WO2021187326A1 - Method for producing water-absorbent resin particles - Google Patents

Method for producing water-absorbent resin particles Download PDF

Info

Publication number
WO2021187326A1
WO2021187326A1 PCT/JP2021/009871 JP2021009871W WO2021187326A1 WO 2021187326 A1 WO2021187326 A1 WO 2021187326A1 JP 2021009871 W JP2021009871 W JP 2021009871W WO 2021187326 A1 WO2021187326 A1 WO 2021187326A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
crc
polymer
cross
linking
Prior art date
Application number
PCT/JP2021/009871
Other languages
French (fr)
Japanese (ja)
Inventor
志保 岡澤
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2022508294A priority Critical patent/JPWO2021187326A1/ja
Publication of WO2021187326A1 publication Critical patent/WO2021187326A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules

Definitions

  • the present invention relates to a method for producing water-absorbent resin particles.
  • Patent Documents 1 and 2 disclose a method for producing surface-crosslinked water-absorbent resin particles that can be used for absorbent articles such as sanitary products.
  • the absorbent resin particles not only have a large amount of water that can be absorbed and retained under no pressure, but also have high absorption performance under pressure. Further, depending on the usage pattern of the absorber containing the water-absorbent resin particles, it may be desirable that the difference between the amount of water that can be absorbed and retained under no pressure and the amount of water that can be absorbed under pressure is large.
  • Such absorption characteristics are advantageous when, for example, the water-absorbent resin particles are used in a portion of the absorbent body of a disposable diaper where the pressure fluctuates greatly depending on the posture of the wearer or the like. In that case, the pulp or the like in the absorber quickly absorbs water under temporary pressure, and when the pressure is released thereafter, the water-absorbent resin particles can efficiently absorb the water retained by the pulp. can.
  • one aspect of the present invention is that a sufficient amount of water can be absorbed and retained under no pressurization, and the difference between the amount of water that can be absorbed and retained under no pressurization and the amount of water absorption under pressurization is large.
  • a method capable of producing resin particles is provided.
  • One aspect of the present invention relates to a method for producing water-absorbent resin particles containing polymer particles.
  • the method comprises cross-linking the polymer with the surface cross-linking agent by heating a mixture of a powder of polymer particles containing the polymer and a cross-linking agent solution containing a surface cross-linking agent.
  • the centrifuge retention capacity (CRC) of the polymer particles is CRC (before surface cross-linking) before the polymer is cross-linked by the surface cross-linking agent, and after the polymer is cross-linked by the surface cross-linking agent.
  • CRC (after surface cross-linking)
  • CRC (before surface cross-linking)
  • ⁇ CRC CRC (before surface cross-linking) -CRC (after surface cross-linking). It is crosslinked by the surface cross-linking agent so that the amount of change ⁇ CRC of CRC is 10 to 30 g / g.
  • a sufficient amount of water can be absorbed and retained under no pressurization, and the difference between the amount of water that can be absorbed and retained under no pressurization and the amount of water absorption under pressurization is large. Resin particles can be produced.
  • (meth) acrylic means both acrylic and methacryl.
  • acrylate and “methacrylate” are also referred to as “(meth) acrylate”.
  • (Poly) means both with and without the "poly” prefix.
  • the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • Water-soluble means that it exhibits a solubility in water of 5% by mass or more at 25 ° C.
  • the materials exemplified in the present specification may be used alone or in combination of two or more.
  • Saline refers to a 0.9% by mass sodium chloride aqueous solution.
  • Room temperature means 25 ° C.
  • One embodiment of the method for producing water-absorbent resin particles is to heat a mixture of a powder of polymer particles containing a polymer and a cross-linking agent solution containing a surface cross-linking agent to form a surface cross-linking agent for the polymer. Including cross-linking by.
  • the polymer forming the polymer particles may be any as long as it can impart water absorption to the polymer particles.
  • the monomer constituting the polymer may be an ethylenically unsaturated monomer.
  • the polymer may be a crosslinked polymer.
  • the ethylenically unsaturated monomer constituting the polymer is, for example, (meth) acrylic acid and a salt thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and a salt thereof, (meth) acrylamide, N, N.
  • -Dimethyl (meth) acrylamide 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl ( It may contain at least one compound selected from the group consisting of meta) acrylate and diethylaminopropyl (meth) acrylamide.
  • the amino group may be quaternized.
  • the ethylenically unsaturated monomer constituting the polymer is acrylic acid, at least one compound selected from the group consisting of acrylic acid and its salt, methacrylic acid and its salt, acrylamide, methacrylamide, and N, N-dimethylacrylamide. At least one compound selected from the group consisting of acid and its salt, methacrylic acid and its salt, and acrylamide, or at least one compound selected from the group consisting of acrylic acid and its salt, and methacrylic acid and its salt. May include.
  • the polymer forming the polymer particles may have a functional group that reacts with the cross-linking agent.
  • This functional group may be, for example, a carboxyl group, an amino group, or a combination thereof.
  • the carboxyl group can be, for example, a group derived from acrylic acid, methacrylic acid or salts thereof.
  • the polymer may contain a monomer unit derived from a monomer other than the ethylenically unsaturated monomer.
  • the proportion of the monomer unit derived from the ethylenically unsaturated monomer (particularly (meth) acrylic acid and a salt thereof) in the polymer may be 70 to 100 mol% with respect to the total amount of the monomer.
  • the polymer particles can be obtained by, for example, a polymerization method selected from a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method.
  • Polymer particles containing a crosslinked polymer can be obtained by self-crosslinking during polymerization, reaction with an internal crosslinking agent, or a combination thereof.
  • An example of a method for obtaining polymer particles by an aqueous solution polymerization method is to polymerize an ethylenically unsaturated monomer in a monomer aqueous solution containing an ethylenically unsaturated monomer, a radical polymerization initiator, and water to obtain a heavy weight.
  • Forming a massive hydrogel polymer containing coalescence and water, crushing the hydrogel polymer to form a crushed product, and drying the crushed product to obtain a dried product. Includes crushing the dried product to obtain polymer particles.
  • the powder of the polymer particles after pulverization may be classified by a sieve or the like.
  • the radical polymerization initiator may contain a persulfate, an azo compound, a peroxide or a combination thereof.
  • an azo compound is used as the radical polymerization initiator, polymer particles showing a large CRC tend to be easily obtained.
  • the azo compound may be combined with the peroxide.
  • azo compounds used as radical polymerization initiators are 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis ⁇ 2- [1- (2-hydroxyethyl) -2. -Imidazoline-2-yl] propane ⁇ dihydrochloride, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate, 2,2'-azobis [2-( 2-Imidazoline-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride, 2,2'-azobis [2- (N-allylamidino)) Propane] dihydrochloride, 2,2'-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2'-azobis [2-methyl- N- (2-Hydroxyethyl) -propion
  • the radical polymerization initiators are 2,2'-azobis (2-amidinopropane) dihydrochloride and 2,2'-azobis ⁇ 2- [1- (2-hydroxy).
  • persulfates used as radical polymerization initiators include potassium persulfate, ammonium persulfate, and sodium persulfate.
  • peroxides used as radical polymerization initiators are methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t-butyl peroxyacetate, t-butyl. Peroxyisobutyrate, t-butylperoxypivalate, and hydrogen peroxide.
  • the amount of the radical polymerization initiator in the monomer aqueous solution is small, the CRC of the polymer particles tends to increase. From this point of view, the amount of the radical polymerization initiator may be 0.01 to 15 mmol per 1 mol of the monomer unit constituting the polymer in the polymer particles.
  • the monomer aqueous solution may further contain a chain transfer agent.
  • chain transfer agents can also contribute to increasing the CRC of the polymer particles.
  • the chain transfer agent may include, for example, hypophosphorous acid, phosphorous acid or a combination thereof.
  • the monomer aqueous solution may contain an internal cross-linking agent, in which case polymer particles containing a cross-linked polymer cross-linked by the internal cross-linking agent can be obtained.
  • the internal cross-linking agent may be a compound having two or more reactive functional groups (for example, polymerizable unsaturated groups).
  • the internal cross-linking agent may contain a compound having a (meth) acrylic group, an allyl group, an epoxy group, or an amino group.
  • a compound having these reactive functional groups is used as an internal cross-linking agent, polymer particles exhibiting a large CRC tend to be easily obtained.
  • compounds having a (meth) acrylic group include (poly) ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and N, N'-methylenebis (meth) acrylamide.
  • Examples of compounds having an allyl group include triallylamine.
  • Examples of compounds having an epoxy group include (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, and epichlorohydrin.
  • Examples of compounds having an amino group include triethylenetetramine, ethylenediamine, and hexamethylenediamine.
  • the amount of the internal cross-linking agent in the monomer aqueous solution may be 0.02 to 0.4 mmol per 1 mol of the ethylenically unsaturated monomer.
  • the coarsely crushed product obtained by coarsely crushing the hydrogel polymer may be in the form of particles, or may have an elongated shape in which a plurality of particles are connected.
  • the minimum width of the coarse crushed product may be, for example, about 0.1 to 15 mm or 1.0 to 10 mm.
  • the maximum width of the coarse crushed product may be about 0.1 to 200 mm or 1.0 to 150 mm.
  • devices for crushing include kneaders (eg, pressurized kneaders, double-armed kneaders), meat choppers, cutter mills, and pharma mills.
  • the moisture content of the dried product obtained by drying may be, for example, 20% by mass or less, 10% by mass or less, or 5% by mass or less.
  • the water content of the dried product here means the ratio of the water content in the dried product based on the total mass of the dried product including water.
  • the drying method may be a general method such as natural drying, heat drying, spray drying, freeze drying or a combination thereof.
  • the coarsely crushed product may be dried under normal pressure or reduced pressure.
  • the heating temperature for drying under normal pressure may be 70 to 250 ° C. or 80 to 200 ° C.
  • the method of crushing the dried product is not particularly limited.
  • the dried product can be crushed by using a crusher such as a centrifugal crusher, a roller mill, a stamp mill, a jet mill, a high-speed rotary crusher, and a container-driven mill.
  • a crusher such as a centrifugal crusher, a roller mill, a stamp mill, a jet mill, a high-speed rotary crusher, and a container-driven mill.
  • the powder of the polymer particles obtained by pulverization may be classified.
  • Classification means an operation of dividing a particle group (powder) into two or more particle groups having different particle size distributions. A part of the powder of the polymer particles after the classification may be pulverized and classified again.
  • the classification method is not particularly limited, but may be, for example, screen classification or wind power classification.
  • Screen classification is a method of classifying particles on a screen into particles that pass through the mesh of the screen and particles that do not pass through the screen by vibrating the screen. Screen classification can be performed using, for example, a vibrating sieve, a rotary shifter, a cylindrical stirring sieve, a blower shifter, or a low-tap shaker.
  • Wind power classification is a method of classifying particles using the flow of air.
  • the medium particle size of the polymer particles before being mixed with the cross-linking agent solution which is obtained through pulverization and, if necessary, classification, may be, for example, 200 to 500 ⁇ m.
  • the polymer mainly near the surface of the polymer particles is cross-linked by the surface cross-linking agent.
  • the centrifuge holding capacity (CRC) of the polymer particles tends to decrease with this surface cross-linking.
  • CRC centrifuge holding capacity
  • the CRC of the polymer particles is CRC (before surface cross-linking) before the polymer is cross-linked by the surface cross-linking agent and CRC (after surface cross-linking) after the polymer is cross-linked by the surface cross-linking agent.
  • Before surface cross-linking is 65 g / g or more.
  • CRC (before surface cross-linking) is 66 g / g or more, 67 g / g or more, 68 g / g or more, 69 g / g or more, 70 g / g or more, 71 g / g or more, 72 g / g or more, 73 g / g or more, 74 g / g.
  • It may be g or more, or 75 g / g or more, 80 g / g or less, 79 g / g or less, 78 g / g or less, 77 g / g or less, 76 g / g or less, 75 g / g or less, 74 g / g or less, or It may be 73 g / g or less.
  • CRC (before surface cross-linking) is 66 g / g or more and 80 g / g or less, 79 g / g or less, 78 g / g or less, 77 g / g or less, 76 g / g or less, 75 g / g or less, 74 g / g or less, or 73 g.
  • It may be 67 g / g or more, 80 g / g or less, 79 g / g or less, 78 g / g or less, 77 g / g or less, 76 g / g or less, 75 g / g or less, 74 g / g or less, or It may be 73 g / g or less, 68 g / g or more and 80 g / g or less, 79 g / g or less, 78 g / g or less, 77 g / g or less, 76 g / g or less, 75 g / g or less, 74 g / g or less, Alternatively, it may be 73 g / g or less, and 69 g / g or more and 80 g / g or less, 79 g / g or less, 78 g / g or less, 77
  • 73 g / g or less 70 g / g or more and 80 g / g or less, 79 g / g or less, 78 g / g or less, 77 g / g or less, 76 g / g or less, 75 g / g or less, 74 g / g Below, or 73 g / g or less, 71 g / g or more and 80 g / g or less, 79 g / g or less, 78 g / g or less, 77 g / g or less, 76 g / g or less, 75 g / g or less, 74 g / g It may be g or less, or 73 g / g or less, and 72 g / g or more and 80 g / g or less, 79 g / g or less, 78 g / g or less, 79
  • 73 g / g or less or 73 g / g or less, 73 g / g or more and 80 g / g or less, 79 g / g or less, 78 g / g or less, 77 g / g or less, 76 g / g or less, 75 g / g or less, Alternatively, it may be 74 g / g or less.
  • ⁇ CRC is 11 g / g or more, 12 g / g or more, 13 g / g or more, 14 g / g or more, 15 g / g or more, 16 g / g or more, 17 g / g or more, 18 g / g or more, 19 g / g or more, or 20 g. It may be 29 g / g or less, 28 g / g or less, 27 g / g or less, 26 g / g or less, 25 g / g or less, 24 g / g or less, 23 g / g or less, 22 g / g or less, 21 g.
  • ⁇ CRC is 11 g / g or more and 29 g / g or less, 28 g / g or less, 27 g / g or less, 26 g / g or less, 25 g / g or less, 24 g / g or less, 23 g / g or less, 22 g / g or less, 21 g / g.
  • It may be g or less, 20 g / g or less, 19 g / g or less, or 18 g / g or less, and 12 g / g or more and 29 g / g or less, 28 g / g or less, 27 g / g or less, 26 g / g or less, 25 g.
  • It may be 16 g / g or more and 29 g / g or less, 28 g / g or less, 27 g / g or less, 26 g / g or less, 25 g / g or less, 24 g / g or less, 23 g / g or less, 22 g / g or less. It may be g or less, 21 g / g or less, 20 g / g or less, 19 g / g or less, or 18 g / g or less, and 17 g / g or more and 29 g / g or less, 28 g / g or less, 27 g / g or less, 26 g.
  • It may be / g or less, 25 g / g or less, 24 g / g or less, 23 g / g or less, 22 g / g or less, 21 g / g or less, 20 g / g or less, 19 g / g or less, or 18 g / g or less.
  • the ⁇ CRC may be 10 to 20 g / g.
  • the ⁇ CRC may be 10 to 30 g / g.
  • the CRC (after surface cross-linking) may be, for example, 30 to 70 g / g, 40 to 70 g / g, or 50 to 70 g / g.
  • the CRC here is a value measured in an environment where the temperature is 25 ⁇ 2 ° C. and the humidity is 50 ⁇ 10%.
  • the method for measuring CRC is to use a non-woven bag having a rectangular main surface of 60 mm ⁇ 85 mm containing polymer particles (or water-absorbent resin particles) having a mass of Mc (g) and physiological salt having a temperature of 25 ⁇ 2 ° C.
  • the polymer particles are swollen by immersing in water for 30 minutes to form a gel, and the gel in the non-woven bag is dehydrated by applying a centrifugal force of 250 G for 3 minutes with a centrifugal separator, and after dehydration.
  • the CRC (after surface cross-linking) may be a value measured for the fraction of the powder of the surface-cross-linked polymer particles that has passed through a sieve having an opening of 850 ⁇ m.
  • the ⁇ CRC associated with surface cross-linking is adjusted based on, for example, the ratio of the amount of the surface cross-linking agent to the amount of polymer particles, the ratio of the amount of the surface cross-linking agent to the amount of water in the cross-linking agent solution, or a combination thereof. be able to.
  • the amount of surface cross-linking agent (particularly alkylene carbonate) is 0.01 to 0.15 mmol per gram of polymer particles, and the molar ratio of the amount of surface cross-linking agent (particularly alkylene carbonate) to the amount of water in the cross-linking agent solution is When it is 0.01 to 0.10, the polymer in the polymer particles is easily crosslinked by the surface cross-linking agent so that the ⁇ CRC is 10 to 30 g / g.
  • the absorption ratio (AAP) of the polymer particles under pressure at a pressure of 2.07 kPa after the polymer is crosslinked with a surface cross-linking agent may be 9.0 g / g or more.
  • the upper limit of AAP is not particularly limited, but is usually about 40 g / g. The method for measuring AAP will be described in detail in Examples described later.
  • the cross-linking agent solution can be water and a solution containing a surface cross-linking agent dissolved in water.
  • the surface cross-linking agent may further contain a solvent other than water, but the solvent contained in the cross-linking agent solution may be substantially only water.
  • the proportion of the solvent other than water may be 10% by mass or less, 5% by mass or less, or 1% by mass or less based on the mass of the cross-linking agent solution.
  • Examples of surface cross-linking agents contained in the cross-linking agent solution are alkylene carbonate compounds such as ethylene carbonate; ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol.
  • alkylene carbonate compounds such as ethylene carbonate; ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol.
  • polyol compounds such as polyglycerin; (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylpropan triglycidyl ether (poly) propylene glycol polyglycidyl ether, and Polyglycidyl compounds such as (poly) glycerol polyglycidyl ethers; haloepoxy compounds such as epichlorohydrin, epibromhydrin, and ⁇ -methyl epichlorohydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl -3-oxetane methanol, 3-ethyl-3-oxetane methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-eth
  • the surface cross-linking agent may contain an alkylene carbonate compound, a polyol compound, or a combination thereof.
  • the ratio of the alkylene carbonate compound in the surface cross-linking agent is 50 to 100% by mass, 60 to 100% by mass, 70 to 100% by mass, 80 to 100% by mass, or 90 to 100% by mass based on the total mass of the surface cross-linking agent. It may be.
  • the amount of the surface cross-linking agent is 0.001 to 0.10 mol, 0 per mol of the monomer unit constituting the polymer in the polymer particles. It may be .005 to 0.05 mol or 0.01 to 0.02 mol.
  • the amount of the surface cross-linking agent per 1 g of the polymer particles was 0.01 to 1.30 mmol, 0.05 to 0.65 mmol, 0.08 to 0.25 mmol, or 0.10 to 0.20 mmol. You may.
  • the heating temperature and heating time for surface cross-linking are adjusted so that the cross-linking reaction proceeds appropriately in consideration of the type of surface cross-linking agent and the like.
  • the heating temperature for surface cross-linking may be 80 ° C. or higher, 100 ° C. or higher, 120 ° C. or higher, 150 ° C. or higher, or 180 ° C. or higher, or 190 ° C. or higher.
  • the heating temperature for surface cross-linking may be 250 ° C. or lower.
  • the heating time for surface cross-linking may be, for example, 5 to 90 minutes.
  • the surface-crosslinked polymer particles may be further dried or classified if necessary.
  • Inorganic particles may be attached to the surface of the polymer particles. Examples of inorganic particles include silica particles such as amorphous silica.
  • water-absorbent resin particles (or surface-crosslinked polymer particles) having a large difference (CRC-AAP) between CRC and AAP can be easily obtained.
  • the CRC-AAP value indicated by the water-absorbent resin particles may be, for example, 30 g / g or more, 34 g / g or more, 38 g / g or more, or 40 g / g or more, 55 g / g or less, or 50 g / g or less. It may be.
  • the CRC-AAP value indicated by the water-absorbent resin particles may be 55 g / g or less at 30 g / g or more, or 50 g / g or less, and 55 g / g or less at 34 g / g or more, or 50 g / g or less. It may be 38 g / g or more and 55 g / g or less, or 50 g / g or less, and 40 g / g or more and 55 g / g or less, or 50 g / g or less.
  • FIG. 1 is a cross-sectional view showing an example of an absorbent article.
  • the absorbent article 100 shown in FIG. 1 includes a sheet-shaped absorber 10, core wraps 20a and 20b, a liquid permeable sheet 30, and a liquid permeable sheet 40.
  • the liquid permeable sheet 40, the core wrap 20b, the absorbent body 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order.
  • the absorber 10 has water-absorbent resin particles 10a produced by the method according to the above-described embodiment, and a fiber layer 10b containing a fibrous material.
  • the water-absorbent resin particles 10a are dispersed in the fiber layer 10b.
  • CRC Centrifuge retention capacity
  • a non-woven fabric having a size of 60 mm ⁇ 170 mm (product name: Heat Pack MWA-18, manufactured by Nippon Paper Papylia Co., Ltd.) is folded in half in the longitudinal direction to adjust the size to 60 mm ⁇ 85 mm.
  • Nonwoven fabrics are heat-sealed against each other on both sides extending in the longitudinal direction. This prepares a non-woven fabric bag having a size of 60 mm in width and 85 mm in length and having an opening at one end in the longitudinal direction.
  • a crimping portion having a width of 5 mm is formed in which a heat seal is interposed between the non-woven fabrics.
  • the non-woven fabric bag contains 0.2 ⁇ 0.002 g of particles to be measured.
  • the non-woven fabric bag is closed by crimping the opening of the non-woven fabric bag with a heat seal.
  • the entire non-woven fabric bag is completely moistened by floating the non-woven fabric bag on 1000 g of physiological saline contained in a stainless steel vat (240 mm ⁇ 320 mm ⁇ 45 mm) without folding the non-woven fabric bag.
  • the measuring device 110 uses the measuring device 110 shown in FIG. 2, the absorption ratio (AAP) under pressure at a pressure of 2.07 kPa (0.3 psi) is measured.
  • the measuring device 110 is composed of a weight 112, a plastic cylinder 114 having an inner diameter of 60 mm, and a wire mesh 116 having a 400 mesh (opening 38 ⁇ m).
  • the wire mesh 116 closes one opening of the cylinder 114, and the cylinder 114 and the wire mesh 116 are arranged so that the wire mesh 116 is horizontal.
  • the weight 112 has a disc portion 112a, a rod-shaped portion 112b extending from the center of the disc portion 112a in a direction perpendicular to the disc portion 112a, and a cylindrical portion 112c having a through hole in the center.
  • the rod-shaped portion 112b is inserted into the through hole of the cylindrical portion 112c.
  • the disk portion 112a has a diameter substantially equal to the inner diameter of the cylinder 114 so that it can be moved in the longitudinal direction of the cylinder 114 inside the cylinder 114.
  • the diameter of the cylindrical portion 112c is smaller than the diameter of the disc portion 112a.
  • the weight of the weight 112 is adjusted so that a pressure of 2.07 kPa is applied to the particles to be measured.
  • a glass filter 140 (ISO4793 P-250) having a diameter of 90 mm and a thickness of 7 mm is placed in the center of the bottom surface (diameter 150 mm) in the recess of the stainless steel petri dish 130.
  • 0.90 mass% sodium chloride aqueous solution (25 ° C. ⁇ 2 ° C.) is added to the stainless steel petri dish until the water surface is level with the upper surface of the glass filter 140.
  • a sheet of filter paper 150 with a diameter of 90 mm (ADVANTEC Toyo Co., Ltd., product name: (No. 3), thickness 0.23 mm, reserved particle diameter 5 ⁇ m) is placed on the glass filter 140, and the entire surface of the filter paper 150 is sodium chloride.
  • the measuring device 110 in which the particles 120 before liquid absorption are charged is placed on the filter paper 150, and the particles 120 are made to absorb the sodium chloride aqueous solution while pressurizing the particles 120 at a pressure of 2.07 kPa.
  • the measuring device 110 is lifted and the total mass Wb [g] of the measuring device 110 and the particles 120 after absorbing the liquid is measured.
  • the absorption ratio under pressure (AAP) [g / g] is calculated by the following formula.
  • AAP [g / g] (Wb [g] -Wa [g]) /0.90 [g]
  • Polymer particles before surface cross-linking (Production Example 1) 340.0 g (4.72 mol) of acrylic acid was placed in a separable flask having an internal volume of 2 L. To the acrylic acid in the separable flask, 291.7 g of ion-exchanged water was added with stirring. Then, 297.8 g of 48% by mass sodium hydroxide was added dropwise under an ice bath to prepare a partially neutralized solution of acrylic acid having a monomer concentration of 45% by mass.
  • the entire amount of the hydrogel-like polymer after aging was taken out from a stainless steel vat and roughly crushed by cutting into approximately 0.8 cm squares.
  • the obtained coarse crushed product was spread over a wire mesh having a mesh size of 0.8 cm ⁇ 0.8 cm and placed, and dried with hot air at 180 ° C. for 30 minutes to obtain a dried product.
  • the dried product was crushed using a centrifugal crusher (manufactured by Retsch, ZM200, screen diameter 1 mm, 6000 rpm).
  • the powder after pulverization was sieved by shaking for 1 minute using a sieve having an opening of 850 ⁇ m and a sieve having an opening of 180 ⁇ m.
  • Amorphous crushed polymer particles that passed through a sieve having a mesh size of 850 ⁇ m and remained on the sieve having a mesh size of 180 ⁇ m were obtained.
  • the CRC and AAP of the obtained polymer particles were measured.
  • the inside of the stainless steel vat was sealed by sealing the upper part of the stainless steel vat with a polyethylene film.
  • the amount of dissolved oxygen was adjusted to 0.1 ppm or less by substituting nitrogen in the mixture.
  • This coarsely crushed product (subdivided particulate hydrogel polymer) is spread and placed on a wire mesh with a mesh size of 0.8 cm ⁇ 0.8 cm, and then dried with hot air at 180 ° C. for 30 minutes to obtain a dried product. rice field. Next, the dried product was crushed using a centrifugal crusher (manufactured by Retsch, ZM200, screen diameter 1 mm, 6000 rpm). The powder after pulverization was sieved by shaking for 1 minute using a sieve having an opening of 850 ⁇ m and a sieve having an opening of 180 ⁇ m. Amorphous crushed polymer particles that passed through a sieve having a mesh size of 850 ⁇ m and remained on the sieve having a mesh size of 180 ⁇ m were obtained. The CRC and AAP of the obtained polymer particles were measured.
  • reaction solution (single). (Medium aqueous solution) was obtained. This reaction solution was replaced with nitrogen gas for 30 minutes in a nitrogen gas atmosphere. Next, the reaction solution was supplied to a stainless steel 5L double-armed kneader with a jacket having two sigma-type blades with lids that can be opened and closed. The inside of the kneader was replaced with nitrogen gas while maintaining the temperature of the reaction solution at 30 ° C.
  • the diameter of the hole in the plate located at the outlet of the meat chopper was 6.4 mm.
  • a coarsely crushed product of a hydrogel polymer formed by coarse crushing was spread over a wire mesh having a mesh size of 0.8 cm ⁇ 0.8 cm, and dried with hot air at 160 ° C. for 60 minutes to obtain a dried product.
  • the dried product was pulverized using a centrifugal pulverizer (Resch, ZM200, screen diameter 1 mm, 6000 rpm).
  • the powder after pulverization was sieved by shaking for 1 minute using a sieve having an opening of 850 ⁇ m and a sieve having an opening of 180 ⁇ m.
  • Amorphous crushed polymer particles that passed through a sieve having a mesh size of 850 ⁇ m and remained on the sieve having a mesh size of 180 ⁇ m were obtained.
  • the CRC and AAP of the obtained polymer particles were measured.
  • reaction solution (single). (Medium aqueous solution) was obtained.
  • This reaction solution was replaced with nitrogen gas for 30 minutes in a nitrogen gas atmosphere.
  • the reaction solution was supplied to a stainless steel 5L double-armed kneader with a jacket having two sigma-type blades with lids that can be opened and closed. The inside of the kneader was replaced with nitrogen gas while maintaining the temperature of the reaction solution at 30 ° C.
  • the diameter of the hole in the plate located at the outlet of the meat chopper was 6.4 mm.
  • a coarsely crushed product of a hydrogel polymer formed by coarse crushing was spread over a wire mesh having a mesh size of 0.8 cm ⁇ 0.8 cm, and dried with hot air at 160 ° C. for 60 minutes to obtain a dried product.
  • the dried product was pulverized using a centrifugal pulverizer (Resch, ZM200, screen diameter 1 mm, 6000 rpm).
  • the powder after pulverization was sieved by shaking for 1 minute using a sieve having an opening of 850 ⁇ m and a sieve having an opening of 180 ⁇ m.
  • Amorphous crushed polymer particles that passed through a sieve having a mesh size of 850 ⁇ m and remained on the sieve having a mesh size of 180 ⁇ m were obtained.
  • the CRC and AAP of the obtained polymer particles were measured.
  • Table 1 shows the CRC and AAP of the polymer particles obtained in Production Examples 1 to 4.
  • Example 3 Surface-crosslinked polymer particles (water-absorbent resin particles) (Example 1) A cross-linking agent solution consisting of 0.0783 g of ethylene carbonate (EC), 0.125 g of propylene glycol (PG), and 0.5 g of deionized water was mixed with 25 g of the polymer particles obtained in Production Example 1. Surface cross-linking was allowed to proceed by heating the formed mixture at 200 ° C. for 35 minutes. By classifying the polymer particles after surface cross-linking with a sieve having a mesh size of 850 ⁇ m, fractions that passed through the sieve having a mesh size of 850 ⁇ m were obtained, and the surface-crosslinked polymer particles were obtained as water-absorbent resin particles.
  • EC ethylene carbonate
  • PG propylene glycol
  • Example 2 Surface-crosslinked polymer particles were obtained as water-absorbent resin particles in the same manner as in Example 1 except that the amount of deionized water contained in the cross-linking agent solution was changed to 0.1625 g.
  • Example 3 The surface was crosslinked in the same manner as in Example 1 except that the amount of EC contained in the cross-linking agent solution was changed to 0.2345 g and the amount of deionized water contained in the cross-linking agent solution was changed to 2.0 g. Polymer particles were obtained as water-absorbent resin particles.
  • Example 4 The surface was crosslinked in the same manner as in Example 1 except that the amount of EC contained in the cross-linking agent solution was changed to 0.2345 g and the amount of deionized water contained in the cross-linking agent solution was changed to 1.5 g. Polymer particles were obtained as water-absorbent resin particles.
  • Example 5 The surface was crosslinked in the same manner as in Example 1 except that the amount of EC contained in the cross-linking agent solution was changed to 0.2345 g and the amount of deionized water contained in the cross-linking agent solution was changed to 1.0 g. Polymer particles were obtained as water-absorbent resin particles.
  • Example 6 Surface-crosslinked polymer particles were obtained as water-absorbent resin particles in the same manner as in Example 1 except that the amount of EC contained in the cross-linking agent solution was changed to 0.2345 g.
  • Example 7 Surface-crosslinked polymer particles were obtained as water-absorbent resin particles in the same manner as in Example 3 except that the polymer particles obtained in Production Example 2 were used.
  • Example 8 The surface was crosslinked in the same manner as in Example 7 except that the amount of EC contained in the cross-linking agent solution was changed to 0.3126 g and the amount of deionized water contained in the cross-linking agent solution was changed to 2.75 g. Polymer particles were obtained as water-absorbent resin particles.
  • Example 1 The surface was crosslinked in the same manner as in Example 7 except that the amount of EC contained in the cross-linking agent solution was changed to 0.3908 g and the amount of deionized water contained in the cross-linking agent solution was changed to 3.5 g. Polymer particles were obtained as water-absorbent resin particles.
  • Example 4 The surface was crosslinked in the same manner as in Example 1 except that the polymer particles obtained in Production Example 4 were used and the amount of deionized water contained in the cross-linking agent solution was changed to 2.0 g. Polymer particles were obtained as water-absorbent resin particles.
  • Table 2 shows the results.
  • the EC amount, PG amount, and water amount in the table are the amount of substances of ethylene carbonate, propylene glycol, and water per 1 g of the polymer particles, respectively.
  • 10 Absorbent, 10a ... Water-absorbent resin particles, 10b ... Fiber layer, 20a, 20b ... Core wrap, 30 ... Liquid permeable sheet, 40 ... Liquid permeable sheet, 100 ... Absorbent article, 110 ... Measuring device, 112 ... Weight, 112a ... Disc, 112b ... Rod, 112c ... Cylindrical, 114 ... Cylindrical, 116 ... Wire mesh, 120 ... Particles to be measured, 130 ... Stainless petri dish, 140 ... Glass filter, 150 ... Filter paper.

Abstract

Disclosed is a method for producing water-absorbent resin particles, said method comprising heating a mixture of a powder of polymer particles containing a polymer with a crosslinking solution containing a surface crosslinking agent to thereby crosslink the polymer by the surface crosslinking agent. In this method, when the centrifuge retention capacity (CRC) of the polymer particles before the polymer is crosslinked by the surface crosslinking agent is referred to as CRC (before surface crosslinking) and the CRC after the polymer is crosslinked by the surface crosslinking agent is referred to as CRC (after surface crosslinking), the CRC (before surface crosslinking) is 65 g/g or more and the polymer is crosslinked by the surface crosslinking agent so as to adjust the change amount of CRC, which is represented by ΔCRC and calculated by the formula: ΔCRC=CRC (before surface crosslinking) - CRC (after surface crosslinking), to 10-30 g/g.

Description

吸水性樹脂粒子を製造する方法Method for producing water-absorbent resin particles
 本発明は、吸水性樹脂粒子を製造する方法に関する。 The present invention relates to a method for producing water-absorbent resin particles.
 特許文献1、2には、サニタリー用品等の吸収性物品に用いることのできる、表面架橋された吸水性樹脂粒子の製造方法が開示されている。 Patent Documents 1 and 2 disclose a method for producing surface-crosslinked water-absorbent resin particles that can be used for absorbent articles such as sanitary products.
特開2004-359943号公報Japanese Unexamined Patent Publication No. 2004-359943 特表2018-511672号公報Special Table 2018-511672
 一般に、吸収性樹脂粒子は、無加圧下で吸収及び保持できる水分量が多いだけでなく、加圧下での吸収性能も高いことが望ましい。さらに、吸水性樹脂粒子を含む吸収体の使用形態によっては、無加圧下で吸収及び保持できる水分量と加圧下での吸水量との差が大きいことが望ましいことがある。そのような吸収特性は、例えば、紙おむつの吸収体のうち、着用者の姿勢等によって受ける圧力の変動の大きい部位において吸水性樹脂粒子が用いられる場合に有利である。その場合、一時的な加圧下では吸収体中のパルプ等が水分を素早く吸収し、その後圧力が解放された時点で、パルプによって保持された水分を吸水性樹脂粒子が効率的に吸収することができる。 In general, it is desirable that the absorbent resin particles not only have a large amount of water that can be absorbed and retained under no pressure, but also have high absorption performance under pressure. Further, depending on the usage pattern of the absorber containing the water-absorbent resin particles, it may be desirable that the difference between the amount of water that can be absorbed and retained under no pressure and the amount of water that can be absorbed under pressure is large. Such absorption characteristics are advantageous when, for example, the water-absorbent resin particles are used in a portion of the absorbent body of a disposable diaper where the pressure fluctuates greatly depending on the posture of the wearer or the like. In that case, the pulp or the like in the absorber quickly absorbs water under temporary pressure, and when the pressure is released thereafter, the water-absorbent resin particles can efficiently absorb the water retained by the pulp. can.
 そこで、本発明の一側面は、無加圧下で十分な量の水分を吸収及び保持できるとともに、無加圧下で吸収及び保持できる水分量と加圧下での吸水量との差が大きい、吸水性樹脂粒子を製造できる方法を提供する。 Therefore, one aspect of the present invention is that a sufficient amount of water can be absorbed and retained under no pressurization, and the difference between the amount of water that can be absorbed and retained under no pressurization and the amount of water absorption under pressurization is large. Provided is a method capable of producing resin particles.
 本発明の一側面は、重合体粒子を含む吸水性樹脂粒子を製造する方法に関する。当該方法は、重合体を含有する重合体粒子の粉体と表面架橋剤を含有する架橋剤溶液との混合物を加熱することにより、前記重合体を前記表面架橋剤によって架橋することを含む。前記重合体粒子の遠心分離機保持容量(CRC)が、前記重合体が前記表面架橋剤によって架橋される前にCRC(表面架橋前)で、前記重合体が前記表面架橋剤によって架橋された後にCRC(表面架橋後)であるとき、CRC(表面架橋前)が65g/g以上であり、前記重合体が、式:ΔCRC=CRC(表面架橋前)-CRC(表面架橋後)で算出されるCRCの変化量ΔCRCが10~30g/gとなるように、前記表面架橋剤によって架橋される。 One aspect of the present invention relates to a method for producing water-absorbent resin particles containing polymer particles. The method comprises cross-linking the polymer with the surface cross-linking agent by heating a mixture of a powder of polymer particles containing the polymer and a cross-linking agent solution containing a surface cross-linking agent. The centrifuge retention capacity (CRC) of the polymer particles is CRC (before surface cross-linking) before the polymer is cross-linked by the surface cross-linking agent, and after the polymer is cross-linked by the surface cross-linking agent. When CRC (after surface cross-linking), CRC (before surface cross-linking) is 65 g / g or more, and the polymer is calculated by the formula: ΔCRC = CRC (before surface cross-linking) -CRC (after surface cross-linking). It is crosslinked by the surface cross-linking agent so that the amount of change ΔCRC of CRC is 10 to 30 g / g.
 本発明の一側面によれば、無加圧下で十分な量の水分を吸収及び保持できるとともに、無加圧下で吸収及び保持できる水分量と加圧下での吸水量との差が大きい、吸水性樹脂粒子を製造することができる。 According to one aspect of the present invention, a sufficient amount of water can be absorbed and retained under no pressurization, and the difference between the amount of water that can be absorbed and retained under no pressurization and the amount of water absorption under pressurization is large. Resin particles can be produced.
吸収性物品の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of an absorbent article. 加圧下吸収倍率(AAP)の測定方法を示す模式図である。It is a schematic diagram which shows the measuring method of the absorption ratio under pressure (AAP).
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, some embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 本明細書において「(メタ)アクリル」はアクリル及びメタクリルの両方を意味する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。他の類似の用語も同様である。「(ポリ)」とは、「ポリ」の接頭語がある場合及びない場合の双方を意味する。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことをいう。本明細書に例示する材料は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。「生理食塩水」とは、0.9質量%塩化ナトリウム水溶液をいう。「室温」は、25℃を意味する。 In the present specification, "(meth) acrylic" means both acrylic and methacryl. Similarly, "acrylate" and "methacrylate" are also referred to as "(meth) acrylate". The same is true for other similar terms. "(Poly)" means both with and without the "poly" prefix. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. "Water-soluble" means that it exhibits a solubility in water of 5% by mass or more at 25 ° C. The materials exemplified in the present specification may be used alone or in combination of two or more. "Saline" refers to a 0.9% by mass sodium chloride aqueous solution. "Room temperature" means 25 ° C.
 吸水性樹脂粒子を製造する方法の一実施形態は、重合体を含有する重合体粒子の粉体と表面架橋剤を含有する架橋剤溶液との混合物を加熱することにより、重合体を表面架橋剤によって架橋することを含む。 One embodiment of the method for producing water-absorbent resin particles is to heat a mixture of a powder of polymer particles containing a polymer and a cross-linking agent solution containing a surface cross-linking agent to form a surface cross-linking agent for the polymer. Including cross-linking by.
 重合体粒子を形成している重合体は、重合体粒子に吸水性を付与できるものであればよい。重合体を構成する単量体がエチレン性不飽和単量体であってもよい。重合体が架橋重合体であってもよい。 The polymer forming the polymer particles may be any as long as it can impart water absorption to the polymer particles. The monomer constituting the polymer may be an ethylenically unsaturated monomer. The polymer may be a crosslinked polymer.
 重合体を構成するエチレン性不飽和単量体は、例えば、(メタ)アクリル酸及びその塩、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、並びにジエチルアミノプロピル(メタ)アクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。エチレン性不飽和単量体がアミノ基を含有する場合には、当該アミノ基は4級化されていてもよい。重合体を構成するエチレン性不飽和単量体は、アクリル酸及びその塩、メタクリル酸及びその塩、アクリルアミド、メタクリルアミド並びにN,N-ジメチルアクリルアミドからなる群より選ばれる少なくとも1種の化合物、アクリル酸及びその塩、メタクリル酸及びその塩、並びにアクリルアミドからなる群より選ばれる少なくとも1種の化合物、又は、アクリル酸及びその塩、並びにメタクリル酸及びその塩からなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。 The ethylenically unsaturated monomer constituting the polymer is, for example, (meth) acrylic acid and a salt thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and a salt thereof, (meth) acrylamide, N, N. -Dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl ( It may contain at least one compound selected from the group consisting of meta) acrylate and diethylaminopropyl (meth) acrylamide. When the ethylenically unsaturated monomer contains an amino group, the amino group may be quaternized. The ethylenically unsaturated monomer constituting the polymer is acrylic acid, at least one compound selected from the group consisting of acrylic acid and its salt, methacrylic acid and its salt, acrylamide, methacrylamide, and N, N-dimethylacrylamide. At least one compound selected from the group consisting of acid and its salt, methacrylic acid and its salt, and acrylamide, or at least one compound selected from the group consisting of acrylic acid and its salt, and methacrylic acid and its salt. May include.
 重合体粒子を形成している重合体は、架橋剤と反応する官能基を有していてもよい。この官能基は、例えば、カルボキシル基、アミノ基、又はこれらの組み合わせであってもよい。カルボキシル基は、例えば、アクリル酸、メタクリル酸又はこれらの塩に由来する基であることができる。 The polymer forming the polymer particles may have a functional group that reacts with the cross-linking agent. This functional group may be, for example, a carboxyl group, an amino group, or a combination thereof. The carboxyl group can be, for example, a group derived from acrylic acid, methacrylic acid or salts thereof.
 重合体は、エチレン性不飽和単量体以外の単量体に由来する単量体単位を含んでいてもよい。重合体におけるエチレン性不飽和単量体(特に、(メタ)アクリル酸及びその塩)に由来する単量体単位の割合は、単量体全量に対し70~100モル%であってもよい。 The polymer may contain a monomer unit derived from a monomer other than the ethylenically unsaturated monomer. The proportion of the monomer unit derived from the ethylenically unsaturated monomer (particularly (meth) acrylic acid and a salt thereof) in the polymer may be 70 to 100 mol% with respect to the total amount of the monomer.
 重合体粒子は、例えば、逆相懸濁重合法、水溶液重合法、バルク重合法、及び沈殿重合法から選ばれる重合方法により得ることができる。重合中の自己架橋、内部架橋剤との反応、又はこれらの組み合わせにより、架橋重合体を含む重合体粒子を得ることができる。 The polymer particles can be obtained by, for example, a polymerization method selected from a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method. Polymer particles containing a crosslinked polymer can be obtained by self-crosslinking during polymerization, reaction with an internal crosslinking agent, or a combination thereof.
 水溶液重合法によって重合体粒子を得る方法の一例は、エチレン性不飽和単量体、ラジカル重合開始剤及び水を含有する単量体水溶液中でエチレン性不飽和単量体を重合して、重合体及び水を含有する塊状の含水ゲル状重合体を形成することと、含水ゲル状重合体を粗砕して粗砕物を形成することと、粗砕物を乾燥して乾燥物を得ることと、乾燥物を粉砕して重合体粒子を得ることとを含む。粉砕後の重合体粒子の粉体を篩等によって分級してもよい。 An example of a method for obtaining polymer particles by an aqueous solution polymerization method is to polymerize an ethylenically unsaturated monomer in a monomer aqueous solution containing an ethylenically unsaturated monomer, a radical polymerization initiator, and water to obtain a heavy weight. Forming a massive hydrogel polymer containing coalescence and water, crushing the hydrogel polymer to form a crushed product, and drying the crushed product to obtain a dried product. Includes crushing the dried product to obtain polymer particles. The powder of the polymer particles after pulverization may be classified by a sieve or the like.
 ラジカル重合開始剤は、過硫酸塩、アゾ化合物、過酸化物又はこれらの組み合わせを含んでもよい。ラジカル重合開始剤としてアゾ化合物を用いると、大きなCRCを示す重合体粒子が得られ易い傾向がある。アゾ化合物を過酸化物と組み合わせてもよい。 The radical polymerization initiator may contain a persulfate, an azo compound, a peroxide or a combination thereof. When an azo compound is used as the radical polymerization initiator, polymer particles showing a large CRC tend to be easily obtained. The azo compound may be combined with the peroxide.
 ラジカル重合開始剤として用いられるアゾ化合物の例としては、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(N-フェニルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]、及び4,4’-アゾビス(4-シアノ吉草酸)が挙げられる。大きなCRCの重合体粒子の形成の観点から、ラジカル重合開始剤が、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物、及び2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩から選ばれる少なくとも1種のアゾ化合物を含んでもよい。 Examples of azo compounds used as radical polymerization initiators are 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis {2- [1- (2-hydroxyethyl) -2. -Imidazoline-2-yl] propane} dihydrochloride, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate, 2,2'-azobis [2-( 2-Imidazoline-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride, 2,2'-azobis [2- (N-allylamidino)) Propane] dihydrochloride, 2,2'-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, 2,2'-azobis [2-methyl- N- (2-Hydroxyethyl) -propionamide], and 4,4'-azobis (4-cyanovaleric acid). From the viewpoint of forming large CRC polymer particles, the radical polymerization initiators are 2,2'-azobis (2-amidinopropane) dihydrochloride and 2,2'-azobis {2- [1- (2-hydroxy). Ethyl) -2-imidazolin-2-yl] propane} dihydrochloride, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate, and 2,2'- It may contain at least one azo compound selected from azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride.
 ラジカル重合開始剤として用いられる過硫酸塩の例としては、過硫酸カリウム、過硫酸アンモニウム、及び過硫酸ナトリウムが挙げられる。 Examples of persulfates used as radical polymerization initiators include potassium persulfate, ammonium persulfate, and sodium persulfate.
 ラジカル重合開始剤として用いられる過酸化物の例としては、メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、及び過酸化水素が挙げられる。 Examples of peroxides used as radical polymerization initiators are methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t-butyl peroxyacetate, t-butyl. Peroxyisobutyrate, t-butylperoxypivalate, and hydrogen peroxide.
 単量体水溶液中のラジカル重合開始剤の量が少ないと、重合体粒子のCRCが大きくなる傾向がある。係る観点から、ラジカル重合開始剤の量が、重合体粒子中の重合体を構成する単量体単位1モルに対して0.01~15ミリモルであってもよい。 If the amount of the radical polymerization initiator in the monomer aqueous solution is small, the CRC of the polymer particles tends to increase. From this point of view, the amount of the radical polymerization initiator may be 0.01 to 15 mmol per 1 mol of the monomer unit constituting the polymer in the polymer particles.
 単量体水溶液が連鎖移動剤を更に含んでもよい。連鎖移動剤の使用も、重合体粒子のCRC増大に寄与し得る。連鎖移動剤は、例えば次亜リン酸、亜リン酸又はこれらの組み合わせを含んでもよい。 The monomer aqueous solution may further contain a chain transfer agent. The use of chain transfer agents can also contribute to increasing the CRC of the polymer particles. The chain transfer agent may include, for example, hypophosphorous acid, phosphorous acid or a combination thereof.
 単量体水溶液が内部架橋剤を含んでいてもよく、その場合、内部架橋剤によって架橋された架橋重合体を含む重合体粒子を得ることができる。内部架橋剤は、反応性官能基(例えば重合性不飽和基)を2個以上有する化合物であってもよい。 The monomer aqueous solution may contain an internal cross-linking agent, in which case polymer particles containing a cross-linked polymer cross-linked by the internal cross-linking agent can be obtained. The internal cross-linking agent may be a compound having two or more reactive functional groups (for example, polymerizable unsaturated groups).
 内部架橋剤は、(メタ)アクリル基、アリル基、エポキシ基、又はアミノ基を有する化合物を含んでもよい。これら反応性官能基を有する化合物を内部架橋剤として用いると、大きなCRCを示す重合体粒子が得られ易い傾向がある。(メタ)アクリル基を有する化合物の例としては、(ポリ)エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、及びN,N’-メチレンビス(メタ)アクリルアミドが挙げられる。アリル基を有する化合物の例としては、トリアリルアミンが挙げられる。エポキシ基を有する化合物の例としては、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、及びエピクロロヒドリンが挙げられる。アミノ基を有する化合物の例としては、トリエチレンテトラミン、エチレンジアミン、及びヘキサメチレンジアミンが挙げられる。 The internal cross-linking agent may contain a compound having a (meth) acrylic group, an allyl group, an epoxy group, or an amino group. When a compound having these reactive functional groups is used as an internal cross-linking agent, polymer particles exhibiting a large CRC tend to be easily obtained. Examples of compounds having a (meth) acrylic group include (poly) ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and N, N'-methylenebis (meth) acrylamide. Examples of compounds having an allyl group include triallylamine. Examples of compounds having an epoxy group include (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, and epichlorohydrin. Examples of compounds having an amino group include triethylenetetramine, ethylenediamine, and hexamethylenediamine.
 単量体水溶液中の内部架橋剤の量が少ないと、重合体粒子のCRCが大きくなる傾向がある。係る観点から、内部架橋剤の量が、エチレン性不飽和単量体1モルに対して0.02~0.4ミリモルであってもよい。 If the amount of the internal cross-linking agent in the monomer aqueous solution is small, the CRC of the polymer particles tends to increase. From this point of view, the amount of the internal cross-linking agent may be 0.02 to 0.4 mmol per 1 mol of the ethylenically unsaturated monomer.
 含水ゲル状重合体の粗砕により得られる粗砕物は、粒子状であってよく、複数の粒子が連なった細長い形状であってもよい。粗砕物の最小幅は、例えば、0.1~15mm、又は1.0~10mm程度であってもよい。粗砕物の最大幅は、0.1~200mm、又は1.0~150mm程度であってもよい。粗砕のための装置の例としては、ニーダー(例えば、加圧式ニーダー、双腕型ニーダー)、ミートチョッパー、カッターミル、及びファーマミルが挙げられる。 The coarsely crushed product obtained by coarsely crushing the hydrogel polymer may be in the form of particles, or may have an elongated shape in which a plurality of particles are connected. The minimum width of the coarse crushed product may be, for example, about 0.1 to 15 mm or 1.0 to 10 mm. The maximum width of the coarse crushed product may be about 0.1 to 200 mm or 1.0 to 150 mm. Examples of devices for crushing include kneaders (eg, pressurized kneaders, double-armed kneaders), meat choppers, cutter mills, and pharma mills.
 粗砕物の乾燥により、粗砕物中の水の大部分が除去される。乾燥により得られる乾燥物の含水率が、例えば20質量%以下、10質量%以下、又は5質量%以下であってもよい。ここでの乾燥物の含水率は、水を含む乾燥物の全体質量を基準とする、乾燥物における水分量の割合を意味する。通常、水を含む乾燥物を200℃で2時間加熱したときに、加熱前後での乾燥物の質量の差を、乾燥物における水分量とみなすことができる。乾燥の方法は、例えば自然乾燥、加熱乾燥、噴霧乾燥、凍結乾燥又はこれらの組み合わせのような一般的な方法であってよい。常圧下又は減圧下で粗砕物を乾燥してもよい。常圧下の乾燥のための加熱温度が、70~250℃、又は80~200℃であってもよい。 Most of the water in the crushed product is removed by drying the crushed product. The moisture content of the dried product obtained by drying may be, for example, 20% by mass or less, 10% by mass or less, or 5% by mass or less. The water content of the dried product here means the ratio of the water content in the dried product based on the total mass of the dried product including water. Usually, when a dried product containing water is heated at 200 ° C. for 2 hours, the difference in mass of the dried product before and after heating can be regarded as the amount of water in the dried product. The drying method may be a general method such as natural drying, heat drying, spray drying, freeze drying or a combination thereof. The coarsely crushed product may be dried under normal pressure or reduced pressure. The heating temperature for drying under normal pressure may be 70 to 250 ° C. or 80 to 200 ° C.
 乾燥物を粉砕する方法は特に限定されない。例えば、遠心粉砕機、ローラーミル、スタンプミル、ジェットミル、高速回転粉砕機、及び容器駆動型ミル等の粉砕機を用いて乾燥物を粉砕することができる。 The method of crushing the dried product is not particularly limited. For example, the dried product can be crushed by using a crusher such as a centrifugal crusher, a roller mill, a stamp mill, a jet mill, a high-speed rotary crusher, and a container-driven mill.
 粉砕により得られた重合体粒子の粉体を分級してもよい。分級は、粒子群(粉体)を、粒度分布の異なる2以上の粒子群に分ける操作のことを意味する。分級後の重合体粒子の粉体の一部を再度、粉砕及び分級してもよい。 The powder of the polymer particles obtained by pulverization may be classified. Classification means an operation of dividing a particle group (powder) into two or more particle groups having different particle size distributions. A part of the powder of the polymer particles after the classification may be pulverized and classified again.
 分級の方法は、特に限定されないが、例えば、スクリーン分級、又は風力分級であってもよい。スクリーン分級は、スクリーンを振動させることによって、スクリーン上の粒子を、スクリーンの網目を通過する粒子と通過しない粒子とに分級する方法である。スクリーン分級は、例えば振動篩、ロータリシフタ、円筒撹拌篩、ブロワシフタ、又はロータップ式振とう器を用いて行うことができる。風力分級は、空気の流れを利用して粒子を分級する方法である。 The classification method is not particularly limited, but may be, for example, screen classification or wind power classification. Screen classification is a method of classifying particles on a screen into particles that pass through the mesh of the screen and particles that do not pass through the screen by vibrating the screen. Screen classification can be performed using, for example, a vibrating sieve, a rotary shifter, a cylindrical stirring sieve, a blower shifter, or a low-tap shaker. Wind power classification is a method of classifying particles using the flow of air.
 粉砕、及び必要により分級を経て得られる、架橋剤溶液と混合される前の重合体粒子の中位粒子径が、例えば200~500μmであってもよい。 The medium particle size of the polymer particles before being mixed with the cross-linking agent solution, which is obtained through pulverization and, if necessary, classification, may be, for example, 200 to 500 μm.
 重合体粒子の粉体と架橋剤溶液との混合物を加熱することにより、主に重合体粒子の表面近傍の重合体が表面架橋剤によって架橋される。通常、この表面架橋にともなって重合体粒子の遠心分離機保持容量(CRC)が減少する傾向がある。重合体粒子のCRCが、重合体が表面架橋剤によって架橋される前にCRC(表面架橋前)で、重合体が前記表面架橋剤によって架橋された後にCRC(表面架橋後)であるとき、CRC(表面架橋前)が65g/g以上である。また、式:ΔCRC=CRC(表面架橋前)-CRC(表面架橋後)で算出されるCRCの変化量ΔCRCが10~30g/gとなるように、重合体粒子中の重合体が表面架橋剤によって架橋される。比較的大きなCRC(表面架橋前)を示す重合体粒子を、ΔCRCが特定範囲内となるような条件で表面架橋することにより、大きなCRCを示すとともに、CRCと加圧下吸収倍率(AAP)との差が大きい吸収性樹脂粒子を得ることができる。 By heating the mixture of the polymer particle powder and the cross-linking agent solution, the polymer mainly near the surface of the polymer particles is cross-linked by the surface cross-linking agent. Usually, the centrifuge holding capacity (CRC) of the polymer particles tends to decrease with this surface cross-linking. When the CRC of the polymer particles is CRC (before surface cross-linking) before the polymer is cross-linked by the surface cross-linking agent and CRC (after surface cross-linking) after the polymer is cross-linked by the surface cross-linking agent. (Before surface cross-linking) is 65 g / g or more. Further, the polymer in the polymer particles is a surface cross-linking agent so that the amount of change in CRC calculated by the formula: ΔCRC = CRC (before surface cross-linking) -CRC (after surface cross-linking) is 10 to 30 g / g. Is bridged by. By surface-crosslinking polymer particles exhibiting a relatively large CRC (before surface cross-linking) under conditions such that ΔCRC is within a specific range, a large CRC is exhibited, and the CRC and the absorption ratio under pressure (AAP) are combined. Absorbent resin particles having a large difference can be obtained.
 CRC(表面架橋前)は、66g/g以上、67g/g以上、68g/g以上、69g/g以上、70g/g以上、71g/g以上、72g/g以上、73g/g以上、74g/g以上、又は75g/g以上であってもよく、80g/g以下、79g/g以下、78g/g以下、77g/g以下、76g/g以下、75g/g以下、74g/g以下、又は73g/g以下であってもよい。CRC(表面架橋前)は、66g/g以上で80g/g以下、79g/g以下、78g/g以下、77g/g以下、76g/g以下、75g/g以下、74g/g以下、又は73g/g以下であってもよく、67g/g以上で80g/g以下、79g/g以下、78g/g以下、77g/g以下、76g/g以下、75g/g以下、74g/g以下、又は73g/g以下であってもよく、68g/g以上で80g/g以下、79g/g以下、78g/g以下、77g/g以下、76g/g以下、75g/g以下、74g/g以下、又は73g/g以下であってもよく、69g/g以上で80g/g以下、79g/g以下、78g/g以下、77g/g以下、76g/g以下、75g/g以下、74g/g以下、又は73g/g以下であってもよく、70g/g以上で80g/g以下、79g/g以下、78g/g以下、77g/g以下、76g/g以下、75g/g以下、74g/g以下、又は73g/g以下であってもよく、71g/g以上で80g/g以下、79g/g以下、78g/g以下、77g/g以下、76g/g以下、75g/g以下、74g/g以下、又は73g/g以下であってもよく、72g/g以上で80g/g以下、79g/g以下、78g/g以下、77g/g以下、76g/g以下、75g/g以下、74g/g以下、又は73g/g以下であってもよく、73g/g以上で80g/g以下、79g/g以下、78g/g以下、77g/g以下、76g/g以下、75g/g以下、又は74g/g以下であってもよい。 CRC (before surface cross-linking) is 66 g / g or more, 67 g / g or more, 68 g / g or more, 69 g / g or more, 70 g / g or more, 71 g / g or more, 72 g / g or more, 73 g / g or more, 74 g / g. It may be g or more, or 75 g / g or more, 80 g / g or less, 79 g / g or less, 78 g / g or less, 77 g / g or less, 76 g / g or less, 75 g / g or less, 74 g / g or less, or It may be 73 g / g or less. CRC (before surface cross-linking) is 66 g / g or more and 80 g / g or less, 79 g / g or less, 78 g / g or less, 77 g / g or less, 76 g / g or less, 75 g / g or less, 74 g / g or less, or 73 g. It may be 67 g / g or more, 80 g / g or less, 79 g / g or less, 78 g / g or less, 77 g / g or less, 76 g / g or less, 75 g / g or less, 74 g / g or less, or It may be 73 g / g or less, 68 g / g or more and 80 g / g or less, 79 g / g or less, 78 g / g or less, 77 g / g or less, 76 g / g or less, 75 g / g or less, 74 g / g or less, Alternatively, it may be 73 g / g or less, and 69 g / g or more and 80 g / g or less, 79 g / g or less, 78 g / g or less, 77 g / g or less, 76 g / g or less, 75 g / g or less, 74 g / g or less. , 73 g / g or less, 70 g / g or more and 80 g / g or less, 79 g / g or less, 78 g / g or less, 77 g / g or less, 76 g / g or less, 75 g / g or less, 74 g / g Below, or 73 g / g or less, 71 g / g or more and 80 g / g or less, 79 g / g or less, 78 g / g or less, 77 g / g or less, 76 g / g or less, 75 g / g or less, 74 g / g It may be g or less, or 73 g / g or less, and 72 g / g or more and 80 g / g or less, 79 g / g or less, 78 g / g or less, 77 g / g or less, 76 g / g or less, 75 g / g or less, 74 g. / G or less, or 73 g / g or less, 73 g / g or more and 80 g / g or less, 79 g / g or less, 78 g / g or less, 77 g / g or less, 76 g / g or less, 75 g / g or less, Alternatively, it may be 74 g / g or less.
 ΔCRCは、11g/g以上、12g/g以上、13g/g以上、14g/g以上、15g/g以上、16g/g以上、17g/g以上、18g/g以上、19g/g以上、又は20g/g以上であってもよく、29g/g以下、28g/g以下、27g/g以下、26g/g以下、25g/g以下、24g/g以下、23g/g以下、22g/g以下、21g/g以下、20g/g以下、19g/g以下、又は18g/g以下であってもよい。ΔCRCは、11g/g以上で29g/g以下、28g/g以下、27g/g以下、26g/g以下、25g/g以下、24g/g以下、23g/g以下、22g/g以下、21g/g以下、20g/g以下、19g/g以下、又は18g/g以下であってもよく、12g/g以上で29g/g以下、28g/g以下、27g/g以下、26g/g以下、25g/g以下、24g/g以下、23g/g以下、22g/g以下、21g/g以下、20g/g以下、19g/g以下、又は18g/g以下であってもよく、13/g以上で29g/g以下、28g/g以下、27g/g以下、26g/g以下、25g/g以下、24g/g以下、23g/g以下、22g/g以下、21g/g以下、20g/g以下、19g/g以下、又は18g/g以下であってもよく、14g/g以上で29g/g以下、28g/g以下、27g/g以下、26g/g以下、25g/g以下、24g/g以下、23g/g以下、22g/g以下、21g/g以下、20g/g以下、19g/g以下、又は18g/g以下であってもよく、15g/g以上で29g/g以下、28g/g以下、27g/g以下、26g/g以下、25g/g以下、24g/g以下、23g/g以下、22g/g以下、21g/g以下、20g/g以下、19g/g以下、又は18g/g以下であってもよく、16g/g以上で29g/g以下、28g/g以下、27g/g以下、26g/g以下、25g/g以下、24g/g以下、23g/g以下、22g/g以下、21g/g以下、20g/g以下、19g/g以下、又は18g/g以下であってもよく、17g/g以上で29g/g以下、28g/g以下、27g/g以下、26g/g以下、25g/g以下、24g/g以下、23g/g以下、22g/g以下、21g/g以下、20g/g以下、19g/g以下、又は18g/g以下であってもよく、18g/g以上で29g/g以下、28g/g以下、27g/g以下、26g/g以下、25g/g以下、24g/g以下、23g/g以下、22g/g以下、21g/g以下、20g/g以下、又は19g/g以下であってもよく、19g/g以上で29g/g以下、28g/g以下、27g/g以下、26g/g以下、25g/g以下、24g/g以下、23g/g以下、22g/g以下、21g/g以下、又は20g/g以下であってもよく、20g/g以上で29g/g以下、28g/g以下、27g/g以下、26g/g以下、25g/g以下、24g/g以下、23g/g以下、22g/g以下、又は21g/g以下であってもよい。 ΔCRC is 11 g / g or more, 12 g / g or more, 13 g / g or more, 14 g / g or more, 15 g / g or more, 16 g / g or more, 17 g / g or more, 18 g / g or more, 19 g / g or more, or 20 g. It may be 29 g / g or less, 28 g / g or less, 27 g / g or less, 26 g / g or less, 25 g / g or less, 24 g / g or less, 23 g / g or less, 22 g / g or less, 21 g. It may be / g or less, 20 g / g or less, 19 g / g or less, or 18 g / g or less. ΔCRC is 11 g / g or more and 29 g / g or less, 28 g / g or less, 27 g / g or less, 26 g / g or less, 25 g / g or less, 24 g / g or less, 23 g / g or less, 22 g / g or less, 21 g / g. It may be g or less, 20 g / g or less, 19 g / g or less, or 18 g / g or less, and 12 g / g or more and 29 g / g or less, 28 g / g or less, 27 g / g or less, 26 g / g or less, 25 g. / G or less, 24 g / g or less, 23 g / g or less, 22 g / g or less, 21 g / g or less, 20 g / g or less, 19 g / g or less, or 18 g / g or less, 13 / g or more 29 g / g or less, 28 g / g or less, 27 g / g or less, 26 g / g or less, 25 g / g or less, 24 g / g or less, 23 g / g or less, 22 g / g or less, 21 g / g or less, 20 g / g or less, It may be 19 g / g or less, or 18 g / g or less, and 14 g / g or more and 29 g / g or less, 28 g / g or less, 27 g / g or less, 26 g / g or less, 25 g / g or less, 24 g / g or less. , 23 g / g or less, 22 g / g or less, 21 g / g or less, 20 g / g or less, 19 g / g or less, or 18 g / g or less, and 15 g / g or more and 29 g / g or less, 28 g / g Below, 27 g / g or less, 26 g / g or less, 25 g / g or less, 24 g / g or less, 23 g / g or less, 22 g / g or less, 21 g / g or less, 20 g / g or less, 19 g / g or less, or 18 g / g or less. It may be 16 g / g or more and 29 g / g or less, 28 g / g or less, 27 g / g or less, 26 g / g or less, 25 g / g or less, 24 g / g or less, 23 g / g or less, 22 g / g or less. It may be g or less, 21 g / g or less, 20 g / g or less, 19 g / g or less, or 18 g / g or less, and 17 g / g or more and 29 g / g or less, 28 g / g or less, 27 g / g or less, 26 g. It may be / g or less, 25 g / g or less, 24 g / g or less, 23 g / g or less, 22 g / g or less, 21 g / g or less, 20 g / g or less, 19 g / g or less, or 18 g / g or less. 18 g / g or more and 29 g / g or less, 28 g / g or less, 27 g / g or less, 26 g / g or less, 25 g / g or less, 24 g / g or less, 23 g / g or less, 22 g / g or less, 21 g / g or less, It may be 20 g / g or less, or 19 g / g or less, and 19 g / g or more and 29 g / g or less, 28 g / g or less, 27 g / g or less, 26 g / g or less, 25 g / g or less, 24 g / g or less. , 23 g / g or less, 22 g / g or less, 21 g / g or less, or 20 g / g or less, 20 G / g or more and 29 g / g or less, 28 g / g or less, 27 g / g or less, 26 g / g or less, 25 g / g or less, 24 g / g or less, 23 g / g or less, 22 g / g or less, or 21 g / g or less It may be.
 CRC(表面架橋前)が65g/g以上74g/g未満、又は70g/g以上74g/g未満であるときに、ΔCRCが10~20g/gであってもよい。CRC(表面架橋前)が74g/g以上80g/g以下であるときに、ΔCRCが10~30g/gであってもよい。 When the CRC (before surface cross-linking) is 65 g / g or more and less than 74 g / g, or 70 g / g or more and less than 74 g / g, the Δ CRC may be 10 to 20 g / g. When the CRC (before surface cross-linking) is 74 g / g or more and 80 g / g or less, the ΔCRC may be 10 to 30 g / g.
 CRC(表面架橋後)は、例えば30~70g/g、40~70g/g、又は50~70g/gであってもよい。 The CRC (after surface cross-linking) may be, for example, 30 to 70 g / g, 40 to 70 g / g, or 50 to 70 g / g.
 ここでのCRCは、温度25±2℃、湿度50±10%の環境下で測定される値である。CRCを測定する方法は、質量Mc(g)の重合体粒子(又は吸水性樹脂粒子)が収容された、60mm×85mmの矩形の主面を有する不織布バッグを、温度25±2℃の生理食塩水に30分間浸漬することにより重合体粒子を膨潤させてゲルを形成することと、不織布バッグ中のゲルを、遠心分離機によって250Gの遠心力を3分間加えることにより脱水することと、脱水後のゲル及び不織布バッグの質量Ma(g)を測定することと、重合体粒子が収容されていない前記不織布バッグを、生理食塩水に30分間浸漬してから遠心分離機によって250Gの遠心力を3分間加えることにより脱水し、脱水後の不織布バッグの質量Mb(g)を測定することと、下記式:
CRC[g/g] = {(Ma-Mb)-Mc}/Mc
によりCRCを算出することとを含む。Mcは0.2±0.002gである。重合体粒子が収容された不織布バッグを生理食塩水に浸漬している間、重合体粒子が限界量まで吸水するように、必要により生理食塩水を撹拌してもよい。CRCの測定方法は、後述の実施例において更に詳細に説明される。CRC(表面架橋後)は、表面架橋された重合体粒子の粉体のうち、目開き850μmの篩を通過した分画について測定される値であってもよい。
The CRC here is a value measured in an environment where the temperature is 25 ± 2 ° C. and the humidity is 50 ± 10%. The method for measuring CRC is to use a non-woven bag having a rectangular main surface of 60 mm × 85 mm containing polymer particles (or water-absorbent resin particles) having a mass of Mc (g) and physiological salt having a temperature of 25 ± 2 ° C. The polymer particles are swollen by immersing in water for 30 minutes to form a gel, and the gel in the non-woven bag is dehydrated by applying a centrifugal force of 250 G for 3 minutes with a centrifugal separator, and after dehydration. The mass Ma (g) of the gel and the non-woven fabric bag was measured, and the non-woven fabric bag containing no polymer particles was immersed in physiological saline for 30 minutes, and then a centrifugal force of 250 G was applied by a centrifugal separator. Dehydrate by adding for a minute, and measure the mass Mb (g) of the non-woven bag after dewatering, and the following formula:
CRC [g / g] = {(Ma-Mb) -Mc} / Mc
Includes calculating CRC by. Mc is 0.2 ± 0.002 g. While the non-woven fabric bag containing the polymer particles is immersed in the saline solution, the saline solution may be agitated if necessary so that the polymer particles absorb water to the limit amount. The method of measuring CRC will be described in more detail in Examples described later. The CRC (after surface cross-linking) may be a value measured for the fraction of the powder of the surface-cross-linked polymer particles that has passed through a sieve having an opening of 850 μm.
 表面架橋にともなうΔCRCは、例えば、表面架橋剤の量の重合体粒子の量に対する比率、架橋剤溶液における表面架橋剤の量と水の量との比率、又はこれらの組み合わせに基づいて、調整することができる。例えば、表面架橋剤(特にアルキレンカーボネート)の量が重合体粒子1g当たり0.01~0.15ミリモルで、架橋剤溶液において水の量に対する表面架橋剤(特にアルキレンカーボネート)の量のモル比が0.01~0.10であると、ΔCRCが10~30g/gとなるように重合体粒子中の重合体が表面架橋剤によって架橋され易い。 The ΔCRC associated with surface cross-linking is adjusted based on, for example, the ratio of the amount of the surface cross-linking agent to the amount of polymer particles, the ratio of the amount of the surface cross-linking agent to the amount of water in the cross-linking agent solution, or a combination thereof. be able to. For example, the amount of surface cross-linking agent (particularly alkylene carbonate) is 0.01 to 0.15 mmol per gram of polymer particles, and the molar ratio of the amount of surface cross-linking agent (particularly alkylene carbonate) to the amount of water in the cross-linking agent solution is When it is 0.01 to 0.10, the polymer in the polymer particles is easily crosslinked by the surface cross-linking agent so that the ΔCRC is 10 to 30 g / g.
 重合体が表面架橋剤によって架橋された後の重合体粒子の、圧力2.07kPaでの加圧下吸収倍率(AAP)が、9.0g/g以上であってもよい。AAPの上限は、特に限定されないが、通常40g/g程度である。AAPの測定方法は、後述の実施例において詳細に説明される。 The absorption ratio (AAP) of the polymer particles under pressure at a pressure of 2.07 kPa after the polymer is crosslinked with a surface cross-linking agent may be 9.0 g / g or more. The upper limit of AAP is not particularly limited, but is usually about 40 g / g. The method for measuring AAP will be described in detail in Examples described later.
 架橋剤溶液は、水、及び水に溶解した表面架橋剤を含有する溶液であることができる。表面架橋剤は水以外の溶媒を更に含んでもよいが、架橋剤溶液に含まれる溶媒は、実質的に水のみであってもよい。水以外の溶媒の割合が、架橋剤溶液の質量を基準として、10質量%以下、5質量%以下、又は1質量%以下であってもよい。 The cross-linking agent solution can be water and a solution containing a surface cross-linking agent dissolved in water. The surface cross-linking agent may further contain a solvent other than water, but the solvent contained in the cross-linking agent solution may be substantially only water. The proportion of the solvent other than water may be 10% by mass or less, 5% by mass or less, or 1% by mass or less based on the mass of the cross-linking agent solution.
 架橋剤溶液に含まれる表面架橋剤の例としては、エチレンカーボネート等のアルキレンカーボネート化合物;エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、及びポリグリセリン等のポリオール化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル(ポリ)プロピレングリコールポリグリシジルエーテル、及び(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、及びα-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、及びヘキサメチレンジイソシアネート等のイソシアネート化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、及び3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物が挙げられる。これらの表面架橋剤は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。表面架橋剤が、アルキレンカーボネート化合物、ポリオール化合物、又はこれらの組み合わせを含んでいてもよい。表面架橋剤におけるアルキレンカーボネート化合物の比率が、表面架橋剤の総質量を基準として50~100質量%、60~100質量%、70~100質量%、80~100質量%、又は90~100質量%であってもよい。 Examples of surface cross-linking agents contained in the cross-linking agent solution are alkylene carbonate compounds such as ethylene carbonate; ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol. , And polyol compounds such as polyglycerin; (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylpropan triglycidyl ether (poly) propylene glycol polyglycidyl ether, and Polyglycidyl compounds such as (poly) glycerol polyglycidyl ethers; haloepoxy compounds such as epichlorohydrin, epibromhydrin, and α-methyl epichlorohydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl -3-oxetane methanol, 3-ethyl-3-oxetane methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, and 3-butyl-3-oxetane Examples thereof include oxetane compounds such as ethanol; oxazoline compounds such as 1,2-ethylene bisoxazoline; and hydroxyalkylamide compounds such as bis [N, N-di (β-hydroxyethyl)] adipamide. These surface cross-linking agents may be used alone or in combination of two or more. The surface cross-linking agent may contain an alkylene carbonate compound, a polyol compound, or a combination thereof. The ratio of the alkylene carbonate compound in the surface cross-linking agent is 50 to 100% by mass, 60 to 100% by mass, 70 to 100% by mass, 80 to 100% by mass, or 90 to 100% by mass based on the total mass of the surface cross-linking agent. It may be.
 吸水性樹脂粒子の加圧下の吸水性能等の観点から、表面架橋剤の量は、重合体粒子中の重合体を構成する単量体単位1モル当たり、0.001~0.10モル、0.005~0.05モル、又は0.01~0.02モルであってもよい。重合体粒子1gに対する表面架橋剤の量が、0.01~1.30ミリモル、0.05~0.65ミリモル、0.08~0.25ミリモル、又は0.10~0.20ミリモルであってもよい。 From the viewpoint of water absorption performance under pressure of the water-absorbent resin particles, the amount of the surface cross-linking agent is 0.001 to 0.10 mol, 0 per mol of the monomer unit constituting the polymer in the polymer particles. It may be .005 to 0.05 mol or 0.01 to 0.02 mol. The amount of the surface cross-linking agent per 1 g of the polymer particles was 0.01 to 1.30 mmol, 0.05 to 0.65 mmol, 0.08 to 0.25 mmol, or 0.10 to 0.20 mmol. You may.
 表面架橋のための加熱温度及び加熱時間は、表面架橋剤の種類等を考慮して、架橋反応が適切に進行するように調整される。例えば、表面架橋のための加熱温度が80℃以上、100℃以上、120℃以上、150℃以上、又は180℃を超えていてもよく、190℃以上であってもよい。表面架橋のための加熱温度が250℃以下であってもよい。表面架橋のための加熱時間は、例えば5~90分であってもよい。 The heating temperature and heating time for surface cross-linking are adjusted so that the cross-linking reaction proceeds appropriately in consideration of the type of surface cross-linking agent and the like. For example, the heating temperature for surface cross-linking may be 80 ° C. or higher, 100 ° C. or higher, 120 ° C. or higher, 150 ° C. or higher, or 180 ° C. or higher, or 190 ° C. or higher. The heating temperature for surface cross-linking may be 250 ° C. or lower. The heating time for surface cross-linking may be, for example, 5 to 90 minutes.
 表面架橋された重合体粒子は、必要により更に乾燥してもよいし、分級してもよい。重合体粒子の表面に無機粒子を付着させてもよい。無機粒子の例としては、非晶質シリカ等のシリカ粒子が挙げられる。 The surface-crosslinked polymer particles may be further dried or classified if necessary. Inorganic particles may be attached to the surface of the polymer particles. Examples of inorganic particles include silica particles such as amorphous silica.
 本実施形態に係る方法によれば、CRCとAAPとの差(CRC-AAP)が大きい吸水性樹脂粒子(又は、表面架橋された重合体粒子)を容易に得ることができる。吸水性樹脂粒子が示すCRC-AAPの値は、例えば30g/g以上、34g/g以上、38g/g以上、又は40g/g以上であってもよく、55g/g以下、又は50g/g以下であってもよい。吸水性樹脂粒子が示すCRC-AAPの値が、30g/g以上で55g/g以下、又は50g/g以下であってもよく、34g/g以上で55g/g以下、又は50g/g以下であってもよく、38g/g以上で55g/g以下、又は50g/g以下であってもよく、40g/g以上で55g/g以下、又は50g/g以下であってもよい。 According to the method according to the present embodiment, water-absorbent resin particles (or surface-crosslinked polymer particles) having a large difference (CRC-AAP) between CRC and AAP can be easily obtained. The CRC-AAP value indicated by the water-absorbent resin particles may be, for example, 30 g / g or more, 34 g / g or more, 38 g / g or more, or 40 g / g or more, 55 g / g or less, or 50 g / g or less. It may be. The CRC-AAP value indicated by the water-absorbent resin particles may be 55 g / g or less at 30 g / g or more, or 50 g / g or less, and 55 g / g or less at 34 g / g or more, or 50 g / g or less. It may be 38 g / g or more and 55 g / g or less, or 50 g / g or less, and 40 g / g or more and 55 g / g or less, or 50 g / g or less.
 製造された吸水性樹脂粒子は、例えば、おむつ等の吸収性物品を構成する吸収体を形成するために用いられる。図1は吸収性物品の一例を示す断面図である。図1に示す吸収性物品100は、シート状の吸収体10と、コアラップ20a,20bと、液体透過性シート30と、液体不透過性シート40と、を備える。吸収性物品100において、液体不透過性シート40、コアラップ20b、吸収体10、コアラップ20a、及び、液体透過性シート30がこの順に積層している。吸収体10は、上述の実施形態に係る方法によって製造された吸水性樹脂粒子10aと、繊維状物を含む繊維層10bと、を有する。吸水性樹脂粒子10aは、繊維層10b内に分散している。 The produced water-absorbent resin particles are used to form an absorbent body that constitutes an absorbent article such as a diaper, for example. FIG. 1 is a cross-sectional view showing an example of an absorbent article. The absorbent article 100 shown in FIG. 1 includes a sheet-shaped absorber 10, core wraps 20a and 20b, a liquid permeable sheet 30, and a liquid permeable sheet 40. In the absorbent article 100, the liquid permeable sheet 40, the core wrap 20b, the absorbent body 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order. The absorber 10 has water-absorbent resin particles 10a produced by the method according to the above-described embodiment, and a fiber layer 10b containing a fibrous material. The water-absorbent resin particles 10a are dispersed in the fiber layer 10b.
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
1.測定方法
 以下の手順により、遠心分離機保持容量(CRC)、及び加圧下吸収倍率(AAP)を測定した。
1. 1. Measurement method The centrifuge holding capacity (CRC) and the absorption ratio under pressure (AAP) were measured by the following procedure.
1-1.遠心分離機保持容量(CRC)
 以下の手順で、CRCを温度25℃±2℃、湿度50±10%の環境下で測定した。
 60mm×170mmの大きさの不織布(製品名:ヒートパックMWA-18、日本製紙パピリア株式会社製)を長手方向に半分に折ることで60mm×85mmの大きさに調整する。長手方向に延びる両辺のそれぞれにおいて不織布同士をヒートシールで圧着する。これにより、幅60mm、長さ85mmのサイズを有し、長手方向における一方の端部に開口部を有する不織布バッグを準備する。不織布バッグの長手方向に沿う両辺において、ヒートシールが不織布の間に介在する幅5mmの圧着部が形成される。不織布バッグの内部に、測定対象の粒子0.2±0.002gを収容する。次いで、不織布バッグの開口部をヒートシールで圧着することにより、不織布バッグを閉じる。
1-1. Centrifuge retention capacity (CRC)
The CRC was measured in the environment of a temperature of 25 ° C. ± 2 ° C. and a humidity of 50 ± 10% by the following procedure.
A non-woven fabric having a size of 60 mm × 170 mm (product name: Heat Pack MWA-18, manufactured by Nippon Paper Papylia Co., Ltd.) is folded in half in the longitudinal direction to adjust the size to 60 mm × 85 mm. Nonwoven fabrics are heat-sealed against each other on both sides extending in the longitudinal direction. This prepares a non-woven fabric bag having a size of 60 mm in width and 85 mm in length and having an opening at one end in the longitudinal direction. On both sides along the longitudinal direction of the non-woven fabric bag, a crimping portion having a width of 5 mm is formed in which a heat seal is interposed between the non-woven fabrics. The non-woven fabric bag contains 0.2 ± 0.002 g of particles to be measured. Next, the non-woven fabric bag is closed by crimping the opening of the non-woven fabric bag with a heat seal.
 不織布バッグが折り重ならない状態で、ステンレス製バット(240mm×320mm×45mm)に収容された生理食塩水1000g上に不織布バッグを浮かべることにより、不織布バッグの全体を完全に湿らせる。不織布バッグを生理食塩水に投入してから1分以内にスパチュラにて不織布バッグを生理食塩水に浸漬させ、その後、スターラーチップ(8mmφ×30mm、リング無し)を用いて生理食塩水を300rpmで撹拌することにより、測定対象の粒子を十分に膨潤させる。 The entire non-woven fabric bag is completely moistened by floating the non-woven fabric bag on 1000 g of physiological saline contained in a stainless steel vat (240 mm × 320 mm × 45 mm) without folding the non-woven fabric bag. Immerse the non-woven fabric bag in the saline solution with a spatula within 1 minute after putting the non-woven fabric bag in the saline solution, and then stir the saline solution at 300 rpm using a stirrer tip (8 mmφ × 30 mm, no ring). By doing so, the particles to be measured are sufficiently swelled.
 不織布バッグを生理食塩水に投入してから30分後に生理食塩水の中から不織布バッグを取り出す。そして、遠心分離機(株式会社コクサン製、型番:H-122)に不織布バッグを入れる。遠心分離機における遠心力が250Gに到達した後、3分間不織布バッグの脱水を行う。脱水後、ゲルの質量を含む不織布バッグの質量Maを秤量する。測定対象の粒子を収容しないで不織布バッグに対して上述の操作と同様の操作を施し、不織布バッグの質量Mbを測定する。下記式に基づきCRCを算出する。Mcは、測定に用いた測定対象の粒子の質量0.2gの精秤値である。
  CRC[g/g] = {(Ma-Mb)-Mc}/Mc
Thirty minutes after the non-woven fabric bag is put into the physiological saline solution, the non-woven fabric bag is taken out from the physiological saline solution. Then, the non-woven fabric bag is put into a centrifuge (manufactured by Kokusan Co., Ltd., model number: H-122). After the centrifugal force in the centrifuge reaches 250 G, the non-woven fabric bag is dehydrated for 3 minutes. After dehydration, the mass Ma of the non-woven fabric bag containing the mass of the gel is weighed. The non-woven fabric bag is subjected to the same operation as described above without accommodating the particles to be measured, and the mass Mb of the non-woven fabric bag is measured. The CRC is calculated based on the following formula. Mc is a precise value of 0.2 g of the mass of the particles to be measured used in the measurement.
CRC [g / g] = {(Ma-Mb) -Mc} / Mc
1-2.加圧下吸収倍率(AAP)
 図2に示す測定装置110を用いて、圧力2.07kPa(0.3psi)での加圧下吸収倍率(AAP)を測定する。測定装置110は、重り112、内径60mmのプラスチック製の円筒114、及び、400メッシュ(目開き38μm)の金網116から構成される。金網116が円筒114の一方の開口を塞ぎ、金網116が水平になるように円筒114及び金網116を配置する。重り112は、円板部112aと、円板部112aに垂直な方向に円板部112aの中央から延びる棒状部112bと、貫通孔を中央に有する円柱部112cとを有する。円柱部112cの貫通孔に棒状部112bが挿入される。円板部112aは、円筒114の内部において円筒114の長手方向に移動可能であるように円筒114の内径と略同等の径を有している。円柱部112cの径は円板部112aの径よりも小さい。重り112の重量を、測定対象の粒子に2.07kPaの圧力が加えられるように調整する。円筒114の内部において、0.90gの測定対象の粒子120を金網116上に均一に散布する。散布された粒子の上に、円筒114に挿入された重り112を載せる。この状態で、測定装置110、及び吸液前の粒子120の合計の質量Wa[g]を測定する。
1-2. Absorption rate under pressure (AAP)
Using the measuring device 110 shown in FIG. 2, the absorption ratio (AAP) under pressure at a pressure of 2.07 kPa (0.3 psi) is measured. The measuring device 110 is composed of a weight 112, a plastic cylinder 114 having an inner diameter of 60 mm, and a wire mesh 116 having a 400 mesh (opening 38 μm). The wire mesh 116 closes one opening of the cylinder 114, and the cylinder 114 and the wire mesh 116 are arranged so that the wire mesh 116 is horizontal. The weight 112 has a disc portion 112a, a rod-shaped portion 112b extending from the center of the disc portion 112a in a direction perpendicular to the disc portion 112a, and a cylindrical portion 112c having a through hole in the center. The rod-shaped portion 112b is inserted into the through hole of the cylindrical portion 112c. The disk portion 112a has a diameter substantially equal to the inner diameter of the cylinder 114 so that it can be moved in the longitudinal direction of the cylinder 114 inside the cylinder 114. The diameter of the cylindrical portion 112c is smaller than the diameter of the disc portion 112a. The weight of the weight 112 is adjusted so that a pressure of 2.07 kPa is applied to the particles to be measured. Inside the cylinder 114, 0.90 g of particles 120 to be measured are uniformly scattered on the wire mesh 116. The weight 112 inserted in the cylinder 114 is placed on the sprayed particles. In this state, the total mass Wa [g] of the measuring device 110 and the particles 120 before absorbing the liquid is measured.
 ステンレスシャーレ130の凹部における底面(直径150mm)の中央に、直径90mm、厚さ7mmのガラスフィルター140(ISO4793 P-250)を置く。次いで、ステンレスシャーレに、水面がガラスフィルター140の上面と同じ高さになるまで、0.90質量%の塩化ナトリウム水溶液(25℃±2℃)を入れる。ガラスフィルター140上に直径90mmの1枚のろ紙150(ADVANTEC東洋株式会社、製品名:(No.3)、厚さ0.23mm、保留粒子径5μm)を載せ、ろ紙150の表面全体を塩化ナトリウム水溶液で濡らし、過剰の塩化ナトリウム水溶液を除く。続いて、ろ紙150上に、吸液前の粒子120が仕込まれた測定装置110を載せ、圧力2.07kPaで粒子120を加圧しながら、粒子120に塩化ナトリウム水溶液を吸収させる。吸収開始から1時間後、測定装置110を持ち上げ、測定装置110、及び吸液後の粒子120の合計の質量Wb[g]を測定する。 A glass filter 140 (ISO4793 P-250) having a diameter of 90 mm and a thickness of 7 mm is placed in the center of the bottom surface (diameter 150 mm) in the recess of the stainless steel petri dish 130. Next, 0.90 mass% sodium chloride aqueous solution (25 ° C. ± 2 ° C.) is added to the stainless steel petri dish until the water surface is level with the upper surface of the glass filter 140. A sheet of filter paper 150 with a diameter of 90 mm (ADVANTEC Toyo Co., Ltd., product name: (No. 3), thickness 0.23 mm, reserved particle diameter 5 μm) is placed on the glass filter 140, and the entire surface of the filter paper 150 is sodium chloride. Wet with an aqueous solution to remove excess sodium chloride aqueous solution. Subsequently, the measuring device 110 in which the particles 120 before liquid absorption are charged is placed on the filter paper 150, and the particles 120 are made to absorb the sodium chloride aqueous solution while pressurizing the particles 120 at a pressure of 2.07 kPa. One hour after the start of absorption, the measuring device 110 is lifted and the total mass Wb [g] of the measuring device 110 and the particles 120 after absorbing the liquid is measured.
 Wa及びWbから、下記式によって加圧下吸収倍率(AAP)[g/g]を算出する。
  AAP[g/g]=(Wb[g]-Wa[g])/0.90[g]
From Wa and Wb, the absorption ratio under pressure (AAP) [g / g] is calculated by the following formula.
AAP [g / g] = (Wb [g] -Wa [g]) /0.90 [g]
2.表面架橋前の重合体粒子
(製造例1)
 内容積2Lのセパラブルフラスコに340.0g(4.72モル)のアクリル酸を入れた。セパラブルフラスコ内のアクリル酸に、撹拌しながらイオン交換水291.7gを加えた。次いで、氷浴下で297.8gの48質量%水酸化ナトリウムを滴下することにより、単量体濃度45質量%のアクリル酸の部分中和液を調製した。
 調製されたアクリル酸部分中和液888.30gと、イオン交換水150.49gと、内部架橋剤としてポリエチレングリコールジアクリレート(n=9)0.309g(日油株式会社、ブレンマーADE-400A)とを、フッ素樹脂コーティングされたステンレスバット(外寸:297mm×232mm×高さ50mm)内に入れ、2個の撹拌子(直径8mm、長さ45mm)で撹拌することにより、ステンレスバット内に均一な混合物を形成させた。その後、ステンレスバットの上部をポリエチレンフィルムでシールすることによりステンレスバット内を密閉した。ステンレスバッド内の混合物の温度を25℃に調整後、混合物を窒素置換することにより、溶存酸素量を0.1ppm以下に調整した。次いで、混合物を300rpmで撹拌しながら、濃度5質量%の(2,2’-アゾビス(2-アミジノプロパン)二塩酸塩(V-50)水溶液(和光純薬工業株式会社製)6.46g(1.191ミリモル)、濃度0.5質量%のL-アスコルビン酸水溶液3.39g、及び、濃度0.35質量%の過酸化水素水3.69gを、注射器(テルモ株式会社製10mL容ディスポシリンジ、テルモ株式会社製注射針)を用いて密閉状態で順番に滴下した。
 過酸化水素水を滴下後、直ちに重合反応が開始した。重合反応の進行にともなって反応液の粘度が増加していった後、反応液がゲル化した。過酸化水素水を滴下終了後、3分の時点で設置した温度計は106℃を示し、その後温度が低下し始めた。反応液のゲル化によって形成された、水及び重合体を含む含水ゲル状重合体が入ったステンレスバットを75℃の水浴に浸し、その状態で含水ゲル状重合体を20分間熟成させた。
 熟成後の含水ゲル状重合体の全量を、ステンレスバットから取り出し、およそ0.8cm角に裁断することにより粗砕した。得られた粗砕物を目開き0.8cm×0.8cmの金網上に広げて配置し、180℃で30分間熱風乾燥して乾燥物を得た。
 次いで、遠心粉砕機(Retsch社製、ZM200、スクリーン口径1mm、6000rpm)を用いて乾燥物を粉砕した。粉砕後の粉体を、目開き850μmの篩及び目開き180μmの篩を用い、1分間の振とうによって篩分けした。目開き850μmの篩を通過し目開き180μmの篩上に残った不定形破砕状の重合体粒子を得た。得られた重合体粒子のCRC及びAAPを測定した。
2. Polymer particles before surface cross-linking (Production Example 1)
340.0 g (4.72 mol) of acrylic acid was placed in a separable flask having an internal volume of 2 L. To the acrylic acid in the separable flask, 291.7 g of ion-exchanged water was added with stirring. Then, 297.8 g of 48% by mass sodium hydroxide was added dropwise under an ice bath to prepare a partially neutralized solution of acrylic acid having a monomer concentration of 45% by mass.
888.30 g of the prepared acrylic acid partial neutralizing solution, 150.49 g of ion-exchanged water, and 0.309 g of polyethylene glycol diacrylate (n = 9) as an internal cross-linking agent (Nichiyu Co., Ltd., Blemmer ADE-400A). Is placed in a fluororesin-coated stainless steel bat (outer dimensions: 297 mm x 232 mm x height 50 mm) and stirred with two stirrers (diameter 8 mm, length 45 mm) to make it uniform in the stainless steel bat. A mixture was formed. Then, the inside of the stainless steel vat was sealed by sealing the upper part of the stainless steel vat with a polyethylene film. After adjusting the temperature of the mixture in the stainless steel pad to 25 ° C., the amount of dissolved oxygen was adjusted to 0.1 ppm or less by substituting nitrogen in the mixture. Then, while stirring the mixture at 300 rpm, 6.46 g (manufactured by Wako Pure Chemical Industries, Ltd.) aqueous solution (2,2'-azobis (2-amidinopropane) dihydrochloride (V-50)) having a concentration of 5% by mass (manufactured by Wako Pure Chemical Industries, Ltd.) 1.191 mmol), 3.39 g of L-ascorbic acid aqueous solution with a concentration of 0.5 mass%, and 3.69 g of hydrogen peroxide solution with a concentration of 0.35 mass%. , Terumo Co., Ltd. injection needle) was used to drop the drops in order in a sealed state.
Immediately after the hydrogen peroxide solution was added dropwise, the polymerization reaction started. After the viscosity of the reaction solution increased as the polymerization reaction proceeded, the reaction solution gelled. The thermometer installed at 3 minutes after the completion of dropping the hydrogen peroxide solution showed 106 ° C., and then the temperature began to decrease. A stainless steel vat containing a hydrogel polymer containing water and a polymer formed by gelation of the reaction solution was immersed in a water bath at 75 ° C., and the hydrogel polymer was aged in that state for 20 minutes.
The entire amount of the hydrogel-like polymer after aging was taken out from a stainless steel vat and roughly crushed by cutting into approximately 0.8 cm squares. The obtained coarse crushed product was spread over a wire mesh having a mesh size of 0.8 cm × 0.8 cm and placed, and dried with hot air at 180 ° C. for 30 minutes to obtain a dried product.
Next, the dried product was crushed using a centrifugal crusher (manufactured by Retsch, ZM200, screen diameter 1 mm, 6000 rpm). The powder after pulverization was sieved by shaking for 1 minute using a sieve having an opening of 850 μm and a sieve having an opening of 180 μm. Amorphous crushed polymer particles that passed through a sieve having a mesh size of 850 μm and remained on the sieve having a mesh size of 180 μm were obtained. The CRC and AAP of the obtained polymer particles were measured.
(製造例2)
 アクリル酸の部分中和液を製造例1と同様にして調製した。調製されたアクリル酸部分中和液888.30gと、イオン交換水157.49gと、内部架橋剤としてポリエチレングリコールジアクリレート(n=9)0.077g(日油株式会社、ブレンマーADE-400A)とを、フッ素樹脂コーティングされたステンレスバット(外寸:297mm×232mm×高さ50mm)内に入れ、2個の撹拌子(直径8mm、長さ45mm)で撹拌することにより、均一な混合物をステンレスバット内に形成させた。その後、ステンレスバットの上部をポリエチレンフィルムでシールすることによりステンレスバット内を密閉した。ステンレスバッド内の混合物の温度を25℃に調整後、混合物を窒素置換することにより溶存酸素量を0.1ppm以下に調整した。次いで、混合物を300rpmで撹拌しながら、濃度5質量%の(2,2’-アゾビス(2-アミジノプロパン)二塩酸塩(V-50)水溶液(和光純薬工業株式会社製)3.23g(0.596ミリモル)、濃度0.5質量%のL-アスコルビン酸水溶液1.70g、及び、濃度0.35質量%の過酸化水素水1.85gを、注射器(テルモ株式会社製10mL容ディスポシリンジ、テルモ株式会社製注射針)を用いて密閉状態で順番に滴下した。
 過酸化水素水を滴下後、直ちに重合反応が開始した。重合反応の進行にともなって反応液の粘度が増加していった後、反応液がゲル化した。過酸化水素水を滴下終了後、4分の時点で設置した温度計は80℃を示し、その後温度が低下し始めた。反応液のゲル化によって形成された、水及び重合体を含む含水ゲル状重合体が入ったステンレスバットを75℃の水浴に浸し、その状態で含水ゲル状重合体を20分間熟成させた。
 熟成後の含水ゲル状重合体を、製造例1と同様の方法で粗砕して、粗砕物を得た。この粗砕物(細分化された粒子状の含水ゲル状重合体)を目開き0.8cm×0.8cmの金網上に広げて配置した後、180℃で30分間熱風乾燥して乾燥物を得た。
 次いで、遠心粉砕機(Retsch社製、ZM200、スクリーン口径1mm、6000rpm)を用いて乾燥物を粉砕した。粉砕後の粉体を、目開き850μmの篩及び目開き180μmの篩を用い、1分間の振とうによって篩分けした。目開き850μmの篩を通過し目開き180μmの篩上に残った不定形破砕状の重合体粒子を得た。得られた重合体粒子のCRC及びAAPを測定した。
(Manufacturing Example 2)
A partially neutralized solution of acrylic acid was prepared in the same manner as in Production Example 1. 888.30 g of the prepared acrylic acid partial neutralizing solution, 157.49 g of ion-exchanged water, and 0.077 g of polyethylene glycol diacrylate (n = 9) as an internal cross-linking agent (Nichiyu Co., Ltd., Blemmer ADE-400A). Is placed in a fluororesin-coated stainless steel bat (outer dimensions: 297 mm x 232 mm x height 50 mm) and stirred with two stirrers (diameter 8 mm, length 45 mm) to obtain a uniform mixture in the stainless steel bat. It was formed inside. Then, the inside of the stainless steel vat was sealed by sealing the upper part of the stainless steel vat with a polyethylene film. After adjusting the temperature of the mixture in the stainless steel pad to 25 ° C., the amount of dissolved oxygen was adjusted to 0.1 ppm or less by substituting nitrogen in the mixture. Then, while stirring the mixture at 300 rpm, 3.23 g (manufactured by Wako Pure Chemical Industries, Ltd.) aqueous solution (2,2'-azobis (2-amidinopropane) dihydrochloride (V-50)) having a concentration of 5% by mass (manufactured by Wako Pure Chemical Industries, Ltd.) 1.70 g of L-ascorbic acid aqueous solution having a concentration of 0.596 mmol) and 0.5 mass% of concentration, and 1.85 g of hydrogen peroxide solution having a concentration of 0.35 mass% were added to a syringe (10 mL disposable syringe manufactured by Terumo Co., Ltd.). , Terumo Co., Ltd. injection needle) was used to drop the drops in order in a sealed state.
Immediately after the hydrogen peroxide solution was added dropwise, the polymerization reaction started. After the viscosity of the reaction solution increased as the polymerization reaction proceeded, the reaction solution gelled. The thermometer installed at 4 minutes after the completion of dropping the hydrogen peroxide solution showed 80 ° C., and then the temperature began to decrease. A stainless steel vat containing a hydrogel polymer containing water and a polymer formed by gelation of the reaction solution was immersed in a water bath at 75 ° C., and the hydrogel polymer was aged in that state for 20 minutes.
The hydrogel polymer after aging was coarsely crushed in the same manner as in Production Example 1 to obtain a coarsely crushed product. This coarsely crushed product (subdivided particulate hydrogel polymer) is spread and placed on a wire mesh with a mesh size of 0.8 cm × 0.8 cm, and then dried with hot air at 180 ° C. for 30 minutes to obtain a dried product. rice field.
Next, the dried product was crushed using a centrifugal crusher (manufactured by Retsch, ZM200, screen diameter 1 mm, 6000 rpm). The powder after pulverization was sieved by shaking for 1 minute using a sieve having an opening of 850 μm and a sieve having an opening of 180 μm. Amorphous crushed polymer particles that passed through a sieve having a mesh size of 850 μm and remained on the sieve having a mesh size of 180 μm were obtained. The CRC and AAP of the obtained polymer particles were measured.
(製造例3)
 撹拌機を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコに500g(6.94モル)の100%アクリル酸を入れた。このアクリル酸を撹拌しながらセパラブルフラスコ内にイオン交換水428.27gを加えた。続いて氷浴下で439.41gの48質量%水酸化ナトリウムを滴下することにより、単量体濃度45質量%のアクリル酸部分中和液1367.68gを調製した。同様の操作を3回繰り返して、必要量のアクリル酸部分中和液を得た。
 調製されたアクリル酸部分中和液2784.19gにイオン交換水406.49g及びポリエチレングリコールジアクリレート(n=9)0.970g(日油株式会社、ブレンマーADE-400A)を加えて反応液(単量体水溶液)を得た。この反応液を窒素ガス雰囲気下で30分間窒素ガスで置換した。次いで、反応液を開閉可能な蓋付きのシグマ型羽根を2本有するジャケット付きステンレス製5L容双腕型ニーダーに供給した。反応液の温度を30℃に保ちながら、ニーダー内を窒素ガスで置換した。続いて、反応液を撹拌しながら、2.0質量%の過硫酸ナトリウム水溶液92.52g(7.771ミリモル)及び0.5質量%のL-アスコルビン酸水溶液15.83gを加えたところ、凡そ1分後に重合が開始した。3分後に重合中の最高温度は90℃を示し、その後、内温を60℃に保ちながら、重合が開始されてから60分後、重合体及び水を含む含水ゲル状重合体をニーダーから取り出した。
 得られた含水ゲル状重合体を、喜連ローヤル株式会社製のミートチョッパー12VR-750SDXに順次投入して粗砕した。ミートチョッパーの出口に位置するプレートの穴の径は6.4mmであった。粗砕により形成された含水ゲル状重合体の粗砕物を、目開き0.8cm×0.8cmの金網上に広げて配置し、160℃で60分間熱風乾燥して乾燥物を得た。
 乾燥物を遠心粉砕機(Retsch社製、ZM200、スクリーン口径1mm、6000rpm)を用いて粉砕した。粉砕後の粉体を、目開き850μmの篩及び目開き180μmの篩を用い、1分間の振とうによって篩分けした。目開き850μmの篩を通過し目開き180μmの篩上に残った不定形破砕状の重合体粒子を得た。得られた重合体粒子のCRC及びAAPを測定した。
(Manufacturing Example 3)
500 g (6.94 mol) of 100% acrylic acid was placed in a round bottom cylindrical separable flask having an inner diameter of 11 cm and an internal volume of 2 L equipped with a stirrer. While stirring this acrylic acid, 428.27 g of ion-exchanged water was added into the separable flask. Subsequently, 439.41 g of 48 mass% sodium hydroxide was added dropwise under an ice bath to prepare 1367.68 g of a partially neutralized acrylic acid solution having a monomer concentration of 45 mass%. The same operation was repeated 3 times to obtain a required amount of acrylic acid partial neutralizing solution.
To 2784.19 g of the prepared acrylic acid partial neutralizing solution, 406.49 g of ion-exchanged water and 0.970 g of polyethylene glycol diacrylate (n = 9) (Nippon Oil Co., Ltd., Blemmer ADE-400A) were added to the reaction solution (single). (Medium aqueous solution) was obtained. This reaction solution was replaced with nitrogen gas for 30 minutes in a nitrogen gas atmosphere. Next, the reaction solution was supplied to a stainless steel 5L double-armed kneader with a jacket having two sigma-type blades with lids that can be opened and closed. The inside of the kneader was replaced with nitrogen gas while maintaining the temperature of the reaction solution at 30 ° C. Subsequently, while stirring the reaction solution, 92.52 g (7.771 mmol) of a 2.0 mass% sodium persulfate aqueous solution and 15.83 g of a 0.5 mass% L-ascorbic acid aqueous solution were added. Polymerization started after 1 minute. After 3 minutes, the maximum temperature during polymerization was 90 ° C., and then 60 minutes after the start of polymerization while keeping the internal temperature at 60 ° C., the polymer and the hydrogel polymer containing water were taken out from the kneader. rice field.
The obtained hydrogel polymer was sequentially charged into a meat chopper 12VR-750SDX manufactured by Kiren Royal Co., Ltd. and coarsely crushed. The diameter of the hole in the plate located at the outlet of the meat chopper was 6.4 mm. A coarsely crushed product of a hydrogel polymer formed by coarse crushing was spread over a wire mesh having a mesh size of 0.8 cm × 0.8 cm, and dried with hot air at 160 ° C. for 60 minutes to obtain a dried product.
The dried product was pulverized using a centrifugal pulverizer (Resch, ZM200, screen diameter 1 mm, 6000 rpm). The powder after pulverization was sieved by shaking for 1 minute using a sieve having an opening of 850 μm and a sieve having an opening of 180 μm. Amorphous crushed polymer particles that passed through a sieve having a mesh size of 850 μm and remained on the sieve having a mesh size of 180 μm were obtained. The CRC and AAP of the obtained polymer particles were measured.
(製造例4)
 撹拌機を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコに500g(6.94モル)の100%アクリル酸を入れた。このアクリル酸を撹拌しながらセパラブルフラスコ内にイオン交換水428.27gを加えた。続いて氷浴下で439.41gの48質量%水酸化ナトリウムを滴下することにより、単量体濃度45質量%のアクリル酸部分中和液1367.68gを調製した。同様の操作を2回繰り返して、必要量のアクリル酸部分中和液を得た。
 調製されたアクリル酸部分中和液2320.16gにイオン交換水337.13g及びポリエチレングリコールジアクリレート(n=9)2.420g(日油株式会社、ブレンマーADE-400A)を加えて反応液(単量体水溶液)を得た。この反応液を窒素ガス雰囲気下で30分間窒素ガスで置換した。反応液を開閉可能な蓋付きのシグマ型羽根を2本有するジャケット付きステンレス製5L容双腕型ニーダーに供給した。反応液の温度を30℃に保ちながら、ニーダー内を窒素ガスで置換した。続いて、反応液を撹拌しながら、2.0質量%の過硫酸ナトリウム水溶液77.10g(6.476ミリモル)及び0.5質量%のL-アスコルビン酸水溶液13.19gを加えたところ、凡そ1分後に重合が開始した。3分後に重合中の最高温度は90℃を示し、その後、内温を60℃に保ちながら、重合が開始してから60分後、重合体及び水を含む含水ゲル状重合体をニーダーから取り出した。
 得られた含水ゲル状重合体を、喜連ローヤル株式会社製のミートチョッパー12VR-750SDXに順次投入して粗砕した。ミートチョッパーの出口に位置するプレートの穴の径は6.4mmであった。粗砕により形成された含水ゲル状重合体の粗砕物を、目開き0.8cm×0.8cmの金網上に広げて配置し、160℃で60分間熱風乾燥して乾燥物を得た。
 乾燥物を遠心粉砕機(Retsch社製、ZM200、スクリーン口径1mm、6000rpm)を用いて粉砕した。粉砕後の粉体を、目開き850μmの篩及び目開き180μmの篩を用い、1分間の振とうによって篩分けした。目開き850μmの篩を通過し目開き180μmの篩上に残った不定形破砕状の重合体粒子を得た。得られた重合体粒子のCRC及びAAPを測定した。
(Manufacturing Example 4)
500 g (6.94 mol) of 100% acrylic acid was placed in a round bottom cylindrical separable flask having an inner diameter of 11 cm and an internal volume of 2 L equipped with a stirrer. While stirring this acrylic acid, 428.27 g of ion-exchanged water was added into the separable flask. Subsequently, 439.41 g of 48 mass% sodium hydroxide was added dropwise under an ice bath to prepare 1367.68 g of a partially neutralized acrylic acid solution having a monomer concentration of 45 mass%. The same operation was repeated twice to obtain a required amount of acrylic acid partial neutralizing solution.
To 2320.16 g of the prepared acrylic acid partial neutralizing solution, 337.13 g of ion-exchanged water and 2.420 g of polyethylene glycol diacrylate (n = 9) (Nippon Oil Co., Ltd., Blemmer ADE-400A) were added to the reaction solution (single). (Medium aqueous solution) was obtained. This reaction solution was replaced with nitrogen gas for 30 minutes in a nitrogen gas atmosphere. The reaction solution was supplied to a stainless steel 5L double-armed kneader with a jacket having two sigma-type blades with lids that can be opened and closed. The inside of the kneader was replaced with nitrogen gas while maintaining the temperature of the reaction solution at 30 ° C. Subsequently, while stirring the reaction solution, 77.10 g (6.476 mmol) of a 2.0 mass% sodium persulfate aqueous solution and 13.19 g of a 0.5 mass% L-ascorbic acid aqueous solution were added. Polymerization started after 1 minute. After 3 minutes, the maximum temperature during polymerization was 90 ° C., and then 60 minutes after the start of polymerization while keeping the internal temperature at 60 ° C., the polymer and the hydrogel polymer containing water were taken out from the kneader. rice field.
The obtained hydrogel polymer was sequentially charged into a meat chopper 12VR-750SDX manufactured by Kiren Royal Co., Ltd. and coarsely crushed. The diameter of the hole in the plate located at the outlet of the meat chopper was 6.4 mm. A coarsely crushed product of a hydrogel polymer formed by coarse crushing was spread over a wire mesh having a mesh size of 0.8 cm × 0.8 cm, and dried with hot air at 160 ° C. for 60 minutes to obtain a dried product.
The dried product was pulverized using a centrifugal pulverizer (Resch, ZM200, screen diameter 1 mm, 6000 rpm). The powder after pulverization was sieved by shaking for 1 minute using a sieve having an opening of 850 μm and a sieve having an opening of 180 μm. Amorphous crushed polymer particles that passed through a sieve having a mesh size of 850 μm and remained on the sieve having a mesh size of 180 μm were obtained. The CRC and AAP of the obtained polymer particles were measured.
 表1は、製造例1~4において得られた重合体粒子のCRC及びAAPを示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the CRC and AAP of the polymer particles obtained in Production Examples 1 to 4.
Figure JPOXMLDOC01-appb-T000001
3.表面架橋された重合体粒子(吸水性樹脂粒子)
(実施例1)
 製造例1で得た重合体粒子25gに、エチレンカーボネート(EC)0.0783g、プロピレングリコール(PG)0.125g、及び、脱イオン水0.5gからなる架橋剤溶液を混合した。形成された混合物を200℃で35分間加熱することにより、表面架橋を進行させた。表面架橋後の重合体粒子を目開き850μmの篩で分級することにより、目開き850μmの篩を通過した分画を、表面架橋された重合体粒子を吸水性樹脂粒子として得た。
3. 3. Surface-crosslinked polymer particles (water-absorbent resin particles)
(Example 1)
A cross-linking agent solution consisting of 0.0783 g of ethylene carbonate (EC), 0.125 g of propylene glycol (PG), and 0.5 g of deionized water was mixed with 25 g of the polymer particles obtained in Production Example 1. Surface cross-linking was allowed to proceed by heating the formed mixture at 200 ° C. for 35 minutes. By classifying the polymer particles after surface cross-linking with a sieve having a mesh size of 850 μm, fractions that passed through the sieve having a mesh size of 850 μm were obtained, and the surface-crosslinked polymer particles were obtained as water-absorbent resin particles.
(実施例2)
 架橋剤溶液に含まれる脱イオン水の量を0.1625gに変更したこと以外は実施例1と同様にして、表面架橋された重合体粒子を吸水性樹脂粒子として得た。
(Example 2)
Surface-crosslinked polymer particles were obtained as water-absorbent resin particles in the same manner as in Example 1 except that the amount of deionized water contained in the cross-linking agent solution was changed to 0.1625 g.
(実施例3)
 架橋剤溶液に含まれるECの量を0.2345gに変更し、架橋剤溶液に含まれる脱イオン水の量を2.0gに変更したこと以外は実施例1と同様にして、表面架橋された重合体粒子を吸水性樹脂粒子として得た。
(Example 3)
The surface was crosslinked in the same manner as in Example 1 except that the amount of EC contained in the cross-linking agent solution was changed to 0.2345 g and the amount of deionized water contained in the cross-linking agent solution was changed to 2.0 g. Polymer particles were obtained as water-absorbent resin particles.
(実施例4)
 架橋剤溶液に含まれるECの量を0.2345gに変更し、架橋剤溶液に含まれる脱イオン水の量を1.5gに変更したこと以外は実施例1と同様にして、表面架橋された重合体粒子を吸水性樹脂粒子として得た。
(Example 4)
The surface was crosslinked in the same manner as in Example 1 except that the amount of EC contained in the cross-linking agent solution was changed to 0.2345 g and the amount of deionized water contained in the cross-linking agent solution was changed to 1.5 g. Polymer particles were obtained as water-absorbent resin particles.
(実施例5)
 架橋剤溶液に含まれるECの量を0.2345gに変更し、架橋剤溶液に含まれる脱イオン水の量を1.0gに変更したこと以外は実施例1と同様にして、表面架橋された重合体粒子を吸水性樹脂粒子として得た。
(Example 5)
The surface was crosslinked in the same manner as in Example 1 except that the amount of EC contained in the cross-linking agent solution was changed to 0.2345 g and the amount of deionized water contained in the cross-linking agent solution was changed to 1.0 g. Polymer particles were obtained as water-absorbent resin particles.
(実施例6)
 架橋剤溶液に含まれるECの量を0.2345gに変更したこと以外は実施例1と同様にして、表面架橋された重合体粒子を吸水性樹脂粒子として得た。
(Example 6)
Surface-crosslinked polymer particles were obtained as water-absorbent resin particles in the same manner as in Example 1 except that the amount of EC contained in the cross-linking agent solution was changed to 0.2345 g.
(実施例7)
 製造例2で得られた重合体粒子を用いたこと以外は実施例3と同様にして、表面架橋された重合体粒子を吸水性樹脂粒子として得た。
(Example 7)
Surface-crosslinked polymer particles were obtained as water-absorbent resin particles in the same manner as in Example 3 except that the polymer particles obtained in Production Example 2 were used.
(実施例8)
 架橋剤溶液に含まれるECの量を0.3126gに変更し、架橋剤溶液に含まれる脱イオン水の量を2.75gに変更したこと以外は実施例7と同様にして、表面架橋された重合体粒子を吸水性樹脂粒子として得た。
(Example 8)
The surface was crosslinked in the same manner as in Example 7 except that the amount of EC contained in the cross-linking agent solution was changed to 0.3126 g and the amount of deionized water contained in the cross-linking agent solution was changed to 2.75 g. Polymer particles were obtained as water-absorbent resin particles.
(比較例1)
 架橋剤溶液に含まれるECの量を0.3908gに変更し、架橋剤溶液に含まれる脱イオン水の量を3.5gに変更したこと以外は実施例7と同様にして、表面架橋された重合体粒子を吸水性樹脂粒子として得た。
(Comparative Example 1)
The surface was crosslinked in the same manner as in Example 7 except that the amount of EC contained in the cross-linking agent solution was changed to 0.3908 g and the amount of deionized water contained in the cross-linking agent solution was changed to 3.5 g. Polymer particles were obtained as water-absorbent resin particles.
(比較例2)
 製造例3で得られた重合体粒子を用いたこと以外は実施例3と同様にして、表面架橋された重合体粒子を吸水性樹脂粒子として得た。
(Comparative Example 2)
Surface-crosslinked polymer particles were obtained as water-absorbent resin particles in the same manner as in Example 3 except that the polymer particles obtained in Production Example 3 were used.
(比較例3)
 架橋剤溶液に含まれる脱イオン水の量を0.5gに変更したこと以外は比較例2と同様にして、表面架橋された重合体粒子を吸水性樹脂粒子として得た。
(Comparative Example 3)
Surface-crosslinked polymer particles were obtained as water-absorbent resin particles in the same manner as in Comparative Example 2 except that the amount of deionized water contained in the cross-linking agent solution was changed to 0.5 g.
(比較例4)
 製造例4で得られた重合体粒子を用いたこと、及び、架橋剤溶液に含まれる脱イオン水の量を2.0gに変更したこと以外は実施例1と同様にして、表面架橋された重合体粒子を吸水性樹脂粒子として得た。
(Comparative Example 4)
The surface was crosslinked in the same manner as in Example 1 except that the polymer particles obtained in Production Example 4 were used and the amount of deionized water contained in the cross-linking agent solution was changed to 2.0 g. Polymer particles were obtained as water-absorbent resin particles.
(比較例5)
 製造例4で得られた重合体粒子を用いたこと以外は実施例1と同様にして、表面架橋された重合体粒子を吸水性樹脂粒子として得た。
(Comparative Example 5)
Surface-crosslinked polymer particles were obtained as water-absorbent resin particles in the same manner as in Example 1 except that the polymer particles obtained in Production Example 4 were used.
4.評価
 得られた吸水性樹脂粒子のCRC及びAAPを測定した。表面架橋前後でのCRCの差ΔCRC(=CRC(表面架橋前)-CRC(表面架橋後)、表面架橋後のCRCとAAPとの和(CRC+AAP)、及び、表面架橋後のCRCとAAPとの差(CRC-AAP)も求めた。
4. Evaluation The CRC and AAP of the obtained water-absorbent resin particles were measured. Difference in CRC before and after surface cross-linking ΔCRC (= CRC (before surface cross-linking) -CRC (after surface cross-linking), sum of CRC and AAP after surface cross-linking (CRC + AAP), and CRC and AAP after surface cross-linking The difference (CRC-AAP) was also determined.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に結果を示す。表中のEC量、PG量及び水量は、それぞれ、重合体粒子1g当たりのエチレンカーボネート、プロピレングリコール及び水の物質量である。各実施例において、十分に大きなCRCを示すとともに、CRCとAAPとの差の大きい吸水性樹脂粒子が得られたことが確認された。 Table 2 shows the results. The EC amount, PG amount, and water amount in the table are the amount of substances of ethylene carbonate, propylene glycol, and water per 1 g of the polymer particles, respectively. In each example, it was confirmed that a sufficiently large CRC was exhibited and that water-absorbent resin particles having a large difference between the CRC and AAP were obtained.
 10…吸収体、10a…吸水性樹脂粒子、10b…繊維層、20a,20b…コアラップ、30…液体透過性シート、40…液体不透過性シート、100…吸収性物品、110…測定装置、112…重り、112a…円板部、112b…棒状部、112c…円柱部、114…円筒、116…金網、120…測定対象の粒子、130…ステンレスシャーレ、140…ガラスフィルター、150…ろ紙。 10 ... Absorbent, 10a ... Water-absorbent resin particles, 10b ... Fiber layer, 20a, 20b ... Core wrap, 30 ... Liquid permeable sheet, 40 ... Liquid permeable sheet, 100 ... Absorbent article, 110 ... Measuring device, 112 ... Weight, 112a ... Disc, 112b ... Rod, 112c ... Cylindrical, 114 ... Cylindrical, 116 ... Wire mesh, 120 ... Particles to be measured, 130 ... Stainless petri dish, 140 ... Glass filter, 150 ... Filter paper.

Claims (2)

  1.  重合体粒子を含む吸水性樹脂粒子を製造する方法であって、当該方法が、
     重合体を含有する重合体粒子の粉体と表面架橋剤を含有する架橋剤溶液との混合物を加熱することにより、前記重合体を前記表面架橋剤によって架橋することを含み、
     前記重合体粒子の遠心分離機保持容量が、前記重合体が前記表面架橋剤によって架橋される前にCRC(表面架橋前)で、前記重合体が前記表面架橋剤によって架橋された後にCRC(表面架橋後)であるとき、
     CRC(表面架橋前)が65g/g以上であり、
     式:ΔCRC=CRC(表面架橋前)-CRC(表面架橋後)で算出されるCRCの変化量ΔCRCが10~30g/gとなるように、前記重合体が前記表面架橋剤によって架橋される、方法。
    A method for producing water-absorbent resin particles containing polymer particles.
    It comprises cross-linking the polymer with the surface cross-linking agent by heating a mixture of a powder of polymer particles containing the polymer and a cross-linking agent solution containing a surface cross-linking agent.
    The centrifuge retention capacity of the polymer particles is CRC (before surface cross-linking) before the polymer is cross-linked by the surface cross-linking agent, and CRC (surface) after the polymer is cross-linked by the surface cross-linking agent. After cross-linking)
    CRC (before surface cross-linking) is 65 g / g or more,
    Formula: ΔCRC = CRC (before surface cross-linking) -The polymer is cross-linked by the surface cross-linking agent so that the amount of change ΔCRC of CRC calculated by CRC (after surface cross-linking) is 10 to 30 g / g. Method.
  2.  前記重合体が前記表面架橋剤によって架橋された後の前記重合体粒子の、圧力2.07kPaでの加圧下吸収倍率が、9.0g/g以上である、請求項1に記載の方法。 The method according to claim 1, wherein the absorption ratio of the polymer particles under pressure at a pressure of 2.07 kPa after the polymer is crosslinked with the surface cross-linking agent is 9.0 g / g or more.
PCT/JP2021/009871 2020-03-18 2021-03-11 Method for producing water-absorbent resin particles WO2021187326A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022508294A JPWO2021187326A1 (en) 2020-03-18 2021-03-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020047835 2020-03-18
JP2020-047835 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021187326A1 true WO2021187326A1 (en) 2021-09-23

Family

ID=77772016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009871 WO2021187326A1 (en) 2020-03-18 2021-03-11 Method for producing water-absorbent resin particles

Country Status (2)

Country Link
JP (1) JPWO2021187326A1 (en)
WO (1) WO2021187326A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11188726A (en) * 1997-12-25 1999-07-13 Nippon Shokubai Co Ltd Production of water-absorbable resin
JP2001213914A (en) * 2000-02-04 2001-08-07 Sanyo Chem Ind Ltd Preparation method of water-absorbing resin
JP2007501315A (en) * 2003-08-06 2007-01-25 ザ プロクター アンド ギャンブル カンパニー Coated water swellable material
JP2009173942A (en) * 1998-03-11 2009-08-06 Nippon Shokubai Co Ltd Hydrophilic resin, absorbent article and acrylic acid for polymerization
JP2010235692A (en) * 2009-03-30 2010-10-21 Sanyo Chem Ind Ltd Water-absorbing resin for pet sheet, and pet sheet using the same
JP2016124901A (en) * 2014-12-26 2016-07-11 株式会社日本触媒 Method for producing polyacrylic acid (salt)-based water-absorbing resin
JP2018145210A (en) * 2015-07-29 2018-09-20 株式会社日本触媒 Novel acrylic acid crosslinked polymer and use thereof
JP2019518839A (en) * 2017-02-10 2019-07-04 エルジー・ケム・リミテッド Super absorbent polymer and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11188726A (en) * 1997-12-25 1999-07-13 Nippon Shokubai Co Ltd Production of water-absorbable resin
JP2009173942A (en) * 1998-03-11 2009-08-06 Nippon Shokubai Co Ltd Hydrophilic resin, absorbent article and acrylic acid for polymerization
JP2001213914A (en) * 2000-02-04 2001-08-07 Sanyo Chem Ind Ltd Preparation method of water-absorbing resin
JP2007501315A (en) * 2003-08-06 2007-01-25 ザ プロクター アンド ギャンブル カンパニー Coated water swellable material
JP2010235692A (en) * 2009-03-30 2010-10-21 Sanyo Chem Ind Ltd Water-absorbing resin for pet sheet, and pet sheet using the same
JP2016124901A (en) * 2014-12-26 2016-07-11 株式会社日本触媒 Method for producing polyacrylic acid (salt)-based water-absorbing resin
JP2018145210A (en) * 2015-07-29 2018-09-20 株式会社日本触媒 Novel acrylic acid crosslinked polymer and use thereof
JP2019518839A (en) * 2017-02-10 2019-07-04 エルジー・ケム・リミテッド Super absorbent polymer and method for producing the same

Also Published As

Publication number Publication date
JPWO2021187326A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
US7745537B2 (en) Particulate water absorbing agent, water-absorbent core and absorbing article
CN108350179B (en) Superabsorbent polymers
KR101680830B1 (en) Super Absorbent Polymer Resin and the Method for Preparing of the Same
KR101631297B1 (en) Super Absorbent Polymer Resin And Method for Preparing The Same
WO2018147559A1 (en) Superabsorbent resin and method for producing same
JP4749679B2 (en) Water absorbent resin and method for producing the same
EP3696199B1 (en) Water-absorbent resin and absorbent article
WO2021187326A1 (en) Method for producing water-absorbent resin particles
WO2019093670A1 (en) Super-absorbent polymer and preparation method therefor
JP2020505477A (en) Super water absorbent resin and method for producing the same
WO2021006149A1 (en) Cross-linked polymer particle production method and cross-linked polymer gel
WO2022075258A1 (en) Method for producing water-absorbing resin particles
WO2021187325A1 (en) Method for producing absorbent resin particles
WO2022181452A1 (en) Method for producing water absorbent resin particles
JP2022504320A (en) Manufacturing method of highly absorbent resin
WO2021235524A1 (en) Method for producing water absorbent resin particles
WO2021187323A1 (en) Method for producing water-absorbing resin particles
JPWO2020122201A1 (en) Absorbents and absorbent articles
WO2022118800A1 (en) Water-absorbing resin particles, absorbing body, and absorbent article
WO2022025003A1 (en) Water-absorbent resin particles, and method for producing water-absorbent resin particles
WO2021246244A1 (en) Method for producing water-absorbing resin particle
WO2021006148A1 (en) Crosslinked polymer gel, method for producing same, monomer composition, and method for producing crosslinked polymer particle
JP6775048B2 (en) Method for evaluating liquid leakage of water-absorbent resin particles and water-absorbent resin particles, and method for producing water-absorbent resin particles
WO2021131898A1 (en) Method for manufacturing water absorbing resin particles, and method for manufacturing polymer particles
WO2017171208A1 (en) Superabsorbent resin and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770455

Country of ref document: EP

Kind code of ref document: A1