WO2022027351A1 - 微元件制程中的绑定装置及绑定方法以及焊接剂盛放单元 - Google Patents
微元件制程中的绑定装置及绑定方法以及焊接剂盛放单元 Download PDFInfo
- Publication number
- WO2022027351A1 WO2022027351A1 PCT/CN2020/107191 CN2020107191W WO2022027351A1 WO 2022027351 A1 WO2022027351 A1 WO 2022027351A1 CN 2020107191 W CN2020107191 W CN 2020107191W WO 2022027351 A1 WO2022027351 A1 WO 2022027351A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solder
- micro
- bound
- binding
- components
- Prior art date
Links
- 229910000679 solder Inorganic materials 0.000 title claims abstract description 161
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 230000007246 mechanism Effects 0.000 claims abstract description 14
- 230000004907 flux Effects 0.000 claims description 39
- 230000000694 effects Effects 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 14
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 4
- 239000003292 glue Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 4
- -1 polydimethylsiloxane Polymers 0.000 claims description 4
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 239000012298 atmosphere Substances 0.000 claims description 3
- 238000006303 photolysis reaction Methods 0.000 claims description 2
- 230000015843 photosynthesis, light reaction Effects 0.000 claims description 2
- 238000000197 pyrolysis Methods 0.000 claims description 2
- 238000003466 welding Methods 0.000 abstract description 7
- 238000001816 cooling Methods 0.000 abstract description 6
- 230000003287 optical effect Effects 0.000 description 12
- 230000001052 transient effect Effects 0.000 description 11
- 238000001514 detection method Methods 0.000 description 10
- 238000005476 soldering Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000012806 monitoring device Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K3/00—Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
- B23K3/06—Solder feeding devices; Solder melting pans
- B23K3/0646—Solder baths
- B23K3/0669—Solder baths with dipping means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K37/00—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
- B23K37/04—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
- B23K2101/40—Semiconductor devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
- B23K2101/42—Printed circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0066—Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
Definitions
- the present application relates to the field of display technology, and in particular, to a binding device and a binding method for binding a micro-component to be bound and a driving backplane in a micro-component manufacturing process, and a solder holding unit.
- Micro-components taking Micro Light-Emitting Diode (Micro LED) as an example, in the mass transfer process, the bonding of the component electrodes and the backplane electrodes after the micro-components to be bound and the substrate are peeled off has always been in the industry. a problem.
- Micro LED Micro Light-Emitting Diode
- the purpose of the present application is to provide a binding device and a binding method and a solder holding unit in a micro-component manufacturing process, aiming at solving the problem of peeling the component electrode from the substrate and the backplane electrode.
- Technical issues with binding are to provide a binding device and a binding method and a solder holding unit in a micro-component manufacturing process, aiming at solving the problem of peeling the component electrode from the substrate and the backplane electrode.
- the present application provides a binding device in a micro-component manufacturing process, comprising: a soldering flux holding unit, which is provided with a soldering flux hole, and the soldering flux hole holds molten solder; and a transfer mechanism, which is configured to Picking up and transferring the micro-components to be bound; wherein, the transfer mechanism picks up the micro-components to be bound and transfers them into the solder holes to make the element electrodes of the micro-components to be bound adhere to the solder, and then Transfer the to-be-bonded micro-elements adhered with the solder to a driving backplane for bonding.
- the present application realizes the fast binding of the to-be-bonded micro-elements and the driving backplane, reduces the problem of damage to the lines of the to-be-bonded micro-elements and the driving backplane caused by the existing laser welding, and does not need to use laser equipment, thus saving costs .
- the present application also provides a binding method in a micro-component manufacturing process, comprising the steps of: peeling off the to-be-bound micro-components from the substrate; picking up and transferring the to-be-bound micro-components to a A solder holding unit, so that the element electrodes of the micro-components to be bound adhere to the molten solder from the solder holes of the solder holding unit;
- the binding micro-components are transferred to a driving backplane, and the soldering agent is cooled to realize the binding of the to-be-bound microcomponents and the driving backplane.
- the present application realizes the fast binding of the to-be-bonded micro-components and the driving backplane, reduces the problem of circuit damage of the to-be-bound micro-components and the driving backplane caused by the existing laser welding, does not need to use laser equipment, and saves costs.
- the present application also provides a solder holding unit, comprising a body and a plurality of solder holes provided on the body, the plurality of solder holes are arranged in an array on the body, each Each of the flux holes includes a flux introduction hole and a flux accommodating hole communicated with the flux introduction hole, and the flux accommodating hole replenishes the consumed flux through the flux introduction hole.
- the flux holding unit can replenish the consumed flux in time.
- the present application realizes the fast binding of the micro-components to be bound and the driving backplane, reduces the problem of line damage caused by laser welding of the micro-components to be bound and the driving backplane in the prior art, and does not need to use laser equipment, save costs.
- FIG. 1 is a schematic plan view of a soldering flux holding unit in an embodiment of the present application.
- FIG. 2 is a schematic cross-sectional view of the solder containing unit in FIG. 1 .
- FIG. 3 is a schematic side view of a transfer mechanism in an embodiment of the application.
- FIG. 4 is a schematic plan view of FIG. 3 .
- FIG. 5 is a schematic diagram of a process of binding a micro-component to be bound and a driving backplane in an embodiment of the present application.
- FIG. 6 is a schematic flowchart of a binding method in a micro-component manufacturing process according to an embodiment of the present application.
- 200-to-be-bonded micro-component 400-drive backplane; 210-element electrode; 410-backplane electrode; 10-solder holding unit; 20-transfer mechanism; 11-solder hole; 300-substrate; 111- 112-flux receiving hole; 23-drive shaft 23; 21-transfer plate 21; 22-protrusion 22; 211-first surface; 212-second surface.
- Micro components e.g. Micro LED or other types of micro-components, mass transfer process, after the laser peels off the micro-components to be bound from the substrate, the binding of the component electrodes and the backplane electrodes has always been a difficult problem in the industry.
- the binding device in the micro-component manufacturing process is used for binding the to-be-bound micro-component 200 and the driving backplane 400 .
- the micro-element 200 to be bound includes two element electrodes 210 .
- the two element electrodes 210 may be located on the same side of the micro-elements 200 to be bound, or on opposite sides of the micro-elements 200 to be bound. In this embodiment, the two element electrodes 210 are located on the same side of the micro-elements 200 to be bound.
- the driving backplane 400 is provided with backplane electrodes 410 corresponding to the element electrodes 210 .
- the binding device includes a flux holding unit 10 and a transfer mechanism 20 .
- the solder holding unit 10 is provided with a solder hole 11 corresponding to each element electrode 210 of the micro-elements 200 to be bound.
- the flux hole 11 is used to hold molten flux and keep the molten flux to a preset temperature.
- the transfer mechanism 20 is configured to pick up and transfer the micro-elements 200 to be bonded; the transfer mechanism 20 picks up and transfers the micro-elements 200 to be bonded into the solder holes 11 to make the to-be-bonded microelements 200 picked up and transferred.
- the element electrodes 210 of the micro-elements 200 are adhered with solder, and then the micro-elements 200 to be bonded with the solder adhered are transferred to a driving backplane 400 for bonding.
- the present application realizes the fast binding of the micro-elements 200 to be bound and the driving backplane 400, and reduces the problem of line damage caused by the laser welding of the micro-elements 200 to be bound and the driving backplane 400 in the prior art. And no need to use laser equipment, saving costs.
- the to-be-bonded micro-component 200 may be a Micro LED, which includes any one of a positive chip structure, a vertical chip structure, or a flip chip structure.
- the two element electrodes 210 may be located on the same side of the to-be-bonded micro-element 200, so
- the substrate 300 is a transient plate, for example, a sapphire substrate or other types of substrates, which is not limited herein.
- the two element electrodes 210 may be located on the same side of the to-be-bonded micro-element 200, and the substrate 300 may be a growth substrate , the transient plate and the growth substrate are located on both sides of the to-be-bonded micro-element 200; or, when the to-be-bonded micro-element 200 is a vertical chip structure, and the two element electrodes 210 can be When located on opposite sides of the micro-element 200 to be bound, the substrate 300 may be a growth substrate, and the transient plate and the growth substrate are located on both sides of the micro-element 200 to be bound, the One of the two element electrodes 210 is disposed close to the transient plate, and the other element electrode 210 is disposed close to the growth substrate.
- the manner of separating the element electrode 210 from the substrate 300 may be, but not limited to, laser melting, thermal melting, etc., which is not limited herein.
- the solder hole 11 includes a solder introduction hole 111 and a solder receiving hole 112 communicating with the solder introduction hole 111 ; the solder receiving hole 112 penetrates the The flux introduction hole 111 replenishes the consumed flux.
- the solder introduction hole 111 is a straight hole and is located at the bottom of the solder holding unit 10 .
- the solder receiving hole 112 is located at the top of the solder receiving unit 10 , and the solder introduction hole 111 is communicated with the solder receiving hole 112 .
- the solder introduction hole 111 is used for replenishing solder to the solder receiving hole 112 . Whenever the element electrodes 210 of the micro-components 200 to be bound are adhered with the solder, the solder introduction hole 111 will simultaneously and quantitatively replenish the solder to the solder receiving hole 112 , so that the solder can be stabilized at a fixed liquid level.
- solder can be replenished to the solder receiving hole 112 through the solder introduction hole 111 .
- the cross section of the solder receiving hole 112 is an inverted trapezoid; for example, as shown in FIG. 2 , the longitudinal section of the solder receiving hole 112 may be an inverted trapezoid. It can be understood that, in other embodiments, the cross section of the solder containing hole 112 may also be an inverted trapezoid, which is not limited herein.
- the trapezoidal structure-shaped solder receiving hole 112 can play a role in controlling the adhesion position of the element electrode 210 and the solder, and can ensure that the amount of solder adhesion of each element electrode 210 is consistent.
- the solder introduction hole 111 is located in the middle of the bottom of the solder receiving hole 112 . In this way, the process of introducing the flux into the flux introducing hole 111 is more balanced. It can be understood that, in other embodiments, the solder introduction hole 111 may also be located at other positions at the bottom of the solder receiving hole 112 , which is not limited herein.
- the number of the solder holes 11 may be multiple, and each of the solder holes 11 is arranged in an array on the solder holding unit 10 .
- the element electrodes 210 of the plurality of microelements 200 to be bound can be individually adhered with the solder at the same time.
- the solder holding unit 10 is provided with 6*6 solder holes 11 .
- the number of the solder holes 11 is not limited to this, and can be specifically set according to actual needs.
- the distance between two adjacent solder holes 11 is the same as the to-be-bonded micro-components 200 The distance between the two element electrodes is equal.
- the distance between two adjacent solder holes 11 is the same as the element electrodes of two adjacent micro-components 200 to be bonded. distances are equal.
- the transfer mechanism 20 includes a control module (not shown), a drive shaft 23 , a transfer plate 21 and at least one protruding portion 22 , and the transfer plate 21 has an oppositely disposed first A surface 211 and a second surface 212, the at least one protrusion 22 is provided on the first surface 211 of the transfer plate 21, the drive shaft 23 is provided on the second surface 212 of the transfer plate 21, so
- the control module drives the transfer plate 21 to move through the drive shaft 23 to make the at least one protrusion 22 move in a three-dimensional direction (for example, the control accuracy is less than or equal to 1 ⁇ m), so as to pick up and transfer the micro-components to be bound. 200.
- the protruding portion 22 picks up the micro-components 200 to be bonded from the substrate 300 , and then transfers them to the solder holding unit 10 so that the element electrodes 210 of the micro-components 200 to be bonded protrude into the solder holes 11 to adhere the solder. , and then take out the micro-components 200 to be bound from the solder hole 11 and quickly bind them to the driving backplane 400 to realize the fast binding of the micro-components 200 to be bound and the driving backplane 400 .
- the element electrode 210 and the transient plate are bonded by an adhesive layer. Therefore, the transient plate can be used as the transfer plate 21, and the adhesive layer between the element electrode 210 and the transient plate can be used as the at least one protrusion 22, so that the drive shaft and the transient plate connected, and drive the transient board to drive the micro-components 200 to be bound to be transferred to the driving backplane 400 for binding.
- the element electrodes 210 of the to-be-bonded micro-elements 200 protrude into the solder holes 11 to adhere the solder and hold the solder for a first preset duration (eg, 5S to 10S or other durations) , so that the element electrode 210 is fully contacted with the solder corresponding to the solder receiving hole 112 .
- a first preset duration eg, 5S to 10S or other durations
- the micro-components 200 to be bound are lifted from the corresponding solder holes 11 and held for a second preset time period (eg, 1S-3S or other time periods) to carry out excess solder droplets Drop processing, thereby avoiding waste of solder.
- a second preset time period eg, 1S-3S or other time periods
- the material of the protruding portion 22 may be, but not limited to, one of polydimethylsiloxane, photolysis glue, pyrolysis glue, and the like.
- the adhesive force between the protruding portion 22 and the corresponding micro-element 200 to be bound is smaller than that between the micro-element 200 to be bound and the driving back In this way, when the protrusion 22 transfers the to-be-bonded micro-element 200 to the driving backplane 400 for binding, the protrusion 200 can be separated from the to-be-bonded micro-element 200 .
- the number of the at least one protruding portion 22 is multiple, and the multiple protruding portions 22 are arranged in an array.
- the protrusions 22 are in a 3*3 array. It can be understood that, in other embodiments, the number of the protruding parts 22 is not limited by this.
- the distance between two adjacent protrusions 22 is equal to the distance between two adjacent solder holes 11 .
- the distance between the driving backplane 400 and the solder holding unit 10 is between 10 mm and 100 mm, and the process environment is about 110° C. ⁇ 130° C., so that It is ensured that the solder adhering to the element electrodes 210 is not cured before the element electrodes 210 are transferred to the driving backplane 400 , so that the micro-components 200 to be bound and the driving backplane 400 can be normally bound.
- the solder between the to-be-bound micro-components 200 and the driving backplane 400 is cooled and cured, so that The micro-components 200 to be bound and the driving backplane 400 are firmly connected by solder.
- the method of cooling and curing the solder between the to-be-bonded micro-component 200 and the driving backplane 400 may be the method of compressed air.
- the bonding effect is structurally and electrically connected by an optical detection device If it is detected that the bonding is not good, the badly bonded chip is peeled off from the driving backplane 400 to perform new bonding. It can be understood that, the new binding may be to peel off the solid solder on the element electrodes 210 of the originally poorly bound micro-components 200 to be bound, and reconnect the to-be-bound micro-components 200 to the drive backplane. 400 to bind, or, bind a new micro-component 200 to be bound to the drive backplane 400, and again through the optical detection device to detect the structure and electrical connection of the binding effect until the binding is determined until good.
- the optical detection device may be, but not limited to, an automatic optical detection device and a lighting machine.
- the automatic optical detection device is used for structurally detecting the binding effect, and the lighting machine uses In terms of detecting the binding effect from the aspect of electrical connection, when the automatic optical monitoring device detects that the binding effect is good in terms of structure and the lighting machine detects that the binding effect is good in terms of electrical connection, it is determined that the binding effect is good.
- the present application also provides a schematic flowchart of a binding method in a micro-component manufacturing process.
- the order of the steps of the binding method is not limited to the following order, and may be adjusted according to actual needs.
- the binding method includes the following steps.
- Step 61 Separate the micro-component 200 to be bound from the substrate 300 .
- the two element electrodes 210 may be located on the same side of the to-be-bonded micro-element 200, so
- the substrate 300 is a transient plate, for example, a sapphire substrate or other types of substrates, which is not limited herein.
- the manner of separating the element electrode 210 from the transient plate 300 may be, but not limited to, laser melting, heating and melting, etc., which are not limited herein.
- Step 62 Pick up and transfer the micro-components 200 to be bound to a solder holding unit 10 by the transfer mechanism 20 , so that the element electrodes 210 of the micro-components 200 to be bound are removed from the solder holes 11 of the solder holding unit 10 Adhesion to molten solder.
- Step 63 Transfer the to-be-bonded micro-components 200 adhered with the molten solder to a driving backplane 400, and after the cooling of the solder is completed to realize the to-be-bonded micro-components 200 and the driving backplane 400 binding.
- the control module drives the transfer plate 21 to move through the drive shaft 23 to make the at least one protrusion 22 move in a three-dimensional direction (for example, the control accuracy is ⁇ 1 ⁇ m), so as to pick up and transfer the Bind the microelement 200 .
- the protruding portion 22 picks up the micro-components 200 to be bonded from the substrate 300 , and then transfers them to the solder holding unit 10 so that the element electrodes 210 of the micro-components 200 to be bonded protrude into the solder holes 11 to adhere the solder. , and then take out the micro-components 200 to be bound from the solder hole 11 and quickly bind them to the driving backplane 400 to realize the fast binding of the micro-components 200 to be bound and the driving backplane 400 .
- the present application realizes the fast binding of the to-be-bonded micro-element 200 and the driving backplane 400, reduces the problem of line damage of the to-be-bonded micro-element 200 and the driving backplane 400 caused by the existing laser welding, and avoids the use of laser equipment ,save costs.
- the process temperature of the molten solder contained in the solder containing unit 10 needs to be maintained at a preset temperature and the process atmosphere is vacuum, wherein the preset temperature refers to the temperature at which the solder is maintained in a molten state, and the solder may be, but not limited to, indium, tin, or other solders. Taking indium as an example, the process temperature of the solder needs to be maintained at 120 ⁇ 156.7°C, and the process atmosphere is vacuum.
- the flux holding unit 10 may heat the solder contained in the flux holding unit 10 through an external device or a self-contained heating device, so that the flux contained in the flux holding unit 10 is melted.
- the process temperature of the flux in the state of flux needs to be maintained at the preset temperature.
- the element electrodes 210 of the micro-elements 200 to be bound protrude into the solder holes 11 and adhere to the solder for a first predetermined period of time (for example, 5S to 10S or other time), so that the element electrode 210 is sufficiently contacted with the solder corresponding to the solder receiving hole 112 .
- a first predetermined period of time for example, 5S to 10S or other time
- the micro-components 200 to be bound are lifted from the corresponding solder holes 11 and held for a second preset time period (eg, 1S-3S or other time periods) to carry out excess solder droplets Drop processing, thereby avoiding waste of solder.
- a second preset time period eg, 1S-3S or other time periods
- the distance between the driving backplane 400 and the solder holding unit 10 is between 10 mm and 100 mm, and the process environment is about 110° C. ⁇ 130° C., so that It is ensured that the solder adhering to the element electrodes 210 is not cured before the element electrodes 210 are transferred to the driving backplane 400 , so that the micro-components 200 to be bound and the driving backplane 400 can be normally bound.
- the solder between the to-be-bound micro-components 200 and the driving backplane 400 is cooled and cured, so that The micro-components 200 to be bound and the driving backplane 400 are firmly connected by solder.
- the method of cooling and curing the solder between the to-be-bonded micro-component 200 and the driving backplane 400 may be the method of compressed air.
- the method further includes: detecting the binding effect, and if poor binding is found, peeling off the poorly bound micro-elements 200 to be bound from the driving backplane 400 .
- the bonding effect is structurally and electrically connected by an optical detection device If it is detected that the bonding is not good, the badly bonded micro-components 200 to be bonded are peeled off from the driving backplane 400 to perform new bonding. It can be understood that, the new binding may be to peel off the solid solder on the element electrodes 210 of the originally poorly bound micro-components 200 to be bound, and reconnect the to-be-bound micro-components 200 to the drive backplane. 400 to bind, or, bind a new micro-component 200 to be bound to the drive backplane 400, and again through the optical detection device to detect the structure and electrical connection of the binding effect until the binding is determined until good.
- the optical detection device may be, but not limited to, an automatic optical detection device and a lighting machine.
- the automatic optical detection device is used for structurally detecting the binding effect, and the lighting machine uses In terms of detecting the binding effect from the aspect of electrical connection, when the automatic optical monitoring device detects that the binding effect is good in terms of structure and the lighting machine detects that the binding effect is good in terms of electrical connection, it is determined that the binding effect is good.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Micromachines (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
一种微元件制程中的绑定装置及绑定方法以及焊接剂盛放单元(10)。方法包括:将待绑定微元件(200)从基板上剥离(61);通过转移机构(20)拾取及转移待绑定微元件(200)至一焊接剂盛放单元(10),以使待绑定微元件(200)的元件电极(210)从焊接剂盛放单元(10)的焊接剂孔(11)中黏附熔融态的焊接剂(62);以及将黏附有熔融态焊接剂的待绑定微元件(200)转移至一驱动背板(400)上,待焊接剂冷却完成以实现待绑定微元件(200)与驱动背板(400)的绑定(63)。实现了待绑定微元件(200)和驱动背板(400)的快速绑定,并减少了现有激光焊接带来的待绑定微元件(200)及驱动背板(400)线路损伤的问题,节约成本。
Description
本申请涉及显示技术领域,尤其涉及一种微元件制程中待绑定微元件和驱动背板进行绑定的绑定装置及绑定方法以及焊接剂盛放单元。
微元件,以微发光二极管(Micro Light-Emitting Diode,Micro LED)为例,在巨量转移制程中,将待绑定微元件与基板剥离后元件电极与背板电极的绑定一直是行业内的一个难题。
现有技术是在背板电极上放固态的铟或者锡,然后再放待绑定微元件的元件电极,再通过激光焊接工艺进行绑定。然而,该种绑定方法容易带来待绑定微元件与驱动背板线路损伤的问题,而且,由于对位精度要求高,需要借激光设备,导致绑定成本高昂。
鉴于现有技术的不足,本申请的目的在于提供一种微元件制程中的绑定装置及绑定方法以及焊接剂盛放单元,旨在解决将元件电极从基板剥离后元件电极与背板电极进行绑定的技术问题。
本申请提供一种微元件制程中的绑定装置,包括:焊接剂盛放单元,其上设置有焊接剂孔,所述焊接剂孔中盛放有熔融态的焊接剂;以及转移机构,被配置为拾取及转移待绑定微元件;其中,所述转移机构将所述待绑定微元件拾取并转移至所述焊接剂孔中以使所述待绑定微元件的元件电极黏附焊接剂,再将黏附有焊接剂的所述待绑定微元件转移至一驱动背板以进行绑定。
从而,本申请实现了待绑定微元件和驱动背板的快速绑定,减少现有激光焊接带来的待绑定微元件及驱动背板线路损伤的问题,且无需使用激光设备,节约成本。
基于同样的发明构思,本申请还提供一种微元件制程中的绑定方法,包括步骤:将待绑定微元件从基板上剥离;通过转移机构拾取及转移所述待绑定微元件至一焊接剂盛放单元,以使所述待绑定微元件的元件电极从所述焊接剂盛放单元的焊接剂孔中黏附熔融态的焊接剂;以及将黏附有熔融态焊接剂的所述待绑定微元件转移至一驱动背板上,待所述焊接剂冷却完成以实现所述待绑定微元件与所述驱动背板的绑定。
从而,本申请实现了待绑定微元件和驱动背板的快速绑定,减少现有激光焊接带来的待绑定微元件及驱动背板线路损伤的问题,无需使用激光设备,节约成本。
基于同样的发明构思,本申请还提供一种焊接剂盛放单元,包括本体以及设置在所述本体上的多个焊接剂孔,所述多个焊接剂孔于所述本体上阵列设置,每个焊接剂孔包括焊接剂导入孔以及与所述焊接剂导入孔连通的焊接剂收容孔,且所述焊接剂收容孔通过所述焊接剂导入孔补充耗掉的焊接剂。
从而,所述焊接剂盛放单元可以及时补充消耗掉的焊接剂。
本申请实现了待绑定微元件和驱动背板的快速绑定,减少了现有技术中激光焊接对待绑定微元件和驱动背板所带来的线路损伤的问题,而且无需使用激光设备,节约成本。
图1为本申请一实施例中的焊接剂盛放单元的平面示意图。
图2为图1中的焊接剂盛放单元的截面示意图。
图3为本申请一实施例中的转移机构的侧面示意图。
图4为图3的平面示意图。
图5为本申请一实施例中的待绑定微元件与驱动背板绑定的过程示意图。
图6为本申请一实施例中的微元件制程中的绑定方法的流程示意图。
附图标记说明。
200-待绑定微元件;400-驱动背板;210-元件电极;410-背板电极;10-焊接剂盛放单元;20-转移机构;11-焊接剂孔;300-基板;111-焊接剂导入孔;112-焊接剂收容孔;23-驱动轴23;21-转移板21;22-突出部22;211-第一表面;212-第二表面。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
微元件,例如,Micro
LED或者其它类型的微元件,巨量转移制程,在激光将待绑定微元件与基板剥离后元件电极与背板电极的绑定一直是行业的一个难题。
基于此,本申请希望提供一种能够解决上述技术问题的方案,其详细内容将在后续实施例中得以阐述。
请一并参考图1至图5,微元件制程中的绑定装置用于对待绑定微元件200和驱动背板400进行绑定。其中,待绑定微元件200包括两个元件电极210。所述两个元件电极210可以位于所述待绑定微元件200的同一侧,或者,位于所述待绑定微元件200的相对的两侧。本实施例中,所述两个元件电极210位于所述待绑定微元件200的同一侧。所述驱动背板400上设置有与所述元件电极210相对应的背板电极410。所述待绑定微元件200与所述驱动背板400进行绑定之前,所述待绑定微元件200形成于基板300上。所述绑定装置包括焊接剂盛放单元10和转移机构20。所述焊接剂盛放单元10对应待绑定微元件200的每个元件电极210设置有焊接剂孔11。所述焊接剂孔11用于盛放熔融态的焊接剂,并保持熔融态的焊接剂达到预设温度。所述转移机构20被配置为拾取及转移待绑定微元件200;所述转移机构20将所述待绑定微元件200拾取并转移至所述焊接剂孔11中以使所述待绑定微元件200的元件电极210黏附焊接剂,再将黏附有焊接剂的待绑定微元件200转移至一驱动背板400以进行绑定。
从而,本申请实现了待绑定微元件200和驱动背板400的快速绑定,减少了现有技术中激光焊接对待绑定微元件200和驱动背板400所带来的线路损伤的问题,而且无需使用激光设备,节约成本。
可选择地,在其中一实施例中,所述待绑定微元件200可以为Micro LED,其包括正装型芯片结构、垂直型芯片结构或倒装型芯片结构中的任意一种。
可选择地,在其中一实施例中,当所述待绑定微元件200为倒装型芯片结构时,所述两个元件电极210可以位于所述待绑定微元件200的同一侧,所述基板300为暂态板,例如,蓝宝石基板或者其它类的基板,在此不做限定。在其它实施例中,当所述待绑定微元件200为正装型芯片结构,所述两个元件电极210可以位于所述待绑定微元件200的同一侧,所述基板300可以为生长基板,所述暂态板和所述生长基板位于所述待绑定微元件200的两侧;或者,当所述待绑定微元件200为垂直型芯片结构,且所述两个元件电极210可以位于所述待绑定微元件200的相对的两侧时,所述基板300可以为生长基板,所述暂态板和所述生长基板位于所述待绑定微元件200的两侧,所述两个元件电极210的其中一个元件电极210靠近暂态板设置,另一个元件电极210靠近生长基板设置。
可选择地,在其中一实施例中,所述元件电极210与所述基板300分离的方式可以是但不限于激光熔融、加热熔融等,在此不做限定。
可选择地,在其中一实施例中,所述焊接剂孔11包括焊接剂导入孔111以及与所述焊接剂导入孔111连通的焊接剂收容孔112;所述焊接剂收容孔112透过所述焊接剂导入孔111补充消耗掉的焊接剂。
其中,所述焊接剂导入孔111呈直孔状,位于所述焊接剂盛放单元10的底部。所述焊接剂收容孔112位于所述焊接剂盛放单元10的顶部,且所述焊接剂导入孔111与所述焊接剂收容孔112连通设置。所述焊接剂导入孔111用于为所述焊接剂收容孔112补充焊接剂。每当待绑定微元件200的元件电极210进行焊接剂黏附后所述焊接剂导入孔111会同步定量补充焊接剂至所述焊接剂收容孔112,达到焊接剂稳定在固定液位的功能。
从而,通过所述焊接剂导入孔111可为所述焊接剂收容孔112补充焊接剂。
可选择地,在其中一实施例中,所述焊接剂收容孔112的截面呈倒梯形结构;例如,如图2所示,可以是所述焊接剂收容孔112的纵截面呈倒梯形。可以理解的是,在其它实施例中,也可以是所述焊接剂收容孔112的横截面呈倒梯形,在此不做限定。
从而,所述梯形结构状的焊接剂收容孔112可以起到控制元件电极210与焊接剂黏附位置的作用,可保证每个元件电极210的焊接剂黏附量一致。
可选择地,在其中一实施例中,所述焊接剂导入孔111位于所述焊接剂收容孔112的底部的中部位置。这样,使得焊接剂导入孔111对焊接剂的导入过程更加均衡。可以理解的是,在其它实施例中,所述焊接剂导入孔111还可以位于所述焊接剂收容孔112的底部的其它位置,在此不做限定。
可选择地,所述焊接剂孔11的数量可以为多个,各所述焊接剂孔11于所述焊接剂盛放单元10上阵列设置。
从而,使得多个待绑定微元件200的元件电极210可以同时单独黏附焊接剂。
具体地,在其中一实施例中,所述焊接剂盛放单元10上设置有6*6个所述焊接剂孔11。可选择地,在其它实施例中,所述焊接剂孔11的数量不限于此,具体可以根据实际需要进行设置。
可选择地,在其中一实施例中,所述待绑定微元件200为正装型芯片结构或倒装型芯片结构时,相邻两焊接剂孔11之间的距离与待绑定微元件200的两元件电极之间的距离相等。
可选择地,在其中一实施例中,所述待绑定微元件200为垂直型芯片结构时,相邻两焊接剂孔11之间的距离与相邻两待绑定微元件200的元件电极之间的距离相等。
可选择地,在其中一实施例中,所述转移机构20包括控制模组(图未示)、驱动轴23、转移板21和至少一突出部22,所述转移板21具有相对设置的第一表面211和第二表面212,所述至少一突出部22设置在所述转移板21的第一表面211上,所述驱动轴23设置在所述转移板21的第二表面212上,所述控制模组通过所述驱动轴23驱动所述转移板21运动进而使得所述至少一个突出部22在三维方向上进行运动(例如,控制精度≤1μm),以拾取及转移待绑定微元件200。具体地,所述突出部22从基板300上拾取待绑定微元件200,然后转移至焊接剂盛放单元10使得待绑定微元件200的元件电极210伸入焊接剂孔11中黏附焊接剂,然后把待绑定微元件200从焊接剂孔11中取出并快速绑定到驱动背板400上,实现待绑定微元件200与驱动背板400的快速绑定。
可选择地,在其中一实施例中,当所述基板300为生长基板时,由于所述元件电极210与所述暂态板之间通过粘结层粘结。因此,可以将暂态板作为转移板21,将所述元件电极210与所述暂态板之间的粘结层作为所述至少一突出部22,使得所述驱动轴与所述暂态板连接,并驱动所述暂态板带动所述待绑定微元件200转移至所述驱动背板400上进行绑定。
可选择地,在其中一实施例中,所述待绑定微元件200的元件电极210伸入焊接剂孔11中黏附焊接剂并保持第一预设时长(例如,5S到10S或者其它时长),使元件电极210与对应焊接剂收容孔112的焊接剂充分接触。
可选择地,在其中一实施例中,将待绑定微元件200从对应的焊接剂孔11中提起并保持第二预设时长(例如,1S~3S或者其它时长)以进行多余焊接剂滴落处理,从而,避免造成焊接剂浪费。
可选择地,在其中一实施例中,所述突出部22的材质可以是但不限于为聚二甲基硅氧烷、光解胶、热解胶等的其中一种。当所述突出部22的材质为聚二甲基硅氧烷时,所述突出部22与对应的待绑定微元件200之间的粘结力小于所述待绑定微元件200与驱动背板400之间的粘结力,这样,当突出部22将待绑定微元件200转移至驱动背板400进行绑定时,突出部200能够与待绑定微元件200分离。
可选择地,在其中一实施例中,所述至少一突出部22的数量为多个,且多个突出部22呈阵列状排列。本实施例中,所述突出部22为3*3阵列。可以理解的是,在其它实施例中,所述突出部22的数量不受此限制。相邻两个突出部22之间的间距等于相邻两个焊接剂孔11之间的间距。
从而,可以实现待绑定微元件200的巨量转移和巨量绑定。
可选择地,在其中一实施例中,所述驱动背板400和所述焊接剂盛放单元10之间的间距在10mm~100mm之间,且工艺环境氛围在110℃~130℃左右,从而保证粘附到元件电极210上的焊接剂在元件电极210被转移到驱动背板400之前不固化,达到待绑定微元件200与驱动背板400能够正常进行绑定的目的。
可选择地,在其中一实施例中,当待绑定微元件200与驱动背板400绑定后,对待绑定微元件200与驱动背板400之间的焊接剂进行降温和固化处理,使得待绑定微元件200与驱动背板400之间通过焊接剂稳固连接。
可选择地,在其中一实施例中,对待绑定微元件200与驱动背板400之间的焊接剂进行降温和固化处理的方式可以是压缩空气的方式。
可选择地,在其中一实施例中,在对待绑定微元件200与驱动背板400之间的焊接剂进行降温和固化处理后,通过光学检测设备对绑定效果进行结构和电性连接方面的检测,若检测到绑定不良,则将绑定不良的芯片从所述驱动背板400上剥离,以进行新的绑定。可以理解的是,所述新的绑定可以是将原来绑定不良的待绑定微元件200的元件电极210上的固态的焊接剂剥离,重新将该待绑定微元件200与驱动背板400进行绑定,或者,将一新的待绑定微元件200与驱动背板400进行绑定,并再次通过光学检测设备对绑定效果进行结构和电性连接方面的检测,直至确定绑定良为止。
可选择地,在其中一实施例中,所述光学检测设备可以是但不限于自动光学检测设备和点灯机,所述自动光学检测设备用于从结构方面检测绑定效果,所述点灯机用于从电性连接方面检测绑定效果,当所述自动光学监测设备检测到结构方面绑定效果良且所述点灯机监测到电性连接方面绑定效果良,且确定绑定效果良。
请参考图6,本申请还提供一种微元件制程中的绑定方法的流程示意图。所述绑定方法的步骤的顺序不限定为下面的顺序,具体可以根据实际需要作出调整。所述绑定方法包括以下步骤。
步骤61:将待绑定微元件200与基板300分离。
可选择地,在其中一实施例中,当所述待绑定微元件200为倒装型芯片结构时,所述两个元件电极210可以位于所述待绑定微元件200的同一侧,所述基板300为暂态板,例如,蓝宝石基板或者其它类的基板,在此不做限定。
可选择地,所述元件电极210与所述暂态板300分离的方式可以是但不限于激光熔融、加热熔融等,在此不做限定。
步骤62:通过转移机构20拾取及转移待绑定微元件200后至一焊接剂盛放单元10,使得待绑定微元件200的元件电极210从焊接剂盛放单元10的焊接剂孔11中黏附熔融态的焊接剂。
步骤63:将黏附有熔融态的焊接剂的待绑定微元件200转移至一驱动背板400上,待所述焊接剂冷却完成以实现所述待绑定微元件200与所述驱动背板400的绑定。
具体地,所述控制模组通过所述驱动轴23驱动所述转移板21运动进而使得所述至少一个突出部22在三维方向上进行运动(例如,控制精度≤1μm),以拾取及转移待绑定微元件200。具体地,所述突出部22从基板300上拾取待绑定微元件200,然后转移至焊接剂盛放单元10使得待绑定微元件200的元件电极210伸入焊接剂孔11中黏附焊接剂,然后把待绑定微元件200从焊接剂孔11中取出并快速绑定到驱动背板400上,实现待绑定微元件200与驱动背板400的快速绑定。
从而,本申请实现了待绑定微元件200和驱动背板400的快速绑定,减少现有激光焊接带来的待绑定微元件200及驱动背板400线路损伤的问题,避免使用激光设备,节约成本。
可选择地,在其中一实施例中,盛放在所述焊接剂盛放单元10的熔融态的焊接剂的工艺温度需维持在预设温度且工艺氛围为真空,其中,所述预设温度是指使焊接剂维持熔融态的温度,所述焊接剂可以是但不限于铟、锡或者其它焊接剂。以铟为例,焊接剂的工艺温度需维持在120~156.7℃,工艺氛围为真空。
可选择地,在其中一实施例中,所述焊接剂盛放单元10可以通过外部设备或者自带加热设备对其中的焊接剂进行加热,使得盛放在所述焊接剂盛放单元10的熔融态的焊接剂的工艺温度需维持在预设温度。
可选择地,在其中一实施例中,所述待绑定微元件200的元件电极210伸入焊接剂孔11中黏附焊接剂时可以保持至第一预设时长(例如,5S到10S或者其它时长),使元件电极210与对应焊接剂收容孔112的焊接剂充分接触。
可选择地,在其中一实施例中,将待绑定微元件200从对应的焊接剂孔11中提起并保持第二预设时长(例如,1S~3S或者其它时长)以进行多余焊接剂滴落处理,从而,避免造成焊接剂浪费。
可选择地,在其中一实施例中,所述驱动背板400和所述焊接剂盛放单元10之间的间距在10mm~100mm之间,且工艺环境氛围在110℃~130℃左右,从而保证粘附到元件电极210上的焊接剂在元件电极210被转移到驱动背板400之前不固化,达到待绑定微元件200与驱动背板400能够正常进行绑定的目的。
可选择地,在其中一实施例中,当待绑定微元件200与驱动背板400绑定后,对待绑定微元件200与驱动背板400之间的焊接剂进行降温和固化处理,使得待绑定微元件200与驱动背板400之间通过焊接剂稳固连接。
可选择地,在其中一实施例中,对待绑定微元件200与驱动背板400之间的焊接剂进行降温和固化处理的方式可以是压缩空气的方式。
可选择地,在其中一实施例中,所述方法还包括:对绑定效果进行检测,若发现绑定不良,将绑定不良的待绑定微元件200从所述驱动背板400上剥离。
可选择地,在其中一实施例中,在对待绑定微元件200与驱动背板400之间的焊接剂进行降温和固化处理后,通过光学检测设备对绑定效果进行结构和电性连接方面的检测,若检测到绑定不良,则将绑定不良的待绑定微元件200从所述驱动背板400上剥离,以进行新的绑定。可以理解的是,所述新的绑定可以是将原来绑定不良的待绑定微元件200的元件电极210上的固态的焊接剂剥离,重新将该待绑定微元件200与驱动背板400进行绑定,或者,将一新的待绑定微元件200与驱动背板400进行绑定,并再次通过光学检测设备对绑定效果进行结构和电性连接方面的检测,直至确定绑定良为止。
可选择地,在其中一实施例中,所述光学检测设备可以是但不限于自动光学检测设备和点灯机,所述自动光学检测设备用于从结构方面检测绑定效果,所述点灯机用于从电性连接方面检测绑定效果,当所述自动光学监测设备检测到结构方面绑定效果良且所述点灯机监测到电性连接方面绑定效果良,且确定绑定效果良。
从而,可以有效的排除绑定不良。
应当理解的是,本申请的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本申请所附权利要求的保护范围。
Claims (19)
- 一种微元件制程中的绑定装置,包括:焊接剂盛放单元,其上设置有焊接剂孔,所述焊接剂孔中盛放有熔融态的焊接剂;转移机构,被配置为拾取及转移待绑定微元件;以及其中,所述转移机构将所述待绑定微元件拾取并转移至所述焊接剂孔中以使所述待绑定微元件的元件电极黏附焊接剂,再将黏附有焊接剂的所述待绑定微元件转移至一驱动背板以进行绑定。
- 根据权利要求1所述的微元件制程中的绑定装置,其中,所述焊接剂孔包括焊接剂导入孔以及与所述焊接剂导入孔连通的焊接剂收容孔;所述焊接剂收容孔通过所述焊接剂导入孔补充耗掉的焊接剂。
- 根据权利要求2所述的微元件制程中的绑定装置,其中,所述焊接剂收容孔的截面呈倒梯形结构。
- 根据权利要求2所述的微元件制程中的绑定装置,其中,所述焊接剂孔的数量为多个,各所述焊接剂孔于所述焊接剂盛放单元上阵列设置。
- 根据权利要求4所述的微元件制程中的绑定装置,其中,所述待绑定微元件包括正装型芯片结构、垂直型芯片结构或倒装型芯片结构中的任意一种。
- 根据权利要求5所述的微元件制程中的绑定装置,其中,所述待绑定微元件为正装型芯片结构或倒装型芯片结构时,相邻两焊接剂孔之间的距离与待绑定微元件的两电极之间的距离相等。
- 根据权利要求5所述的微元件制程中的绑定装置,其中,所述待绑定微元件为垂直型芯片结构时,相邻两焊接剂孔之间的距离与相邻两待绑定微元件的电极之间的距离相等。
- 根据权利要求1所述的微元件制程中的绑定装置,其中,所述转移机构包括驱动轴、转移板和至少一突出部,所述转移板具有相对设置的第一表面和第二表面,所述至少一突出部设置在所述转移板的第一表面上,所述驱动轴设置在所述转移板的第二表面上。
- 根据权利要求8所述的微元件制程中的绑定装置,其中,所述突出部的材质包括聚二甲基硅氧烷、光解胶和热解胶中的任意一种。
- 根据权利要求9所述的微元件制程中的绑定装置,其中,当所述突出部的材质为聚二甲基硅氧烷时,所述突出部与对应的待绑定微元件之间的粘结力小于所述待绑定微元件与驱动背板之间的粘结力。
- 一种微元件制程中的绑定方法,包括:将待绑定微元件从基板上剥离;通过转移机构拾取及转移所述待绑定微元件至一焊接剂盛放单元,以使所述待绑定微元件的元件电极从所述焊接剂盛放单元的焊接剂孔中黏附熔融态的焊接剂;以及将黏附有熔融态焊接剂的所述待绑定微元件转移至一驱动背板上,待所述焊接剂冷却完成以实现所述待绑定微元件与所述驱动背板的绑定。
- 根据权利要求11所述的微元件制程中的绑定方法,其中,还包括:将所述待绑定微元件的元件电极伸入所述焊接剂孔中黏附焊接剂并保持第一预设时长。
- 根据权利要求11所述的微元件制程中的绑定方法,其中,还包括:将所述待绑定微元件从所述焊接剂盛放单元的焊接剂孔中取出并在所述焊接孔的上方保持第二预设时长。
- 根据权利要求11所述的微元件制程中的绑定方法,其中,还包括:所述焊接剂盛放单元被加热使得盛放在所述焊接剂盛放单元的焊接剂呈熔融态且工艺氛围为真空。
- 根据权利要求11所述的微元件制程中的绑定方法,其中,还包括:当所述待绑定微元件与所述驱动背板绑定后,对所述待绑定微元件与所述驱动背板之间的焊接剂进行降温和固化处理。
- 根据权利要求11所述的微元件制程中的绑定方法,其中,还包括:对绑定效果进行检测,若发现绑定不良,将绑定不良的芯片从所述驱动背板上剥离。
- 一种焊接剂盛放单元,包括本体以及设置在所述本体上的多个焊接剂孔,所述多个焊接剂孔于所述本体上阵列设置,每个焊接剂孔包括焊接剂导入孔以及与所述焊接剂导入孔连通的焊接剂收容孔,且所述焊接剂收容孔通过所述焊接剂导入孔补充耗掉的焊接剂。
- 根据权利要求17所述的焊接剂盛放单元,其中,所述焊接剂收容孔的截面呈倒梯形结构。
- 根据权利要求17所述的焊接剂盛放单元,其中,所述焊接剂孔的数量为多个,各所述焊接剂孔于所述焊接剂盛放单元上阵列设置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/107191 WO2022027351A1 (zh) | 2020-08-05 | 2020-08-05 | 微元件制程中的绑定装置及绑定方法以及焊接剂盛放单元 |
US17/479,600 US20220045252A1 (en) | 2020-08-05 | 2021-09-20 | Bonding device and method in microcomponent process and welding-agent placing unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/107191 WO2022027351A1 (zh) | 2020-08-05 | 2020-08-05 | 微元件制程中的绑定装置及绑定方法以及焊接剂盛放单元 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/479,600 Continuation US20220045252A1 (en) | 2020-08-05 | 2021-09-20 | Bonding device and method in microcomponent process and welding-agent placing unit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022027351A1 true WO2022027351A1 (zh) | 2022-02-10 |
Family
ID=80114206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/107191 WO2022027351A1 (zh) | 2020-08-05 | 2020-08-05 | 微元件制程中的绑定装置及绑定方法以及焊接剂盛放单元 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20220045252A1 (zh) |
WO (1) | WO2022027351A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103797569A (zh) * | 2011-07-06 | 2014-05-14 | 弗莱克斯电子有限责任公司 | 金属凸块的焊料沉积系统和方法 |
US20180358246A1 (en) * | 2017-06-08 | 2018-12-13 | Innovasonic, Inc. | Transfer printing using ultrasound |
CN111146132A (zh) * | 2018-11-06 | 2020-05-12 | 昆山工研院新型平板显示技术中心有限公司 | 一种微元件的转移装置及转移方法 |
CN111261658A (zh) * | 2020-02-10 | 2020-06-09 | Tcl华星光电技术有限公司 | 微型发光二极管显示面板及微型发光二极管的转印方法 |
CN111373554A (zh) * | 2019-12-10 | 2020-07-03 | 重庆康佳光电技术研究院有限公司 | 一种Micro LED芯片、显示面板及Micro LED芯片的焊接方法 |
CN111370562A (zh) * | 2020-03-18 | 2020-07-03 | 京东方科技集团股份有限公司 | 一种微发光二极管的转印方法及微发光二极管显示面板 |
-
2020
- 2020-08-05 WO PCT/CN2020/107191 patent/WO2022027351A1/zh active Application Filing
-
2021
- 2021-09-20 US US17/479,600 patent/US20220045252A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103797569A (zh) * | 2011-07-06 | 2014-05-14 | 弗莱克斯电子有限责任公司 | 金属凸块的焊料沉积系统和方法 |
US20180358246A1 (en) * | 2017-06-08 | 2018-12-13 | Innovasonic, Inc. | Transfer printing using ultrasound |
CN111146132A (zh) * | 2018-11-06 | 2020-05-12 | 昆山工研院新型平板显示技术中心有限公司 | 一种微元件的转移装置及转移方法 |
CN111373554A (zh) * | 2019-12-10 | 2020-07-03 | 重庆康佳光电技术研究院有限公司 | 一种Micro LED芯片、显示面板及Micro LED芯片的焊接方法 |
CN111261658A (zh) * | 2020-02-10 | 2020-06-09 | Tcl华星光电技术有限公司 | 微型发光二极管显示面板及微型发光二极管的转印方法 |
CN111370562A (zh) * | 2020-03-18 | 2020-07-03 | 京东方科技集团股份有限公司 | 一种微发光二极管的转印方法及微发光二极管显示面板 |
Also Published As
Publication number | Publication date |
---|---|
US20220045252A1 (en) | 2022-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100980301B1 (ko) | 가요성 인쇄 회로 기판용 이송부재와 가요성 인쇄 회로기판에 전자부품을 실장 하는 방법 | |
WO2020248750A1 (zh) | 一种微型led的转移方法和显示面板 | |
US10825706B2 (en) | Method and device of batch transferring micro components | |
CN108538971A (zh) | 转移方法以及显示装置 | |
JP2009049238A (ja) | Acf貼付け装置、フラットパネルディスプレイの製造装置及びフラットパネルディスプレイ | |
CN114823996B (zh) | Led芯片的转移方法、显示面板 | |
US20210359154A1 (en) | Bonding method of micro-light emitting diode chip | |
WO2020103405A1 (zh) | 微发光器件的转移方法以及转移设备 | |
CN112967956A (zh) | 一种芯片包装结构、芯片转移方法及显示装置 | |
WO2023087394A1 (zh) | 发光二极管的转移方法及发光基板 | |
JP2012129300A (ja) | 電子部品の実装装置及び実装方法 | |
WO2022027351A1 (zh) | 微元件制程中的绑定装置及绑定方法以及焊接剂盛放单元 | |
CN116779732A (zh) | 一种Micro-LED芯片批量转移装置及批量转移焊接方法 | |
TWI781551B (zh) | 半導體器件安裝裝置 | |
JP4589265B2 (ja) | 半導体接合方法 | |
CN111128789A (zh) | 微元件的转移装置及其转移方法 | |
CN114068791A (zh) | 微元件制程中的绑定装置及绑定方法以及焊接剂盛放单元 | |
TWI751848B (zh) | 電子元件的接合方法 | |
JP2013042070A (ja) | 電子部品の実装装置及び実装方法 | |
CN111668362B (zh) | 导电薄膜及其制备方法、显示基板的制作方法及显示面板 | |
CN109390267B (zh) | 批量移载微细元件的方法及其装置 | |
JP4130140B2 (ja) | 電子部品接合装置及び方法、並びに電子部品実装装置 | |
JP2008263039A5 (zh) | ||
CN112967973B (zh) | 一种转移方法及转移系统 | |
TWI762953B (zh) | 利用巨量轉移發光二極體晶片的面板製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20947851 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20947851 Country of ref document: EP Kind code of ref document: A1 |