WO2022025256A1 - Heat conduction member - Google Patents

Heat conduction member Download PDF

Info

Publication number
WO2022025256A1
WO2022025256A1 PCT/JP2021/028351 JP2021028351W WO2022025256A1 WO 2022025256 A1 WO2022025256 A1 WO 2022025256A1 JP 2021028351 W JP2021028351 W JP 2021028351W WO 2022025256 A1 WO2022025256 A1 WO 2022025256A1
Authority
WO
WIPO (PCT)
Prior art keywords
wick structure
metal plate
conductive member
heat conductive
porous
Prior art date
Application number
PCT/JP2021/028351
Other languages
French (fr)
Japanese (ja)
Inventor
征志 高尾
仕▲ゆ▼ 楊
敏彦 小関
雅昭 花野
淳一 石田
Original Assignee
日本電産株式会社
尼得科超▲しゅう▼科技股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021088004A external-priority patent/JP2023127013A/en
Application filed by 日本電産株式会社, 尼得科超▲しゅう▼科技股▲ふん▼有限公司 filed Critical 日本電産株式会社
Publication of WO2022025256A1 publication Critical patent/WO2022025256A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a heat conductive member.
  • the conventional heat conductive member has a flat plate-shaped closed container, a porous sheet, and a working fluid.
  • the porous sheet is arranged on the inner surface of the flat plate-shaped closed container.
  • the working fluid is housed inside a flat plate-shaped closed container. It was
  • the flat plate-shaped closed container is arranged in contact with the heating element.
  • Porous sheets are arranged on the inner surface of the flat plate-shaped closed container on the heating element side and the inner surface of the flat plate-shaped closed container on the heat radiation surface side opposite to the heating element side.
  • the working fluid is heated by the heating element and vaporized from the porous sheet on the heat generating side.
  • the vaporized working fluid condenses on the porous sheet on the heat dissipation surface side. As a result, heat is transported from the heating element side to the heat radiating surface side (see, for example, Patent Document 1).
  • the heat conductive member as described above has a problem that the condensation of the working fluid is biased to a predetermined position on the porous sheet on the heat dissipation surface side, and the heat transport efficiency is low. It was
  • An object of the present invention is to provide a heat conductive member capable of improving heat transport efficiency.
  • An exemplary heat conductive member of the present invention includes a housing having an internal space, a first wick structure, a second wick structure, and an actuating medium.
  • the housing has a first metal plate, a second metal plate, and a pillar portion arranged in an internal space.
  • the second metal plate is arranged so as to face the first metal plate, and a heating element is arranged on the outer surface.
  • the working medium, the first wick structure, and the second wick structure are housed in the internal space.
  • the first wick structure is arranged on the inner surface of the first metal plate.
  • the second wick structure is arranged on the inner surface of the second metal plate.
  • the first wick structure has recesses recessed in the facing direction from the inner surface in at least a part of the first region overlapping the heating element in the facing direction of the first metal plate and the second metal plate.
  • FIG. 1 is a perspective view of a heat conductive member according to the present embodiment.
  • FIG. 2 is a schematic side sectional view of the heat conductive member according to the present embodiment.
  • FIG. 3 is a schematic side sectional view of the heat conductive member according to the modified example of the present embodiment.
  • the XYZ coordinate system is shown as a three-dimensional Cartesian coordinate system as appropriate.
  • the Z-axis direction indicates a vertical direction (that is, a vertical direction)
  • the + Z direction is the upper side (opposite the gravity direction)
  • the ⁇ Z direction is the lower side (gravity direction).
  • the Z-axis direction is also the opposite direction between the first metal plate 11 and the second metal plate 12, which will be described later.
  • the X-axis direction refers to a direction orthogonal to the Z-axis direction, and one direction and the opposite direction thereof are the + X direction and the ⁇ X direction, respectively.
  • the Y-axis direction refers to a direction orthogonal to both the Z-axis direction and the X-axis direction, and one direction and the opposite direction thereof are the + Y direction and the ⁇ Y direction, respectively.
  • this defines the direction only for convenience of explanation, and does not limit the direction at the time of manufacturing and the time of use of the heat conductive member 1 according to the present invention.
  • "parallel” does not mean only the case of being mathematically strictly parallel, but includes, for example, the case of being parallel to the extent that the effect in the present disclosure is exhibited.
  • sining refers to a technique of heating a metal powder or a metal powder to a temperature lower than the melting point of the metal to bake and harden the metal particles.
  • sintered body refers to an object obtained by sintering. It was
  • FIG. 1 is a perspective view of a heat conductive member 1 according to an exemplary embodiment of the present invention
  • FIG. 2 is a schematic side sectional view of the heat conductive member 1.
  • FIG. 2 is a cross-sectional view taken along the alternate long and short dash line AA of FIG.
  • the heat conductive member 1 is also called a vapor chamber and transports the heat of the heating element H.
  • the heating element H include a power transistor of an inverter provided in a traction motor for driving a wheel of a vehicle.
  • the power transistor is, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • the heat conductive member 1 is mounted on the traction motor.
  • the calorific value of the IGBT is generally 100 W or more.
  • a heating element H is arranged in contact with the lower surface of the heat conductive member 1.
  • the heat generated by the heating element H is dissipated from the upper surface of the heat conductive member 1.
  • heat dissipation fins such as stacked fins and pin fins may be provided on the upper surface of the heat conductive member 1.
  • a cooling medium is passed between the heat radiation fins.
  • the cooling medium may be, for example, water, oil, or air. It was
  • one heating element H is arranged at the center of the lower surface of the rectangular heat conductive member 1.
  • the heating element H may be arranged on the lower surface edge portion of the heat conductive member 1.
  • a plurality of heating elements H may be arranged on the lower surface of the heat conductive member 1.
  • the heat conductive member 1 includes a housing 10, an actuating medium 20, a first wick structure 31, and a second wick structure 32.
  • the thickness of the heat conductive member 1 in the Z direction is, for example, 5 mm or more. It was
  • the housing 10 has an internal space 10a.
  • the working medium 20, the first wick structure 31, and the second wick structure 32 are housed in the internal space 10a.
  • the housing 10 has a first metal plate 11 and a second metal plate 12 arranged to face each other, and at least one pillar portion 15.
  • the pillar portion 15 is arranged in the internal space 10a.
  • the first metal plate 11 and the second metal plate 12 are made of a metal having high thermal conductivity such as copper. Further, it may be formed by plating the surface of a metal other than copper with copper. As the metal other than copper, for example, stainless steel can be considered. It was
  • the first metal plate 11 and the second metal plate 12 have a rectangular plate shape that extends in the horizontal direction when viewed from above.
  • the heating element H is arranged in contact with the outer surface of the second metal plate 12.
  • the first metal plate 11 covers the upper surface of the second metal plate 12.
  • the first metal plate 11 and the second metal plate 12 of the present embodiment are rectangular in top view, but the present invention is not limited to this. For example, it may be a polygon or a circle having a plurality of corners in a top view. It was
  • the first metal plate 11 has a first side wall portion 13a extending downward from the peripheral edge.
  • the second metal plate 12 has a second side wall portion 13b extending upward from the peripheral edge.
  • the lower surface of the first side wall portion 13a and the upper surface of the second side wall portion 13b are joined at the joint portion 14.
  • the lower surface of the first side wall portion 13a and the upper surface of the second metal plate 12 may be joined by omitting the second side wall portion 13b.
  • the upper surface of the second side wall portion 13b and the lower surface of the first metal plate 11 may be joined by omitting the first side wall portion 13a.
  • the internal space 10a is formed by being surrounded by the first metal plate 11 and the second metal plate 12.
  • the internal space 10a is a closed space, and is maintained in a decompressed state where the atmospheric pressure is lower than the atmospheric pressure, for example.
  • the working medium 20 housed in the internal space 10a is likely to evaporate.
  • the working medium 20 is, for example, water, but may be another liquid such as alcohol. It was
  • the joint portion 14 is located around the first wick structure 31 and the second wick structure 32 in the upward view.
  • the method of joining the first side wall portion 13a and the second side wall portion 13b is not particularly limited.
  • any joining method such as a method of joining by applying heat and pressure, a diffusion joining, or a joining using a brazing material may be used. It was
  • the joint portion 14 may include a sealing portion.
  • the sealing portion is, for example, a portion where an injection port for injecting the working medium 20 into the housing 10 is sealed by welding in the manufacturing process of the heat conductive member 1. It was
  • the pillar portion 15 has at least one solid solid pillar portion 151 and at least one porous porous pillar portion 152.
  • the solid pillar portion 151 is a separate member from the first metal plate 11 and the second metal plate 12, and is a solid member. It is a solid member.
  • the "solid” member means a so-called solid member, and refers to a member whose contents are tightly packed and which is composed of a non-porous object.
  • a "solid” member may have a cavity inside, which may be an internal member, or may be a member having one or more macroscopic cavities inside. It was
  • the solid pillar portion 151 is made of a metal having high thermal conductivity such as copper.
  • the solid pillar portion 151 extends in the Z-axis direction, and the upper end portion and the lower end portion of the solid pillar portion 151 are joined to the lower surface of the first metal plate 11 and the upper surface of the second metal plate 12, respectively, using a brazing material.
  • the solid column portion 151 may be joined to the first metal plate 11 and the second metal plate 12 by welding or the like, in addition to joining with a brazing material.
  • the solid pillar portion 151 may be integrated with one of the first metal plate 11 and the second metal plate 12. At this time, the solid pillar portion 151 can be formed by etching or cutting the first metal plate 11 or the second metal plate 12. It was
  • the solid pillar portion 151 is composed of, for example, a circular cylinder in an upward view.
  • the solid pillar portions 151 are two-dimensionally and regularly arranged side by side in the XY plane.
  • the porous column portion 152 is a porous column.
  • the porous column portion 152 has a void portion (not shown) that forms a flow path of the working medium 20.
  • the porous column portion 152 extends in the Z-axis direction and is composed of, for example, a circular cylinder when viewed upward. Further, the porous column portions 152 are two-dimensionally and regularly arranged side by side in the XY plane.
  • the porous column portion 152 is preferably arranged in the middle of the adjacent solid column portions 151. It was
  • the first wick structure 31 and the second wick structure 32 are porous and have a gap portion (not shown) forming a flow path of the working medium 20.
  • the first wick structure 31 is a plate-shaped member arranged on the inner surface of the first metal plate 11, and is arranged on the cooling side opposite to the heating element H side.
  • the second wick structure 32 is a plate-shaped member arranged on the inner surface of the second metal plate 12, and is arranged on the heating element H side.
  • the first wick structure 31 and the second wick structure 32 are arranged so as to face each other.
  • a vapor space S is formed between the first wick structure 31 and the second wick structure 32.
  • the steam space S is a space for diffusing the steam of the working medium 20. It was
  • the porous column portion 152 supports the first metal plate 11 and the second metal plate 12 via the first wick structure 31 and the second wick structure 32. As a result, the porous pillar portion 152 can reinforce the solid pillar portion 151 and further suppress the deformation of the housing 10 in the Z-axis direction. It was
  • first wick structure 31, the second wick structure 32, and the porous column portion 152 are porous sintered bodies, respectively, and are integrated with each other.
  • first wick structure 31, the second wick structure 32, and the porous column portion 152 are porous sintered bodies, respectively, and are integrated with each other.
  • the first wick structure 31 arranged on the heat radiation surface side opposite to the heating element H promotes the condensation of the vaporized working medium 20 as compared with the second wick structure 32. Therefore, it is preferable that the first wick structure 31 has a higher cooling efficiency of the working medium 20 than the second wick structure 32. It was
  • the first wick structure 31 has a recess 31a in at least a part of the first region U1 that overlaps the heating element H in the Z direction (the direction opposite to the first metal plate 11 and the second metal plate 12).
  • the recess 31a is recessed in the Z direction from the inner surface of the first wick structure 31. It was
  • the thickness W1a of the first wick structure 31 in the recess 31a is formed to be smaller than the thickness W1b of the first wick structure 31 in the region other than the recess 31a.
  • the cooling efficiency is lowered.
  • the cooling efficiency in the region other than the recess 31a is higher than the cooling efficiency in the recess 31a.
  • the condensation of the working medium 20 is most promoted in the first region U1 facing the heating element H in the Z direction.
  • the condensation of the working medium 20 in the first region U1 can be suppressed.
  • the vaporized working medium 20 diffuses into the second region U2, and the condensation of the working medium 20 in the second region U2 can be promoted. Therefore, the working medium 20 is condensed in the entire first wick structure 31, and the heat generated by the condensation of the working medium 20 can be efficiently dissipated to the heat radiating surface side in the entire first metal plate 11. Thereby, the heat transfer efficiency by the working medium 20 can be improved. It was
  • the recess 31a is formed so that the inner surface of the first wick structure 31 is recessed in the Z direction, but the recess 31a may be formed so as to penetrate the first wick structure 31 in the Z direction. Further, although the upper surface of the recess 31a is formed on a surface parallel to the first metal plate 11, it may be formed in a valley shape. That is, the thickness W1a of the first wick structure 31 in the recess 31a is gradually formed to be smaller toward a predetermined position in the first region U1. As a result, it is possible to prevent the condensation from being biased to a predetermined position in the first region U1. It was
  • the thickness W1a of the first wick structure 31 in the recess 31a is preferably 10% or more smaller than the thickness W2 of the second wick structure 32. This makes it possible to further suppress the condensation of the working medium 20 in the recess 31a. It was
  • the entire recess 31a does not have to overlap with the first region U1 in the Z direction.
  • the end portion of the recess 31a may overlap with the second region U2 in the Z direction. It was
  • the thickness W2 of the second wick structure 32 in the first region U1 is larger in the Z direction than the thickness W1a of the first wick structure 31.
  • the second wick structure 32 arranged on the heating element H side promotes the vaporization of the liquid working medium 20 as compared with the first wick structure 31. Therefore, by increasing the thickness W2 of the second wick structure 32 in the Z direction with respect to the thickness W1a of the first wick structure 31, the holding property of the working medium 20 of the second wick structure 32 is improved by the first wick. It can be higher than the retention of the working medium 20 of the structure 31. It was
  • the liquid working medium 20 held by the second wick structure 32 in the first region U1 overlapping the heating element H in the Z direction. can suppress the occurrence of so-called dryout, which is completely vaporized. It was
  • the working medium 20 vaporized from the second wick structure 32 is XY in the internal space 10a. It becomes easy to diffuse in the plane. This promotes the condensation of the working medium 20 in the first wick structure 31.
  • the same effect can be obtained by applying the thickness W1b of the first wick structure 31 in the second region U2 to the equation (1) instead of the thickness W1a of the first wick structure 31 in the first region U1. It was
  • the thickness W1a of the first wick structure 31 in the Z direction (opposite direction of the first metal plate 11 and the second metal plate 12), the thickness W2 of the second wick structure 32, and the first It is more preferable that the length W3 of the gap between the 1-wick structure 31 and the 2nd wick structure 32 satisfies the equations (2) to (4). It was
  • the thickness W2 of the second wick structure 32 is set to be twice or more and four times or less the thickness W1a of the first wick structure 31 in the first region U1, and the first wick structure 31 and the second wick structure 32 are combined.
  • the gap length W3 is preferably 5 times or more and 7 times or less the thickness W1a of the first wick structure 31 in the first region U1. This makes it possible to further promote the condensation of the working medium 20 in the first wick structure 31 while ensuring the retention of the working medium 20 in the second wick structure 32.
  • the same effect can be obtained by applying the thickness W1b of the first wick structure 31 in the second region U2 to the equations (2) to (4) instead of the thickness W1a of the first wick structure 31 in the first region U1. Is obtained. It was
  • the second wick structure 32 has a higher porosity than the first wick structure 31. As a result, the capillary force of the second wick structure 32 becomes larger than the capillary force of the first wick structure 31. It was
  • the ratio of the volume of the space to the total product of the first wick structure 31 and the second wick structure 32 is referred to as a porosity.
  • the unit of porosity is%.
  • the porosity is determined by the following method. For example, the porosity can be obtained by measuring the area of the space from the cross-sectional photograph of the wick structure and calculating the ratio of the area of the space to the whole.
  • a scanning electron microscope having a deep depth of field. The method of observing the cross section is not particularly limited as long as it can easily distinguish between the metal portion and the space. It was
  • the first wick structure 31 and the second wick structure 32 are made of a porous sintered body, but the first wick structure 31 or the second wick structure 32 is a plurality of pieces. It may be a mesh member in which a metal linear member is woven.
  • the capillary force of the second wick structure 32 can be reduced to that of the first wick structure 31. It is larger than the capillary force and can be easily formed. It was
  • first wick structure 31 or the second wick structure 32 may be composed of a plurality of grooves formed on the inner surface of the first metal plate 11 and the inner surface of the second metal plate 12.
  • the first wick structure 31 or the second wick structure 32 can be formed thinner than in the case of being composed of the mesh material and the sintered body. Therefore, the internal space 10a can be expanded in the Z-axis direction. Further, the housing 10 can be made thinner in the Z-axis direction without narrowing the internal space 10a. Further, by forming one of the first wick structure 31 and the second wick structure 32 with a groove portion, the thickness of the first wick structure 31 or the second wick structure 32 in the Z-axis direction without narrowing the internal space 10a. Can be increased. It was
  • the first wick structure 31, the second wick structure 32, and the porous column portion 152 are formed, for example, as follows. First, a mixed powder containing micro copper particles, a copper body and a resin is sprayed and applied to the lower surface of the first metal plate 11 and the upper surface of the second metal plate 12 before joining. Next, the first metal plate 11 and the second metal plate 12 are joined by sandwiching the mixed powder formed in a columnar shape. After that, the housing 10 is heated to bake the mixed powder. As a result, the first wick structure 31, the second wick structure 32, and the porous pillar portion 152 can be easily integrally formed in the internal space 10a of the housing 10. As a result, the manufacturing cost of the heat conductive member 1 can be suppressed. The first metal plate 11 and the second metal plate 12 may be joined after the first wick structure 31, the second wick structure 32, and the porous column portion 152 are fired separately. It was
  • coating means adhering mixed powder to the lower surface of the 1st metal plate 11 and the upper surface of the 2nd metal plate 12.
  • a paste containing a mixed powder may be applied. It was
  • Micro copper particles are particles in which a plurality of copper atoms are aggregated or bonded.
  • the particle size of the micro copper particles is 1 ⁇ m or more and less than 1 mm.
  • the micro copper particles are, for example, porous. It was
  • the copper body is a copper melt obtained by melting and solidifying sub-micro copper particles smaller than the micro copper particles by sintering.
  • Submicro copper particles are particles in which a plurality of copper atoms are aggregated or bonded.
  • the particle size of the sub-micro copper particles before melting is 0.1 ⁇ m or more and less than 1 ⁇ m. It was
  • the resin is a volatile resin that volatilizes at a temperature below the melting point of the copper constituting the micro copper particles and the copper body.
  • a volatile resin for example, a cellulose resin such as methyl cellulose or ethyl cellulose, an acrylic resin, a butyral resin, an alkyd resin, an epoxy resin, a phenol resin or the like can be used.
  • an acrylic resin having high thermal decomposability. It was
  • the working medium 20 that has been vaporized into steam diffuses in the steam space S.
  • the steam space S is a space excluding the space occupied by the solid pillar portion 151 and the porous pillar portion 152 from the gap space between the first wick structure 31 and the second wick structure 32. It was
  • the first wick structure 31 has a larger surface area and higher cooling efficiency than the lower surface of the first metal plate 11. Therefore, by providing the first wick structure 31, the cooling efficiency of the vaporized working medium 20 is improved and condensation is promoted. It was
  • a part of the working medium 20 condensed in the first wick structure 31 is dropped and absorbed in the second wick structure 32. Further, a part of the working medium 20 condensed in the first wick structure 31 moves in the first wick structure 31 and in the porous column portion 152 and is absorbed by the second wick structure 32. Further, a part of the working medium 20 condensed in the first wick structure 31 moves along the outer surface of the solid pillar portion 151 and is absorbed by the second wick structure 32. It was
  • the condensed working medium 20 moves in the second wick structure 32 toward the first region U1 due to the capillary phenomenon. Further, the working medium 20 absorbed from the first wick structure 31 to the second wick structure 32 also moves in the second wick structure 32 toward the first region U1 due to the capillary phenomenon. It was
  • the heating element H is arranged on the working medium 20 condensed through the second wick structure 32. It can be moved to a position faster. Therefore, the heat transport efficiency by the working medium 20 is improved. It was
  • the thickness W2 of the second wick structure 32 is made larger in the Z direction than the thickness W1a or W1b of the first wick structure 31, and the occurrence of dryout is suppressed in the region facing the heating element H in the Z direction. do.
  • the liquid working medium 20 can be continuously and smoothly moved toward the first region U1 in the second wick structure 32. Therefore, it is possible to suppress a decrease in the heat transport efficiency of the working medium 20 due to the occurrence of dryout. It was
  • the working medium 20 moves while changing its state, so that heat is continuously transferred from the heating element H side to the cooling side. It was
  • the steam space S is a space excluding the space occupied by the solid pillar portion 151 and the porous pillar portion 152 from the gap space between the first wick structure 31 and the second wick structure 32. Is. That is, the steam space S is a space other than the first wick structure 31, the second wick structure 32, the porous pillar portion 152, and the solid pillar portion 151 in the internal space 10a.
  • V1 the volume of the steam space S
  • V2 the total volume
  • the total volume is the total volume of each of the first wick structure 31, the second wick structure 32, and the porous column portion 152. That is, in the present embodiment, the total volume further includes the volume of the porous column portion 152 in the total volume of the first wick structure 31 and the second wick structure 32. It was
  • the porous pillar portion 152 is provided, but when the porous pillar portion 152 is not provided, the total volume is each of the first wick structure 31 and the second wick structure 32. Calculated by summing up the volumes. Further, when the solid pillar portion 151 is not provided, the steam space S is a space other than the first wick structure 31, the second wick structure 32, and the porous pillar portion 152 in the internal space 10a. It was
  • the solid pillar portion 151 can secure the strength of the housing 10, arranging the solid pillar portion 151 causes a factor that the steam space S becomes narrow, and even when such a solid pillar portion 151 is provided, the above equation ( By satisfying 5), the diffusion of vapor can be promoted.
  • the volume of the steam space S is larger than the sum of the volumes of the first wick structure 31, the second wick structure 32, and the porous column portion 152. It was
  • Pillar part 15 preferably has the following configuration.
  • the total joint area where the upper surface of the solid column portion 151 and the lower surface of the first metal plate 11 are joined is the joint area where the upper surface of the porous column portion 152 and the lower surface of the first wick structure 31 are joined. Greater than the sum.
  • the total joint area where the lower surface of the solid column portion 151 and the upper surface of the second metal plate 12 are joined is the joint where the lower surface of the porous column portion 152 and the upper surface of the second wick structure 32 are joined. It is larger than the total area.
  • the total joint area is the total number of joint areas of one solid column portion 151 or the porous column portion 152. It was
  • the porous column portion 152 penetrates the first wick structure 31 and is joined to the first metal plate 11 and also penetrates the second wick structure 32 to form a second. 2 It may be joined to the metal plate 12.
  • the total joint area where the upper surface of the solid pillar portion 151 and the lower surface of the first metal plate 11 are joined is such that the upper surface of the porous pillar portion 152 and the lower surface of the first metal plate 11 are joined together. It is larger than the total joint area to be joined.
  • the total joint area where the lower surface of the solid pillar portion 151 and the upper surface of the second metal plate 12 are joined is the joint area where the lower surface of the porous pillar portion 152 and the upper surface of the second metal plate 12 are joined. Is larger than the sum of. It was
  • the total contact area of the solid pillar portion 151 where one side end is in contact with the first metal plate 11 is such that the one side end of the porous pillar portion 152 is the first wick structure 31 or the first metal plate 11.
  • the total contact area is wider than the total contact area and the other end of the solid column 151 is in contact with the second metal plate 12, and the other end of the porous column 152 has a second wick structure. It is wider than the total contact area in contact with the body 32 or the second metal plate 12.
  • the strength of the solid solid pillar portion 151 is higher than the strength of the porous pillar portion 152. Therefore, due to the size relationship of the contact area as described above, the strength of the housing 10 can be sufficiently secured by the solid pillar portion 151 even in the configuration using the porous pillar portion 152. It was
  • the first wick structure 31 may be made of a mesh material
  • the second wick structure 32 may be made of a porous sintered body.
  • at least one of the solid pillar portion 151 and the porous pillar portion 152 may not be provided. It was
  • the present invention can be used for cooling various heating elements.
  • heat conductive member 10 housing 10a internal space 11 1st metal plate 12 2nd metal plate 13a 1st side wall 13b 2nd side wall 14 joint 15 pillar part 151 solid pillar part 152 1st wick structure 31a recess 32 2nd wick structure H heating element S steam space U1 1st area U2 2nd area

Abstract

The present invention is provided with a first wick structure, a second wick structure, a working medium, and a casing having an internal space. The casing has a first metal plate, a second metal plate, and a column part positioned in the internal space. The second metal plate is positioned so as to face the first metal plate, and a heating body is positioned on the outer surface of the second metal plate. The working medium, the first wick structure, and the second wick structure are housed in the internal space. The first wick structure is positioned on the inner surface of the first metal plate. The second wick structure is positioned on the inner surface of the second metal plate. The first wick structure has, in at least a part of a first region overlapping with the heating body in the facing direction in which the first metal plate and the second metal plate face each other, a recess indenting in the facing direction from the inner surface.

Description

熱伝導部材Heat conduction member
本発明は、熱伝導部材に関する。 The present invention relates to a heat conductive member.
従来の熱伝導部材は、平板状密閉容器と、多孔質シートと、作動流体と、を有する。多孔質シートは、平板状密閉容器の内面に配置される。作動流体は、平板状密閉容器の内部に収容される。  The conventional heat conductive member has a flat plate-shaped closed container, a porous sheet, and a working fluid. The porous sheet is arranged on the inner surface of the flat plate-shaped closed container. The working fluid is housed inside a flat plate-shaped closed container. It was
平板状密閉容器は、発熱体と接触して配置される。発熱体側の平板状密閉容器内面と、発熱体側と反対側である放熱面側の平板状密閉容器内面には、多孔質シートが、配置される。作動流体は、発熱体によって加熱されて発熱側の多孔質シートから気化する。気化した作動流体は、放熱面側の多孔質シートにおいて凝縮する。これにより、発熱体側から放熱面側に熱が輸送される(例えば、特許文献1参照)。 The flat plate-shaped closed container is arranged in contact with the heating element. Porous sheets are arranged on the inner surface of the flat plate-shaped closed container on the heating element side and the inner surface of the flat plate-shaped closed container on the heat radiation surface side opposite to the heating element side. The working fluid is heated by the heating element and vaporized from the porous sheet on the heat generating side. The vaporized working fluid condenses on the porous sheet on the heat dissipation surface side. As a result, heat is transported from the heating element side to the heat radiating surface side (see, for example, Patent Document 1).
日本国公開公報:特開2002-62072号公報Japanese Publication: Japanese Patent Application Laid-Open No. 2002-62072
しかしながら、上記のような熱伝導部材は、作動流体の凝縮が、放熱面側の多孔質シートの所定位置に偏り、熱輸送効率が低い問題があった。  However, the heat conductive member as described above has a problem that the condensation of the working fluid is biased to a predetermined position on the porous sheet on the heat dissipation surface side, and the heat transport efficiency is low. It was
本発明は、熱輸送効率を向上できる熱伝導部材を提供することを目的とする。 An object of the present invention is to provide a heat conductive member capable of improving heat transport efficiency.
本発明の例示的な熱伝導部材は、内部空間を有する筐体と、第1ウィック構造体と、第2ウィック構造体と、作動媒体と、を備える。筐体は、第1金属板と、第2金属板と、内部空間に配置される柱部と、を有する。第2金属板は、第1金属板に対向して配置されるとともに外面に発熱体が配置される。作動媒体と、第1ウィック構造体と、第2ウィック構造体と、は、内部空間に収容される。第1ウィック構造体は、第1金属板の内面に配置される。第2ウィック構造体は、第2金属板の内面に配置される。第1ウィック構造体は、第1金属板及び第2金属板の対向方向に発熱体と重なる第1領域の少なくとも一部において、内面から対向方向に凹む凹部を有する。 An exemplary heat conductive member of the present invention includes a housing having an internal space, a first wick structure, a second wick structure, and an actuating medium. The housing has a first metal plate, a second metal plate, and a pillar portion arranged in an internal space. The second metal plate is arranged so as to face the first metal plate, and a heating element is arranged on the outer surface. The working medium, the first wick structure, and the second wick structure are housed in the internal space. The first wick structure is arranged on the inner surface of the first metal plate. The second wick structure is arranged on the inner surface of the second metal plate. The first wick structure has recesses recessed in the facing direction from the inner surface in at least a part of the first region overlapping the heating element in the facing direction of the first metal plate and the second metal plate.
本発明によると、熱輸送効率を向上できる熱伝導部材を提供することができる。 According to the present invention, it is possible to provide a heat conductive member capable of improving heat transport efficiency.
図1は、本実施形態に係る熱伝導部材の斜視図である。FIG. 1 is a perspective view of a heat conductive member according to the present embodiment. 図2は、本実施形態に係る熱伝導部材の模式的な側面断面図である。FIG. 2 is a schematic side sectional view of the heat conductive member according to the present embodiment. 図3は、本実施形態の変形例に係る熱伝導部材の模式的な側面断面図である。FIG. 3 is a schematic side sectional view of the heat conductive member according to the modified example of the present embodiment.
以下、本発明の例示的な実施形態について、図面を参照しつつ説明する。なお、図面においては、適宜、3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、鉛直方向(すなわち上下方向)を示し、+Z方向が上側(重力方向の反対側)であり、-Z方向が下側(重力方向)である。Z軸方向は、後述する第1金属板11と第2金属板12との対向方向でもある。X軸方向は、Z軸方向と直交する方向を指し、その一方向および逆方向を、それぞれ+X方向および-X方向とする。Y軸方向は、Z軸方向およびX軸方向の両方向と直交する方向を指し、その一方向および逆方向を、それぞれ+Y方向および-Y方向とする。ただし、これは、あくまで説明の便宜のために方向を定義したものであって、本発明に係る熱伝導部材1の製造時および使用時の向きを限定するものではない。また、本願において「平行、と表現する場合、数学的に厳密に平行である場合のみを指すものではなく、例えば本開示における効果を奏する程度に平行である場合を含む。  Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. In the drawings, the XYZ coordinate system is shown as a three-dimensional Cartesian coordinate system as appropriate. In the XYZ coordinate system, the Z-axis direction indicates a vertical direction (that is, a vertical direction), the + Z direction is the upper side (opposite the gravity direction), and the −Z direction is the lower side (gravity direction). The Z-axis direction is also the opposite direction between the first metal plate 11 and the second metal plate 12, which will be described later. The X-axis direction refers to a direction orthogonal to the Z-axis direction, and one direction and the opposite direction thereof are the + X direction and the −X direction, respectively. The Y-axis direction refers to a direction orthogonal to both the Z-axis direction and the X-axis direction, and one direction and the opposite direction thereof are the + Y direction and the −Y direction, respectively. However, this defines the direction only for convenience of explanation, and does not limit the direction at the time of manufacturing and the time of use of the heat conductive member 1 according to the present invention. Further, in the present application, "parallel" does not mean only the case of being mathematically strictly parallel, but includes, for example, the case of being parallel to the extent that the effect in the present disclosure is exhibited.
また、本明細書において、「焼結」とは、金属の粉末または金属の粉体を、金属の融点よりも低い温度まで加熱して、金属の粒子を焼き固める技術を指す。また、「焼結体」とは、焼結によって得られる物体を指す。  Further, in the present specification, "sintering" refers to a technique of heating a metal powder or a metal powder to a temperature lower than the melting point of the metal to bake and harden the metal particles. Further, the "sintered body" refers to an object obtained by sintering. It was
<1.熱伝導部材の構成>



図1は、本発明の例示的な実施形態に係る熱伝導部材1の斜視図であり、図2は、熱伝導部材1の模式的な側面断面図である。なお、図2は、図1の一点鎖線A-Aに沿う断面図である。熱伝導部材1は、ベーパーチャンバーとも呼ばれ、発熱体Hの熱を輸送する。発熱体Hとしては、例えば、車両の車輪を駆動するためのトラクションモータに備えられるインバータのパワートランジスタが挙げられる。当該パワートランジスタは、例えばIGBT(Insulated Gate Bipolar Transistor)である。この場合、熱伝導部材1は、トラクションモータに搭載される。IGBTの発熱量は、一般的に100W以上である。 
<1. Structure of heat conductive member>



FIG. 1 is a perspective view of a heat conductive member 1 according to an exemplary embodiment of the present invention, and FIG. 2 is a schematic side sectional view of the heat conductive member 1. Note that FIG. 2 is a cross-sectional view taken along the alternate long and short dash line AA of FIG. The heat conductive member 1 is also called a vapor chamber and transports the heat of the heating element H. Examples of the heating element H include a power transistor of an inverter provided in a traction motor for driving a wheel of a vehicle. The power transistor is, for example, an IGBT (Insulated Gate Bipolar Transistor). In this case, the heat conductive member 1 is mounted on the traction motor. The calorific value of the IGBT is generally 100 W or more.
熱伝導部材1の下面には、発熱体Hが接して配置される。発熱体Hにより発生した熱は、熱伝導部材1の上面より放熱される。なお、放熱性を向上させるために、熱伝導部材1の上面にスタックドフィンやピンフィンなどの放熱フィンを設けてもよい。その場合、放熱フィン間に冷却媒体を流す。冷却媒体は、例えば水や油であってもよいし、空気でもよい。  A heating element H is arranged in contact with the lower surface of the heat conductive member 1. The heat generated by the heating element H is dissipated from the upper surface of the heat conductive member 1. In order to improve heat dissipation, heat dissipation fins such as stacked fins and pin fins may be provided on the upper surface of the heat conductive member 1. In that case, a cooling medium is passed between the heat radiation fins. The cooling medium may be, for example, water, oil, or air. It was
なお、図1および図2で示す構成では、一例として、矩形体状の熱伝導部材1の下面中央部に、1つの発熱体Hが配置される。ただし、発熱体Hを熱伝導部材1の下面縁部に配置してもよい。また、複数の発熱体Hを熱伝導部材1の下面に配置してもよい。  In the configuration shown in FIGS. 1 and 2, as an example, one heating element H is arranged at the center of the lower surface of the rectangular heat conductive member 1. However, the heating element H may be arranged on the lower surface edge portion of the heat conductive member 1. Further, a plurality of heating elements H may be arranged on the lower surface of the heat conductive member 1. It was
熱伝導部材1は、筐体10と、作動媒体20と、第1ウィック構造体31と、第2ウィック構造体32と、を備える。熱伝導部材1のZ方向の厚みは、例えば5mm以上である。  The heat conductive member 1 includes a housing 10, an actuating medium 20, a first wick structure 31, and a second wick structure 32. The thickness of the heat conductive member 1 in the Z direction is, for example, 5 mm or more. It was
<1-1.筐体の構成>



筐体10は、内部空間10aを有する。作動媒体20と、第1ウィック構造体31と、第2ウィック構造体32と、は内部空間10aに収容される。筐体10は対向して配置される第1金属板11及び第2金属板12と、少なくとも1つの柱部15と、を有する。柱部15は、内部空間10aに配置される。 
<1-1. Housing configuration>



The housing 10 has an internal space 10a. The working medium 20, the first wick structure 31, and the second wick structure 32 are housed in the internal space 10a. The housing 10 has a first metal plate 11 and a second metal plate 12 arranged to face each other, and at least one pillar portion 15. The pillar portion 15 is arranged in the internal space 10a.
第1金属板11及び第2金属板12は、例えば、銅等の熱伝導性の高い金属から成る。また、銅以外の金属の表面に銅メッキを施して形成されてもよい。銅以外の金属としては、例えばステンレス鋼が考えられる。  The first metal plate 11 and the second metal plate 12 are made of a metal having high thermal conductivity such as copper. Further, it may be formed by plating the surface of a metal other than copper with copper. As the metal other than copper, for example, stainless steel can be considered. It was
第1金属板11及び第2金属板12は、上面視において水平方向に拡がる矩形の板状である。第2金属板12の外面に発熱体Hが接触して配置される。第1金属板11は、第2金属板12の上面を覆う。なお、本実施形態の第1金属板11及び第2金属板12は、上面視において四角形であるがこの限りではない。例えば、上面視において複数の角を有する多角形、または円形であってもよい。  The first metal plate 11 and the second metal plate 12 have a rectangular plate shape that extends in the horizontal direction when viewed from above. The heating element H is arranged in contact with the outer surface of the second metal plate 12. The first metal plate 11 covers the upper surface of the second metal plate 12. The first metal plate 11 and the second metal plate 12 of the present embodiment are rectangular in top view, but the present invention is not limited to this. For example, it may be a polygon or a circle having a plurality of corners in a top view. It was
第1金属板11は、周縁から下方に延びる第1側壁部13aを有する。第2金属板12は、周縁から上方に延びる第2側壁部13bを有する。第1側壁部13aの下面と第2側壁部13bの上面とが接合部14で接合される。なお、第2側壁部13bを省いて、第1側壁部13aの下面と第2金属板12の上面とを接合してもよい。または、第1側壁部13aを省いて、第2側壁部13bの上面と第1金属板11の下面とを接合してもよい。  The first metal plate 11 has a first side wall portion 13a extending downward from the peripheral edge. The second metal plate 12 has a second side wall portion 13b extending upward from the peripheral edge. The lower surface of the first side wall portion 13a and the upper surface of the second side wall portion 13b are joined at the joint portion 14. The lower surface of the first side wall portion 13a and the upper surface of the second metal plate 12 may be joined by omitting the second side wall portion 13b. Alternatively, the upper surface of the second side wall portion 13b and the lower surface of the first metal plate 11 may be joined by omitting the first side wall portion 13a. It was
内部空間10aは、第1金属板11及び第2金属板12で囲まれて形成される。内部空間10aは、密閉空間であり、例えば大気圧よりも気圧が低い減圧状態に維持される。内部空間10aが減圧状態であることにより、内部空間10aに収容される作動媒体20が蒸発しやすくなる。作動媒体20は、例えば水であるが、アルコールなどの他の液体であってもよい。  The internal space 10a is formed by being surrounded by the first metal plate 11 and the second metal plate 12. The internal space 10a is a closed space, and is maintained in a decompressed state where the atmospheric pressure is lower than the atmospheric pressure, for example. When the internal space 10a is in a decompressed state, the working medium 20 housed in the internal space 10a is likely to evaporate. The working medium 20 is, for example, water, but may be another liquid such as alcohol. It was
接合部14は、上方視において、第1ウィック構造体31及び第2ウィック構造体32の周囲に位置する。第1側壁部13aと第2側壁部13bとの接合方法は、特に限定されない。例えば、熱と圧力を加えて接合する方法、拡散接合、ろう材を用いた接合、などのいずれの接合方法であってもよい。  The joint portion 14 is located around the first wick structure 31 and the second wick structure 32 in the upward view. The method of joining the first side wall portion 13a and the second side wall portion 13b is not particularly limited. For example, any joining method such as a method of joining by applying heat and pressure, a diffusion joining, or a joining using a brazing material may be used. It was
なお、接合部14は、封止部を含んでいてもよい。封止部は、例えば、熱伝導部材1の製造過程において、作動媒体20を筐体10内に注入するための注入口を溶接によって封止した箇所である。  The joint portion 14 may include a sealing portion. The sealing portion is, for example, a portion where an injection port for injecting the working medium 20 into the housing 10 is sealed by welding in the manufacturing process of the heat conductive member 1. It was
本実施形態において、柱部15は、少なくとも1つの中実な中実柱部151と、少なくとも1つの多孔質の多孔質柱部152と、を有する。中実柱部151は、第1金属板11及び第2金属板12とは別部材であり、中実な部材である。中実な部材である。なお、「中実」な部材は、いわゆるソリッドな部材であることを意味し、中身が密に詰まっており、且つ多孔質でない物体で構成された部材を指す。例えば、「中実」な部材は、内部に空洞が内部材で合ってもよいし、単数又は複数の巨視的な空洞を内部に有する部材であってもよい。  In the present embodiment, the pillar portion 15 has at least one solid solid pillar portion 151 and at least one porous porous pillar portion 152. The solid pillar portion 151 is a separate member from the first metal plate 11 and the second metal plate 12, and is a solid member. It is a solid member. The "solid" member means a so-called solid member, and refers to a member whose contents are tightly packed and which is composed of a non-porous object. For example, a "solid" member may have a cavity inside, which may be an internal member, or may be a member having one or more macroscopic cavities inside. It was
中実柱部151は、銅等の熱伝導性の高い金属から成る。中実柱部151は、Z軸方向に延び、中実柱部151の上端部及び下端部は、第1金属板11の下面及び第2金属板12の上面にそれぞれろう材を用いて接合される。なお、中実柱部151は、ろう材による接合以外に溶接などにより第1金属板11及び第2金属板12と接合されてもよい。なお、中実柱部151は、第1金属板11及び第2金属板12の一方と一体であってもよい。このとき、中実柱部151は、第1金属板11又は第2金属板12をエッチング又は切削して形成することができる。  The solid pillar portion 151 is made of a metal having high thermal conductivity such as copper. The solid pillar portion 151 extends in the Z-axis direction, and the upper end portion and the lower end portion of the solid pillar portion 151 are joined to the lower surface of the first metal plate 11 and the upper surface of the second metal plate 12, respectively, using a brazing material. To. The solid column portion 151 may be joined to the first metal plate 11 and the second metal plate 12 by welding or the like, in addition to joining with a brazing material. The solid pillar portion 151 may be integrated with one of the first metal plate 11 and the second metal plate 12. At this time, the solid pillar portion 151 can be formed by etching or cutting the first metal plate 11 or the second metal plate 12. It was
中実柱部151は、例えば、上方視において円形の円柱で構成される。中実柱部151は、XY面内において2次元的に、かつ、規則的に並んで位置する。Z軸方向において中実柱部151が、第1金属板11及び第2金属板12を支持することにより、筐体10のZ軸方向の厚みが一定に保たれる。これにより、筐体10のZ軸方向の変形によって内部空間10aが、狭くなることを抑制できる。  The solid pillar portion 151 is composed of, for example, a circular cylinder in an upward view. The solid pillar portions 151 are two-dimensionally and regularly arranged side by side in the XY plane. By supporting the first metal plate 11 and the second metal plate 12 by the solid pillar portion 151 in the Z-axis direction, the thickness of the housing 10 in the Z-axis direction is kept constant. As a result, it is possible to prevent the internal space 10a from becoming narrow due to the deformation of the housing 10 in the Z-axis direction. It was
多孔質柱部152は、多孔質の柱状である。多孔質柱部152は、作動媒体20の流路を形成する空隙部(不図示)を有する。多孔質柱部152は、Z軸方向に延び、例えば、上方視において円形の円柱で構成される。また、多孔質柱部152は、XY面内において2次元的に、かつ、規則的に並んで位置する。多孔質柱部152は、隣り合う中実柱部151の中間に配置されることが好ましい。  The porous column portion 152 is a porous column. The porous column portion 152 has a void portion (not shown) that forms a flow path of the working medium 20. The porous column portion 152 extends in the Z-axis direction and is composed of, for example, a circular cylinder when viewed upward. Further, the porous column portions 152 are two-dimensionally and regularly arranged side by side in the XY plane. The porous column portion 152 is preferably arranged in the middle of the adjacent solid column portions 151. It was
<1-2.第1ウィック構造体、第2ウィック構造体、多孔質柱部の構成>



第1ウィック構造体31及び第2ウィック構造体32は、多孔質であり、作動媒体20の流路を形成する空隙部(不図示)を有する。 
<1-2. Structure of 1st wick structure, 2nd wick structure, porous column part>



The first wick structure 31 and the second wick structure 32 are porous and have a gap portion (not shown) forming a flow path of the working medium 20.
第1ウィック構造体31は、第1金属板11の内面に配置される板状の部材であり、発熱体H側と反対側の冷却側に配置される。第2ウィック構造体32は、第2金属板12の内面に配置される板状の部材であり、発熱体H側に配置される。第1ウィック構造体31と第2ウィック構造体32とは対向して配置される。第1ウィック構造体31と第2ウィック構造体32との間には、蒸気空間Sが形成される。蒸気空間Sは、作動媒体20の蒸気を拡散させるための空間である。  The first wick structure 31 is a plate-shaped member arranged on the inner surface of the first metal plate 11, and is arranged on the cooling side opposite to the heating element H side. The second wick structure 32 is a plate-shaped member arranged on the inner surface of the second metal plate 12, and is arranged on the heating element H side. The first wick structure 31 and the second wick structure 32 are arranged so as to face each other. A vapor space S is formed between the first wick structure 31 and the second wick structure 32. The steam space S is a space for diffusing the steam of the working medium 20. It was
多孔質柱部152は、第1ウィック構造体31及び第2ウィック構造体32を介して第1金属板11及び第2金属板12を支持する。これにより、多孔質柱部152が、中実柱部151を補強して筐体10のZ軸方向の変形をより抑制できる。  The porous column portion 152 supports the first metal plate 11 and the second metal plate 12 via the first wick structure 31 and the second wick structure 32. As a result, the porous pillar portion 152 can reinforce the solid pillar portion 151 and further suppress the deformation of the housing 10 in the Z-axis direction. It was
また、第1ウィック構造体31と、第2ウィック構造体32と、多孔質柱部152と、は、それぞれ多孔質の焼結体であり、一体である。第1ウィック構造体31、第2ウィック構造体32及び多孔質柱部152を多孔質の焼結体とすることにより、メッシュ材よりも容易に製造可能であり、熱伝導部材1の製造コストを下げることができる。また、多孔質柱部152を設けることにより、第1ウィック構造体31から第2ウィック構造体32への作動媒体20の流路を増やすことができる。  Further, the first wick structure 31, the second wick structure 32, and the porous column portion 152 are porous sintered bodies, respectively, and are integrated with each other. By making the first wick structure 31, the second wick structure 32, and the porous column portion 152 into a porous sintered body, it can be manufactured more easily than the mesh material, and the manufacturing cost of the heat conductive member 1 can be reduced. Can be lowered. Further, by providing the porous pillar portion 152, the flow path of the working medium 20 from the first wick structure 31 to the second wick structure 32 can be increased. It was
発熱体Hとは反対側の放熱面側に配置される第1ウィック構造体31は、第2ウィック構造体32よりも気化した作動媒体20の凝縮が、促進される。このため、第1ウィック構造体31は、第2ウィック構造体32と比べて作動媒体20の冷却効率が高いことが好ましい。  The first wick structure 31 arranged on the heat radiation surface side opposite to the heating element H promotes the condensation of the vaporized working medium 20 as compared with the second wick structure 32. Therefore, it is preferable that the first wick structure 31 has a higher cooling efficiency of the working medium 20 than the second wick structure 32. It was
また、第1ウィック構造体31は、発熱体HとZ方向(第1金属板11及び第2金属板12の対向方向)に重なる第1領域U1の少なくとも一部において、凹部31aを有する。凹部31aは、第1ウィック構造体31の内面からZ方向に凹む。  Further, the first wick structure 31 has a recess 31a in at least a part of the first region U1 that overlaps the heating element H in the Z direction (the direction opposite to the first metal plate 11 and the second metal plate 12). The recess 31a is recessed in the Z direction from the inner surface of the first wick structure 31. It was
このとき、凹部31aにおける第1ウィック構造体31の厚みW1aが、凹部31a以外の領域における第1ウィック構造体31の厚みW1bよりも小さく形成される。第1ウィック構造体31の厚みを小さくすることにより、冷却効率が低下する。これにより、凹部31a以外の領域における冷却効率は、凹部31aにおける冷却効率よりも高くなる。  At this time, the thickness W1a of the first wick structure 31 in the recess 31a is formed to be smaller than the thickness W1b of the first wick structure 31 in the region other than the recess 31a. By reducing the thickness of the first wick structure 31, the cooling efficiency is lowered. As a result, the cooling efficiency in the region other than the recess 31a is higher than the cooling efficiency in the recess 31a. It was
通常、作動媒体20の凝縮は、発熱体HとZ方向に対向する第1領域U1で最も促進される。しかし、凹部31aを設けることにより、第1領域U1における作動媒体20の凝縮を抑制できる。これにより、気化した作動媒体20が、第2領域U2に拡散し、第2領域U2における作動媒体20の凝縮を促進できる。従って、第1ウィック構造体31全体で作動媒体20を凝縮し、作動媒体20の凝縮により発生する熱を、第1金属板11全体で放熱面側に効率よく放熱できる。これにより、作動媒体20による熱輸送効率を向上できる。  Normally, the condensation of the working medium 20 is most promoted in the first region U1 facing the heating element H in the Z direction. However, by providing the recess 31a, the condensation of the working medium 20 in the first region U1 can be suppressed. As a result, the vaporized working medium 20 diffuses into the second region U2, and the condensation of the working medium 20 in the second region U2 can be promoted. Therefore, the working medium 20 is condensed in the entire first wick structure 31, and the heat generated by the condensation of the working medium 20 can be efficiently dissipated to the heat radiating surface side in the entire first metal plate 11. Thereby, the heat transfer efficiency by the working medium 20 can be improved. It was
なお、本実施形態では、凹部31aは、第1ウィック構造体31の内面がZ方向に凹んで形成されるが、第1ウィック構造体31をZ方向に貫通して形成してもよい。また、凹部31aの上面が第1金属板11と平行な面に形成されるが、谷型に形成されてもよい。すなわち、凹部31aにおける第1ウィック構造体31の厚みW1aが、第1領域U1内の所定位置に向かって漸次小さく形成される。これにより、第1領域U1内の所定位置に凝縮が偏ることを抑制できる。  In the present embodiment, the recess 31a is formed so that the inner surface of the first wick structure 31 is recessed in the Z direction, but the recess 31a may be formed so as to penetrate the first wick structure 31 in the Z direction. Further, although the upper surface of the recess 31a is formed on a surface parallel to the first metal plate 11, it may be formed in a valley shape. That is, the thickness W1a of the first wick structure 31 in the recess 31a is gradually formed to be smaller toward a predetermined position in the first region U1. As a result, it is possible to prevent the condensation from being biased to a predetermined position in the first region U1. It was
凹部31aにおける第1ウィック構造体31の厚みW1aは、第2ウィック構造体32の厚みW2よりも10%以上小さいことが好ましい。これにより、凹部31aにおける作動媒体20の凝縮をより抑制できる。  The thickness W1a of the first wick structure 31 in the recess 31a is preferably 10% or more smaller than the thickness W2 of the second wick structure 32. This makes it possible to further suppress the condensation of the working medium 20 in the recess 31a. It was
また、凹部31a全体が、第1領域U1とZ方向に重ならなくてもよい。この場合、凹部31aの端部が、第2領域U2とZ方向に重なってもよい。  Further, the entire recess 31a does not have to overlap with the first region U1 in the Z direction. In this case, the end portion of the recess 31a may overlap with the second region U2 in the Z direction. It was
また、第1領域U1における第2ウィック構造体32の厚みW2は、第1ウィック構造体31の厚みW1aよりもZ方向に大きい。発熱体H側に配置される第2ウィック構造体32は、第1ウィック構造体31よりも液状の作動媒体20の気化が、促進される。このため、第2ウィック構造体32の厚みW2を、第1ウィック構造体31の厚みW1aよりもZ方向に大きくすることにより、第2ウィック構造体32の作動媒体20の保持性を第1ウィック構造体31の作動媒体20の保持性よりも高くできる。  Further, the thickness W2 of the second wick structure 32 in the first region U1 is larger in the Z direction than the thickness W1a of the first wick structure 31. The second wick structure 32 arranged on the heating element H side promotes the vaporization of the liquid working medium 20 as compared with the first wick structure 31. Therefore, by increasing the thickness W2 of the second wick structure 32 in the Z direction with respect to the thickness W1a of the first wick structure 31, the holding property of the working medium 20 of the second wick structure 32 is improved by the first wick. It can be higher than the retention of the working medium 20 of the structure 31. It was
また、第2ウィック構造体32の作動媒体20の保持性が、向上することにより、発熱体HとZ方向に重なる第1領域U1において、第2ウィック構造体32の保持する液状の作動媒体20が完全に気化する、いわゆるドライアウトの発生を抑制できる。  Further, by improving the holding property of the working medium 20 of the second wick structure 32, the liquid working medium 20 held by the second wick structure 32 in the first region U1 overlapping the heating element H in the Z direction. Can suppress the occurrence of so-called dryout, which is completely vaporized. It was
さらに、Z方向(第1金属板11及び第2金属板12の対向方向)において、第1領域U1における第1ウィック構造体31の厚みW1aと、第2ウィック構造体32の厚みW2と、第1ウィック構造体31と第2ウィック構造体32との隙間の長さW3と、は、式(1)を満たすことが好ましい。  Further, in the Z direction (opposite direction of the first metal plate 11 and the second metal plate 12), the thickness W1a of the first wick structure 31 in the first region U1 and the thickness W2 of the second wick structure 32, and the first It is preferable that the length W3 of the gap between the 1-wick structure 31 and the 2nd wick structure 32 satisfies the formula (1). It was
W3>W2+W1a ・・・(1)  W3> W2 + W1a ... (1)
内部空間10aにおいて、第1ウィック構造体31と第2ウィック構造体32とのZ方向の隙間を大きく設けることにより、第2ウィック構造体32から気化した作動媒体20が、内部空間10a内でXY面内に拡散し易くなる。これにより、第1ウィック構造体31における作動媒体20の凝縮が促進される。なお、第1領域U1における第1ウィック構造体31の厚みW1aの代わりに、第2領域U2における第1ウィック構造体31の厚みW1bを式(1)に当てはめても同様の効果が得られる。  By providing a large gap in the Z direction between the first wick structure 31 and the second wick structure 32 in the internal space 10a, the working medium 20 vaporized from the second wick structure 32 is XY in the internal space 10a. It becomes easy to diffuse in the plane. This promotes the condensation of the working medium 20 in the first wick structure 31. The same effect can be obtained by applying the thickness W1b of the first wick structure 31 in the second region U2 to the equation (1) instead of the thickness W1a of the first wick structure 31 in the first region U1. It was
さらに、第1領域U1において、Z方向(第1金属板11及び第2金属板12の対向方向)における第1ウィック構造体31の厚みW1aと、第2ウィック構造体32の厚みW2と、第1ウィック構造体31と第2ウィック構造体32との隙間の長さW3とは、式(2)~式(4)を満たすことがより好ましい。  Further, in the first region U1, the thickness W1a of the first wick structure 31 in the Z direction (opposite direction of the first metal plate 11 and the second metal plate 12), the thickness W2 of the second wick structure 32, and the first It is more preferable that the length W3 of the gap between the 1-wick structure 31 and the 2nd wick structure 32 satisfies the equations (2) to (4). It was
4W1a≧W2≧2W1a ・・・(2)



7W1a≧W3≧5W1a ・・・(3)



W3+W2=9W1a ・・・(4) 
4W1a ≧ W2 ≧ 2W1a ・ ・ ・ (2)



7W1a ≧ W3 ≧ 5W1a ・ ・ ・ (3)



W3 + W2 = 9W1a ... (4)
すなわち、第2ウィック構造体32の厚みW2を第1領域U1における第1ウィック構造体31の厚みW1aの2倍以上4倍以下とし、第1ウィック構造体31と第2ウィック構造体32との隙間の長さW3を第1領域U1における第1ウィック構造体31の厚みW1aの5倍以上7倍以下とすることが好ましい。これにより、第2ウィック構造体32の作動媒体20の保持性を確保しながら、第1ウィック構造体31における作動媒体20の凝縮をより促進することができる。なお、第1領域U1における第1ウィック構造体31の厚みW1aの代わりに、第2領域U2における第1ウィック構造体31の厚みW1bを式(2)~(4)に当てはめても同様の効果が得られる。  That is, the thickness W2 of the second wick structure 32 is set to be twice or more and four times or less the thickness W1a of the first wick structure 31 in the first region U1, and the first wick structure 31 and the second wick structure 32 are combined. The gap length W3 is preferably 5 times or more and 7 times or less the thickness W1a of the first wick structure 31 in the first region U1. This makes it possible to further promote the condensation of the working medium 20 in the first wick structure 31 while ensuring the retention of the working medium 20 in the second wick structure 32. The same effect can be obtained by applying the thickness W1b of the first wick structure 31 in the second region U2 to the equations (2) to (4) instead of the thickness W1a of the first wick structure 31 in the first region U1. Is obtained. It was
また、第2ウィック構造体32は、第1ウィック構造体31よりも空隙率が高い。これにより、第2ウィック構造体32の毛細管力が、第1ウィック構造体31の毛細管力よりも大きくなる。  Further, the second wick structure 32 has a higher porosity than the first wick structure 31. As a result, the capillary force of the second wick structure 32 becomes larger than the capillary force of the first wick structure 31. It was
ここで、第1ウィック構造体31及び第2ウィック構造体32の全体積に対する空間の体積の割合を、空隙率と呼ぶ。空隙率の単位は%である。空隙率は以下の方法によって求められる。例えば、ウィック構造体の断面写真から、空間の面積を測定し、空間の面積が全体に占める割合を算出することにより、空隙率を求めることができる。第1ウィック構造体31及び第2ウィック構造体32の断面の観察においては、被写界深度の深い走査型電子顕微鏡を用いることが好ましい。なお、断面の観察の方法は、金属部分と空間とを容易に判別できる方法であればよく、特に限定されない。  Here, the ratio of the volume of the space to the total product of the first wick structure 31 and the second wick structure 32 is referred to as a porosity. The unit of porosity is%. The porosity is determined by the following method. For example, the porosity can be obtained by measuring the area of the space from the cross-sectional photograph of the wick structure and calculating the ratio of the area of the space to the whole. When observing the cross sections of the first wick structure 31 and the second wick structure 32, it is preferable to use a scanning electron microscope having a deep depth of field. The method of observing the cross section is not particularly limited as long as it can easily distinguish between the metal portion and the space. It was
なお、本実施形態では、第1ウィック構造体31及び第2ウィック構造体32を多孔質の焼結体で構成しているが、第1ウィック構造体31又は第2ウィック構造体32を複数の金属線状部材が編み込まれたメッシュ部材であってもよい。第2ウィック構造体32をメッシュ材で構成し、第1ウィック構造体31を多孔質の焼結体で構成することにより、第2ウィック構造体32の毛細管力を、第1ウィック構造体31の毛細管力よりも大きく容易に形成することができる。  In the present embodiment, the first wick structure 31 and the second wick structure 32 are made of a porous sintered body, but the first wick structure 31 or the second wick structure 32 is a plurality of pieces. It may be a mesh member in which a metal linear member is woven. By constructing the second wick structure 32 with a mesh material and the first wick structure 31 with a porous sintered body, the capillary force of the second wick structure 32 can be reduced to that of the first wick structure 31. It is larger than the capillary force and can be easily formed. It was
また、第1ウィック構造体31又は第2ウィック構造体32を第1金属板11の内面及び第2金属板12の内面に形成された複数の溝部により構成してもよい。これにより、メッシュ材及び焼結体で構成する場合と比べて第1ウィック構造体31又は第2ウィック構造体32を薄く形成できる。従って、内部空間10aをZ軸方向に広げることができる。また、内部空間10aを狭めずに筐体10をZ軸方向に薄型化できる。また、第1ウィック構造体31又は第2ウィック構造体32の一方を溝部で構成ことにより、内部空間10aを狭めずに第1ウィック構造体31又は第2ウィック構造体32のZ軸方向の厚みを大きくできる。  Further, the first wick structure 31 or the second wick structure 32 may be composed of a plurality of grooves formed on the inner surface of the first metal plate 11 and the inner surface of the second metal plate 12. As a result, the first wick structure 31 or the second wick structure 32 can be formed thinner than in the case of being composed of the mesh material and the sintered body. Therefore, the internal space 10a can be expanded in the Z-axis direction. Further, the housing 10 can be made thinner in the Z-axis direction without narrowing the internal space 10a. Further, by forming one of the first wick structure 31 and the second wick structure 32 with a groove portion, the thickness of the first wick structure 31 or the second wick structure 32 in the Z-axis direction without narrowing the internal space 10a. Can be increased. It was
第1ウィック構造体31、第2ウィック構造体32及び多孔質柱部152は、例えば、以下のように形成される。まず、マイクロ銅粒子、銅体及び樹脂を含む混合粉体を接合前の第1金属板11の下面及び第2金属板12の上面に吹き付け塗布する。次に、柱状に成形した混合粉体を挟んで第1金属板11及び第2金属板12を接合する。その後、筐体10を加熱して混合粉体を焼成する。これにより、筐体10の内部空間10aに、第1ウィック構造体31と、第2ウィック構造体32と、多孔質柱部152と、を、容易に一体に形成できる。これにより、熱伝導部材1の製造コストを抑制することができる。なお、第1ウィック構造体31、第2ウィック構造体32及び多孔質柱部152を別々に焼成した後に、第1金属板11及び第2金属板12を接合してもよい。  The first wick structure 31, the second wick structure 32, and the porous column portion 152 are formed, for example, as follows. First, a mixed powder containing micro copper particles, a copper body and a resin is sprayed and applied to the lower surface of the first metal plate 11 and the upper surface of the second metal plate 12 before joining. Next, the first metal plate 11 and the second metal plate 12 are joined by sandwiching the mixed powder formed in a columnar shape. After that, the housing 10 is heated to bake the mixed powder. As a result, the first wick structure 31, the second wick structure 32, and the porous pillar portion 152 can be easily integrally formed in the internal space 10a of the housing 10. As a result, the manufacturing cost of the heat conductive member 1 can be suppressed. The first metal plate 11 and the second metal plate 12 may be joined after the first wick structure 31, the second wick structure 32, and the porous column portion 152 are fired separately. It was
なお、本明細書において、「塗布」とは、第1金属板11の下面及び第2金属板12の上面に混合粉体を付着させることを指す。吹き付け塗布する方法以外に、混合粉体を含むペーストを塗布してもよい。  In addition, in this specification, "coating" means adhering mixed powder to the lower surface of the 1st metal plate 11 and the upper surface of the 2nd metal plate 12. In addition to the spray coating method, a paste containing a mixed powder may be applied. It was
マイクロ銅粒子は、複数の銅原子が凝集または結合した粒子である。マイクロ銅粒子の粒径は、1μm以上1mm未満である。マイクロ銅粒子は、例えば多孔質である。  Micro copper particles are particles in which a plurality of copper atoms are aggregated or bonded. The particle size of the micro copper particles is 1 μm or more and less than 1 mm. The micro copper particles are, for example, porous. It was
銅体は、マイクロ銅粒子よりも小さいサブマイクロ銅粒子が焼結により溶融して固まった銅溶融体である。サブマイクロ銅粒子は、複数の銅原子が凝集または結合した粒子である。溶融前のサブマイクロ銅粒子の粒径は、0.1μm以上1μm未満である。  The copper body is a copper melt obtained by melting and solidifying sub-micro copper particles smaller than the micro copper particles by sintering. Submicro copper particles are particles in which a plurality of copper atoms are aggregated or bonded. The particle size of the sub-micro copper particles before melting is 0.1 μm or more and less than 1 μm. It was
樹脂は、マイクロ銅粒子および銅体を構成する銅の融点以下の温度で揮発する揮発性の樹脂である。このような揮発性の樹脂としては、例えば、メチルセルロース、エチルセルロースなどのセルロース樹脂、アクリル樹脂、ブチラール樹脂、アルキド樹脂、エポキシ樹脂、フェノール樹脂などを用いることができる。これらの中では、熱分解性の高いアクリル樹脂を用いることが好ましい。  The resin is a volatile resin that volatilizes at a temperature below the melting point of the copper constituting the micro copper particles and the copper body. As such a volatile resin, for example, a cellulose resin such as methyl cellulose or ethyl cellulose, an acrylic resin, a butyral resin, an alkyd resin, an epoxy resin, a phenol resin or the like can be used. Among these, it is preferable to use an acrylic resin having high thermal decomposability. It was
<2.熱伝導部材の動作>



図2において、作動媒体20が気化して生成される蒸気の流れを熱伝導部材1内の黒矢印で示し、液状の作動媒体20の流れを熱伝導部材1内の白抜き矢印で示す。 
<2. Operation of heat conductive member>



In FIG. 2, the flow of steam generated by vaporizing the working medium 20 is indicated by a black arrow in the heat conductive member 1, and the flow of the liquid working medium 20 is indicated by a white arrow in the heat conductive member 1.
上記の構成の熱伝導部材では、発熱体Hで発生した熱により、第2金属板12の温度が上昇すると、第2ウィック構造体32に含まれた液状の作動媒体20が、気化する。  In the heat conductive member having the above configuration, when the temperature of the second metal plate 12 rises due to the heat generated by the heating element H, the liquid working medium 20 contained in the second wick structure 32 is vaporized. It was
気化して蒸気とされた作動媒体20は、蒸気空間Sで拡散する。なお、蒸気空間Sは、第1ウィック構造体31と第2ウィック構造体32との間の隙間空間から中実柱部151および多孔質柱部152により占有される空間を除いた空間である。  The working medium 20 that has been vaporized into steam diffuses in the steam space S. The steam space S is a space excluding the space occupied by the solid pillar portion 151 and the porous pillar portion 152 from the gap space between the first wick structure 31 and the second wick structure 32. It was
このとき、気化した作動媒体20の一部は、第1ウィック構造体31に接触して冷却され、凝縮する。第1ウィック構造体31は、第1金属板11の下面よりも表面積が大きく冷却効率が高い。このため、第1ウィック構造体31を設けることにより、気化した作動媒体20の冷却効率が向上して凝縮が促進される。  At this time, a part of the vaporized working medium 20 comes into contact with the first wick structure 31 to be cooled and condensed. The first wick structure 31 has a larger surface area and higher cooling efficiency than the lower surface of the first metal plate 11. Therefore, by providing the first wick structure 31, the cooling efficiency of the vaporized working medium 20 is improved and condensation is promoted. It was
第1ウィック構造体31で凝縮した作動媒体20の一部は、滴下して第2ウィック構造体32に吸収される。また、第1ウィック構造体31で凝縮した作動媒体20の一部は、第1ウィック構造体31中及び多孔質柱部152中を移動して第2ウィック構造体32に吸収される。また、第1ウィック構造体31で凝縮した作動媒体20の一部は、中実柱部151の外面に沿って移動して第2ウィック構造体32に吸収される。  A part of the working medium 20 condensed in the first wick structure 31 is dropped and absorbed in the second wick structure 32. Further, a part of the working medium 20 condensed in the first wick structure 31 moves in the first wick structure 31 and in the porous column portion 152 and is absorbed by the second wick structure 32. Further, a part of the working medium 20 condensed in the first wick structure 31 moves along the outer surface of the solid pillar portion 151 and is absorbed by the second wick structure 32. It was
凝縮した作動媒体20は、毛細管現象によって第2ウィック構造体32中を第1領域U1に向かって移動する。また、第1ウィック構造体31から第2ウィック構造体32に吸収された作動媒体20も、毛細管現象によって第2ウィック構造体32中を第1領域U1に向かって移動する。  The condensed working medium 20 moves in the second wick structure 32 toward the first region U1 due to the capillary phenomenon. Further, the working medium 20 absorbed from the first wick structure 31 to the second wick structure 32 also moves in the second wick structure 32 toward the first region U1 due to the capillary phenomenon. It was
このとき、第2ウィック構造体32の毛細管力は、第1ウィック構造体31の毛細管力よりも高いため、第2ウィック構造体32を介して凝縮した作動媒体20を発熱体Hが配置される位置に、より早く移動させることができる。従って、作動媒体20による熱輸送効率が向上する。  At this time, since the capillary force of the second wick structure 32 is higher than the capillary force of the first wick structure 31, the heating element H is arranged on the working medium 20 condensed through the second wick structure 32. It can be moved to a position faster. Therefore, the heat transport efficiency by the working medium 20 is improved. It was
また、第2ウィック構造体32の厚みW2を、第1ウィック構造体31の厚みW1aもしくはW1bよりもZ方向に大きくし、発熱体HとZ方向に対向する領域において、ドライアウトの発生を抑制する。これにより、第2ウィック構造体32中において、第1領域U1に向かって液状の作動媒体20を連続して円滑に移動させることができる。従って、ドライアウトの発生による、作動媒体20の熱輸送効率の低下を抑制できる。  Further, the thickness W2 of the second wick structure 32 is made larger in the Z direction than the thickness W1a or W1b of the first wick structure 31, and the occurrence of dryout is suppressed in the region facing the heating element H in the Z direction. do. As a result, the liquid working medium 20 can be continuously and smoothly moved toward the first region U1 in the second wick structure 32. Therefore, it is possible to suppress a decrease in the heat transport efficiency of the working medium 20 due to the occurrence of dryout. It was
上記のように作動媒体20が状態変化を伴いながら移動することにより、発熱体H側から冷却側への熱輸送が連続的に行われる。  As described above, the working medium 20 moves while changing its state, so that heat is continuously transferred from the heating element H side to the cooling side. It was
<3.蒸気空間について>



先述したように、蒸気空間Sは、第1ウィック構造体31と第2ウィック構造体32との間の隙間空間から中実柱部151及び多孔質柱部152により占有される空間を除いた空間である。すなわち、蒸気空間Sは、内部空間10aにおける第1ウィック構造体31、第2ウィック構造体32、多孔質柱部152及び中実柱部151以外の空間である。 
<3. About steam space >



As described above, the steam space S is a space excluding the space occupied by the solid pillar portion 151 and the porous pillar portion 152 from the gap space between the first wick structure 31 and the second wick structure 32. Is. That is, the steam space S is a space other than the first wick structure 31, the second wick structure 32, the porous pillar portion 152, and the solid pillar portion 151 in the internal space 10a.
そして、本実施形態では、下記式(5)が満たされる。



V1>V2 ・・・(5)



ただし、V1:蒸気空間Sの体積、V2:合計体積 
Then, in this embodiment, the following equation (5) is satisfied.



V1> V2 ... (5)



However, V1: the volume of the steam space S, V2: the total volume
このとき、合計体積は、第1ウィック構造体31、第2ウィック構造体32及び多孔質柱部152の各体積を合計した体積である。すなわち、本実施形態において、合計体積は、第1ウィック構造体31及び第2ウィック構造体32の合計体積に多孔質柱部152の体積をさらに含む。  At this time, the total volume is the total volume of each of the first wick structure 31, the second wick structure 32, and the porous column portion 152. That is, in the present embodiment, the total volume further includes the volume of the porous column portion 152 in the total volume of the first wick structure 31 and the second wick structure 32. It was
なお、本実施形態では、多孔質柱部152が設けられているが、多孔質柱部152が設けられていない場合、合計体積は、第1ウィック構造体31及び第2ウィック構造体32の各体積を合計して算出される。また、中実柱部151が設けられていない場合、蒸気空間Sは、内部空間10aにおける第1ウィック構造体31、第2ウィック構造体32及び多孔質柱部152以外の空間である。  In this embodiment, the porous pillar portion 152 is provided, but when the porous pillar portion 152 is not provided, the total volume is each of the first wick structure 31 and the second wick structure 32. Calculated by summing up the volumes. Further, when the solid pillar portion 151 is not provided, the steam space S is a space other than the first wick structure 31, the second wick structure 32, and the porous pillar portion 152 in the internal space 10a. It was
このようにすることで、蒸気空間Sの体積を確保し、作動媒体20の蒸気の拡散を促進することができる。従って、熱伝導部材1の熱輸送効率を向上させることができる。  By doing so, it is possible to secure the volume of the steam space S and promote the diffusion of the steam of the working medium 20. Therefore, the heat transport efficiency of the heat conductive member 1 can be improved. It was
また、中実柱部151は、筐体10の強度を確保することができるが、配置することにより蒸気空間Sが狭くなる要因となり、そのような中実柱部151を設ける場合でも上記式(5)を満たすことで蒸気の拡散を促進できる。 Further, although the solid pillar portion 151 can secure the strength of the housing 10, arranging the solid pillar portion 151 causes a factor that the steam space S becomes narrow, and even when such a solid pillar portion 151 is provided, the above equation ( By satisfying 5), the diffusion of vapor can be promoted.
また、上記式(5)より、蒸気空間Sの体積は、第1ウィック構造体31と第2ウィック構造体32と多孔質柱部152との各体積の総和よりも大きくなる。  Further, from the above formula (5), the volume of the steam space S is larger than the sum of the volumes of the first wick structure 31, the second wick structure 32, and the porous column portion 152. It was
<4.柱部>



本実施形態では、柱部15は、次のような構成であることが好ましい。 
<4. Pillar part >



In the present embodiment, the pillar portion 15 preferably has the following configuration.
中実柱部151の上面と第1金属板11の下面とが接合される接合面積の総和は、多孔質柱部152の上面と第1ウィック構造体31の下面とが接合される接合面積の総和よりも大きい。かつ、中実柱部151の下面と第2金属板12の上面とが接合される接合面積の総和は、多孔質柱部152の下面と第2ウィック構造体32の上面とが接合される接合面積の総和よりも大きい。なお、接合面積の総和とは、1本の中実柱部151又は多孔質柱部152についての接合面積のすべての本数分の総和のことである。  The total joint area where the upper surface of the solid column portion 151 and the lower surface of the first metal plate 11 are joined is the joint area where the upper surface of the porous column portion 152 and the lower surface of the first wick structure 31 are joined. Greater than the sum. The total joint area where the lower surface of the solid column portion 151 and the upper surface of the second metal plate 12 are joined is the joint where the lower surface of the porous column portion 152 and the upper surface of the second wick structure 32 are joined. It is larger than the total area. The total joint area is the total number of joint areas of one solid column portion 151 or the porous column portion 152. It was
ただし、図3に変形例を示すように、多孔質柱部152が第1ウィック構造体31を貫通して第1金属板11に接合されるとともに、第2ウィック構造体32を貫通して第2金属板12に接合されてもよい。このような場合には、中実柱部151の上面と第1金属板11の下面とが接合される接合面積の総和は、多孔質柱部152の上面と第1金属板11の下面とが接合される接合面積の総和よりも大きい。かつ、中実柱部151の下面と第2金属板12の上面とが接合される接合面積の総和は、多孔質柱部152の下面と第2金属板12の上面とが接合される接合面積の総和よりも大きい。  However, as shown in the modified example in FIG. 3, the porous column portion 152 penetrates the first wick structure 31 and is joined to the first metal plate 11 and also penetrates the second wick structure 32 to form a second. 2 It may be joined to the metal plate 12. In such a case, the total joint area where the upper surface of the solid pillar portion 151 and the lower surface of the first metal plate 11 are joined is such that the upper surface of the porous pillar portion 152 and the lower surface of the first metal plate 11 are joined together. It is larger than the total joint area to be joined. The total joint area where the lower surface of the solid pillar portion 151 and the upper surface of the second metal plate 12 are joined is the joint area where the lower surface of the porous pillar portion 152 and the upper surface of the second metal plate 12 are joined. Is larger than the sum of. It was
すなわち、中実柱部151の一方側端部が第1金属板11と接する接触面積の総和は、多孔質柱部152の一方側端部が第1ウィック構造体31または第1金属板11と接する接触面積の総和よりも広く、かつ、中実柱部151の他方側端部が第2金属板12と接する接触面積の総和は、多孔質柱部152の他方側端部が第2ウィック構造体32または第2金属板12と接する接触面積の総和よりも広い。  That is, the total contact area of the solid pillar portion 151 where one side end is in contact with the first metal plate 11 is such that the one side end of the porous pillar portion 152 is the first wick structure 31 or the first metal plate 11. The total contact area is wider than the total contact area and the other end of the solid column 151 is in contact with the second metal plate 12, and the other end of the porous column 152 has a second wick structure. It is wider than the total contact area in contact with the body 32 or the second metal plate 12. It was
中実な中実柱部151の強度は、多孔質柱部152の強度よりも高い。従って、上記のような接触面積の大小関係により、多孔質柱部152を用いる構成であっても、中実柱部151によって筐体10の強度を十分に確保することができる。  The strength of the solid solid pillar portion 151 is higher than the strength of the porous pillar portion 152. Therefore, due to the size relationship of the contact area as described above, the strength of the housing 10 can be sufficiently secured by the solid pillar portion 151 even in the configuration using the porous pillar portion 152. It was
<5.その他>



以上、本発明の実施形態を説明した。なお、本発明の範囲は上述の実施形態に限定されない。本発明は、発明の主旨を逸脱しない範囲で上述の実施形態に種々の変更を加えて実施することができる。また、上述の実施形態で説明した事項は、矛盾を生じない範囲で適宜任意に組み合わせることができる。
<5. Others>



The embodiment of the present invention has been described above. The scope of the present invention is not limited to the above-described embodiment. The present invention can be implemented by making various modifications to the above-described embodiments without departing from the gist of the invention. In addition, the items described in the above-described embodiments can be arbitrarily combined as long as they do not cause a contradiction.
例えば、第1ウィック構造体31をメッシュ材で構成し、第2ウィック構造体32を多孔質の焼結体で構成してもよい。または、中実柱部151及び多孔質柱部152のうち少なくとも一方を設けないようにしてもよい。  For example, the first wick structure 31 may be made of a mesh material, and the second wick structure 32 may be made of a porous sintered body. Alternatively, at least one of the solid pillar portion 151 and the porous pillar portion 152 may not be provided. It was
本発明は、各種発熱体の冷却に利用することができる。 The present invention can be used for cooling various heating elements.
1   熱伝導部材  10   筐体  10a  内部空間  11   第1金属板  12   第2金属板  13a  第1側壁部  13b  第2側壁部  14   接合部  15   柱部 151   中実柱部 152   多孔質柱部  20   作動媒体  31   第1ウィック構造体  31a  凹部  32   第2ウィック構造体   H   発熱体   S   蒸気空間   U1  第1領域   U2  第2領域 1 heat conductive member 10 housing 10a internal space 11 1st metal plate 12 2nd metal plate 13a 1st side wall 13b 2nd side wall 14 joint 15 pillar part 151 solid pillar part 152 1st wick structure 31a recess 32 2nd wick structure H heating element S steam space U1 1st area U2 2nd area

Claims (20)

  1. 内部空間を有する筐体と、



    第1ウィック構造体と、



    第2ウィック構造体と、



    作動媒体と、を備え、



    前記筐体は、



    第1金属板と、前記第1金属板に対向して配置されるとともに外面に発熱体が配置される第2金属板と、前記内部空間に配置される柱部と、を有し、



    前記作動媒体と、前記第1ウィック構造体と、前記第2ウィック構造体と、は、前記内部空間に収容され、



    前記第1ウィック構造体は、前記第1金属板の内面に配置され、



    前記第2ウィック構造体は、前記第2金属板の内面に配置され、



    前記第1ウィック構造体は、前記第1金属板及び前記第2金属板の対向方向に前記発熱体と重なる第1領域の少なくとも一部において、内面から前記対向方向に凹む凹部を有する、熱伝導部材。
    A housing with an internal space and



    The first wick structure and



    The second wick structure and



    With a working medium,



    The housing is



    It has a first metal plate, a second metal plate which is arranged so as to face the first metal plate and a heating element is arranged on an outer surface, and a pillar portion which is arranged in the internal space.



    The working medium, the first wick structure, and the second wick structure are housed in the internal space.



    The first wick structure is arranged on the inner surface of the first metal plate.



    The second wick structure is arranged on the inner surface of the second metal plate.



    The first wick structure has a recess recessed from an inner surface in the facing direction in at least a part of a first region overlapping the heating element in the facing direction of the first metal plate and the second metal plate. Element.
  2. 前記凹部は、前記第1ウィック構造体を前記対向方向に貫通して形成される、請求項1に記載の熱伝導部材。 The heat conductive member according to claim 1, wherein the recess is formed by penetrating the first wick structure in the facing direction.
  3. 前記凹部における前記第1ウィック構造体の厚みは、前記第2ウィック構造体の厚みよりも10%以上小さい、請求項1又は請求項2に記載の熱伝導部材。 The heat conductive member according to claim 1 or 2, wherein the thickness of the first wick structure in the recess is 10% or more smaller than the thickness of the second wick structure.
  4. 前記凹部における前記第1ウィック構造体の厚みが、前記第1領域内の所定位置に向かって漸次小さく形成される、請求項1~請求項3のいずれかに記載の熱伝導部材。 The heat conductive member according to any one of claims 1 to 3, wherein the thickness of the first wick structure in the recess is gradually reduced toward a predetermined position in the first region.
  5. 前記第1ウィック構造体は、多孔質の焼結体である、請求項1~請求項4のいずれかに記載の熱伝導部材。 The heat conductive member according to any one of claims 1 to 4, wherein the first wick structure is a porous sintered body.
  6. 前記第2ウィック構造体は、複数の金属線状部材が編み込まれたメッシュ部材である、請求項1~請求項5のいずれかに記載の熱伝導部材。 The heat conductive member according to any one of claims 1 to 5, wherein the second wick structure is a mesh member in which a plurality of metal linear members are woven.
  7. 前記第2ウィック構造体は、多孔質の焼結体である、請求項1~請求項5のいずれかに記載の熱伝導部材。 The heat conductive member according to any one of claims 1 to 5, wherein the second wick structure is a porous sintered body.
  8. 前記柱部は、少なくとも1つの多孔質の多孔質柱部を有する請求項1~請求項7のいずれかに記載の熱伝導部材。 The heat conductive member according to any one of claims 1 to 7, wherein the pillar portion has at least one porous porous pillar portion.
  9. 前記柱部は、少なくとも1つの多孔質の焼結体である多孔質柱部を有し、前記第2ウィック構造体は、多孔質の焼結体であり、



    前記第1ウィック構造体と、前記第2ウィック構造体と、前記多孔質柱部と、が、一体である、請求項5に記載の熱伝導部材。
    The pillar portion has a porous pillar portion which is at least one porous sintered body, and the second wick structure is a porous sintered body.



    The heat conductive member according to claim 5, wherein the first wick structure, the second wick structure, and the porous column portion are integrated.
  10. 前記柱部は、少なくとも1つの中実な中実柱部を有する請求項1~請求項9のいずれかに記載の熱伝導部材。 The heat conductive member according to any one of claims 1 to 9, wherein the pillar portion has at least one solid solid pillar portion.
  11. 前記第2ウィック構造体は、前記第1ウィック構造体よりも空隙率が高い、請求項7又は請求項10に記載の熱伝導部材。 The heat conductive member according to claim 7 or 10, wherein the second wick structure has a higher porosity than the first wick structure.
  12. 前記第2ウィック構造体の毛細管力は、前記第1ウィック構造体の毛細管力よりも高い、請求項1~請求項11のいずれかに記載の熱導電部材。 The heat conductive member according to any one of claims 1 to 11, wherein the capillary force of the second wick structure is higher than the capillary force of the first wick structure.
  13. 前記第2ウィック構造体の厚みは、前記第1ウィック構造体の厚みよりも大きい、請求項1~請求項-12のいずれかに記載の熱伝導部材。 The heat conductive member according to any one of claims 1 to 12, wherein the thickness of the second wick structure is larger than the thickness of the first wick structure.
  14. 前記第1領域において、前記対向方向における前記第1ウィック構造体と前記第2ウィック構造体との隙間の長さと、前記第2ウィック構造体の厚みと、前記第1ウィック構造体の厚みとは、下記式(1)を満たす、請求項13に記載の熱伝導部材。



    W3>W2+W1a ・・・(1)



    W1a:第1ウィック構造体の厚み



    W2:第2ウィック構造体の厚み



    W3:前記第1ウィック構造体と前記第2ウィック構造体との隙間の長さ
    In the first region, the length of the gap between the first wick structure and the second wick structure in the facing direction, the thickness of the second wick structure, and the thickness of the first wick structure are The heat conductive member according to claim 13, which satisfies the following formula (1).



    W3> W2 + W1a ... (1)



    W1a: Thickness of the first wick structure



    W2: Thickness of the second wick structure



    W3: Length of the gap between the first wick structure and the second wick structure
  15. 前記第1領域において、前記対向方向における前記第1ウィック構造体と前記第2ウィック構造体との隙間の長さと、前記第2ウィック構造体の厚みと、前記第1ウィック構造体の厚みとは、下記式(2)~式(4)を満たす、請求項14に記載の熱伝導部材。



    4W1a≧W2≧2W1a ・・・(2)



    7W1a≧W3≧5W1a ・・・(3)



    W3+W2=9W1a ・・・(4)
    In the first region, the length of the gap between the first wick structure and the second wick structure in the facing direction, the thickness of the second wick structure, and the thickness of the first wick structure are The heat conductive member according to claim 14, which satisfies the following formulas (2) to (4).



    4W1a ≧ W2 ≧ 2W1a ・ ・ ・ (2)



    7W1a ≧ W3 ≧ 5W1a ・ ・ ・ (3)



    W3 + W2 = 9W1a ... (4)
  16. 前記内部空間における前記第1ウィック構造体及び前記第2ウィック構造体以外の空間に含まれ、前記作動媒体の蒸気が存在しうる蒸気空間の体積と、前記第1ウィック構造体及び前記第2ウィック構造体の合計体積とは、下記式(5)を満たす、請求項1~請求項7のいずれかに記載の熱伝導部材。



    V1>V2 ・・・(5)



    V1:前記内部空間における前記第1ウィック構造体及び前記第2ウィック構造体以外の空間に含まれ、前記作動媒体の蒸気が存在しうる蒸気空間の体積



    V2:前記第1ウィック構造体及び前記第2ウィック構造体の合計体積
    The volume of the steam space contained in the space other than the first wick structure and the second wick structure in the internal space and in which the steam of the working medium can exist, and the first wick structure and the second wick. The heat conductive member according to any one of claims 1 to 7, wherein the total volume of the structure satisfies the following formula (5).



    V1> V2 ... (5)



    V1: Volume of the steam space included in the space other than the first wick structure and the second wick structure in the internal space and in which the steam of the working medium can exist.



    V2: Total volume of the first wick structure and the second wick structure
  17. 前記柱部は、少なくとも1つの中実な中実柱部を有し、



    前記蒸気空間は、前記内部空間における前記第1ウィック構造体、前記第2ウィック構造体及び前記中実柱部以外の空間である、請求項16に記載の熱伝導部材。
    The pillar portion has at least one solid solid pillar portion and has at least one solid solid pillar portion.



    The heat conductive member according to claim 16, wherein the steam space is a space other than the first wick structure, the second wick structure, and the solid pillar portion in the internal space.
  18. 前記柱部は、少なくとも1つの多孔質の焼結体である多孔質柱部を有し、



    前記蒸気空間は、前記内部空間における前記第1ウィック構造体、前記第2ウィック構造体及び前記多孔質柱部以外の空間であり、



    前記合計体積は、前記多孔質柱部の体積をさらに含む、請求項16に記載の熱伝導部材。
    The pillar portion has at least one porous pillar portion which is a porous sintered body.



    The steam space is a space other than the first wick structure, the second wick structure, and the porous column portion in the internal space.



    The heat conductive member according to claim 16, wherein the total volume further includes the volume of the porous column portion.
  19. 前記柱部は、少なくとも1つの中実な中実柱部と、少なくとも1つの多孔質の多孔質柱部をと、有し、



    前記蒸気空間は、前記内部空間における前記第1ウィック構造体、前記第2ウィック構造体、前記中実柱部及び前記多孔質柱部以外の空間であり、



    前記合計体積は、前記多孔質柱部の体積をさらに含む、請求項16に記載の熱伝導部材。
    The pillar portion has at least one solid solid pillar portion and at least one porous porous pillar portion.



    The steam space is a space other than the first wick structure, the second wick structure, the solid pillar portion, and the porous pillar portion in the internal space.



    The heat conductive member according to claim 16, wherein the total volume further includes the volume of the porous column portion.
  20. 前記柱部は、



    前記第1金属板と前記第2金属板とを連結し、中実な少なくとも1つの中実柱部と、



    前記第1ウィック構造体及び前記第2ウィック構造体を連結する少なくとも1つの多孔質の焼結体である多孔質柱部と、を有し、



    前記中実柱部の一方側端部が前記第1金属板と接する接触面積の総和は、前記多孔質柱部の一方側端部が前記第1ウィック構造体または前記第1金属板と接する接触面積の総和よりも広く、かつ、前記中実柱部の他方側端部が前記第2金属板と接する接触面積の総和は、前記多孔質柱部の他方側端部が前記第2ウィック構造体または前記第2金属板と接する接触面積の総和よりも広い、請求項1~請求項7のいずれかに記載の熱伝導部材。
    The pillar is



    The first metal plate and the second metal plate are connected to each other, and at least one solid pillar portion is formed.



    It has a porous column portion which is at least one porous sintered body connecting the first wick structure and the second wick structure.



    The total contact area of the one-sided end of the solid pillar in contact with the first metal plate is the contact in which one end of the porous pillar is in contact with the first wick structure or the first metal plate. The total area is wider than the total area, and the total contact area where the other end of the solid column is in contact with the second metal plate is such that the other end of the porous column is the second wick structure. The heat conductive member according to any one of claims 1 to 7, which is wider than the total contact area in contact with the second metal plate.
PCT/JP2021/028351 2020-07-31 2021-07-30 Heat conduction member WO2022025256A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020131230 2020-07-31
JP2020-131230 2020-07-31
JP2020183308 2020-10-30
JP2020-183308 2020-10-30
JP2021-088004 2021-05-25
JP2021088004A JP2023127013A (en) 2020-10-30 2021-05-25 Heat conductive member

Publications (1)

Publication Number Publication Date
WO2022025256A1 true WO2022025256A1 (en) 2022-02-03

Family

ID=80035788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028351 WO2022025256A1 (en) 2020-07-31 2021-07-30 Heat conduction member

Country Status (1)

Country Link
WO (1) WO2022025256A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525529A (en) * 2002-05-15 2005-08-25 リー, シェ−ウィン Vapor enhanced heat sink with multi-wick structure
US20090025910A1 (en) * 2007-07-27 2009-01-29 Paul Hoffman Vapor chamber structure with improved wick and method for manufacturing the same
CN104896983A (en) * 2014-03-07 2015-09-09 江苏格业新材料科技有限公司 Manufacturing method of soaking plate with ultrathin foam silver as liquid absorbing core

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525529A (en) * 2002-05-15 2005-08-25 リー, シェ−ウィン Vapor enhanced heat sink with multi-wick structure
US20090025910A1 (en) * 2007-07-27 2009-01-29 Paul Hoffman Vapor chamber structure with improved wick and method for manufacturing the same
CN104896983A (en) * 2014-03-07 2015-09-09 江苏格业新材料科技有限公司 Manufacturing method of soaking plate with ultrathin foam silver as liquid absorbing core

Similar Documents

Publication Publication Date Title
WO2018198354A1 (en) Vapor chamber
US20200240718A1 (en) Vapor chamber
KR20180048972A (en) Vapor Chamber
US10495387B2 (en) Multi-layer wick structures with surface enhancement and fabrication methods
JP7097308B2 (en) Wick structure and heat pipe containing the wick structure
US11740029B2 (en) Vapor chamber
CN112033197A (en) Temperature equalizing plate and manufacturing method thereof
CN112747619B (en) Temperature equalizing plate
WO2022025256A1 (en) Heat conduction member
WO2022025255A1 (en) Heat conduction member
WO2022025253A1 (en) Heat conducting member
WO2022025254A1 (en) Heat conduction member
WO2018198350A1 (en) Vapor chamber
WO2022025249A1 (en) Heat conduction member
WO2022025257A1 (en) Heat conducting member
WO2022025252A1 (en) Heat conduction member
WO2022025251A1 (en) Heat conduction member
JP2023127011A (en) Heat conductive member
WO2022025258A1 (en) Heat conduction member
JP2023127013A (en) Heat conductive member
JP2023127009A (en) Heat conductive member
JP2023127010A (en) Heat conductive member
JP2023127008A (en) Heat conductive member
JP2023123890A (en) Heat conduction member
WO2022025261A1 (en) Heat conduction member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21848680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP