WO2022156477A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022156477A1
WO2022156477A1 PCT/CN2021/140714 CN2021140714W WO2022156477A1 WO 2022156477 A1 WO2022156477 A1 WO 2022156477A1 CN 2021140714 W CN2021140714 W CN 2021140714W WO 2022156477 A1 WO2022156477 A1 WO 2022156477A1
Authority
WO
WIPO (PCT)
Prior art keywords
duration
physical uplink
uplink channel
pusch
information
Prior art date
Application number
PCT/CN2021/140714
Other languages
English (en)
French (fr)
Inventor
李军
焦淑蓉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022156477A1 publication Critical patent/WO2022156477A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • a terminal device can send user-related uplink services and upper-layer signaling data through a physical uplink shared channel (PUSCH).
  • the PUSCH may be scheduled by the base station through downlink control information (downlink control information, DCI), or may be configured through a higher layer.
  • DCI downlink control information
  • the PUSCH scheduled by the DCI is generally referred to as a dynamic grant (DG) PUSCH
  • DG dynamic grant
  • CG configured grant
  • the time interval from DCI to CG PUSCH should be greater than or equal to N2, where N2 is the PUSCH preparation time (PUSCH preparation time).
  • the terminal device will send the DG PUSCH and not the CG PUSCH.
  • the physical layer of the terminal device receives the DCI, it begins to prepare to send the DG PUSCH; after the physical layer of the terminal device passes the DCI to the medium access control (MAC) layer of the terminal device, the MAC layer of the terminal device will be ready
  • the protocol data unit (protocol data unit, PDU) is handed to the physical layer of the terminal device, so that the terminal device sends the PDU in the DG PUSCH and does not send the CG PUSCH.
  • the processing of the physical layer and the MAC layer of the terminal device may be independent of each other.
  • the MAC layer will select the PDU corresponding to the DG PUSCH or the PDU corresponding to the CG PUSCH to the physical layer according to the priority of the logical channel. . Since the physical layer cannot determine which logical channel has a higher priority between the DG PUSCH and the CG PUSCH, if the physical layer starts to prepare to send the DG PUSCH after receiving the DCI, but the MAC layer delivers the PDU corresponding to the CG PUSCH, it will lead to inconsistency. The physical layer may drop two PUSCHs, impacting performance.
  • the present application provides a communication method and apparatus to solve the problem of how to send the PUSCH.
  • the present application provides a communication method, the method comprising:
  • first downlink control information from a network device, where the first downlink control information is used to schedule a first physical uplink channel, and the first physical uplink channel is used to carry first information; the first physical uplink channel It overlaps with the second physical uplink channel in the time domain, and the second physical uplink channel is used to carry the second information; according to the first logical channel priority corresponding to the first information and the second information corresponding to the second information Logical channel priority, sending one of the first physical uplink channel and the second physical uplink channel; wherein, the interval between the first downlink control information and the second physical uplink channel Greater than or equal to the first duration, the first duration is greater than the second duration; the second duration is the PUSCH preparation duration, or the second duration is a duration determined according to the PUSCH preparation duration.
  • the interval between the first downlink control information and the second physical uplink channel is greater than or equal to the first duration, and the first duration is greater than the PUSCH preparation duration, so that the first downlink control information is increased to the second physical uplink channel.
  • the interval between channels enables the terminal device to have enough time to process the information that needs to be sent on the first physical uplink channel or the second physical uplink channel, so that the physical uplink channel is not discarded and transmission efficiency is improved.
  • the second duration is the PUSCH preparation duration, which means that the second duration is the PUSCH preparation duration when the first physical uplink channel and the second physical uplink channel do not overlap in the time domain.
  • the second duration is the PUSCH preparation duration, which means that the second duration is the PUSCH preparation duration when the first configuration information is not configured, and the first configuration information is used to indicate that the uplink physical channels are overlapped based on the logical channel
  • the priority determines the uplink physical channel for transmission from the overlapping uplink physical channels.
  • the second duration is a duration determined according to the PUSCH preparation duration, including:
  • N 2 is the PUSCH preparation time; d 2,1 takes the value of 0 or 1; ⁇ is a constant; ⁇ is the subcarrier interval index; T C is the time unit; ; T switch is the uplink switching interval; d 2,2 is the bandwidth part BWP switching time or 0; max() is the operation of taking the maximum value.
  • the second physical uplink channel is a configuration grant PUSCH.
  • the second physical uplink channel is PUCCH.
  • the first duration T 1 satisfies the following form:
  • ⁇ 1 is the value reported by the terminal device or the preset value.
  • the interval between the first downlink control information and the first physical uplink channel is greater than or equal to a third duration, and the third duration is greater than the fourth duration;
  • the fourth duration T proc,2 satisfies the following form:
  • T proc,2 max((N 2 +d 2,1 +d 2 )(2048+144) ⁇ ⁇ 2 ⁇ ⁇ ⁇ T C +Text +T switch ,d 2,2 );
  • N 2 is the PUSCH preparation time; d 2 , 1 is 0 or 1; d 2 is the value reported by the terminal device; k is a constant; ⁇ is the subcarrier interval index; T C is the time unit; Text is Parameters related to shared spectrum channel access; T switch is the uplink switching interval; d 2 , 2 is the bandwidth part BWP switching time or 0; max() is the operation of taking the maximum value.
  • the third duration T 2 satisfies the following form:
  • T 2 max((N 2 + ⁇ 2 +d 2,1 +d 2 )(2048+144) ⁇ ⁇ 2 ⁇ ⁇ ⁇ T C +Text +T switch ,d 2,2 );
  • ⁇ 2 is a value reported by the terminal device or a preset value.
  • the first duration is equal to the sum of the second duration and a preset duration
  • the preset duration is a value reported by the terminal device or a preset value.
  • the first duration is equal to the PUSCH preparation duration corresponding to PUSCH processing capability 1.
  • the present application provides a communication method, the method comprising:
  • the first downlink control information is used to schedule the first physical uplink channel, and the first physical uplink channel is used to carry the first information;
  • the first physical uplink channel and the The second physical uplink channel overlaps in the time domain, and the second physical uplink channel is used to carry the second information;
  • the received one physical uplink channel is determined according to the first logical channel priority corresponding to the first information and the second logical channel priority corresponding to the second information;
  • the interval between the first downlink control information and the second physical uplink channel is greater than or equal to a first duration, and the first duration is greater than the second duration; the second duration is the PUSCH preparation duration, or The second duration is a duration determined according to the PUSCH preparation duration.
  • the second duration is the PUSCH preparation duration, which means that the second duration is the PUSCH preparation duration when the first physical uplink channel and the second physical uplink channel do not overlap in the time domain.
  • the second duration is the PUSCH preparation duration, which means that the second duration is the PUSCH preparation duration when the first configuration information is not configured, and the first configuration information is used to indicate that the uplink physical channels are overlapped based on the logical channel
  • the priority determines the uplink physical channel for transmission from the overlapping uplink physical channels.
  • the second duration is a duration determined according to the PUSCH preparation duration, including:
  • N 2 is the PUSCH preparation time; d 2,1 takes the value of 0 or 1; ⁇ is a constant; ⁇ is the subcarrier interval index; T C is the time unit; ; T switch is the uplink switching interval; d 2,2 is the bandwidth part BWP switching time or 0; max() is the operation of taking the maximum value.
  • the second physical uplink channel is a configuration grant PUSCH.
  • the second physical uplink channel is PUCCH.
  • the first duration T 1 satisfies the following form:
  • ⁇ 1 is the value reported by the terminal device or the preset value.
  • the interval between the first downlink control information and the first physical uplink channel is greater than or equal to a third duration, and the third duration is greater than the fourth duration;
  • the fourth duration T proc,2 satisfies the following form:
  • T proc,2 max((N 2 +d 2,1 +d 2 )(2048+144) ⁇ ⁇ 2 ⁇ ⁇ ⁇ T C +Text +T switch ,d 2,2 );
  • N 2 is the PUSCH preparation time; d 2 , 1 is 0 or 1; d 2 is the value reported by the terminal device; k is a constant; ⁇ is the subcarrier interval index; T C is the time unit; Text is Parameters related to shared spectrum channel access; T switch is the uplink switching interval; d 2 , 2 is the bandwidth part BWP switching time or 0; max() is the operation of taking the maximum value.
  • the third duration T 2 satisfies the following form:
  • T 2 max((N 2 + ⁇ 2 +d 2,1 +d 2 )(2048+144) ⁇ ⁇ 2 ⁇ ⁇ ⁇ T C +Text +T switch ,d 2,2 );
  • ⁇ 2 is a value reported by the terminal device or a preset value.
  • the first duration is equal to the sum of the second duration and a preset duration
  • the preset duration is a value reported by the terminal device or a preset value.
  • the first duration is equal to the PUSCH preparation duration corresponding to PUSCH processing capability 1.
  • the present application further provides a communication method, including: receiving first downlink control information from a network device, where the first downlink control information is used to schedule a first physical uplink channel, the first physical uplink The channel is used to carry the first information; the first physical uplink channel and the second physical uplink channel overlap in the time domain, and the second physical uplink channel is used to carry the second information; send the first physical uplink channel and A physical uplink channel in the second physical uplink channels.
  • the present application provides a communication method, the method comprising: sending first downlink control information to a terminal device, where the first downlink control information is used to schedule a first physical uplink channel, the first physical uplink The channel is used to carry the first information; the first physical uplink channel and the second physical uplink channel overlap in the time domain, and the second physical uplink channel is used to carry the second information; One physical uplink channel among the first physical uplink channel and the second physical uplink channel.
  • the interval between the first downlink control information and the second physical uplink channel is greater than or equal to a first duration, and the first duration is greater than the PUSCH preparation. duration.
  • the start time of the first physical uplink channel is located after the start time of the second physical uplink channel, and the first downlink control information is associated with the second physical uplink channel.
  • the interval between uplink channels is greater than or equal to the first duration, and the first duration T 1 satisfies the following form:
  • ⁇ 1 is the value reported by the terminal device or the preset value.
  • the first duration T 1 satisfies the following form:
  • N 3 is a value greater than N 2 , and N 3 is a value reported by the terminal device or a preset value.
  • the start time of the first physical uplink channel is located before the start time of the second physical uplink channel, and the first downlink control information is related to the first physical uplink channel.
  • the interval between uplink channels is greater than or equal to the third duration, and the third duration T 2 satisfies the following form:
  • T 2 max((N 2 + ⁇ 2 +d 2,1 +d 2 )(2048+144) ⁇ ⁇ 2 ⁇ ⁇ ⁇ T C +Text +T switch ,d 2,2 );
  • ⁇ 2 is a value reported by the terminal device or a preset value.
  • the third duration T 2 satisfies the following form:
  • T 2 max((N 3 +d 2,1 +d 2 )(2048+144) ⁇ ⁇ 2 ⁇ ⁇ ⁇ T C +Text +T switch ,d 2,2 );
  • N 3 is a value greater than N 2
  • N 3 is a value reported by the terminal device or a preset value.
  • the present application further provides a communication device having any of the methods provided in any one of the above-mentioned first to fourth aspects.
  • the communication device may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the communication apparatus includes: a processor, and the processor is configured to support the communication apparatus to perform the corresponding functions of the terminal device in the above-described method.
  • the communication device may also include a memory, which may be coupled to the processor, which holds program instructions and data necessary for the communication device.
  • the communication apparatus further includes an interface circuit, and the interface circuit is used to support communication between the communication apparatus and equipment such as network equipment.
  • the communication device includes corresponding functional modules, which are respectively used to implement the steps in the above method.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform the corresponding functions in the above method examples.
  • these units can perform the corresponding functions in the above method examples.
  • a communication device comprising a processor and an interface circuit, the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the processor or send signals from the processor
  • the processor is used to implement the method in the foregoing first aspect and any possible implementation manner of the first aspect through logic circuits or executing code instructions.
  • a communication device comprising a processor and an interface circuit
  • the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the processor or send signals from the processor
  • the processor is used to implement the functional modules of the method in the second aspect and any possible implementation manner of the second aspect through logic circuits or executing code instructions.
  • a communication device comprising a processor and an interface circuit, the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the processor or send signals from the processor
  • the processor is used to implement the functional modules of the third aspect and the method in any possible implementation manner of the third aspect through logic circuits or executing code instructions.
  • a communication device comprising a processor and an interface circuit, the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the processor or send signals from the processor
  • the processor is used to implement the functional modules of the method in the fourth aspect and any possible implementation manner of the fourth aspect through logic circuits or executing code instructions.
  • a computer-readable storage medium is provided, and a computer program or instruction is stored in the computer-readable storage medium.
  • the computer program or instruction is executed by a processor, the aforementioned first to fourth aspects are implemented.
  • a computer program product comprising instructions that, when executed by a processor, implement any of the foregoing first to fourth aspects, and any possible implementation manner of any aspect Methods.
  • a twelfth aspect provides a chip system, the chip system includes a processor, and may further include a memory, for implementing any one of the foregoing first to fourth aspects, and any possible implementation manner of any aspect. Methods.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a thirteenth aspect provides a communication system, where the system includes the apparatus (such as a terminal device) described in the sixth aspect and the apparatus (such as a network device) described in the seventh aspect; or the system includes the device described in the eighth aspect.
  • the device such as a terminal device
  • the device such as a network device
  • FIG. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a DCI scheduling PUSCH provided by an embodiment of the present application
  • Fig. 3 is a kind of overlapping schematic diagram of DG PUSCH and CG PUSCH provided by the embodiment of this application;
  • FIG. 4 is a schematic diagram of a PUSCH and a PUCCH provided by an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • LTE long term evolution
  • NR NR
  • FIG. 1 is a schematic structural diagram of a mobile communication system applicable to an embodiment of the present application.
  • the mobile communication system includes a network device and at least one terminal device.
  • the terminal device is connected to the network device by wireless.
  • FIG. 1 is only a schematic diagram, and the communication system may also include other devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the terminal device may also be referred to as a terminal terminal, a user equipment (user equipment, UE), a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and the like.
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, industrial control (industrial control) ) in wireless terminals, wireless terminals in self-driving, etc.
  • a virtual reality Virtual Reality, VR
  • AR Augmented Reality
  • industrial control industrial control
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water; can also be deployed in the air on aircraft, balloons and satellites.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • the embodiments of the present application may be applicable to downlink signal transmission, uplink signal transmission, and device to device (device to device, D2D) signal transmission.
  • the sending device is a network device, and the corresponding receiving device is a terminal device.
  • the sending device is a terminal device, and the corresponding receiving device is a network device.
  • the sending device is a terminal device, and the corresponding receiving device is also a terminal device.
  • the transmission direction of the signal in the embodiments of the present application is not limited.
  • Communication between network equipment and terminal equipment and between terminal equipment and terminal equipment can be carried out through licensed spectrum (licensed spectrum), or through unlicensed spectrum (unlicensed spectrum), or through licensed spectrum and unlicensed spectrum at the same time.
  • Communication between network equipment and terminal equipment and between terminal equipment and terminal equipment can be carried out through the frequency spectrum below 6 gigahertz (GHz), or through the frequency spectrum above 6 GHz, and can also use the frequency spectrum below 6 GHz and the frequency spectrum at the same time. communication in the spectrum above 6GHz.
  • GHz gigahertz
  • the embodiments of the present application do not limit the spectrum resources used between the network device and the terminal device.
  • the time interval between DCI and DCI-scheduled PUSCH needs to be greater than or equal to T proc,2 , where T proc,2 satisfies the following formula:
  • T proc,2 max((N 2 +d 2,1 +d 2 )(2048+144) ⁇ 2 ⁇ ⁇ T C +T ext +T switch ,d 2,2 ) ⁇ (1)
  • N 2 is the PUSCH preparation time, the unit is orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols;
  • d 2 , 1 are parameters related to demodulation reference signal (demodulation reference signal, DMRS), if the PUSCH The first symbol contains only DMRS, then the value of d 2,1 is 0, otherwise the value of d 2,1 is 1.
  • d 2 is the value reported by the terminal device, which is applied to the scenario where the high-priority PUSCH of the physical layer and the physical uplink control channel (PUCCH) of the low-priority physical layer overlap, otherwise the value is 0.
  • is a constant, generally equal to 64.
  • is the subcarrier spacing index.
  • T C is a time unit, for example, T C can satisfy the following form:
  • T C ⁇ 1/( ⁇ f max ⁇ N f );
  • ⁇ f max 480 ⁇ 10 3 Hz
  • N f 4096.
  • Text is a parameter related to shared spectrum channel access, and can refer to chapter 5.3.1 in the standard protocol 3GPP TS 38.211 .
  • Text is determined according to the following formula:
  • ⁇ i is Table 5.3.1-1 in Section 5.3.1 of Standard Protocol 38.211, and for details, please refer to Table X below.
  • Table X Table 5.3.1-1: The variables C i and ⁇ i for cyclic prefix extension
  • Text is determined according to the following formula:
  • ⁇ i is Table 5.3.1-2 in Section 5.3.1 of Standard Protocol 38.211, and for details, please refer to Table Y below.
  • Table Y Table 5.3.1-2: The variable ⁇ i for cyclic prefix extension with configured grants.
  • T TA timing advance a symbol, excluding the length of the cyclic prefix (CP), is the length of CP.
  • T switch is the uplink switching gap (uplink switching gap); if the DCI triggers the BWP switch, d 2 , 2 is the bandwidth part (bandwidth part, BWP) switching time (switch time), otherwise it is equal to 0.
  • max() is the operation of taking the maximum value.
  • the symbol may refer to an abbreviation of OFDM symbol.
  • the capabilities of the terminal device for processing PUSCH include PUSCH processing capability 1 and PUSCH processing capability 2, and the PUSCH preparation duration under PUSCH processing capability 1 may be as shown in Table 1.
  • the PUSCH preparation duration under PUSCH processing capability 2 may be as shown in Table 2.
  • is the subcarrier spacing index, which is used to determine the subcarrier spacing.
  • the subcarrier spacing is equal to 15 kHz ⁇ 2 ⁇ .
  • the DG PUSCH and the CG PUSCH overlap in the time domain
  • the time interval from the DCI to the CG PUSCH should be greater than or equal to the PUSCH preparation duration N 2 .
  • the overlap includes complete overlap and partial overlap.
  • the CG PUSCH may be before the DG PUSCH, or the CG PUSCH may be after the DG PUSCH, which is not limited in this application.
  • the DG PUSCH when the DG PUSCH and the CG PUSCH overlap in the time domain, if there is no configuration to select which grant to send according to the priority of the logical channel, that is, which PUSCH to send for transmission, then the DG PUSCH is sent by default. , that is, the data is sent in the DG PUSCH; if it is configured which grant is selected according to the priority of the logical channel, that is, which PUSCH is selected for data transmission, then if the priority of the logical channel corresponding to the data carried in the DG PUSCH is higher than that in the CG PUSCH The logical channel priority corresponding to the data carried, then the data is sent in the DG PUSCH; and vice versa.
  • the DG PUSCH and the PUCCH may overlap in the time domain.
  • the time interval between the DCI scheduling the DG PUSCH and the reference time S0 is greater than or equal to S0 is defined as the earliest symbol in PUCCH and PUSCH, which can be understood as the start time of the earliest symbol.
  • the DG PUSCH is sent by default, that is, in the DG PUSCH Send data; if it is configured to send DG PUSCH or SR according to the priority of the logical channel, then if the logical channel priority of the data carried in the DG PUSCH is higher than the logical channel priority of the SR carried in the PUCCH, then in the DG PUSCH Send data; vice versa.
  • the present application provides a method, which can be applied to a scenario where the DG PUSCH and the PUCCH carrying the SR overlap in the time domain, or the DG PUSCH and the CG PUSCH overlap in the time domain, which will be described in detail below.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 5 it is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the interaction between the network device and the terminal device is taken as an example for illustration.
  • the operations performed by the network device can also be performed by a chip or module inside the network device, and the operation performed by the terminal device can also be performed by a chip or module inside the terminal device. implement.
  • the method includes:
  • Step 501 The network device sends the first downlink control information to the terminal device.
  • the first downlink control information is used to schedule a first physical uplink channel, and the first physical uplink channel is used to carry the first information.
  • the first physical uplink channel may be PUSCH.
  • Step 502 The terminal device receives the first downlink control information from the network device.
  • the network device may further schedule a second physical uplink channel to the terminal device, and the second physical uplink channel is used to carry the second information.
  • the second physical uplink channel may be PUSCH or PUCCH.
  • the PUSCH may be granted for the configuration.
  • the network device sends a radio resource control (radio resource control, RRC) message to the terminal device, where the RRC message is used to schedule the configuration grant PUSCH.
  • RRC radio resource control
  • the second physical uplink channel is the PUCCH, it may be the configured PUCCH.
  • the network device sends a radio resource control (radio resource control, RRC) message to the terminal device, where the RRC message is used to configure the PUCCH.
  • the network device may also send first configuration information to the terminal device, where the first configuration information is used to indicate that when the uplink physical channels overlap, the uplink physical channel for transmission is determined from the overlapping uplink physical channels based on the logical channel priority, and also That is, the first configuration information is used to instruct the MAC layer to perform data transmission according to the logical channel priority.
  • Determining the uplink physical channel for transmission from the overlapping uplink physical channels can be understood as selecting a grant from the CG and the DG, or selecting one of the grants and the SR according to the priority of the logical channel.
  • the SR is sent on the PUCCH.
  • the first configuration information is lch-BasedPrioritization.
  • the terminal device may send one of the first physical uplink channel and the second physical uplink channel according to the logical channel priority corresponding to the first information and the logical channel priority corresponding to the second information physical uplink channel.
  • the terminal device when the logical channel priority of the first information carried in the first physical uplink channel is greater than the logical channel priority of the second information carried in the second physical uplink channel, the terminal device is in the first physical uplink channel.
  • the first information is sent in the second physical uplink channel, and the second information is not sent in the second physical uplink channel; the logical channel priority of the first information carried in the first physical uplink channel is lower than that of the second information carried in the second physical uplink channel.
  • the terminal device sends the second information on the second physical uplink channel, and does not send the first information on the first physical uplink channel.
  • the priority of the logical channel corresponding to the first information may refer to the priority of the logical channel with the highest priority among the multiple logical channels corresponding to the first information;
  • the priority of the logical channel corresponding to the second information may refer to the priority of the logical channel with the highest priority among the multiple logical channels corresponding to the second information.
  • logical channels with no data have the lowest priority.
  • the following descriptions are respectively given by taking the second physical uplink channel as the configuration granting the PUSCH or PUCCH as an example.
  • Embodiment 1 The second physical uplink channel is configured to grant the PUSCH, and the first duration may refer to the PUSCH preparation duration when the first configuration information is configured.
  • the interval between the first downlink control information and the second physical uplink channel is greater than or equal to the first duration.
  • the first duration is greater than the second duration, and the second duration is the PUSCH preparation duration.
  • the second duration is the PUSCH preparation duration, which means that the second duration is the PUSCH preparation duration when the first physical uplink channel and the second physical uplink channel do not overlap in the time domain; or,
  • the second duration is the PUSCH preparation duration, which means that the second duration is the PUSCH preparation duration when the first configuration information is not configured.
  • the second duration may be the PUSCH preparation duration N 2 in the preceding Table 1 or Table 2 .
  • the capability of the terminal device is PUSCH processing capability 2, and when the subcarrier spacing is 15 kHz, the second duration is 5 symbols.
  • the first duration may refer to the PUSCH preparation duration when the first configuration information is configured. That is to say, in this embodiment of the present application, each PUSCH processing capability 1 has two types of PUSCH preparation durations.
  • the terminal device uses Table 1 in the prior art or The PUSCH preparation duration in Table 2 is the second duration; when the network device sends the first configuration information to the terminal device, the PUSCH preparation duration used by the terminal device is the first duration, thereby increasing the interval between DCI and CG PUSCH , and the interval from DCI to DG PUSCH is also increased.
  • the physical layer can have enough time to cancel the PUSCH to be sent and prepare to send another PUSCH, so as to avoid discarding both PUSCHs. to improve transmission performance.
  • the first duration may be implemented in multiple manners.
  • the first duration may be equal to the sum of the second duration and the preset duration, and the preset duration is greater than 0.
  • the preset duration may be 1 symbol, 2 symbols, or 3 symbols, or the like.
  • the preset duration may be a value reported by the terminal device or a preset value.
  • the PUSCH preparation duration under PUSCH processing capability 1 may be as shown in Table 3.
  • the first duration (PUSCH preparation duration) 0 10+ ⁇ 1 12+ ⁇ 2 23+ ⁇ 3 36+ ⁇
  • the PUSCH preparation duration under PUSCH processing capability 2 may be as shown in Table 4.
  • the first duration (PUSCH preparation duration) 0 5+ ⁇ 1 5.5+ ⁇ 2 11+ ⁇ (corresponding to frequency range 1)
  • represents the preset duration.
  • a duration greater than the PUSCH preparation duration may be redefined, that is, the first duration, or referred to as the enhanced PUSCH preparation duration.
  • the preceding Table 1 can be replaced with the following Table 5, and the following Table 2 can be replaced with the following Table 6.
  • the PUSCH preparation duration under PUSCH processing capability 1 may be as shown in Table 5.
  • the first duration N 3 (PUSCH preparation duration) 0 >10 1 >12 2 >23 3 >36
  • the PUSCH preparation duration under PUSCH processing capability 2 may be as shown in Table 6.
  • the first duration N 3 (PUSCH preparation duration) 0 >5 1 >5.5 2 >11 (corresponding to frequency range 1)
  • the specific value of the first duration may be a preset value or a value reported by the terminal device.
  • the first duration may be equal to the PUSCH preparation duration corresponding to PUSCH processing capability 1. That is to say, the PUSCH preparation duration corresponding to the PUSCH processing capability 1 is taken as the PUSCH preparation duration corresponding to the PUSCH processing capability 2 .
  • the PUSCH preparation duration may keep the value in Table 1 unchanged, or may be implemented by using the implementation manner in Table 3 above.
  • the PUSCH preparation duration (ie, the first duration) under PUSCH processing capability 2 may be as shown in Table 7.
  • the first duration (PUSCH preparation duration) 0 10 1 12 2 23 (corresponding to frequency range 1)
  • the interval between the first downlink control information and the first physical uplink channel may be greater than or equal to a third duration, and the third duration is greater than the fourth duration.
  • the fourth duration can be determined according to the foregoing formula (1).
  • the third duration may be determined according to the first duration.
  • N 2 in formula (1) can be replaced with the first duration to obtain the third duration.
  • the third duration T 2 can satisfy the following form:
  • T 2 max((N 3 +d 2,1 +d 2 )(2048+144) ⁇ 2 ⁇ ⁇ T C +T ext +T switch ,d 2,2 ) ⁇ (4)
  • N 3 may represent the first duration.
  • the third duration T 2 can also satisfy the following form:
  • T 2 max((N 2 + ⁇ 2 +d 2,1 +d 2 )(2048+144) ⁇ 2 - ⁇ ⁇ T C +T ext +T switch ,d 2,2 )...(5)
  • ⁇ 2 is a value reported by the terminal device or a preset value.
  • the interval between the first downlink control information and the first physical uplink channel can be determined according to the method in the prior art, that is, according to the foregoing formula (1).
  • the interval between the first downlink control information and the first physical uplink channel may also be determined in the manner in Embodiment 1, which is not limited in this application. That is to say, the interval between the first downlink control information and the second physical uplink channel may be greater than or equal to the first duration or greater than or equal to the second duration, which is not limited in this application.
  • Embodiment 2 The second physical uplink channel is a configuration grant PUSCH.
  • Embodiment 2 regardless of whether the network device sends the first configuration information to the terminal device, the PUSCH preparation duration in the prior art is kept unchanged, that is, the PUSCH preparation duration in Table 1 and Table 2 are kept unchanged.
  • a first specified duration d 3 may be added to formula (1), thereby increasing the interval between the first downlink control information and the first physical uplink channel.
  • the interval between the first downlink control information and the first physical uplink channel may be greater than or equal to a third duration, and the third duration T2 may satisfy the following form:
  • T 2 max((N 2 +d 2,1 +d 2 +d 3 )(2048+144) ⁇ 2 ⁇ ⁇ ⁇ T C +T ext +T switch ,d 2,2 )...(6)
  • the first specified duration may be equal to the preceding preset duration, or may not be equal to the preset duration.
  • the specific value of the first specified duration may be a preset value or a value reported by the terminal device.
  • the interval between the first downlink control information and the second physical uplink channel may be greater than or equal to the sum of the PUSCH preparation duration and the preset duration.
  • the PUSCH preparation duration may refer to the PUSCH preparation duration in Table 1 or Table 2, or may refer to the second duration described above.
  • Embodiment 3 The second physical uplink channel is PUCCH.
  • the second information carried in the second physical uplink channel may be SR.
  • the network device sends the first configuration information to the terminal device.
  • the interval between the first downlink control information and the second physical uplink channel is greater than or equal to the first duration.
  • the first duration is greater than the second duration, and the second duration is a duration determined according to the PUSCH preparation duration.
  • the second physical uplink channel is PUSCH
  • the start time of the first physical uplink channel is after the start time of the second physical uplink channel
  • the first physical uplink channel and the The second physical uplink channel overlaps in the time domain, and the interval between the first downlink control information and the second physical uplink channel is greater than or equal to the first duration.
  • the second duration may be determined according to formula (2) and formula (3)
  • the first duration T 1 satisfies the following form:
  • N 3 is a value greater than the PUSCH preparation duration.
  • N 3 may be referred to as the enhanced PUSCH preparation duration.
  • two types of PUSCH preparation durations are configured for each PUSCH processing capability 1, and when the network device does not send the first configuration information to the terminal device, the terminal device uses Table 1 or Table 2 in the prior art.
  • the PUSCH preparation duration is the second duration; when the network device sends the first configuration information to the terminal device, the PUSCH preparation duration used by the terminal device is the enhanced PUSCH preparation duration, thereby increasing the interval between DCI and PUSCH, and at the same time increasing the PUSCH preparation duration.
  • the interval between DCI and PUCCH is increased.
  • the physical layer when the physical layer prepares to send the PUSCH and the MAC layer delivers the SR, the physical layer can have enough time to cancel the PUSCH to be sent, prepare to send the SR, and avoid discarding them, so as to improve the transmission performance.
  • the enhanced PUSCH preparation duration may be equal to the sum of the second duration and the second specified duration, and the second specified duration may refer to the previous preset duration, or may refer to other durations greater than 0.
  • the specific value of the second specified duration may be a preset value or a value reported by the terminal device.
  • Table 1 above can be replaced by Table 8 below
  • Table 2 can be replaced by Table 9 below.
  • the PUSCH preparation duration under PUSCH processing capability 1 may be as shown in Table 8.
  • the PUSCH preparation duration under PUSCH processing capability 2 may be as shown in Table 9.
  • ⁇ 3 represents the second specified duration.
  • the enhanced PUSCH preparation duration may be equal to the PUSCH preparation duration corresponding to PUSCH processing capability 1. That is to say, the PUSCH preparation duration corresponding to the PUSCH processing capability 1 is taken as the PUSCH preparation duration corresponding to the PUSCH processing capability 2 .
  • the PUSCH preparation duration in the prior art is kept unchanged, that is, the PUSCH preparation duration in Table 1 and Table 2 are kept unchanged.
  • a third specified duration ⁇ 1 may be added to the formula (3), thereby increasing the interval between the first downlink control information and the second physical uplink channel.
  • the first duration T 1 may satisfy the following forms:
  • the third specified duration may refer to the preceding preset duration, or may refer to other durations greater than 0.
  • the specific value of the third specified duration may be a preset value or a value reported by the terminal device.
  • the start time of the first physical uplink channel is located before the start time of the second physical uplink channel, and the first downlink
  • the interval between the row control information and the first physical uplink channel is greater than or equal to a third duration, and the third duration T 2 satisfies the following form:
  • T 2 max((N 2 + ⁇ 2 +d 2,1 +d 2 )(2048+144) ⁇ 2 ⁇ ⁇ T C +T ext +T switch ,d 2,2 )...(11)
  • ⁇ 2 is a value reported by the terminal device or a preset value.
  • the third duration T 2 satisfies the following form:
  • T 2 max((N 3 +d 2,1 +d 2 )(2048+144) ⁇ 2 ⁇ ⁇ T C +T ext +T switch ,d 2,2 ) ⁇ (12)
  • N 3 is a value greater than N 2
  • N 3 is a value reported by the terminal device or a preset value.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the embodiment of the present application also provides a method, comprising:
  • the network device sends the second downlink control information to the terminal device.
  • the second downlink control information is used to schedule the first PUSCH, and the first PUSCH is used to carry the third information.
  • the terminal device receives the second downlink control information from the network device.
  • the terminal device transmits one of the first PUSCH and the second PUSCH.
  • the second PUSCH is a CG PUSCH, and the second PUSCH is used to carry fourth information.
  • the terminal device may send one of the first PUSCH and the second PUSCH according to the logical channel priority corresponding to the third information and the logical channel priority corresponding to the fourth information.
  • the terminal device may send one of the first PUSCH and the second PUSCH according to the logical channel priority corresponding to the third information and the logical channel priority corresponding to the fourth information.
  • the PUSCH sent by the terminal device may carry the third information or the fourth information, or may carry the third information and the fourth information.
  • the terminal device sends the first PUSCH, and the first PUSCH carries the third information or the fourth information, or the first PUSCH carries the third information and the fourth information.
  • the terminal device sends the second PUSCH, and the second PUSCH carries the third information or the fourth information, or the first PUSCH carries the third information and the fourth information.
  • the PUSCH sent by the terminal device may include bearer indication information, and the bearer indication information is used to indicate the content carried in the PUSCH sent by the terminal device.
  • the carried content is the third information or the fourth information, or the third information and the fourth information.
  • the interval between the second downlink control information and the first PUSCH may be determined according to formula (11) or formula (12), or may be determined in other ways, which is not limited in this application.
  • the interval between the second downlink control information and the second PUSCH may be the first duration in Embodiment 1, or may be determined in other ways, which is not limited in this application.
  • Embodiment 1 to Embodiment 4 of the present application may be executed independently, or may be executed jointly, which is not limited in this embodiment of the present application.
  • the interval between the first downlink control information and the second physical uplink channel may be determined according to the method in the prior art.
  • the interval between the first downlink control information and the second physical uplink channel may also be determined in the manner in Embodiment 3, which is not limited in this application.
  • the network device or the terminal device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module . Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in each embodiment of the present application may be integrated into one processor, or may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • an embodiment of the present application further provides an apparatus 600 for implementing the functions of the network device or the terminal device in the above method.
  • the apparatus may be a software module or a system-on-chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 600 may include: a processing unit 601 and a communication unit 602 .
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, which are respectively configured to perform the sending and receiving steps of the network device or the terminal device in the above method embodiments.
  • a communication unit may also be referred to as a transceiver, transceiver, transceiver, or the like.
  • the processing unit may also be referred to as a processor, a processing single board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the communication unit 602 may be regarded as a receiving unit, and the device for implementing the sending function in the communication unit 602 may be regarded as a transmitting unit, that is, the communication unit 602 includes a receiving unit and a transmitting unit.
  • a communication unit may also sometimes be referred to as a transceiver, transceiver, or transceiver circuit, or the like.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • a communication unit configured to receive first downlink control information from a network device, where the first downlink control information is used to schedule a first physical uplink channel, and the first physical uplink channel is used to carry the first information; the The first physical uplink channel and the second physical uplink channel overlap in the time domain, and the second physical uplink channel is used to carry the second information;
  • a processing unit configured to send the first physical uplink channel and the second physical uplink channel according to the first logical channel priority corresponding to the first information and the second logical channel priority corresponding to the second information A physical uplink channel in the;
  • the interval between the first downlink control information and the second physical uplink channel is greater than or equal to a first duration, and the first duration is greater than the second duration;
  • the second duration is a PUSCH preparation duration, or the second duration is a duration determined according to the PUSCH preparation duration.
  • a processing unit configured to send first downlink control information to the terminal device through the communication unit, where the first downlink control information is used to schedule a first physical uplink channel, and the first physical uplink channel is used to carry the first information;
  • the first physical uplink channel and the second physical uplink channel overlap in the time domain, and the second physical uplink channel is used to carry the second information;
  • the processing unit configured to receive one of the first physical uplink channel and the second physical uplink channel from the terminal device through the communication unit;
  • the received one physical uplink channel is determined according to the first logical channel priority corresponding to the first information and the second logical channel priority corresponding to the second information;
  • the interval between the first downlink control information and the second physical uplink channel is greater than or equal to a first duration, and the first duration is greater than the second duration; the second duration is the PUSCH preparation duration, or The second duration is a duration determined according to the PUSCH preparation duration.
  • processing unit 601 and the communication unit 602 may also perform other functions.
  • processing unit 601 and the communication unit 602 may also perform other functions.
  • FIG. 7 shows an apparatus 700 provided by an embodiment of the present application, and the apparatus shown in FIG. 7 may be an implementation manner of a hardware circuit of the apparatus shown in FIG. 6 .
  • the communication apparatus can be applied to the flow chart shown above to perform the functions of the terminal device or the network device in the above method embodiments. For convenience of description, FIG. 7 only shows the main components of the communication device.
  • the communication apparatus 700 includes a processor 710 and an interface circuit 720 .
  • the processor 710 and the interface circuit 720 are coupled to each other.
  • the interface circuit 720 can be a transceiver or an input-output interface.
  • the communication apparatus 700 may further include a memory 730 for storing instructions executed by the processor 710 or input data required by the processor 710 to execute the instructions or data generated after the processor 710 executes the instructions.
  • the processor 710 is used to implement the function of the above-mentioned processing unit 601
  • the interface circuit 720 is used to implement the function of the above-mentioned communication unit 602 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the processor may be a random access memory (Random Access Memory, RAM), a flash memory, a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable memory
  • RAM Random Access Memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • PROM Programmable ROM
  • EEPROM Electrically erasable programmable read-only memory
  • registers hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art middle.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in a network device or in an end device.
  • the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,其中方法包括:接收来自网络设备的第一下行控制信息,第一下行控制信息用于调度第一物理上行信道,所述第一物理上行信道用于承载第一信息;第一物理上行信道和第二物理上行信道在时域上重叠,所述第二物理上行信道用于承载第二信息;根据所述第一信息对应的第一逻辑信道优先级和所述第二信息对应的第二逻辑信道优先级,发送所述第一物理上行信道和所述第二物理上行信道中的一个物理上行信道;其中,第一下行控制信息与所述第二物理上行信道之间的间隔大于或等于第一时长,第一时长大于第二时长;所述第二时长为PUSCH准备时长,或者第二时长为根据所述PUSCH准备时长确定的时长。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年01月22日提交中国专利局、申请号为202110091091.4、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
新无线(new radio,NR)系统等无线通信系统中,终端设备可以通过物理上行共享信道(physical uplink shared channel,PUSCH)发送用户相关的上行业务以及上层信令数据。PUSCH可以是基站通过下行控制信息(downlink control information,DCI)调度的,也可以是通过高层配置的。DCI调度的PUSCH一般称为动态授权(dynamic grant,DG)PUSCH,高层配置的PUSCH一般称为配置授权(configured grant,CG)PUSCH。DG PUSCH和CG PUSCH在时域上重叠时,DCI到CG PUSCH的时间间隔要大于或者等于N2,N2为PUSCH的准备时长(PUSCH preparation time)。
如果DG PUSCH和CG PUSCH在时域上重叠时,终端设备将发送DG PUSCH,不发送CG PUSCH。终端设备的物理层收到DCI后,开始准备发送DG PUSCH;终端设备的物理层将DCI递给终端设备的媒体接入控制(medium access control,MAC)层后,终端设备的MAC层将准备好的协议数据单元(protocol data unit,PDU)递给终端设备的物理层,以便终端设备在DG PUSCH中发送该PDU,不发CG PUSCH。此时终端设备的物理层和MAC层的处理可以是相互独立的。
考虑到DG PUSCH和CG PUSCH中承载的数据对应的逻辑信道的优先级不同,此时MAC层会根据逻辑信道的优先级,选择将DG PUSCH对应的PDU,或者CG PUSCH对应的PDU递给物理层。由于物理层不能够确定DG PUSCH和CG PUSCH中哪个逻辑信道优先级更高,所以如果物理层收到DCI后开始准备发送DG PUSCH,但是MAC层递的是CG PUSCH对应的PDU,会导致不一致,物理层可能会丢弃两个PUSCH,对性能造成影响。
发明内容
本申请提供一种通信方法及装置,用以解决如何发送PUSCH的问题。
第一方面,本申请提供一种通信方法,该方法包括:
接收来自网络设备的第一下行控制信息,所述第一下行控制信息用于调度第一物理上行信道,所述第一物理上行信道用于承载第一信息;所述第一物理上行信道和第二物理上行信道在时域上重叠,所述第二物理上行信道用于承载第二信息;根据所述第一信息对应的第一逻辑信道优先级和所述第二信息对应的第二逻辑信道优先级,发送所述第一物理上行信道和所述第二物理上行信道中的一个物理上行信道;其中,所述第一下行控制信息与 所述第二物理上行信道之间的间隔大于或等于第一时长,所述第一时长大于第二时长;所述第二时长为PUSCH准备时长,或者第二时长为根据所述PUSCH准备时长确定的时长。
通过实施上述方法,第一下行控制信息与第二物理上行信道之间的间隔大于或等于第一时长,第一时长大于PUSCH准备时长,实现增大第一下行控制信息到第二物理上行信道之间的间隔,使得终端设备能够有足够的时间去处理需要在第一物理上行信道或第二物理上行信道中发送的信息,从而不会丢弃物理上行信道,提高传输效率。
一种实现方式中,所述第二时长为PUSCH准备时长,是指所述第二时长为所述第一物理上行信道和所述第二物理上行信道在时域上没有重叠时的PUSCH准备时长;
或者,所述第二时长为PUSCH准备时长,是指所述第二时长为,没有配置第一配置信息时的PUSCH准备时长,所述第一配置信息用于指示上行物理信道重叠时基于逻辑信道优先级从重叠的上行物理信道中确定进行传输的上行物理信道。
一种实现方式中,所述第二时长为根据所述PUSCH准备时长确定的时长,包括:
所述第二时长
Figure PCTCN2021140714-appb-000001
满足以下形式:
Figure PCTCN2021140714-appb-000002
Figure PCTCN2021140714-appb-000003
其中,N 2是PUSCH准备时长;d 2,1的取值为0或1;κ是常数;μ是子载波间隔索引;T C是时间单元;T ext是与共享频谱信道接入相关的参数;T switch是上行切换间隔;d 2,2是带宽部分BWP切换时间或者0;max()是取最大值运算。
一种实现方式中,所述第二物理上行信道为配置授权PUSCH。
一种实现方式中,所述第二物理上行信道为PUCCH。
一种实现方式中,第一时长T 1满足以下形式:
Figure PCTCN2021140714-appb-000004
Figure PCTCN2021140714-appb-000005
Δ1是终端设备上报的值或者预设值。
一种实现方式中,所述第一下行控制信息与所述第一物理上行信道之间的间隔大于或等于第三时长,所述第三时长大于第四时长;
所述第四时长T proc,2满足以下形式:
T proc,2=max((N 2+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2);
其中,N 2是PUSCH准备时长;d 2,1的取值为0或1;d 2是终端设备上报的值;k是常数;μ是子载波间隔索引;T C是时间单元;T ext是与共享频谱信道接入相关的参数;T switch是上行切换间隔;d 2,2是带宽部分BWP切换时间或者0;max()是取最大值运算。
一种实现方式中,所述第三时长T 2满足以下形式:
T 2=max((N 22+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2);
其中,Δ 2是终端设备上报的值或者预设值。
一种实现方式中,所述第一时长等于所述第二时长与预设时长之和,预设时长是终端设备上报的值或者预设值。
一种实现方式中,所述终端设备配置为PUSCH处理能力2时,所述第一时长等于 PUSCH处理能力1对应的PUSCH准备时长。
第二方面,本申请提供一种通信方法,该方法包括:
向终端设备发送第一下行控制信息,所述第一下行控制信息用于调度第一物理上行信道,所述第一物理上行信道用于承载第一信息;所述第一物理上行信道和第二物理上行信道在时域上重叠,所述第二物理上行信道用于承载第二信息;
接收来自所述终端设备的所述第一物理上行信道和所述第二物理上行信道中的一个物理上行信道;
其中,接收到的所述一个物理上行信道是根据所述第一信息对应的第一逻辑信道优先级和所述第二信息对应的第二逻辑信道优先级确定的;
其中,所述第一下行控制信息与所述第二物理上行信道之间的间隔大于或等于第一时长,所述第一时长大于第二时长;所述第二时长为PUSCH准备时长,或者第二时长为根据所述PUSCH准备时长确定的时长。
一种实现方式中,所述第二时长为PUSCH准备时长,是指所述第二时长为所述第一物理上行信道和所述第二物理上行信道在时域上没有重叠时的PUSCH准备时长;
或者,所述第二时长为PUSCH准备时长,是指所述第二时长为,没有配置第一配置信息时的PUSCH准备时长,所述第一配置信息用于指示上行物理信道重叠时基于逻辑信道优先级从重叠的上行物理信道中确定进行传输的上行物理信道。
一种实现方式中,所述第二时长为根据所述PUSCH准备时长确定的时长,包括:
所述第二时长
Figure PCTCN2021140714-appb-000006
满足以下形式:
Figure PCTCN2021140714-appb-000007
Figure PCTCN2021140714-appb-000008
其中,N 2是PUSCH准备时长;d 2,1的取值为0或1;κ是常数;μ是子载波间隔索引;T C是时间单元;T ext是与共享频谱信道接入相关的参数;T switch是上行切换间隔;d 2,2是带宽部分BWP切换时间或者0;max()是取最大值运算。
一种实现方式中,所述第二物理上行信道为配置授权PUSCH。
一种实现方式中,所述第二物理上行信道为PUCCH。
一种实现方式中,第一时长T 1满足以下形式:
Figure PCTCN2021140714-appb-000009
Figure PCTCN2021140714-appb-000010
Δ1是终端设备上报的值或者预设值。
一种实现方式中,所述第一下行控制信息与所述第一物理上行信道之间的间隔大于或等于第三时长,所述第三时长大于第四时长;
所述第四时长T proc,2满足以下形式:
T proc,2=max((N 2+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2);
其中,N 2是PUSCH准备时长;d 2,1的取值为0或1;d 2是终端设备上报的值;k是常数;μ是子载波间隔索引;T C是时间单元;T ext是与共享频谱信道接入相关的参数;T switch是上行切换间隔;d 2,2是带宽部分BWP切换时间或者0;max()是取最大值运算。
一种实现方式中,所述第三时长T 2满足以下形式:
T 2=max((N 22+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2);
其中,Δ 2是终端设备上报的值或者预设值。
一种实现方式中,所述第一时长等于所述第二时长与预设时长之和,预设时长是终端设备上报的值或者预设值。
一种实现方式中,所述终端设备配置为PUSCH处理能力2时,所述第一时长等于PUSCH处理能力1对应的PUSCH准备时长。
第三方面,本申请还提供一种通信方法,包括:接收来自网络设备的第一下行控制信息,所述第一下行控制信息用于调度第一物理上行信道,所述第一物理上行信道用于承载第一信息;所述第一物理上行信道和第二物理上行信道在时域上重叠,所述第二物理上行信道用于承载第二信息;发送所述第一物理上行信道和所述第二物理上行信道中的一个物理上行信道。
第四方面,本申请提供一种通信方法,该方法包括:向终端设备发送第一下行控制信息,所述第一下行控制信息用于调度第一物理上行信道,所述第一物理上行信道用于承载第一信息;所述第一物理上行信道和第二物理上行信道在时域上重叠,所述第二物理上行信道用于承载第二信息;接收来自所述终端设备的所述第一物理上行信道和所述第二物理上行信道中的一个物理上行信道。
一种实现方式中,第二物理上行信道为配置授权PUCCH时,所述第一下行控制信息与第二物理上行信道之间的间隔大于或等于第一时长,所述第一时长大于PUSCH准备时长。
一种实现方式中,第二物理上行信道为PUSCH时,所述第一物理上行信道的起始时刻位于第二物理上行信道的起始时刻之后,所述第一下行控制信息与第二物理上行信道之间的间隔大于或等于第一时长,第一时长T 1满足以下形式:
Figure PCTCN2021140714-appb-000011
Figure PCTCN2021140714-appb-000012
Δ1是终端设备上报的值或者预设值。
或者,第一时长T 1满足以下形式:
Figure PCTCN2021140714-appb-000013
Figure PCTCN2021140714-appb-000014
N 3是大于N 2的值,N 3是终端设备上报的值或者预设值。
一种实现方式中,第二物理上行信道为PUSCH时,所述第一物理上行信道的起始时刻位于第二物理上行信道的起始时刻之前,所述第一下行控制信息与第一物理上行信道之间的间隔大于或等于第三时长,第三时长T 2满足以下形式:
T 2=max((N 22+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2);
其中,Δ 2是终端设备上报的值或者预设值。
或者,第三时长T 2满足以下形式:
T 2=max((N 3+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2);
其中,N 3是大于N 2的值,N 3是终端设备上报的值或者预设值。
第五方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面至第四方 面中的任一方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中终端设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括接口电路,该接口电路用于支持该通信装置与网络设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面至第四方面中的任一方面提供的方法中的描述,此处不做赘述。
第六方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面、第一方面的任意可能的实现方式中的方法。
第七方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面、第二方面的任意可能的实现方式中的方法的功能模块。
第八方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第三方面、第三方面的任意可能的实现方式中的方法的功能模块。
第九方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第四方面、第四方面的任意可能的实现方式中的方法的功能模块。
第十方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被处理器执行时,实现前述第一方面至第四方面中任一方面、以及任一方面的任意可能的实现方式中的方法。
第十一方面,提供了一种包含指令的计算机程序产品,当该指令被处理器运行时,实现前述第一方面至第四方面中任一方面、以及任一方面的任意可能的实现方式中的方法。
第十二方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第一方面至第四方面中任一方面、以及任一方面的任意可能的实现方式中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十三方面,提供一种通信系统,所述系统包括第六方面所述的装置(如终端设备)以及第七方面所述的装置(如网络设备);或者所述系统包括第八方面所述的装置(如终端设备)以及第九方面所述的装置(如网络设备)。
附图说明
图1为适用于本申请实施例一种网络架构示意图;
图2为本申请实施例提供的一种DCI调度PUSCH示意图;
图3为本申请实施例提供的一种DG PUSCH和CG PUSCH重叠示意图;
图4为本申请实施例提供的一种PUSCH和PUCCH示意图;
图5为本申请实施例提供的一种通信方法流程示意图;
图6为本申请实施例提供的一种通信装置结构示意图;
图7为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long termevolution,LTE)系统以及NR系统等,在此不做限制。
图1是适用于本申请的实施例的移动通信系统的架构示意图。如图1所示,该移动通信系统包括网络设备和至少一个终端设备。终端设备通过无线的方式与网络设备相连。图1只是示意图,该通信系统中还可以包括其它设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
本申请实施例中,终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端等。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于设备到设备(device to device,D2D)的信号传输。对于下行信号传输,发送设备是网络设备,对应的接收设备是终端设备。对于上行信号传输,发送设备是终端设备,对应的接收设备是网络设备。对于D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例信号的传输方向不做限定。
网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensedspectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过6吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
如图2所示,DCI和DCI调度的PUSCH之间的时间间隔需要大于或者等于T proc,2,其中T proc,2满足以下公式:
T proc,2=max((N 2+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2)···(1)
其中,N 2是PUSCH准备时长,单位为正交频分复用(orthogonal frequency divisionmultiplexing,OFDM)符号;d 2,1是和解调参考信号(demodulation reference signal,DMRS)有关的参数,如果PUSCH的第一个符号只包含DMRS,则d 2,1的取值为0,否则d 2,1的取值为1。d 2是终端设备上报的值,应用于物理层高优先级的PUSCH和物理层低优先级的物理上行控制信道(physical uplink control channel,PUCCH)重叠的场景,否则取值为0。κ是常数,一般等于64。μ是子载波间隔索引。T C是时间单元,例如T C可以满足以下形式:
T C=·1/(Δf max·N f);
其中,Δf max=480·10 3Hz,N f=4096。
T ext是与共享频谱信道接入相关的参数,可以参考标准协议3GPP TS 38.211中的5.3.1章节。对于动态调度的PUSCH,或者PUCCH,T ext根据如下公式确定:
Figure PCTCN2021140714-appb-000015
Figure PCTCN2021140714-appb-000016
其中,l是符号索引,μ等于0或者1时,C 1=1,μ等于2时,C 1=2,C 2和C 3是高层配置的,例如RRC参数配置的。Δ i为标准协议38.211中的5.3.1章节中的表格5.3.1-1,具体可以参考如下表X所示。
表X:Table 5.3.1-1:The variables C i and Δ i for cyclic prefix extension
T extindex i C i Δ i
0 - -
1 C 1 25·10 -6
2 C 2 16·10 -6+T TA
3 C 3 25·10 -6+T TA
对于CG PUSCH,T ext根据如下公式确定:
Figure PCTCN2021140714-appb-000017
其中,Δ i为标准协议38.211中的5.3.1章节中的表格5.3.1-2,具体可以参考如下表Y所示。
表Y:Table 5.3.1-2:The variable Δ i for cyclic prefix extension with configured grants.
Figure PCTCN2021140714-appb-000018
其中,T TA定时提前量,
Figure PCTCN2021140714-appb-000019
一个符号,不包括循环前缀cyclic prefix (CP)的长度,
Figure PCTCN2021140714-appb-000020
为CP的长度。
T switch是上行切换间隔(uplink switching gap);如果DCI触发了BWP切换,d 2,2是带宽部分(bandwidth part,BWP)切换时间(switch time),否则等于0。max()是取最大值运算。本申请实施例中,如果没有特别说明,符号可以是指OFDM符号的简称。
其中,终端设备处理PUSCH的能力包括PUSCH处理能力1和PUSCH处理能力2,在PUSCH处理能力1下PUSCH准备时长可以如表1所示。
表1
μ PUSCH准备时长N 2
0 10
1 12
2 23
3 36
在PUSCH处理能力2下PUSCH准备时长可以如表2所示。
表2
μ PUSCH准备时长N 2
0 5
1 5.5
2 11(对应频率范围1)
上述表格中,μ是子载波间隔索引,用于确定子载波间隔,具体的,子载波间隔等于15kHz×2 μ
如前所述,本申请实施例中,存在两种PUSCH,DG PUSCH和CG PUSCH。如图3所示,DG PUSCH和CG PUSCH在时域上重叠时,DCI到CG PUSCH的时间间隔要大于或者等于PUSCH准备时长N 2。其中,重叠包括完全重叠,以及部分重叠。DG PUSCH和CG PUSCH在时域上重叠时,可以是CG PUSCH在DG PUSCH之前,也可以是CG PUSCH在DG PUSCH之后,本申请并不限定。
本申请实施例中,当DG PUSCH和CG PUSCH在时域上重叠时,如果没有配置按照逻辑信道的优先级选择发哪一个授权(grant),即选择发哪个PUSCH进行传输,那么默认发送DG PUSCH,即在DG PUSCH中发送数据;如果配置了按照逻辑信道的优先级选择哪一个grant,即选择哪个PUSCH进行数据传输,那么如果DG PUSCH中承载的数据对应的逻辑信道优先级高于CG PUSCH中承载的数据对应的逻辑信道优先级,那么在DG PUSCH中发送数据;反之亦然。
本申请实施例中,DG PUSCH和PUCCH在时域上可能重叠。如图4所示,DG PUSCH和PUCCH在时域上重叠时,调度DG PUSCH的DCI到基准时刻S0之间的时间间隔大于或等于
Figure PCTCN2021140714-appb-000021
S0定义为PUCCH和PUSCH中最早的符号,可以理解为是最早符号的起始时刻。其中,
Figure PCTCN2021140714-appb-000022
满足以下形式:
Figure PCTCN2021140714-appb-000023
Figure PCTCN2021140714-appb-000024
其中,i=1,2,3···等;公式(3)中的参数的含义可以参考公式(1)中的描述,在此不再赘述。
DG PUSCH和用于承载调度请求(scheduling request,SR)的PUCCH在时域上重叠时, 如果没有配置按照逻辑信道的优先级选择发DG PUSCH还是SR,那么默认发送DG PUSCH,即在DG PUSCH中发送数据;如果配置了按照逻辑信道的优先级选择发DG PUSCH还是SR,那么如果DG PUSCH中承载的数据的逻辑信道优先级高于PUCCH中承载的SR的逻辑信道优先级,那么在DG PUSCH中发送数据;反之亦然。
本申请提供一种方法,可以应用于在DG PUSCH和承载SR的PUCCH在时域上重叠,或者DG PUSCH和CG PUSCH在时域上重叠的场景中,下面将详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
参见图5,为本申请实施例提供的一种通信方法流程示意图。图5中,以网络设备与终端设备之间交互为例进行说明,网络设备执行的操作也可以由网络设备内部的芯片或模块执行,终端设备执行的操作也可以由终端设备内部的芯片或模块执行。该方法包括:
步骤501:网络设备向终端设备发送第一下行控制信息。
其中,所述第一下行控制信息用于调度第一物理上行信道,所述第一物理上行信道用于承载第一信息。
可选地,第一物理上行信道可以为PUSCH。
步骤502:终端设备接收来自网络设备的第一下行控制信息。
可选地,本申请实施例中,网络设备还可以向终端设备调度第二物理上行信道,第二物理上行信道用于承载第二信息。
第二物理上行信道可以为PUSCH或者PUCCH。第二物理上行信道为PUSCH时,可以为配置授权PUSCH。例如网络设备向终端设备发送无线资源控制(radio resource control,RRC)消息,该RRC消息用于调度配置授权PUSCH。第二物理上行信道为PUCCH时,可以为配置的PUCCH。例如网络设备向终端设备发送无线资源控制(radio resource control,RRC)消息,该RRC消息用于配置PUCCH。
可选地,网络设备还可以向终端设备发送第一配置信息,第一配置信息用于指示上行物理信道重叠时基于逻辑信道优先级从重叠的上行物理信道中确定进行传输的上行物理信道,也就是说,第一配置信息用于指示在MAC层按照逻辑信道优先级进行数据传输。从重叠的上行物理信道中确定进行传输的上行物理信道,可以理解为从CG和DG中选一个grant,或者在grant和SR中按照逻辑信道优先级选一个。当选择SR时,即在PUCCH上发SR。在协议中,第一配置信息为lch-BasedPrioritization,lch-BasedPrioritization的具体含义可以参考第三代伙伴计划(the 3rd generation partnership project,3GPP)release15或16等技术标准TS(Technical Specification)38.331文献中6.3.2章节的相关描述。
此时,终端设备可以根据所述第一信息对应的逻辑信道优先级和所述第二信息对应的逻辑信道优先级,发送所述第一物理上行信道和所述第二物理上行信道中的一个物理上行信道。其中,发送第一物理上行信道,可以是指在第一物理上行信道中发送第一信息;发送第二物理上行信道,可以是指在第二物理上行信道中发送第二信息。
具体的,所述第一物理上行信道中承载的第一信息的逻辑信道优先级大于所述第二物理上行信道中承载的第二信息的逻辑信道优先级时,终端设备在第一物理上行信道中发送第一信息,不在第二物理上行信道中发送第二信息;所述第一物理上行信道中承载的第一 信息的逻辑信道优先级小于所述第二物理上行信道中承载的第二信息的逻辑信道优先级时,终端设备在第二物理上行信道中发送第二信息,不在第一物理上行信道中发送第一信息。
需要说明的是,第一信息对应多个逻辑信道时,第一信息对应的逻辑信道优先级,可以是指第一信息对应的多个逻辑信道中,优先级最高的逻辑信道的优先级;同样的,第二信息对应多个逻辑信道时,第二信息对应的逻辑信道优先级,可以是指第二信息对应的多个逻辑信道中,优先级最高的逻辑信道的优先级。另外,没有数据的逻辑信道的优先级最低。
逻辑信道的优先级具体如何配置,本申请实施例并不限定,在此不再赘述。
下面分别以第二物理上行信道为配置授权PUSCH或者PUCCH为例,分别进行描述。
实施例一:第二物理上行信道为配置授权PUSCH,第一时长可以是指在配置第一配置信息时的PUSCH准备时长。
实施例一中,以网络设备向终端设备发送了第一配置信息为例进行描述。
如果第一物理上行信道和第二物理上行信道在时域上重叠,第一下行控制信息与第二物理上行信道之间的间隔大于或等于第一时长。第一时长大于第二时长,第二时长为PUSCH准备时长。
实施例一中,所述第二时长为PUSCH准备时长,是指所述第二时长为所述第一物理上行信道和第二物理上行信道在时域上没有重叠时的PUSCH准备时长;或者,所述第二时长为PUSCH准备时长,是指所述第二时长为,没有配置第一配置信息时的PUSCH准备时长。
也就是说,第二时长可以为前面的表1或者表2中的PUSCH准备时长N 2。举例来说,终端设备的能力为PUSCH处理能力2,当子载波间隔为15kHz时,第二时长为5个符号。
实施例一中,第一时长可以是指在配置第一配置信息时的PUSCH准备时长。也就是说,本申请实施例中,每个PUSCH处理能力1有2种类型的PUSCH准备时长,当网络设备没有向终端设备发送第一配置信息时,终端设备使用现有技术中的表1或表2中的PUSCH准备时长,即第二时长;当网络设备向终端设备发送第一配置信息时,终端设备使用的PUSCH准备时长为第一时长,从而实现增大DCI到CG PUSCH之间的间隔,同时DCI到DG PUSCH的间隔也增大了。这样可以使得物理层准备发送的PUSCH和MAC层递的PDU对应的PUSCH不一致时,物理层能够有足够的时间去取消准备发送的PUSCH,去准备发另外一个PUSCH,避免把两个PUSCH都丢弃,以提高传输性能。
本申请实施例中,第一时长可以存在多种实现方式。例如在方式一中,第一时长可以等于第二时长与预设时长之和,预设时长大于0。例如预设时长可以为1个符号或者2个符号或者3个符号等。预设时长可以是终端设备上报的值或者预设值。
在该实现方式中,可以将前面的表1替换为下面的表3,将表2替换为下面的表4。
在PUSCH处理能力1下PUSCH准备时长可以如表3所示。
表3
μ 第一时长(PUSCH准备时长)
0 10+Δ
1 12+Δ
2 23+Δ
3 36+Δ
在PUSCH处理能力2下PUSCH准备时长可以如表4所示。
表4
μ 第一时长(PUSCH准备时长)
0 5+Δ
1 5.5+Δ
2 11+Δ(对应频率范围1)
其中,Δ表示预设时长。
需要说明的是,表3和表4中,以每个子载波间隔下,即μ不同时对应的预设时长Δ相同为例进行描述。在实际应用中,不同的子载波间隔,即μ不同时对应的预设时长Δ的值也可以不同。
另一种实现方式中,在配置第一配置信息时,可以重新定义一个大于PUSCH准备时长的时长,即第一时长,或者称为增强PUSCH准备时长。在该实现方式中,可以将前面的表1替换为下面的表5,将表2替换为下面的表6。
在PUSCH处理能力1下PUSCH准备时长可以如表5所示。
表5
μ 第一时长N 3(PUSCH准备时长)
0 >10
1 >12
2 >23
3 >36
在PUSCH处理能力2下PUSCH准备时长可以如表6所示。
表6
μ 第一时长N 3(PUSCH准备时长)
0 >5
1 >5.5
2 >11(对应频率范围1)
其中,第一时长的具体取值,可以为预设值,也可以为终端设备上报的值。
在方式二中,终端设备配置为PUSCH处理能力2时,第一时长可以等于PUSCH处理能力1对应的PUSCH准备时长。也就是说,将PUSCH处理能力1对应的PUSCH准备时长,作为PUSCH处理能力2对应的PUSCH准备时长。
其中,终端设备配置为PUSCH处理能力1时,PUSCH准备时长可以保持表1中的取值不变,也可以采用上面表3的实现方式实现。
举例来说,终端设备配置为PUSCH处理能力2时,在PUSCH处理能力2下PUSCH 准备时长(即第一时长)可以如表7所示。
表7
μ 第一时长(PUSCH准备时长)
0 10
1 12
2 23(对应频率范围1)
另外,第一下行控制信息与第一物理上行信道之间的间隔可以大于或等于第三时长,所述第三时长大于第四时长。第四时长可以根据前面的公式(1)确定。
本申请实施例中,第三时长可以根据第一时长确定。举例来说,可以将公式(1)中的N 2替换为第一时长,从而获得第三时长,具体的,第三时长T 2可以满足以下形式:
T 2=max((N 3+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2)···(4)
其中,N 3可以表示第一时长。公式(4)中的其他参数可以参考前面的描述,在此不再赘述。
需要说明的是,如果第一时长N 3等于第二时长与预设时长之和,即第一时长N 3等于N 22,那么第三时长T 2还可以满足以下形式:
T 2=max((N 22+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2)···(5)
其中,Δ 2是终端设备上报的值或者预设值。公式(5)中的其他参数可以参考前面的描述,在此不再赘述。
需要说明的是,本申请实施例中,如果网络设备没有向终端设备发送第一配置信息。此时可以按照现有技术中的方式确定第一下行控制信息与第一物理上行信道之间的间隔,即按照前面的公式(1)确定。或者,还可以按照实施例一中的方式确定第一下行控制信息与第一物理上行信道之间的间隔,本申请并不限定。也就是说,第一下行控制信息与所述第二物理上行信道之间的间隔,可以大于或等于第一时长,也可以大于或等于第二时长,本申请并不限定。
实施例二:第二物理上行信道为配置授权PUSCH。
在实施例二中,不论网络设备是否向终端设备发送第一配置信息,均保持现有技术中的PUSCH准备时长不变,即保持表1和表2中的PUSCH准备时长不变。
在实施例二中,可以在公式(1)中增加一个第一指定时长d 3,从而实现增加第一下行控制信息与第一物理上行信道之间的间隔。具体的,第一下行控制信息与第一物理上行信道之间的间隔可以大于或等于第三时长,第三时长T 2可以满足以下形式:
T 2=max((N 2+d 2,1+d 2+d 3)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2)···(6)
需要说明的是,第一指定时长可以等于前面的预设时长,也可以不等于该预设时长。第一指定时长的具体取值,可以为预设值,也可以为终端设备上报的值。
另外,如果第一物理上行信道和第二物理上行信道在时域上重叠,第一下行控制信息与第二物理上行信道之间的间隔可以大于或等于PUSCH准备时长与预设时长之和。该 PUSCH准备时长,可以是指表1或表2中的PUSCH准备时长,或者可以是指前面描述的第二时长。
实施例三:第二物理上行信道为PUCCH。
可选地,第二物理上行信道中承载的第二信息可以为SR。
场景三,网络设备向终端设备发送了第一配置信息。
可选的,一种场景中,如果第一物理上行信道和第二物理上行信道在时域上重叠,第一下行控制信息与第二物理上行信道之间的间隔大于或等于第一时长。第一时长大于第二时长,第二时长为根据所述PUSCH准备时长确定的时长。
可选的,另一种场景中,第二物理上行信道为PUSCH时,所述第一物理上行信道的起始时刻位于第二物理上行信道的起始时刻之后时,如果第一物理上行信道和第二物理上行信道在时域上重叠,第一下行控制信息与第二物理上行信道之间的间隔大于或等于第一时长。
具体的,第二时长可以是根据公式(2)和公式(3)确定的
Figure PCTCN2021140714-appb-000025
一种可能的实现方式中,第一时长T 1满足以下形式:
Figure PCTCN2021140714-appb-000026
Figure PCTCN2021140714-appb-000027
其中,N 3是大于PUSCH准备时长的值。例如N 3可以称为增强PUSCH准备时长。
一种场景中,每个PUSCH处理能力1配置了2种类型的PUSCH准备时长,当网络设备没有向终端设备发送第一配置信息时,终端设备使用现有技术中的表1或表2中的PUSCH准备时长,即第二时长;当网络设备向终端设备发送第一配置信息时,终端设备使用的PUSCH准备时长为增强PUSCH准备时长,从而实现增大DCI到PUSCH之间的间隔,同时也增大了DCI到PUCCH之间的间隔。这样可以使得物理层准备发送的PUSCH而MAC层递的是SR时,物理层能够有足够的时间去取消准备发送的PUSCH,去准备发SR,避免都丢弃,以提高传输性能。
增强PUSCH准备时长可以等于第二时长与第二指定时长之和,第二指定时长可以是指前面的预设时长,也可以是指其他大于0的时长。第二指定时长的具体取值,可以为预设值,也可以为终端设备上报的值。
例如,可以将前面的表1替换为下面的表8,将表2替换为下面的表9。
在PUSCH处理能力1下PUSCH准备时长可以如表8所示。
表8
μ 增强PUSCH准备时长
0 10+Δ 3
1 12+Δ 3
2 23+Δ 3
3 36+Δ 3
在PUSCH处理能力2下PUSCH准备时长可以如表9所示。
表9
μ 增强PUSCH准备时长
0 5+Δ 3
1 5.5+Δ 3
2 11+Δ 3(对应频率范围1)
其中,Δ 3表示第二指定时长。
一种场景中,终端设备配置为PUSCH处理能力2时,增强PUSCH准备时长可以等于PUSCH处理能力1对应的PUSCH准备时长。也就是说,将PUSCH处理能力1对应的PUSCH准备时长,作为PUSCH处理能力2对应的PUSCH准备时长。
另一种可能的实现方式中,不论网络设备是否向终端设备发送第一配置信息,均保持现有技术中的PUSCH准备时长不变,即保持表1和表2中的PUSCH准备时长不变。
在实施例三中,可以在公式(3)中增加一个第三指定时长Δ1,从而实现增加第一下行控制信息与第二物理上行信道之间的间隔。具体的,第一时长T 1可以满足以下形式:
Figure PCTCN2021140714-appb-000028
Figure PCTCN2021140714-appb-000029
第三指定时长可以是指前面的预设时长,也可以是指其他大于0的时长。第三指定时长的具体取值,可以为预设值,也可以为终端设备上报的值。
可选的,另一种可能的实现方式中,第二物理上行信道为PUSCH时,所述第一物理上行信道的起始时刻位于第二物理上行信道的起始时刻之前,所述第一下行控制信息与第一物理上行信道之间的间隔大于或等于第三时长,第三时长T 2满足以下形式:
T 2=max((N 22+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2)···(11)
其中,Δ 2是终端设备上报的值或者预设值。
或者,第三时长T 2满足以下形式:
T 2=max((N 3+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2)···(12)
其中,N 3是大于N 2的值,N 3是终端设备上报的值或者预设值。
实施例四:
本申请实施例还提供一种方法,包括:
网络设备向终端设备发送第二下行控制信息。
其中,所述第二下行控制信息用于调度第一PUSCH,所述第一PUSCH用于承载第三信息。
终端设备接收来自网络设备的第二下行控制信息。
如果所述第一PUSCH和第二PUSCH在时域上重叠,终端设备发送所述第一PUSCH和所述第二PUSCH中的一个PUSCH。所述第二PUSCH为CG PUSCH,所述第二PUSCH用于承载第四信息。
具体的,终端设备可以根据所述第三信息对应的逻辑信道优先级和所述第四信息对应的逻辑信道优先级,发送所述第一PUSCH和所述第二PUSCH中的一个PUSCH。具体可以参考前面的描述,在此不再赘述。
本申请实施例中,终端设备发送的PUSCH中可以承载第三信息或第四信息,或者可以承载第三信息和第四信息。
一种可能的实现方式中,终端设备发送第一PUSCH,第一PUSCH中承载第三信息或第四信息,或者第一PUSCH中承载第三信息和第四信息。
一种可能的实现方式中,终端设备发送第二PUSCH,第二PUSCH中承载第三信息或第四信息,或者第一PUSCH中承载第三信息和第四信息。
可选的,终端设备发送的PUSCH中可以包括承载指示信息,承载指示信息用于指示终端设备发送的PUSCH中承载的内容。所述承载的内容为第三信息或第四信息,或者第三信息和第四信息。
实施例四中,第二下行控制信息与第一PUSCH之间的间隔可以根据公式(11)或公式(12)确定,也可以通过其他方式确定,本申请并不限定。第二下行控制信息与第二PUSCH之间的间隔可以为实施例一中的第一时长,也可以通过其他方式确定,本申请并不限定。
本申请实施例一至实施例四,可以分别独立执行,也可以联合起来执行,本申请实施例对此并不限定。
需要说明的是,本申请实施例中,如果网络设备没有向终端设备发送第一配置信息。此时可以按照现有技术中的方式确定第一下行控制信息与第二物理上行信道之间的间隔。或者,还可以按照实施例三中的方式确定第一下行控制信息与第二物理上行信道之间的间隔,本申请并不限定。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备或终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图6所示,本申请实施例还提供一种装置600用于实现上述方法中网络设备或终端设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置600可以包括:处理单元601和通信单元602。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中网络设备或终端设备发送和接收的步骤。
以下,结合图6至图7详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
通信单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信单元602中用于实现接收功能的器件视为接收单元,将通信单元602中用于实现发送功能的器件视为发送单元,即通信单元602包括接收单元和发送单元。通信单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
通信装置600执行上面实施例中图3所示的流程中终端设备的功能时:
通信单元,用于接收来自网络设备的第一下行控制信息,所述第一下行控制信息用于调度第一物理上行信道,所述第一物理上行信道用于承载第一信息;所述第一物理上行信 道和第二物理上行信道在时域上重叠,所述第二物理上行信道用于承载第二信息;
处理单元,用于根据所述第一信息对应的第一逻辑信道优先级和所述第二信息对应的第二逻辑信道优先级,发送所述第一物理上行信道和所述第二物理上行信道中的一个物理上行信道;
其中,所述第一下行控制信息与所述第二物理上行信道之间的间隔大于或等于第一时长,所述第一时长大于第二时长;
所述第二时长为PUSCH准备时长,或者第二时长为根据所述PUSCH准备时长确定的时长。
通信装置600执行上面实施例中图3所示的流程中网络设备的功能时:
处理单元,用于通过通信单元向终端设备发送第一下行控制信息,所述第一下行控制信息用于调度第一物理上行信道,所述第一物理上行信道用于承载第一信息;所述第一物理上行信道和第二物理上行信道在时域上重叠,所述第二物理上行信道用于承载第二信息;
所述处理单元,用于通过所述通信单元接收来自所述终端设备的所述第一物理上行信道和所述第二物理上行信道中的一个物理上行信道;
其中,接收到的所述一个物理上行信道是根据所述第一信息对应的第一逻辑信道优先级和所述第二信息对应的第二逻辑信道优先级确定的;
其中,所述第一下行控制信息与所述第二物理上行信道之间的间隔大于或等于第一时长,所述第一时长大于第二时长;所述第二时长为PUSCH准备时长,或者第二时长为根据所述PUSCH准备时长确定的时长。
以上只是示例,处理单元601和通信单元602还可以执行其他功能,更详细的描述可以参考图5所示的方法实施例中相关描述,这里不加赘述。
如图7所示为本申请实施例提供的装置700,图7所示的装置可以为图6所示的装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中终端设备或者网络设备的功能。为了便于说明,图7仅示出了该通信装置的主要部件。
如图7所示,通信装置700包括处理器710和接口电路720。处理器710和接口电路720之间相互耦合。可以理解的是,接口电路720可以为收发器或输入输出接口。可选的,通信装置700还可以包括存储器730,用于存储处理器710执行的指令或存储处理器710运行指令所需要的输入数据或存储处理器710运行指令后产生的数据。
当通信装置700用于实现图5所示的方法时,处理器710用于实现上述处理单元601的功能,接口电路720用于实现上述通信单元602的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing  Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(FieldProgrammable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中处理器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种通信方法,其特征在于,应用于终端设备,包括:
    接收来自网络设备的第一下行控制信息,所述第一下行控制信息用于调度第一物理上行信道,所述第一物理上行信道用于承载第一信息;
    所述第一物理上行信道和第二物理上行信道在时域上重叠,所述第二物理上行信道用于承载第二信息;
    根据所述第一信息对应的第一逻辑信道优先级和所述第二信息对应的第二逻辑信道优先级,发送所述第一物理上行信道和所述第二物理上行信道中的一个物理上行信道;
    其中,所述第一下行控制信息与所述第二物理上行信道之间的间隔大于或等于第一时长,所述第一时长大于第二时长;
    所述第二时长为PUSCH准备时长,或者第二时长为根据所述PUSCH准备时长确定的时长。
  2. 根据权利要求1所述的方法,其特征在于,所述第二时长为PUSCH准备时长,是指所述第二时长为所述第一物理上行信道和所述第二物理上行信道在时域上没有重叠时的PUSCH准备时长;
    或者,所述第二时长为PUSCH准备时长,是指所述第二时长为,没有配置第一配置信息时的PUSCH准备时长,所述第一配置信息用于指示上行物理信道重叠时基于逻辑信道优先级从重叠的上行物理信道中确定进行传输的上行物理信道。
  3. 根据权利要求1所述的方法,其特征在于,所述第二时长为根据所述PUSCH准备时长确定的时长,包括:
    所述第二时长
    Figure PCTCN2021140714-appb-100001
    满足以下形式:
    Figure PCTCN2021140714-appb-100002
    Figure PCTCN2021140714-appb-100003
    其中,N 2是PUSCH准备时长;d 2,1的取值为0或1;κ是常数;μ是子载波间隔索引;T C是时间单元;T ext是与共享频谱信道接入相关的参数;T switch是上行切换间隔;d 2,2是带宽部分BWP切换时间或者0;max()是取最大值运算。
  4. 根据权利要求1至2任一所述的方法,其特征在于,所述第二物理上行信道为配置授权PUSCH。
  5. 根据权利要求3所述的方法,其特征在于,所述第二物理上行信道为PUCCH。
  6. 根据权利要求5所述的方法,其特征在于,第一时长T 1满足以下形式:
    Figure PCTCN2021140714-appb-100004
    Figure PCTCN2021140714-appb-100005
    Δ1是终端设备上报的值或者预设值。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述第一下行控制信息与所述第一物理上行信道之间的间隔大于或等于第三时长,所述第三时长大于第四时长;
    所述第四时长T proc,2满足以下形式:
    T proc,2=max((N 2+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2);
    其中,N 2是PUSCH准备时长;d 2,1的取值为0或1;d 2是终端设备上报的值;k是常 数;μ是子载波间隔索引;T C是时间单元;T ext是与共享频谱信道接入相关的参数;T switch是上行切换间隔;d 2,2是带宽部分BWP切换时间或者0;max()是取最大值运算。
  8. 根据权利要求7所述的方法,其特征在于,所述第三时长T 2满足以下形式:
    T 2=max((N 22+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2);
    其中,Δ 2是终端设备上报的值或者预设值。
  9. 根据权利要求1至8任一所述的方法,其特征在于,所述第一时长等于所述第二时长与预设时长之和,预设时长是终端设备上报的值或者预设值。
  10. 根据权利要求1至8任一所述的方法,其特征在于,所述终端设备配置为PUSCH处理能力2时,所述第一时长等于PUSCH处理能力1对应的PUSCH准备时长。
  11. 一种通信方法,其特征在于,应用于网络设备,包括:
    向终端设备发送第一下行控制信息,所述第一下行控制信息用于调度第一物理上行信道,所述第一物理上行信道用于承载第一信息;所述第一物理上行信道和第二物理上行信道在时域上重叠,所述第二物理上行信道用于承载第二信息;
    接收来自所述终端设备的所述第一物理上行信道和所述第二物理上行信道中的一个物理上行信道;
    其中,接收到的所述一个物理上行信道是根据所述第一信息对应的第一逻辑信道优先级和所述第二信息对应的第二逻辑信道优先级确定的;
    其中,所述第一下行控制信息与所述第二物理上行信道之间的间隔大于或等于第一时长,所述第一时长大于第二时长;所述第二时长为PUSCH准备时长,或者第二时长为根据所述PUSCH准备时长确定的时长。
  12. 根据权利要求11所述的方法,其特征在于,所述第二时长为PUSCH准备时长,是指所述第二时长为所述第一物理上行信道和所述第二物理上行信道在时域上没有重叠时的PUSCH准备时长;
    或者,所述第二时长为PUSCH准备时长,是指所述第二时长为,没有配置第一配置信息时的PUSCH准备时长,所述第一配置信息用于指示上行物理信道重叠时基于逻辑信道优先级从重叠的上行物理信道中确定进行传输的上行物理信道。
  13. 根据权利要求11所述的方法,其特征在于,所述第二时长为根据所述PUSCH准备时长确定的时长,包括:
    所述第二时长
    Figure PCTCN2021140714-appb-100006
    满足以下形式:
    Figure PCTCN2021140714-appb-100007
    Figure PCTCN2021140714-appb-100008
    其中,N 2是PUSCH准备时长;d 2,1的取值为0或1;κ是常数;μ是子载波间隔索引;T C是时间单元;T ext是与共享频谱信道接入相关的参数;T switch是上行切换间隔;d 2,2是带宽部分BWP切换时间或者0;max()是取最大值运算。
  14. 根据权利要求11至12任一所述的方法,其特征在于,所述第二物理上行信道为配置授权PUSCH。
  15. 根据权利要求13所述的方法,其特征在于,所述第二物理上行信道为PUCCH。
  16. 根据权利要求15所述的方法,其特征在于,第一时长T 1满足以下形式:
    Figure PCTCN2021140714-appb-100009
    Figure PCTCN2021140714-appb-100010
    Δ1是终端设备上报的值或者预设值。
  17. 根据权利要求11至16任一所述的方法,其特征在于,所述第一下行控制信息与所述第一物理上行信道之间的间隔大于或等于第三时长,所述第三时长大于第四时长;
    所述第四时长T proc,2满足以下形式:
    T proc,2=max((N 2+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2);
    其中,N 2是PUSCH准备时长;d 2,1的取值为0或1;d 2是终端设备上报的值;k是常数;μ是子载波间隔索引;T C是时间单元;T ext是与共享频谱信道接入相关的参数;T switch是上行切换间隔;d 2,2是带宽部分BWP切换时间或者0;max()是取最大值运算。
  18. 根据权利要求17所述的方法,其特征在于,所述第三时长T 2满足以下形式:
    T 2=max((N 22+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2);
    其中,Δ 2是终端设备上报的值或者预设值。
  19. 根据权利要求11至18任一所述的方法,其特征在于,所述第一时长等于所述第二时长与预设时长之和,预设时长是终端设备上报的值或者预设值。
  20. 根据权利要求11至18任一所述的方法,其特征在于,所述终端设备配置为PUSCH处理能力2时,所述第一时长等于PUSCH处理能力1对应的PUSCH准备时长。
  21. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自网络设备的第一下行控制信息,所述第一下行控制信息用于调度第一物理上行信道,所述第一物理上行信道用于承载第一信息;所述第一物理上行信道和第二物理上行信道在时域上重叠,所述第二物理上行信道用于承载第二信息;
    处理单元,用于根据所述第一信息对应的第一逻辑信道优先级和所述第二信息对应的第二逻辑信道优先级,发送所述第一物理上行信道和所述第二物理上行信道中的一个物理上行信道;
    其中,所述第一下行控制信息与所述第二物理上行信道之间的间隔大于或等于第一时长,所述第一时长大于第二时长;
    所述第二时长为PUSCH准备时长,或者第二时长为根据所述PUSCH准备时长确定的时长。
  22. 根据权利要求21所述的装置,其特征在于,所述第二物理上行信道为配置授权PUSCH;或者,所述第二物理上行信道为PUCCH。
  23. 根据权利要求21或22所述的装置,其特征在于,第一时长T 1满足以下形式:
    Figure PCTCN2021140714-appb-100011
    Figure PCTCN2021140714-appb-100012
    Δ1是终端设备上报的值或者预设值。
  24. 根据权利要求21至23任一所述的装置,其特征在于,所述第一下行控制信息与所述第一物理上行信道之间的间隔大于或等于第三时长,所述第三时长大于第四时长;
    所述第四时长T proc,2满足以下形式:
    T proc,2=max((N 2+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2);
    其中,N 2是PUSCH准备时长;d 2,1的取值为0或1;d 2是终端设备上报的值;k是常数;μ是子载波间隔索引;T C是时间单元;T ext是与共享频谱信道接入相关的参数;T switch是上行切换间隔;d 2,2是带宽部分BWP切换时间或者0;max()是取最大值运算;
    所述第三时长T 2满足以下形式:
    T 2=max((N 22+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2);
    其中,Δ 2是终端设备上报的值或者预设值。
  25. 一种通信装置,其特征在于,包括:
    处理单元,用于通过通信单元向终端设备发送第一下行控制信息,所述第一下行控制信息用于调度第一物理上行信道,所述第一物理上行信道用于承载第一信息;所述第一物理上行信道和第二物理上行信道在时域上重叠,所述第二物理上行信道用于承载第二信息;
    所述处理单元,用于通过所述通信单元接收来自所述终端设备的所述第一物理上行信道和所述第二物理上行信道中的一个物理上行信道;
    其中,接收到的所述一个物理上行信道是根据所述第一信息对应的第一逻辑信道优先级和所述第二信息对应的第二逻辑信道优先级确定的;
    其中,所述第一下行控制信息与所述第二物理上行信道之间的间隔大于或等于第一时长,所述第一时长大于第二时长;所述第二时长为PUSCH准备时长,或者第二时长为根据所述PUSCH准备时长确定的时长。
  26. 根据权利要求25所述的装置,其特征在于,所述第二物理上行信道为配置授权PUSCH;或者,所述第二物理上行信道为PUCCH。
  27. 根据权利要求25或26所述的装置,其特征在于,第一时长T 1满足以下形式:
    Figure PCTCN2021140714-appb-100013
    Figure PCTCN2021140714-appb-100014
    Δ1是终端设备上报的值或者预设值。
  28. 根据权利要求25至27任一所述的装置,其特征在于,所述第一下行控制信息与所述第一物理上行信道之间的间隔大于或等于第三时长,所述第三时长大于第四时长;
    所述第四时长T proc,2满足以下形式:
    T proc,2=max((N 2+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2);
    其中,N 2是PUSCH准备时长;d 2,1的取值为0或1;d 2是终端设备上报的值;k是常数;μ是子载波间隔索引;T C是时间单元;T ext是与共享频谱信道接入相关的参数;T switch是上行切换间隔;d 2,2是带宽部分BWP切换时间或者0;max()是取最大值运算;
    所述第三时长T 2满足以下形式:
    T 2=max((N 22+d 2,1+d 2)(2048+144)·κ2 ·T C+T ext+T switch,d 2,2);
    其中,Δ 2是终端设备上报的值或者预设值。
  29. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至20中任意一项所述的方法。
  30. 一种计算机程序产品,其特征在于,包括计算机可读指令,当通信装置读取并执行所述计算机可读指令,使得所述通信装置执行如权利要求1至20中任一项所述的方法。
PCT/CN2021/140714 2021-01-22 2021-12-23 一种通信方法及装置 WO2022156477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110091091.4A CN114828233A (zh) 2021-01-22 2021-01-22 一种通信方法及装置
CN202110091091.4 2021-01-22

Publications (1)

Publication Number Publication Date
WO2022156477A1 true WO2022156477A1 (zh) 2022-07-28

Family

ID=82524712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140714 WO2022156477A1 (zh) 2021-01-22 2021-12-23 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN114828233A (zh)
WO (1) WO2022156477A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065474A1 (en) * 2022-09-29 2024-04-04 Apple Inc. Pdsch processing time enhancement to support uplink transmit switching

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190261391A1 (en) * 2018-01-22 2019-08-22 Intel Corporation Handling overlapping of pucch and pusch for new radio systems
CN110299976A (zh) * 2018-03-21 2019-10-01 电信科学技术研究院有限公司 一种信息传输方法、接收方法、终端及网络设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190261391A1 (en) * 2018-01-22 2019-08-22 Intel Corporation Handling overlapping of pucch and pusch for new radio systems
CN110299976A (zh) * 2018-03-21 2019-10-01 电信科学技术研究院有限公司 一种信息传输方法、接收方法、终端及网络设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Corrections on UCI enhancement", 3GPP DRAFT; R1-2003528, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20200525 - 20200605, 16 May 2020 (2020-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051885312 *
NOKIA, NOKIA SHANGHAI BELL: "On UCI Enhancements for NR URLLC", 3GPP DRAFT; R1-1912512, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823452 *
ZTE: "UL control enhancements for NR URLLC", 3GPP DRAFT; R1-1910101 UL CONTROL ENHANCEMENTS FOR NR URLLC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 8 October 2019 (2019-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051809079 *

Also Published As

Publication number Publication date
CN114828233A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US11606803B2 (en) Resource allocation and scheduling using a buffer status report (BSR)
CN108781465B (zh) 信道接入优先级类别选择
EP3567966B1 (en) Semi-static scheduling method, network device and terminal device
WO2017193980A1 (zh) 传输下行控制信息的方法和装置
US11324020B2 (en) Data scheduling and transmission for different logical channels
CN110225547B (zh) 一种调度请求发送、接收方法、终端及网络侧设备
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
JP6900501B2 (ja) データ伝送方法、端末機器及びネットワーク機器
CN109831827B (zh) 数据传输方法、终端和基站
WO2020047856A1 (zh) 配置信息的传输方法和终端设备
US20210160852A1 (en) Resource configuration method and terminal device
WO2020025042A1 (zh) 资源配置的方法和终端设备
US10506580B2 (en) Uplink data transmission method and device
WO2018171651A1 (zh) 资源调度的方法和装置
JP7315182B2 (ja) サイドリンク情報の伝送方法、通信デバイス、およびネットワークデバイス
US10873430B2 (en) Signal sending method and apparatus
WO2018090259A1 (zh) 上行信号的传输方法和装置
CN110839284A (zh) 一种调度请求资源确定及配置方法、设备及装置
JP2023082193A (ja) 自動車のネットワークにおけるキャリア選択方法及び端末機器
JP2021516475A (ja) チャネル伝送の方法、端末機器及びネットワーク機器
WO2022156477A1 (zh) 一种通信方法及装置
WO2021036942A1 (zh) 一种srs的传输方法及装置
WO2020147814A1 (zh) 资源分配的方法和设备
WO2017206056A1 (zh) 一种基于非授权频带的通信方法、相关设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920851

Country of ref document: EP

Kind code of ref document: A1