WO2022025148A1 - miR-96-5pインヒビターとそれを含有する医薬組成物 - Google Patents

miR-96-5pインヒビターとそれを含有する医薬組成物 Download PDF

Info

Publication number
WO2022025148A1
WO2022025148A1 PCT/JP2021/028004 JP2021028004W WO2022025148A1 WO 2022025148 A1 WO2022025148 A1 WO 2022025148A1 JP 2021028004 W JP2021028004 W JP 2021028004W WO 2022025148 A1 WO2022025148 A1 WO 2022025148A1
Authority
WO
WIPO (PCT)
Prior art keywords
mir
inhibitor
nucleic acid
base sequence
peptide nucleic
Prior art date
Application number
PCT/JP2021/028004
Other languages
English (en)
French (fr)
Inventor
敏夫 中木
晃治 青山
千智 木下
暢子 松村
計 内海
亨 杉山
俊介 森谷
Original Assignee
学校法人帝京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人帝京大学 filed Critical 学校法人帝京大学
Priority to EP21850937.0A priority Critical patent/EP4190363A1/en
Priority to US18/006,820 priority patent/US20230272388A1/en
Publication of WO2022025148A1 publication Critical patent/WO2022025148A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/113Antisense targeting other non-coding nucleic acids, e.g. antagomirs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/318Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
    • C12N2310/3181Peptide nucleic acid, PNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3513Protein; Peptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications

Definitions

  • the present invention relates to a miR-96-5p inhibitor and a pharmaceutical composition containing the same.
  • Non-Patent Document 1 a patent relating to a pharmaceutical composition for preventing or treating a neurodegenerative disease containing an antisense oligonucleotide of human miR-96-5p as an active ingredient.
  • PROBLEM TO BE SOLVED To provide a novel miR-96-5p inhibitor which is more effective than an antisense oligonucleotide against miR-96-5p, which is a conventionally known miR-96-5p inhibitor, and to provide a novel miR-96-5p inhibitor containing the same. To provide the pharmaceutical composition of.
  • a miR-96-5p inhibitor comprising a peptide nucleic acid moiety containing a base sequence complementary to miR-96-5p.
  • the miR-96-5p inhibitor of [1] wherein a peptide moiety consisting of one to several amino acids is added to the N-terminal and / or C-terminal of the peptide nucleic acid moiety.
  • [4] The miR-96-5p inhibitor according to any one of [1] to [3], wherein the base sequence complementary to miR-96-5p is the base sequence represented by SEQ ID NO: 1.
  • [5] A pharmaceutical composition comprising the miR-96-5p inhibitor according to any one of [1] to [4] as an active ingredient.
  • the pharmaceutical composition of [5] which is used for the prevention or treatment of neurodegenerative diseases in which a decrease in the amount of glutathione in nerve cells is observed.
  • the pharmaceutical composition according to [5] or [6] wherein the neurodegenerative disease is Alzheimer's disease, Parkinson's disease, multiple system atrophy, or muscle atrophic lateral sclerosis.
  • the miR-96-5p inhibitor of the present invention is a peptide nucleic acid and is not degraded by nucleases
  • the miR-96-5p inhibitory action of PNA has been conventionally used as a therapeutic agent for a chronic disease called neurodegenerative disease. It can be expected to last longer than known antisense oligonucleotides. Therefore, since the number of administrations is smaller than that of the conventionally known antisense oligonucleotide, it can be advantageously used.
  • the miR-96-5p inhibitor of the present invention contains at least a peptide nucleic acid moiety containing a base sequence complementary to miR-96-5p and inhibits miR-96-5p activity. As long as it has an action (hereinafter referred to as miR-96-5p inhibitory action), it can contain an additional moiety that covalently binds to the peptide nucleic acid moiety.
  • the inhibitor of the present invention may consist of, for example, only the peptide nucleic acid moiety, or may consist of the peptide nucleic acid moiety and the additional moiety.
  • MiR-96-5p is known to exist in various organisms such as humans, pigs, mice, rats and the like, and is not particularly limited, but is preferably human.
  • the "base sequence complementary to miR-96-5p" is a base sequence exhibiting a miR-96-5p inhibitory effect, and is the entire sequence of miR-96-5p or a continuous portion thereof. It means that 90% or more, preferably 95% or more, more preferably 100% of the bases are complementary to the sequence.
  • the continuous partial sequence is, for example, a sequence in which the terminal 3 bases (in the case of both ends, the sum of both ends) is deleted from the entire sequence of miR-96-5p, preferably the terminal 2 bases. Can be mentioned, more preferably a sequence lacking one base at the end.
  • peptide nucleic acid is an artificially chemically synthesized nucleic acid analog, also called PNA (Peptide Nucleic Acid). It has a structure in which the basic skeleton of nucleic acid composed of pentasaccharide and phosphoric acid is replaced with an uncharged polyamide skeleton having glycine as a unit. More specifically, it is a compound in which the sugar-phosphate skeleton of nucleic acid is replaced with a skeleton having N- (2-aminoethyl) glycine as a unit, and a base is bound by a methylene carbonyl bond. It binds more specifically and strongly to nucleic acids having complementary base sequences than DNA or RNA. On the other hand, since it is a chemically synthesized substance, it has the property that nucleic acid polymerases and nucleases do not act.
  • the "peptide nucleic acid portion containing a base sequence complementary to miR-96-5p" in the inhibitor of the present invention is composed entirely of peptide nucleic acid, and the base sequence is a base sequence complementary to miR-96-5p. including. Therefore, the base sequence of the peptide nucleic acid portion may consist only of the base sequence complementary to miR-96-5p, or at the N-terminal and / or C-terminal of the base sequence complementary to miR-96-5p. It can also be a base sequence to which a base sequence consisting of a peptide nucleic acid is added (provided that it has a miR-96-5p inhibitory action).
  • the base sequence added to the N-terminal and / or C-terminal of the base sequence complementary to miR-96-5p is the entire base sequence (that is, the base at the N-terminal and / or C-terminal).
  • the base sequence complementary to miR-96-5p to which the sequence is added is not particularly limited as long as it has a miR-96-5p inhibitory effect, but for example, the number of bases (in the case of both ends, both ends). In total) 1 to several, preferably 1 to 6, more preferably 1 to 5, still more preferably 1 to 4, still more preferably 1 to 3, still more preferably 1 to 2, still more preferred. Can list one base sequence.
  • the base sequence of the peptide nucleic acid portion preferably consists of only a base sequence complementary to miR-96-5p, and may consist only of a base sequence complementary to human miR-96-5p (SEQ ID NO: 1). Especially preferable.
  • the additional moiety that covalently binds to the peptide nucleic acid moiety is not particularly limited as long as it does not inhibit the miR-96-5p inhibitory action exhibited by the peptide nucleic acid moiety, but is not particularly limited, for example.
  • Peptides that can be added to the N-terminal and / or C-terminal of the peptide nucleic acid moiety such as octaargine, TAT, NLS, TP10, PDEP-P14, Penetratin, Pipe2b, CLIP6, can be mentioned.
  • Examples of the peptide that can be added to the N-terminal and / or C-terminal of the peptide nucleic acid portion include a peptide consisting of one to several amino acids.
  • the number of amino acid residues constituting the peptide is, for example, 1 to several, preferably 1 to 6, more preferably 1 to 5. It can be more preferably 1 to 4, still more preferably 1 to 3, and even more preferably 2 to 3. It should be noted that these lower and upper limits can be arbitrarily combined as desired.
  • the peptide that can be added to the N-terminal and / or C-terminal of the peptide nucleic acid moiety can constitute the peptide moiety in the inhibitor of the present invention.
  • the peptide preferably contains one or more basic amino acids such as lysine, arginine, histidine and tryptophan so that the sum of the charges of each peptide portion is positive. This is because it is presumed that when the peptide moiety is positively charged, it exhibits an electrostatic interaction with the target microRNA (negatively charged) which is negatively charged by the phosphate group.
  • the inhibitor of the present invention can be produced by solid-phase synthesis by the Fmoc method using a PNA synthesis method well known in the present technology, for example, a commercially available PNA monomer.
  • the inhibitor of the present invention has a miR-96-5p inhibitory effect.
  • miR-96-5p inhibitory effect means an inhibitory effect on miR-96-5p activity.
  • miR-96-5p activity refers to the 3'untranslated region (EAAC1 3'-) of its target sequence, cysteine transporter excitatory amino acid carrier 1 (EAAC1). It means an activity that binds to UTR) or, as a result, an activity that inhibits the expression of the target EAAC1.
  • EAAC1 mRNA expression can be expressed by various analytical methods well known in the art, such as in situ hybridization, Northern blotting, dot blotting, RNase protection assay, RT-PCR, Real-Time PCR, qRT-PCT, DNA array analysis method. It can be detected or quantified by such means.
  • the expression of EAAC1 protein can be detected or quantified by various analytical methods well known in the art, such as in situ hybridization, Western blotting, and various immunohistological methods.
  • the binding of miR-96-5p to the EAAC1 3'-UTR can be quantified by a known method commonly used in microRNA analysis, for example, the luciferase reporter assay used in the examples described later.
  • the luciferase reporter assay a microRNA reporter plasmid in which the EAAC1 3'-UTR is inserted downstream of the luciferase reporter gene is prepared, this plasmid is introduced into cultured cells, and the luciferase activity is measured to measure miR-96-5p. EAAC1 3'-UTR binding to EAAC1 3'-UTR can be quantified.
  • the miR-96-5p inhibitory effect of the inhibitors of the present invention is not limited to the following, but for example, the above-mentioned microRNA reporter plasmid is introduced into cultured cells, and at the same time, various microRNA mimetics (mimic) are introduced. And can be evaluated by introducing the inhibitor of the present invention into cultured cells. More specifically, assuming that the luciferase activity when only the negative control mimic is introduced is 1, the luciferase activity when only the miR-96-5p mimetic is introduced is the miR-96-5p activity. Decreases due to the action of.
  • miRNA for example, cel-miR-39-3p
  • the luciferase activity decreased by the administration of the miR-96-5p mimetic alone is restored to 1 by the miR-96-5p inhibitory action of the inhibitor of the present invention.
  • miRNA for example, cel-miR-39-3p
  • whose target is confirmed to be absent in the human gene can be used.
  • composition of the present invention can be prepared in a form capable of delivering the inhibitor of the present invention, which is an active ingredient, into the brain.
  • the named DNA introduction method described in International Publication No. 90/11092, US Pat. No. 5,580,859, etc. can be used.
  • the uptake efficiency can be improved by using biodegradable latex beads.
  • PNA-coated latex beads coated with PNA instead of DNA are efficiently transported intracellularly by the beads after the initiation of endocytosis. This method can be further improved by treating these beads to increase hydrophobicity, thereby promoting endosome destruction and release of PNA into the cytoplasm.
  • liposomes and lipids for example, US Pat. No. 7,001,614, US Pat. No. 7,067,697, US Pat. No. 7,214,384. (Each specification, etc.), synthetic polymers (eg, US Pat. No. 6,312,727, etc.) can also be used.
  • the pharmaceutical composition of the present invention can be delivered into the brain by nasal administration.
  • Nasal administration is a method of administering a drug to the nasal mucosa, and it is known that there is a route that is subsequently absorbed into blood vessels or directly transferred to cerebrospinal fluid or nerve cells.
  • the drug used in the present invention can reach the brain by utilizing this route of administration.
  • compositions of the present invention in combination with suitable pharmaceutically acceptable carriers and diluents, include tablets, capsules, powders, granules, ointments, liquids, suppositories, injections, inhalants and aerosols.
  • suitable pharmaceutically acceptable carriers and diluents include tablets, capsules, powders, granules, ointments, liquids, suppositories, injections, inhalants and aerosols.
  • oral administration or parenteral administration such as nasal, oral, airway, rectal, subcutaneous, intramuscular and intravenous administration. It can be, preferably given orally or nasally.
  • preparations suitable for oral administration include emulsions, syrups, capsules, tablets, powders and granules.
  • Liquid preparations such as emulsions and syrups include water, sucrose, sorbitol, sugars such as fructose, glycols such as polyethylene glycol and propylene glycol, oils such as sesame oil, olive oil and soybean oil, and p-hydroxybenzoic acid. It can be produced by using preservatives such as esters, flavors such as strawberry flavor and peppermint as additives. Capsules, tablets, powders, granules, etc.
  • excipients such as lactose, glucose, sucrose, mannitol, starch, disintegrants such as sodium alginate, lubricants such as magnesium stearate, talc, polyvinyl alcohol, hydroxy. It can be produced by using a binder such as propyl cellulose and gelatin, a surfactant such as a fatty acid ester, and a plasticizing agent such as glycerin as additives.
  • preparations suitable for parenteral administration include injections, suppositories, and sprays.
  • the injection is prepared using a carrier consisting of a salt solution, a glucose solution, or a mixture of both.
  • the suppository is prepared using a carrier such as cocoa butter, hydrogenated fat or carboxylic acid.
  • the spray agent is prepared using a carrier or the like that does not irritate the oral cavity and airway mucosa of the recipient and disperses the active ingredient as fine particles to facilitate absorption.
  • Specific examples of the carrier include lactose and glycerin.
  • formulations such as aerosols and dry powders are possible.
  • the components exemplified as additives in the oral preparation can be added.
  • the dose or frequency of administration varies depending on the target therapeutic effect, administration method, treatment period, age, body weight, etc., but is usually 10 ⁇ g / kg to 20 mg / kg per day for adults.
  • the target dose is also such that the concentration of the inhibitor of the present invention is about 0.1 to 1000 ⁇ mol / L and about 0.5 to 500 ⁇ mol / L in the blood sample collected within the first 24-48 hours after administration of the drug.
  • the amount can be set in the range of about 1 to 100 ⁇ mol / L, or about 50 to 50 ⁇ mol / L.
  • the pharmaceutical composition of the present invention can be used for the prevention or treatment of diseases associated with miR-96-5p.
  • miR-96-5p can reduce the intracellular concentration of glutathione, a major antioxidant in the nervous system.
  • Glutathione is a tripeptide consisting of cysteine, glutamic acid, and glycine, and since the amount of glutamic acid and glycine is sufficient in nerve cells, cysteine is the rate-determining factor for glutathione synthesis in nerve cells.
  • EAAC1 cysteine transporter excitatory amino acid carrier 1
  • miR-96-5p which inhibits the expression of EAAC1
  • Glutathion is an important protective molecule against oxidative stress in the brain, and in neurodegenerative diseases caused by oxidative stress in the brain, such as Alzheimer's disease, Parkinson's disease, multiline atrophy, or muscle atrophic lateral sclerosis, nerve cells. It has been confirmed that the internal glutathione concentration is decreased, and in some neurodegenerative diseases, an increase in miR-96-5p has been confirmed.
  • examples of the diseases associated with miR-96-5p include neurodegenerative diseases caused by oxidative stress in the brain and neurodegenerative diseases in which a decrease in the amount of glutathione in nerve cells is observed. , Alzheimer's disease, Parkinson's disease, multiple system atrophy, or muscle atrophic lateral sclerosis.
  • Example 1 Synthesis of antisense PNA to human miR-96-5p >>
  • an antisense peptide nucleic acid (PNA) derivative for two kinds of human miR-96-5p consisting of the following sequences A and B was synthesized.
  • the antisense peptide nucleic acid derivative represented by SEQ ID NO: 1 is an oligopeptide consisting of a peptide nucleic acid portion consisting of the base sequence represented by SEQ ID NO: 1 and two amino acids (Cys-Lys) added to the N-terminal side thereof.
  • the antisense peptide nucleic acid derivative represented by SEQ ID NO: 1 is an oligopeptide moiety consisting of a peptide nucleic acid moiety consisting of the base sequence represented by SEQ ID NO: 1 and one amino acid (Lys) added to the N-terminal side thereof ( Amino acid residue) and an oligopeptide moiety consisting of three amino acids (Lys-Lys-Lys) added to the C-terminal side of the peptide nucleic acid moiety.
  • Sequence A CysLys-AGCAAAATATGTCAGTGCCAAA-LysLysLysLys
  • antisense PNA antisense peptide nucleic acid
  • PNA-miR-96 The synthesis of PNA-miR-96 was carried out by Avitabile, C., Moggio, L., D'Andrea, LD, Pedone, C., Romanelli, A. (2010) Development of an efficient and low-cost protocol for the manual PNA. The procedure was performed according to the method described in synthesis by Fmoc chemistry. Tetrahedron Lett. 51 (29), 3716-3718. Specifically, a solid-phase synthesis of antisense PNA against miR-96-5p by the Fmoc method was performed using a commercially available PNA monomer. After removing the Fmoc group on the solid phase carrier by piperidine treatment, amino acids and PNA monomers were sequentially bonded.
  • Example 2 Examination of the inhibitory effect of antisense PNA on miR-96-5p activity by luciferase reporter assay >>
  • the antisense PNA (PNA-miR-96) synthesized in Example 1 and having the sequence A against human miR-96-5p has a luciferase reporter showing its inhibitory effect on miR-96-5p activity. It was examined using an assay.
  • human EAAC13'-UTR is amplified from the cDNA of human neuroblastoma SH-SY5Y cells and then downstream of the firefly luciferase reporter gene of the firefly luciferase reporter vector pMIR-REPORT (Promega, Madison, WI).
  • the desired plasmid was constructed by insertion (hereinafter referred to as pMIR-EAAC13'-UTR construct).
  • sea pansy luciferase vector pRL Promega, Madison, WI
  • sea pansy (Renilla) luciferase gene was prepared.
  • miR-96-5p mimic As the miR-96-5p mimic (mimic), a guide chain consisting of an unmodified mature miR-96-5p sequence and a sequence complementary to the guide chain are divided into two and LNA (. A double-stranded RNA (Exiqon) consisting of two passenger strands, which are modified RNA strands, was used. In addition, as a negative control (negative control; NC), a negative control imitation (Exiqon) was prepared based on the sequence of miRNA confirmed to have no target in the human gene.
  • NC negative control
  • each of the above components is mixed in an amount of 50 ⁇ L, 10 ⁇ L, 10 ⁇ L, and 30 ⁇ L, and the poreing pulse has a voltage of 150 V, a pulse width of 2 ms, a pulse interval of 50 ms, two pulses, and attenuation.
  • "polarity +/-" and “number of pulses ⁇ 5 times” mean that positive electrode voltage and negative electrode voltage are applied alternately and repeated 5 times.
  • the cells were cultured in DMEM medium containing serum for 2 days, and then a luciferase assay was performed.
  • the luciferase activity when only the negative control (NC) mimetic is introduced is 1, the luciferase relative activity when only the miR-96-5p mimetic is introduced is about 0 due to the action of the miR-96-5p activity. It dropped to .55.
  • the miR-96-5p mimetic and the inhibitor of the present invention PNA-miR-96 were introduced at the same time, the luciferase activity decreased by the administration of the miR-96-5p mimetic alone was reduced by the miR-96-5p of the inhibitor of the present invention. Due to the inhibitory action, it recovered to about 1.
  • the present invention can be used for the production of a prophylactic or therapeutic agent for neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple system atrophy, or muscular atrophic lateral sclerosis.
  • neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple system atrophy, or muscular atrophic lateral sclerosis.
  • the base sequence represented by SEQ ID NO: 1 in the sequence listing is miR-96-5p antisense PNA.

Abstract

miR-96-5pに対するアンチセンスオリゴヌクレオチドよりも有効な新規のmiR-96-5pインヒビターを提供すると共に、それを含有する新規の医薬組成物を提供する。 前記miR-96-5pインヒビターは、miR-96-5pに相補的な塩基配列を含むペプチド核酸部分を含む。

Description

miR-96-5pインヒビターとそれを含有する医薬組成物
 本発明は、miR-96-5pインヒビターとそれを含有する医薬組成物に関する。
 アルツハイマー病やパーキンソン病などの神経変性疾患では神経細胞内のグルタチオンが減少することが知られている。グルタチオンは神経系の主要な抗酸化物質である。本発明者らは、神経細胞内グルタチオン濃度を調節する上で、マイクロRNA96-5p(miR-96-5p)は鍵となる分子であり、miR-96-5pはグルタチオン量を抑制する作用があること、更に脳内miR-96-5pの作用を阻害することにより神経細胞内のグルタチオン量が増加することを生きたマウスで示すことができた(非特許文献1)。また、本出願人は、ヒトmiR-96-5pのアンチセンスオリゴヌクレオチドを有効成分として含有する神経変性疾患に対する予防または治療用の医薬組成物に関する特許(特許文献1)を取得している。
特許第6342288号公報
Kinoshita, C. et al. Rhythmic oscillations of the microRNA miR-96-5p play a neuroprotective role by indirectly regulating glutathione levels. Nat. Commun. 5:3823 doi: 10.1038/ncomms4823 (2014)
 本発明の課題は、従来公知のmiR-96-5pインヒビターである、miR-96-5pに対するアンチセンスオリゴヌクレオチドよりも有効な新規のmiR-96-5pインヒビターを提供すると共に、それを含有する新規の医薬組成物を提供することにある。
 前記課題は、以下の本発明により、解決することができる:
[1]miR-96-5pに相補的な塩基配列を含むペプチド核酸部分を含む、miR-96-5pインヒビター。
[2]前記ペプチド核酸部分のN末端及び/又はC末端に1~数個のアミノ酸からなるペプチド部分が付加された、[1]のmiR-96-5pインヒビター。
[3]前記ペプチド核酸部分が、miR-96-5pに相補的な塩基配列のみからなる、[1]又は[2]のmiR-96-5pインヒビター。
[4]miR-96-5pに相補的な塩基配列が、配列番号1で表される塩基配列である、[1]~[3]のいずれかのmiR-96-5pインヒビター。
[5][1]~[4]のいずれかのmiR-96-5pインヒビターを有効成分として含む、医薬組成物。
[6]神経細胞内グルタチオン量の低下が認められる神経変性疾患の予防または治療用である、[5]の医薬組成物。
[7]前記神経変性疾患が、アルツハイマー病、パーキンソン病、多系統萎縮症、又は筋委縮性側索硬化症である、[5]又は[6]の医薬組成物。
 本発明のmiR-96-5pインヒビターは、骨格部分がペプチド核酸であり、ヌクレアーゼによる分解を受けないため、神経変性疾患という慢性疾患の治療薬として、PNAのmiR-96-5p阻害作用は、従来公知のアンチセンスオリゴヌクレオチドよりも長く持続すると期待できる。従って、投与回数も、従来公知のアンチセンスオリゴヌクレオチドよりも少なくて済むため、有利に使用することができる。
本発明のmiR-96-5pインヒビターのmiR-96-5p阻害作用をルシフェラーゼレポーターアッセイにより検討した結果を示すグラフである。
《本発明のmiR-96-5pインヒビター》
 本発明のmiR-96-5pインヒビター(以下、単に本発明のインヒビターとも称する)は、miR-96-5pに相補的な塩基配列を含むペプチド核酸部分を少なくとも含み、miR-96-5p活性に対する阻害作用(以下、miR-96-5p阻害作用と称する)を有する限り、前記ペプチド核酸部分に共有結合で結合する付加的部分を含むことができる。
 本発明のインヒビターは、例えば、前記ペプチド核酸部分のみからなることもできるし、あるいは、前記ペプチド核酸部分と前記付加的部分とからなることもできる。
 miR-96-5pは、種々の生物、例えば、ヒト、ブタ、マウス、ラット等に存在することが知られており、特に限定されるものではないが、好ましくはヒトである。
Figure JPOXMLDOC01-appb-T000001
 本明細書において「miR-96-5pに相補的な塩基配列」とは、miR-96-5p阻害作用を示す塩基配列であって、且つ、miR-96-5pの全体配列またはその連続する部分配列に対して90%以上、好ましくは95%以上、より好ましくは100%の塩基が相補的であることを意味する。なお、前記の連続する部分配列は、miR-96-5pの全体配列に対して、例えば、末端の3塩基(両端の場合は両端の合計として)が欠失した配列、好ましくは末端の2塩基が欠失した配列、より好ましくは末端の1塩基が欠失した配列を挙げることができる。
 本明細書において「ペプチド核酸」とは、PNA(Peptide Nucleic Acid)とも呼ばれる人工的に化学合成された核酸類似物である。五単糖とリン酸から構成される核酸の基本骨格を、グリシンを単位とする電荷の無いポリアミド骨格に置換した構造をもつ。より詳細には、核酸の糖-リン酸骨格をN-(2-アミノエチル)グリシンを単位とする骨格に置き換え、メチレンカルボニル結合で塩基を結合させた化合物である。相補的な塩基配列を有する核酸に対してDNAやRNAよりも特異的、かつ強力に結合する。一方で、化学合成物質であることから核酸ポリメラーゼやヌクレアーゼが作用しない性質を有する。
 本発明のインヒビターにおける「miR-96-5pに相補的な塩基配列を含むペプチド核酸部分」は、その配列全体がペプチド核酸からなり、その塩基配列は、miR-96-5pに相補的な塩基配列を含む。従って、前記ペプチド核酸部分の塩基配列は、miR-96-5pに相補的な塩基配列のみからなることもできるし、miR-96-5pに相補的な塩基配列のN末端及び/又はC末端にペプチド核酸からなる塩基配列を付加された塩基配列(但し、miR-96-5p阻害作用を有するものとする)であることもできる。
 前記ペプチド核酸部分において、miR-96-5pに相補的な塩基配列のN末端及び/又C末端に付加される塩基配列としては、塩基配列全体(すなわち、N末端及び/又はC末端に前記塩基配列が付加されたmiR-96-5pに相補的な塩基配列)として、miR-96-5p阻害作用を有する限り、特に限定されるものではないが、例えば、塩基数(両端の場合は両端の合計として)が1~数個、好ましくは1~6個、より好ましくは1~5個、更に好ましくは1~4個、更に好ましくは1~3個、更に好ましくは1~2個、更に好ましくは1個の塩基配列を挙げることができる。
 前記ペプチド核酸部分の塩基配列としては、miR-96-5pに相補的な塩基配列のみからなることが好ましく、ヒトmiR-96-5pに相補的な塩基配列(配列番号1)のみからなることが特に好ましい。
 本発明のインヒビターにおいて、前記ペプチド核酸部分に共有結合で結合する付加的部分は、前記ペプチド核酸部分が示すmiR-96-5p阻害作用を阻害しない限り、特に限定されるものではないが、例えば、前記ペプチド核酸部分のN末端及び/又はC末端に付加することのできるペプチド、例えば、octaarginine、TAT、NLS、TP10、PDEP-P14、Penetratin、Pip2b、CLIP6を挙げることができる。
 前記ペプチド核酸部分のN末端及び/又はC末端に付加することのできるペプチドとしては、例えば、1~数個のアミノ酸からなるペプチドを挙げることができる。前記ペプチドを構成するアミノ酸残基数(両端に付加する場合は、各ペプチド当たりのアミノ酸残基数)は、例えば、1~数個、好ましくは1~6個、より好ましくは1~5個、更に好ましくは1~4個、更に好ましくは1~3個、更に好ましくは2~3個であることができる。なお、これらの下限および上限は、所望により任意に組み合わせることができる。
 ペプチド核酸部分のN末端及び/又はC末端に付加することのできる前記ペプチドは、本発明のインヒビターにおいて、ペプチド部分を構成することができる。前記ペプチドは、各ペプチド部分の電荷の総和が正電荷となるように、1以上の塩基性アミノ酸、例えば、リジン、アルギニン、ヒスチジン、トリプトファンを含むことが好ましい。ペプチド部分が正電荷を帯びていると、リン酸基により負電荷を帯びている標的マイクロRNA(負電荷)と静電的相互作用を示すことが推測されるからである。
 本発明のインヒビターは、本技術分野で周知のPNA合成方法、例えば、市販のPNAモノマーを用いて、Fmoc法による固相合成により製造することができる。
 本発明のインヒビターは、miR-96-5p阻害作用を有する。
 本明細書において「miR-96-5p阻害作用」とは、miR-96-5p活性に対する阻害作用を意味する。
 本明細書において「miR-96-5p活性」とは、その標的配列であるシステイントランスポーター興奮性アミノ酸キャリアー1(cysteine transporter excitatory amino acid carrier 1;EAAC1)の3’非翻訳領域(EAAC1 3’-UTR)に結合する活性、又は、その結果、標的であるEAAC1の発現を阻害する活性を意味する。
 EAAC1のmRNA発現は、本技術分野で周知の各種分析方法、例えば、in situ ハイブリダイゼーション、ノーザンブロッティング、ドットブロット、RNaseプロテクションアッセイ、RT-PCR、Real-Time PCR、qRT-PCT、DNAアレイ解析法などにより検出または定量化することができる。また、EAAC1タンパク質の発現は、本技術分野で周知の各種分析方法、例えば、in situ ハイブリダイゼーション、ウェスタンブロッティング、各種の免疫組織学的方法などにより検出または定量化することができる。
 また、miR-96-5pのEAAC1 3’-UTRに対する結合は、マイクロRNA分析で汎用される公知方法、例えば、後述する実施例で用いたルシフェラーゼレポーターアッセイにより定量化することができる。前記ルシフェラーゼレポーターアッセイでは、ルシフェラーゼレポーター遺伝子の下流にEAAC1 3’-UTRを挿入したマイクロRNAレポータープラスミドを用意し、このプラスミドを培養細胞に導入し、ルシフェラーゼ活性を測定することにより、miR-96-5pのEAAC1 3’-UTRに対する結合を定量化することができる。
 本発明のインヒビターによるmiR-96-5p阻害作用は、以下に限定されるものではないが、例えば、前記のマイクロRNAレポータープラスミドを培養細胞に導入し、それと同時に、各種マイクロRNA模倣物(mimic)及び本発明のインヒビターを培養細胞内に導入することにより、評価することができる。
 より具体的には、陰性対照(ネガティブコントロール)模倣物のみを導入したときのルシフェラーゼ活性を1とすると、miR-96-5p模倣物のみを導入したときのルシフェラーゼ活性は、miR-96-5p活性の作用により低下する。miR-96-5p模倣物と本発明インヒビターとを同時に導入すると、miR-96-5p模倣物単独投与により低下したルシフェラーゼ活性が、本発明インヒビターの有するmiR-96-5p阻害作用により、1まで回復する。
 なお、前記の陰性対照としては、ヒト遺伝子内にターゲットがないことが確認されているmiRNA(例えば、cel-miR-39-3p)を用いることができる。
《本発明の医薬組成物》
 本発明の医薬組成物は、有効成分である本発明インヒビターを脳内に送達することのできる形態で調製することができる。例えば、国際公開第90/11092号、米国特許第5,580,859号明細書等に記載のnaked DNA導入法を用いることができる。naked DNA導入法では、取り込み効率は、生分解性のラテックスビーズを用いて改善することができる。DNAの替わりにPNAをコーティングしたPNAコーティングラテックスビーズは、エンドサイトーシス開始後にビーズによって細胞内に効率的に輸送される。この方法は、疎水性を増加させるようにこれらのビーズを処理することによって更に改善することができ、それによってエンドソームの破壊および細胞質へのPNAの放出を促進する。
 また、本発明インヒビターを細胞内に送達するための担体として、リポソームや脂質(例えば、米国特許第7,001,614号、米国特許第7,067,697号、米国特許第7,214,384号各明細書等)、合成ポリマー(例えば、米国特許第6,312,727号明細書等)を使用することもできる。
 また、本発明の医薬組成物は経鼻投与により脳内に送達することができる。経鼻投与とは、鼻粘膜に薬物を投与する方法であり、その後血管内に吸収されるか、もしくは脳脊髄液や神経細胞に直接移行する経路の存在が知られている。本発明に使用する薬物はこの投与経路を利用して脳内に到達させることができる。
 本願発明の医薬組成物は、薬学的に許容される適切な担体や希釈剤と組み合わせて、錠剤、カプセル剤、散剤、顆粒剤、軟膏剤、液剤、坐剤、注射剤、吸入剤およびエアロゾルなどの固体、半固体、液体または気体の形態で製剤化することができる。
 投与経路は、治療に際し最も効果的なものを使用するのが望ましく、経口投与、または経鼻、口腔内、気道内、直腸内、皮下、筋肉内および静脈内などの非経口投与を挙げることができ、望ましくは経口投与又は経鼻投与を挙げることができる。
 経口投与に適当な製剤としては、乳剤、シロップ剤、カプセル剤、錠剤、散剤、顆粒剤などが挙げられる。乳剤およびシロップ剤のような液体調製物は、水、ショ糖、ソルビトール、果糖などの糖類、ポリエチレングリコール、プロピレングリコールなどのグリコール類、ごま油、オリーブ油、大豆油などの油類、p-ヒドロキシ安息香酸エステル類などの防腐剤、ストロベリーフレーバー、ペパーミントなどのフレーバー類などを添加剤として用いて製造できる。カプセル剤、錠剤、散剤、顆粒剤などは、乳糖、ブドウ糖、ショ糖、マンニトールなどの賦形剤、デンプン、アルギン酸ナトリウムなどの崩壊剤、ステアリン酸マグネシウム、タルクなどの滑沢剤、ポリビニルアルコール、ヒドロキシプロピルセルロース、ゼラチンなどの結合剤、脂肪酸エステルなどの界面活性剤、グリセリンなどの可塑剤などを添加剤として用いて製造できる。
 非経口投与に適当な製剤としては、注射剤、座剤、噴霧剤などが挙げられる。注射剤は、塩溶液、ブドウ糖溶液あるいは両者の混合物からなる担体などを用いて調製される。座剤はカカオ脂、水素化脂肪またはカルボン酸などの担体を用いて調製される。また、噴霧剤は受容者の口腔および気道粘膜を刺激せず、かつ有効成分を微細な粒子として分散させ吸収を容易にさせる担体などを用いて調製される。担体として具体的には乳糖、グリセリンなどが例示される。本発明インヒビターや用いる担体の性質により、エアロゾル、ドライパウダーなどの製剤が可能である。また、これらの非経口剤においても経口剤で添加剤として例示した成分を添加することもできる。
 投与量または投与回数は、目的とする治療効果、投与方法、治療期間、年齢、体重などにより異なるが、通常成人1日当たり10μg/kg~20mg/kgである。目標投与量はまた、その薬剤の投与後の最初の24~48時間以内に採血された血液試料において、本発明インヒビターの濃度が約0.1~1000μmol/L、約0.5~500μmol/L、約1~100μmol/L、または約50~50μmol/Lの範囲となるような量を設定することができる。
 本発明の医薬組成物は、有効成分である本発明インヒビターがmiR-96-5p阻害活性を有するため、miR-96-5pが関与する疾患の予防または治療に用いることができる。
 miR-96-5pは、神経系の主要な抗酸化物質であるグルタチオンの神経細胞内濃度を減少させることができる。グルタチオンは、システイン、グルタミン酸、グリシンからなるトリペプチドであり、神経細胞内ではグルタミン酸及びグリシンの量は充分であるため、システインが神経細胞内グルタチオン合成の律速因子である。神経細胞内へのシステインの取り込みは、システイントランスポーター興奮性アミノ酸キャリアー1(EAAC1)により行われるため、EAAC1の発現を阻害するmiR-96-5pは、EAAC1の発現を阻害することにより、神経細胞内グルタチオンの濃度を減少させる。
 グルタチオンは脳内酸化ストレスに対する重要な防御分子であり、脳内酸化ストレスに起因する神経変性疾患、例えば、アルツハイマー病、パーキンソン病、多系統萎縮症、又は筋委縮性側索硬化症では、神経細胞内グルタチオン濃度が減少していることが確認されており、いくつかの神経変性疾患では、miR-96-5pの増加が確認されている。
 従って、miR-96-5pが関与する疾患としては、脳内酸化ストレスに起因する神経変性疾患、あるいは、神経細胞内グルタチオン量の低下が認められる神経変性疾患を挙げることができ、具体的には、アルツハイマー病、パーキンソン病、多系統萎縮症、又は筋委縮性側索硬化症などを挙げることができる。
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
《実施例1:ヒトmiR-96-5pに対するアンチセンスPNAの合成》
 本実施例では、本発明のmiR-96-5pインヒビターとして、以下の配列A、配列Bからなる2種類のヒトmiR-96-5pに対するアンチセンスペプチド核酸(PNA)誘導体を合成した。
 配列Aで表されるアンチセンスペプチド核酸誘導体は、配列番号1で表される塩基配列からなるペプチド核酸部分と、そのN末端側に付加された2個のアミノ酸(Cys-Lys)からなるオリゴペプチド部分と、前記ペプチド核酸部分のC末端側に付加された3個のアミノ酸(Lys-Lys-Lys)からなるオリゴペプチド部分とからなる。
 配列Bで表されるアンチセンスペプチド核酸誘導体は、配列番号1で表される塩基配列からなるペプチド核酸部分と、そのN末端側に付加された1個のアミノ酸(Lys)からなるオリゴペプチド部分(アミノ酸残基)と、前記ペプチド核酸部分のC末端側に付加された3個のアミノ酸(Lys-Lys-Lys)からなるオリゴペプチド部分とからなる。
配列A:CysLys-AGCAAAAATGTGCTAGTGCCAAA-LysLysLys
配列B:Lys-AGCAAAAATGTGCTAGTGCCAAA-LysLysLys
 以下、アンチセンスペプチド核酸(PNA)誘導体を単に「アンチセンスPNA」と称し、ヒトmiR-96-5pに対するアンチセンスPNAを「PNA-miR-96」と略称する。
 PNA-miR-96の合成は、Avitabile, C., Moggio, L., D’Andrea, L. D., Pedone, C., Romanelli, A. (2010) Development of an efficient and low-cost protocol for the manual PNA synthesis by Fmoc chemistry. Tetrahedron Lett. 51 (29), 3716-3718.に記載の方法に準じて行った。
 具体的には、市販のPNAモノマーを用いて、miR-96-5pに対するアンチセンスPNAのFmoc法による固相合成を行った。固相担体上のFmoc基をピペリジン処理で除去した後、アミノ酸とPNAモノマーを順次結合させた。それぞれの反応の完結は末端アミノ基の存在をニンヒドリン反応で検出することで確認した。最終工程の脱保護と固相単体からの切断はトリフルオロ酢酸(TFA)で行い、目的PNAオリゴマーの分析・精製はHPLC、構造はMassスペクトルで確認した。
《実施例2:ルシフェラーゼレポーターアッセイによるアンチセンスPNAのmiR-96-5p活性の抑制効果の検討》
 本実施例では、前記実施例1で合成した、配列AからなるヒトmiR-96-5pに対するアンチセンスPNA(PNA-miR-96)について、そのmiR-96-5p活性に対する抑制効果を、ルシフェラーゼレポーターアッセイを用いて検討した。
(2-1)アッセイ系の構築
 ヒトmiR-96-5pの標的配列である、システイントランスポーター興奮性アミノ酸キャリアー1(cysteine transporter excitatory amino acid carrier 1)の3’非翻訳領域(EAAC1 3’-UTR)と、ホタル(firefly)ルシフェラーゼレポーター遺伝子とを含むプラスミドは、Kinoshita, C. et al. Rhythmic oscillations of the microRNA miR-96-5p play a neuroprotective role by indirectly regulating glutathione levels. Nat. Commun. 5:3823 doi: 10.1038/ncomms4823 (2014)に記載の方法に準じて作製した。
 その概略は、ヒトEAAC1 3’-UTRを、ヒト神経芽細胞腫SH-SY5Y細胞のcDNAから増幅した後、ホタルルシフェラーゼレポーターベクターpMIR-REPORT(Promega, Madison, WI)のホタルルシフェラーゼレポーター遺伝子の下流に挿入することにより、所望のプラスミドを構築した(以下、pMIR-EAAC1 3’-UTR構築物(construct)と称する)。
 後述するエレクトロポレーションにおける導入効率を補正するためのプラスミドとして、ウミシイタケ(Renilla)ルシフェラーゼ遺伝子を含むウミシイタケルシフェラーゼベクターpRL(Promega, Madison, WI)を用意した。
 miR-96-5p模倣物(mimic)としては、非修飾の成熟miR-96-5p配列からなるガイド(guide)鎖と、前記ガイド鎖に相補的な配列を2本に分割し、且つLNA(locked nucleic acid)修飾したRNA鎖である2本のパッセンジャー(passenger)鎖とからなる二重鎖RNA(Exiqon)を使用した。
 また、陰性対照(ネガティブコントロール;NC)として、ヒト遺伝子内にターゲットがないことが確認されているmiRNAの配列に基づいて、陰性対照模倣物(Exiqon)を用意した。
(2-2)エレクトロポレーション
 SH-SY5Y細胞、pMIR-EAAC1 3’-UTR構築物(ホタルルシフェラーゼ)及びベクターpRL(ウミシイタケ)、各miRNA模倣物(miR-96-5p模倣物、NC模倣物)、各miR-96-5pインヒビターは、それぞれ、一回のエレクトロポレーション当たり、50μL、10μL、10μL、30μLの量で使用できるように適宜調製した。
 なお、PNA-miR-96については、60℃で5分間の予備加熱を実施した。
 エレクトロポレーションの直前に、前記の各成分を50μL、10μL、10μL、30μLの量で混合し、ポアリングパルスは電圧150V、パルス幅2ミリ秒、パルス間隔50ミリ秒、パルス回数2回、減衰率10%、極性+の条件で、トランスファーパルスは電圧20V、パルス幅50ミリ秒、パルス間隔50ミリ秒、パルス回数±5回、減衰率40%、極性+/-の条件で、エレクトロポレーションを実施した。なお、「極性+/-」及び「パルス回数±5回」は、正極性の電圧と負極性の電圧を交互に印加し、それを5回繰り返すことを意味する。
 エレクトロポレーションを実施した後の細胞は、血清含有DMEM培地で2日間培養した後、ルシフェラーゼアッセイを実施した。
(2-3)結果
 結果を図1に示す。また、図1に示す各ルシフェラーゼアッセイに用いた模倣物及びインヒビターの組み合わせを表2に示す。
Figure JPOXMLDOC01-appb-T000002
 陰性対照(NC)模倣物のみを導入したときのルシフェラーゼ活性を1とすると、miR-96-5p模倣物のみを導入したときのルシフェラーゼ相対活性は、miR-96-5p活性の作用により、約0.55まで低下した。miR-96-5p模倣物と本発明インヒビター(PNA-miR-96)とを同時に導入すると、miR-96-5p模倣物単独投与により低下したルシフェラーゼ活性が、本発明インヒビターの有するmiR-96-5p阻害作用により、約1まで回復した。
 本発明は、アルツハイマー病、パーキンソン病、多系統萎縮症、又は筋委縮性側索硬化症などの神経変性疾患の予防または治療薬の製造に用いることができる。
 配列表の配列番号1で表される塩基配列は、miR-96-5pのアンチセンスPNAである。

Claims (7)

  1.  miR-96-5pに相補的な塩基配列を含むペプチド核酸部分を含む、miR-96-5pインヒビター。
  2.  前記ペプチド核酸部分のN末端及び/又はC末端に1~数個のアミノ酸からなるペプチド部分が付加された、請求項1に記載のmiR-96-5pインヒビター。
  3.  前記ペプチド核酸部分が、miR-96-5pに相補的な塩基配列のみからなる、請求項1又は2に記載のmiR-96-5pインヒビター。
  4.  miR-96-5pに相補的な塩基配列が、配列番号1で表される塩基配列である、請求項1~3のいずれか一項に記載のmiR-96-5pインヒビター。
  5.  請求項1~4のいずれか一項に記載のmiR-96-5pインヒビターを有効成分として含む、医薬組成物。
  6.  神経細胞内グルタチオン量の低下が認められる神経変性疾患の予防または治療用である、請求項5に記載の医薬組成物。
  7.  前記神経変性疾患が、アルツハイマー病、パーキンソン病、多系統萎縮症、又は筋委縮性側索硬化症である、請求項5又は6に記載の医薬組成物。
PCT/JP2021/028004 2020-07-29 2021-07-29 miR-96-5pインヒビターとそれを含有する医薬組成物 WO2022025148A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21850937.0A EP4190363A1 (en) 2020-07-29 2021-07-29 Mir-96-5p inhibitor and pharmaceutical composition containing same
US18/006,820 US20230272388A1 (en) 2020-07-29 2021-07-29 Mir-96-5p inhibitor and pharmaceutical composition containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020128453A JP2022025558A (ja) 2020-07-29 2020-07-29 miR-96-5pインヒビターとそれを含有する医薬組成物
JP2020-128453 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022025148A1 true WO2022025148A1 (ja) 2022-02-03

Family

ID=80035753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028004 WO2022025148A1 (ja) 2020-07-29 2021-07-29 miR-96-5pインヒビターとそれを含有する医薬組成物

Country Status (4)

Country Link
US (1) US20230272388A1 (ja)
EP (1) EP4190363A1 (ja)
JP (1) JP2022025558A (ja)
WO (1) WO2022025148A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990011092A1 (en) 1989-03-21 1990-10-04 Vical, Inc. Expression of exogenous polynucleotide sequences in a vertebrate
US5580859A (en) 1989-03-21 1996-12-03 Vical Incorporated Delivery of exogenous DNA sequences in a mammal
US6312727B1 (en) 1996-11-06 2001-11-06 Etienne H Schacht Delivery of nucleic acid materials
US7001614B2 (en) 1996-08-19 2006-02-21 The United States Of America As Represented By The Department Of Health And Human Services Liposome complexes for increased systemic delivery
US7067697B2 (en) 1998-11-25 2006-06-27 Vanderbilt University Cationic liposomes for gene transfer
US7214384B2 (en) 1997-08-13 2007-05-08 Novartis Vaccines And Diagnostics, Inc. Lipid-conjugated polyamide compounds
JP2011504110A (ja) * 2007-11-23 2011-02-03 パナジェン インコーポレイテッド マイクロrnaアンチセンスpna、これを含む組成物、及びその使用及び評価方法
JP2016073249A (ja) * 2014-10-08 2016-05-12 学校法人帝京大学 miR−96−5p阻害剤とそのスクリーニング方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990011092A1 (en) 1989-03-21 1990-10-04 Vical, Inc. Expression of exogenous polynucleotide sequences in a vertebrate
US5580859A (en) 1989-03-21 1996-12-03 Vical Incorporated Delivery of exogenous DNA sequences in a mammal
US7001614B2 (en) 1996-08-19 2006-02-21 The United States Of America As Represented By The Department Of Health And Human Services Liposome complexes for increased systemic delivery
US6312727B1 (en) 1996-11-06 2001-11-06 Etienne H Schacht Delivery of nucleic acid materials
US7214384B2 (en) 1997-08-13 2007-05-08 Novartis Vaccines And Diagnostics, Inc. Lipid-conjugated polyamide compounds
US7067697B2 (en) 1998-11-25 2006-06-27 Vanderbilt University Cationic liposomes for gene transfer
JP2011504110A (ja) * 2007-11-23 2011-02-03 パナジェン インコーポレイテッド マイクロrnaアンチセンスpna、これを含む組成物、及びその使用及び評価方法
JP2016073249A (ja) * 2014-10-08 2016-05-12 学校法人帝京大学 miR−96−5p阻害剤とそのスクリーニング方法
JP6342288B2 (ja) 2014-10-08 2018-06-13 学校法人帝京大学 miR−96−5p阻害剤とそのスクリーニング方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AVITABILE, CMOGGIO, LD'ANDREA, L. DPEDONE, CROMANELLI, A: "Development of an efficient and low-cost protocol for the manual PNA Synthesis by Fmoc chemistry", TETRAHEDRON LETT., vol. 51, no. 29, 2010, pages 3716 - 3718, XP027089257
IWASE, REIKO ET AL.: "Synthesis, Properties and Functions of Peptide Nucleic Acids (PNA) and Their Derivatives", JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY, JAPAN, vol. 60, no. 12, 2002, pages 1179 - 1189, XP093024354 *
KINOSHITA, C ET AL.: "Rhythmic oscillations of the microRNA miR-96-5p play a neuroprotective role by indirectly regulating glutathione levels", NAT. COMMUN, vol. 5, 2014, pages 3823
KINOSHITA, C. ET AL.: "Rhythmic oscillations of the microRNA miR-96-5p play a neuroprotective role by indirectly regulating glutathione levels", NAT. COMMUN., vol. 5, 2014, pages 3823
RYOO, SOO-RYOON ET AL.: "Quantative and Multiplexed MicroRNA Sensing in Living Cells Based on Peptide Nucleic Acid and Nano Graphene Oxide(PANGO", ACS NANO, vol. 7, no. 7, 2013, pages 5882 - 5891, XP055603356, DOI: 10.1021/nn401183s *

Also Published As

Publication number Publication date
JP2022025558A (ja) 2022-02-10
US20230272388A1 (en) 2023-08-31
EP4190363A1 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
JP7049262B2 (ja) 結合組織成長因子を標的とするrna複合体を用いた特発性肺胞線維症の治療
EP2614827B1 (en) Means and methods for counteracting muscle disorders
RU2748834C2 (ru) Антисмысловые олигонуклеотиды против scn9a
JP7305542B2 (ja) ペプチド核酸誘導体によるエクソンスキッピング
US20150299695A1 (en) Multimeric oligonucleotides compounds
JP6944942B2 (ja) IL4Rα、TRPA1、またはF2RL1を標的とするRNA複合体を用いたアトピー性皮膚炎および喘息の治療
KR20160036065A (ko) Rna를 조정하기 위한 조성물 및 방법
KR101310511B1 (ko) 흉선-특이성 단백질
USRE48468E1 (en) Means and methods for counteracting muscle disorders
CN113151261A (zh) 反义寡核苷酸作为tgf-r信号传导的抑制剂
KR20170005118A (ko) 펩티드 담체 상의 다중 올리고뉴클레오티드 모이어티
WO2022025148A1 (ja) miR-96-5pインヒビターとそれを含有する医薬組成物
EP2658550A1 (en) Agonists of toll like receptor for treating cardiovasuclar disease and obesity
WO2014169126A1 (en) Methods and agents to increase therapeutic dystrophin expression in muscle
JP2022552378A (ja) パーキンソン病を治療するための顆粒球マクロファージコロニー刺激因子をコードするmRNA
US20220251557A1 (en) Method for reducing toxicity of antisense nucleic acids
US20210130831A1 (en) Lung-specific drug delivery system consisting of oligonucleotide polymers and biocompatible cationic peptides for the prevention or treatment of pulmonary fibrosis and use thereof
WO2011103215A1 (en) Embedded chimeric peptide nucleic acids and use thereof
RU2786637C2 (ru) Пропуск экзонов с помощью производных пептидо-нуклеиновых кислот
EP2764009B1 (en) Peptides for use in the treatment of il-1 related diseases and conditions
Citti et al. Efficacy of an amphipathic oligopeptide to shuttle and release a cis-acting DNA decoy into human cells
WO2023006985A1 (en) Nanoparticles and peptides for the delivery of cargos to muscle cells
US20200230251A1 (en) Peptide for use in the reduction of side effects in the form of immunostimulatory reactions/effects
McClorey The potential of antisense oligonucleotides as a therapy for Duchenne muscular dystrophy in human and canine models of the disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850937

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021850937

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021850937

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE