WO2022025003A1 - Water-absorbent resin particles, and method for producing water-absorbent resin particles - Google Patents

Water-absorbent resin particles, and method for producing water-absorbent resin particles Download PDF

Info

Publication number
WO2022025003A1
WO2022025003A1 PCT/JP2021/027576 JP2021027576W WO2022025003A1 WO 2022025003 A1 WO2022025003 A1 WO 2022025003A1 JP 2021027576 W JP2021027576 W JP 2021027576W WO 2022025003 A1 WO2022025003 A1 WO 2022025003A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
mass
absorbent resin
resin particles
particles
Prior art date
Application number
PCT/JP2021/027576
Other languages
French (fr)
Japanese (ja)
Inventor
直矢 淡路
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2022540300A priority Critical patent/JPWO2022025003A1/ja
Publication of WO2022025003A1 publication Critical patent/WO2022025003A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules

Definitions

  • the present invention relates to water-absorbent resin particles and a method for producing the water-absorbent resin particles.
  • an absorber containing water-absorbent resin particles has been used as an absorbent article for absorbing a liquid containing water as a main component such as urine.
  • a step of pulverizing the block-shaped or coarse-particle-shaped polymer obtained by the polymerization into particles by a treatment such as pulverization is performed. Small particles such as particles having a particle diameter of less than 180 ⁇ m generated by pulverization are used by increasing the particle diameter by granulation (see, for example, Patent Document 1).
  • the absorbent article In order to improve the performance of the absorbent article, it is required to increase the water absorption rate of the water-absorbent resin particles contained therein. Further, the water-absorbent resin particles are also required to improve the performance balance between the centrifuge holding capacity (CRC) and the water absorption ratio under pressure (AAP).
  • CRC centrifuge holding capacity
  • AAP water absorption ratio under pressure
  • the present invention provides a method for producing water-absorbent resin particles and water-absorbent resin particles having an excellent water absorption rate and an excellent performance balance between the centrifuge holding capacity (CRC) and the water absorption ratio under pressure (AAP).
  • CRC centrifuge holding capacity
  • AAP water absorption ratio under pressure
  • the present invention relates to surface-crosslinked water-absorbent resin particles having a medium particle size of 200 to 430 ⁇ m and a gel dissociation degree of 20 to 60%.
  • the present invention also includes a step of adding a cross-linking agent solution containing a cross-linking agent and water to the polymer fine powder passing through a sieve having an opening of 180 ⁇ m or less to simultaneously perform adhesion of the polymer fine powder and surface cross-linking.
  • the present invention relates to a method for producing water-absorbent resin particles.
  • (meth) acrylic means both acrylic and methacrylic.
  • acrylate and “methacrylate” are also referred to as “(meth) acrylate”.
  • (Poly) shall mean both with and without the "poly” prefix.
  • the upper or lower limit of the numerical range at one stage may be optionally combined with the upper or lower limit of the numerical range at another stage.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • Water-soluble means that it exhibits a solubility in water of 5% by mass or more at 25 ° C. The materials exemplified in the present specification may be used alone or in combination of two or more.
  • Saline means a 0.9% by mass sodium chloride aqueous solution.
  • Room temperature means 25 ° C.
  • the water-absorbent resin particles according to the present embodiment are surface-crosslinked water-absorbent resin particles having a medium particle size of 200 to 430 ⁇ m and a gel dissociation degree of 20 to 60%.
  • the water-absorbent resin particles have an excellent water absorption rate and are also excellent in the performance balance between CRC and AAP.
  • a cross-linking agent and a cross-linking agent solution containing water are added to the polymer fine powder passing through a sieve having an opening of 180 ⁇ m or less, and the polymer fine powder is adhered. And surface cross-linking are performed at the same time. By adhering and surface-crosslinking the polymer fine powder, surface-crosslinked adhered particles can be obtained.
  • the adherent particles according to the present embodiment are particles obtained by weakly granulating (weakly granulating) the polymer fine powder with a small amount of water, and are aggregated as compared with the particles obtained through the conventional granulation step. Since the strength is weak and the particles crumble when water is absorbed, the surface area is increased and the water absorption rate can be increased. In addition, the adhered particles do not return to fine powder at once by absorbing water, so that they do not become maco. Further, by performing surface cross-linking at the same time as adhesion, the performance balance between CRC and AAP can be improved.
  • the polymer fine powder can be produced, for example, by polymerizing a monomer to obtain a hydrogel-like polymer, and then pulverizing and classifying the hydrogel-like polymer.
  • a monomer to obtain a hydrogel-like polymer
  • pulverizing and classifying the hydrogel-like polymer to classify the hydrogel-like polymer.
  • a monomer containing an ethylenically unsaturated monomer is polymerized to obtain a hydrogel-like polymer.
  • the water-containing gel-like polymer may be a cross-linked polymer formed by polymerization of a monomer containing an ethylenically unsaturated monomer and formed into a gel-like state containing water.
  • the water-absorbent resin particles obtained by the production method according to the present embodiment can contain a crosslinked polymer formed by polymerizing a monomer containing an ethylenically unsaturated monomer.
  • the crosslinked polymer has a monomeric unit derived from an ethylenically unsaturated monomer. That is, the water-absorbent resin particles according to the present embodiment can have a structural unit derived from an ethylenically unsaturated monomer.
  • Polymerization can be performed, for example, by an aqueous solution polymerization method.
  • aqueous solution polymerization method the polymerization of the monomer by the aqueous solution polymerization method will be described.
  • the ethylenically unsaturated monomer is preferably water-soluble.
  • examples of the ethylenically unsaturated monomer include carboxylic acid-based monomers such as (meth) acrylic acid, maleic acid, maleic anhydride, fumaric acid and salts thereof; (meth) acrylamide, N, N-dimethyl.
  • Nonionic monomers such as (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate; N, N-diethylaminoethyl (meth) acrylate, N , N-diethylaminopropyl (meth) acrylate, diethylaminopropyl (meth) acrylamide and other amino group-containing unsaturated monomers and quaternized products thereof; vinyl sulfonic acid, styrene sulfonic acid, 2- (meth) acrylamide-2-methyl Examples thereof include sulfonic acid-based monomers such as propanesulfonic acid, 2- (meth) acryloylethanesulfonic acid and salts thereof.
  • the ethylenically unsaturated monomer one type may be used alone, or two or more types may be used in combination.
  • the ethylenically unsaturated monomer preferably contains at least one selected from the group consisting of (meth) acrylic acid and salts thereof, maleic acid, fumaric acid, (meth) acrylamide, and N, N-dimethylacrylamide. , (Meta) It is more preferable to contain at least one selected from (meth) acrylic acid and salts thereof. Further, (meth) acrylic acid and a salt thereof may be copolymerized with another ethylenically unsaturated monomer. In this case, 70 to 100 mol% of the above (meth) acrylic acid and a salt thereof are preferably used, more preferably 80 to 100 mol%, and 90 to 90 to the total amount of the ethylenically unsaturated monomer. It is more preferable to use 100 mol%.
  • the ethylenically unsaturated monomer preferably contains at least one of acrylic acid and a salt thereof.
  • the acid group is previously an alkaline neutralizing agent if necessary.
  • an alkaline neutralizer include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydroxide and potassium carbonate; ammonia and the like.
  • alkaline neutralizers may be used in the form of an aqueous solution in order to simplify the neutralization operation.
  • One type of alkaline neutralizer may be used alone, or two or more types may be used in combination.
  • the acid group may be neutralized before the polymerization of the ethylenically unsaturated monomer as a raw material, or may be performed during or after the polymerization.
  • the degree of neutralization of the ethylenically unsaturated monomer by the alkaline neutralizer enhances the water absorption performance by increasing the osmotic pressure of the obtained water-absorbent resin particles, and is safe due to the presence of the excess alkaline neutralizer. From the viewpoint of preventing problems such as, usually, it is preferably 10 to 100 mol%, more preferably 30 to 90 mol%, further preferably 40 to 85 mol%, and 50. It is even more preferably ⁇ 80 mol%.
  • the degree of neutralization is the degree of neutralization for all the acid groups of the ethylenically unsaturated monomer.
  • the concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer may be 20% by mass or more and the saturation concentration or less, and is 25 to 70.
  • the mass% is preferable, and 30 to 50% by mass is more preferable.
  • the amount of the ethylenically unsaturated monomer used is the total amount of the monomer (the total amount of the monomer for obtaining the water-absorbent resin particles. For example, the total amount of the monomers giving the structural unit of the crosslinked polymer. The same applies hereinafter). It may be 70 to 100 mol%, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or 100 mol%. Among them, the ratio of (meth) acrylic acid and its salt may be 70 to 100 mol% with respect to the total amount of the monomer, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or It may be 100 mol%. "Ratio of (meth) acrylic acid and its salt” means the ratio of the total amount of (meth) acrylic acid and its salt.
  • the water-absorbent resin particles are, for example, water-absorbent resin particles containing a crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer, and the ethylenically unsaturated monomer includes (meth) acrylic acid and It contains at least one compound selected from the group consisting of the salts, and the ratio of (meth) acrylic acid and its salts is 70 to 100 mol% with respect to the total amount of monomers for obtaining water-absorbent resin particles. It may be a thing.
  • the monomer aqueous solution may contain a polymerization initiator.
  • the polymerization of the monomer contained in the aqueous monomer solution is started by adding a polymerization initiator to the aqueous monomer solution and, if necessary, heating, irradiating with light or the like.
  • the polymerization initiator include a photopolymerization initiator and a radical polymerization initiator, and among them, a water-soluble radical polymerization initiator is preferably used.
  • the polymerization initiator may be, for example, an azo compound, a peroxide or the like.
  • Examples of the azo compound include 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride and 2,2'-azobis ⁇ 2- [N- (4-chlorophenyl) amidino] propane ⁇ .
  • 2,2'-azobis (2-amidinopropane) dihydrochloride 2,2'-azobis ⁇ 2- [1- (2-hydroxy) Ethyl) -2-imidazolin-2-yl] propane ⁇ dihydrochloride and 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate are preferred.
  • These azo compounds may be used alone or in combination of two or more.
  • peroxide examples include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t. -Organic peroxides such as butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate; peroxides such as hydrogen peroxide can be mentioned.
  • persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate
  • methyl ethyl ketone peroxide methyl isobutyl ketone peroxide
  • di-t-butyl peroxide di-t-butyl peroxide
  • t-butyl cumyl peroxide t.
  • potassium persulfate, ammonium persulfate, sodium persulfate, or hydrogen peroxide is preferably used, preferably potassium persulfate, from the viewpoint of obtaining water-absorbent resin particles having good water absorption performance. It is more preferable to use ammonium persulfate or sodium persulfate.
  • One of these peroxides may be used alone, or two or more thereof may be used in combination.
  • redox polymerization initiator it can also be used as a redox polymerization initiator by using a polymerization initiator and a reducing agent in combination.
  • the reducing agent include sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • the amount of the polymerization initiator is 0.05 to 1 mmol, 0.08 to 0.8 mmol, or 0.1 per 1 mol of the monomer. It may be up to 0.7 mmol.
  • the monomer aqueous solution preferably contains an internal cross-linking agent.
  • the obtained cross-linked polymer can have cross-linking by the internal cross-linking agent in addition to self-cross-linking by the polymerization reaction as its internal cross-linking structure.
  • the internal cross-linking agent may contain a compound having a (meth) acrylic group, an allyl group, an epoxy group, or an amino group.
  • a compound having two or more of these reactive functional groups can be used as an internal cross-linking agent.
  • compounds having a (meth) acrylic group include (poly) ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate (poly) propylene glycol di (meth) acrylate, and glycerol tri (meth) acrylate. Examples thereof include trimethylolpropane di (meth) acrylate and N, N'-methylenebis (meth) acrylamide.
  • Examples of compounds having an allyl group include triallylamine.
  • Examples of compounds having an epoxy group include (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, and epichlorohydrin.
  • Examples of compounds having an amino group include triethylenetetramine, ethylenediamine, and hexamethylenediamine.
  • As the internal cross-linking agent one type may be used alone, or two or more types may be used in combination.
  • the amount used is 0.02 to 1.0 mmol or 0.05 to 1 mol of the monomer from the viewpoint of adjusting the performance balance of CRC and AAP of the water-absorbent resin particles. It may be 0.8 mmol, or 0.1 to 0.6 mmol.
  • the monomer aqueous solution may contain additives such as a chain transfer agent and a thickener, if necessary.
  • a chain transfer agent include thiols, thiol acids, secondary alcohols, hypophosphorous acid, phosphorous acid and the like.
  • the thickener include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, polyethylene glycol, polyacrylic acid, polyacrylic acid neutralizer, polyacrylamide and the like. These may be used alone or in combination of two or more.
  • a solvent other than water such as a water-soluble organic solvent, may be appropriately added to the monomer aqueous solution.
  • the polymerization method is, for example, a static polymerization method in which the monomer aqueous solution is polymerized without stirring (for example, a static state), or a stirring polymerization method in which the monomer aqueous solution is polymerized while stirring in the reaction apparatus. It's okay. It is preferable to obtain a hydrogel-like polymer by static polymerization of an aqueous solution, which is a static polymerization method. In the static polymerization method, it is possible to obtain a single block-shaped hydrogel-like polymer that occupies substantially the same volume as the monomer aqueous solution present in the reaction vessel when the polymerization is completed.
  • the form of production may be batch, semi-continuous, continuous, etc.
  • a polymerization reaction can be carried out while continuously supplying a monomer aqueous solution to a belt conveyor-shaped continuous polymerization apparatus to obtain a water-containing gel having a continuous shape such as a band shape. ..
  • the polymerization temperature varies depending on the polymerization initiator used, but is preferably 0 to 130 ° C., more preferably 10 to 110 ° C. from the viewpoint of increasing the productivity by rapidly advancing the polymerization and shortening the polymerization time.
  • the polymerization time is appropriately set according to the type or amount of the polymerization initiator used, the reaction temperature and the like, but is preferably 1 to 200 minutes, more preferably 5 to 100 minutes.
  • the particle-forming step may include, for example, a step of coarsely crushing the hydrogel-like polymer to obtain a coarsely crushed product, and a step of further crushing the coarsely crushed material to obtain a particle group.
  • the particle formation step may include a step of drying the hydrogel-like polymer, the crude product and / or the particle group.
  • the coarsely crushed product is preferably subjected to pulverization after undergoing a drying step.
  • the particle formation step may further include a step of classifying the particle group obtained by pulverization.
  • the particle group obtained by the particle formation step may consist only of fine particles having a particle diameter of less than 180 ⁇ m.
  • the particle formation step can include a step of coarsely crushing the hydrogel-like polymer to obtain a coarsely crushed product.
  • the coarsely crushed product obtained by coarsely crushing the hydrogel-like polymer may be in the form of a hydrogel.
  • the coarsely crushed product may be in the form of particles, or may have an elongated shape such as a series of particles.
  • the size of the minimum side of the coarsely crushed product may be, for example, about 0.1 to 15 mm or about 1.0 to 10 mm.
  • the size of the maximum side of the coarsely crushed product may be about 0.1 to 200 mm, or about 1.0 to 150 mm.
  • a kneader for example, a pressurized kneader, a double-armed kneader, etc.
  • a meat chopper for example, a pressurized kneader, a double-armed kneader, etc.
  • a meat chopper for example, a pressurized kneader, a double-armed kneader, etc.
  • a meat chopper for example, a pressurized kneader, a double-armed kneader, etc.
  • a cutter mill for example, a pressurized kneader, a double-armed kneader, etc.
  • a pharma mill for example, a pharma mill, or the like
  • a double-armed kneader, a meat chopper, a cutter mill, or the like can be used. ..
  • the particleization step can include the step of drying the hydrogel polymer, the coarsely crushed product and / or the pulverized product. These dried products can be obtained by removing the solvent containing water in the water-containing gel polymer, the coarsely crushed product, or the crushed product by heating and / or sending.
  • the drying method may be a method of natural drying, heat drying, vacuum drying or the like. The drying may be performed under normal pressure or reduced pressure, for example, and may be performed under an air flow such as nitrogen in order to improve the drying efficiency. Drying may be performed by combining a plurality of methods.
  • the crushed product may be dried under normal pressure or reduced pressure.
  • the heating temperature for drying under normal pressure may be 70 to 250 ° C. or 80 to 200 ° C.
  • the water content of the dried product obtained by drying may be, for example, 20% by mass or less, 10% by mass or less, or 5% by mass or less.
  • the particleization step can include a step of pulverizing a hydrogel-like polymer, a coarsely crushed product, and / or a dried product thereof.
  • a roller mill for example, a roller mill (roll mill), a stamp mill, a jet mill, or a high-speed rotary pulverization can be used to obtain a particle group containing fine powder by pulverizing a hydrogel polymer, a coarse pulverized product, and / or a dried product thereof.
  • a crusher such as a machine (ultra-centrifugal crusher, hammer mill, pin mill, rotor beater mill, etc.), container-driven mill (rotary mill, vibration mill, planetary mill, etc.) can be used.
  • the crusher may have an opening on the outlet side, such as a perforated plate, a screen, a grid, etc., for controlling the maximum particle size of the crushed particles.
  • the shape of the opening may be polygonal, circular, or the like, and the maximum diameter of the opening may be 0.1 to 5 mm, 0.3 to 3.0 mm, or 0.5 to 1.5 mm.
  • the pulverization may be performed so that at least a part of the particle group becomes fine powder having a particle diameter of less than 180 ⁇ m.
  • the pulverization for example, while pulverizing for the main purpose of obtaining polymer particles having a particle diameter of less than 850 ⁇ m and having an appropriate particle diameter that can be used without granulation, some fine particles having a particle diameter of less than 180 ⁇ m are generated. It can be done in such a way.
  • the abundance of fine particles having a particle diameter of less than 180 ⁇ m in the total amount of the particle group obtained by the particle formation step may be, for example, 1 to 100% by mass, preferably 30 to 60% by mass.
  • a particle size of less than 180 ⁇ m means a particle that can pass through a JIS standard sieve having an opening of 180 ⁇ m.
  • the particle group obtained by the particle formation step may include particles having a particle diameter of 180 ⁇ m or more and less than 850 ⁇ m (particles that pass through a JIS standard sieve having a mesh size of 850 ⁇ m and do not pass through a JIS standard sieve having a mesh size of 180 ⁇ m). ..
  • the particle formation step may include a step of classifying the particle group obtained by pulverization.
  • Classification refers to an operation of dividing a certain particle group into two or more particle groups having different particle size distributions according to the particle size.
  • a particle group consisting only of fine particles having a particle size of less than 180 ⁇ m may be separated, or the abundance of fine particles having a particle size of less than 180 ⁇ m in the particle group may be increased.
  • a part of the classified particles may be pulverized again, or the pulverization step and the classification step may be repeated.
  • the polymer fine powder according to this embodiment can be obtained.
  • a known classification method can be used, and for example, screen classification or wind power classification may be used.
  • Screen classification is a method of classifying particles on a screen into particles that pass through the mesh of the screen and particles that do not pass through the screen by vibrating the screen. Screen classification can be performed using, for example, a vibrating sieve, a rotary shifter, a cylindrical stirring sieve, a blower shifter, or a low-tap shaker.
  • Wind power classification is a method of classifying particles using the flow of air.
  • the CRC (Centrifuge Retention Capacity) of the polymer fine powder may be, for example, 38 g / g or more, 41 g / g or more, 44 g / g or more, or 47 g / g or more, and 65 g / g or less, 63 g / g or less, 60 g. It may be / g or less, 55 g / g or less, or 50 g / g or less. CRC is measured by the method described in Examples described later with reference to the EDANA method (NWSP 241.0.R2 (15), pages 769 to 778).
  • a cross-linking agent solution containing a cross-linking agent and water is added to the polymer fine powder after classification to simultaneously perform adhesion of the polymer fine powder and surface cross-linking, and surface-crosslinked coagulation.
  • the landing particles can be obtained.
  • the surface-crosslinked adhered particles are weakly formed into particles due to the presence of a small amount of water when a cross-linking agent (surface cross-linking agent) for performing surface cross-linking of the polymer fine powder is added and reacted. It can be formed by doing.
  • the water absorption performance of the water-absorbent resin particles can be improved by performing the adhesion and surface cross-linking treatment of the polymer fine powder.
  • the water content of the cross-linking agent solution may be 10 parts by mass or less, 9 parts by mass or less, 8.5 parts by mass or less, or 8 parts by mass or less with respect to 100 parts by mass of the polymer fine powder, and is 1 part by mass or more. , 1.5 parts by mass or more, 1.8 parts by mass or more, or 2 parts by mass or more.
  • the cross-linking agent solution may further contain alcohol.
  • the alcohol include monohydric alcohols having 1 to 5 carbon atoms.
  • the alcohol content of the cross-linking agent solution may be 5 parts by mass or less, 4 parts by mass or less, or 3.5 parts by mass or less, and 0.5 parts by mass or more and 1 part by mass with respect to 100 parts by mass of the polymer fine powder. It may be 10 parts or more, or 1.5 parts by mass or more.
  • the surface cross-linking agent for example, a compound containing two or more functional groups (reactive functional groups) having reactivity with a functional group derived from an ethylenically unsaturated monomer can be used.
  • the surface cross-linking agent include alkylene carbonate compounds such as ethylene carbonate; ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, polyglycerin and the like.
  • Polypoly compounds (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylolpropane triglycidyl ether (poly) propylene glycol polyglycidyl ether, and (poly) glycerol polyglycidyl.
  • Polyglycidyl compounds such as ether; haloepoxy compounds such as epichlorohydrin, epibromhydrin, and ⁇ -methylepicrolhydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylenediisocyanate; 3-methyl-3-oxetanemethanol, Oxetane compounds such as 3-ethyl-3-oxetan methanol, 3-butyl-3-oxetan methanol, 3-methyl-3-oxetan ethanol, 3-ethyl-3-oxetan ethanol, and 3-butyl-3-oxetane ethanol; Oxazoline compounds such as 1,2-ethylenebisoxazoline; hydroxyalkylamide compounds such as bis [N, N-di ( ⁇ -hydroxyethyl)] adipamide can be mentioned.
  • the surface cross-linking agent may contain an alkylene carbonate compound, a polyol compound, or a combination thereof.
  • the ratio of the alkylene carbonate compound in the surface cross-linking agent is 50 to 100% by mass, 60 to 100% by mass, 70 to 100% by mass, 80 to 100% by mass, or 90 to 100% by mass based on the total mass of the surface cross-linking agent. May be.
  • the amount of the surface cross-linking agent was 0.3 to 5.0 parts by mass and 0.5 to 3.0 parts by mass with respect to 100 parts by mass of the polymer fine powder. It may be 0.8 to 2.5 parts by mass or 1.0 to 2.0 parts by mass.
  • the heating temperature and heating time for surface cross-linking are adjusted so that the cross-linking reaction proceeds appropriately in consideration of the type of surface cross-linking agent and the like.
  • the heating temperature for surface cross-linking may be 80 ° C. or higher, 100 ° C. or higher, 120 ° C. or higher, 150 ° C. or higher, or 180 ° C. or higher, or 190 ° C. or higher.
  • the heating temperature for surface cross-linking may be 250 ° C. or lower, 230 ° C. or lower, or 210 ° C. or lower.
  • the heating time for surface cross-linking may be, for example, 5 to 90 minutes, 10 to 80 minutes, or 15 to 60 minutes.
  • the surface-crosslinked adhered particles may be further dried or classified if necessary.
  • the adhered particles may be used as they are as the water-absorbent resin particles, or the inorganic particles may be attached to the surface of the polymer particles obtained by classifying the surface-crosslinked adhered particles. That is, the water-absorbent resin particles may contain a plurality of inorganic particles arranged on the surface of the polymer particles. For example, by mixing the polymer particles and the inorganic particles, the inorganic particles can be arranged on the surface of the polymer particles.
  • the inorganic particles may be silica particles such as amorphous silica.
  • Inorganic particles usually have a small size as compared with the size of polymer particles.
  • the primary average particle size of the inorganic particles may be 1 to 500 nm, 2 to 100 nm, 5 to 50 nm, or 10 to 20 nm.
  • the average particle size can be measured by a transmission electron microscope, a pore electric resistance method, or a laser diffraction / scattering method, depending on the characteristics of the particles.
  • the content of the inorganic particles is 0.05 parts by mass or more and 0.08 parts by mass or more based on the total mass of 100 parts of the polymer particles. , 0.1 parts by mass or more, 0.15 parts by mass or more, or 0.2 parts by mass or more, 5.0 parts by mass or less, 3.0 parts by mass or less, 1.0 part by mass or less, 0. It may be 5 parts by mass or less, or 0.3 parts by mass or less.
  • the shape of the water-absorbent resin particles according to the present embodiment may be, for example, a crushed shape, an amorphous shape, an amorphous crushed shape, or a shape formed by aggregating these particles.
  • the medium particle size of the water-absorbent resin particles is 200 to 430 ⁇ m from the viewpoint of further improving the performance balance between CRC and AAP, even if it is 205 to 400 ⁇ m, 210 to 350 ⁇ m, 220 to 350 ⁇ m, or 250 to 320 ⁇ m. good.
  • the degree of gel dissociation of the water-absorbent resin particles may be 25 to 60%, 30 to 60%, or 32 to 60% from the viewpoint of increasing the water absorption rate.
  • the degree of gel dissociation of the water-absorbent resin particles is measured by the method described in Examples described later.
  • the CRC of the water-absorbent resin particles according to the present embodiment may be, for example, 22 g / g or more, 24 g / g or more, 25 g / g or more, or 26 g / g or more, and 70 g / g or less, 60 g / g or less, It may be 50 g / g or less, or 45 g / g or less.
  • the absorption ratio (AAP, Absorption Gainst Pressure) of the water-absorbent resin particles according to the present embodiment under a pressure of 2.07 kPa (0.3 psi) is, for example, 10 g / g or more, 11 g / g or more, or 12 g / g or more. It may be 38 g / g or less, 34 g / g or less, 30 g / g or less, or 26 g / g or less.
  • the absorption ratio of the water-absorbent resin particles under a pressure of 2.07 kPa is measured by the method described in Examples described later.
  • the water absorption rate of the water-absorbent resin particles according to the present embodiment by the Vortex method may be, for example, 2 to 45 seconds, 5 to 40 seconds, 8 to 35 seconds, or 10 to 30 seconds.
  • the absorption rate is measured by the method described in Examples below.
  • the water-absorbent resin particles according to the present embodiment are used to form an absorbent body constituting an absorbent article such as a diaper, for example.
  • the centrifuge holding capacity was measured by the following procedure with reference to the EDANA method (NWSP 241.0.R2 (15), pages 769 to 778). The measurement was performed in an environment where the temperature was 25 ° C. ⁇ 2 ° C. and the humidity was 50% ⁇ 10%.
  • a non-woven fabric with a size of 60 mm x 170 mm (product name: Heat Pack MWA-18, manufactured by Nippon Paper Papylia Co., Ltd.) was folded in half in the longitudinal direction to adjust the size to 60 mm x 85 mm.
  • a 60 mm ⁇ 85 mm non-woven fabric bag was produced by crimping the non-woven fabrics to each other on both sides extending in the longitudinal direction with a heat seal (a crimped portion having a width of 5 mm was formed on both sides along the longitudinal direction). 0.2 g of the particles to be measured were precisely weighed and contained in the non-woven fabric bag. Then, the non-woven fabric bag was closed by crimping the remaining one side extending in the lateral direction with a heat seal.
  • the entire non-woven fabric bag was completely moistened by floating the non-woven fabric bag on 1000 g of physiological saline contained in a stainless steel vat (240 mm ⁇ 320 mm ⁇ 45 mm) without folding the non-woven fabric bag.
  • a stainless steel vat 240 mm ⁇ 320 mm ⁇ 45 mm
  • the non-woven fabric bag was taken out from the physiological saline solution. Then, the non-woven fabric bag was put in a centrifuge (manufactured by Kokusan Co., Ltd., model number: H-122). After the centrifugal force in the centrifuge reached 250 G, the non-woven fabric bag was dehydrated for 3 minutes. After dehydration, the mass Ma [g] of the non-woven fabric bag containing the mass of the gel was weighed.
  • the non-woven fabric bag was subjected to the same operation as described above without accommodating the particles to be measured, and the mass Mb [g] of the non-woven fabric bag after dehydration was measured.
  • CRC [g / g] was calculated based on the following formula.
  • Mc [g] is a precise value of 0.2 g of the mass of the particle to be measured used for the measurement.
  • CRC [g / g] ⁇ (Ma [g] -Mb [g])-Mc [g] ⁇ / Mc [g]
  • the absorption magnification (AAP) under pressure of 2.07 kPa (0.3 psi) was measured at 25 ° C. ⁇ 2 ° C.
  • a weight 112 cross section: circular, total weight: 577.38 g
  • a measuring device 110 provided with a wire mesh 116 having a 400 mesh (opening 38 ⁇ m) was prepared.
  • the weight 112 is a cylinder having a disc portion 112a (diameter 59 mm), a rod-shaped portion 112b extending from the center of the disc portion 112a in a direction perpendicular to the disc portion 112a, and a through hole inserted into the rod-shaped portion 112b in the center. It has a portion 112c and.
  • the disk portion 112a of the weight 112 has a diameter substantially equal to the inner diameter of the cylinder 114 so that it can move in the longitudinal direction of the cylinder 114 inside the cylinder 114.
  • the diameter of the cylindrical portion 112c is smaller than the diameter of the disc portion 112a.
  • One end of the cylinder 114 is open but shielded by the wire mesh 116, and the other end of the cylinder 114 is open so that the weight 112 can be inserted.
  • 0.90 g of the particles 120 to be measured were uniformly sprayed on the wire mesh 116.
  • the total mass of the measuring device 110 (the total mass of the measuring device 110 and the measurement target particle 120 before liquid absorption). Wa [g] was measured.
  • the above-mentioned measuring device 110 was placed on the filter paper 150, and the liquid was absorbed under a load. After 1 hour, the measuring device 110 was lifted, and the total mass of the measuring device 110 (total mass of the measuring device 110 and the measurement target particle 120 after liquid absorption) Wb [g] was measured.
  • the absorption rate (AAP) [g / g] under 2.07 kPa pressurization was calculated based on the following formula.
  • AAP [g / g] (Wb [g] -Wa [g]) /0.90 [g]
  • the water absorption rate of the physiological saline of the water-absorbent resin particles was measured by the following procedure based on the Vortex method. First, 50 ⁇ 0.1 g of physiological saline adjusted to a temperature of 25 ⁇ 0.2 ° C. in a constant temperature water tank was weighed in a beaker having an internal volume of 100 mL. Next, a vortex was generated by stirring at a rotation speed of 600 rpm using a magnetic stirrer bar (8 mm ⁇ ⁇ 30 mm, without ring). 2.0 ⁇ 0.002 g of water-absorbent resin particles were added to the aqueous sodium chloride solution at one time. The time [seconds] from the addition of the water-absorbent resin particles to the time when the vortex on the liquid surface converged was measured, and the time was obtained as the water absorption rate of the water-absorbent resin particles.
  • the mass percentages of the particles remaining on each sieve were integrated in order from the one with the largest particle size, and the relationship between the mesh opening of the sieve and the integrated value of the mass percentages of the particles remaining on the sieve was plotted on a logarithmic probability paper. .. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the integrated mass percentage of 50% by mass was obtained, and this was defined as the medium particle size.
  • the combined sieves are separated, and the swollen gel is placed on the sieve with each sieve tilted so as to have an inclination angle of about 30 degrees with respect to the horizontal. It was left for 30 minutes to remove excess water. After 30 minutes, the degree of gel dissociation was calculated by the following formula based on the total amount of swollen gel remaining on the sieve of each opening.
  • Ion-exchanged water 1019.31 g and polyethylene glycol diacrylate (n ⁇ 9, internal cross-linking agent, manufactured by Nichiyu Co., Ltd., product name: Blemmer ADE-400A) 1.34 g are added to 2039.32 g of the acrylic acid partial neutralizing solution.
  • a reaction solution (monomer aqueous solution) was obtained.
  • the amount of dissolved oxygen was adjusted to 0.1 ppm or less by substituting the reaction solution with nitrogen gas for 30 minutes in a nitrogen gas atmosphere.
  • a 5 L stainless steel double-armed kneader manufactured by Irie Shokai Co., Ltd.
  • a jacket equipped with a thermometer and a nitrogen blow tube and having two sigma-shaped blades with a lid that can be opened and closed was prepared.
  • the above reaction solution was supplied to the kneader, and the inside of the kneader was replaced with nitrogen gas while keeping the reaction solution at 25 ° C.
  • Aqueous solution (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 10.22 g (3.77 mmol), 0.1% by mass L-ascorbic acid aqueous solution 4.47 g, and 0.35% by mass hydrogen peroxide solution.
  • 2.55 g was added, the temperature began to rise after about 1 minute and polymerization started.
  • the jacket temperature was raised to 80 ° C., at which time the thermometer showed 42 ° C. Stirring was continued while maintaining the jacket temperature at 80 ° C., the polymerization reaction was sufficiently completed, and the aqueous gel-like polymer produced 60 minutes after the temperature rise was taken out.
  • the hydrogel polymer was spread on a wire mesh having an opening of 0.8 cm ⁇ 0.8 cm and dried with hot air at 180 ° C. for 30 minutes to obtain a dried product.
  • the particle group (A) was classified using a sieve having an opening of 850 ⁇ m and a sieve having a size of 180 ⁇ m.
  • a polymer powder (A1) which was a fraction that passed through an 850 ⁇ m sieve and did not pass through a 180 ⁇ m sieve
  • a polymer fine powder (a1) which was a fraction that passed through a 180 ⁇ m sieve
  • reaction solution (monomer aqueous solution).
  • the reaction solution was replaced with nitrogen gas for 30 minutes under a nitrogen gas atmosphere.
  • the above reaction solution was supplied to a 5 L stainless steel double-armed kneader (manufactured by Irie Shokai Co., Ltd.) with a jacket having two sigma-type blades with openable and closable lids, and the reaction solution was kept at 30 ° C. Was replaced with nitrogen gas to adjust the amount of dissolved oxygen to 0.1 ppm or less.
  • the hydrogel polymer was sequentially charged into a meat chopper 12VR-750SDX manufactured by Kiren Royal Co., Ltd. and coarsely crushed.
  • the diameter of the hole of the plate located at the outlet of the meat chopper was 6.4 mm.
  • the coarsely crushed product of the hydrogel-like polymer was spread on a wire mesh having an opening of 0.8 cm ⁇ 0.8 cm and dried with hot air at 160 ° C. for 60 minutes to obtain a dried product.
  • the dried product was pulverized using a centrifugal pulverizer (ZM200 manufactured by Retsch, screen diameter 1 mm, 12000 rpm) to obtain an amorphous crushed particle group (B).
  • the particle group (B) was classified using a sieve having an opening of 850 ⁇ m and a sieve having a size of 180 ⁇ m. By classification, a polymer powder (B1), which was a fraction that passed through an 850 ⁇ m sieve and did not pass through a 180 ⁇ m sieve, and a polymer fine powder (b1), which was a fraction that passed through a 180 ⁇ m sieve, were obtained.
  • reaction solution monomer aqueous solution
  • reaction solution monomer aqueous solution
  • nitrogen gas for 30 minutes under a nitrogen gas atmosphere.
  • reaction solution was supplied to a 5 L stainless steel double-armed kneader (manufactured by Irie Shokai Co., Ltd.) with a jacket having two sigma-type blades with openable and closable lids, and the reaction solution was kept at 30 ° C. Was replaced with nitrogen gas to adjust the amount of dissolved oxygen to 0.1 ppm or less.
  • the hydrogel polymer was sequentially charged into a meat chopper 12VR-750SDX manufactured by Kiren Royal Co., Ltd. and coarsely crushed.
  • the diameter of the hole of the plate located at the outlet of the meat chopper was 6.4 mm.
  • the coarsely crushed product of the hydrogel-like polymer was spread on a wire mesh having an opening of 0.8 cm ⁇ 0.8 cm and dried with hot air at 160 ° C. for 60 minutes to obtain a dried product.
  • the particle group (C) was classified using a sieve having an opening of 850 ⁇ m and a sieve having a size of 180 ⁇ m.
  • a polymer powder (C1) which was a fraction that passed through an 850 ⁇ m sieve and did not pass through a 180 ⁇ m sieve
  • a polymer fine powder (c1) which was a fraction that passed through a 180 ⁇ m sieve
  • Table 1 shows the particle size, water content, CRC, and AAP of the polymer fine powder and the polymer powder produced in the production example.
  • the mixture was classified on a sieve with an opening of 850 ⁇ m, and the fraction passed through the sieve with an opening of 850 ⁇ m was heated at 200 ° C. for 30 minutes. After cooling to room temperature, the mixture containing the surface-crosslinked adhered particles was classified using a sieve having an opening of 850 ⁇ m and a sieve having a size of 180 ⁇ m. By classification, surface-crosslinked polymer particles were obtained as fractions that passed through an 850 ⁇ m sieve and did not pass through a 180 ⁇ m sieve. Silicon dioxide (product name: Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.) was sufficiently mixed with 10 g of the polymer particles to obtain water-absorbent resin particles.
  • Silicon dioxide product name: Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.
  • Example 2 [Adhesion / surface cross-linking] Water-absorbent resin particles were obtained in the same manner as in Example 1 except that a cross-linking agent solution in which 0.356 g of ethylene carbonate (EC), 0.312 g of isopropanol (IPA) and 1.2 g of deionized water were mixed was used. ..
  • Example 3 [Adhesion / surface cross-linking] Water-absorbent resin particles were obtained in the same manner as in Example 1 except that a cross-linking agent solution in which 0.356 g of ethylene carbonate (EC), 0.624 g of isopropanol (IPA) and 0.4 g of deionized water were mixed was used. ..
  • Example 4 [Adhesion / surface cross-linking] Water-absorbent resin particles were obtained in the same manner as in Example 1 except that a cross-linking agent solution in which 0.356 g of ethylene carbonate (EC), 0.624 g of isopropanol (IPA) and 0.8 g of deionized water were mixed was used. ..
  • Example 5 [Adhesion / surface cross-linking] Water-absorbent resin particles were obtained in the same manner as in Example 1 except that a cross-linking agent solution in which 0.356 g of ethylene carbonate (EC), 0.624 g of isopropanol (IPA) and 1.2 g of deionized water were mixed was used. ..
  • Example 6 [Adhesion / surface cross-linking] Water-absorbent resin particles were obtained in the same manner as in Example 1 except that a cross-linking agent solution obtained by mixing 0.308 g of propylene glycol (PG) and 1.6 g of deionized water was used.
  • PG propylene glycol
  • Example 7 [Adhesion / surface cross-linking] Water-absorbent resin particles were obtained in the same manner as in Example 1 except that a cross-linking agent solution in which 0.308 g of propylene glycol (PG), 0.624 g of isopropanol (IPA) and 0.8 g of deionized water were mixed was used. ..
  • the coarsely crushed dried product was pulverized using a centrifugal pulverizer (ZM200 manufactured by Retsch, screen diameter 1 mm, 6000 rpm), and further classified by a sieve having an opening of 850 ⁇ m and a sieve having a mesh size of 180 ⁇ m.
  • polymer particles (P1) which are fractions that passed through a sieve of 850 ⁇ m and did not pass through a sieve of 180 ⁇ m, were obtained.
  • Comparative Example 2 The granulation step was carried out in the same manner as in Comparative Example 1 except that 40 g of the polymer fine powder (c1) and 10 g of ion-exchanged water were used to obtain polymer particles (P2). The same surface cross-linking step as in Comparative Example 1 was carried out using the polymer particles (P2) to obtain water-absorbent resin particles.
  • Table 2 shows the evaluation results of the parts by mass of each component contained in the cross-linking agent solution and the water-absorbent resin particles with respect to 100 parts by mass of the polymer fine powder (a1) in the examples.
  • Table 3 shows the evaluation results of the parts by mass and the water-absorbent resin particles.
  • Table 4 shows the evaluation results of the parts by mass of each component contained in the cross-linking agent solution and the water-absorbent resin particles with respect to 100 parts by mass of the polymer powder (A1) in Comparative Examples 3 and 4.

Abstract

One aspect of the present invention relates to water-absorbent resin particles that have been surface crosslinked, the water-absorbent resin particles having a median particle diameter of 200-430 μm and a gel dissociation degree of 20-60%.

Description

吸水性樹脂粒子及び吸水性樹脂粒子を製造する方法Method for producing water-absorbent resin particles and water-absorbent resin particles
 本発明は、吸水性樹脂粒子及び該吸水性樹脂粒子を製造する方法に関する。 The present invention relates to water-absorbent resin particles and a method for producing the water-absorbent resin particles.
 従来、尿等の水を主成分とする液体を吸収するための吸収性物品には、吸水性樹脂粒子を含有する吸収体が用いられている。吸水性樹脂粒子の製造においては、重合により得られたブロック状又は粗粒子状の重合体を粉砕等の処理により粒子化する工程が行われている。粉砕により発生する、粒子径180μm未満の粒子等の小さい粒子は、造粒により粒子径を増大させて使用されている(例えば、特許文献1参照)。 Conventionally, an absorber containing water-absorbent resin particles has been used as an absorbent article for absorbing a liquid containing water as a main component such as urine. In the production of the water-absorbent resin particles, a step of pulverizing the block-shaped or coarse-particle-shaped polymer obtained by the polymerization into particles by a treatment such as pulverization is performed. Small particles such as particles having a particle diameter of less than 180 μm generated by pulverization are used by increasing the particle diameter by granulation (see, for example, Patent Document 1).
特開2008-526502号公報Japanese Unexamined Patent Publication No. 2008-526502
 吸収性物品の性能向上のために、含有する吸水性樹脂粒子の吸水速度を速くすることが求められる。また、吸水性樹脂粒子には、遠心分離機保持容量(CRC)と加圧下吸水倍率(AAP)の性能バランスを改善することも求められる。 In order to improve the performance of the absorbent article, it is required to increase the water absorption rate of the water-absorbent resin particles contained therein. Further, the water-absorbent resin particles are also required to improve the performance balance between the centrifuge holding capacity (CRC) and the water absorption ratio under pressure (AAP).
 本発明は、優れた吸水速度を有し、遠心分離機保持容量(CRC)と加圧下吸水倍率(AAP)の性能バランスに優れる吸水性樹脂粒子、及び吸水性樹脂粒子を製造する方法を提供することを目的とする。 The present invention provides a method for producing water-absorbent resin particles and water-absorbent resin particles having an excellent water absorption rate and an excellent performance balance between the centrifuge holding capacity (CRC) and the water absorption ratio under pressure (AAP). The purpose is.
 本発明は、中位粒子径が200~430μmであり、ゲル解離度が20~60%である、表面架橋された吸水性樹脂粒子に関する。本発明はまた、目開き180μm以下の篩を通過する重合体微粉に、架橋剤及び水を含有する架橋剤溶液を添加して、重合体微粉の凝着と表面架橋とを同時に行う工程を含む、吸水性樹脂粒子を製造する方法に関する。 The present invention relates to surface-crosslinked water-absorbent resin particles having a medium particle size of 200 to 430 μm and a gel dissociation degree of 20 to 60%. The present invention also includes a step of adding a cross-linking agent solution containing a cross-linking agent and water to the polymer fine powder passing through a sieve having an opening of 180 μm or less to simultaneously perform adhesion of the polymer fine powder and surface cross-linking. , The present invention relates to a method for producing water-absorbent resin particles.
 本発明によれば、優れた吸水速度を有し、遠心分離機保持容量(CRC)と加圧下吸水倍率(AAP)の性能バランスに優れる吸水性樹脂粒子、及び吸水性樹脂粒子を製造する方法を提供することができる。 According to the present invention, there are methods for producing water-absorbent resin particles and water-absorbent resin particles having an excellent water absorption rate and an excellent balance between the centrifuge holding capacity (CRC) and the water absorption ratio under pressure (AAP). Can be provided.
加圧下吸収倍率の測定方法を示す模式図である。It is a schematic diagram which shows the measuring method of the absorption magnification under pressure.
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, some embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 本明細書において「(メタ)アクリル」はアクリル及びメタクリルの両方を意味する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。他の類似の用語も同様である。「(ポリ)」とは、「ポリ」の接頭語がある場合及びない場合の双方を意味するものとする。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことをいう。本明細書に例示する材料は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。「生理食塩水」とは、0.9質量%塩化ナトリウム水溶液をいう。「室温」は、25℃を意味する。 In the present specification, "(meth) acrylic" means both acrylic and methacrylic. Similarly, "acrylate" and "methacrylate" are also referred to as "(meth) acrylate". The same is true for other similar terms. "(Poly)" shall mean both with and without the "poly" prefix. Within the numerical range described stepwise herein, the upper or lower limit of the numerical range at one stage may be optionally combined with the upper or lower limit of the numerical range at another stage. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. "Water-soluble" means that it exhibits a solubility in water of 5% by mass or more at 25 ° C. The materials exemplified in the present specification may be used alone or in combination of two or more. "Saline" means a 0.9% by mass sodium chloride aqueous solution. "Room temperature" means 25 ° C.
 本実施形態に係る吸水性樹脂粒子は、中位粒子径が200~430μmであり、ゲル解離度が20~60%である、表面架橋された吸水性樹脂粒子である。該吸水性樹脂粒子は、優れた吸水速度を有し、CRCとAAPとの性能バランスにも優れている。 The water-absorbent resin particles according to the present embodiment are surface-crosslinked water-absorbent resin particles having a medium particle size of 200 to 430 μm and a gel dissociation degree of 20 to 60%. The water-absorbent resin particles have an excellent water absorption rate and are also excellent in the performance balance between CRC and AAP.
 上記吸水性樹脂粒子を製造する方法の一実施形態は、目開き180μm以下の篩を通過する重合体微粉に、架橋剤及び水を含有する架橋剤溶液を添加して、重合体微粉の凝着と表面架橋とを同時に行う工程を含む。重合体微粉を凝着・表面架橋することで、表面架橋された凝着粒子を得ることができる。 In one embodiment of the method for producing the water-absorbent resin particles, a cross-linking agent and a cross-linking agent solution containing water are added to the polymer fine powder passing through a sieve having an opening of 180 μm or less, and the polymer fine powder is adhered. And surface cross-linking are performed at the same time. By adhering and surface-crosslinking the polymer fine powder, surface-crosslinked adhered particles can be obtained.
 本実施形態に係る凝着粒子は、重合体微粉を、少量の水で弱く粒子化(弱く造粒)させて得られる粒子であり、従来の造粒工程を経て得られる粒子に比べて、凝集強度が弱く、吸水時に粒子がほろほろと崩れるため、表面積が増え、吸水速度を速くすることができる。また、該凝着粒子は、吸水により一気に微粉に戻るわけではないので、ママコにもならない。また、凝着と同時に表面架橋を行うことで、CRCとAAPとの性能バランスを改善することができる。 The adherent particles according to the present embodiment are particles obtained by weakly granulating (weakly granulating) the polymer fine powder with a small amount of water, and are aggregated as compared with the particles obtained through the conventional granulation step. Since the strength is weak and the particles crumble when water is absorbed, the surface area is increased and the water absorption rate can be increased. In addition, the adhered particles do not return to fine powder at once by absorbing water, so that they do not become mamaco. Further, by performing surface cross-linking at the same time as adhesion, the performance balance between CRC and AAP can be improved.
 重合体微粉は、例えば、単量体を重合して含水ゲル状重合体を得た後、該含水ゲル状重合体を粉砕及び分級することで作製することができる。以下、本実施形態に係る重合体微粉及び吸水性樹脂粒子を製造する各工程について詳述する。 The polymer fine powder can be produced, for example, by polymerizing a monomer to obtain a hydrogel-like polymer, and then pulverizing and classifying the hydrogel-like polymer. Hereinafter, each step of producing the polymer fine powder and the water-absorbent resin particles according to the present embodiment will be described in detail.
[重合]
 まず、エチレン性不飽和単量体を含む単量体を重合させて含水ゲル状重合体を得る。含水ゲル状重合体は、エチレン性不飽和単量体を含む単量体の重合により形成された架橋重合体が水を含みゲル状となったものであってよい。本実施形態に係る製造方法によって得られる吸水性樹脂粒子は、エチレン性不飽和単量体を含む単量体の重合により形成された架橋重合体を含むことができる。架橋重合体は、エチレン性不飽和単量体に由来する単量体単位を有する。すなわち、本実施形態に係る吸水性樹脂粒子は、エチレン性不飽和単量体に由来する構造単位を有することができる。
[polymerization]
First, a monomer containing an ethylenically unsaturated monomer is polymerized to obtain a hydrogel-like polymer. The water-containing gel-like polymer may be a cross-linked polymer formed by polymerization of a monomer containing an ethylenically unsaturated monomer and formed into a gel-like state containing water. The water-absorbent resin particles obtained by the production method according to the present embodiment can contain a crosslinked polymer formed by polymerizing a monomer containing an ethylenically unsaturated monomer. The crosslinked polymer has a monomeric unit derived from an ethylenically unsaturated monomer. That is, the water-absorbent resin particles according to the present embodiment can have a structural unit derived from an ethylenically unsaturated monomer.
 重合は、例えば、水溶液重合法により行うことができる。以下、水溶液重合法による単量体の重合について説明する。 Polymerization can be performed, for example, by an aqueous solution polymerization method. Hereinafter, the polymerization of the monomer by the aqueous solution polymerization method will be described.
 エチレン性不飽和単量体は水溶性であることが好ましい。エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸、マレイン酸、無水マレイン酸、フマル酸及びそれらの塩等のカルボン酸系単量体;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体;N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体及びその4級化物;ビニルスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸及びそれらの塩等のスルホン酸系単量体が挙げられる。エチレン性不飽和単量体は、1種を単独で使用してもよく、2種以上を併用してもよい。 The ethylenically unsaturated monomer is preferably water-soluble. Examples of the ethylenically unsaturated monomer include carboxylic acid-based monomers such as (meth) acrylic acid, maleic acid, maleic anhydride, fumaric acid and salts thereof; (meth) acrylamide, N, N-dimethyl. Nonionic monomers such as (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate; N, N-diethylaminoethyl (meth) acrylate, N , N-diethylaminopropyl (meth) acrylate, diethylaminopropyl (meth) acrylamide and other amino group-containing unsaturated monomers and quaternized products thereof; vinyl sulfonic acid, styrene sulfonic acid, 2- (meth) acrylamide-2-methyl Examples thereof include sulfonic acid-based monomers such as propanesulfonic acid, 2- (meth) acryloylethanesulfonic acid and salts thereof. As the ethylenically unsaturated monomer, one type may be used alone, or two or more types may be used in combination.
 エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩、マレイン酸、フマル酸、(メタ)アクリルアミド、並びにN,N-ジメチルアクリルアミドからなる群より選ばれる少なくとも1種を含むことが好ましく、(メタ)アクリル酸及びその塩から選択される少なくとも1種を含むことがより好ましい。また、(メタ)アクリル酸及びその塩と、他のエチレン性不飽和単量体を共重合させてもよい。この場合、エチレン性不飽和単量体の総量のうち、上記(メタ)アクリル酸及びその塩が70~100モル%用いられることが好ましく、80~100モル%用いられることがより好ましく、90~100モル%用いられることが更に好ましい。エチレン性不飽和単量体は、アクリル酸及びその塩の少なくとも一方を含むことが好ましい。 The ethylenically unsaturated monomer preferably contains at least one selected from the group consisting of (meth) acrylic acid and salts thereof, maleic acid, fumaric acid, (meth) acrylamide, and N, N-dimethylacrylamide. , (Meta) It is more preferable to contain at least one selected from (meth) acrylic acid and salts thereof. Further, (meth) acrylic acid and a salt thereof may be copolymerized with another ethylenically unsaturated monomer. In this case, 70 to 100 mol% of the above (meth) acrylic acid and a salt thereof are preferably used, more preferably 80 to 100 mol%, and 90 to 90 to the total amount of the ethylenically unsaturated monomer. It is more preferable to use 100 mol%. The ethylenically unsaturated monomer preferably contains at least one of acrylic acid and a salt thereof.
 エチレン性不飽和単量体が(メタ)アクリル酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸等のように酸基を有する場合、必要に応じてその酸基があらかじめアルカリ性中和剤により中和されたものを用いることができる。このようなアルカリ性中和剤としては、例えば、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニア等が挙げられる。これらのアルカリ性中和剤は、中和操作を簡便にするために水溶液の状態にして用いてもよい。アルカリ性中和剤は1種を単独で使用してもよく、2種以上を併用してもよい。なお、酸基の中和は、原料であるエチレン性不飽和単量体の重合前に行ってもよく、重合中又は重合後に行ってもよい。 When the ethylenically unsaturated monomer has an acid group such as (meth) acrylic acid and 2- (meth) acrylamide-2-methylpropanesulfonic acid, the acid group is previously an alkaline neutralizing agent if necessary. Can be used after being neutralized by. Examples of such an alkaline neutralizer include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydroxide and potassium carbonate; ammonia and the like. These alkaline neutralizers may be used in the form of an aqueous solution in order to simplify the neutralization operation. One type of alkaline neutralizer may be used alone, or two or more types may be used in combination. The acid group may be neutralized before the polymerization of the ethylenically unsaturated monomer as a raw material, or may be performed during or after the polymerization.
 アルカリ性中和剤によるエチレン性不飽和単量体の中和度は、得られる吸水性樹脂粒子の浸透圧を高めることで吸水性能を高め、かつ余剰のアルカリ性中和剤の存在に起因する安全性等に問題が生じないようにする観点から、通常、10~100モル%であることが好ましく、30~90モル%であることがより好ましく、40~85モル%であることが更に好ましく、50~80モル%であることがより更に好ましい。ここで、中和度は、エチレン性不飽和単量体が有する全ての酸基に対する中和度とする。 The degree of neutralization of the ethylenically unsaturated monomer by the alkaline neutralizer enhances the water absorption performance by increasing the osmotic pressure of the obtained water-absorbent resin particles, and is safe due to the presence of the excess alkaline neutralizer. From the viewpoint of preventing problems such as, usually, it is preferably 10 to 100 mol%, more preferably 30 to 90 mol%, further preferably 40 to 85 mol%, and 50. It is even more preferably ~ 80 mol%. Here, the degree of neutralization is the degree of neutralization for all the acid groups of the ethylenically unsaturated monomer.
 エチレン性不飽和単量体は、通常、水溶液の状態で用いることが好適である。エチレン性不飽和単量体を含む水溶液(以下、単に「単量体水溶液」という。)におけるエチレン性不飽和単量体の濃度は、20質量%以上飽和濃度以下とすればよく、25~70質量%が好ましく、30~50質量%がより好ましい。 It is usually preferable to use the ethylenically unsaturated monomer in the state of an aqueous solution. The concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer (hereinafter, simply referred to as “monomer aqueous solution”) may be 20% by mass or more and the saturation concentration or less, and is 25 to 70. The mass% is preferable, and 30 to 50% by mass is more preferable.
 エチレン性不飽和単量体の使用量は、単量体全量(吸水性樹脂粒子を得るための単量体全量。例えば、架橋重合体の構造単位を与える単量体の全量。以下同様。)に対して70~100モル%であってよく、80~100モル%、90~100モル%、95~100モル%、又は100モル%であってよい。なかでも、(メタ)アクリル酸及びその塩の割合が単量体全量に対して70~100モル%であってよく、80~100モル%、90~100モル%、95~100モル%、又は100モル%であってよい。「(メタ)アクリル酸及びその塩の割合」は、(メタ)アクリル酸及びその塩の合計量の割合を意味する。 The amount of the ethylenically unsaturated monomer used is the total amount of the monomer (the total amount of the monomer for obtaining the water-absorbent resin particles. For example, the total amount of the monomers giving the structural unit of the crosslinked polymer. The same applies hereinafter). It may be 70 to 100 mol%, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or 100 mol%. Among them, the ratio of (meth) acrylic acid and its salt may be 70 to 100 mol% with respect to the total amount of the monomer, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or It may be 100 mol%. "Ratio of (meth) acrylic acid and its salt" means the ratio of the total amount of (meth) acrylic acid and its salt.
 吸水性樹脂粒子は、例えば、エチレン性不飽和単量体に由来する構造単位を有する架橋重合体を含む吸水性樹脂粒子であって、エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも1種の化合物を含み、(メタ)アクリル酸及びその塩の割合が、吸水性樹脂粒子を得るための単量体全量に対して70~100モル%であるものであってよい。 The water-absorbent resin particles are, for example, water-absorbent resin particles containing a crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer, and the ethylenically unsaturated monomer includes (meth) acrylic acid and It contains at least one compound selected from the group consisting of the salts, and the ratio of (meth) acrylic acid and its salts is 70 to 100 mol% with respect to the total amount of monomers for obtaining water-absorbent resin particles. It may be a thing.
 単量体水溶液は、重合開始剤を含んでいてよい。単量体水溶液に含まれる単量体の重合は、単量体水溶液に重合開始剤を添加し、必要により加熱、光照射等を行うことで開始される。重合開始剤としては、光重合開始剤又はラジカル重合開始剤が挙げられ、なかでも水溶性ラジカル重合開始剤が好ましく用いられる。重合開始剤は、例えば、アゾ系化合物、過酸化物等であってよい。 The monomer aqueous solution may contain a polymerization initiator. The polymerization of the monomer contained in the aqueous monomer solution is started by adding a polymerization initiator to the aqueous monomer solution and, if necessary, heating, irradiating with light or the like. Examples of the polymerization initiator include a photopolymerization initiator and a radical polymerization initiator, and among them, a water-soluble radical polymerization initiator is preferably used. The polymerization initiator may be, for example, an azo compound, a peroxide or the like.
 アゾ系化合物としては、例えば、2,2’-アゾビス[2-(N-フェニルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス{2-[N-(4-クロロフェニル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス{2-[N-(4-ヒドロキシフェニル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス[2-(N-ベンジルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[N-(2-ヒドロキシエチル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、2,2’-アゾビス(2-メチルプロピオンアミド)二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二硫酸塩二水和物、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]等のアゾ系化合物を挙げることができる。良好な吸水性能を有する吸水性樹脂粒子が得られ易いという観点から、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、及び2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物が好ましい。これらのアゾ系化合物は、1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of the azo compound include 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride and 2,2'-azobis {2- [N- (4-chlorophenyl) amidino] propane}. Dihydrochloride, 2,2'-azobis {2- [N- (4-hydroxyphenyl) amidino] propane} dihydrochloride, 2,2'-azobis [2- (N-benzylamidino) propane] dihydrochloride , 2,2'-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis {2- [N- (2-Hydroxyethyl) amidino] propane} dihydrochloride, 2,2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2 -(2-Imidazoline-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (4,5,6,7-tetrahydro-1H-1,3-diazepine-2-yl) propane] Dihydrochloride, 2,2'-azobis [2- (5-hydroxy-3,4,5,6-tetrahydropyrimidine-2-yl) propane] dihydrochloride, 2,2'-azobis {2- [1 -(2-Hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, 2,2'-azobis (2-methylpropionamide) dihydrochloride, 2,2'-azobis [2- (2) -Imidazoline-2-yl) propane] disulfate dihydrate, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate, 2,2'-azobis Examples thereof include azo compounds such as [2-methyl-N- (2-hydroxyethyl) propionamide]. From the viewpoint that water-absorbent resin particles having good water-absorbing performance can be easily obtained, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis {2- [1- (2-hydroxy) Ethyl) -2-imidazolin-2-yl] propane} dihydrochloride and 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate are preferred. These azo compounds may be used alone or in combination of two or more.
 過酸化物としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート等の有機過酸化物類;過酸化水素等の過酸化物が挙げられる。これらの過酸化物のなかでも、良好な吸水性能を有する吸水性樹脂粒子が得られる観点から、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、又は過酸化水素を用いることが好ましく、過硫酸カリウム、過硫酸アンモニウム、又は過硫酸ナトリウムを用いることがより好ましい。これらの過酸化物は、1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of the peroxide include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t. -Organic peroxides such as butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate; peroxides such as hydrogen peroxide can be mentioned. Among these peroxides, potassium persulfate, ammonium persulfate, sodium persulfate, or hydrogen peroxide is preferably used, preferably potassium persulfate, from the viewpoint of obtaining water-absorbent resin particles having good water absorption performance. It is more preferable to use ammonium persulfate or sodium persulfate. One of these peroxides may be used alone, or two or more thereof may be used in combination.
 重合開始剤と還元剤とを組み合わせて用いて、レドックス重合開始剤として用いることもできる。還元剤としては、例えば、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、及びL-アスコルビン酸が挙げられる。 It can also be used as a redox polymerization initiator by using a polymerization initiator and a reducing agent in combination. Examples of the reducing agent include sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
 吸水性樹脂粒子のCRC及びAAPの性能バランスの観点から、重合開始剤の量は、単量体1モルに対して0.05~1ミリモル、0.08~0.8ミリモル、又は0.1~0.7ミリモルであってもよい。 From the viewpoint of the performance balance of CRC and AAP of the water-absorbent resin particles, the amount of the polymerization initiator is 0.05 to 1 mmol, 0.08 to 0.8 mmol, or 0.1 per 1 mol of the monomer. It may be up to 0.7 mmol.
 単量体水溶液は、内部架橋剤を含むことが好ましい。内部架橋剤を含むことにより、得られる架橋重合体が、その内部架橋構造として、重合反応による自己架橋に加え、内部架橋剤による架橋を有することができる。 The monomer aqueous solution preferably contains an internal cross-linking agent. By including the internal cross-linking agent, the obtained cross-linked polymer can have cross-linking by the internal cross-linking agent in addition to self-cross-linking by the polymerization reaction as its internal cross-linking structure.
 内部架橋剤は、(メタ)アクリル基、アリル基、エポキシ基、又はアミノ基を有する化合物を含んでもよい。これら反応性官能基を2つ以上有する化合物を内部架橋剤として用いることができる。(メタ)アクリル基を有する化合物の例としては、(ポリ)エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート(ポリ)プロピレングリコールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、及びN,N’-メチレンビス(メタ)アクリルアミドが挙げられる。アリル基を有する化合物の例としては、トリアリルアミンが挙げられる。エポキシ基を有する化合物の例としては、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、及びエピクロロヒドリンが挙げられる。アミノ基を有する化合物の例としては、トリエチレンテトラミン、エチレンジアミン、及びヘキサメチレンジアミンが挙げられる。内部架橋剤は、1種を単独で使用してもよく、2種以上を併用してもよい。 The internal cross-linking agent may contain a compound having a (meth) acrylic group, an allyl group, an epoxy group, or an amino group. A compound having two or more of these reactive functional groups can be used as an internal cross-linking agent. Examples of compounds having a (meth) acrylic group include (poly) ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate (poly) propylene glycol di (meth) acrylate, and glycerol tri (meth) acrylate. Examples thereof include trimethylolpropane di (meth) acrylate and N, N'-methylenebis (meth) acrylamide. Examples of compounds having an allyl group include triallylamine. Examples of compounds having an epoxy group include (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, and epichlorohydrin. Examples of compounds having an amino group include triethylenetetramine, ethylenediamine, and hexamethylenediamine. As the internal cross-linking agent, one type may be used alone, or two or more types may be used in combination.
 内部架橋剤を使用する場合の使用量は、吸水性樹脂粒子のCRC及びAAPの性能バランスを調整する観点から、単量体1モルに対して0.02~1.0ミリモル、0.05~0.8ミリモル、又は0.1~0.6ミリモルであってもよい。 When the internal cross-linking agent is used, the amount used is 0.02 to 1.0 mmol or 0.05 to 1 mol of the monomer from the viewpoint of adjusting the performance balance of CRC and AAP of the water-absorbent resin particles. It may be 0.8 mmol, or 0.1 to 0.6 mmol.
 単量体水溶液には、必要に応じて、連鎖移動剤、増粘剤等の添加剤が含まれていてもよい。連鎖移動剤としては、例えば、チオール類、チオール酸類、第2級アルコール類、次亜リン酸、亜リン酸等が挙げられる。増粘剤としては、例えば、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ポリエチレングリコール、ポリアクリル酸、ポリアクリル酸中和物、ポリアクリルアミド等が挙げられる。これらは1種を単独で使用してもよく、2種以上を併用してもよい。単量体水溶液には、水溶性有機溶媒等の、水以外の溶媒が適宜配合されてもよい。 The monomer aqueous solution may contain additives such as a chain transfer agent and a thickener, if necessary. Examples of the chain transfer agent include thiols, thiol acids, secondary alcohols, hypophosphorous acid, phosphorous acid and the like. Examples of the thickener include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, polyethylene glycol, polyacrylic acid, polyacrylic acid neutralizer, polyacrylamide and the like. These may be used alone or in combination of two or more. A solvent other than water, such as a water-soluble organic solvent, may be appropriately added to the monomer aqueous solution.
 重合方式としては、例えば、単量体水溶液を撹拌しない状態(例えば、静置状態)で重合する静置重合方式、又は反応装置内で単量体水溶液を撹拌しながら重合する撹拌重合方式であってよい。静置重合方式である水溶液静置重合により含水ゲル状重合体を得ることが好ましい。静置重合方式では、重合完了時、反応容器中に存在した単量体水溶液と略同じ体積を占める単一のブロック状の含水ゲル状重合体を得ることができる。 The polymerization method is, for example, a static polymerization method in which the monomer aqueous solution is polymerized without stirring (for example, a static state), or a stirring polymerization method in which the monomer aqueous solution is polymerized while stirring in the reaction apparatus. It's okay. It is preferable to obtain a hydrogel-like polymer by static polymerization of an aqueous solution, which is a static polymerization method. In the static polymerization method, it is possible to obtain a single block-shaped hydrogel-like polymer that occupies substantially the same volume as the monomer aqueous solution present in the reaction vessel when the polymerization is completed.
 製造の形態は、回分、半連続、連続等であってよい。例えば、水溶液静置連続重合においては、ベルトコンベア状の連続重合装置に単量体水溶液を連続的に供給しながら重合反応を行い、例えば帯状等の連続的な形状の含水ゲルを得ることができる。 The form of production may be batch, semi-continuous, continuous, etc. For example, in the aqueous solution static continuous polymerization, a polymerization reaction can be carried out while continuously supplying a monomer aqueous solution to a belt conveyor-shaped continuous polymerization apparatus to obtain a water-containing gel having a continuous shape such as a band shape. ..
 重合温度は、使用する重合開始剤によって異なるが、重合を迅速に進行させ、重合時間を短くすることにより生産性を高める観点から、0~130℃が好ましく、10~110℃がより好ましい。重合時間は、使用する重合開始剤の種類又は量、反応温度等に応じて適宜設定されるが、1~200分が好ましく、5~100分がより好ましい。 The polymerization temperature varies depending on the polymerization initiator used, but is preferably 0 to 130 ° C., more preferably 10 to 110 ° C. from the viewpoint of increasing the productivity by rapidly advancing the polymerization and shortening the polymerization time. The polymerization time is appropriately set according to the type or amount of the polymerization initiator used, the reaction temperature and the like, but is preferably 1 to 200 minutes, more preferably 5 to 100 minutes.
[粒子化]
 次に、含水ゲル状重合体を粒子化して、粒子径180μm未満の微粉を含む粒子群を得る。粒子化工程は、例えば、含水ゲル状重合体を粗砕して粗砕物を得る工程、及び、粗砕物を更に粉砕して粒子群を得る工程を含んでいてよい。粒子化工程は、含水ゲル状重合体、粗砕物及び/又は粒子群を乾燥する工程を含んでいてよい。粗砕物は、乾燥工程を経た後で粉砕に供されることが好ましい。粒子化工程はさらに、粉砕して得られた粒子群を分級する工程を含んでいてもよい。粒子化工程により得られる粒子群は、粒子径180μm未満である微粉のみからなっていてもよい。以下、粒子化工程中の各工程について詳述する。
[Particle]
Next, the hydrogel-like polymer is atomized to obtain a particle group containing fine particles having a particle diameter of less than 180 μm. The particle-forming step may include, for example, a step of coarsely crushing the hydrogel-like polymer to obtain a coarsely crushed product, and a step of further crushing the coarsely crushed material to obtain a particle group. The particle formation step may include a step of drying the hydrogel-like polymer, the crude product and / or the particle group. The coarsely crushed product is preferably subjected to pulverization after undergoing a drying step. The particle formation step may further include a step of classifying the particle group obtained by pulverization. The particle group obtained by the particle formation step may consist only of fine particles having a particle diameter of less than 180 μm. Hereinafter, each step in the particle formation step will be described in detail.
(粗砕)
 粒子化工程は、含水ゲル状重合体を粗砕して粗砕物を得る工程を含むことができる。含水ゲル状重合体を粗砕して得られる粗砕物は、含水ゲル状であってよい。粗砕物は、粒子状であってよく、粒子が連なったような細長い形状であってもよい。粗砕物の最小辺のサイズは、例えば、0.1~15mm程度、又は1.0~10mm程度であってよい。粗砕物の最大辺のサイズは、0.1~200mm程度、又は1.0~150mm程度であってよい。
(Coarse)
The particle formation step can include a step of coarsely crushing the hydrogel-like polymer to obtain a coarsely crushed product. The coarsely crushed product obtained by coarsely crushing the hydrogel-like polymer may be in the form of a hydrogel. The coarsely crushed product may be in the form of particles, or may have an elongated shape such as a series of particles. The size of the minimum side of the coarsely crushed product may be, for example, about 0.1 to 15 mm or about 1.0 to 10 mm. The size of the maximum side of the coarsely crushed product may be about 0.1 to 200 mm, or about 1.0 to 150 mm.
 粗砕装置としては、例えば、ニーダー(例えば、加圧式ニーダー、双腕型ニーダー等)、ミートチョッパー、カッターミル、ファーマミル等を用いることができ、双腕型ニーダー、ミートチョッパー、カッターミルが好ましい。 As the crushing device, for example, a kneader (for example, a pressurized kneader, a double-armed kneader, etc.), a meat chopper, a cutter mill, a pharma mill, or the like can be used, and a double-armed kneader, a meat chopper, a cutter mill, or the like can be used. ..
(乾燥)
 粒子化工程は、含水ゲル状重合体、粗砕物及び/又は粉砕物を乾燥する工程を含むことができる。含水ゲル状重合体、粗砕物、又は粉砕物中の水を含む溶媒を加熱及び/又は送付により除去することで、これらの乾燥物を得ることができる。乾燥の方法は、自然乾燥、加熱乾燥、減圧乾燥等の方法であってよい。乾燥は、例えば常圧下又は減圧下であってよく、乾燥効率を高めるために窒素等の気流下等で行ってもよい。乾燥は、複数の方法を組み合わせて用いてもよい。常圧下又は減圧下で粗砕物を乾燥してもよい。常圧下の乾燥のための加熱温度が、70~250℃、又は80~200℃であってもよい。乾燥により得られる乾燥物の含水率は、例えば、20質量%以下、10質量%以下、又は5質量%以下であってもよい。
(Dry)
The particleization step can include the step of drying the hydrogel polymer, the coarsely crushed product and / or the pulverized product. These dried products can be obtained by removing the solvent containing water in the water-containing gel polymer, the coarsely crushed product, or the crushed product by heating and / or sending. The drying method may be a method of natural drying, heat drying, vacuum drying or the like. The drying may be performed under normal pressure or reduced pressure, for example, and may be performed under an air flow such as nitrogen in order to improve the drying efficiency. Drying may be performed by combining a plurality of methods. The crushed product may be dried under normal pressure or reduced pressure. The heating temperature for drying under normal pressure may be 70 to 250 ° C. or 80 to 200 ° C. The water content of the dried product obtained by drying may be, for example, 20% by mass or less, 10% by mass or less, or 5% by mass or less.
(粉砕)
 粒子化工程は、含水ゲル状重合体、粗砕物及び/又はこれらの乾燥物を粉砕する工程を含むことができる。含水ゲル状重合体、粗砕物及び/又はこれらの乾燥物を粉砕することにより、微粉を含む粒子群が得られる粉砕には、例えば、ローラーミル(ロールミル)、スタンプミル、ジェットミル、高速回転粉砕機(超遠心粉砕機、ハンマーミル、ピンミル、ロータビータミル等)、容器駆動型ミル(回転ミル、振動ミル、遊星ミル等)等の粉砕機を使用することができる。粉砕機は、出口側に多孔板、スクリーン、グリッド等の、粉砕粒子の最大粒子径を制御する開口部を有していてもよい。開口部の形状は多角形、円形等であってよく、開口部の最大径は、0.1~5mm、0.3~3.0mm、又は0.5~1.5mmであってよい。
(Crushing)
The particleization step can include a step of pulverizing a hydrogel-like polymer, a coarsely crushed product, and / or a dried product thereof. For pulverization, for example, a roller mill (roll mill), a stamp mill, a jet mill, or a high-speed rotary pulverization can be used to obtain a particle group containing fine powder by pulverizing a hydrogel polymer, a coarse pulverized product, and / or a dried product thereof. A crusher such as a machine (ultra-centrifugal crusher, hammer mill, pin mill, rotor beater mill, etc.), container-driven mill (rotary mill, vibration mill, planetary mill, etc.) can be used. The crusher may have an opening on the outlet side, such as a perforated plate, a screen, a grid, etc., for controlling the maximum particle size of the crushed particles. The shape of the opening may be polygonal, circular, or the like, and the maximum diameter of the opening may be 0.1 to 5 mm, 0.3 to 3.0 mm, or 0.5 to 1.5 mm.
 粉砕は、粒子群の少なくとも一部が粒子径180μm未満の微粉となるように行えばよい。粉砕は、例えば、粒子径850μm未満程度の、造粒せずに使用可能な適切な粒子径を有する重合体粒子を得ることを主目的として粉砕しつつ、粒子径180μm未満の微粉が一部発生するような方法で行うことができる。 The pulverization may be performed so that at least a part of the particle group becomes fine powder having a particle diameter of less than 180 μm. In the pulverization, for example, while pulverizing for the main purpose of obtaining polymer particles having a particle diameter of less than 850 μm and having an appropriate particle diameter that can be used without granulation, some fine particles having a particle diameter of less than 180 μm are generated. It can be done in such a way.
 粒子化工程により得られる粒子群全量のうち、粒子径180μm未満である微粉の存在率は、例えば1~100質量%であってよく、30~60質量%であることが好ましい。粒子径180μm未満とは、目開き180μmのJIS標準篩を通過できるものをいう。 The abundance of fine particles having a particle diameter of less than 180 μm in the total amount of the particle group obtained by the particle formation step may be, for example, 1 to 100% by mass, preferably 30 to 60% by mass. A particle size of less than 180 μm means a particle that can pass through a JIS standard sieve having an opening of 180 μm.
 粒子化工程により得られる粒子群には、粒子径180μm以上850μm未満の粒子(目開き850μmのJIS標準篩を通過し、かつ目開き180μmのJIS標準篩を通過しない粒子)が含まれていてよい。 The particle group obtained by the particle formation step may include particles having a particle diameter of 180 μm or more and less than 850 μm (particles that pass through a JIS standard sieve having a mesh size of 850 μm and do not pass through a JIS standard sieve having a mesh size of 180 μm). ..
(分級)
 粒子化工程では、粉砕により得られた粒子群を分級する工程を含んでよい。分級とは、ある粒子群を粒子径に応じて粒度分布の異なる2つ以上の粒子群に分ける操作のことをいう。分級により、粒子径180μm未満である微粉のみからなる粒子群を分取してもよく、粒子群における粒子径180μm未満である微粉の存在率を高めてもよい。必要に応じて分級後の粒子の一部を再度粉砕してもよく、粉砕工程と分級工程とを繰り返してもよい。分級により、本実施形態に係る重合体微粉を得ることができる。
(Classification)
The particle formation step may include a step of classifying the particle group obtained by pulverization. Classification refers to an operation of dividing a certain particle group into two or more particle groups having different particle size distributions according to the particle size. By classification, a particle group consisting only of fine particles having a particle size of less than 180 μm may be separated, or the abundance of fine particles having a particle size of less than 180 μm in the particle group may be increased. If necessary, a part of the classified particles may be pulverized again, or the pulverization step and the classification step may be repeated. By classification, the polymer fine powder according to this embodiment can be obtained.
 分級の方法は、公知の分級方法を使用することができ、例えば、スクリーン分級、又は風力分級であってもよい。スクリーン分級は、スクリーンを振動させることによって、スクリーン上の粒子を、スクリーンの網目を通過する粒子と通過しない粒子とに分級する方法である。スクリーン分級は、例えば振動篩、ロータリシフタ、円筒撹拌篩、ブロワシフタ、又はロータップ式振とう器を用いて行うことができる。風力分級は、空気の流れを利用して粒子を分級する方法である。 As the classification method, a known classification method can be used, and for example, screen classification or wind power classification may be used. Screen classification is a method of classifying particles on a screen into particles that pass through the mesh of the screen and particles that do not pass through the screen by vibrating the screen. Screen classification can be performed using, for example, a vibrating sieve, a rotary shifter, a cylindrical stirring sieve, a blower shifter, or a low-tap shaker. Wind power classification is a method of classifying particles using the flow of air.
 重合体微粉のCRC(Centrifuge Retention Capacity)は、例えば、38g/g以上、41g/g以上、44g/g以上、又は47g/g以上であってよく、65g/g以下、63g/g以下、60g/g以下、55g/g以下、又は50g/g以下であってよい。CRCは、EDANA法(NWSP 241.0.R2(15)、page.769~778)を参考に、後述の実施例に記載の方法によって測定される。 The CRC (Centrifuge Retention Capacity) of the polymer fine powder may be, for example, 38 g / g or more, 41 g / g or more, 44 g / g or more, or 47 g / g or more, and 65 g / g or less, 63 g / g or less, 60 g. It may be / g or less, 55 g / g or less, or 50 g / g or less. CRC is measured by the method described in Examples described later with reference to the EDANA method (NWSP 241.0.R2 (15), pages 769 to 778).
[凝着・表面架橋]
 本実施形態に係る方法では、分級後の重合体微粉に、架橋剤及び水を含有する架橋剤溶液を添加して、重合体微粉の凝着と表面架橋とを同時に行い、表面架橋された凝着粒子を得ることができる。表面架橋された凝着粒子は、重合体微粉の表面架橋を行うための架橋剤(表面架橋剤)を添加して反応させる際に、少量の水が存在することにより、微粉同士が弱く粒子化することで形成することができる。重合体微粉の凝着・表面架橋処理を行うことにより、吸水性樹脂粒子の吸水性能を高めることができる。
[Adhesion / surface cross-linking]
In the method according to the present embodiment, a cross-linking agent solution containing a cross-linking agent and water is added to the polymer fine powder after classification to simultaneously perform adhesion of the polymer fine powder and surface cross-linking, and surface-crosslinked coagulation. The landing particles can be obtained. The surface-crosslinked adhered particles are weakly formed into particles due to the presence of a small amount of water when a cross-linking agent (surface cross-linking agent) for performing surface cross-linking of the polymer fine powder is added and reacted. It can be formed by doing. The water absorption performance of the water-absorbent resin particles can be improved by performing the adhesion and surface cross-linking treatment of the polymer fine powder.
 架橋剤溶液の水の含有量は、重合体微粉100質量部に対して10質量部以下、9質量部以下、8.5質量部以下、又は8質量部以下であってよく、1質量部以上、1.5質量部以上、1.8質量部以上、又は2質量部以上であってもよい。 The water content of the cross-linking agent solution may be 10 parts by mass or less, 9 parts by mass or less, 8.5 parts by mass or less, or 8 parts by mass or less with respect to 100 parts by mass of the polymer fine powder, and is 1 part by mass or more. , 1.5 parts by mass or more, 1.8 parts by mass or more, or 2 parts by mass or more.
 架橋剤溶液は、アルコールを更に含有してもよい。アルコールとしては、例えば、炭素数1~5の1価のアルコールが挙げられる。架橋剤溶液のアルコールの含有量は、重合体微粉100質量部に対して5質量部以下、4質量部以下、又は3.5質量部以下であってよく、0.5質量部以上、1質量部以上、又は1.5質量部以上であってもよい。 The cross-linking agent solution may further contain alcohol. Examples of the alcohol include monohydric alcohols having 1 to 5 carbon atoms. The alcohol content of the cross-linking agent solution may be 5 parts by mass or less, 4 parts by mass or less, or 3.5 parts by mass or less, and 0.5 parts by mass or more and 1 part by mass with respect to 100 parts by mass of the polymer fine powder. It may be 10 parts or more, or 1.5 parts by mass or more.
 表面架橋剤は、例えば、エチレン性不飽和単量体由来の官能基との反応性を有する官能基(反応性官能基)を2個以上含有する化合物を用いることができる。表面架橋剤としては、例えば、エチレンカーボネート等のアルキレンカーボネート化合物;エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、及びポリグリセリン等のポリオール化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル(ポリ)プロピレングリコールポリグリシジルエーテル、及び(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、及びα-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、及びヘキサメチレンジイソシアネート等のイソシアネート化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、及び3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物が挙げられる。これらの表面架橋剤は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。表面架橋剤が、アルキレンカーボネート化合物、ポリオール化合物、又はこれらの組み合わせを含んでいてもよい。表面架橋剤におけるアルキレンカーボネート化合物の比率が、表面架橋剤の総質量を基準として50~100質量%、60~100質量%、70~100質量%、80~100質量%、又は90~100質量%であってもよい。 As the surface cross-linking agent, for example, a compound containing two or more functional groups (reactive functional groups) having reactivity with a functional group derived from an ethylenically unsaturated monomer can be used. Examples of the surface cross-linking agent include alkylene carbonate compounds such as ethylene carbonate; ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, polyglycerin and the like. Polypoly compounds; (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylolpropane triglycidyl ether (poly) propylene glycol polyglycidyl ether, and (poly) glycerol polyglycidyl. Polyglycidyl compounds such as ether; haloepoxy compounds such as epichlorohydrin, epibromhydrin, and α-methylepicrolhydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylenediisocyanate; 3-methyl-3-oxetanemethanol, Oxetane compounds such as 3-ethyl-3-oxetan methanol, 3-butyl-3-oxetan methanol, 3-methyl-3-oxetan ethanol, 3-ethyl-3-oxetan ethanol, and 3-butyl-3-oxetane ethanol; Oxazoline compounds such as 1,2-ethylenebisoxazoline; hydroxyalkylamide compounds such as bis [N, N-di (β-hydroxyethyl)] adipamide can be mentioned. These surface cross-linking agents may be used alone or in combination of two or more. The surface cross-linking agent may contain an alkylene carbonate compound, a polyol compound, or a combination thereof. The ratio of the alkylene carbonate compound in the surface cross-linking agent is 50 to 100% by mass, 60 to 100% by mass, 70 to 100% by mass, 80 to 100% by mass, or 90 to 100% by mass based on the total mass of the surface cross-linking agent. May be.
 吸水性樹脂粒子のCRC及びAAPを高める観点から、表面架橋剤の量は、重合体微粉100質量部に対して、0.3~5.0質量部、0.5~3.0質量部、0.8~2.5質量部、又は1.0~2.0質量部であってもよい。 From the viewpoint of increasing the CRC and AAP of the water-absorbent resin particles, the amount of the surface cross-linking agent was 0.3 to 5.0 parts by mass and 0.5 to 3.0 parts by mass with respect to 100 parts by mass of the polymer fine powder. It may be 0.8 to 2.5 parts by mass or 1.0 to 2.0 parts by mass.
 表面架橋のための加熱温度及び加熱時間は、表面架橋剤の種類等を考慮して、架橋反応が適切に進行するように調整される。例えば、表面架橋のための加熱温度が80℃以上、100℃以上、120℃以上、150℃以上、又は180℃を超えていてもよく、190℃以上であってもよい。表面架橋のための加熱温度が250℃以下、230℃以下、又は210℃以下であってもよい。表面架橋のための加熱時間は、例えば5~90分、10~80分、又は15~60分であってもよい。 The heating temperature and heating time for surface cross-linking are adjusted so that the cross-linking reaction proceeds appropriately in consideration of the type of surface cross-linking agent and the like. For example, the heating temperature for surface cross-linking may be 80 ° C. or higher, 100 ° C. or higher, 120 ° C. or higher, 150 ° C. or higher, or 180 ° C. or higher, or 190 ° C. or higher. The heating temperature for surface cross-linking may be 250 ° C. or lower, 230 ° C. or lower, or 210 ° C. or lower. The heating time for surface cross-linking may be, for example, 5 to 90 minutes, 10 to 80 minutes, or 15 to 60 minutes.
 表面架橋された凝着粒子は、必要により更に乾燥してもよいし、分級してもよい。凝着粒子をそのまま吸水性樹脂粒子として用いてもよいし、表面架橋された凝着粒子を分級して得た重合体粒子の表面に無機粒子を付着させてもよい。すなわち、吸水性樹脂粒子は、重合体粒子の表面上に配置された複数の無機粒子を含んでいてもよい。例えば、重合体粒子と無機粒子とを混合することにより、重合体粒子の表面上に無機粒子を配置することができる。 The surface-crosslinked adhered particles may be further dried or classified if necessary. The adhered particles may be used as they are as the water-absorbent resin particles, or the inorganic particles may be attached to the surface of the polymer particles obtained by classifying the surface-crosslinked adhered particles. That is, the water-absorbent resin particles may contain a plurality of inorganic particles arranged on the surface of the polymer particles. For example, by mixing the polymer particles and the inorganic particles, the inorganic particles can be arranged on the surface of the polymer particles.
 無機粒子は、非晶質シリカ等のシリカ粒子であってよい。無機粒子は、通常、重合体粒子の大きさと比較して微小な大きさを有する。例えば、無機粒子の一次平均粒子径は、1~500nm、2~100nm、5~50nm、又は10~20nmであってよい。平均粒子径は、粒子の特性に応じて、透過型電子顕微鏡、細孔電気抵抗法、又はレーザー回折・散乱法によって測定できる。 The inorganic particles may be silica particles such as amorphous silica. Inorganic particles usually have a small size as compared with the size of polymer particles. For example, the primary average particle size of the inorganic particles may be 1 to 500 nm, 2 to 100 nm, 5 to 50 nm, or 10 to 20 nm. The average particle size can be measured by a transmission electron microscope, a pore electric resistance method, or a laser diffraction / scattering method, depending on the characteristics of the particles.
 吸水性樹脂粒子が、表面上に配置された無機粒子を含む場合、無機粒子の含有量は、重合体粒子の全質量100部を基準として、0.05質量部以上、0.08質量部以上、0.1質量部以上、0.15質量部以上、又は0.2質量部以上であってよく、5.0質量部以下、3.0質量部以下、1.0質量部以下、0.5質量部以下、又は0.3質量部以下であってよい。 When the water-absorbent resin particles include the inorganic particles arranged on the surface, the content of the inorganic particles is 0.05 parts by mass or more and 0.08 parts by mass or more based on the total mass of 100 parts of the polymer particles. , 0.1 parts by mass or more, 0.15 parts by mass or more, or 0.2 parts by mass or more, 5.0 parts by mass or less, 3.0 parts by mass or less, 1.0 part by mass or less, 0. It may be 5 parts by mass or less, or 0.3 parts by mass or less.
 本実施形態に係る吸水性樹脂粒子の形状は、例えば、破砕状、不定形状、不定形破砕状、又はこれらの粒子が凝集して形成された形状であってよい。吸水性樹脂粒子の中位粒子径は、CRCとAAPの性能バランスをより向上する観点から、200~430μmであり、205~400μm、210~350μm、220~350μm、又は250~320μmであってもよい。 The shape of the water-absorbent resin particles according to the present embodiment may be, for example, a crushed shape, an amorphous shape, an amorphous crushed shape, or a shape formed by aggregating these particles. The medium particle size of the water-absorbent resin particles is 200 to 430 μm from the viewpoint of further improving the performance balance between CRC and AAP, even if it is 205 to 400 μm, 210 to 350 μm, 220 to 350 μm, or 250 to 320 μm. good.
 吸水性樹脂粒子のゲル解離度は、吸水速度をより速くする観点から、25~60%、30~60%、又は32~60%であってもよい。吸水性樹脂粒子のゲル解離度は、後述の実施例に記載の方法によって測定される。 The degree of gel dissociation of the water-absorbent resin particles may be 25 to 60%, 30 to 60%, or 32 to 60% from the viewpoint of increasing the water absorption rate. The degree of gel dissociation of the water-absorbent resin particles is measured by the method described in Examples described later.
 本実施形態に係る吸水性樹脂粒子のCRCは、例えば、22g/g以上、24g/g以上、25g/g以上、又は26g/g以上であってよく、70g/g以下、60g/g以下、50g/g以下、又は45g/g以下であってよい。 The CRC of the water-absorbent resin particles according to the present embodiment may be, for example, 22 g / g or more, 24 g / g or more, 25 g / g or more, or 26 g / g or more, and 70 g / g or less, 60 g / g or less, It may be 50 g / g or less, or 45 g / g or less.
 本実施形態に係る吸水性樹脂粒子の、2.07kPa(0.3psi)加圧下の吸収倍率(AAP、Absorption Against Pressure)は、例えば、10g/g以上、11g/g以上、又は12g/g以上であってよく、38g/g以下、34g/g以下、30g/g以下、又は26g/g以下であってよい。吸水性樹脂粒子の2.07kPa加圧下の吸収倍率は、後述の実施例に記載の方法によって測定される。 The absorption ratio (AAP, Absorption Gainst Pressure) of the water-absorbent resin particles according to the present embodiment under a pressure of 2.07 kPa (0.3 psi) is, for example, 10 g / g or more, 11 g / g or more, or 12 g / g or more. It may be 38 g / g or less, 34 g / g or less, 30 g / g or less, or 26 g / g or less. The absorption ratio of the water-absorbent resin particles under a pressure of 2.07 kPa is measured by the method described in Examples described later.
 本実施形態に係る吸水性樹脂粒子のVortex法による吸水速度は、例えば、2~45秒、5~40秒、8~35秒、又は10~30秒であってよい。吸収速度は、後述の実施例に記載の方法によって測定される。 The water absorption rate of the water-absorbent resin particles according to the present embodiment by the Vortex method may be, for example, 2 to 45 seconds, 5 to 40 seconds, 8 to 35 seconds, or 10 to 30 seconds. The absorption rate is measured by the method described in Examples below.
 本実施形態に係る吸水性樹脂粒子は、例えば、おむつ等の吸収性物品を構成する吸収体を形成するために用いられる。 The water-absorbent resin particles according to the present embodiment are used to form an absorbent body constituting an absorbent article such as a diaper, for example.
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
1.測定方法
 以下の手順により、含水率、遠心分離機保持容量(CRC)、加圧下吸収倍率(AAP)、Vortex法による吸水速度、中位粒子径、及びゲル解離度を測定した。
1. 1. Measurement method The water content, centrifuge holding capacity (CRC), absorption ratio under pressure (AAP), water absorption rate by the Vortex method, medium particle size, and gel dissociation degree were measured by the following procedures.
(含水率)
 試料(重合体粉末又は重合体微粉)1.0gを、予め恒量(W1(g))としたアルミホイルケース(8号)に入れ、アルミホイルケースの口を軽くとじ、この試料入りアルミホイルケースの合計質量W2(g)を精秤した。上述した試料入りアルミホイルケースを、内温を200℃に設定した熱風乾燥機(ADVANTEC社製、型式:FV-320)で2時間乾燥させる。乾燥後の試料入りアルミホイルケースをデシケーター中で室温まで放冷した。放冷後の試料入りアルミホイルケースの合計質量W3(g)を測定し、以下の式から、試料の含水率を算出した。
含水率(質量%)=[{(W2-W1)-(W3-W1)}/(W2-W1)]×100
(Moisture content)
1.0 g of a sample (polymer powder or polymer fine powder) is placed in an aluminum foil case (No. 8) having a constant mass (W1 (g)) in advance, and the mouth of the aluminum foil case is lightly closed. The total mass W2 (g) of the above was precisely weighed. The above-mentioned aluminum foil case containing a sample is dried for 2 hours in a hot air dryer (manufactured by ADVANTEC, model: FV-320) whose internal temperature is set to 200 ° C. The dried aluminum foil case containing the sample was allowed to cool to room temperature in a desiccator. The total mass W3 (g) of the aluminum foil case containing the sample after allowing to cool was measured, and the water content of the sample was calculated from the following formula.
Moisture content (% by mass) = [{(W2-W1)-(W3-W1)} / (W2-W1)] × 100
(遠心分離機保持容量)
 EDANA法(NWSP 241.0.R2(15)、page.769~778)を参考に遠心分離機保持容量(CRC)を下記の手順で測定した。測定は、温度25℃±2℃、湿度50%±10%の環境下で行った。
(Centrifuge holding capacity)
The centrifuge holding capacity (CRC) was measured by the following procedure with reference to the EDANA method (NWSP 241.0.R2 (15), pages 769 to 778). The measurement was performed in an environment where the temperature was 25 ° C. ± 2 ° C. and the humidity was 50% ± 10%.
 60mm×170mmの大きさの不織布(製品名:ヒートパックMWA-18、日本製紙パピリア株式会社製)を長手方向に半分に折ることで60mm×85mmの大きさに調整した。長手方向に延びる両辺のそれぞれにおいて不織布同士をヒートシールで圧着することにより60mm×85mmの不織布バッグを作製した(幅5mmの圧着部を長手方向に沿って両辺に形成した)。不織布バッグの内部に測定対象粒子を0.2g精秤し収容した。その後、短手方向に延びる残りの一辺をヒートシールで圧着することにより不織布バッグを閉じた。 A non-woven fabric with a size of 60 mm x 170 mm (product name: Heat Pack MWA-18, manufactured by Nippon Paper Papylia Co., Ltd.) was folded in half in the longitudinal direction to adjust the size to 60 mm x 85 mm. A 60 mm × 85 mm non-woven fabric bag was produced by crimping the non-woven fabrics to each other on both sides extending in the longitudinal direction with a heat seal (a crimped portion having a width of 5 mm was formed on both sides along the longitudinal direction). 0.2 g of the particles to be measured were precisely weighed and contained in the non-woven fabric bag. Then, the non-woven fabric bag was closed by crimping the remaining one side extending in the lateral direction with a heat seal.
 不織布バッグが折り重ならない状態で、ステンレス製バット(240mm×320mm×45mm)に収容された生理食塩水1000g上に不織布バッグを浮かべることにより、不織布バッグの全体を完全に湿らせた。不織布バッグを生理食塩水に投入してから1分後にスパチュラにて不織布バッグを生理食塩水に浸漬することにより、ゲルが収容された不織布バッグを得た。 The entire non-woven fabric bag was completely moistened by floating the non-woven fabric bag on 1000 g of physiological saline contained in a stainless steel vat (240 mm × 320 mm × 45 mm) without folding the non-woven fabric bag. One minute after the nonwoven fabric bag was put into the physiological saline solution, the nonwoven fabric bag was immersed in the physiological saline solution with a spatula to obtain a nonwoven fabric bag containing the gel.
 不織布バッグを生理食塩水に投入してから30分後(浮かべた時間1分、及び、浸漬時間29分の合計)に生理食塩水の中から不織布バッグを取り出した。そして、遠心分離機(株式会社コクサン製、型番:H-122)に不織布バッグを入れた。遠心分離機における遠心力が250Gに到達した後、3分間不織布バッグの脱水を行った。脱水後、ゲルの質量を含む不織布バッグの質量Ma[g]を秤量した。測定対象粒子を収容することなく不織布バッグに対して上述の操作と同様の操作を施し、脱水後の不織布バッグの質量Mb[g]を測定した。下記式に基づきCRC[g/g]を算出した。Mc[g]は、測定に用いた測定対象粒子の質量0.2gの精秤値である。
 CRC[g/g]={(Ma[g]-Mb[g])-Mc[g]}/Mc[g]
Thirty minutes after the non-woven fabric bag was put into the physiological saline solution (a total of 1 minute of floating time and 29 minutes of immersion time), the non-woven fabric bag was taken out from the physiological saline solution. Then, the non-woven fabric bag was put in a centrifuge (manufactured by Kokusan Co., Ltd., model number: H-122). After the centrifugal force in the centrifuge reached 250 G, the non-woven fabric bag was dehydrated for 3 minutes. After dehydration, the mass Ma [g] of the non-woven fabric bag containing the mass of the gel was weighed. The non-woven fabric bag was subjected to the same operation as described above without accommodating the particles to be measured, and the mass Mb [g] of the non-woven fabric bag after dehydration was measured. CRC [g / g] was calculated based on the following formula. Mc [g] is a precise value of 0.2 g of the mass of the particle to be measured used for the measurement.
CRC [g / g] = {(Ma [g] -Mb [g])-Mc [g]} / Mc [g]
(加圧下吸収倍率)
 図1に示す測定装置110を用いて、25℃±2℃で2.07kPa(0.3psi)加圧下の吸収倍率(AAP)を測定した。まず、2.07kPaの圧力になるように調整した重り112(断面:円形、総重量:577.38g)、内径60mmのプラスチック製の円筒114、及び、円筒114の一端(底面)に配置された400メッシュ(目開き38μm)の金網116を備える測定装置110を準備した。重り112は、円板部112a(直径59mm)と、円板部112aに垂直な方向に円板部112aの中央から延びる棒状部112bと、棒状部112bに挿入される貫通孔を中央に有する円柱部112cと、を有している。重り112の円板部112aは、円筒114の内部において円筒114の長手方向に移動可能であるように円筒114の内径と略同等の径を有している。円柱部112cの径は円板部112aの径よりも小さい。円筒114の一端は、開放されているものの金網116に遮蔽されており、円筒114の他端は、重り112が挿入できるように開放されている。円筒114の内部において金網116上に0.90gの測定対象粒子120を均一に散布した。そして、円筒114の内部に重り112を挿入して測定対象粒子120上に重り112を載せた後、測定装置110の全体の質量(測定装置110及び吸液前の測定対象粒子120の総質量)Wa[g]を測定した。
(Absorption rate under pressure)
Using the measuring device 110 shown in FIG. 1, the absorption magnification (AAP) under pressure of 2.07 kPa (0.3 psi) was measured at 25 ° C. ± 2 ° C. First, a weight 112 (cross section: circular, total weight: 577.38 g) adjusted to a pressure of 2.07 kPa, a plastic cylinder 114 having an inner diameter of 60 mm, and one end (bottom surface) of the cylinder 114 were arranged. A measuring device 110 provided with a wire mesh 116 having a 400 mesh (opening 38 μm) was prepared. The weight 112 is a cylinder having a disc portion 112a (diameter 59 mm), a rod-shaped portion 112b extending from the center of the disc portion 112a in a direction perpendicular to the disc portion 112a, and a through hole inserted into the rod-shaped portion 112b in the center. It has a portion 112c and. The disk portion 112a of the weight 112 has a diameter substantially equal to the inner diameter of the cylinder 114 so that it can move in the longitudinal direction of the cylinder 114 inside the cylinder 114. The diameter of the cylindrical portion 112c is smaller than the diameter of the disc portion 112a. One end of the cylinder 114 is open but shielded by the wire mesh 116, and the other end of the cylinder 114 is open so that the weight 112 can be inserted. Inside the cylinder 114, 0.90 g of the particles 120 to be measured were uniformly sprayed on the wire mesh 116. Then, after the weight 112 is inserted inside the cylinder 114 and the weight 112 is placed on the measurement target particle 120, the total mass of the measuring device 110 (the total mass of the measuring device 110 and the measurement target particle 120 before liquid absorption). Wa [g] was measured.
 直径150mmのステンレスシャーレ130の凹部における底面の中央に直径90mm、厚さ7mmのガラスフィルター140(ISO4793 P-250)を置いた後、水面がガラスフィルター140の上面と同じ高さになるように0.90質量%の塩化ナトリウム水溶液(25℃±2℃)を加えた。ガラスフィルター140上に直径90mmの1枚のろ紙150(ADVANTEC東洋株式会社製、製品名:(No.3)、厚さ0.23mm、保留粒子径5μm)を載せ、表面が全て濡れるようにし、かつ、過剰の液を除いた。そして、ろ紙150上に上述の測定装置110を載せ、液を荷重下で吸収させた。1時間後、測定装置110を持ち上げ、測定装置110の全体の質量(測定装置110及び吸液後の測定対象粒子120の総質量)Wb[g]を測定した。 After placing a glass filter 140 (ISO4793 P-250) with a diameter of 90 mm and a thickness of 7 mm in the center of the bottom surface of the recess of the stainless petri dish 130 with a diameter of 150 mm, 0 so that the water surface is at the same height as the upper surface of the glass filter 140. .90% by mass sodium chloride aqueous solution (25 ° C ± 2 ° C) was added. A sheet of filter paper 150 with a diameter of 90 mm (manufactured by ADVANTEC Toyo Co., Ltd., product name: (No. 3), thickness 0.23 mm, reserved particle diameter 5 μm) was placed on the glass filter 140 so that the entire surface was wet. And the excess liquid was removed. Then, the above-mentioned measuring device 110 was placed on the filter paper 150, and the liquid was absorbed under a load. After 1 hour, the measuring device 110 was lifted, and the total mass of the measuring device 110 (total mass of the measuring device 110 and the measurement target particle 120 after liquid absorption) Wb [g] was measured.
 Wa及びWbから、下記式に基づき2.07kPa加圧下の吸収倍率(AAP)[g/g]を算出した。
 AAP[g/g]=(Wb[g]-Wa[g])/0.90[g]
From Wa and Wb, the absorption rate (AAP) [g / g] under 2.07 kPa pressurization was calculated based on the following formula.
AAP [g / g] = (Wb [g] -Wa [g]) /0.90 [g]
(吸水速度)
 吸水性樹脂粒子の生理食塩水の吸水速度をVortex法に基づき下記手順で測定した。まず、恒温水槽にて25±0.2℃の温度に調整した生理食塩水50±0.1gを内容積100mLのビーカーに量りとった。次に、マグネチックスターラーバー(8mmφ×30mm、リング無し)を用いて回転数600rpmで撹拌することにより渦を発生させた。吸水性樹脂粒子2.0±0.002gを塩化ナトリウム水溶液中に一度に添加した。吸水性樹脂粒子の添加後から、液面の渦が収束する時点までの時間[秒]を測定し、当該時間を吸水性樹脂粒子の吸水速度として得た。
(Water absorption rate)
The water absorption rate of the physiological saline of the water-absorbent resin particles was measured by the following procedure based on the Vortex method. First, 50 ± 0.1 g of physiological saline adjusted to a temperature of 25 ± 0.2 ° C. in a constant temperature water tank was weighed in a beaker having an internal volume of 100 mL. Next, a vortex was generated by stirring at a rotation speed of 600 rpm using a magnetic stirrer bar (8 mmφ × 30 mm, without ring). 2.0 ± 0.002 g of water-absorbent resin particles were added to the aqueous sodium chloride solution at one time. The time [seconds] from the addition of the water-absorbent resin particles to the time when the vortex on the liquid surface converged was measured, and the time was obtained as the water absorption rate of the water-absorbent resin particles.
(中位粒子径)
 吸水性樹脂粒子の粉体10gを、連続全自動音波振動式ふるい分け測定器(ロボットシフター RPS-205、株式会社セイシン企業製)と、JIS規格の目開き850μm、600μm、500μm、425μm、300μm、250μm及び180μmの篩と、受け皿とを用いて篩分けした。各篩上に残った粒子の質量を全量に対する質量百分率として算出した。各篩上に残存した粒子の質量百分率を、粒子径の大きいものから順に積算し、篩の目開きと、篩上に残った粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を求め、これを中位粒子径とした。
(Medium particle size)
10 g of powder of water-absorbent resin particles is mixed with a continuous fully automatic sonic vibration type sieving measuring instrument (robot shifter RPS-205, manufactured by Seishin Enterprise Co., Ltd.) and JIS standard opening 850 μm, 600 μm, 500 μm, 425 μm, 300 μm, 250 μm. And 180 μm sieve and a saucer were used for sieving. The mass of the particles remaining on each sieve was calculated as a mass percentage to the total amount. The mass percentages of the particles remaining on each sieve were integrated in order from the one with the largest particle size, and the relationship between the mesh opening of the sieve and the integrated value of the mass percentages of the particles remaining on the sieve was plotted on a logarithmic probability paper. .. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the integrated mass percentage of 50% by mass was obtained, and this was defined as the medium particle size.
(ゲル解離度)
 JIS標準篩(直径20cm)を上から、目開き850μmの篩、目開き180μmの篩、及び、受け皿の順に組み合わせた。組み合わせた最上の篩に、吸水性樹脂粒子を入れ、25℃±2℃でJIS Z 8815(1994)に準じて分級した。850μmの篩を通過し、180μmの篩を通過しなかった分画の吸水性樹脂粒子を以降の測定に用いた。
(Degree of gel dissociation)
A JIS standard sieve (diameter 20 cm) was combined in this order from the top, a sieve with an opening of 850 μm, a sieve with an opening of 180 μm, and a saucer. Water-absorbent resin particles were placed in the combined top sieve and classified at 25 ° C. ± 2 ° C. according to JIS Z 8815 (1994). The water-absorbent resin particles of the fraction that passed through the 850 μm sieve and did not pass through the 180 μm sieve were used for the subsequent measurements.
 生理食塩水1000gを内容積2000mLのビーカーに量りとった。上記で得た吸水性樹脂粒子(180~850μm)1.0gを塩化ナトリウム水溶液中にママコができないように少しずつ、攪拌せずに添加し、60分静置させることで吸水性樹脂粒子を膨潤させた。続いてJIS標準篩(直径20cm)を上から、目開き600μmの篩、目開き75μmの篩の順に組み合わせ、プラスチックバット内に設置した。組み合わせた最上の篩に、60分静置後の上記内容物を入れ、最下の篩を通過した生理食塩水をプラスチックバット内に回収した。回収した生理食塩水全量を、組み合わせた最上の篩に再び入れ、生理食塩水で押し流すようにして膨潤ゲルを分級した。このとき、回収した生理食塩水全量が篩上の膨潤ゲルに当たるように、ゲル表面から5cm上の高さから一気に投入した。上記の回収操作と分級操作を10回繰り返した後、組み合わせた篩を分離し、それぞれの篩を水平に対して約30度の傾斜角となるように傾けた状態で、膨潤ゲルを篩上で30分放置して余剰水を除去した。30分後、各目開きの篩上に残存した膨潤ゲルの合計量に基づき、下記式により、ゲル解離度を算出した。
ゲル解離度[質量%]=(目開き600μmの篩を通過し、目開き75μmの篩上に残存した膨潤ゲルの量[g])/{(目開き600μmの篩上に残存した膨潤ゲルの量[g])+(目開き600μmの篩を通過し、目開き75μmの篩上に残存した膨潤ゲルの量[g])}×100
1000 g of saline was weighed in a beaker with an internal volume of 2000 mL. Add 1.0 g of the water-absorbent resin particles (180 to 850 μm) obtained above to the sodium chloride aqueous solution little by little without stirring and let stand for 60 minutes to swell the water-absorbent resin particles. I let you. Subsequently, a JIS standard sieve (diameter 20 cm) was combined in this order from the top with a sieve having a mesh opening of 600 μm and a sieve having a mesh opening of 75 μm, and placed in a plastic vat. The above-mentioned contents after being allowed to stand for 60 minutes were placed in the combined top sieve, and the saline solution that had passed through the bottom sieve was collected in a plastic vat. The entire amount of recovered saline was put back into the best combined sieve and flushed with saline to classify the swollen gel. At this time, the total amount of the recovered physiological saline solution was poured at once from a height of 5 cm above the gel surface so as to hit the swollen gel on the sieve. After repeating the above recovery operation and classification operation 10 times, the combined sieves are separated, and the swollen gel is placed on the sieve with each sieve tilted so as to have an inclination angle of about 30 degrees with respect to the horizontal. It was left for 30 minutes to remove excess water. After 30 minutes, the degree of gel dissociation was calculated by the following formula based on the total amount of swollen gel remaining on the sieve of each opening.
Gel dissociation degree [mass%] = (amount of swelling gel that has passed through a sieve with an opening of 600 μm and remained on a sieve with an opening of 75 μm [g]) / {(a swelling gel remaining on a sieve with an opening of 600 μm Amount [g]) + (Amount of swelling gel that has passed through a sieve with a mesh opening of 600 μm and remains on a sieve with a mesh opening of 75 μm [g])} × 100
2.重合体微粉の作製
(製造例1)
[重合]
 撹拌機を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコに、425.65g(5.91モル)のアクリル酸を入れた。このアクリル酸を撹拌しながらセパラブルフラスコ内にイオン交換水387.22gを加えた後、氷浴下で320.09gの48質量%水酸化ナトリウムを滴下することにより、単量体濃度45質量%のアクリル酸部分中和液1132.96gを調製した。本操作を2回繰り返して、必要量のアクリル酸部分中和液を得た。
2. 2. Preparation of polymer fine powder (Production Example 1)
[polymerization]
425.65 g (5.91 mol) of acrylic acid was placed in a round bottom cylindrical separable flask equipped with a stirrer and having an inner diameter of 11 cm and an internal volume of 2 L. After adding 387.22 g of ion-exchanged water into the separable flask while stirring this acrylic acid, 320.09 g of 48% by mass sodium hydroxide was added dropwise under an ice bath to obtain a monomer concentration of 45% by mass. Acrylic acid partial neutralizing solution (1132.96 g) was prepared. This operation was repeated twice to obtain a required amount of acrylic acid partial neutralizing solution.
 アクリル酸部分中和液2039.32gに、イオン交換水1019.31g、及びポリエチレングリコールジアクリレート(n≒9、内部架橋剤、日油株式会社製、製品名:ブレンマーADE-400A)1.34gを加えて反応液(単量体水溶液)を得た。反応液を窒素ガス雰囲気下で30分間窒素ガス置換することにより、溶存酸素量を0.1ppm以下に調整した。次いで、温度計及び窒素吹込み管を備えた、開閉可能な蓋付きのシグマ型羽根を2本有するジャケット付き5L容のステンレス製双腕型ニーダー(株式会社入江商会製)を用意した。該ニーダーに上記反応液を供給し、反応液を25℃に保ちながらニーダー内を窒素ガス置換した。続いて、反応液を撹拌しながら、20質量%の過硫酸ナトリウム水溶液2.55g(2.14ミリモル)、10質量%の(2,2’-アゾビス(2-アミジノプロパン)二塩酸塩(V-50)水溶液(富士フイルム和光純薬株式会社製)10.22g(3.77ミリモル)、0.1質量%のL-アスコルビン酸水溶液4.47g、及び0.35質量%の過酸化水素水2.55gを加えたところ、約1分後に温度が上昇し始め、重合が開始した。20分後にジャケット温度を80℃に昇温した。このとき温度計は42℃を示していた。その後、ジャケット温度を80℃に保ちながら撹拌し続け、重合反応を充分完了させて、昇温から60分後に生成した含水ゲル状重合体を取り出した。 Ion-exchanged water 1019.31 g and polyethylene glycol diacrylate (n≈9, internal cross-linking agent, manufactured by Nichiyu Co., Ltd., product name: Blemmer ADE-400A) 1.34 g are added to 2039.32 g of the acrylic acid partial neutralizing solution. In addition, a reaction solution (monomer aqueous solution) was obtained. The amount of dissolved oxygen was adjusted to 0.1 ppm or less by substituting the reaction solution with nitrogen gas for 30 minutes in a nitrogen gas atmosphere. Next, a 5 L stainless steel double-armed kneader (manufactured by Irie Shokai Co., Ltd.) with a jacket equipped with a thermometer and a nitrogen blow tube and having two sigma-shaped blades with a lid that can be opened and closed was prepared. The above reaction solution was supplied to the kneader, and the inside of the kneader was replaced with nitrogen gas while keeping the reaction solution at 25 ° C. Subsequently, while stirring the reaction solution, 2.55 g (2.14 mmol) of a 20 mass% sodium persulfate aqueous solution and 10 mass% (2,2'-azobis (2-amidinopropane) dihydrochloride (V). -50) Aqueous solution (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 10.22 g (3.77 mmol), 0.1% by mass L-ascorbic acid aqueous solution 4.47 g, and 0.35% by mass hydrogen peroxide solution. When 2.55 g was added, the temperature began to rise after about 1 minute and polymerization started. After 20 minutes, the jacket temperature was raised to 80 ° C., at which time the thermometer showed 42 ° C. Stirring was continued while maintaining the jacket temperature at 80 ° C., the polymerization reaction was sufficiently completed, and the aqueous gel-like polymer produced 60 minutes after the temperature rise was taken out.
[乾燥]
 含水ゲル状重合体を目開き0.8cm×0.8cmの金網上に広げ、180℃で30分間熱風乾燥して乾燥物を得た。
[Drying]
The hydrogel polymer was spread on a wire mesh having an opening of 0.8 cm × 0.8 cm and dried with hot air at 180 ° C. for 30 minutes to obtain a dried product.
[粉砕]
 乾燥物を、遠心粉砕機(Retsch社製ZM200、スクリーン口径1mm、6000rpm)を用いて粉砕することにより、不定形破砕状の粒子群(A)を得た。
[Crush]
The dried product was pulverized using a centrifugal pulverizer (ZM200 manufactured by Retsch, screen diameter 1 mm, 6000 rpm) to obtain an amorphous crushed particle group (A).
[分級]
 粒子群(A)を目開き850μmの篩及び180μmの篩を用いて分級した。分級により、850μmの篩を通過し、180μmの篩を通過しなかった分画である重合体粉末(A1)と、180μmの篩を通過した分画である重合体微粉(a1)を得た。
[Classification]
The particle group (A) was classified using a sieve having an opening of 850 μm and a sieve having a size of 180 μm. By classification, a polymer powder (A1), which was a fraction that passed through an 850 μm sieve and did not pass through a 180 μm sieve, and a polymer fine powder (a1), which was a fraction that passed through a 180 μm sieve, were obtained.
(製造例2)
[重合]
 撹拌機を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコに548.38g(7.61モル)のアクリル酸を入れた。このアクリル酸を撹拌しながらセパラブルフラスコ内にイオン交換水469.71gを加えた後、氷浴下で481.92gの48質量%水酸化ナトリウムを滴下することにより、単量体濃度45質量%のアクリル酸部分中和液1500.01gを調製した。本操作を2回繰り返して、必要量のアクリル酸部分中和液を得た。
(Manufacturing Example 2)
[polymerization]
548.38 g (7.61 mol) of acrylic acid was placed in a round bottom cylindrical separable flask equipped with a stirrer and having an inner diameter of 11 cm and an internal volume of 2 L. After adding 469.71 g of ion-exchanged water into the separable flask while stirring this acrylic acid, 481.92 g of 48% by mass sodium hydroxide was added dropwise under an ice bath to give a monomer concentration of 45% by mass. Acrylic acid partial neutralizing solution (1500.01 g) was prepared. This operation was repeated twice to obtain a required amount of acrylic acid partial neutralizing solution.
 アクリル酸部分中和液2784.19gにイオン交換水406.49g及びポリエチレングリコールジアクリレート(ブレンマーADE-400A)0.97gを加えて反応液(単量体水溶液)を得た。反応液を窒素ガス雰囲気下で30分間窒素ガス置換した。次いで、開閉可能な蓋付きのシグマ型羽根を2本有するジャケット付き5L容のステンレス製双腕型ニーダー(株式会社入江商会製)に上記反応液を供給し、反応液を30℃に保ちながら系を窒素ガス置換することにより、溶存酸素量を0.1ppm以下に調整した。続いて、反応液を撹拌しながら、2.0質量%の過硫酸ナトリウム水溶液92.52g(7.77ミリモル)及び0.5質量%のL-アスコルビン酸水溶液15.83gを加えたところ、凡そ1分後に温度が上昇し始め、重合が開始した。7分後に温度計は最高温度76℃を示し、その後、ジャケット温度を60℃に保ちながら撹拌し続け、重合を開始してから60分後に、生成した含水ゲル状重合体を取り出した。 Ion-exchanged water 406.49 g and polyethylene glycol diacrylate (Blemmer ADE-400A) 0.97 g were added to 2784.19 g of the acrylic acid partial neutralizing solution to obtain a reaction solution (monomer aqueous solution). The reaction solution was replaced with nitrogen gas for 30 minutes under a nitrogen gas atmosphere. Next, the above reaction solution was supplied to a 5 L stainless steel double-armed kneader (manufactured by Irie Shokai Co., Ltd.) with a jacket having two sigma-type blades with openable and closable lids, and the reaction solution was kept at 30 ° C. Was replaced with nitrogen gas to adjust the amount of dissolved oxygen to 0.1 ppm or less. Subsequently, while stirring the reaction solution, 92.52 g (7.77 mmol) of a 2.0 mass% sodium persulfate aqueous solution and 15.83 g of a 0.5 mass% L-ascorbic acid aqueous solution were added. After 1 minute, the temperature began to rise and polymerization started. After 7 minutes, the thermometer showed a maximum temperature of 76 ° C., then stirring was continued while keeping the jacket temperature at 60 ° C., and 60 minutes after the start of the polymerization, the produced hydrogel-like polymer was taken out.
[乾燥]
 含水ゲル状重合体を喜連ローヤル社製ミートチョッパー12VR-750SDXに順次投入して粗砕した。ミートチョッパーの出口に位置するプレートの穴の径は6.4mmとした。含水ゲル状重合体の粗砕物を目開き0.8cm×0.8cmの金網上に広げ、160℃で60分間熱風乾燥して乾燥物を得た。
[Drying]
The hydrogel polymer was sequentially charged into a meat chopper 12VR-750SDX manufactured by Kiren Royal Co., Ltd. and coarsely crushed. The diameter of the hole of the plate located at the outlet of the meat chopper was 6.4 mm. The coarsely crushed product of the hydrogel-like polymer was spread on a wire mesh having an opening of 0.8 cm × 0.8 cm and dried with hot air at 160 ° C. for 60 minutes to obtain a dried product.
[粉砕]
 乾燥物を、遠心粉砕機(Retsch社製ZM200、スクリーン口径1mm、12000rpm)を用いて粉砕することにより、不定形破砕状の粒子群(B)を得た。
[分級]
 粒子群(B)を目開き850μmの篩及び180μmの篩を用いて分級した。分級により、850μmの篩を通過し、180μmの篩を通過しなかった分画である重合体粉末(B1)と、180μmの篩を通過した分画である重合体微粉(b1)を得た。
[Crush]
The dried product was pulverized using a centrifugal pulverizer (ZM200 manufactured by Retsch, screen diameter 1 mm, 12000 rpm) to obtain an amorphous crushed particle group (B).
[Classification]
The particle group (B) was classified using a sieve having an opening of 850 μm and a sieve having a size of 180 μm. By classification, a polymer powder (B1), which was a fraction that passed through an 850 μm sieve and did not pass through a 180 μm sieve, and a polymer fine powder (b1), which was a fraction that passed through a 180 μm sieve, were obtained.
(製造例3)
[重合]
 撹拌機を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコに549.71g(7.63モル)のアクリル酸を入れた。このアクリル酸を撹拌しながらセパラブルフラスコ内にイオン交換水470.72gを加えた後、氷浴下で479.57gの48質量%水酸化ナトリウムを滴下することにより、単量体濃度45質量%のアクリル酸部分中和液1500.00gを調製した。本操作を2回繰り返して、必要量のアクリル酸部分中和液を得た。
(Manufacturing Example 3)
[polymerization]
549.71 g (7.63 mol) of acrylic acid was placed in a round bottom cylindrical separable flask equipped with a stirrer and having an inner diameter of 11 cm and an internal volume of 2 L. After adding 470.72 g of ion-exchanged water into the separable flask while stirring this acrylic acid, 479.57 g of 48% by mass sodium hydroxide was added dropwise under an ice bath to obtain a monomer concentration of 45% by mass. Acrylic acid partial neutralizing solution (1500.00 g) was prepared. This operation was repeated twice to obtain a required amount of acrylic acid partial neutralizing solution.
 アクリル酸部分中和液2781.72gにイオン交換水406.89g及びポリエチレングリコールジアクリレート(ブレンマーADE-400A)2.90gを加えて反応液(単量体水溶液)を得た。反応液を窒素ガス雰囲気下で30分間窒素ガス置換した。次いで、開閉可能な蓋付きのシグマ型羽根を2本有するジャケット付き5L容のステンレス製双腕型ニーダー(株式会社入江商会製)に上記反応液を供給し、反応液を30℃に保ちながら系を窒素ガス置換することにより、溶存酸素量を0.1ppm以下に調整した。続いて、反応液を撹拌しながら、2.0質量%の過硫酸ナトリウム水溶液92.63g(7.78ミリモル)及び0.5質量%のL-アスコルビン酸水溶液15.85gを加えたところ、凡そ1分後に温度が上昇し始め、重合が開始した。6分後に温度計は最高温度93℃を示し、その後、ジャケット温度を60℃に保ちながら撹拌し続け、重合を開始してから60分後に、生成した含水ゲル状重合体を取り出した。 Ion-exchanged water 406.89 g and polyethylene glycol diacrylate (Blemmer ADE-400A) 2.90 g were added to 2781.72 g of the acrylic acid partial neutralizing solution to obtain a reaction solution (monomer aqueous solution). The reaction solution was replaced with nitrogen gas for 30 minutes under a nitrogen gas atmosphere. Next, the above reaction solution was supplied to a 5 L stainless steel double-armed kneader (manufactured by Irie Shokai Co., Ltd.) with a jacket having two sigma-type blades with openable and closable lids, and the reaction solution was kept at 30 ° C. Was replaced with nitrogen gas to adjust the amount of dissolved oxygen to 0.1 ppm or less. Subsequently, while stirring the reaction solution, 92.63 g (7.78 mmol) of a 2.0 mass% sodium persulfate aqueous solution and 15.85 g of a 0.5 mass% L-ascorbic acid aqueous solution were added. After 1 minute, the temperature began to rise and polymerization started. After 6 minutes, the thermometer showed a maximum temperature of 93 ° C., then stirring was continued while keeping the jacket temperature at 60 ° C., and 60 minutes after the start of the polymerization, the produced hydrogel-like polymer was taken out.
[乾燥]
 含水ゲル状重合体を喜連ローヤル社製ミートチョッパー12VR-750SDXに順次投入して粗砕した。ミートチョッパーの出口に位置するプレートの穴の径は6.4mmとした。含水ゲル状重合体の粗砕物を目開き0.8cm×0.8cmの金網上に広げ、160℃で60分間熱風乾燥して乾燥物を得た。
[Drying]
The hydrogel polymer was sequentially charged into a meat chopper 12VR-750SDX manufactured by Kiren Royal Co., Ltd. and coarsely crushed. The diameter of the hole of the plate located at the outlet of the meat chopper was 6.4 mm. The coarsely crushed product of the hydrogel-like polymer was spread on a wire mesh having an opening of 0.8 cm × 0.8 cm and dried with hot air at 160 ° C. for 60 minutes to obtain a dried product.
[粉砕]
 乾燥物を、遠心粉砕機(Retsch社製ZM200、スクリーン口径1mm、12000rpm)を用いて粉砕することにより、不定形破砕状の粒子群(C)を得た。
[Crush]
The dried product was pulverized using a centrifugal pulverizer (ZM200 manufactured by Retsch, screen diameter 1 mm, 12000 rpm) to obtain an amorphous crushed particle group (C).
[分級]
 粒子群(C)を目開き850μmの篩及び180μmの篩を用いて分級した。分級により、850μmの篩を通過し、180μmの篩を通過しなかった分画である重合体粉末(C1)と、180μmの篩を通過した分画である重合体微粉(c1)を得た。
[Classification]
The particle group (C) was classified using a sieve having an opening of 850 μm and a sieve having a size of 180 μm. By classification, a polymer powder (C1), which was a fraction that passed through an 850 μm sieve and did not pass through a 180 μm sieve, and a polymer fine powder (c1), which was a fraction that passed through a 180 μm sieve, were obtained.
 製造例で作製した重合体微粉及び重合体粉末の粒径、含水率、CRC、及びAAPを表1に示す。 Table 1 shows the particle size, water content, CRC, and AAP of the polymer fine powder and the polymer powder produced in the production example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
3.吸水性樹脂粒子の作製
(実施例1)
[凝着・表面架橋]
 外径9cmのフッ素樹脂製の碇型撹拌翼を備えた内径11cmの丸底円筒型セパラブルフラスコに、重合体微粉(a1)20gを入れた。次に、300rpmで撹拌しながら、エチレンカーボネート(EC)0.356g及び脱イオン水1.6gを混合した架橋剤溶液をパスツールピペットにてセパラブルフラスコ内に滴下し、5分間攪拌することによって表面架橋剤溶液と重合体微粉の混合物を得た。この混合物を目開き850μmの篩で分級し、目開き850μmの篩を通過した分画を200℃で30分間加熱した。室温まで冷却した後、表面架橋された凝着粒子を含む混合物を目開き850μmの篩及び180μmの篩を用いて分級した。分級により、850μmの篩を通過し、180μmの篩を通過しなかった分画として、表面架橋された重合体粒子を得た。重合体粒子10gに対して、二酸化ケイ素(製品名:アエロジル200、日本アエロジル株式会社製)0.010gを十分に混合し、吸水性樹脂粒子を得た。
3. 3. Preparation of water-absorbent resin particles (Example 1)
[Adhesion / surface cross-linking]
20 g of the polymer fine powder (a1) was placed in a round-bottomed cylindrical separable flask having an inner diameter of 11 cm and equipped with a fluororesin-made anchor-shaped stirring blade having an outer diameter of 9 cm. Next, while stirring at 300 rpm, a cross-linking agent solution in which 0.356 g of ethylene carbonate (EC) and 1.6 g of deionized water were mixed was dropped into a separable flask with a pasteur pipette, and the mixture was stirred for 5 minutes. A mixture of the surface cross-linking agent solution and the polymer fine powder was obtained. The mixture was classified on a sieve with an opening of 850 μm, and the fraction passed through the sieve with an opening of 850 μm was heated at 200 ° C. for 30 minutes. After cooling to room temperature, the mixture containing the surface-crosslinked adhered particles was classified using a sieve having an opening of 850 μm and a sieve having a size of 180 μm. By classification, surface-crosslinked polymer particles were obtained as fractions that passed through an 850 μm sieve and did not pass through a 180 μm sieve. Silicon dioxide (product name: Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.) was sufficiently mixed with 10 g of the polymer particles to obtain water-absorbent resin particles.
(実施例2)
[凝着・表面架橋]
 エチレンカーボネート(EC)0.356g、イソプロパノール(IPA)0.312g、及び脱イオン水1.2gを混合した架橋剤溶液を用いた以外は、実施例1と同様にして吸水性樹脂粒子を得た。
(Example 2)
[Adhesion / surface cross-linking]
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that a cross-linking agent solution in which 0.356 g of ethylene carbonate (EC), 0.312 g of isopropanol (IPA) and 1.2 g of deionized water were mixed was used. ..
(実施例3)
[凝着・表面架橋]
 エチレンカーボネート(EC)0.356g、イソプロパノール(IPA)0.624g、及び脱イオン水0.4gを混合した架橋剤溶液を用いた以外は、実施例1と同様にして吸水性樹脂粒子を得た。
(Example 3)
[Adhesion / surface cross-linking]
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that a cross-linking agent solution in which 0.356 g of ethylene carbonate (EC), 0.624 g of isopropanol (IPA) and 0.4 g of deionized water were mixed was used. ..
(実施例4)
[凝着・表面架橋]
 エチレンカーボネート(EC)0.356g、イソプロパノール(IPA)0.624g、及び脱イオン水0.8gを混合した架橋剤溶液を用いた以外は、実施例1と同様にして吸水性樹脂粒子を得た。
(Example 4)
[Adhesion / surface cross-linking]
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that a cross-linking agent solution in which 0.356 g of ethylene carbonate (EC), 0.624 g of isopropanol (IPA) and 0.8 g of deionized water were mixed was used. ..
(実施例5)
[凝着・表面架橋]
 エチレンカーボネート(EC)0.356g、イソプロパノール(IPA)0.624g、及び脱イオン水1.2gを混合した架橋剤溶液を用いた以外は、実施例1と同様にして吸水性樹脂粒子を得た。
(Example 5)
[Adhesion / surface cross-linking]
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that a cross-linking agent solution in which 0.356 g of ethylene carbonate (EC), 0.624 g of isopropanol (IPA) and 1.2 g of deionized water were mixed was used. ..
(実施例6)
[凝着・表面架橋]
 プロピレングリコール(PG)0.308g及び脱イオン水1.6gを混合して得られた架橋剤溶液を用いた以外は、実施例1と同様にして吸水性樹脂粒子を得た。
(Example 6)
[Adhesion / surface cross-linking]
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that a cross-linking agent solution obtained by mixing 0.308 g of propylene glycol (PG) and 1.6 g of deionized water was used.
(実施例7)
[凝着・表面架橋]
 プロピレングリコール(PG)0.308g、イソプロパノール(IPA)0.624g、及び脱イオン水0.8gを混合した架橋剤溶液を用いた以外は、実施例1と同様にして吸水性樹脂粒子を得た。
(Example 7)
[Adhesion / surface cross-linking]
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that a cross-linking agent solution in which 0.308 g of propylene glycol (PG), 0.624 g of isopropanol (IPA) and 0.8 g of deionized water were mixed was used. ..
(比較例1)
[造粒]
 撹拌機を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコ(2L容器は85℃のバスで保温されている)に、重合体微粉(b1)40gを入れた。撹拌機には、長さが約10cm、幅が約6cmの平板スリット翼を用いた。
(Comparative Example 1)
[Granulation]
40 g of the polymer fine powder (b1) was placed in a round-bottomed cylindrical separable flask having an inner diameter of 11 cm and an internal volume of 2 L equipped with a stirrer (the 2 L container is kept warm in a bath at 85 ° C.). As the stirrer, a flat plate slit blade having a length of about 10 cm and a width of about 6 cm was used.
 撹拌機の撹拌翼を284rpmで回転させながら、上記フラスコ内に90℃に加熱したイオン交換水40gを一度に投入した。90秒間上記フラスコ中で微粉と水とを撹拌することにより造粒粒子を得た。フラスコから内容物(造粒粒子)の全量を取り出した。内容物に含まれる塊状物を3~10mmの大きさになるよう裁断した。裁断したものを含む造粒粒子の全量を150℃で60分間熱風乾燥して、造粒粒子の粗砕乾燥物を得た。粗砕乾燥物を遠心粉砕機(Retsch社製ZM200、スクリーン口径1mm、6000rpm)を用いて粉砕し、さらに目開き850μmの篩と180μmの篩で分級した。分級により、850μmの篩を通過し、180μmの篩を通過しなかった分画である重合体粒子(P1)を得た。 While rotating the stirring blade of the stirrer at 284 rpm, 40 g of ion-exchanged water heated to 90 ° C. was put into the flask at one time. Granulated particles were obtained by stirring the fine powder and water in the flask for 90 seconds. The entire amount of the contents (granulated particles) was taken out from the flask. The lumps contained in the contents were cut to a size of 3 to 10 mm. The entire amount of the granulated particles including the cut particles was dried with hot air at 150 ° C. for 60 minutes to obtain a coarsely crushed dried product of the granulated particles. The coarsely crushed dried product was pulverized using a centrifugal pulverizer (ZM200 manufactured by Retsch, screen diameter 1 mm, 6000 rpm), and further classified by a sieve having an opening of 850 μm and a sieve having a mesh size of 180 μm. By classification, polymer particles (P1), which are fractions that passed through a sieve of 850 μm and did not pass through a sieve of 180 μm, were obtained.
[表面架橋]
 外径9cmのフッ素樹脂製の碇型撹拌翼を備えた内径11cmの丸底円筒型セパラブルフラスコに、重合体粒子(P1)20gを入れた。次に、300rpmで撹拌しながら、エチレンカーボネート(EC)0.0626g、プロピレングリコール(PG)0.100g、及び脱イオン水0.4gを混合した架橋剤溶液をパスツールピペットにてセパラブルフラスコ内に滴下し、35分間攪拌することによって混合物を得た。混合物を200℃で35分間加熱した。室温まで冷却した後、混合物を目開き850μmの篩及び180μmの篩を用いて分級した。分級により、850μmの篩を通過し、180μmの篩を通過しなかった分画として、表面架橋された重合体粒子を得た。重合体粒子10gに対して、二酸化ケイ素(製品名:アエロジル200、日本アエロジル株式会社製)0.010gを十分に混合し、吸水性樹脂粒子を得た。
[Surface cross-linking]
20 g of the polymer particles (P1) were placed in a round-bottomed cylindrical separable flask having an inner diameter of 11 cm and equipped with a fluororesin-made Ikari-shaped stirring blade having an outer diameter of 9 cm. Next, a cross-linking agent solution containing 0.0626 g of ethylene carbonate (EC), 0.100 g of propylene glycol (PG), and 0.4 g of deionized water was mixed in a separable flask with a pasteur pipette while stirring at 300 rpm. The mixture was obtained by dropping into a mixture and stirring for 35 minutes. The mixture was heated at 200 ° C. for 35 minutes. After cooling to room temperature, the mixture was classified using a sieve with an opening of 850 μm and a sieve of 180 μm. By classification, surface-crosslinked polymer particles were obtained as fractions that passed through an 850 μm sieve and did not pass through a 180 μm sieve. Silicon dioxide (product name: Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.) was sufficiently mixed with 10 g of the polymer particles to obtain water-absorbent resin particles.
(比較例2)
 重合体微粉(c1)40g及びイオン交換水10gを用いた以外は、比較例1と同様にして造粒工程を行い、重合体粒子(P2)を得た。重合体粒子(P2)を用いて比較例1と同様の表面架橋工程を行い、吸水性樹脂粒子を得た。
(Comparative Example 2)
The granulation step was carried out in the same manner as in Comparative Example 1 except that 40 g of the polymer fine powder (c1) and 10 g of ion-exchanged water were used to obtain polymer particles (P2). The same surface cross-linking step as in Comparative Example 1 was carried out using the polymer particles (P2) to obtain water-absorbent resin particles.
(比較例3)
[凝着・表面架橋]
 重合体微粉(a1)の代わりに重合体粉末(A1)を用いた以外は、実施例1と同様にして吸水性樹脂粒子を得た。
(Comparative Example 3)
[Adhesion / surface cross-linking]
Water-absorbent resin particles were obtained in the same manner as in Example 1 except that the polymer powder (A1) was used instead of the polymer fine powder (a1).
(比較例4)
[凝着・表面架橋]
 重合体微粉(a1)の代わりに重合体粉末(A1)を用いた以外は、実施例2と同様にして吸水性樹脂粒子を得た。
(Comparative Example 4)
[Adhesion / surface cross-linking]
Water-absorbent resin particles were obtained in the same manner as in Example 2 except that the polymer powder (A1) was used instead of the polymer fine powder (a1).
 実施例における重合体微粉(a1)100質量部に対する架橋剤溶液に含まれる各成分の質量部及び吸水性樹脂粒子の評価結果を表2に示す。比較例1及び2における重合体粒子(P1)又は(P2)100質量部に対する架橋剤溶液に含まれる各成分の質量部、重合体粉末(A1)100質量部に対する架橋剤溶液に含まれる各成分の質量部、及び吸水性樹脂粒子の評価結果を表3に示す。比較例3及び4における重合体粉末(A1)100質量部に対する架橋剤溶液に含まれる各成分の質量部、及び吸水性樹脂粒子の評価結果を表4に示す。 Table 2 shows the evaluation results of the parts by mass of each component contained in the cross-linking agent solution and the water-absorbent resin particles with respect to 100 parts by mass of the polymer fine powder (a1) in the examples. In Comparative Examples 1 and 2, 100 parts by mass of each component contained in the cross-linking agent solution with respect to 100 parts by mass of the polymer particles (P1) or (P2), and each component contained in the cross-linking agent solution with respect to 100 parts by mass of the polymer powder (A1). Table 3 shows the evaluation results of the parts by mass and the water-absorbent resin particles. Table 4 shows the evaluation results of the parts by mass of each component contained in the cross-linking agent solution and the water-absorbent resin particles with respect to 100 parts by mass of the polymer powder (A1) in Comparative Examples 3 and 4.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 114…円筒、110…測定装置、112…重り、112a…円板部、112b…棒状部、112c…円柱部、116…金網、120…測定対象粒子、130…ステンレスシャーレ、140…ガラスフィルター、150…ろ紙。 114 ... Cylinder, 110 ... Measuring device, 112 ... Weight, 112a ... Disk part, 112b ... Rod-shaped part, 112c ... Cylinder part, 116 ... Wire mesh, 120 ... Particles to be measured, 130 ... Stainless petri dish, 140 ... Glass filter, 150 ... filter paper.

Claims (6)

  1.  中位粒子径が200~430μmであり、ゲル解離度が20~60%である、表面架橋された吸水性樹脂粒子。 Surface-crosslinked water-absorbent resin particles having a medium particle size of 200 to 430 μm and a gel dissociation degree of 20 to 60%.
  2.  目開き180μm以下の篩を通過する重合体微粉に、架橋剤及び水を含有する架橋剤溶液を添加して、前記重合体微粉の凝着と表面架橋とを同時に行う工程を含む、吸水性樹脂粒子を製造する方法。 A water-absorbent resin comprising a step of adding a cross-linking agent solution containing a cross-linking agent and water to a polymer fine powder passing through a sieve having a mesh size of 180 μm or less to simultaneously perform adhesion and surface cross-linking of the polymer fine powder. How to make particles.
  3.  前記重合体微粉100質量部に対する前記架橋剤溶液の水の含有量が、10質量部以下である、請求項2に記載の方法。 The method according to claim 2, wherein the water content of the cross-linking agent solution with respect to 100 parts by mass of the polymer fine powder is 10 parts by mass or less.
  4.  前記架橋剤溶液が、アルコールを更に含有する、請求項2又は3に記載の方法。 The method according to claim 2 or 3, wherein the cross-linking agent solution further contains alcohol.
  5.  前記重合体微粉100質量部に対する前記架橋剤溶液のアルコールの含有量が、5質量部以下である、請求項4に記載の方法。 The method according to claim 4, wherein the alcohol content of the cross-linking agent solution with respect to 100 parts by mass of the polymer fine powder is 5 parts by mass or less.
  6.  前記架橋剤溶液が、アルキレンカーボネート化合物及びポリオール化合物からなる群より選ばれる少なくとも1種の表面架橋剤を含有する、請求項2~5のいずれか一項に記載の方法。 The method according to any one of claims 2 to 5, wherein the cross-linking agent solution contains at least one surface cross-linking agent selected from the group consisting of an alkylene carbonate compound and a polyol compound.
PCT/JP2021/027576 2020-07-28 2021-07-26 Water-absorbent resin particles, and method for producing water-absorbent resin particles WO2022025003A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022540300A JPWO2022025003A1 (en) 2020-07-28 2021-07-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020127220 2020-07-28
JP2020-127220 2020-07-28

Publications (1)

Publication Number Publication Date
WO2022025003A1 true WO2022025003A1 (en) 2022-02-03

Family

ID=80036473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027576 WO2022025003A1 (en) 2020-07-28 2021-07-26 Water-absorbent resin particles, and method for producing water-absorbent resin particles

Country Status (2)

Country Link
JP (1) JPWO2022025003A1 (en)
WO (1) WO2022025003A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013542A1 (en) * 1994-10-26 1996-05-09 Nippon Shokubai Co., Ltd. Water absorptive resin composition and method of manufacturing the same
JPH10204184A (en) * 1996-11-20 1998-08-04 Sanyo Chem Ind Ltd Water absorbent and its production
WO2014034897A1 (en) * 2012-08-30 2014-03-06 株式会社日本触媒 Particulate water-absorbing agent and method for manufacturing same
WO2016204302A1 (en) * 2015-06-19 2016-12-22 株式会社日本触媒 Poly (meth) acrylic acid (salt) granular water absorbent and method for producing same
WO2017170501A1 (en) * 2016-03-28 2017-10-05 株式会社日本触媒 Water-absorbing agent and method for producing same, and absorbent article produced using water-absorbing agent
JP2020507635A (en) * 2018-01-16 2020-03-12 エルジー・ケム・リミテッド Method for producing superabsorbent resin
WO2020116760A1 (en) * 2018-12-07 2020-06-11 주식회사 엘지화학 Method for preparing superabsorbent polymer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013542A1 (en) * 1994-10-26 1996-05-09 Nippon Shokubai Co., Ltd. Water absorptive resin composition and method of manufacturing the same
JPH10204184A (en) * 1996-11-20 1998-08-04 Sanyo Chem Ind Ltd Water absorbent and its production
WO2014034897A1 (en) * 2012-08-30 2014-03-06 株式会社日本触媒 Particulate water-absorbing agent and method for manufacturing same
WO2016204302A1 (en) * 2015-06-19 2016-12-22 株式会社日本触媒 Poly (meth) acrylic acid (salt) granular water absorbent and method for producing same
WO2017170501A1 (en) * 2016-03-28 2017-10-05 株式会社日本触媒 Water-absorbing agent and method for producing same, and absorbent article produced using water-absorbing agent
JP2020507635A (en) * 2018-01-16 2020-03-12 エルジー・ケム・リミテッド Method for producing superabsorbent resin
WO2020116760A1 (en) * 2018-12-07 2020-06-11 주식회사 엘지화학 Method for preparing superabsorbent polymer

Also Published As

Publication number Publication date
JPWO2022025003A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
US8875415B2 (en) Method for drying granular water-containing gel-like cross-linked polymer
JP5337703B2 (en) Method for producing water absorbent resin, water absorbent resin and use thereof
US20180185820A1 (en) Super absorbent polyacrylic acid (salt)-based resin powder, method for manufacturing same, and method for evaluating same
CN108350179A (en) Super absorbent polymer
JP7355646B2 (en) Manufacturing method of water absorbent resin
JP7105586B2 (en) Method for manufacturing water absorbent resin
JP6890190B2 (en) Water-absorbent resin powder for heating element composition, and heating element composition
WO2022025003A1 (en) Water-absorbent resin particles, and method for producing water-absorbent resin particles
CN113785006B (en) Process for the preparation of superabsorbent polymer compositions
CN108026195B (en) Method for preparing superabsorbent polymer
WO2021006149A1 (en) Cross-linked polymer particle production method and cross-linked polymer gel
WO2021049451A1 (en) Method for producing water-absorbable resin particles
WO2021235524A1 (en) Method for producing water absorbent resin particles
WO2022181452A1 (en) Method for producing water absorbent resin particles
JP2022088139A (en) Method for producing water-absorbing resin particle
WO2021187325A1 (en) Method for producing absorbent resin particles
WO2022118800A1 (en) Water-absorbing resin particles, absorbing body, and absorbent article
JP7471723B2 (en) Highly water-absorbent resin and method for producing same
WO2022075258A1 (en) Method for producing water-absorbing resin particles
WO2021187326A1 (en) Method for producing water-absorbent resin particles
WO2021187323A1 (en) Method for producing water-absorbing resin particles
US20240123426A1 (en) Method for producing water absorbent resin particles
WO2022075256A1 (en) Method for producing water-absorbing resin particles
JP2022088115A (en) Method for producing water-absorbing resin particle
WO2021006148A1 (en) Crosslinked polymer gel, method for producing same, monomer composition, and method for producing crosslinked polymer particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540300

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21848578

Country of ref document: EP

Kind code of ref document: A1