消息,或者媒体接入控制层控制元素MAC CE发送,例如可以通过RRC信令中的位置和带宽(location And Bandwidth)字段携带。
步骤403:终端设备接收来自网络设备的第一信息。
步骤404:终端设备根据所述第一信息确定所述网络设备配置的BWP。
根据上面的方法,在配置BWP时,保证BWP的起始CRB的编号,和/或,BWP包括的最后一个RB对应的CRB的编号为K的整数倍,可以保证更多的RB可被用于CORESET,从而提高资源利用率。
本申请实施例中,第一信息可以为资源指示值(resource indication value,RIV)的索引值,或者第一信息可以为RIV。当然,第一信息也可以存在其他实现方式,本申请实施例并不限定。其中,例如,第一信息为RIV的索引值时,满足上面的条件的RIV的索引值可以依次为0,1,2,…,N-1,其中0表示满足上面的条件的最小RIV的索引值,N-1表示满足上面的条件的最大RIV的索引值,其中N为满足上面的条件的RIV的个数,此时第一信息指示的值可以为0至N-1中的一个。
需要说明的是,其中RIV的确定方式可以如下:
如果
Figure PCTCN2020107580-appb-000036
Figure PCTCN2020107580-appb-000037
否则
Figure PCTCN2020107580-appb-000038
其中,
Figure PCTCN2020107580-appb-000039
表示向下取整,L RBs≥1且不超过
Figure PCTCN2020107580-appb-000040
Figure PCTCN2020107580-appb-000041
的取值是预先配置的,例如一般配置
Figure PCTCN2020107580-appb-000042
举例来说,如图5所示,假设RBstart为3,L RBs为10,
Figure PCTCN2020107580-appb-000043
由于
Figure PCTCN2020107580-appb-000044
所以
Figure PCTCN2020107580-appb-000045
当第一信息指示的RIV为2478时,表示BWP的偏置RB start为3,长度L RBs为10。
结合上面的举例,当终端设备根据第一信息确定RIV为2478时,可以根据以下方式确定RB start和L RBs
步骤一:确定
Figure PCTCN2020107580-appb-000046
的值。
步骤二:如果
Figure PCTCN2020107580-appb-000047
则确定
Figure PCTCN2020107580-appb-000048
Figure PCTCN2020107580-appb-000049
如果
Figure PCTCN2020107580-appb-000050
Figure PCTCN2020107580-appb-000051
Figure PCTCN2020107580-appb-000052
Figure PCTCN2020107580-appb-000053
表示向下取整,
Figure PCTCN2020107580-appb-000054
表示向上取整,mod表示取模运算。
下面结合图6说明如何根据参考点(Point A)、RB start以及L RBs确定BWP。图6中,参考点是预先配置的,RB start
Figure PCTCN2020107580-appb-000055
可以满足以下关系:
Figure PCTCN2020107580-appb-000056
其中,O carrier表示BWP所在载波的最低频可用的(lowest usable)子载波相对预设参考点的间隔,该间隔用RB的个数进行表示,O carrier的取值也可以预先配置。
从上面的描述可知,根据RB start可以确定BWP的起始RB对应的CRB的编号
Figure PCTCN2020107580-appb-000057
从而可以将从起始RB开始的连续L RBs个RB作为BWP包括的RB。
进一步的,结合前面的描述,如图7所示,以K=6为例,假设当前存在5个BWP,对应的RIV分别为RIV1至RIV5。其中,根据RIV1和RIV2确定的
Figure PCTCN2020107580-appb-000058
和L RBs满足图4流程中的条件,根据RIV3、RIV4和RIV5确定的
Figure PCTCN2020107580-appb-000059
和L RBs中的至少一项不满足图4流程中的条件。当网络设备需要为终端设备配置多个BWP时,则可以将不满足条件的RIV值剔除,仅配置满足条件的RIV值,从而可以节省信令开销。
需要说明的是,终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽可以为终端设备向网络设备指示的,例如终端设备可以向网络设备发送第三信息,所述第三信 息用于指示所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽。第三信息的具体实现方式,本申请实施例并不限定,在此不再赘述。
进一步的,网络设备还可以向终端设备指示在所述BWP中配置的CORESET的频域资源。具体的,如图8所示,为本申请实施例提供的一种资源配置方法流程示意图。参见图8,该方法包括:
步骤801:网络设备确定第二信息;
步骤802:网络设备向终端设备发送第二信息。
其中,所述第二信息用于指示在BWP中配置的CORESET的频域资源。
步骤803:终端设备接收来自网络设备的第二信息;
步骤804:终端设备根据所示第二信息确定在BWP中配置的CORESET的频域资源。
需要说明的是,第二信息可以通过RRC信令发送,例如可以通过RRC信令中的频域资源(frequencyDomainResources)字段携带。
所述第二信息可以为包括至少一个比特的比特位图,该比特位图中的每个比特对应一个RB或者对应一个非重叠且包含6个连续RB的组。例如,如果比特位图中的对应比特为1,则对应的RB组被用于CORESET;如果比特位图中的对应比特为0,则对应的RB组不被用于CORESET。
本申请实施例中,所述第二信息包括的比特数根据所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽确定。
举例来说,所述第二信息包括的比特数为
Figure PCTCN2020107580-appb-000060
或者
Figure PCTCN2020107580-appb-000061
或者
Figure PCTCN2020107580-appb-000062
或者
Figure PCTCN2020107580-appb-000063
其中,N为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数,
Figure PCTCN2020107580-appb-000064
表示向上取整。
由于第二信息包括的比特数是根据终端设备支持的最大传输带宽或者终端设备首选的工作带宽确定的,相比于现有技术中,第二信息始终按照270个RB进行配置,可以减少第二信息包括的比特数,从而降低信令开销。以低能力(Reduced Capability,REDCAP)终端设备为例,FR1UE支持的最大传输带宽为20MHz,对应的支持的最大传输带宽以RB表述为106个RB。按照上述方式,指示CORESET频域资源的第二信息包括的比特数可以为17比特,相比于现有技术中固定的45比特,能够明显减少信令的开销。
需要说明的是,终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽可以为终端设备向网络设备指示的,例如终端设备可以向网络设备发送第三信息,第三信息的具体实现方式,本申请实施例并不限定,在此不再赘述。本申请实施例中,图4所示的流程和图8所示的流程可以分别单独实施,也可以结合起来实施,本申请实施例对此并不限定。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备或终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可 以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图9所示,本申请实施例还提供一种装置900用于实现上述方法中网络设备或终端设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置900可以包括:处理单元901和通信单元902。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中网络设备或终端设备发送和接收的步骤。
当通信装置900执行网络设备的功能时:
处理单元,用于确定为终端设备配置的带宽部分BWP;
通信单元,用于向所述终端设备发送第一信息,所述第一信息用于指示所述BWP的起始资源块RB对应的公共资源块CRB的编号
Figure PCTCN2020107580-appb-000065
以及所述BWP占用的连续RB的个数L RBs
其中,所述BWP的起始RB对应的CRB的编号
Figure PCTCN2020107580-appb-000066
以及所述BWP占用的连续RB的个数L RBs满足以下条件的一项或者多项:
Figure PCTCN2020107580-appb-000067
Figure PCTCN2020107580-appb-000068
mod为取余运算,所述K为正整数。
一种可能的实现方式中,所述L RBs还满足以下条件:
L RBs小于或者等于L;L为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数。
一种可能的实现方式中,所述L RBs还满足以下条件:L RBsmod K=0。
一种可能的实现方式中,所述通信单元还用于:
向所述终端设备发送第二信息,所述第二信息用于指示在所述BWP中配置的控制资源集合CORESET的频域资源,所述第二信息包括的比特数根据所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽确定。
一种可能的实现方式中,所述第二信息包括的比特数为
Figure PCTCN2020107580-appb-000069
或者
Figure PCTCN2020107580-appb-000070
或者
Figure PCTCN2020107580-appb-000071
或者
Figure PCTCN2020107580-appb-000072
其中,N为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数,
Figure PCTCN2020107580-appb-000073
表示向下取整,
Figure PCTCN2020107580-appb-000074
表示向上取整。
一种可能的实现方式中,所述第一信息为资源指示值RIV的索引值,或者所述第一信息为所述RIV。
当通信装置900执行终端设备的功能时:
通信单元,用于接收来自网络设备的第一信息;
处理单元,用于根据所述第一信息确定带宽部分BWP;
其中,所述第一信息用于指示所述BWP的起始资源块RB对应的公共资源块CRB的编号
Figure PCTCN2020107580-appb-000075
以及所述BWP占用的连续RB的个数L RBs
其中,所述BWP的起始RB对应的CRB的编号
Figure PCTCN2020107580-appb-000076
以及所述BWP占用的连续RB的个数L RBs满足以下条件的一项或者多项:
Figure PCTCN2020107580-appb-000077
Figure PCTCN2020107580-appb-000078
mod为取余运算,所述K为正整数。
一种可能的实现方式中,所述L RBs还满足以下条件:
L RBs小于或者等于L;L为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数。
一种可能的实现方式中,所述L RBs还满足以下条件:L RBsmod K=0。
一种可能的实现方式中,所述通信单元还用于:
接收来自所述网络设备的第二信息,所述第二信息用于指示在所述BWP中配置的控制资源集合CORESET的频域资源,所述第二信息包括的比特数根据所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽确定。
一种可能的实现方式中,所述第二信息包括的比特数为
Figure PCTCN2020107580-appb-000079
或者
Figure PCTCN2020107580-appb-000080
或者
Figure PCTCN2020107580-appb-000081
或者
Figure PCTCN2020107580-appb-000082
其中,N为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数,
Figure PCTCN2020107580-appb-000083
表示向下取整,
Figure PCTCN2020107580-appb-000084
表示向上取整。
一种可能的实现方式中,所述第一信息为资源指示值RIV的索引值,或者所述第一信息为所述RIV。
以下,结合图9至图10详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
通信单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信单元902中用于实现接收功能的器件视为接收单元,将通信单元902中用于实现发送功能的器件视为发送单元,即通信单元902包括接收单元和发送单元。通信单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
如图10所示为本申请实施例提供的装置1000,图10所示的装置可以为图9所示的装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中第一用户设备或者第二用户设备的功能。为了便于说明,图10仅示出了该通信装置的主要部件。
装置1000还可以包括至少一个存储器1030,用于存储程序指令和/或数据。存储器1030和处理器1020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1020可能和存储器1030协同操作。处理器1020可能执行存储器1030中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
图10所示的装置1000包括至少一个处理器1020以及通信接口1010,处理器1020用于执行存储器1030中存储的指令或程序。存储器1030中存储的指令或程序被执行时,该处理器1020用于执行上述实施例中处理单元901执行的操作,通信接口1010用于执行上述实施例中通信单元902执行的操作,具体可以参考前面的描述,在此不再赘述。
在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是通信接口。
装置1000还可以包括通信线路1040。其中,通信接口1010、处理器1020以及存储器1030可以通过通信线路1040相互连接;通信线路1040可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry  standard architecture,简称EISA)总线等。所述通信线路1040可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种资源配置方法,其特征在于,包括:
    网络设备确定为终端设备配置的带宽部分BWP;
    所述网络设备向所述终端设备发送第一信息,所述第一信息用于指示所述BWP的起始资源块RB对应的公共资源块CRB的编号
    Figure PCTCN2020107580-appb-100001
    以及所述BWP占用的连续RB的个数L RBs
    其中,所述BWP的起始RB对应的CRB的编号
    Figure PCTCN2020107580-appb-100002
    以及所述BWP占用的连续RB的个数L RBs满足以下条件的一项或者多项:
    Figure PCTCN2020107580-appb-100003
    mod为取余运算,所述K为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述L RBs还满足以下条件:
    L RBs小于或者等于L;
    L为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述L RBs还满足以下条件:
    L RBsmod K=0。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二信息,所述第二信息用于指示在所述BWP中配置的控制资源集合CORESET的频域资源,所述第二信息包括的比特数根据所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽确定。
  5. 根据权利要求4所述的方法,其特征在于,所述第二信息包括的比特数为
    Figure PCTCN2020107580-appb-100004
    或者
    Figure PCTCN2020107580-appb-100005
    或者
    Figure PCTCN2020107580-appb-100006
    或者
    Figure PCTCN2020107580-appb-100007
    其中,N为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数,
    Figure PCTCN2020107580-appb-100008
    表示向下取整,
    Figure PCTCN2020107580-appb-100009
    表示向上取整。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述第一信息为资源指示值RIV的索引值,或者所述第一信息为所述RIV。
  7. 根据权利要求2或4任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的第三信息,所述第三信息用于指示所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽;
    所述网络设备根据所述第三信息确定所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述K为预设值,或者所述K的取值由所述网络设备发送给所述终端设备。
  9. 一种资源配置方法,其特征在于,包括:
    终端设备接收来自网络设备的第一信息;
    所述终端设备根据所述第一信息确定带宽部分BWP;
    其中,所述第一信息用于指示所述BWP的起始资源块RB对应的公共资源块CRB的编号
    Figure PCTCN2020107580-appb-100010
    以及所述BWP占用的连续RB的个数L RBs
    其中,所述BWP的起始RB对应的CRB的编号
    Figure PCTCN2020107580-appb-100011
    以及所述BWP占用的连续RB的个数L RBs满足以下条件的一项或者多项:
    Figure PCTCN2020107580-appb-100012
    mod为取余运算,所述K为正整数。
  10. 根据权利要求9所述的方法,其特征在于,所述L RBs还满足以下条件:
    L RBs小于或者等于L;
    L为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数。
  11. 根据权利要求9或10所述的方法,其特征在于,所述L RBs还满足以下条件:
    L RBsmod K=0。
  12. 根据权利要求9至11任一所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二信息,所述第二信息用于指示在所述BWP中配置的控制资源集合CORESET的频域资源,所述第二信息包括的比特数根据所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽确定。
  13. 根据权利要求12所述的方法,其特征在于,所述第二信息包括的比特数为
    Figure PCTCN2020107580-appb-100013
    或者
    Figure PCTCN2020107580-appb-100014
    或者
    Figure PCTCN2020107580-appb-100015
    或者
    Figure PCTCN2020107580-appb-100016
    其中,N为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数,
    Figure PCTCN2020107580-appb-100017
    表示向下取整,
    Figure PCTCN2020107580-appb-100018
    表示向上取整。
  14. 根据权利要求9至13任一所述的方法,其特征在于,所述第一信息为资源指示值RIV的索引值,或者所述第一信息为所述RIV。
  15. 一种通信装置,其特征在于,包括:
    处理单元,用于确定为终端设备配置的带宽部分BWP;
    通信单元,用于向所述终端设备发送第一信息,所述第一信息用于指示所述BWP的起始资源块RB对应的公共资源块CRB的编号
    Figure PCTCN2020107580-appb-100019
    以及所述BWP占用的连续RB的个数L RBs
    其中,所述BWP的起始RB对应的CRB的编号
    Figure PCTCN2020107580-appb-100020
    以及所述BWP占用的连续RB的个数L RBs满足以下条件的一项或者多项:
    Figure PCTCN2020107580-appb-100021
    mod为取余运算,所述K为正整数。
  16. 根据权利要求15所述的装置,其特征在于,所述L RBs还满足以下条件:
    L RBs小于或者等于L;
    L为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数。
  17. 根据权利要求15或16所述的装置,其特征在于,所述L RBs还满足以下条件:
    L RBsmod K=0。
  18. 根据权利要求15至17任一所述的装置,其特征在于,所述通信单元还用于:
    向所述终端设备发送第二信息,所述第二信息用于指示在所述BWP中配置的控制资源集合CORESET的频域资源,所述第二信息包括的比特数根据所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽确定。
  19. 根据权利要求18所述的装置,其特征在于,所述第二信息包括的比特数为
    Figure PCTCN2020107580-appb-100022
    或者
    Figure PCTCN2020107580-appb-100023
    或者
    Figure PCTCN2020107580-appb-100024
    或者
    Figure PCTCN2020107580-appb-100025
    其中,N为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数,
    Figure PCTCN2020107580-appb-100026
    表示向下取整,
    Figure PCTCN2020107580-appb-100027
    表示向上取整。
  20. 根据权利要求15至19任一所述的装置,其特征在于,所述第一信息为资源指示 值RIV的索引值,或者所述第一信息为所述RIV。
  21. 一种资源配置装置,其特征在于,包括:
    通信单元,用于接收来自网络设备的第一信息;
    处理单元,用于根据所述第一信息确定带宽部分BWP;
    其中,所述第一信息用于指示所述BWP的起始资源块RB对应的公共资源块CRB的编号
    Figure PCTCN2020107580-appb-100028
    以及所述BWP占用的连续RB的个数L RBs
    其中,所述BWP的起始RB对应的CRB的编号
    Figure PCTCN2020107580-appb-100029
    以及所述BWP占用的连续RB的个数L RBs满足以下条件的一项或者多项:
    Figure PCTCN2020107580-appb-100030
    mod为取余运算,所述K为正整数。
  22. 根据权利要求21所述的装置,其特征在于,所述L RBs还满足以下条件:
    L RBs小于或者等于L;
    L为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数。
  23. 根据权利要求21或22所述的装置,其特征在于,所述L RBs还满足以下条件:
    L RBsmod K=0。
  24. 根据权利要求21至23任一所述的装置,其特征在于,所述通信单元还用于:
    接收来自所述网络设备的第二信息,所述第二信息用于指示在所述BWP中配置的控制资源集合CORESET的频域资源,所述第二信息包括的比特数根据所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽确定。
  25. 根据权利要求24所述的装置,其特征在于,所述第二信息包括的比特数为
    Figure PCTCN2020107580-appb-100031
    或者
    Figure PCTCN2020107580-appb-100032
    或者
    Figure PCTCN2020107580-appb-100033
    或者
    Figure PCTCN2020107580-appb-100034
    其中,N为所述终端设备支持的最大传输带宽或者所述终端设备首选的工作带宽所包括的连续RB的个数,
    Figure PCTCN2020107580-appb-100035
    表示向下取整,
    Figure PCTCN2020107580-appb-100036
    表示向上取整。
  26. 根据权利要求21至25任一所述的装置,其特征在于,所述第一信息为资源指示值RIV的索引值,或者所述第一信息为所述RIV。
  27. 一种通信装置,其特征在于,包括:存储器与处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得,所述处理器用于执行如权利要求1至14中任一项所述的方法。
  28. 一种计算机程序产品,其特征在于,包括计算机可读指令,当通信装置读取并执行所述计算机可读指令,使得所述通信装置执行如权利要求1至14中任一项所述的方法。
PCT/CN2020/107580 2020-08-06 2020-08-06 一种资源配置方法及装置 WO2022027524A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20948469.0A EP4188005A4 (en) 2020-08-06 2020-08-06 RESOURCE CONFIGURATION METHOD AND APPARATUS
PCT/CN2020/107580 WO2022027524A1 (zh) 2020-08-06 2020-08-06 一种资源配置方法及装置
CN202080104280.4A CN116250311A (zh) 2020-08-06 2020-08-06 一种资源配置方法及装置
US18/163,601 US20230188299A1 (en) 2020-08-06 2023-02-02 Resource configuration method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/107580 WO2022027524A1 (zh) 2020-08-06 2020-08-06 一种资源配置方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/163,601 Continuation US20230188299A1 (en) 2020-08-06 2023-02-02 Resource configuration method and apparatus

Publications (1)

Publication Number Publication Date
WO2022027524A1 true WO2022027524A1 (zh) 2022-02-10

Family

ID=80119837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107580 WO2022027524A1 (zh) 2020-08-06 2020-08-06 一种资源配置方法及装置

Country Status (4)

Country Link
US (1) US20230188299A1 (zh)
EP (1) EP4188005A4 (zh)
CN (1) CN116250311A (zh)
WO (1) WO2022027524A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109548149A (zh) * 2017-09-21 2019-03-29 电信科学技术研究院 一种rbg的划分方法和用户终端
CN110035513A (zh) * 2018-01-12 2019-07-19 电信科学技术研究院有限公司 一种coreset的分配方法、用户终端和网络侧设备
CN110113141A (zh) * 2018-01-12 2019-08-09 华为技术有限公司 一种无线通信装置及无线通信方法
WO2020067967A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Frequency hopping for transmission with multiple repetitions
CN110999479A (zh) * 2018-08-03 2020-04-10 Lg电子株式会社 在无线通信系统中发送和接收下行链路数据信道的方法和用于该方法的设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10448388B2 (en) * 2018-01-11 2019-10-15 Lg Electronics Inc. Method for receiving downlink signal in wireless communication system and terminal using the same
US11497033B2 (en) * 2018-01-13 2022-11-08 Wilus Institute Of Standards And Technology Inc. Resource allocation method, device and system of wireless communication system
KR102192825B1 (ko) * 2018-08-03 2020-12-18 엘지전자 주식회사 공통 자원 블록 그리드에 관계 없는 기준점을 설정하는 방법 및 이를 위한 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109548149A (zh) * 2017-09-21 2019-03-29 电信科学技术研究院 一种rbg的划分方法和用户终端
CN110035513A (zh) * 2018-01-12 2019-07-19 电信科学技术研究院有限公司 一种coreset的分配方法、用户终端和网络侧设备
CN110113141A (zh) * 2018-01-12 2019-08-09 华为技术有限公司 一种无线通信装置及无线通信方法
CN110999479A (zh) * 2018-08-03 2020-04-10 Lg电子株式会社 在无线通信系统中发送和接收下行链路数据信道的方法和用于该方法的设备
WO2020067967A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Frequency hopping for transmission with multiple repetitions

Also Published As

Publication number Publication date
US20230188299A1 (en) 2023-06-15
EP4188005A1 (en) 2023-05-31
EP4188005A4 (en) 2023-09-06
CN116250311A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
JP7020610B2 (ja) 通信方法、端末デバイス、およびネットワークデバイス
JP6739551B2 (ja) ダウンリンク制御情報送信方法および装置
JP7273197B2 (ja) リソース設定方法及び通信装置
EP3817480A1 (en) Signal transmission method and apparatus
EP3641454B1 (en) Communication methods, network device, terminal device, computer readable storage medium and computer program product
WO2018228500A1 (zh) 一种调度信息传输方法及装置
WO2019062585A1 (zh) 一种资源调度方法、网络设备以及通信设备
CN110769508B (zh) 信号传输方法、装置、终端设备、网络设备及系统
WO2020029973A1 (zh) 一种信息的处理方法和通信装置
WO2018202163A1 (zh) 一种资源指示方法及装置
CN111867074A (zh) 接收数据和发送数据的方法、通信装置
WO2021032017A1 (zh) 通信方法和装置
US20200045733A1 (en) Uplink Scheduling For NR-U
WO2018090259A1 (zh) 上行信号的传输方法和装置
US10873430B2 (en) Signal sending method and apparatus
CN111436085B (zh) 通信方法及装置
CN114071745A (zh) 一种无线接入的方法以及装置
WO2020056752A1 (zh) Pdcch的监听方法、装置、设备及系统
WO2020221319A1 (zh) 一种通信方法及装置
EP3840500A1 (en) Method and device for determining and configuring scheduling request resource, and storage medium
CN110890953B (zh) 使用免授权频段的通信方法和通信装置
WO2022156477A1 (zh) 一种通信方法及装置
WO2022027524A1 (zh) 一种资源配置方法及装置
CN115701195A (zh) 资源分配方法、通信装置以及通信设备
WO2020030026A1 (zh) 用于发送srs的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020948469

Country of ref document: EP

Effective date: 20230222