WO2022025122A1 - Method for producing water-absorbing resin particles - Google Patents

Method for producing water-absorbing resin particles Download PDF

Info

Publication number
WO2022025122A1
WO2022025122A1 PCT/JP2021/027923 JP2021027923W WO2022025122A1 WO 2022025122 A1 WO2022025122 A1 WO 2022025122A1 JP 2021027923 W JP2021027923 W JP 2021027923W WO 2022025122 A1 WO2022025122 A1 WO 2022025122A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement points
reaction
polymer
reaction solution
water
Prior art date
Application number
PCT/JP2021/027923
Other languages
French (fr)
Japanese (ja)
Inventor
志保 岡澤
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2022539534A priority Critical patent/JPWO2022025122A1/ja
Publication of WO2022025122A1 publication Critical patent/WO2022025122A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present disclosure relates to a method for producing water-absorbent resin particles.
  • the water-absorbent resin particles that can be used for absorbent articles such as sanitary products form a massive hydrogel-like polymer by the polymerization reaction of the monomers in the reaction solution contained in the reaction vessel, and contain water. It may be produced by a method including pulverizing a solid dried product containing a polymer, which is obtained by drying a gel-like polymer (for example, Patent Documents 1 and 2).
  • the powder formed by pulverizing a dried product containing a polymer contains fine powder, but in general, fine powder that passes through a sieve having an opening of 180 ⁇ m is often difficult to use as it is as a product. Therefore, in order to improve the production yield, it is desirable that the proportion of fine powder in the powder obtained by pulverization is as small as possible.
  • One aspect of the present disclosure relates to a method for reducing the proportion of fine powder in the powder formed by pulverization in the case of producing water-absorbent resin particles by a method including pulverizing a dried product containing a polymer.
  • One aspect of the present disclosure provides a method for producing water-absorbent resin particles containing polymer particles.
  • the method according to one aspect of the present disclosure includes a step of forming a hydrogel-like polymer containing water and a polymer by a polymerization reaction in a reaction solution containing a monomer and water contained in a reaction vessel, and the above-mentioned step.
  • the present invention includes a step of obtaining a dried product containing the polymer by removing water from the water-containing gel-like polymer, and a step of forming a powder of polymer particles by pulverizing the dried product.
  • the reaction vessel has two side wall surfaces extending along a certain direction and facing each other, and a bottom surface forming a recess together with the two side wall surfaces.
  • the temperature of the reaction liquid is the temperature at each of the five measurement points.
  • the maximum T max of the maximum temperatures reached during the polymerization reaction is indicated at any of the five measurement points, the standard deviation of the temperature of the reaction solution at each of the five measurement points is 12 to. It is 30 and the T max is 80 to 100 ° C.
  • the five measurement points are composed of two measurement points at a position 1 cm from each of the two side wall surfaces and three measurement points at a position that divides the two measurement points into four equal parts.
  • the temperature of the reaction solution at each of the five measurement points is measured on the bottom surface at a position directly below each measurement point.
  • the proportion of fine powder in the powder formed by the pulverization can be reduced. ..
  • the present invention is not limited to the following examples.
  • (meth) acrylic means both acrylic and methacrylic.
  • acrylate and “methacrylate” are also referred to as “(meth) acrylate”.
  • (Poly) shall mean both with and without the "poly” prefix.
  • the upper or lower limit of the numerical range at one stage may be optionally combined with the upper or lower limit of the numerical range at another stage.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the materials exemplified in the present specification may be used alone or in combination of two or more.
  • One embodiment of the method for producing water-absorbent resin particles includes a step of forming a water-containing gel-like polymer containing water and a polymer by a polymerization reaction in a reaction solution containing a monomer and water, and a water-containing gel-like state. It includes a step of forming a dried product containing the polymer by removing water from the polymer, and a step of forming a powder of water-absorbent resin particles by pulverizing the dried product.
  • the polymerization reaction is a reaction measured at five measurement points arranged on the liquid surface of the reaction solution in a reaction solution contained in a reaction vessel having a bottom surface and two side wall surfaces extending from the end of the bottom surface. It is performed under the condition that the variation in the temperature of the liquid becomes large to some extent.
  • FIG. 1 is a schematic top view showing an example of measurement points arranged in the liquid surface of the reaction liquid in the step of forming a water-containing gel-like polymer by a polymerization reaction in a reaction liquid containing a monomer and water.
  • FIG. 2 is a cross-sectional view of FIG.
  • the reaction vessel 10 containing the reaction solution 1 shown in FIGS. 1 and 2 extends along the same constant direction X, and has two side wall surfaces 11 and 12 facing each other and two side wall surfaces 11. , 12 two side wall surfaces 13 and 14 extending along a direction perpendicular to the extending direction X and facing each other, and a bottom surface 15 forming a recess for accommodating the reaction solution 1 together with these side wall surfaces.
  • the side wall surfaces 11, 12, 13, 14 may be perpendicular to the bottom surface 15 or may be inclined.
  • the five measurement points P1, P2, P3, P4 and P5 are in series in this order on a straight line 2 in the liquid surface 1S of the reaction liquid 1 perpendicular to the extending direction X of the two side wall surfaces 11 and 12 facing each other. Is placed in.
  • the five measurement points are the two measurement points P1 and P5 located 1 cm from each of the two side wall surfaces 11 and 12, and the three measurement points P2 at positions that divide the space between the two measurement points P1 and P5 into four equal parts. It is composed of P3 and P4.
  • the distance W0 between the side wall surfaces 11 and 12 and the measurement points P1 and P2 is 1 cm.
  • the distance W12 between the measurement point P1 and the measurement point P2, the distance W23 between the measurement point P2 and the measurement point P3, the distance W34 between the measurement point P3 and the measurement point P4, and the distance W45 between the measurement point P4 and the measurement point P5 are It is the same.
  • the measurement point P3 is located in the center between the two side wall surfaces 11 and 12.
  • the temperatures T1, T2, T3, T4 and T5 of the reaction solution at each of the five measurement points P1, P2, P3, P4 and P5 are located directly below the respective measurement points P10, P20, P30, P40. And measured on the bottom surface 15 of P50.
  • the temperatures T1 and T5 are measured on the side wall surfaces 11 and 12 at positions directly below the measurement points P1 and P5 at both ends.
  • the position on the bottom surface 15 where the temperature of the reaction solution 1 is measured can be a position within 0.5 cm in the depth direction of the reaction solution 1 from the bottom surface 15 (or the side wall surfaces 11 and 12).
  • the temperatures T1, T2, T3, T4 and T5 of the reaction solution 1 shown at each of the five measurement points P1, P2, P3, P4 and P5 rise with the progress of the polymerization reaction to reach the maximum temperature, and then reach the maximum temperature. descend.
  • the maximum value T max is any of the five measurement points P1, P2, P3, P4 and P5. At the time point indicated by K There is.) Is 12 to 30.
  • the maximum temperature at which the temperature T3 of the reaction solution 1 at the measurement point P3 reaches during the polymerization reaction reaches the maximum temperature at which the temperatures T1, T2, T3, T4 and T5 of the reaction solution 1 at each measurement point reach during the polymerization reaction.
  • T max is the maximum temperature to be measured
  • the temperature deviation calculated from the temperatures T1, T2, T3, T4 and T5 at the time when the temperature T3 of the reaction solution 1 at the measurement point P3 reaches T max is 12 ⁇ 30.
  • the temperature deviation of the reaction solution When the temperature deviation of the reaction solution is large to some extent, such as 12 to 30, the uniformity of the polymerization reaction is lowered, so that the dried product containing the polymer tends to be softened, and as a result, the generation of fine powder in pulverization is suppressed. It is thought that it will be done. From the viewpoint of further reducing the proportion of fine powder in the powder of the polymer particles, the temperature deviation of the reaction solution may be 25 or less, 23 or less or 20 or less at 12 or more, and 30 or less, 25 or less at 13 or more. , 23 or less or 20 or less.
  • the maximum value T max among the maximum temperatures reached by the temperatures T1, T2, T3, T4 and T5 of the reaction solution 1 in the polymerization reaction is 80 to 100 ° C.
  • the polymerization reaction is sufficiently easy to proceed until the entire reaction solution 1 is gelled.
  • the time to reach may be, for example, 1 to 20 minutes.
  • the width of the liquid level 1S of the reaction solution 1 in the direction in which the five measurement points P1, P2, P3, P4 and P5 are arranged is 10 to 500 cm, 10 to 300 cm, 10 to 100 cm or 10 to It may be 80 cm.
  • the widths of the side wall surfaces 11 and 12 are shorter than the widths of the side wall surfaces 13 and 14.
  • Five measurement points for determining the temperature deviation may be arranged on a straight line in the direction perpendicular to the side wall surfaces 13, 14.
  • the reaction vessel has two sets of two side wall surfaces facing each other as in the embodiment of FIG. 1, the reaction measured at five measurement points arranged between the two side wall surfaces of one or both of the two sets.
  • the temperature deviation of the liquid can be 12-30.
  • the polymerization reaction may proceed while moving the reaction vessel along the extending direction of the side wall surfaces 11 and 12.
  • the temperature deviation of the reaction solution at any position in the moving direction of the reaction vessel is 12 to 30 at five measurement points arranged in series on a straight line in the direction perpendicular to the moving direction of the reaction vessel. You may.
  • the straight line 2 on which the is arranged may be a straight line passing through the position in the liquid surface 1S where the cleavage promoter liquid is poured or its vicinity.
  • the straight line 2 may be a straight line passing through a region within 1 cm from the position where the cleavage promoter liquid is charged in the liquid surface 1S.
  • the cleavage accelerator liquid may be charged toward one position in the liquid surface 1S, or may be divided into two or more positions in the liquid surface 1S and charged at the same time.
  • the temperature deviation tends to be large and the T max tends to be large.
  • the reaction vessel is moved to change the charging position of the reaction solution in the liquid surface, and the cleavage accelerator solution is sequentially charged twice or more. You may.
  • the cleavage accelerator solution for each injection of the cleavage accelerator solution, five measurement points are arranged on a straight line passing through the position where the cleavage accelerator solution is added or its vicinity, and the measurement is performed at each of the five measurement points.
  • the conditions of the polymerization reaction are adjusted so that the temperature deviation of the reaction solution is maintained in the range of 12 to 30.
  • the entire amount of the cleavage accelerator solution is charged into the reaction solution 1 over a period of, for example, 5 to 120 seconds. If the time required for charging the cleavage accelerator solution into the reaction solution 1 is long, the temperature deviation of the reaction solution tends to be large.
  • the temperature of the reaction solution 1 before the cleavage accelerator solution is added is adjusted so that the T max is 80 to 100 ° C., and may be, for example, 0 to 40 ° C. or 10 to 30 ° C.
  • the amount of dissolved oxygen in the reaction solution 1 may be, for example, 0.1 ppm or less.
  • the reaction solution 1 may be stirred during the polymerization reaction.
  • the intensity of stirring is small, the standard deviation of the temperature of the reaction solution measured at the five measurement points tends to be large.
  • the reaction solution 1 is agitated by a stirrer 3 arranged on the bottom surface 15 of the reaction vessel 10, if the number of rotations and / or the number of the stirrers 3 is small, the temperature deviation of the reaction solution 1 tends to be large. ..
  • the rotation speed and number of the stirrer can be adjusted so that the temperature deviation is 12 to 30 depending on the type of the stirrer, the amount of the reaction solution 1, and the like.
  • the number of stirrers installed in one reaction vessel may be 1 to 3, and the rotation speed of the stirrers may be 50 to 300 rpm.
  • the time of the polymerization reaction is adjusted so that the polymerization reaction proceeds sufficiently and a hydrogel-like polymer is formed.
  • the polymerization reaction may be completed by keeping the reaction vessel 10 at 50 to 80 ° C.
  • the reaction vessel 10 is not particularly limited, but may be, for example, a vessel made of stainless steel, ceramics, synthetic resin, or steel.
  • the reaction vessel 10 may be provided on the belt conveyor.
  • the depth of the reaction solution 1 in the reaction vessel 10 may be, for example, 10 to 50 mm, 10 to 40 mm, or 15 to 35 mm.
  • the reaction solution 1 before the polymerization reaction can be water and a monomer aqueous solution containing a monomer dissolved in water. As the polymerization reaction progresses, the reaction solution 1 thickens and then gels to form a hydrogel polymer. Normally, the reaction solution 1 loses its fluidity as the polymerization reaction progresses, but in the present specification, the mixture after the reaction solution 1 loses its fluidity may also be referred to as a reaction solution for convenience.
  • the concentration of the monomer in the reaction solution 1 may be, for example, 20 to 50% by mass or 20 to 40% by mass based on the mass of the reaction solution 1.
  • the monomer is a compound that forms a polymer that imparts water absorption to the polymer particles and the water-absorbent resin particles by polymerization.
  • the polymer may be a crosslinked polymer.
  • the monomer may be an ethylenically unsaturated monomer.
  • the ethylenically unsaturated monomer is, for example, (meth) acrylic acid and a salt thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and a salt thereof, (meth) acrylamide, N, N-dimethyl (meth).
  • the amino group may be quaternized.
  • the reaction solution 1 may contain a monomer other than the ethylenically unsaturated monomer.
  • the proportion of ethylenically unsaturated monomers is 70 to 100 mol%, 80 to 100 mol% or 90 to 100 mol% with respect to the total amount of monomers in the reaction solution. May be.
  • the proportion of (meth) acrylic acid and a salt thereof in the ethylenically unsaturated monomer may be 70 to 100 mol%, 80 to 100 mol% or 90 to 100 mol%.
  • the reaction solution 1 may further contain an initiator (particularly, a radical polymerization initiator).
  • Initiators may include persulfates, azo compounds, organic peroxides or combinations thereof.
  • the amount of initiator may be 0.01-15 mmol per mole of monomer. When two or more initiators are used, the amount of each initiator may be 0.01 to 15 mmol per mole of the monomer.
  • persulfate examples include potassium persulfate, ammonium persulfate, and sodium persulfate.
  • azo compounds examples include 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride, 2,2'-azobis ⁇ 2- [N- (4-chlorophenyl) amidino] propane ⁇ 2 Hydrochloride, 2,2'-azobis ⁇ 2- [N- (4-hydroxyphenyl) amidino] propane ⁇ dihydrochloride, 2,2'-azobis [2- (N-benzylamidino) propane] dihydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis ⁇ 2- [N-( 2-Hydroxyethyl) amidino] propane ⁇ dihydrochloride, 2,2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl)
  • the radical polymerization initiators are 2,2'-azobis (2-amidinopropane) dihydrochloride and 2,2'-azobis ⁇ 2.
  • organic peroxides examples include methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t-butyl peroxyacetate, t-butyl peroxyisobutyrate, etc. And t-butylperoxypivalate.
  • the reaction solution 1 may contain an initiator and a cleavage promoter.
  • the cleavage accelerator is a compound that lowers the temperature at which the polymerization reaction is initiated by the initiator. When the polymerization reaction is started at a low temperature, water-absorbent resin particles having better water-absorbing performance can be easily obtained.
  • the cleavage promoter can be, for example, a reducing agent, an oxidizing agent or a combination thereof. A part or all of the cleavage accelerator may be added later to the reaction solution containing the monomer, the initiator and water to initiate the polymerization reaction.
  • the amount of cleavage promoter may be, for example, 0.01 to 1.0 mol per 1 mol of initiator.
  • the reducing agent used as the cleavage accelerator may be, for example, at least one compound selected from the group consisting of sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • the oxidizing agent used as a cleavage promoter may be, for example, at least one compound selected from the group consisting of hydrogen peroxide, sodium perborate, perphosphate, perphosphate, and potassium permanganate. good.
  • cleavage promoters When two or more kinds of cleavage promoters are used, they may be added to the reaction solution separately.
  • a reaction solution containing a monomer, an initiator and water a cleavage accelerator solution containing a reducing agent (for example, L-ascorbic acid) and a cleavage accelerator solution containing an oxidizing agent (for example, hydrogen peroxide) may be used.
  • the polymerization reaction may be started by sequentially charging.
  • the polymerization reaction may be started by adding a cleavage promoter solution containing a reducing agent (for example, L-ascorbic acid) to the reaction solution containing the monomer, the initiator and water.
  • the cleavage-promoting agent solution may be an aqueous solution containing a cleavage-promoting agent and water.
  • the reaction solution 1 may further contain a chain transfer agent.
  • the chain transfer agent may include, for example, hypophosphorous acid, phosphorous acid or a combination thereof.
  • the reaction solution 1 may contain an internal cross-linking agent.
  • an internal cross-linking agent In that case, a hydrogel-like polymer containing a crosslinked polymer crosslinked by an internal crosslinking agent is formed.
  • the amount of the internal cross-linking agent may be 0.002 to 0.04 mmol per mole of the monomer.
  • the internal cross-linking agent may be a compound having two or more reactive functional groups (for example, a polymerizable unsaturated group).
  • the internal cross-linking agent may contain a compound having a (meth) acrylic group, an allyl group, an epoxy group, or an amino group as a reactive functional group.
  • examples of compounds having a (meth) acrylic group include (poly) ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and N, N'-methylenebis (meth) acrylamide.
  • Examples of compounds having an allyl group include triallylamine.
  • Examples of compounds having an epoxy group include (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin polyglycidyl ether and epichlorohydrin. Will be.
  • Examples of compounds having an amino group include triethylenetetramine, ethylenediamine, and hexamethylenediamine.
  • the massive hydrogel-like polymer formed by the polymerization reaction is taken out from the reaction vessel 10.
  • a coarsely crushed product containing a structure having a somewhat small size is formed by coarsely crushing the water-containing gel-like polymer. May be good.
  • the structure constituting the coarsely crushed product can be, for example, an elongated structure, a granular structure (particle), or a combination thereof.
  • the crushed product may contain a plurality of structures having a shape capable of passing through a circular hole having a diameter of 10 mm or 7 mm.
  • the elongated structure may be bent, and if the maximum width thereof is 10 mm or less, it can be said that the elongated structure has a shape capable of passing through a circular hole having a diameter of 10 mm.
  • the granular structure (particle) may have an amorphous shape, or may have a shape capable of passing through a circular hole having a diameter of 10 mm while changing its direction.
  • the coarsening apparatus for coarsely crushing the hydrogel-like polymer include kneaders (for example, pressurized kneaders, double-armed kneaders), meat choppers, cutter mills, and pharmacomills.
  • the water content of the dried product containing the polymer obtained by drying may be, for example, 20% by mass or less, 10% by mass or less, or 5% by mass or less, or 0% by mass or more.
  • the water content of the dried product here means the ratio of the water content in the polymer particles based on the total mass of the dried product containing water.
  • the drying method may be a general method such as natural drying, heat drying, blast drying, freeze drying or a combination thereof.
  • the crushed product may be dried under normal pressure or reduced pressure.
  • the heating temperature for drying under normal pressure may be 70 to 250 ° C. or 80 to 200 ° C.
  • the method of crushing the dried product containing the polymer is not particularly limited.
  • a crusher such as a centrifugal crusher, a roller mill, a stamp mill, a jet mill, a high-speed rotary crusher, and a container-driven mill can be used to crush the dried product.
  • the powder of the polymer particles obtained by pulverization may be classified.
  • Classification means an operation of dividing a particle group (powder) into two or more particle groups having different particle size distributions. A part of the powder of the polymer particles after the classification may be pulverized and classified again.
  • the classification method is not particularly limited, but may be, for example, screen classification or wind power classification.
  • Screen classification is a method of classifying particles on a screen into particles that pass through the mesh of the screen and particles that do not pass through the screen by vibrating the screen. Screen classification can be performed using, for example, a vibrating sieve, a rotary shifter, a cylindrical stirring sieve, a blower shifter, or a low-tap shaker.
  • Wind power classification is a method of classifying particles using the flow of air.
  • the medium particle size of the polymer particles obtained by pulverization and, if necessary, classification may be, for example, 200 to 500 ⁇ m.
  • the medium particle size of the polymer particles before being mixed with the surface cross-linking agent solution described later may be, for example, 200 to 500 ⁇ m.
  • the particle size distribution may be adjusted by mixing two or more powders having different medium particle diameters obtained by classification.
  • the polymer particles may be surface-crosslinked with a surface-crosslinking agent.
  • a surface-crosslinking agent By surface cross-linking, the polymer near the surface of the polymer particles is cross-linked by the surface cross-linking agent.
  • the polymer particles can be surface-crosslinked by heating a mixture of the polymer particle powder and the surface cross-linking agent solution. The above-mentioned dissolution for selecting the elapsed time t is measured using the polymer particles before surface cross-linking.
  • the surface cross-linking agent solution can be water and a solution containing a surface cross-linking agent dissolved in water.
  • the solvent contained in the surface cross-linking agent solution may be substantially only water.
  • the ratio of the solvent other than water may be 10% by mass or less, 5% by mass or less, or 1% by mass or less based on the mass of the surface cross-linking agent solution.
  • Examples of surface cross-linking agents include alkylene carbonate compounds such as ethylene carbonate; ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, polyglycerin and the like.
  • alkylene carbonate compounds such as ethylene carbonate; ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, polyglycerin and the like.
  • Polypoly compounds poly (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylolpropane triglycidyl ether (poly) propylene glycol polyglycidyl ether, and (poly)
  • Polyglycidyl compounds such as ether; haloepoxy compounds such as epichlorohydrin, epibromhydrin, and ⁇ -methylepicrolhydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylenediisocyanate; 3-methyl-3-oxetanemethanol, Oxetane compounds such as 3-ethyl-3-oxetan methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, and 3-butyl-3-oxetane ethanol; Oxazoline compounds such as 1,2-ethylenebisoxazoline; hydroxyalkylamide compounds such as bis [N, N-di ( ⁇ -hydroxyethyl)] adipamide can be mentioned.
  • the surface cross-linking agent may contain an alkylene carbonate compound, a polyol compound, or a combination thereof.
  • the ratio of the alkylene carbonate compound in the surface cross-linking agent is 50 to 100% by mass, 60 to 100% by mass, 70 to 100% by mass, 80 to 100% by mass, or 90 to 100% by mass based on the total mass of the surface cross-linking agent. May be.
  • the amount of the surface cross-linking agent is 0.001 to 0.10 mol, 0 per mol of the monomer unit constituting the polymer in the polymer particles. It may be .005 to 0.05, or 0.01 to 0.02 mol.
  • the heating temperature and heating time for surface cross-linking are adjusted so that the cross-linking reaction proceeds appropriately in consideration of the type of surface cross-linking agent and the like.
  • the heating temperature for surface cross-linking may be 80 to 200 ° C.
  • the heating time for surface cross-linking may be, for example, 5 to 90 minutes.
  • the surface-crosslinked polymer particles may be further dried or classified if necessary.
  • the polymer particles may be used as they are as the water-absorbent resin particles, or the inorganic particles may be attached to the surface of the polymer particles, for example. That is, the water-absorbent resin particles may contain the polymer particles and the inorganic particles adhering to the surface of the polymer particles.
  • examples of inorganic particles include silica particles such as amorphous silica.
  • the produced water-absorbent resin particles are used to form an absorbent body constituting an absorbent article such as a diaper, for example.
  • the present invention is not limited to the following examples.
  • Polymerization reaction 888.10 g of aqueous monomer solution, 150.04 g of ion-exchanged water, 0.930 g of polyethylene glycol diacrylate (n about 9, internal cross-linking agent, Nichiyu Co., Ltd., Blemmer ADE-400A), concentration 5 6.47 g of a mass% 2,2'-azobis (2-amidinopropane) dihydrochloride (Fujifilm Wako Pure Chemical Industries, Ltd .: V-50) aqueous solution was sequentially added to a 2 L hand-held beaker and inside the beaker. The mixture was stirred.
  • a stainless steel bat was used as the reaction vessel.
  • a uniform reaction solution was formed by putting the mixture in the beaker into the reaction vessel and stirring the mixture in the reaction vessel with two stirrers (diameter 8 mm, length 45 mm, no ring). Then, the upper part of the reaction vessel was sealed with a polyethylene film.
  • the width of the liquid surface of the reaction solution was 26 cm in the longitudinal direction of the reaction vessel, and the depth of the reaction solution was 1.7 cm.
  • Two points P1 and P5 located 1 cm from the two side wall surfaces facing each other in the longitudinal direction of the reaction vessel on a straight line perpendicular to the longitudinal direction of the reaction vessel in the liquid surface of the reaction solution, and 4 between these two points.
  • a thermometer (CT-320WP, manufactured by Custom Co., Ltd.) was inserted vertically into the reaction solution so as to reach the bottom surface of the reaction vessel.
  • the five measurement points were aligned linearly along the longitudinal direction of the reaction vessel at the center of the reaction vessel in the lateral direction.
  • the two stir bars were installed between the measurement points P1 and P2 and between the measurement points P4 and P5.
  • the temperature of the reaction solution in the reaction vessel was adjusted to 25 ° C., and the amount of dissolved oxygen in the reaction solution was adjusted to 0.1 ppm or less by nitrogen substitution.
  • 3.40 g of an L-ascorbic acid aqueous solution having a concentration of 0.5% by mass was added to the reaction solution using a syringe (10 mL disposable syringe manufactured by Terumo Corporation, injection needle manufactured by Terumo Corporation), and the reaction solution was added. It was stirred well.
  • the polymerization reaction started at the same time as the dropping of the aqueous hydrogen peroxide solution. After the viscosity of the reaction solution increased with the progress of the polymerization reaction, the reaction solution gelled to form a hydrogel-like polymer containing water and a crosslinked polymer. The temperature indicated by each of the five thermometers reached the maximum temperature as the polymerization reaction proceeded, and then decreased. At 3 minutes from the end of the dropping of the hydrogen peroxide aqueous solution, the thermometer at the measurement point P3 showed the maximum value of 99 ° C. among the maximum temperatures shown by each of the five thermometers during the polymerization reaction.
  • thermometer at the measurement point P3 showed the maximum temperature of 99 ° C.
  • the temperatures indicated by the five thermometers were recorded, and the standard deviation (temperature deviation) of these five temperatures was calculated.
  • the reaction vessel containing the hydrogel polymer was immersed in a water bath at 75 ° C., and the hydrogel polymer was kept warm for 20 minutes in that state to complete the polymerization reaction. ..
  • the lumpy hydrogel polymer taken out from the reaction vessel was cut into 5 cm widths.
  • the cut hydrogel polymer was sequentially put into a meat chopper (manufactured by Kiren Royal Co., Ltd., model number: 12VR-750SDX) and coarsely crushed at room temperature.
  • the diameter of the circular discharge hole of the plate located at the outlet of the meat chopper was 6.4 mm.
  • the coarsely crushed hydrogel polymer is spread out on a wire mesh with an opening of 0.8 cm ⁇ 0.8 cm and heated at 180 ° C. for 30 minutes using a hot air dryer (ADVANTEC, FV-320). To obtain a dried product containing a crosslinked polymer.
  • the pulverized dried product was pulverized by a centrifugal pulverizer (ZM200 manufactured by Retsch, screen diameter: 1 mm, 6000 rpm) to obtain a powder of polymer particles.
  • ZM200 centrifugal pulverizer manufactured by Retsch, screen diameter: 1 mm, 6000 rpm
  • Example 2 Except that the rotation speed of the stirrer when dropping the 0.35% by mass hydrogen peroxide solution was changed to 300 rpm, and 3.70 g of the 0.35% by mass hydrogen peroxide solution was dropped over 63 seconds.
  • the powder of the polymer particles was obtained by the same procedure as in Example 1.
  • the thermometer at the measurement point P2 showed the maximum value of 80 ° C. among the maximum temperatures shown by each of the five thermometers during the polymerization reaction.
  • the temperatures indicated by the five thermometers were recorded, and the standard deviation (temperature deviation) of these five temperatures was calculated.
  • Fluororesin-coated 3 cm high stainless steel with a rectangular bottom surface with internal dimensions of 16 cm x 20 cm and four side wall surfaces provided around the bottom surface, with a rectangular opening with internal dimensions of 19 cm x 23 cm.
  • a bat was used as a reaction vessel.
  • a uniform reaction solution was formed by putting the mixture in the beaker into the reaction vessel and stirring the mixture in the reaction vessel with two stirrers (diameter 8 mm, length 30 mm, no ring). Then, the upper part of the reaction vessel was sealed with a polyethylene film.
  • the width of the liquid surface of the reaction solution was 18 cm in the lateral direction of the reaction vessel, and the depth of the reaction solution was 1.6 cm.
  • Two points P1 and P5 located 1 cm from the two side wall surfaces facing each other in the lateral direction of the reaction vessel on a straight line perpendicular to the longitudinal direction of the reaction vessel in the liquid surface of the reaction solution, and between these two points.
  • a thermometer (CT-320WP, manufactured by Custom Co., Ltd.) was inserted vertically into the reaction solution so as to reach the bottom surface of the reaction vessel.
  • the five measurement points were aligned linearly along the lateral direction of the reaction vessel at the center of the reaction vessel in the lateral direction.
  • the two stir bars were installed between the measurement points P1 and P2 and between the measurement points P4 and P5.
  • the temperature of the reaction solution in the reaction vessel was adjusted to 25 ° C., and the amount of dissolved oxygen in the reaction solution was adjusted to 0.1 ppm or less by nitrogen substitution. Then, while stirring at 100 rpm, a syringe (Terumo Corporation, 10 mL disposable syringe, Terumo Corporation injection needle) was used toward the vicinity of the central measurement point P3, and the concentration was 0.5% by mass. -2.41 g of the ascorbic acid aqueous solution and 2.62 g of the 0.35 mass% hydrogen peroxide aqueous solution were sequentially added dropwise over 3 seconds.
  • the polymerization reaction started at the same time as the dropping of the aqueous hydrogen peroxide solution. After the viscosity of the reaction solution increased with the progress of the polymerization reaction, the reaction solution gelled to form a hydrogel-like polymer containing water and a crosslinked polymer.
  • the temperature at the measurement point P3 showed the maximum value of 95 ° C. among the maximum temperatures shown by each of the five thermometers during the polymerization reaction.
  • the temperatures indicated by the five thermometers at the time when the thermometer at the measurement point P3 showed the maximum temperature of 95 ° C. were recorded, and the standard deviation (temperature deviation) of these five temperatures was calculated.
  • the reaction vessel containing the hydrogel-like polymer was immersed in a water bath at 75 ° C., and the hydrogel-like polymer was kept warm for 20 minutes in that state to complete the polymerization reaction. rice field.
  • thermometer at the measurement point P3 showed the maximum value of 98 ° C. among the maximum temperatures shown by each of the five thermometers during the polymerization reaction.
  • the temperatures indicated by the five thermometers were recorded, and the standard deviation (temperature deviation) of these five temperatures was calculated.
  • thermometer at the measurement point P4 showed the maximum value of 94 ° C. among the maximum temperatures shown by each of the five thermometers during the polymerization reaction.
  • the temperatures indicated by the five thermometers were recorded, and the standard deviation (temperature deviation) of these five temperatures was calculated.
  • Example 3 Five syringes (Terumo Corporation, 10 mL disposable syringe, Terumo Corporation injection needle) with a method of dropping a 0.35 mass% hydrogen peroxide solution toward each of the five measurement points.
  • the polymerization reaction was carried out by the same procedure as in Example 1 except that the method was changed to drop 0.74 g of a 0.35 mass% hydrogen peroxide aqueous solution from each syringe all at once over 1 second. rice field.
  • the thermometer at the measurement point P5 showed the maximum value of 63 ° C. among the maximum temperatures shown by each of the five thermometers during the polymerization reaction.
  • thermometer at the measurement point P5 showed the maximum temperature of 63 ° C.
  • the temperatures indicated by the five thermometers were recorded, and the standard deviation (temperature deviation) of these five temperatures was calculated. Since a part of the reaction solution did not gel and a liquid part remained, it was not possible to obtain a lumpy hydrogel polymer.
  • Particle size ratio [%] of 180 to 850 ⁇ m (total mass [g] of crosslinked polymer particles remaining on the sieve with openings of 500 ⁇ m, 425 ⁇ m, 300 ⁇ m, 250 ⁇ m and 180 ⁇ m) / (crosslinked polymer particles used for measurement) Mass [g]) x 100
  • Table 1 shows the particle size distribution and the particle size ratio obtained from it.
  • "850 ⁇ m on” means the ratio of the crosslinked polymer particles remaining on the opening 850 ⁇ m to the mass of the crosslinked polymer particles used for the measurement. This also applies to "500 ⁇ m on” and the like.
  • “Pass” means the ratio of the crosslinked polymer particles that have passed through the sieve having an opening of 106 ⁇ m to the mass of the crosslinked polymer particles used for the measurement.

Abstract

The present invention discloses a method for producing water-absorbing resin particles containing polymer particles. This method includes: a step for forming a hydrous gel-like polymer through a polymerization reaction in a reaction solution; and a step for forming a powder of polymer particles by pulverizing a dried product containing the polymer. When five measurement points are arranged in series on a straight line perpendicular to an extension direction X of a side wall surface, among the highest temperatures at which the temperature of the reaction solution reaches during the polymerization reaction, measured respectively at the five measurement points, at a point of time when the maximum value Tmax is indicated at any one of the five measurement points, the standard deviation of the temperatures of the reaction solution, measured respectively at the five measurement points, is 12-30, and Tmax is 80-100°C.

Description

吸水性樹脂粒子を製造する方法Method for manufacturing water-absorbent resin particles
 本開示は、吸水性樹脂粒子を製造する方法に関する。 The present disclosure relates to a method for producing water-absorbent resin particles.
 サニタリー用品等の吸収性物品に用いることのできる吸水性樹脂粒子が、反応容器に収容された反応液中での単量体の重合反応によって塊状の含水ゲル状重合体を形成することと、含水ゲル状重合体を乾燥することによって得られる、重合体を含む固形の乾燥物を粉砕することとを含む方法によって製造されることがある(例えば特許文献1、2)。 The water-absorbent resin particles that can be used for absorbent articles such as sanitary products form a massive hydrogel-like polymer by the polymerization reaction of the monomers in the reaction solution contained in the reaction vessel, and contain water. It may be produced by a method including pulverizing a solid dried product containing a polymer, which is obtained by drying a gel-like polymer (for example, Patent Documents 1 and 2).
特開平11-228604号公報Japanese Unexamined Patent Publication No. 11-22864 特開2006-160866号公報Japanese Unexamined Patent Publication No. 2006-160866
 重合体を含む乾燥物を粉砕することによって形成される粉体は微粉を含むが、一般に、目開き180μmの篩を通過するような微粉は、そのままでは製品として利用し難いことが多い。そのため、製造の歩留まり向上のためには、粉砕によって得られる粉体において、微粉の割合が出来るだけ小さいことが望ましい。 The powder formed by pulverizing a dried product containing a polymer contains fine powder, but in general, fine powder that passes through a sieve having an opening of 180 μm is often difficult to use as it is as a product. Therefore, in order to improve the production yield, it is desirable that the proportion of fine powder in the powder obtained by pulverization is as small as possible.
 本開示の一側面は、重合体を含む乾燥物を粉砕することを含む方法によって吸水性樹脂粒子を製造する場合において、粉砕によって形成される粉体における微粉の割合を低下させる方法に関する。 One aspect of the present disclosure relates to a method for reducing the proportion of fine powder in the powder formed by pulverization in the case of producing water-absorbent resin particles by a method including pulverizing a dried product containing a polymer.
 本開示の一側面は、重合体粒子を含む吸水性樹脂粒子を製造する方法を提供する。本開示の一側面に係る方法は、反応容器に収容された単量体及び水を含む反応液中での重合反応によって、水及び重合体を含む含水ゲル状重合体を形成する工程と、前記含水ゲル状重合体から水を除去することにより、重合体を含む乾燥物を得る工程と、前記乾燥物を粉砕することにより、重合体粒子の粉体を形成する工程とを含む。 One aspect of the present disclosure provides a method for producing water-absorbent resin particles containing polymer particles. The method according to one aspect of the present disclosure includes a step of forming a hydrogel-like polymer containing water and a polymer by a polymerization reaction in a reaction solution containing a monomer and water contained in a reaction vessel, and the above-mentioned step. The present invention includes a step of obtaining a dried product containing the polymer by removing water from the water-containing gel-like polymer, and a step of forming a powder of polymer particles by pulverizing the dried product.
 前記反応容器が、一定の方向に沿って延在し互いに対向する2つの側壁面と、前記2つの側壁面とともに凹部を形成している底面とを有する。前記2つの側壁面の延在方向に垂直な、前記反応液の液面内の直線上に5つの測定点を直列に配置したときに、前記5つの測定点それぞれにおいて前記反応液の温度が前記重合反応の間に到達する最高温度のうち最大値Tmaxが前記5つの測定点のうちいずれかにおいて示された時点において、前記5つの測定点それぞれにおける前記反応液の温度の標準偏差が12~30であり、Tmaxが80~100℃である。前記5つの測定点は、前記2つの側壁面それぞれから1cmの位置の2つの測定点、及び、該2つの測定点の間を4等分する位置の3つの測定点から構成される。前記5つの測定点それぞれにおける前記反応液の温度は、それぞれの測定点の直下の位置の前記底面上で測定される。 The reaction vessel has two side wall surfaces extending along a certain direction and facing each other, and a bottom surface forming a recess together with the two side wall surfaces. When five measurement points are arranged in series on a straight line in the liquid surface of the reaction liquid, which is perpendicular to the extending direction of the two side wall surfaces, the temperature of the reaction liquid is the temperature at each of the five measurement points. When the maximum T max of the maximum temperatures reached during the polymerization reaction is indicated at any of the five measurement points, the standard deviation of the temperature of the reaction solution at each of the five measurement points is 12 to. It is 30 and the T max is 80 to 100 ° C. The five measurement points are composed of two measurement points at a position 1 cm from each of the two side wall surfaces and three measurement points at a position that divides the two measurement points into four equal parts. The temperature of the reaction solution at each of the five measurement points is measured on the bottom surface at a position directly below each measurement point.
 本開示の一側面によれば、重合体を含む乾燥物を粉砕することを含む方法によって吸水性樹脂粒子を製造する場合において、粉砕によって形成される粉体における微粉の割合を低下させることができる。 According to one aspect of the present disclosure, when the water-absorbent resin particles are produced by a method including pulverizing a dried product containing a polymer, the proportion of fine powder in the powder formed by the pulverization can be reduced. ..
反応液中での重合反応によって含水ゲル状重合体を形成する工程において、反応液の液面内に配置される測定点の例を示す模式上面図である。It is a schematic top view which shows the example of the measurement point arranged in the liquid surface of a reaction liquid in the step of forming a water-containing gel polymer by the polymerization reaction in a reaction liquid. 反応液中での重合反応によって含水ゲル状重合体を形成する工程において、反応液の液面内に配置される測定点の例を示す模式断面図である。It is a schematic cross-sectional view which shows the example of the measurement point arranged in the liquid surface of a reaction liquid in the step of forming a water-containing gel polymer by the polymerization reaction in a reaction liquid.
 本発明は以下の例示に限定されるものではない。 The present invention is not limited to the following examples.
 本明細書において「(メタ)アクリル」はアクリル及びメタクリルの両方を意味する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。他の類似の用語も同様である。「(ポリ)」とは、「ポリ」の接頭語がある場合及びない場合の双方を意味するものとする。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。本明細書に例示する材料は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 In the present specification, "(meth) acrylic" means both acrylic and methacrylic. Similarly, "acrylate" and "methacrylate" are also referred to as "(meth) acrylate". The same is true for other similar terms. "(Poly)" shall mean both with and without the "poly" prefix. Within the numerical range described stepwise herein, the upper or lower limit of the numerical range at one stage may be optionally combined with the upper or lower limit of the numerical range at another stage. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. The materials exemplified in the present specification may be used alone or in combination of two or more.
 吸水性樹脂粒子を製造する方法の一実施形態は、単量体及び水を含む反応液中での重合反応によって、水及び重合体を含む含水ゲル状重合体を形成する工程と、含水ゲル状重合体から水を除去することにより、重合体を含む乾燥物を形成する工程と、乾燥物を粉砕することにより、吸水性樹脂粒子の粉体を形成する工程とを含む。 One embodiment of the method for producing water-absorbent resin particles includes a step of forming a water-containing gel-like polymer containing water and a polymer by a polymerization reaction in a reaction solution containing a monomer and water, and a water-containing gel-like state. It includes a step of forming a dried product containing the polymer by removing water from the polymer, and a step of forming a powder of water-absorbent resin particles by pulverizing the dried product.
 重合反応は、底面、及び底面の端部から延びた2つの側壁面を有する反応容器に収容された反応液中で、反応液の液面上に配置された5つの測定点において測定される反応液の温度のばらつきがある程度大きくなるような条件で行われる。 The polymerization reaction is a reaction measured at five measurement points arranged on the liquid surface of the reaction solution in a reaction solution contained in a reaction vessel having a bottom surface and two side wall surfaces extending from the end of the bottom surface. It is performed under the condition that the variation in the temperature of the liquid becomes large to some extent.
 図1は、単量体及び水を含む反応液中での重合反応によって含水ゲル状重合体を形成する工程において、反応液の液面内に配置される測定点の例を示す模式上面図であり、図2は図1の断面図である。図1及び図2に示される、反応液1が収容された反応容器10は、同じ一定の方向Xに沿って延在し、互いに対向する2つの側壁面11,12と、2つの側壁面11,12の延在方向Xに垂直な方向に沿って延在し、互いに対向する2つの側壁面13,14と、これら側壁面とともに、反応液1を収容する凹部を形成している底面15とを有する。側壁面11,12,13,14は、底面15に対して垂直であってもよく、傾斜していてもよい。 FIG. 1 is a schematic top view showing an example of measurement points arranged in the liquid surface of the reaction liquid in the step of forming a water-containing gel-like polymer by a polymerization reaction in a reaction liquid containing a monomer and water. Yes, FIG. 2 is a cross-sectional view of FIG. The reaction vessel 10 containing the reaction solution 1 shown in FIGS. 1 and 2 extends along the same constant direction X, and has two side wall surfaces 11 and 12 facing each other and two side wall surfaces 11. , 12 two side wall surfaces 13 and 14 extending along a direction perpendicular to the extending direction X and facing each other, and a bottom surface 15 forming a recess for accommodating the reaction solution 1 together with these side wall surfaces. Has. The side wall surfaces 11, 12, 13, 14 may be perpendicular to the bottom surface 15 or may be inclined.
 対向する2つ側壁面11,12の延在方向Xに垂直な、反応液1の液面1S内の直線2上に、5つの測定点P1,P2,P3,P4及びP5がこの順で直列に配置される。5つの測定点は、2つの側壁面11,12それぞれから1cmの位置の2つの測定点P1,P5と、2つの測定点P1,P5の間を4等分する位置の3つの測定点P2,P3,P4とから構成される。側壁面11,12と測定点P1,P2との間隔W0が1cmである。測定点P1と測定点P2との間隔W12、測定点P2と測定点P3との間隔W23、測定点P3と測定点P4との間隔W34、及び、測定点P4と測定点P5との間隔W45が同じである。測定点P3は、2つの側壁面11、12の間の中央に位置する。 Five measurement points P1, P2, P3, P4 and P5 are in series in this order on a straight line 2 in the liquid surface 1S of the reaction liquid 1 perpendicular to the extending direction X of the two side wall surfaces 11 and 12 facing each other. Is placed in. The five measurement points are the two measurement points P1 and P5 located 1 cm from each of the two side wall surfaces 11 and 12, and the three measurement points P2 at positions that divide the space between the two measurement points P1 and P5 into four equal parts. It is composed of P3 and P4. The distance W0 between the side wall surfaces 11 and 12 and the measurement points P1 and P2 is 1 cm. The distance W12 between the measurement point P1 and the measurement point P2, the distance W23 between the measurement point P2 and the measurement point P3, the distance W34 between the measurement point P3 and the measurement point P4, and the distance W45 between the measurement point P4 and the measurement point P5 are It is the same. The measurement point P3 is located in the center between the two side wall surfaces 11 and 12.
 重合反応の間、5つの測定点P1,P2,P3,P4及びP5それぞれにおける反応液の温度T1,T2,T3,T4及びT5が、それぞれの測定点の直下の位置P10,P20,P30,P40及びP50の底面15上において測定される。両端の測定点P1,P5の直下の位置に傾斜した側壁面11,12がある場合、両端の測定点P1,P5の直下の位置の側壁面11,12上において温度T1,T5測定される。反応液1の温度が測定される底面15上の位置は、底面15(又は側壁面11,12)から反応液1の深さ方向において0.5cm以内の位置であることができる。 During the polymerization reaction, the temperatures T1, T2, T3, T4 and T5 of the reaction solution at each of the five measurement points P1, P2, P3, P4 and P5 are located directly below the respective measurement points P10, P20, P30, P40. And measured on the bottom surface 15 of P50. When there are inclined side wall surfaces 11 and 12 at positions directly below the measurement points P1 and P5 at both ends, the temperatures T1 and T5 are measured on the side wall surfaces 11 and 12 at positions directly below the measurement points P1 and P5 at both ends. The position on the bottom surface 15 where the temperature of the reaction solution 1 is measured can be a position within 0.5 cm in the depth direction of the reaction solution 1 from the bottom surface 15 (or the side wall surfaces 11 and 12).
 5つの測定点P1,P2,P3,P4及びP5それぞれにおいて示される反応液1の温度T1,T2,T3,T4及びT5は、重合反応の進行に伴って上昇して最高温度に到達し、その後低下する。それぞれの測定点における反応液1の温度T1,T2,T3,T4及びT5が重合反応において到達する最高温度のうち最大値Tmaxが5つの測定点P1,P2,P3,P4及びP5のうちいずれかにおいて示された時点において、5つの測定点P1,P2,P3,P4及びP5それぞれにおいて示される反応液の温度T1,T2,T3,T4及びT5の標準偏差(以下「温度偏差」ということがある。)が12~30である。例えば、測定点P3における反応液1の温度T3が重合反応の間に到達する最高温度が、それぞれの測定点における反応液1の温度T1,T2,T3,T4及びT5が重合反応の間に到達する最高温度のうち最大値Tmaxである場合、測定点P3における反応液1の温度T3がTmaxに到達した時点における温度T1,T2,T3,T4及びT5から算出される温度偏差が、12~30である。 The temperatures T1, T2, T3, T4 and T5 of the reaction solution 1 shown at each of the five measurement points P1, P2, P3, P4 and P5 rise with the progress of the polymerization reaction to reach the maximum temperature, and then reach the maximum temperature. descend. Of the maximum temperatures T1, T2, T3, T4 and T5 reach in the polymerization reaction of the reaction solution 1 at each measurement point, the maximum value T max is any of the five measurement points P1, P2, P3, P4 and P5. At the time point indicated by K There is.) Is 12 to 30. For example, the maximum temperature at which the temperature T3 of the reaction solution 1 at the measurement point P3 reaches during the polymerization reaction reaches the maximum temperature at which the temperatures T1, T2, T3, T4 and T5 of the reaction solution 1 at each measurement point reach during the polymerization reaction. When the maximum value T max is the maximum temperature to be measured, the temperature deviation calculated from the temperatures T1, T2, T3, T4 and T5 at the time when the temperature T3 of the reaction solution 1 at the measurement point P3 reaches T max is 12 ~ 30.
 反応液の温度偏差が12~30のようにある程度大きいと、重合反応の均一性が低下することにより、重合体を含む乾燥物が柔らかくなる傾向があり、その結果、粉砕における微粉の発生が抑制されると考えられる。重合体粒子の粉体における微粉の割合の更なる低減の観点から、反応液の温度偏差が、12以上で25以下、23以下又は20以下であってもよく、13以上で30以下、25以下、23以下又は20以下であってもよい。 When the temperature deviation of the reaction solution is large to some extent, such as 12 to 30, the uniformity of the polymerization reaction is lowered, so that the dried product containing the polymer tends to be softened, and as a result, the generation of fine powder in pulverization is suppressed. It is thought that it will be done. From the viewpoint of further reducing the proportion of fine powder in the powder of the polymer particles, the temperature deviation of the reaction solution may be 25 or less, 23 or less or 20 or less at 12 or more, and 30 or less, 25 or less at 13 or more. , 23 or less or 20 or less.
 反応液1の温度T1,T2,T3,T4及びT5が重合反応において到達する最高温度のうちの最大値Tmaxは80~100℃である。Tmaxが80℃以上であることによって、反応液1の全体がゲル化するまで重合反応が十分に進行し易い。重合反応の開始による反応液の温度が上昇し始めてから、又は、後述される開裂促進剤液の投入が終了した時点から、温度T1,T2,T3,T4及びT5のうちいずれかがTmaxに到達するまでの時間は、例えば1~20分であってもよい。 The maximum value T max among the maximum temperatures reached by the temperatures T1, T2, T3, T4 and T5 of the reaction solution 1 in the polymerization reaction is 80 to 100 ° C. When the T max is 80 ° C. or higher, the polymerization reaction is sufficiently easy to proceed until the entire reaction solution 1 is gelled. Any one of the temperatures T1, T2, T3, T4 and T5 reaches T max after the temperature of the reaction solution starts to rise due to the start of the polymerization reaction or when the addition of the cleavage accelerator solution described later is completed. The time to reach may be, for example, 1 to 20 minutes.
 5つの測定点P1,P2,P3,P4及びP5が配置される方向(直線2の方向)における反応液1の液面1Sの幅は、10~500cm、10~300cm、10~100cm又は10~80cmであってもよい。 The width of the liquid level 1S of the reaction solution 1 in the direction in which the five measurement points P1, P2, P3, P4 and P5 are arranged (direction of the straight line 2) is 10 to 500 cm, 10 to 300 cm, 10 to 100 cm or 10 to It may be 80 cm.
 図1に示される反応容器10の場合、側壁面11,12の幅は、側壁面13,14の幅よりも短い。温度偏差を決定するための5つの測定点が、側壁面13,14に垂直な方向の直線上に配置されてもよい。図1の実施形態のように反応容器が対向する2つの側壁面を2組有する場合、2組のうち一方又は両方の2つの側壁面の間にわたって配置された5つの測定点において測定される反応液の温度偏差が、12~30であることができる。 In the case of the reaction vessel 10 shown in FIG. 1, the widths of the side wall surfaces 11 and 12 are shorter than the widths of the side wall surfaces 13 and 14. Five measurement points for determining the temperature deviation may be arranged on a straight line in the direction perpendicular to the side wall surfaces 13, 14. When the reaction vessel has two sets of two side wall surfaces facing each other as in the embodiment of FIG. 1, the reaction measured at five measurement points arranged between the two side wall surfaces of one or both of the two sets. The temperature deviation of the liquid can be 12-30.
 反応容器を側壁面11,12の延在方向に沿って移動させながら、重合反応を進行させてもよい。その場合、反応容器の移動方向における任意の位置で、反応容器の移動方向に対して垂直な方向の直線上に直列に配置された5つの測定点における反応液の温度偏差が12~30であってもよい。 The polymerization reaction may proceed while moving the reaction vessel along the extending direction of the side wall surfaces 11 and 12. In that case, the temperature deviation of the reaction solution at any position in the moving direction of the reaction vessel is 12 to 30 at five measurement points arranged in series on a straight line in the direction perpendicular to the moving direction of the reaction vessel. You may.
 後述のように重合反応を低温で開始するための開裂促進剤を含む開裂促進剤液を反応液1に投入することによって重合反応が開始される場合、測定点P1,P2,P3,P4及びP5が配置される直線2が、液面1S内の開裂促進剤液が投入される位置又はその近傍を通る直線であってもよい。例えば、直線2が、液面1S内の開裂促進剤液が投入される位置から1cm以内の領域を通る直線であってもよい。 When the polymerization reaction is started by charging the reaction solution 1 with a cleavage promoter solution containing a cleavage promoter for starting the polymerization reaction at a low temperature as described later, measurement points P1, P2, P3, P4 and P5. The straight line 2 on which the is arranged may be a straight line passing through the position in the liquid surface 1S where the cleavage promoter liquid is poured or its vicinity. For example, the straight line 2 may be a straight line passing through a region within 1 cm from the position where the cleavage promoter liquid is charged in the liquid surface 1S.
 開裂促進剤液が、液面1S内の1つの位置に向けて投入されてもよいし、液面1S内の2以上の位置に分けて同時に投入されてもよい。開裂促進剤液が同時に投入される位置の数が少ないと、温度偏差が大きくなる傾向、及び、Tmaxが大きくなる傾向がある。長尺の反応容器、又はエンドレスベルト上に設けられた反応容器を用い、反応容器を移動させて反応溶液の液面内における投入位置を変えながら、順次、開裂促進剤液を2回以上投入してもよい。その場合、1回の開裂促進剤液の投入ごとに、開裂促進剤液が投入された位置又はその近傍を通る直線上に5つの測定点を配置し、それぞれの5つの測定点において測定される反応液の温度偏差が12~30の範囲に維持されるように、重合反応の条件が調整される。 The cleavage accelerator liquid may be charged toward one position in the liquid surface 1S, or may be divided into two or more positions in the liquid surface 1S and charged at the same time. When the number of positions where the cleavage accelerator liquid is simultaneously added is small, the temperature deviation tends to be large and the T max tends to be large. Using a long reaction vessel or a reaction vessel provided on an endless belt, the reaction vessel is moved to change the charging position of the reaction solution in the liquid surface, and the cleavage accelerator solution is sequentially charged twice or more. You may. In that case, for each injection of the cleavage accelerator solution, five measurement points are arranged on a straight line passing through the position where the cleavage accelerator solution is added or its vicinity, and the measurement is performed at each of the five measurement points. The conditions of the polymerization reaction are adjusted so that the temperature deviation of the reaction solution is maintained in the range of 12 to 30.
 開裂促進剤液は、その全量が例えば5~120秒の時間をかけて反応液1に投入される。開裂促進剤液を反応液1に投入するために要する時間が長いと、反応液の温度偏差が大きくなる傾向がある。 The entire amount of the cleavage accelerator solution is charged into the reaction solution 1 over a period of, for example, 5 to 120 seconds. If the time required for charging the cleavage accelerator solution into the reaction solution 1 is long, the temperature deviation of the reaction solution tends to be large.
 開裂促進剤液が投入される前の反応液1の温度は、Tmaxが80~100℃となるように調整され、例えば0~40℃、又は10~30℃であってもよい。反応液1中の溶存酸素量が、例えば0.1ppm以下であってもよい。 The temperature of the reaction solution 1 before the cleavage accelerator solution is added is adjusted so that the T max is 80 to 100 ° C., and may be, for example, 0 to 40 ° C. or 10 to 30 ° C. The amount of dissolved oxygen in the reaction solution 1 may be, for example, 0.1 ppm or less.
 重合反応の間、反応液1を攪拌してもよい。攪拌の強度が小さいと、5つの測定点において測定される反応液の温度の標準偏差が大きくなる傾向がある。例えば反応容器10の底面15上に配置された攪拌子3によって反応液1を攪拌する場合、攪拌子3の回転数及び/又は数が小さいと、反応液1の温度偏差が大きくなる傾向がある。攪拌子の回転数及び数は、攪拌子の種類、反応液1の量等に応じて、温度偏差が12~30となるように調整することができる。例えば、1つの反応容器に設置される攪拌子の数は1~3個であってもよく、攪拌子の回転数が50~300rpmであってもよい。 The reaction solution 1 may be stirred during the polymerization reaction. When the intensity of stirring is small, the standard deviation of the temperature of the reaction solution measured at the five measurement points tends to be large. For example, when the reaction solution 1 is agitated by a stirrer 3 arranged on the bottom surface 15 of the reaction vessel 10, if the number of rotations and / or the number of the stirrers 3 is small, the temperature deviation of the reaction solution 1 tends to be large. .. The rotation speed and number of the stirrer can be adjusted so that the temperature deviation is 12 to 30 depending on the type of the stirrer, the amount of the reaction solution 1, and the like. For example, the number of stirrers installed in one reaction vessel may be 1 to 3, and the rotation speed of the stirrers may be 50 to 300 rpm.
 重合反応の時間は、重合反応が十分に進行して含水ゲル状重合体が形成されるように調整される。反応溶液の温度が低下し始めた後、反応容器10を50~80℃に保温することにより、重合反応を完結させてもよい。 The time of the polymerization reaction is adjusted so that the polymerization reaction proceeds sufficiently and a hydrogel-like polymer is formed. After the temperature of the reaction solution starts to decrease, the polymerization reaction may be completed by keeping the reaction vessel 10 at 50 to 80 ° C.
 反応容器10は、特に制限されないが、例えばステンレス製、セラミックス製、合成樹脂製又はスチール製の容器であってもよい。反応容器10がベルトコンベア上に設けられていてもよい。反応容器10内の反応液1の深さは、例えば10~50mm、10~40mm、又は15~35mmであってもよい。 The reaction vessel 10 is not particularly limited, but may be, for example, a vessel made of stainless steel, ceramics, synthetic resin, or steel. The reaction vessel 10 may be provided on the belt conveyor. The depth of the reaction solution 1 in the reaction vessel 10 may be, for example, 10 to 50 mm, 10 to 40 mm, or 15 to 35 mm.
 重合反応前の反応液1は、水及び水に溶解した単量体を含む単量体水溶液であることができる。重合反応の進行にともなって、反応液1は増粘し、続いてゲル化して、含水ゲル重合体を形成する。通常、重合反応の進行にともなって反応液1は流動性を失うが、本明細書では、反応液1が流動性を失った後の混合物のことも、便宜上反応液と称することがある。 The reaction solution 1 before the polymerization reaction can be water and a monomer aqueous solution containing a monomer dissolved in water. As the polymerization reaction progresses, the reaction solution 1 thickens and then gels to form a hydrogel polymer. Normally, the reaction solution 1 loses its fluidity as the polymerization reaction progresses, but in the present specification, the mixture after the reaction solution 1 loses its fluidity may also be referred to as a reaction solution for convenience.
 反応液1における単量体の濃度は、反応液1の質量を基準として、例えば20~50質量%、又は20~40質量%であってもよい。 The concentration of the monomer in the reaction solution 1 may be, for example, 20 to 50% by mass or 20 to 40% by mass based on the mass of the reaction solution 1.
 単量体は、重合体粒子及び吸水性樹脂粒子に吸水性を付与する重合体を重合によって形成する化合物である。重合体が架橋重合体であってもよい。単量体はエチレン性不飽和単量体であってもよい。 The monomer is a compound that forms a polymer that imparts water absorption to the polymer particles and the water-absorbent resin particles by polymerization. The polymer may be a crosslinked polymer. The monomer may be an ethylenically unsaturated monomer.
 エチレン性不飽和単量体は、例えば、(メタ)アクリル酸及びその塩、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、並びにジエチルアミノプロピル(メタ)アクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。エチレン性不飽和単量体がアミノ基を含有する場合には、当該アミノ基は4級化されていてもよい。単量体が、アクリル酸及びその塩、メタクリル酸及びその塩、アクリルアミド、メタクリルアミド並びにN,N-ジメチルアクリルアミドからなる群より選ばれる少なくとも1種の化合物、アクリル酸及びその塩、メタクリル酸及びその塩、並びにアクリルアミドからなる群より選ばれる少なくとも1種の化合物、又は、アクリル酸及びその塩、並びにメタクリル酸及びその塩からなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。 The ethylenically unsaturated monomer is, for example, (meth) acrylic acid and a salt thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and a salt thereof, (meth) acrylamide, N, N-dimethyl (meth). Acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, and It may contain at least one compound selected from the group consisting of diethylaminopropyl (meth) acrylamide. When the ethylenically unsaturated monomer contains an amino group, the amino group may be quaternized. At least one compound selected from the group consisting of acrylic acid and its salts, methacrylic acid and its salts, acrylamide, methacrylic acid and N, N-dimethylacrylamide, acrylic acid and its salts, methacrylic acid and its monomers. It may contain at least one compound selected from the group consisting of a salt and acrylamide, or at least one compound selected from the group consisting of acrylic acid and a salt thereof, and methacrylic acid and a salt thereof.
 反応液1が、エチレン性不飽和単量体以外の単量体を含んでいてもよい。エチレン性不飽和単量体(特に、(メタ)アクリル酸及びその塩)の割合が、反応液中の単量体全量に対し70~100モル%、80~100モル%又は90~100モル%であってもよい。エチレン性不飽和単量体のうち、(メタ)アクリル酸及びその塩の占める割合が、70~100モル%、80~100モル%又は90~100モル%であってもよい。 The reaction solution 1 may contain a monomer other than the ethylenically unsaturated monomer. The proportion of ethylenically unsaturated monomers (particularly (meth) acrylic acid and salts thereof) is 70 to 100 mol%, 80 to 100 mol% or 90 to 100 mol% with respect to the total amount of monomers in the reaction solution. May be. The proportion of (meth) acrylic acid and a salt thereof in the ethylenically unsaturated monomer may be 70 to 100 mol%, 80 to 100 mol% or 90 to 100 mol%.
 反応液1は、開始剤(特に、ラジカル重合開始剤)を更に含んでもよい。開始剤は、過硫酸塩、アゾ化合物、有機過酸化物又はこれらの組み合わせを含んでもよい。開始剤の量が、単量体1モルに対して0.01~15ミリモルであってもよい。2種以上の開始剤が用いられる場合、それぞれの開始剤の量が、単量体1モルに対して0.01~15ミリモルであってもよい。 The reaction solution 1 may further contain an initiator (particularly, a radical polymerization initiator). Initiators may include persulfates, azo compounds, organic peroxides or combinations thereof. The amount of initiator may be 0.01-15 mmol per mole of monomer. When two or more initiators are used, the amount of each initiator may be 0.01 to 15 mmol per mole of the monomer.
 過硫酸塩の例としては、過硫酸カリウム、過硫酸アンモニウム、及び過硫酸ナトリウムが挙げられる。 Examples of persulfate include potassium persulfate, ammonium persulfate, and sodium persulfate.
 アゾ化合物の例としては、2,2’-アゾビス[2-(N-フェニルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス{2-[N-(4-クロロフェニル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス{2-[N-(4-ヒドロキシフェニル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス[2-(N-ベンジルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[N-(2-ヒドロキシエチル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二硫酸塩二水和物、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物、及び2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]が挙げられる。大きなCRC(無加圧下吸水倍率)を示す重合体粒子の形成の観点から、ラジカル重合開始剤が、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物、及び2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩から選ばれる少なくとも1種のアゾ化合物を含んでもよい。 Examples of azo compounds include 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride, 2,2'-azobis {2- [N- (4-chlorophenyl) amidino] propane} 2 Hydrochloride, 2,2'-azobis {2- [N- (4-hydroxyphenyl) amidino] propane} dihydrochloride, 2,2'-azobis [2- (N-benzylamidino) propane] dihydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis {2- [N-( 2-Hydroxyethyl) amidino] propane} dihydrochloride, 2,2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (4,5,6,7-tetrahydro-1H-1,3-diazepine-2-yl) propane] di Hydrochloride, 2,2'-azobis [2- (5-hydroxy-3,4,5,6-tetrahydropyrimidine-2-yl) propane] dihydrochloride, 2,2'-azobis {2- [1-] (2-Hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate, 2 , 2'-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate, and 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide] Can be mentioned. From the viewpoint of forming polymer particles showing a large CRC (water absorption ratio under no pressurization), the radical polymerization initiators are 2,2'-azobis (2-amidinopropane) dihydrochloride and 2,2'-azobis {2. -[1- (2-Hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate It may contain at least one azo compound selected from the product and 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride.
 有機過酸化物の例としては、メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、及びt-ブチルパーオキシピバレートが挙げられる。 Examples of organic peroxides include methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t-butyl peroxyacetate, t-butyl peroxyisobutyrate, etc. And t-butylperoxypivalate.
 反応液1が、開始剤及び開裂促進剤を含んでもよい。開裂促進剤は、開始剤によって重合反応が開始する温度を低下させる化合物である。重合反応が低温で開始すると、より優れた吸水性能を有する吸水性樹脂粒子が得られ易い。開裂促進剤は、例えば、還元剤、酸化剤又はこれらの組み合わせであることができる。開裂促進剤のうち一部又は全部を、単量体、開始剤及び水を含む反応液に対して後から投入し、それにより重合反応を開始させてもよい。開裂促進剤の量は、例えば、開始剤1モルに対して0.01~1.0モルであってもよい。 The reaction solution 1 may contain an initiator and a cleavage promoter. The cleavage accelerator is a compound that lowers the temperature at which the polymerization reaction is initiated by the initiator. When the polymerization reaction is started at a low temperature, water-absorbent resin particles having better water-absorbing performance can be easily obtained. The cleavage promoter can be, for example, a reducing agent, an oxidizing agent or a combination thereof. A part or all of the cleavage accelerator may be added later to the reaction solution containing the monomer, the initiator and water to initiate the polymerization reaction. The amount of cleavage promoter may be, for example, 0.01 to 1.0 mol per 1 mol of initiator.
 開裂促進剤として用いられる還元剤は、例えば、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第1鉄、及びL-アスコルビン酸からなる群より選ばれる少なくとも1種の化合物であってもよい。開裂促進剤として用いられる酸化剤は、例えば、過酸化水素、過ホウ酸ナトリウム、過リン酸、過リン酸塩、及び過マンガン酸カリウムからなる群より選ばれる少なくとも1種の化合物であってもよい。 The reducing agent used as the cleavage accelerator may be, for example, at least one compound selected from the group consisting of sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid. The oxidizing agent used as a cleavage promoter may be, for example, at least one compound selected from the group consisting of hydrogen peroxide, sodium perborate, perphosphate, perphosphate, and potassium permanganate. good.
 2種以上の開裂促進剤を用いる場合、それらを別々に反応液に投入してもよい。例えば、単量体、開始剤及び水を含む反応液に対して、還元剤(例えばL-アスコルビン酸)を含む開裂促進剤液、及び酸化剤(例えば過酸化水素)を含む開裂促進剤液を順次投入することによって、重合反応を開始させてもよい。あるいは、単量体、開始剤及び水を含む反応液に対して、還元剤(例えばL-アスコルビン酸)を含む開裂促進剤液を投入することによって、重合反応を開始させてもよい。開裂促進剤液は、開裂促進剤及び水を含む水溶液であってもよい。 When two or more kinds of cleavage promoters are used, they may be added to the reaction solution separately. For example, for a reaction solution containing a monomer, an initiator and water, a cleavage accelerator solution containing a reducing agent (for example, L-ascorbic acid) and a cleavage accelerator solution containing an oxidizing agent (for example, hydrogen peroxide) may be used. The polymerization reaction may be started by sequentially charging. Alternatively, the polymerization reaction may be started by adding a cleavage promoter solution containing a reducing agent (for example, L-ascorbic acid) to the reaction solution containing the monomer, the initiator and water. The cleavage-promoting agent solution may be an aqueous solution containing a cleavage-promoting agent and water.
 反応液1が連鎖移動剤を更に含んでもよい。連鎖移動剤は、例えば次亜リン酸、亜リン酸又はこれらの組み合わせを含んでもよい。 The reaction solution 1 may further contain a chain transfer agent. The chain transfer agent may include, for example, hypophosphorous acid, phosphorous acid or a combination thereof.
 反応液1が内部架橋剤を含んでもよい。その場合、内部架橋剤によって架橋された架橋重合体を含む含水ゲル状重合体が形成される。内部架橋剤の量は、単量体1モルに対して0.002~0.04ミリモルであってもよい。 The reaction solution 1 may contain an internal cross-linking agent. In that case, a hydrogel-like polymer containing a crosslinked polymer crosslinked by an internal crosslinking agent is formed. The amount of the internal cross-linking agent may be 0.002 to 0.04 mmol per mole of the monomer.
 内部架橋剤は、反応性官能基(例えば重合性不飽和基)を2個以上有する化合物であってもよい。内部架橋剤は、反応性官能基として(メタ)アクリル基、アリル基、エポキシ基、又はアミノ基を有する化合物を含んでもよい。(メタ)アクリル基を有する化合物の例としては、(ポリ)エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、及びN,N’-メチレンビス(メタ)アクリルアミドが挙げられる。アリル基を有する化合物の例としては、トリアリルアミンが挙げられる。エポキシ基を有する化合物の例としては、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリンポリグリシジルエーテル及びエピクロロヒドリンが挙げられる。アミノ基を有する化合物の例としては、トリエチレンテトラミン、エチレンジアミン、及びヘキサメチレンジアミンが挙げられる。 The internal cross-linking agent may be a compound having two or more reactive functional groups (for example, a polymerizable unsaturated group). The internal cross-linking agent may contain a compound having a (meth) acrylic group, an allyl group, an epoxy group, or an amino group as a reactive functional group. Examples of compounds having a (meth) acrylic group include (poly) ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and N, N'-methylenebis (meth) acrylamide. Examples of compounds having an allyl group include triallylamine. Examples of compounds having an epoxy group include (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin polyglycidyl ether and epichlorohydrin. Will be. Examples of compounds having an amino group include triethylenetetramine, ethylenediamine, and hexamethylenediamine.
 重合反応によって形成された塊状の含水ゲル状重合体が反応容器10から取り出される。含水ゲル状重合体から水を除去することにより重合体を含む乾燥物を得る工程の前に、含水ゲル状重合体を粗砕することによってある程度小さいサイズの構造体を含む粗砕物を形成してもよい。粗砕物を形成することにより、水を効率的に除去することができる。粗砕物を構成する構造体は、例えば、細長い構造体、粒状の構造体(粒子)、又はこれらの組み合わせであることができる。粗砕物は、直径10mm又は7mmの円形孔を通過可能な形状を有する複数の構造体を含んでいてもよい。細長い構造体は、曲がっていてもよく、その最大幅が10mm以下であれば、直径10mmの円形孔を通過可能な形状を有するといえる。粒状の構造体(粒子)は不定形であってもよく、向きを変えながら直径10mmの円形孔を通過可能な形状を有していてもよい。含水ゲル状重合体を粗砕する粗砕装置の例としては、ニーダー(例えば、加圧式ニーダー、双腕型ニーダー)、ミートチョッパー、カッターミル、及びファーマミルが挙げられる。 The massive hydrogel-like polymer formed by the polymerization reaction is taken out from the reaction vessel 10. Prior to the step of obtaining a dry product containing the polymer by removing water from the water-containing gel-like polymer, a coarsely crushed product containing a structure having a somewhat small size is formed by coarsely crushing the water-containing gel-like polymer. May be good. By forming the crushed product, water can be efficiently removed. The structure constituting the coarsely crushed product can be, for example, an elongated structure, a granular structure (particle), or a combination thereof. The crushed product may contain a plurality of structures having a shape capable of passing through a circular hole having a diameter of 10 mm or 7 mm. The elongated structure may be bent, and if the maximum width thereof is 10 mm or less, it can be said that the elongated structure has a shape capable of passing through a circular hole having a diameter of 10 mm. The granular structure (particle) may have an amorphous shape, or may have a shape capable of passing through a circular hole having a diameter of 10 mm while changing its direction. Examples of the coarsening apparatus for coarsely crushing the hydrogel-like polymer include kneaders (for example, pressurized kneaders, double-armed kneaders), meat choppers, cutter mills, and pharmacomills.
 含水ゲル状重合体又はその粗砕物の乾燥により、含水ゲル状重合体中の水の大部分が除去される。乾燥により得られる、重合体を含む乾燥物の含水率が、例えば20質量%以下、10質量%以下、又は5質量%以下であってもよく、0質量%以上であってもよい。ここでの乾燥物の含水率は、水を含む乾燥物の全体質量を基準とする、重合体粒子における水分量の割合を意味する。通常、測定に供する水を含む乾燥物を200℃で2時間加熱したときに、加熱前後での乾燥物の質量の差を、測定に供した乾燥物における水分量とみなすことができる。乾燥の方法は、例えば自然乾燥、加熱乾燥、送風乾燥、凍結乾燥又はこれらの組み合わせのような一般的な方法であってよい。常圧下又は減圧下で粗砕物を乾燥してもよい。常圧下の乾燥のための加熱温度が、70~250℃、又は80~200℃であってもよい。 Most of the water in the hydrogel polymer is removed by drying the hydrogel polymer or its coarse crushed product. The water content of the dried product containing the polymer obtained by drying may be, for example, 20% by mass or less, 10% by mass or less, or 5% by mass or less, or 0% by mass or more. The water content of the dried product here means the ratio of the water content in the polymer particles based on the total mass of the dried product containing water. Usually, when a dried product containing water to be measured is heated at 200 ° C. for 2 hours, the difference in mass of the dried product before and after heating can be regarded as the amount of water in the dried product used for measurement. The drying method may be a general method such as natural drying, heat drying, blast drying, freeze drying or a combination thereof. The crushed product may be dried under normal pressure or reduced pressure. The heating temperature for drying under normal pressure may be 70 to 250 ° C. or 80 to 200 ° C.
 重合体を含む乾燥物を粉砕する方法は特に限定されない。例えば、遠心粉砕機、ローラーミル、スタンプミル、ジェットミル、高速回転粉砕機、及び容器駆動型ミル等の粉砕機を用いて乾燥物を粉砕することができる。 The method of crushing the dried product containing the polymer is not particularly limited. For example, a crusher such as a centrifugal crusher, a roller mill, a stamp mill, a jet mill, a high-speed rotary crusher, and a container-driven mill can be used to crush the dried product.
 粉砕により得られた重合体粒子の粉体を分級してもよい。分級は、粒子群(粉体)を、粒度分布の異なる2以上の粒子群に分ける操作のことを意味する。分級後の重合体粒子の粉体の一部を再度、粉砕及び分級してもよい。 The powder of the polymer particles obtained by pulverization may be classified. Classification means an operation of dividing a particle group (powder) into two or more particle groups having different particle size distributions. A part of the powder of the polymer particles after the classification may be pulverized and classified again.
 分級の方法は、特に限定されないが、例えば、スクリーン分級、又は風力分級であってもよい。スクリーン分級は、スクリーンを振動させることによって、スクリーン上の粒子を、スクリーンの網目を通過する粒子と通過しない粒子とに分級する方法である。スクリーン分級は、例えば振動篩、ロータリシフタ、円筒撹拌篩、ブロワシフタ、又はロータップ式振とう器を用いて行うことができる。風力分級は、空気の流れを利用して粒子を分級する方法である。 The classification method is not particularly limited, but may be, for example, screen classification or wind power classification. Screen classification is a method of classifying particles on a screen into particles that pass through the mesh of the screen and particles that do not pass through the screen by vibrating the screen. Screen classification can be performed using, for example, a vibrating sieve, a rotary shifter, a cylindrical stirring sieve, a blower shifter, or a low-tap shaker. Wind power classification is a method of classifying particles using the flow of air.
 粉砕、及び必要により分級を経て得られる重合体粒子の中位粒子径が、例えば200~500μmであってもよい。後述の表面架橋剤溶液と混合される前の重合体粒子の中位粒子径が、例えば200~500μmであってもよい。分級によって得られた、中位粒子径の異なる2以上の粉体を混ぜ合わせることによって、粒度分布を調整してもよい。 The medium particle size of the polymer particles obtained by pulverization and, if necessary, classification may be, for example, 200 to 500 μm. The medium particle size of the polymer particles before being mixed with the surface cross-linking agent solution described later may be, for example, 200 to 500 μm. The particle size distribution may be adjusted by mixing two or more powders having different medium particle diameters obtained by classification.
 重合体粒子を表面架橋剤によって表面架橋してもよい。表面架橋により、重合体粒子の表面近傍の重合体が表面架橋剤によって架橋される。例えば、重合体粒子の粉体と表面架橋剤溶液との混合物を加熱することにより、重合体粒子を表面架橋することができる。経過時間tを選択するための上述の溶解分は、表面架橋される前の重合体粒子を用いて測定される。 The polymer particles may be surface-crosslinked with a surface-crosslinking agent. By surface cross-linking, the polymer near the surface of the polymer particles is cross-linked by the surface cross-linking agent. For example, the polymer particles can be surface-crosslinked by heating a mixture of the polymer particle powder and the surface cross-linking agent solution. The above-mentioned dissolution for selecting the elapsed time t is measured using the polymer particles before surface cross-linking.
 表面架橋剤溶液は、水、及び水に溶解した表面架橋剤を含有する溶液であることができる。表面架橋剤溶液に含まれる溶媒は、実質的に水のみであってもよい。水以外の溶媒の割合が、表面架橋剤溶液の質量を基準として、10質量%以下、5質量%以下、又は1質量%以下であってもよい。 The surface cross-linking agent solution can be water and a solution containing a surface cross-linking agent dissolved in water. The solvent contained in the surface cross-linking agent solution may be substantially only water. The ratio of the solvent other than water may be 10% by mass or less, 5% by mass or less, or 1% by mass or less based on the mass of the surface cross-linking agent solution.
 表面架橋剤の例としては、エチレンカーボネート等のアルキレンカーボネート化合物;エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、及びポリグリセリン等のポリオール化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル(ポリ)プロピレングリコールポリグリシジルエーテル、及び(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、及びα-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、及びヘキサメチレンジイソシアネート等のイソシアネート化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、及び3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物が挙げられる。これらの表面架橋剤は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。表面架橋剤が、アルキレンカーボネート化合物、ポリオール化合物、又はこれらの組み合わせを含んでいてもよい。表面架橋剤におけるアルキレンカーボネート化合物の比率が、表面架橋剤の総質量を基準として50~100質量%、60~100質量%、70~100質量%、80~100質量%、又は90~100質量%であってもよい。 Examples of surface cross-linking agents include alkylene carbonate compounds such as ethylene carbonate; ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, polyglycerin and the like. Polypoly compounds; (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylolpropane triglycidyl ether (poly) propylene glycol polyglycidyl ether, and (poly) glycerol polyglycidyl. Polyglycidyl compounds such as ether; haloepoxy compounds such as epichlorohydrin, epibromhydrin, and α-methylepicrolhydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylenediisocyanate; 3-methyl-3-oxetanemethanol, Oxetane compounds such as 3-ethyl-3-oxetan methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, and 3-butyl-3-oxetane ethanol; Oxazoline compounds such as 1,2-ethylenebisoxazoline; hydroxyalkylamide compounds such as bis [N, N-di (β-hydroxyethyl)] adipamide can be mentioned. These surface cross-linking agents may be used alone or in combination of two or more. The surface cross-linking agent may contain an alkylene carbonate compound, a polyol compound, or a combination thereof. The ratio of the alkylene carbonate compound in the surface cross-linking agent is 50 to 100% by mass, 60 to 100% by mass, 70 to 100% by mass, 80 to 100% by mass, or 90 to 100% by mass based on the total mass of the surface cross-linking agent. May be.
 吸水性樹脂粒子の加圧下の吸水性能等の観点から、表面架橋剤の量は、重合体粒子中の重合体を構成する単量体単位1モル当たり、0.001~0.10モル、0.005~0.05、又は0.01~0.02モルであってもよい。 From the viewpoint of water absorption performance under pressure of the water-absorbent resin particles, the amount of the surface cross-linking agent is 0.001 to 0.10 mol, 0 per mol of the monomer unit constituting the polymer in the polymer particles. It may be .005 to 0.05, or 0.01 to 0.02 mol.
 表面架橋のための加熱温度及び加熱時間は、表面架橋剤の種類等を考慮して、架橋反応が適切に進行するように調整される。例えば、表面架橋のための加熱温度が80~200℃であってもよい。表面架橋のための加熱時間は、例えば5~90分であってもよい。 The heating temperature and heating time for surface cross-linking are adjusted so that the cross-linking reaction proceeds appropriately in consideration of the type of surface cross-linking agent and the like. For example, the heating temperature for surface cross-linking may be 80 to 200 ° C. The heating time for surface cross-linking may be, for example, 5 to 90 minutes.
 表面架橋された重合体粒子は、必要により更に乾燥してもよいし、分級してもよい。重合体粒子をそのまま吸水性樹脂粒子として用いてもよいし、例えば重合体粒子の表面に無機粒子を付着させてもよい。すなわち、吸水性樹脂粒子が、重合体粒子、及び重合体粒子の表面に付着した無機粒子を含んでもよい。無機粒子の例としては、非晶質シリカ等のシリカ粒子が挙げられる。 The surface-crosslinked polymer particles may be further dried or classified if necessary. The polymer particles may be used as they are as the water-absorbent resin particles, or the inorganic particles may be attached to the surface of the polymer particles, for example. That is, the water-absorbent resin particles may contain the polymer particles and the inorganic particles adhering to the surface of the polymer particles. Examples of inorganic particles include silica particles such as amorphous silica.
 製造された吸水性樹脂粒子は、例えば、おむつ等の吸収性物品を構成する吸収体を形成するために用いられる。 The produced water-absorbent resin particles are used to form an absorbent body constituting an absorbent article such as a diaper, for example.
 本発明は以下の実施例に限定されるものではない。 The present invention is not limited to the following examples.
1.架橋重合体粒子
(実施例1)
単量体水溶液の調製
 2Lのセパラブルフラスコに325.9g(4.52モル)のアクリル酸を入れた。セパラブルフラスコ内のアクリル酸に、攪拌しながらイオン交換水280.4gを加えた。次いで、約3℃の氷水浴下で283.2gの48質量%水酸化ナトリウム水溶液を滴下することにより、部分的に中和されたアクリル酸を単量体として含む、単量体濃度45質量%の単量体水溶液を調製した。
1. 1. Crosslinked polymer particles (Example 1)
Preparation of Aqueous Monomer Solution 325.9 g (4.52 mol) of acrylic acid was placed in a 2 L separable flask. To the acrylic acid in the separable flask, 280.4 g of ion-exchanged water was added with stirring. Then, by dropping 283.2 g of a 48% by mass sodium hydroxide aqueous solution under an ice water bath at about 3 ° C., a partially neutralized acrylic acid is contained as a monomer, and the monomer concentration is 45% by mass. A monomer aqueous solution of Caustic acid was prepared.
重合反応
 単量体水溶液888.10gと、イオン交換水150.04gと、ポリエチレングリコールジアクリレート(n=約9、内部架橋剤、日油株式会社、ブレンマーADE-400A)0.930gと、濃度5質量%の2,2’-アゾビス(2-アミジノプロパン)二塩酸塩(富士フイルム和光純薬工業株式会社製:V-50)水溶液6.47gとを2Lの手付きビーカーに順次投入し、ビーカー内の混合液を攪拌した。
Polymerization reaction 888.10 g of aqueous monomer solution, 150.04 g of ion-exchanged water, 0.930 g of polyethylene glycol diacrylate (n = about 9, internal cross-linking agent, Nichiyu Co., Ltd., Blemmer ADE-400A), concentration 5 6.47 g of a mass% 2,2'-azobis (2-amidinopropane) dihydrochloride (Fujifilm Wako Pure Chemical Industries, Ltd .: V-50) aqueous solution was sequentially added to a 2 L hand-held beaker and inside the beaker. The mixture was stirred.
 内寸法25cm×19cmの長方形の底面と、底面の周囲に設けられた4つの側壁面とを有し、内寸法28cm×22cmの長方形の開口部を有する、フッ素樹脂でコーティングされた高さ5cmのステンレスバットを反応容器として用いた。反応容器にビーカー内の混合液を入れ、反応容器内の混合液を2個の攪拌子(直径8mm、長さ45mm、リングなし)で攪拌することにより、均一な反応液を形成させた。その後、反応容器上部をポリエチレンフィルムでシールした。 Fluororesin coated with a height of 5 cm, having a rectangular bottom surface with internal dimensions of 25 cm x 19 cm and four side wall surfaces provided around the bottom surface, and having a rectangular opening with internal dimensions of 28 cm x 22 cm. A stainless steel bat was used as the reaction vessel. A uniform reaction solution was formed by putting the mixture in the beaker into the reaction vessel and stirring the mixture in the reaction vessel with two stirrers (diameter 8 mm, length 45 mm, no ring). Then, the upper part of the reaction vessel was sealed with a polyethylene film.
 反応液の液面の幅は、反応容器の長手方向において26cmであり、反応液の深さは1.7cmであった。反応液の液面内で反応容器の長手方向に垂直な直線上に、反応容器の長手方向において対向する2つの側壁面から1cmの位置の2点P1,P5、及びそれら2点の間を4等分する3点P2,P3,P4の合計5つの測定点を定めた。測定点P1,P2,P3,P4,P5それぞれの位置において、温度計(CT-320WP 株式会社カスタム製)を反応容器の底面まで到達するように反応液内に垂直に挿入した。5つの測定点は、反応容器の短手方向における中央において、反応容器の長手方向に沿って直線的に並んでいた。2個の攪拌子は測定点P1とP2との間、及び、測定点P4とP5との間に設置した。 The width of the liquid surface of the reaction solution was 26 cm in the longitudinal direction of the reaction vessel, and the depth of the reaction solution was 1.7 cm. Two points P1 and P5 located 1 cm from the two side wall surfaces facing each other in the longitudinal direction of the reaction vessel on a straight line perpendicular to the longitudinal direction of the reaction vessel in the liquid surface of the reaction solution, and 4 between these two points. A total of five measurement points, three points P2, P3, and P4, which are equally divided, were determined. At each of the measurement points P1, P2, P3, P4 and P5, a thermometer (CT-320WP, manufactured by Custom Co., Ltd.) was inserted vertically into the reaction solution so as to reach the bottom surface of the reaction vessel. The five measurement points were aligned linearly along the longitudinal direction of the reaction vessel at the center of the reaction vessel in the lateral direction. The two stir bars were installed between the measurement points P1 and P2 and between the measurement points P4 and P5.
 反応容器内の反応液の温度を25℃に調整し、窒素置換により、反応液中の溶存酸素量を0.1ppm以下に調整した。次いで、反応液に、注射器(テルモ株式会社製、10mL容ディスポシリンジ、テルモ株式会社製の注射針)を用いて濃度0.5質量%のL-アスコルビン酸水溶液3.40gを入れ、反応液を充分に攪拌した。反応液を100rpmで攪拌しながら、中央の測定点P3近傍に向けて、注射器(テルモ株式会社製、10mL容ディスポシリンジ、テルモ株式会社製の注射針)を用いて0.35質量%の過酸化水素水溶液3.70gを4秒かけて滴下した。 The temperature of the reaction solution in the reaction vessel was adjusted to 25 ° C., and the amount of dissolved oxygen in the reaction solution was adjusted to 0.1 ppm or less by nitrogen substitution. Next, 3.40 g of an L-ascorbic acid aqueous solution having a concentration of 0.5% by mass was added to the reaction solution using a syringe (10 mL disposable syringe manufactured by Terumo Corporation, injection needle manufactured by Terumo Corporation), and the reaction solution was added. It was stirred well. While stirring the reaction solution at 100 rpm, use a syringe (Terumo Corporation's 10 mL disposable syringe, Terumo Corporation's injection needle) toward the vicinity of the central measurement point P3 to peroxidize 0.35% by mass. 3.70 g of an aqueous hydrogen solution was added dropwise over 4 seconds.
 過酸化水素水溶液の滴下と同時に重合反応が開始した。重合反応の進行にともなって反応液の粘度が増加した後、反応液がゲル化して、水及び架橋重合体を含む含水ゲル状重合体が形成された。5つの温度計が示す温度は、それぞれ、重合反応の進行にともなって最高温度に到達した後、低下した。過酸化水素水溶液の滴下終了から3分の時点で、測定点P3の温度計が、5つの温度計それぞれが重合反応中に示した最高温度のうちの最大値99℃を示した。測定点P3の温度計が最高温度99℃を示した時点において5つの温度計が示した温度を記録し、それら5つの温度の標準偏差(温度偏差)を算出した。過酸化水素水溶液の滴下終了から6分経過後、含水ゲル重合体が入った反応容器を75℃の水浴に浸し、その状態で含水ゲル状重合体を20分間保温して重合反応を完結させた。 The polymerization reaction started at the same time as the dropping of the aqueous hydrogen peroxide solution. After the viscosity of the reaction solution increased with the progress of the polymerization reaction, the reaction solution gelled to form a hydrogel-like polymer containing water and a crosslinked polymer. The temperature indicated by each of the five thermometers reached the maximum temperature as the polymerization reaction proceeded, and then decreased. At 3 minutes from the end of the dropping of the hydrogen peroxide aqueous solution, the thermometer at the measurement point P3 showed the maximum value of 99 ° C. among the maximum temperatures shown by each of the five thermometers during the polymerization reaction. When the thermometer at the measurement point P3 showed the maximum temperature of 99 ° C., the temperatures indicated by the five thermometers were recorded, and the standard deviation (temperature deviation) of these five temperatures was calculated. Six minutes after the completion of dropping the hydrogen peroxide solution, the reaction vessel containing the hydrogel polymer was immersed in a water bath at 75 ° C., and the hydrogel polymer was kept warm for 20 minutes in that state to complete the polymerization reaction. ..
粗砕及び乾燥
 反応容器から取り出された塊状の含水ゲル状重合体を、5cm幅に裁断した。裁断した含水ゲル重合体をミートチョッパー(喜連ローヤル株式会社製、型番:12VR-750SDX)に順次投入して室温で粗砕した。ミートチョッパーの出口に位置するプレートの円形の吐出孔の直径は6.4mmであった。粗砕された含水ゲル状重合体を目開き0.8cm×0.8cmの金網上に広げて配置し、熱風乾燥機(ADVANTEC社製、FV-320)を用いて180℃で30分間の加熱により乾燥して、架橋重合体を含む乾燥物を得た。
Roughing and drying The lumpy hydrogel polymer taken out from the reaction vessel was cut into 5 cm widths. The cut hydrogel polymer was sequentially put into a meat chopper (manufactured by Kiren Royal Co., Ltd., model number: 12VR-750SDX) and coarsely crushed at room temperature. The diameter of the circular discharge hole of the plate located at the outlet of the meat chopper was 6.4 mm. The coarsely crushed hydrogel polymer is spread out on a wire mesh with an opening of 0.8 cm × 0.8 cm and heated at 180 ° C. for 30 minutes using a hot air dryer (ADVANTEC, FV-320). To obtain a dried product containing a crosslinked polymer.
粉砕
 乾燥物を、遠心粉砕機(Retsch社製、ZM200、スクリーン口径:1mm、6000rpm)によって粉砕して、重合体粒子の粉体を得た。
The pulverized dried product was pulverized by a centrifugal pulverizer (ZM200 manufactured by Retsch, screen diameter: 1 mm, 6000 rpm) to obtain a powder of polymer particles.
(実施例2)
 0.35質量%の過酸化水素水溶液を滴下する際の攪拌子の回転数を300rpmに変更したこと、0.35質量%の過酸化水素水溶液3.70gを63秒かけて滴下したこと以外は実施例1と同様の手順により、重合体粒子の粉体を得た。過酸化水素水溶液の滴下終了から3分の時点で、測定点P2の温度計が、5つの温度計それぞれが重合反応中に示した最高温度のうちの最大値80℃を示した。測定点P2の温度計が最高温度80℃を示した時点において5つの温度計が示した温度を記録し、それら5つの温度の標準偏差(温度偏差)を算出した。
(Example 2)
Except that the rotation speed of the stirrer when dropping the 0.35% by mass hydrogen peroxide solution was changed to 300 rpm, and 3.70 g of the 0.35% by mass hydrogen peroxide solution was dropped over 63 seconds. The powder of the polymer particles was obtained by the same procedure as in Example 1. At 3 minutes from the end of the dropping of the hydrogen peroxide aqueous solution, the thermometer at the measurement point P2 showed the maximum value of 80 ° C. among the maximum temperatures shown by each of the five thermometers during the polymerization reaction. When the thermometer at the measurement point P2 showed the maximum temperature of 80 ° C., the temperatures indicated by the five thermometers were recorded, and the standard deviation (temperature deviation) of these five temperatures was calculated.
(実施例3)
 実施例1と同様にして調整した単量体水溶液630.55gと、イオン交換水68.30gと、ポリエチレングリコールジアクリレート(n=約9、内部架橋剤、日油株式会社、ブレンマーADE-400A)0.660gと、濃度2質量%の過硫酸カリウム水溶液1.44gと、濃度5質量%の2,2’-アゾビス(2-アミジノプロパン)二塩酸塩(富士フイルム和光純薬工業株式会社製:V-50)水溶液4.02gとを1Lの手付きビーカーに順次投入して、ビーカー内の混合液を攪拌した。
(Example 3)
630.55 g of a monomer aqueous solution prepared in the same manner as in Example 1, 68.30 g of ion-exchanged water, and polyethylene glycol diacrylate (n = about 9, internal cross-linking agent, Nichiyu Co., Ltd., Blemmer ADE-400A). 0.660 g, 1.44 g of potassium persulfate aqueous solution having a concentration of 2% by mass, and 2,2'-azobis (2-amidinopropane) dihydrochloride having a concentration of 5% by mass (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd .: V-50) 4.02 g of the aqueous solution was sequentially put into a 1 L hand-held beaker, and the mixed solution in the beaker was stirred.
 内寸法16cm×20cmの長方形の底面と、底面の周囲に設けられた4つの側壁面とを有し、内寸法19cm×23cmの長方形の開口部を有する、フッ素樹脂コーティングされた高さ3cmのステンレスバットを反応容器として用いた。反応容器にビーカー内の混合液を入れ、反応容器内の混合液を2個の攪拌子(直径8mm、長さ30mm、リングなし)で攪拌することにより、均一な反応液を形成させた。その後、反応容器の上部をポリエチレンフィルムでシールした。 Fluororesin-coated 3 cm high stainless steel with a rectangular bottom surface with internal dimensions of 16 cm x 20 cm and four side wall surfaces provided around the bottom surface, with a rectangular opening with internal dimensions of 19 cm x 23 cm. A bat was used as a reaction vessel. A uniform reaction solution was formed by putting the mixture in the beaker into the reaction vessel and stirring the mixture in the reaction vessel with two stirrers (diameter 8 mm, length 30 mm, no ring). Then, the upper part of the reaction vessel was sealed with a polyethylene film.
 反応液の液面の幅は、反応容器の短手方向において18cmであり、反応液の深さは1.6cmであった。反応液の液面内で反応容器の長手方向に垂直な直線上に、反応容器の短手方向において対向する2つの側壁面から1cmの位置の2点P1,P5、及びそれら2点の間を4等分する3点P2,P3,P4の合計5つの測定点を定めた。測定点P1,P2,P3,P4,P5それぞれの位置において、温度計(CT-320WP 株式会社カスタム製)を反応容器の底面まで到達するように反応液内に垂直に挿入した。5つの測定点は、反応容器の短手方向における中央において、反応容器の短手方向に沿って直線的に並んでいた。2つの攪拌子は測定点P1とP2との間、及び、測定点P4とP5との間に設置した。 The width of the liquid surface of the reaction solution was 18 cm in the lateral direction of the reaction vessel, and the depth of the reaction solution was 1.6 cm. Two points P1 and P5 located 1 cm from the two side wall surfaces facing each other in the lateral direction of the reaction vessel on a straight line perpendicular to the longitudinal direction of the reaction vessel in the liquid surface of the reaction solution, and between these two points. A total of five measurement points, three points P2, P3, and P4, which are divided into four equal parts, were determined. At each of the measurement points P1, P2, P3, P4 and P5, a thermometer (CT-320WP, manufactured by Custom Co., Ltd.) was inserted vertically into the reaction solution so as to reach the bottom surface of the reaction vessel. The five measurement points were aligned linearly along the lateral direction of the reaction vessel at the center of the reaction vessel in the lateral direction. The two stir bars were installed between the measurement points P1 and P2 and between the measurement points P4 and P5.
 反応容器内の反応液の温度を25℃に調整し、窒素置換により、反応液中の溶存酸素量を0.1ppm以下に調整した。次いで、100rpmで攪拌しながら、中央の測定点P3近傍に向けて、注射器(テルモ株式会社製、10mL容ディスポシリンジ、テルモ株式会社製の注射針)を用いて、濃度0.5質量%のL-アスコルビン酸水溶液2.41g、及び0.35質量%の過酸化水素水溶液2.62gをそれぞれ3秒かけて順次滴下した。 The temperature of the reaction solution in the reaction vessel was adjusted to 25 ° C., and the amount of dissolved oxygen in the reaction solution was adjusted to 0.1 ppm or less by nitrogen substitution. Then, while stirring at 100 rpm, a syringe (Terumo Corporation, 10 mL disposable syringe, Terumo Corporation injection needle) was used toward the vicinity of the central measurement point P3, and the concentration was 0.5% by mass. -2.41 g of the ascorbic acid aqueous solution and 2.62 g of the 0.35 mass% hydrogen peroxide aqueous solution were sequentially added dropwise over 3 seconds.
 過酸化水素水溶液の滴下と同時に重合反応が開始した。重合反応の進行にともなって反応液の粘度が増加した後、反応液がゲル化して、水及び架橋重合体を含む含水ゲル状重合体が形成された。過酸化水素水溶液の滴下終了から5分の時点で、測定点P3の温度が、5つの温度計それぞれが重合反応中に示した最高温度のうちの最大値95℃を示した。測定点P3の温度計が最高温度95℃を示した時点における5つの温度計が示した温度を記録し、それら5つの温度の標準偏差(温度偏差)を算出した。過酸化水素水溶液の滴下終了から8分経過後、含水ゲル状重合体が入った反応容器を75℃の水浴に浸し、その状態で含水ゲル状重合体を20分間保温して重合反応を完結させた。 The polymerization reaction started at the same time as the dropping of the aqueous hydrogen peroxide solution. After the viscosity of the reaction solution increased with the progress of the polymerization reaction, the reaction solution gelled to form a hydrogel-like polymer containing water and a crosslinked polymer. Five minutes after the completion of dropping the hydrogen peroxide solution, the temperature at the measurement point P3 showed the maximum value of 95 ° C. among the maximum temperatures shown by each of the five thermometers during the polymerization reaction. The temperatures indicated by the five thermometers at the time when the thermometer at the measurement point P3 showed the maximum temperature of 95 ° C. were recorded, and the standard deviation (temperature deviation) of these five temperatures was calculated. Eight minutes after the completion of dropping the aqueous hydrogen hydrogen solution, the reaction vessel containing the hydrogel-like polymer was immersed in a water bath at 75 ° C., and the hydrogel-like polymer was kept warm for 20 minutes in that state to complete the polymerization reaction. rice field.
 形成された含水ゲル状重合体から、実施例1と同様の粗砕、乾燥及び粉砕によって重合体粒子の粉体を得た。 From the formed hydrogel-like polymer, powder of polymer particles was obtained by coarse crushing, drying and crushing in the same manner as in Example 1.
(比較例1)
 0.35質量%の過酸化水素水溶液を滴下する際の攪拌子の回転数を300rpmに変更したこと以外は実施例1と同様の手順により、重合体粒子を得た。過酸化水素水溶液の滴下終了から3分の時点で、測定点P3の温度計が、5つの温度計それぞれが重合反応中に示した最高温度のうちの最大値98℃を示した。測定点P3の温度計が最高温度98℃を示した時点において5つの温度計が示した温度を記録し、それら5つの温度の標準偏差(温度偏差)を算出した。
(Comparative Example 1)
Polymer particles were obtained by the same procedure as in Example 1 except that the rotation speed of the stirrer when dropping the 0.35 mass% hydrogen peroxide aqueous solution was changed to 300 rpm. At 3 minutes from the end of the dropping of the hydrogen peroxide aqueous solution, the thermometer at the measurement point P3 showed the maximum value of 98 ° C. among the maximum temperatures shown by each of the five thermometers during the polymerization reaction. When the thermometer at the measurement point P3 showed the maximum temperature of 98 ° C., the temperatures indicated by the five thermometers were recorded, and the standard deviation (temperature deviation) of these five temperatures was calculated.
(比較例2)
 0.35質量%の過酸化水素水溶液を滴下する際の攪拌子の回転数を500rpmに変更したこと以外は実施例1と同様の手順により、重合体粒子を得た。過酸化水素水溶液の滴下終了から2分の時点で、測定点P4の温度計が、5つの温度計それぞれが重合反応中に示した最高温度のうちの最大値94℃を示した。測定点P4の温度計が最高温度94℃を示した時点において5つの温度計が示した温度を記録し、それら5つの温度の標準偏差(温度偏差)を算出した。
(Comparative Example 2)
Polymer particles were obtained by the same procedure as in Example 1 except that the rotation speed of the stirrer when dropping the 0.35 mass% hydrogen peroxide aqueous solution was changed to 500 rpm. Two minutes after the completion of dropping the hydrogen peroxide solution, the thermometer at the measurement point P4 showed the maximum value of 94 ° C. among the maximum temperatures shown by each of the five thermometers during the polymerization reaction. When the thermometer at the measurement point P4 showed the maximum temperature of 94 ° C., the temperatures indicated by the five thermometers were recorded, and the standard deviation (temperature deviation) of these five temperatures was calculated.
(比較例3)
 0.35質量%の過酸化水素水溶液を滴下する方法を、5つの測定点それぞれの近傍に向けて、5本の注射器(テルモ株式会社製、10mL容ディスポシリンジ、テルモ株式会社製の注射針)を用いて、0.35質量%の過酸化水素水溶液を各注射器から0.74gずつ、1秒かけて一斉に滴下する方法に変更したこと以外は実施例1と同様の手順により重合反応を行った。過酸化水素水溶液の滴下終了から3分の時点で、測定点P5の温度計が、5つの温度計それぞれが重合反応中に示した最高温度のうちの最大値63℃を示した。測定点P5の温度計が最高温度63℃を示した時点において5つの温度計が示した温度を記録し、それら5つの温度の標準偏差(温度偏差)を算出した。反応液の一部がゲル化せず液状部分が残ったため、塊状の含水ゲル状重合体を取得することができなかった。
(Comparative Example 3)
Five syringes (Terumo Corporation, 10 mL disposable syringe, Terumo Corporation injection needle) with a method of dropping a 0.35 mass% hydrogen peroxide solution toward each of the five measurement points. The polymerization reaction was carried out by the same procedure as in Example 1 except that the method was changed to drop 0.74 g of a 0.35 mass% hydrogen peroxide aqueous solution from each syringe all at once over 1 second. rice field. At 3 minutes from the end of the dropping of the hydrogen peroxide aqueous solution, the thermometer at the measurement point P5 showed the maximum value of 63 ° C. among the maximum temperatures shown by each of the five thermometers during the polymerization reaction. When the thermometer at the measurement point P5 showed the maximum temperature of 63 ° C., the temperatures indicated by the five thermometers were recorded, and the standard deviation (temperature deviation) of these five temperatures was calculated. Since a part of the reaction solution did not gel and a liquid part remained, it was not possible to obtain a lumpy hydrogel polymer.
2.180~850μmの粒径比率
 受け皿の上に、目開き850μm、500μm、425μm、300μm、250μm、180μm及び106μmのJIS標準篩を上からの順に組み合わせた。最上部の目開き850μmの篩に、架橋重合体粒子の粉体10gを投入し、連続全自動音波振動式ふるい分け測定器(ロボットシフター RPS-205、株式会社セイシン企業製)を用いて、粉体を分級した。分級後、各篩上に残存した重合体粒子の質量を測定し、下記式によって、180~850μmの粒径比率[%]を算出した。
180~850μmの粒径比率[%]=(目開き500μm、425μm、300μm、250μm及び180μmの篩上に残存した架橋重合体粒子の合計質量[g])/(測定に用いた架橋重合体粒子の質量[g])×100
2. Particle size ratio of 180 to 850 μm JIS standard sieves with openings of 850 μm, 500 μm, 425 μm, 300 μm, 250 μm, 180 μm and 106 μm were combined in this order from the top on the saucer. 10 g of crosslinked polymer particle powder is placed in a sieve with an opening of 850 μm at the top, and the powder is powdered using a continuous fully automatic sonic vibration type sieving measuring instrument (Robot Shifter RPS-205, manufactured by Seishin Enterprise Co., Ltd.). Was classified. After the classification, the mass of the polymer particles remaining on each sieve was measured, and the particle size ratio [%] of 180 to 850 μm was calculated by the following formula.
Particle size ratio [%] of 180 to 850 μm = (total mass [g] of crosslinked polymer particles remaining on the sieve with openings of 500 μm, 425 μm, 300 μm, 250 μm and 180 μm) / (crosslinked polymer particles used for measurement) Mass [g]) x 100
 表1に粒度分布及びそれから求められた粒径比率を示す。表中、「850μm on」は目開き850μm上に残存した架橋重合体粒子の、測定に用いた架橋重合体粒子の質量に対する割合を意味する。これは「500μm on」等でも同様である。「pass」は目開き106μmの篩を通過した架橋重合体粒子の、測定に用いた架橋重合体粒子の質量に対する割合を意味する。 Table 1 shows the particle size distribution and the particle size ratio obtained from it. In the table, "850 μm on" means the ratio of the crosslinked polymer particles remaining on the opening 850 μm to the mass of the crosslinked polymer particles used for the measurement. This also applies to "500 μm on" and the like. “Pass” means the ratio of the crosslinked polymer particles that have passed through the sieve having an opening of 106 μm to the mass of the crosslinked polymer particles used for the measurement.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1…反応液、10…反応容器、1S…液面、11,12,13,14…側壁面、15…底面、P1,P2,P3,P4,P5…測定点、P10,P20,P30,P40,P50…反応液の温度が測定される位置、X…側壁面の延在方向。 1 ... Reaction solution, 10 ... Reaction vessel, 1S ... Liquid level, 11, 12, 13, 14 ... Side wall surface, 15 ... Bottom surface, P1, P2, P3, P4, P5 ... Measurement points, P10, P20, P30, P40 , P50 ... Position where the temperature of the reaction solution is measured, X ... Extension direction of the side wall surface.

Claims (3)

  1.  重合体粒子を含む吸水性樹脂粒子を製造する方法であって、当該方法が、
     反応容器に収容された、単量体及び水を含む反応液中での重合反応によって、水及び重合体を含む含水ゲル状重合体を形成する工程と、
     前記含水ゲル状重合体から水を除去することにより、前記重合体を含む乾燥物を形成する工程と、
     前記乾燥物を粉砕することにより、重合体粒子の粉体を形成する工程と、
    を含み、
     前記反応容器が、一定の方向に沿って延在し互いに対向する2つの側壁面と、前記2つの側壁面とともに凹部を形成している底面とを有し、
     前記2つの側壁面の延在方向に垂直な、前記反応液の液面内の直線上に5つの測定点を直列に配置したときに、前記5つの測定点それぞれにおいて前記反応液の温度が前記重合反応の間に到達する最高温度のうちの最大値Tmaxが前記5つの測定点のうちいずれかにおいて示された時点において、前記5つの測定点それぞれにおける前記反応液の温度の標準偏差が12~30であり、Tmaxが80~100℃であり、
     前記5つの測定点が、前記2つの側壁面それぞれから1cmの位置の2つの測定点、及び、該2つの測定点の間を4等分する位置の3つの測定点から構成され、
     前記5つの測定点それぞれにおける前記反応液の温度が、それぞれの測定点の直下の位置の前記底面上で測定される、方法。
    A method for producing water-absorbent resin particles containing polymer particles, wherein the method is
    A step of forming a water-containing gel-like polymer containing water and a polymer by a polymerization reaction in a reaction solution containing a monomer and water contained in a reaction vessel.
    A step of forming a dry product containing the polymer by removing water from the hydrogel-like polymer, and a step of forming the dried product.
    A step of forming a powder of polymer particles by pulverizing the dried product, and
    Including
    The reaction vessel has two side wall surfaces extending along a certain direction and facing each other, and a bottom surface forming a recess together with the two side wall surfaces.
    When five measurement points are arranged in series on a straight line in the liquid surface of the reaction liquid, which is perpendicular to the extending direction of the two side wall surfaces, the temperature of the reaction liquid is the temperature at each of the five measurement points. When the maximum T max of the maximum temperatures reached during the polymerization reaction is indicated at any of the five measurement points, the standard deviation of the temperature of the reaction solution at each of the five measurement points is 12. ~ 30, T max is 80-100 ° C, and
    The five measurement points are composed of two measurement points at a position 1 cm from each of the two side wall surfaces and three measurement points at a position that divides the two measurement points into four equal parts.
    A method in which the temperature of the reaction solution at each of the five measurement points is measured on the bottom surface at a position directly below each measurement point.
  2.  前記5つの測定点が配置される方向における前記反応液の液面の幅が10~500cmである、請求項1に記載の方法。 The method according to claim 1, wherein the width of the liquid surface of the reaction solution in the direction in which the five measurement points are arranged is 10 to 500 cm.
  3.  前記単量体が、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも1種の化合物を含む、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the monomer contains at least one compound selected from the group consisting of (meth) acrylic acid and a salt thereof.
PCT/JP2021/027923 2020-07-31 2021-07-28 Method for producing water-absorbing resin particles WO2022025122A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022539534A JPWO2022025122A1 (en) 2020-07-31 2021-07-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-130389 2020-07-31
JP2020130389 2020-07-31

Publications (1)

Publication Number Publication Date
WO2022025122A1 true WO2022025122A1 (en) 2022-02-03

Family

ID=80035703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027923 WO2022025122A1 (en) 2020-07-31 2021-07-28 Method for producing water-absorbing resin particles

Country Status (2)

Country Link
JP (1) JPWO2022025122A1 (en)
WO (1) WO2022025122A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165303A (en) * 1994-12-16 1996-06-25 Nippon Shokubai Co Ltd Apparatus and process for producing aqueous-gel crosslinked polymer particle
JPH1045812A (en) * 1996-07-31 1998-02-17 Sekisui Plastics Co Ltd Production of fiber-containing water absorbing resin
JPH11228604A (en) * 1997-12-10 1999-08-24 Nippon Shokubai Co Ltd Production of water absorptive resin
JPH11302306A (en) * 1998-04-24 1999-11-02 Nippon Shokubai Co Ltd Production of water absorbing resin
JP2006143836A (en) * 2004-11-18 2006-06-08 Asahi Kasei Chemicals Corp Method for producing water-absorbing resin
JP2007528912A (en) * 2003-07-18 2007-10-18 株式会社日本触媒 Method for producing water-soluble porous polymer and water-soluble porous polymer
JP2007284675A (en) * 2006-03-24 2007-11-01 Nippon Shokubai Co Ltd Water-absorbing resin and method for producing the same
JP2008535963A (en) * 2005-03-30 2008-09-04 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing water-absorbing polymer particles
WO2008126793A1 (en) * 2007-04-05 2008-10-23 Nippon Shokubai Co., Ltd. Granular water absorbent comprising water absorbing resin as the main component
WO2011136301A1 (en) * 2010-04-27 2011-11-03 株式会社日本触媒 Method for producing polyacrylic acid (salt)-based water absorbent resin powder
JP2014098172A (en) * 2009-12-24 2014-05-29 Nippon Shokubai Co Ltd Polyacrylic acid-based water-absorbing resin powder and method for producing the same
JP2016112474A (en) * 2013-04-05 2016-06-23 株式会社日本触媒 Method for producing water-absorbing agent

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165303A (en) * 1994-12-16 1996-06-25 Nippon Shokubai Co Ltd Apparatus and process for producing aqueous-gel crosslinked polymer particle
JPH1045812A (en) * 1996-07-31 1998-02-17 Sekisui Plastics Co Ltd Production of fiber-containing water absorbing resin
JPH11228604A (en) * 1997-12-10 1999-08-24 Nippon Shokubai Co Ltd Production of water absorptive resin
JPH11302306A (en) * 1998-04-24 1999-11-02 Nippon Shokubai Co Ltd Production of water absorbing resin
JP2007528912A (en) * 2003-07-18 2007-10-18 株式会社日本触媒 Method for producing water-soluble porous polymer and water-soluble porous polymer
JP2006143836A (en) * 2004-11-18 2006-06-08 Asahi Kasei Chemicals Corp Method for producing water-absorbing resin
JP2008535963A (en) * 2005-03-30 2008-09-04 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing water-absorbing polymer particles
JP2007284675A (en) * 2006-03-24 2007-11-01 Nippon Shokubai Co Ltd Water-absorbing resin and method for producing the same
WO2008126793A1 (en) * 2007-04-05 2008-10-23 Nippon Shokubai Co., Ltd. Granular water absorbent comprising water absorbing resin as the main component
JP2014098172A (en) * 2009-12-24 2014-05-29 Nippon Shokubai Co Ltd Polyacrylic acid-based water-absorbing resin powder and method for producing the same
WO2011136301A1 (en) * 2010-04-27 2011-11-03 株式会社日本触媒 Method for producing polyacrylic acid (salt)-based water absorbent resin powder
JP2016112474A (en) * 2013-04-05 2016-06-23 株式会社日本触媒 Method for producing water-absorbing agent

Also Published As

Publication number Publication date
JPWO2022025122A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
JP3415036B2 (en) Method for granulating hydrogel crosslinked polymer
EP2546283B1 (en) Drying method for granular water-containing gel-like cross-linked polymer
EP0925836B1 (en) Method of producing hydrophilic resin
JP5718817B2 (en) Method for producing water absorbent resin powder
EP2185631B1 (en) Binding method of water absorbent resin
EP2338918A1 (en) Water-absorbent resin manufacturing method and liquid permeability improvement method
JP4018536B2 (en) Crosslinked water-swellable polymer and process for producing the same
JP5132927B2 (en) Method for producing water absorbent resin
EP2471845A1 (en) Water-absorbing resin based on polyacrylic acid (salt) and process for producing same
CN107406623A (en) Super absorbent polymer and preparation method thereof
CN106232235B (en) The hydrogel disintegrating apparatus including disk in water-soluble polymer particles production
WO2020067311A1 (en) Method for producing water-absorbing resin and water-absorbing resin
JPWO2018174175A1 (en) Method for producing water absorbent resin
KR101272849B1 (en) Polymerization reactor for super adsorbent polymer and preparation method of super adsorbent polymer using the same
WO2022025122A1 (en) Method for producing water-absorbing resin particles
JP2018162455A (en) Method for producing water-absorbing resin
WO2022075258A1 (en) Method for producing water-absorbing resin particles
WO2021049451A1 (en) Method for producing water-absorbable resin particles
WO2021235524A1 (en) Method for producing water absorbent resin particles
WO2021049467A1 (en) Method for producing crosslinked polymer particles, and crosslinked polymer gel
JP2022087997A (en) Method of producing water-absorbing resin particle
WO2022075256A1 (en) Method for producing water-absorbing resin particles
WO2022075289A1 (en) Method for producing water-absorbing resin particles
WO2021187326A1 (en) Method for producing water-absorbent resin particles
WO2021132026A1 (en) Method for producing water-absorbent resin particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539534

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850264

Country of ref document: EP

Kind code of ref document: A1