WO2021049451A1 - Method for producing water-absorbable resin particles - Google Patents

Method for producing water-absorbable resin particles Download PDF

Info

Publication number
WO2021049451A1
WO2021049451A1 PCT/JP2020/033754 JP2020033754W WO2021049451A1 WO 2021049451 A1 WO2021049451 A1 WO 2021049451A1 JP 2020033754 W JP2020033754 W JP 2020033754W WO 2021049451 A1 WO2021049451 A1 WO 2021049451A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
water
mass
polymerization
polymer
Prior art date
Application number
PCT/JP2020/033754
Other languages
French (fr)
Japanese (ja)
Inventor
崇志 居藤
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2021545519A priority Critical patent/JPWO2021049451A1/ja
Publication of WO2021049451A1 publication Critical patent/WO2021049451A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to a method for producing water-absorbent resin particles.
  • Water-absorbent resin particles are widely used in the fields of sanitary materials such as disposable diapers and sanitary products, agricultural and horticultural materials such as water retention agents and soil conditioners, and industrial materials such as water stop agents and dew condensation inhibitors. If the particle size of the water-absorbent resin particles is too small, there are problems such as poor operability, rapid water absorption and easy maco, poor water absorption characteristics, and a decrease in the yield of products using the water-absorbent resin particles. .. Therefore, a method is adopted in which the produced particles are classified and only particles having a particle diameter of a certain value or more are collected, or particles having a small particle diameter are aggregated to increase the particle diameter to a desired particle diameter. There is.
  • Patent Document 1 includes a step of mixing fine powder having a particle size of 180 ⁇ m or less and a polymer having a particle size of 300 ⁇ m or more among the pulverized polymers and re-granulating while adding steam.
  • a method for producing a water-absorbent resin is disclosed.
  • the conventional water-absorbent resin particles have a problem that a large amount of fine powder is likely to be generated when the agglomerates obtained by agglutination in the manufacturing process are reground.
  • An object of the present invention is to provide a method for producing water-absorbent resin particles capable of reducing the amount of fine powder generated.
  • One aspect of the present invention is to mix the first polymer particles having a particle size of less than 180 ⁇ m and the second polymer particles having a particle size of 180 ⁇ m or more to obtain an agglomerate, and to obtain the agglomerates.
  • the present invention relates to a method for producing water-absorbent resin particles, which comprises pulverizing and has a residual monomer amount of 250 ppm or more in the first polymer particles.
  • the first polymer particles and the second polymer particles may contain a crosslinked polymer of acrylic acid or a salt thereof.
  • the particle size of the second polymer particles may be 180 to 850 ⁇ m.
  • the above production method preferably includes mixing an aqueous solution in addition to the first polymer particles and the second polymer particles in the step of obtaining agglomerates.
  • Another aspect of the present invention is to obtain an agglomerate by mixing a first polymer particle having a particle size of less than 180 ⁇ m and a second polymer particle having a particle size of 180 ⁇ m or more to obtain an agglomerate.
  • the present invention relates to a method for suppressing the generation of fine powder of water-absorbent resin particles, which comprises pulverizing and adjusting the amount of residual monomer in the first polymer particles to 250 ppm or more.
  • the amount of fine powder generated can be reduced by the method for producing water-absorbent resin particles of the present invention.
  • Water-soluble means that it exhibits a solubility in water of 5% by mass or more at 25 ° C.
  • the materials exemplified in the present specification may be used alone or in combination of two or more.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • Saline refers to a 0.9% by mass sodium chloride aqueous solution.
  • the method for producing water-absorbent resin particles according to the present embodiment includes first polymer particles having a particle size of less than 180 ⁇ m (hereinafter, also referred to as “raw material fine particles”) and second polymer particles having a particle size of 180 ⁇ m or more. (Hereinafter, also referred to as “raw material particles”) are mixed to obtain agglomerates, and the agglomerates are crushed, and the amount of residual monomer in the first polymer particles is 250 ppm or less. ..
  • the production method according to the present embodiment may include a step of preparing raw material fine particles and raw material particles.
  • the water-absorbent resin particles obtained by the method according to the present embodiment contain a polymer.
  • the polymer can be obtained, for example, by polymerizing a monomer containing an ethylenically unsaturated monomer.
  • the polymer may be a crosslinked polymer.
  • the water-absorbent resin particles obtained by the method according to the present embodiment can have a structural unit derived from an ethylenically unsaturated monomer.
  • a water-soluble ethylenically unsaturated monomer can be used as the ethylenically unsaturated monomer.
  • Examples of the polymerization method include an aqueous solution polymerization method, a reverse phase suspension polymerization method, a bulk polymerization method, a precipitation polymerization method and the like.
  • the aqueous solution polymerization method or the reverse phase suspension polymerization method is preferable from the viewpoint of ensuring good water absorption characteristics of the obtained water-absorbent resin particles and facilitating control of the polymerization reaction.
  • examples of the aqueous solution polymerization method and the reverse phase suspension polymerization method will be described as the polymerization method.
  • the ethylenically unsaturated monomer is preferably water-soluble, and for example, ⁇ , ⁇ -unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, maleic anhydride, and fumaric acid, and carboxylic acids such as salts thereof.
  • System monomer Nonionic singles such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, etc.
  • Amino group-containing unsaturated monomers such as N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, diethylaminopropyl (meth) acrylamide, and quaternized products thereof; vinyl sulfonic acid Examples thereof include sulfonic acid-based monomers such as acid, styrene sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, 2- (meth) acryloylethanesulfonic acid and salts thereof. These ethylenically unsaturated monomers may be used alone or in combination of two or more.
  • the ethylenically unsaturated monomer is preferably at least one selected from the group consisting of (meth) acrylic acid and salts thereof, (meth) acrylamide, and N, N-dimethylacrylamide. Specifically, the ethylenically unsaturated monomer is preferably at least one selected from (meth) acrylic acid and salts thereof. Further, (meth) acrylic acid and a salt thereof may be copolymerized with another ethylenically unsaturated monomer.
  • 70 to 100 mol% of the above (meth) acrylic acid and a salt thereof are preferably used, more preferably 80 to 100 mol%, and 90 to 90 to 100 mol% of the total amount of the ethylenically unsaturated monomer. It is more preferable to use 100 mol%.
  • the ethylenically unsaturated monomer preferably contains at least one of acrylic acid and a salt thereof.
  • the raw material fine particles and the raw material particles preferably contain a crosslinked polymer of acrylic acid or a salt thereof.
  • the acid group is previously an alkaline neutralizer if necessary.
  • an alkaline neutralizer include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like.
  • alkaline neutralizers may be used in the form of an aqueous solution in order to simplify the neutralization operation.
  • One type of alkaline neutralizer may be used alone, or two or more types may be used in combination.
  • the acid group may be neutralized before the polymerization of the ethylenically unsaturated monomer as a raw material, or during or after the polymerization.
  • the degree of neutralization of the ethylenically unsaturated monomer by the alkaline neutralizer enhances the water absorption performance by increasing the osmotic pressure of the obtained water-absorbent resin particles, and is safe due to the presence of the excess alkaline neutralizer. From the viewpoint of preventing problems such as, usually, it is preferably 10 to 100 mol%, more preferably 30 to 90 mol%, further preferably 40 to 85 mol%, and 50. It is even more preferably ⁇ 80 mol%.
  • the degree of neutralization is the degree of neutralization for all the acid groups of the ethylenically unsaturated monomer.
  • the ethylenically unsaturated monomer is usually preferably used as an aqueous solution.
  • concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer may be usually 20% by mass or more and the saturation concentration or less, and is 25 to 70.
  • the mass% is preferable, and 30 to 50% by mass is more preferable.
  • the monomer aqueous solution may contain a polymerization initiator.
  • the polymerization of the monomer contained in the aqueous monomer solution is started by adding a polymerization initiator to the aqueous monomer solution and, if necessary, heating, irradiating with light or the like.
  • the polymerization initiator include a photopolymerization initiator and a radical polymerization initiator, and among them, a water-soluble radical polymerization initiator is preferably used.
  • the polymerization initiator may be, for example, an azo compound, a peroxide or the like.
  • Examples of the azo compound include 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride and 2,2'-azobis ⁇ 2- [N- (4-chlorophenyl) amidino] propane ⁇ .
  • 2,2'-azobis (2-amidinopropane) dihydrochloride 2,2'-azobis ⁇ 2- [1- (2-hydroxy) Ethyl) -2-imidazolin-2-yl] propane ⁇ dihydrochloride and 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate are preferred.
  • One of these azo compounds may be used alone, or two or more thereof may be used in combination.
  • peroxide examples include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t. -Organic peroxides such as butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate; peroxides such as hydrogen peroxide can be mentioned.
  • persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate
  • methyl ethyl ketone peroxide methyl isobutyl ketone peroxide
  • di-t-butyl peroxide di-t-butyl peroxide
  • t-butyl cumyl peroxide t.
  • potassium persulfate, ammonium persulfate, sodium persulfate, and hydrogen peroxide are preferably used from the viewpoint of obtaining water-absorbent resin particles having good water absorption performance, and potassium persulfate and persulfate are used. It is more preferable to use ammonium sulfate and sodium persulfate.
  • One of these peroxides may be used alone, or two or more thereof may be used in combination.
  • a redox polymerization initiator can also be used as a redox polymerization initiator by using a polymerization initiator and a reducing agent in combination.
  • the reducing agent include sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, L-ascorbic acid and the like.
  • the total amount of the polymerization initiator used is ethylene used in the polymerization from the viewpoint of avoiding a rapid polymerization reaction, shortening the polymerization reaction time, and increasing the amount of residual monomer in the obtained raw material fine particles to an appropriate range. It is preferably 0.001 to 1 mol, more preferably 0.005 to 0.5 mol, still more preferably 0.008 to 0.3 mol, and 0.01 to 0. 2 mol is even more preferred.
  • the monomer aqueous solution preferably contains an internal cross-linking agent.
  • the obtained cross-linked polymer can have cross-linking by the internal cross-linking agent in addition to self-cross-linking by the polymerization reaction as its internal cross-linking structure.
  • the internal cross-linking agent for example, a compound having two or more polymerizable unsaturated groups is used, and preferably, a compound having two polymerizable unsaturated groups is used.
  • di or tri (meth) acrylic acid esters of polyols such as (poly) ethylene glycol, (poly) propylene glycol, trimethylpropane, glycerin polyoxyethylene glycol, polyoxypropylene glycol, and (poly) glycerin; Unsaturated polyesters obtained by reacting the above polyol with unsaturated acids such as maleic acid and fumaric acid; bisacrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxide and (meth) acrylic acid.
  • Di or tri (meth) acrylic acid esters obtained by reaction carbamil di (meth) acrylate obtained by reacting polyisocyanate such as tolylene diisocyanate or hexamethylene diisocyanate with hydroxyethyl (meth) acrylate.
  • Esters allylated starch; allylated cellulose; diallyl phthalate; N, N', N "-triallyl isocyanurate; divinylbenzene and the like.
  • a compound having two or more reactive functional groups can be used as an internal cross-linking agent.
  • glycidyl group-containing compounds such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether; (poly) ethylene glycol, (poly) propylene glycol, (poly). Examples thereof include glycerin, pentaerythritol, ethylenediamine, polyethyleneimine, and glycidyl (meth) acrylate.
  • (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether are preferable from the viewpoint of excellent reactivity at low temperature.
  • These internal cross-linking agents may be used alone or in combination of two or more.
  • the amount used is 0.0001 mol with respect to 100 mol of the ethylenically unsaturated monomer in order to sufficiently enhance the water absorption performance such as the water absorption capacity of the obtained water-absorbent resin particles.
  • the above is preferable, 0.001 mol or more is more preferable, 0.003 mol or more is further preferable, and 0.01 mol or more is further preferable.
  • the amount of the agent is preferably, for example, 0.50 mol or less, more preferably 0.25 mol or less, still more preferably 0.05 mol or less, based on 100 mol of the ethylenically unsaturated monomer. is there.
  • the monomer aqueous solution may contain additives such as a chain transfer agent and a thickener, if necessary.
  • a chain transfer agent include thiols, thiol acids, secondary alcohols, hypophosphorous acid, phosphorous acid and the like.
  • the thickener include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, polyethylene glycol, polyacrylic acid, neutralized polyacrylic acid, polyacrylamide and the like. One of these may be used alone, or two or more thereof may be used in combination.
  • a water-soluble organic solvent other than water may be appropriately added to the monomer aqueous solution.
  • polymerization examples include a static polymerization method in which the monomer aqueous solution is polymerized without stirring (for example, a static state), a stirring polymerization method in which the monomer aqueous solution is polymerized while being stirred in the reaction apparatus, and the like. It's okay. It is preferable to obtain a hydrogel-like polymer by aqueous solution static polymerization, which is a static polymerization method.
  • aqueous solution static polymerization which is a static polymerization method.
  • a single block-shaped hydrogel polymer that occupies substantially the same volume as the aqueous monomer solution present in the reaction vessel can be obtained.
  • the form of production may be batch, semi-continuous, continuous, etc.
  • a continuous (for example, strip-shaped) hydrogel can be obtained by carrying out the polymerization reaction while continuously supplying the monomeric aqueous solution to the continuous polymerization apparatus.
  • the polymerization temperature varies depending on the polymerization initiator used, but from the viewpoint of increasing the productivity by rapidly advancing the polymerization and shortening the polymerization time, and more easily removing the heat of polymerization to carry out the reaction smoothly. 0 to 130 ° C. is preferable, and 10 to 110 ° C. is more preferable.
  • the polymerization time is appropriately set according to the type and amount of the polymerization initiator used, the reaction temperature, and the like, but is preferably 1 to 200 minutes, more preferably 5 to 100 minutes.
  • the water content of the massive hydrogel polymer obtained by polymerizing the ethylenically unsaturated monomer is preferably 30 to 80% by mass, more preferably 40 to 75% by mass from the viewpoint of easy implementation of the rough crushing step. It is preferable, and more preferably 50 to 70% by mass.
  • the water content is adjusted by operations such as the water content of the aqueous monomer solution, drying after polymerization, and humidification.
  • the water content of the hydrogel polymer is the content of water in the total mass of the hydrogel polymer in% by mass.
  • the method for producing water-absorbent resin particles (raw material fine particles and raw material particles) according to the present embodiment may include a step of coarsely crushing a hydrogel polymer. By coarse crushing, a hydrogel coarse crushed material is obtained.
  • the hydrogel crushed product may be in the form of particles, or may have an elongated shape in which particles are connected.
  • the size of the minimum side of the hydrogel crushed product may be, for example, about 0.1 to 15 mm, preferably about 1.0 to 10 mm.
  • the size of the maximum side of the hydrogel crushed product may be about 0.1 to 200 mm, preferably about 1.0 to 150 mm.
  • a kneader for example, a pressurized kneader, a double-armed kneader, etc.
  • a meat chopper for example, a pressurized kneader, a double-armed kneader, etc.
  • a cutter mill for example, a pharma mill, or the like
  • a double-armed kneader, a meat chopper, and a cutter mill are more preferable.
  • the coarse crushing device may be of the same type as the crushing device for dried gel products described later.
  • the hydrogel polymer When the hydrogel polymer is roughly crushed, the hydrogel polymer may be pre-cut to an appropriate size (for example, about 5 cm square) before being put into the crusher.
  • the method for producing water-absorbent resin particles (raw material fine particles and raw material particles) according to the present embodiment may include a step of drying a hydrogel coarse crushed product. By removing the solvent containing water in the hydrogel crushed material by heating and / or blowing air, the hydrogel crushed material can be dried to obtain a gel-dried product.
  • the drying method may be a general method such as natural drying, heat drying, spray drying, freeze drying and the like. The drying may be performed under normal pressure or reduced pressure, for example, and may be performed under an air flow such as nitrogen in order to improve the drying efficiency. For drying, a plurality of methods may be used in combination.
  • the drying temperature is preferably 70 to 250 ° C, more preferably 80 to 200 ° C.
  • the drying step is carried out until the water content of the crude gel crushed product is 20% by mass or less, preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the drying temperature is preferably 120 ° C. or higher, more preferably 150 ° C. or higher, still more preferably 180 ° C. or higher, from the viewpoint of increasing the amount of residual monomer in the raw material fine particles to an appropriate range.
  • the method for producing water-absorbent resin particles (raw material fine particles and raw material particles) according to the present embodiment may include a step of further pulverizing the gel dried product.
  • a gel pulverized product is obtained by pulverizing the gel dried product.
  • a known crusher can be used for crushing the dried gel product, for example, a roller mill (roll mill), a stamp mill, a jet mill, a high-speed rotary crusher (hammer mill, pin mill, rotor beater mill, etc.), container drive. Mold mills (rotary mills, vibration mills, planetary mills, etc.) can be used.
  • a high speed rotary grinder is used.
  • the crusher may have an opening on the outlet side, such as a perforated plate, a screen, or a grid, for controlling the maximum particle size of the crushed particles.
  • the shape of the opening may be polygonal, circular, etc., and the maximum diameter of the opening may be 0.1 to 5 mm, preferably 0.3 to 3.0 mm, more preferably 0.5 to 1.5 mm. preferable.
  • the method for producing water-absorbent resin particles according to the present embodiment may include, if necessary, a step of classifying the pulverized gel product before the granulation step described later.
  • Classification refers to an operation of dividing a certain particle group into two or more particle groups having different particle size distributions according to the particle size.
  • a plurality of classification steps may be performed, such as re-crushing a part of the particles after classification and repeating the crushing step and the classification step, or the classification step may be performed after the surface cross-linking step described later.
  • a known classification method can be used for the classification of the pulverized gel product, for example, screen classification, wind power classification, etc., and screen classification is preferable.
  • the screen classification include a vibrating sieve, a rotary shifter, a cylindrical stirring sieve, a blower shifter, and a low-tap type shaker.
  • Screen classification is a method of classifying particles on a screen into particles that pass through the mesh of the screen and particles that do not pass through the screen by vibrating the screen.
  • Wind power classification is a method of classifying particles using the flow of air.
  • classification is performed before the granulation step, for example, it is preferable to divide the particles into particles having a particle diameter of 180 ⁇ m and particles having a particle diameter of 180 ⁇ m or more, and particles having a particle diameter of 180 ⁇ m and particles having a particle diameter of 180 ⁇ m are separated. It is more preferable to select and recover the particles having a diameter of about 850 ⁇ m.
  • the classification before the granulation step does not have to be performed.
  • the method for producing water-absorbent resin particles (raw material fine particles and raw material particles) according to the present embodiment may include a surface cross-linking step.
  • the surface cross-linking can be carried out, for example, by adding a cross-linking agent (surface cross-linking agent) for performing the surface cross-linking to the cross-linked polymer and reacting it.
  • a cross-linking agent surface cross-linking agent
  • the surface cross-linking agent may be added at any time after the pulverization step, and is carried out before or after the classification step, or before or after the granulation step described later. Can be done.
  • the particle size distribution is further adjusted by classification or the like after the granulation step described later, it is preferable to perform surface cross-linking after adjusting the particle size distribution.
  • a surface cross-linking agent By adding a surface cross-linking agent and performing the surface cross-linking treatment, the cross-linking density in the vicinity of the surface of the cross-linked polymer is increased, so that the water absorption performance of the obtained water-absorbent resin particles can be improved.
  • the surface cross-linking agent can be added, for example, by adding a surface cross-linking agent solution or by spraying the surface cross-linking agent solution.
  • the surface cross-linking agent is preferably added as a surface cross-linking agent solution by dissolving the surface cross-linking agent in a solvent such as water and / or alcohol. Further, the surface cross-linking step may be carried out once or divided into two or more times.
  • the surface cross-linking agent may contain, for example, two or more functional groups (reactive functional groups) having reactivity with a functional group derived from an ethylenically unsaturated monomer.
  • functional groups reactive functional groups
  • examples of the surface cross-linking agent include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol di.
  • Polyglycidyl compounds such as glycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin, epibromhydrin, ⁇ - Haloepoxy compounds such as methyl epichlorohydrin; compounds having two or more reactive functional groups such as isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-oxetane methanol, 3-ethyl-3- Oxetane compounds such as oxetane methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl-3-o
  • the amount of the surface cross-linking agent added is preferably 0, with respect to 100 mol of the total amount of the ethylenically unsaturated monomer usually used for the polymerization, from the viewpoint of appropriately increasing the cross-linking density near the surface of the water-absorbent resin particles. It is 0001 to 1 mol, more preferably 0.001 to 0.5 mol.
  • the surface cross-linking step is preferably carried out in the presence of water in the range of 1 to 200 parts by mass with respect to 100 parts by mass of the ethylenically unsaturated monomer.
  • the amount of water can be adjusted by appropriately using a water-soluble organic solvent such as water and / or alcohol.
  • a water-soluble organic solvent such as water and / or alcohol.
  • the treatment temperature of the surface cross-linking agent is appropriately set according to the surface cross-linking agent used, and may be 20 to 250 ° C., and the treatment time is preferably 1 to 200 minutes, more preferably 5 to 100 minutes.
  • Surface cross-linking may be performed only once or at multiple timings.
  • the surface cross-linking may be carried out after the pulverization step or before the pulverization in addition to the execution after the pulverization step.
  • the ethylenically unsaturated monomer is preferably water-soluble, for example, (meth) acrylic acid and a salt thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and a salt thereof, (meth) acrylamide, N.
  • the ethylenically unsaturated monomer has an amino group, the amino group may be quaternized.
  • the ethylenically unsaturated monomer may be used alone or in combination of two or more.
  • the functional groups such as the carboxyl group and the amino group of the above-mentioned monomer can function as functional groups capable of cross-linking in the surface cross-linking step described later.
  • the ethylenically unsaturated monomer is a group consisting of (meth) acrylic acid and salts thereof, acrylamide, methacrylamide, and N, N-dimethylacrylamide. It is preferable to contain at least one compound selected from the above, and it is more preferable to contain at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof, and acrylamide. From the viewpoint of further enhancing the water absorption property, the ethylenically unsaturated monomer further preferably contains at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof. That is, the water-absorbent resin particles preferably have a structural unit derived from at least one selected from the group consisting of (meth) acrylic acid and salts thereof.
  • a monomer other than the above-mentioned ethylenically unsaturated monomer may be used.
  • Such a monomer can be used, for example, by mixing with an aqueous solution containing the above-mentioned ethylenically unsaturated monomer.
  • the amount of the ethylenically unsaturated monomer used is the total amount of the monomer (the total amount of the monomer for obtaining the water-absorbent resin particles. For example, the total amount of the monomer giving the structural unit of the crosslinked polymer. The same shall apply hereinafter).
  • the ratio of (meth) acrylic acid and its salt may be 70 to 100 mol% with respect to the total amount of the monomer, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or It may be 100 mol%.
  • Ratio of (meth) acrylic acid and its salt means the ratio of the total amount of (meth) acrylic acid and its salt.
  • the water-absorbent resin particles containing a crosslinked polymer having a structural unit derived from the ethylenically unsaturated monomer, wherein the ethylenically unsaturated monomer is used.
  • At least one compound selected from the group consisting of (meth) acrylic acid and salts thereof, and the ratio of (meth) acrylic acid and salts thereof is based on the total amount of monomers for obtaining water-absorbent resin particles. It is possible to provide water-absorbent resin particles in an amount of 70 to 100 mol%.
  • the ethylenically unsaturated monomer is usually preferably used as an aqueous solution.
  • concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer (hereinafter, simply referred to as "monomeric aqueous solution") is preferably 20% by mass or more and preferably 25 to 70% by mass. Is more preferable, and 30 to 55% by mass is further preferable.
  • Examples of the water used in the aqueous solution include tap water, distilled water, ion-exchanged water and the like.
  • the aqueous monomer solution may be used by neutralizing the acid group with an alkaline neutralizer.
  • the degree of neutralization of the ethylenically unsaturated monomer by the alkaline neutralizing agent increases the osmotic pressure of the obtained water-absorbent resin particles and further enhances the water-absorbing characteristics. It is preferably 10 to 100 mol%, more preferably 50 to 90 mol%, and even more preferably 60 to 80 mol% of the group.
  • the alkaline neutralizing agent include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like.
  • the alkaline neutralizer may be used alone or in combination of two or more.
  • the alkaline neutralizer may be used in the form of an aqueous solution to simplify the neutralization operation.
  • Neutralization of the acid group of the ethylenically unsaturated monomer can be performed, for example, by adding an aqueous solution of sodium hydroxide, potassium hydroxide or the like to the above-mentioned monomer aqueous solution and mixing them.
  • an aqueous monomer solution is dispersed in a hydrocarbon dispersion medium in the presence of a surfactant, and an ethylenically unsaturated monomer is polymerized using a radical polymerization initiator or the like. Can be done.
  • Nonionic surfactants include sorbitan fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, and polyoxyethylene.
  • Alkyl ether polyoxyethylene alkyl phenyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl ether, Examples thereof include polyethylene glycol fatty acid ester.
  • Anionic surfactants include fatty acid salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl ether sulfonates, and polyoxyethylene alkyl ether phosphates. , Phosphate ester of polyoxyethylene alkyl allyl ether and the like.
  • the surfactant may be used alone or in combination of two or more.
  • surfactant from the viewpoint that the W / O type reverse phase suspension is in a good state, water-absorbent resin particles (raw material fine particles and raw material particles) having a suitable particle size can be easily obtained, and are industrially easily available.
  • the agent preferably contains at least one compound selected from the group consisting of sorbitan fatty acid ester, polyglycerin fatty acid ester and sucrose fatty acid ester.
  • the surfactant is used as a detergent. It preferably contains a sugar fatty acid ester, more preferably a sucrose stearic acid ester.
  • the amount of the surfactant used is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the aqueous monomer solution from the viewpoint of obtaining a sufficient effect on the amount used and economically. .08 to 5 parts by mass is more preferable, and 0.1 to 3 parts by mass is further preferable.
  • a polymer-based dispersant may be used in combination with the above-mentioned surfactant.
  • the polymer dispersant include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene / propylene / diene / terpolymer), and maleic anhydride.
  • the polymer-based dispersant may be used alone or in combination of two or more.
  • maleic anhydride-modified polyethylene maleic anhydride-modified polypropylene
  • maleic anhydride-modified ethylene / propylene copolymer maleic anhydride / ethylene copolymer weight.
  • maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, and oxidized ethylene / propylene copolymer At least one selected from the group consisting of coalescing is preferable.
  • the amount of the polymer-based dispersant used is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the aqueous monomer solution from the viewpoint of obtaining a sufficient effect on the amount used and from the viewpoint of economic efficiency. , 0.08 to 5 parts by mass is more preferable, and 0.1 to 3 parts by mass is further preferable.
  • the hydrocarbon dispersion medium may contain at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms.
  • Hydrocarbon dispersion media include chain aliphatic hydrocarbons such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, and n-octane; cyclohexane.
  • the hydrocarbon dispersion medium may be used alone or in combination of two or more.
  • the hydrocarbon dispersion medium may contain at least one selected from the group consisting of n-heptane and cyclohexane from the viewpoint of being industrially easily available and having stable quality. From the same viewpoint, as the mixture of the above-mentioned hydrocarbon dispersion medium, for example, commercially available ExxonHeptane (manufactured by ExxonMobil: containing 75 to 85% of n-heptane and isomeric hydrocarbons) is used. You may.
  • the amount of the hydrocarbon dispersion medium used is preferably 30 to 1000 parts by mass and 40 to 500 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of appropriately removing the heat of polymerization and easily controlling the polymerization temperature. Is more preferable, and 50 to 400 parts by mass is further preferable.
  • the amount of the hydrocarbon dispersion medium used is 30 parts by mass or more, the polymerization temperature tends to be easily controlled.
  • the amount of the hydrocarbon dispersion medium used is 1000 parts by mass or less, the productivity of polymerization tends to be improved, which is economical.
  • the radical polymerization initiator is preferably water-soluble, for example, persulfates such as potassium persulfate, ammonium persulfate, sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t.
  • persulfates such as potassium persulfate, ammonium persulfate, sodium persulfate
  • methyl ethyl ketone peroxide methyl isobutyl ketone peroxide, di-t-butyl peroxide, t.
  • -Peroxides such as butyl cumylperoxide, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, hydrogen peroxide; 2,2'-azobis (2-amidinopropane) ) 2 hydrochloride, 2,2'-azobis [2- (N-phenylamidino) propane] 2 hydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] 2 hydrochloride, 2,2 '-Azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane ⁇ Dihydrochloride, 2,2'-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2'-azobis [2-methyl-N-
  • the radical polymerization initiator may be used alone or in combination of two or more.
  • examples of the radical polymerization initiator include potassium persulfate, ammonium persulfate, sodium persulfate, 2,2'-azobis (2-amidinopropane) dihydrochloride, and 2,2'-azobis [2- (2-imidazolin-2-).
  • the amount of the radical polymerization initiator used may be 0.05 to 10 mmol per 1 mol of the ethylenically unsaturated monomer.
  • the amount of the radical polymerization initiator used is 0.05 mmol or more, the polymerization reaction does not require a long time and is efficient.
  • the amount of the radical polymerization initiator used is 10 mmol or less, it is easy to suppress the occurrence of a rapid polymerization reaction.
  • the above-mentioned radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • the aqueous monomer solution used for the polymerization may contain a chain transfer agent.
  • the chain transfer agent include hypophosphates, thiols, thiolic acids, secondary alcohols, amines and the like.
  • the monomer aqueous solution used for the polymerization may contain a thickener.
  • the thickener include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide and the like. If the stirring speed at the time of polymerization is the same, the higher the viscosity of the aqueous monomer solution, the larger the medium particle size of the obtained particles tends to be.
  • Internal cross-linking may occur due to self-cross-linking during polymerization, but cross-linking may be performed by using an internal cross-linking agent.
  • an internal cross-linking agent When an internal cross-linking agent is used, it is easy to control the water absorption characteristics of the water-absorbent resin particles.
  • the internal cross-linking agent is usually added to the reaction solution during the polymerization reaction.
  • the internal cross-linking agent examples include di or tri (meth) acrylic acid esters of polyols such as ethylene glycol, propylene glycol, trimethylpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Unsaturated polyesters obtained by reacting polyols with unsaturated acids (maleic acid, fumaric acid, etc.); bis (meth) acrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxides and (meth) Di or tri (meth) acrylic acid esters obtained by reacting with acrylic acid; di (meth) obtained by reacting polyisocyanate (tolylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylate.
  • polyols such as ethylene glycol, propylene glycol, trimethylpropane, glycerin, polyoxyethylene glycol, polyoxypropy
  • Acrylic acid carbamil esters compounds having two or more polymerizable unsaturated groups such as allylated starch, allylated cellulose, diallyl phthalate, N, N', N "-triallyl isocyanurate, divinylbenzene; Polys such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol diglycidyl ether, polyglycerol polyglycidyl ether, etc.
  • Polys such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propy
  • Glycidyl compounds such as epichlorohydrin, epibromhydrin, ⁇ -methylepichlorohydrin; 2 reactive functional groups such as isocyanate compounds (2,4-tolylene diisocyanate, hexamethylene diisocyanate, etc.) Examples thereof include compounds having more than one.
  • the internal cross-linking agent may be used alone or in combination of two or more. As the internal cross-linking agent, a polyglycidyl compound is preferable, and a diglycidyl ether compound is used.
  • the amount of the internal cross-linking agent used is from the viewpoint that an excellent permeation rate can be easily obtained in an absorbent article, and the water-soluble property is suppressed by appropriately cross-linking the obtained polymer, so that a sufficient water absorption amount can be obtained.
  • 30 mmol or less is preferable, 0.01 to 10 mmol is more preferable, 0.012 to 5 mmol is further preferable, and 0.015 to 1 mmol is particularly preferable, per 1 mol of the ethylenically unsaturated monomer.
  • 0.02 to 0.1 mmol is very preferred, and 0.025 to 0.08 mmol is very preferred.
  • a monomer aqueous solution containing an ethylenically unsaturated monomer is used as a hydrocarbon dispersion medium in the presence of a surfactant (more polymer-based dispersant if necessary). Disperse.
  • a surfactant more polymer-based dispersant if necessary.
  • the timing of adding the surfactant, the polymer-based dispersant, or the like may be either before or after the addition of the aqueous monomer solution, as long as it is before the start of the polymerization reaction.
  • the surface activity is applied after the monomer aqueous solution is dispersed in the hydrocarbon dispersion medium in which the polymer-based dispersant is dispersed. It is preferable to further disperse the agent before carrying out the polymerization.
  • Reverse phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. Reversed phase suspension polymerization is preferably carried out in 2 to 3 steps from the viewpoint of increasing productivity.
  • a water-absorbent resin having a shape in which the particles of the first stage are aggregated (for example, a tuft of grapes formed by a plurality of spherical primary particles) may be obtained. ..
  • an ethylenically unsaturated single amount is added to the reaction mixture obtained in the first-step polymerization reaction after the first-step reverse-phase suspension polymerization is carried out.
  • the bodies may be added and mixed, and the reverse phase suspension polymerization of the second and subsequent steps may be carried out in the same manner as in the first step.
  • the above-mentioned radical polymerization initiator and / or internal cross-linking agent is used in the reverse phase of each stage of the second and subsequent stages.
  • reverse-phase suspension polymerization is carried out by adding within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer.
  • An internal cross-linking agent may be used in the reverse phase suspension polymerization in each of the second and subsequent stages, if necessary.
  • an internal cross-linking agent it is added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer based on the amount of the ethylenically unsaturated monomer provided in each stage, and the suspension is reversed. It is preferable to carry out turbid polymerization.
  • the temperature of the polymerization reaction varies depending on the radical polymerization initiator used, but by rapidly advancing the polymerization and shortening the polymerization time, the efficiency is improved and the heat of polymerization is easily removed to carry out the reaction smoothly. From the viewpoint, 20 to 150 ° C. is preferable, and 40 to 120 ° C. is more preferable.
  • the reaction time is usually 0.5-4 hours.
  • the completion of the polymerization reaction can be confirmed, for example, by stopping the temperature rise in the reaction system. As a result, the polymer of the ethylenically unsaturated monomer is usually obtained in the state of a hydrogel.
  • cross-linking may be performed by adding a cross-linking agent to the obtained hydrogel polymer and heating it.
  • a cross-linking agent By performing cross-linking after the polymerization, the degree of cross-linking of the hydrogel polymer can be increased to further improve the water absorption characteristics.
  • cross-linking agent for performing post-polymerization cross-linking examples include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Compounds having two or more epoxy groups such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether; Haloepoxide compounds; compounds having two or more isocyanate groups such as 2,4-tolylene diisocyanate, hexamethylene diisocyanate; oxazoline compounds such as 1,2-ethylene bisoxazoline; carbonate compounds such as ethylene carbonate; bis [N, Examples thereof include hydroxyalkylamide compounds such as N-di ( ⁇ -hydroxyethyl)] adipamide.
  • polyols
  • polyglycidyl compounds such as (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol diglycidyl ether, and polyglycerol polyglycidyl ether are available.
  • the cross-linking agent may be used alone or in combination of two or more.
  • the amount of the cross-linking agent after polymerization may be 30 mmol or less, 10 mmol or less, or 0.01 to 5 mmol per mole of the ethylenically unsaturated monomer from the viewpoint that suitable water absorption characteristics can be easily obtained.
  • the timing of adding the cross-linking agent after polymerization may be after the polymerization of the ethylenically unsaturated monomer used for polymerization, and in the case of multi-stage polymerization, it is preferable to add it after multi-stage polymerization.
  • the post-polymerization cross-linking agent contains water in consideration of heat generation during and after polymerization, retention due to process delay, opening of the system when the cross-linking agent is added, and fluctuation of water content due to addition of water accompanying the addition of the cross-linking agent. From the viewpoint of rate (described later), it is preferable to add in the region of [moisture content immediately after polymerization ⁇ 3% by mass].
  • polymer particles for example, polymer particles having a structural unit derived from an ethylenically unsaturated monomer
  • a drying method for example, (a) in a state where the hydrogel polymer is dispersed in a hydrocarbon dispersion medium, azeotropic distillation is performed by heating from the outside, and the hydrocarbon dispersion medium is refluxed to remove water.
  • examples thereof include (b) a method of taking out the hydrogel polymer by decantation and drying under reduced pressure, and (c) a method of filtering the hydrogel polymer with a filter and drying under reduced pressure.
  • a cross-linking agent is used to cover the surface portion (surface and vicinity of the surface) of the hydrogel polymer. It is preferable that surface cross-linking is performed. By performing surface cross-linking, it is easy to control water absorption characteristics.
  • the surface cross-linking is preferably performed at a timing when the water-containing gel polymer has a specific water content. The time of surface cross-linking is preferably when the water content of the hydrogel polymer is 5 to 50% by mass, more preferably 10 to 40% by mass, and even more preferably 15 to 35% by mass.
  • the water content (mass%) of the water-containing gel polymer is calculated by the following formula.
  • Moisture content [Ww / (Ww + Ws)] x 100
  • Ww If necessary when mixing a surface cross-linking agent or the like, the amount of water contained in the monomer aqueous solution before polymerization in the entire polymerization step minus the amount of water discharged to the outside of the system in the drying step. The amount of water in the hydrogel polymer to which the amount of water used is added.
  • Ws A solid content calculated from the amount of materials such as an ethylenically unsaturated monomer, a cross-linking agent, and an initiator that constitute a hydrogel polymer.
  • examples of the surface cross-linking agent include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol diglycidyl ether.
  • the surface cross-linking agent may be used alone or in combination of two or more.
  • a polyglycidyl compound is preferable, and (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol diglycidyl ether, and polyglycerol are used. At least one selected from the group consisting of polyglycidyl ether is more preferable.
  • the amount of the surface cross-linking agent used is preferably 0.01 to 20 mmol, preferably 0.05 to 10 to 1 mol of the ethylenically unsaturated monomer used for polymerization, from the viewpoint that suitable water absorption characteristics can be easily obtained. Millimole is more preferable, 0.1 to 5 mmol is further preferable, 0.15 to 1 mmol is particularly preferable, and 0.2 to 0.5 mmol is extremely preferable.
  • polymer particles that have been surface-crosslinked and dried can be obtained by distilling water and a hydrocarbon dispersion medium by a known method, drying under heating and reduced pressure, and the like.
  • the polymerization reaction can be carried out using various stirrers having stirring blades.
  • stirring blade flat plate blades, lattice blades, paddle blades, propeller blades, anchor blades, turbine blades, Faudler blades, ribbon blades, full zone blades, max blend blades and the like can be used.
  • the polymer particles may be pulverized with a part or all of the particle size distribution, if necessary.
  • a known crusher can be used for crushing, for example, a roller mill (roll mill), a stamp mill, a jet mill, a high-speed rotary crusher (hammer mill, pin mill, rotor beater mill, etc.), and a container-driven mill (rotary). Mills, vibration mills, planetary mills, etc.) can be used.
  • a high speed rotary grinder is used.
  • the crusher may have an opening on the outlet side, such as a perforated plate, a screen, or a grid, for controlling the maximum particle size of the crushed particles.
  • the shape of the opening may be polygonal, circular, etc., and the maximum diameter of the opening may be 0.1 to 5 mm, preferably 0.3 to 3.0 mm, more preferably 0.5 to 1.5 mm. preferable.
  • the first polymer particles (raw material fine particles) having a particle size of less than 180 ⁇ m and the second polymer particles (raw material particles) having a particle size of 180 ⁇ m or more are mixed and aggregated. (Aggregation step) and crushing the agglomerate (re-grinding step).
  • the agglomeration step and the regrinding step are collectively referred to as "granulation”.
  • the polymer particles obtained by the above-mentioned method can be used, and may be classified so as to keep the particle size within a predetermined range, if necessary.
  • the raw material fine particles and the raw material particles may be mixed separately, or may be used as they are when the raw material fine particles and the raw material particles are mixed at the time of producing the particles. Good.
  • the raw material fine particles and the raw material particles may have the same or different component compositions.
  • the particle size of the raw material particles is preferably in the range of 180 to 850 ⁇ m.
  • Aggregation can be performed by a known method. Aggregation can be performed, for example, by mixing raw material fine particles, raw material particles, and an aqueous liquid.
  • the aqueous solution may be, for example, water, or may be an aqueous solution containing a component such as a water-soluble salt or a hydrophilic organic solvent.
  • the proportion of water in the aqueous solution may be, for example, 90 to 100% by mass.
  • the temperature at which the raw material fine particles and the raw material particles are mixed is preferably 40 to 150 ° C, more preferably 60 to 100 ° C.
  • the mixing ratio of the raw material fine particles and the raw material particles may be any ratio.
  • the amount of the raw material fine particles is 1% by mass or more, 5% by mass or more, and 10% by mass with respect to the total amount of the raw material fine particles and the raw material particles. % Or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, or 90% by mass or more, 99% by mass.
  • it may be 5% by mass or less.
  • the amount of the aqueous liquid used for mixing may be, for example, 10 parts by mass or more, 20 parts by mass or more, 30 parts by mass or more, or 40 parts by mass or more with respect to a total of 100 parts by mass of the raw material fine particles and the raw material particles. It may be 70 parts by mass or less, 60 parts by mass or less, or 50 parts by mass or less.
  • the order of mixing at the time of aggregation is not particularly limited.
  • the raw material fine particles and the raw material particles may be mixed in advance and then the aqueous liquid may be added, or the raw material fine particles and the aqueous liquid may be mixed in advance and then the raw material. Particles may be added.
  • the method for mixing the raw material fine particles and / or the raw material particles with the aqueous liquid is not particularly limited, but for example, the aqueous liquid may be dropped little by little, sprayed, or mixed in the state of steam.
  • Raw material fine particles and / or raw material particles may be added to the aqueous solution.
  • a known crusher can be used for crushing during granulation, for example, a roller mill (roll mill), a stamp mill, a jet mill, a high-speed rotary crusher (hammer mill, pin mill, rotor beater mill, etc.), container drive. Mold mills (rotary mills, vibration mills, planetary mills, etc.) can be used.
  • a high speed rotary grinder is used.
  • the crusher may have an opening on the outlet side, such as a perforated plate, a screen, or a grid, for controlling the maximum particle size of the crushed particles.
  • the shape of the opening may be polygonal, circular, etc., and the maximum diameter of the opening may be 0.1 to 5 mm, preferably 0.3 to 3.0 mm, more preferably 0.5 to 1.5 mm. preferable.
  • the polymer particles After agglutination during granulation and before pulverization. Subsequent pulverization can be performed more easily by drying.
  • the drying can be performed by, for example, heating, blowing air, or the like, and it is preferable to dry by heating.
  • the heating temperature is preferably 75 ° C. or higher.
  • the heating temperature may be, for example, 100 ° C. or lower.
  • the method for producing water-absorbent resin particles according to the present embodiment may include a step of surface-crosslinking the particles obtained by granulation.
  • the amount of residual monomer in the raw material fine particles is 250 ppm or more.
  • the residual monomer is a monomer that does not contribute to the polymerization, and is measured by the measuring method described later.
  • Residual monomers include those that remain unreacted during polymerization, and monomers produced by the decomposition of part of the polymer particles in the post-polymerization step.
  • the production method according to the present embodiment it is possible to reduce the amount of fine particles, for example, particles having a particle diameter of 180 ⁇ m or less, generated in the polymer particles obtained by granulation.
  • the particle size distribution of the obtained granulated polymer particles becomes narrower and sharper, the generation of fine powders that need to be discarded or re-granulated is suppressed, and more efficiently.
  • Water-absorbent resin particles can be produced.
  • the amount of residual monomer in the raw material fine particles may be 270 ppm or more, 290 ppm or more, 350 ppm or more, 400 ppm or more, 500 ppm or more, 600 ppm or more, 800 ppm or more, or 1000 ppm or more.
  • the amount of residual monomer in the raw material fine particles may be, for example, 3000 ppm or less, 2500 ppm or less, or 2300 ppm or less.
  • the amount of residual monomer in the raw material particles may be the same as or different from the amount of residual monomer in the raw material fine particles.
  • the amount of residual monomer in the raw material fine particles can be increased by adding a monomer to the polymerized particles from the outside.
  • the amount of residual monomer in the raw material fine particles is not added from the outside but exists inside the particles. That is, it is preferably derived from the monomer used during the polymerization of the particles.
  • the amount of residual monomer in the raw material fine particles can be determined by measuring the amount of monomer dissolved in the solution after stirring for 1 hour in 250 times the amount of the particles to be measured in physiological saline. The measurement can be performed by high performance liquid chromatography.
  • the monomer to be measured is the monomer used for the polymerization of the raw material fine particles.
  • the amount of residual monomer in the raw material fine particles is preferably measured on the particles in the state immediately before being subjected to granulation, that is, the particles after all the steps performed before being subjected to aggregation.
  • the CRC (centrifuge holding capacity) of the raw material fine particles used for granulation may be, for example, 25 to 60 g / g, preferably 27 to 55 g / g. A specific method for measuring CRC will be shown in Examples described later.
  • the water-absorbent resin particles according to the present embodiment may be composed only of the crosslinked polymer obtained by granulation, and may be composed of, for example, a gel stabilizer, a metal chelating agent (ethylenediaminetetraacetic acid and a salt thereof, diethylenetriamine 5). Additional components such as acetic acid and salts thereof, such as diethylenetriamine-5 sodium acetate), fluidity improvers (lubricants), etc. can be further included. Additional components may be placed inside, on the surface, or both of the particles of the crosslinked polymer.
  • the water-absorbent resin particles may contain a plurality of inorganic particles arranged on the surface of the crosslinked polymer.
  • the inorganic particles may be silica particles such as amorphous silica.
  • the content of the inorganic particles may be in the following range based on 100 parts of the total mass of the crosslinked polymer.
  • the content of the inorganic particles may be 0.05 parts by mass or more, 0.1 parts by mass or more, 0.15 parts by mass or more, or 0.2 parts by mass or more.
  • the content of the inorganic particles may be 5.0 parts by mass or less, 3.0 parts by mass or less, 1.0 part by mass or less, 0.5 parts by mass or less, or 0.3 parts by mass or less.
  • Examples of the shape of the water-absorbent resin particles according to the present embodiment include a substantially spherical shape, a crushed shape, a granular shape, and a shape formed by aggregating primary particles having these shapes.
  • the medium particle size of the water-absorbent resin particles according to the present embodiment may be 130 to 800 ⁇ m, 200 to 850 ⁇ m, 250 to 700 ⁇ m, 300 to 600 ⁇ m, or 300 to 450 ⁇ m.
  • the water-absorbent resin particles according to the present embodiment may be finally adjusted in particle size distribution by performing an operation such as particle size adjustment using classification by a sieve.
  • the water-absorbent resin particles obtained by the production method according to the present embodiment include, for example, sanitary materials such as disposable diapers and sanitary products, agricultural and horticultural materials such as water retention agents and soil conditioners, and industrial materials such as water stop agents and dew condensation inhibitors. It can be used in such fields.
  • One aspect of this embodiment is to mix first polymer particles (raw material fine particles) having a particle size of less than 180 ⁇ m and second polymer particles (raw material particles) having a particle size of 180 ⁇ m or more to form agglomerates.
  • the present invention relates to a method for suppressing the generation of fine particles of water-absorbent resin particles, which comprises obtaining, crushing the agglomerates, and adjusting the amount of residual monomers in the first polymer particles to 250 ppm or more.
  • the method for adjusting the amount of residual monomer in the raw material fine particles to 250 ppm or more can be carried out, for example, by increasing the amount of the polymerization initiator used, raising the drying temperature, or the like.
  • a stirrer (diameter 8 mm, length 40 mm) is placed in a stainless steel bat ( ⁇ 20 cm), and the sodium acrylate partially neutralized solution (monomer concentration 45% by mass, acrylate neutralization rate) is used as a monomer for polymerization. (75 mol%) 340.0 g, ion-exchanged water 58.5 g, and ethylene glycol diglycidyl ether 0.0541 g (0.311 mmol) as an internal cross-linking agent were added. Then, the stirrer was rotated to uniformly disperse the components to obtain a mixture (sodium acrylate partial neutralization solution concentration 38% by mass).
  • the upper part of the stainless steel vat was covered with a polyethylene film. After adjusting the temperature of the mixture in the stainless steel vat to 25 ° C., the mixture was replaced with nitrogen to reduce the amount of dissolved oxygen to 0.1 ppm or less.
  • the hydrogel coarse crushed material was spread on a sieve having an opening of 850 ⁇ m and dried in a hot air dryer (manufactured by ADVANTEC, model number: DRE320DB) set at 180 ° C. for 30 minutes to obtain a gel-dried product.
  • the pulverized polymer particles were classified using a sieve having an opening of 850 ⁇ m, a sieve having a size of 180 ⁇ m, and a receiver. Those that passed through a sieve having a mesh size of 850 ⁇ m and remained on the sieve of 180 ⁇ m were recovered as polymer particles 1A, and those that passed through the sieve of 180 ⁇ m were recovered as polymer particles 1B.
  • a stirrer (diameter 8 mm, length 40 mm) is placed in a stainless steel bat (outer dimensions: 210 mm x 170 mm, height 30 mm) whose inner surface is coated with fluororesin, and sodium acrylate is partially neutralized as a monomer used for polymerization.
  • Liquid (monomer concentration 45% by mass, neutralization rate of acrylic acid 75 mol%) 340.0 g, ion-exchanged water 58.9 g, and ethylene glycol diglycidyl ether 0.0077 g (0.044 mmol) as an internal cross-linking agent. was added.
  • the stirrer was rotated to uniformly disperse the components to obtain a mixture (sodium acrylate partial neutralization solution concentration 38% by mass). Then, the upper part of the stainless steel vat was covered with a polyethylene film. After adjusting the temperature of the mixture in the stainless steel vat to 25 ° C., the mixture was replaced with nitrogen to reduce the amount of dissolved oxygen to 0.1 ppm or less.
  • the hydrogel polymer was coarsely crushed in the same manner as in Production Example 1.
  • the amount of the hydrogel-like polymer charged into the meat chopper was 347 g, and the amount of the hydrogel coarse crushed product discharged from the meat chopper and recovered was 188 g.
  • the gel was dried, pulverized, and classified in the same manner as in Production Example 1, passed through a sieve having an opening of 850 ⁇ m, and what remained on the sieve with a mesh size of 180 ⁇ m was passed through a sieve of polymer particles 2A and 180 ⁇ m and was weighted. It was recovered as coalesced particles 2B.
  • a stirrer (diameter 8 mm, length 40 mm) is placed in a stainless steel bat ( ⁇ 20 cm), and a partial neutralizing solution of sodium acrylate (monomer concentration 45% by mass, neutralization rate of acrylic acid 75) is used as a monomer for polymerization.
  • a partial neutralizing solution of sodium acrylate (monomer concentration 45% by mass, neutralization rate of acrylic acid 75) is used as a monomer for polymerization.
  • 340.0 g (molar%), 47.7 g of ion-exchanged water, and 0.0541 g (0.311 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added. Then, the stirrer was rotated to uniformly disperse the components to obtain a mixture (sodium acrylate partial neutralization solution concentration 38% by mass).
  • the upper part of the stainless steel vat was covered with a polyethylene film. After adjusting the temperature of the mixture in the stainless steel vat to 25 ° C., the mixture was replaced with nitrogen to reduce the amount of dissolved oxygen to 0.1 ppm or less.
  • the gel was dried, pulverized, and classified in the same manner as in Production Example 1, passed through a sieve having a mesh size of 850 ⁇ m, and what remained on the sieve having a mesh size of 180 ⁇ m was passed through a sieve having polymer particles 3A and 180 ⁇ m. It was recovered as polymer particles 3B.
  • a stirrer (diameter 8 mm, length 40 mm) is placed in a stainless steel bat ( ⁇ 20 cm), and a partial neutralizing solution of sodium acrylate (monomer concentration 45% by mass, neutralization rate of acrylic acid 75) is used as a monomer for polymerization.
  • a partial neutralizing solution of sodium acrylate (monomer concentration 45% by mass, neutralization rate of acrylic acid 75) is used as a monomer for polymerization.
  • 340.0 g (molar%), 32.6 g of ion-exchanged water, and 0.0541 g (0.311 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added. Then, the stirrer was rotated to uniformly disperse the components to obtain a mixture (sodium acrylate partial neutralization solution concentration 38% by mass).
  • the upper part of the stainless steel vat was covered with a polyethylene film. After adjusting the temperature of the mixture in the stainless steel vat to 25 ° C., the mixture was replaced with nitrogen to reduce the amount of dissolved oxygen to 0.1 ppm or less.
  • the gel was dried, pulverized and classified, passed through a sieve having an opening of 850 ⁇ m, and what remained on the sieve with a mesh size of 180 ⁇ m was passed through a sieve of polymer particles 4A and 180 ⁇ m and was weighted. It was recovered as coalesced particles 4B.
  • Production example 5 The steps up to pulverization of the dried gel product were carried out in the same manner as in Production Example 4 to obtain a pulverized polymer particle product.
  • Production example 6 A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and an internal volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having four inclined paddle blades with a blade diameter of 5 cm in two stages as a stirrer. Prepared. To this flask, 293 g of n-heptane as a hydrocarbon dispersion medium was added, 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals Co., Ltd., High Wax 1105A) was added as a polymer-based dispersant, and the mixture was stirred. The dispersant was dissolved by raising the temperature to 80 ° C. The formed solution was cooled to 50 ° C.
  • n-heptane as a hydrocarbon dispersion medium
  • hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HEC AW-15F) as a thickener
  • 0.0736 g 0.0736 g (0.272 mmol) of potassium persulfate as a water-soluble radical polymerization agent
  • ethylene glycol as an internal cross-linking agent.
  • An aqueous solution of the first stage was prepared by adding 0.011 g (0.063 mmol) of diglycidyl ether to a beaker and dissolving it.
  • a surfactant solution is prepared by heating and dissolving 0.736 g of sucrose stearic acid ester (Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB: 3) as a surfactant in 6.62 g of n-heptane. Obtained. After adding the first-stage aqueous solution to the flask and stirring for 10 minutes, the surfactant solution is added, the rotation speed of the stirrer is increased to 550 rpm, and the inside of the system is sufficiently nitrogen while stirring. Replaced with. Then, the flask was immersed in a water bath at 70 ° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry solution.
  • sucrose stearic acid ester Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB: 3
  • the entire amount of the aqueous solution of the second stage is added to the polymerized slurry liquid of the first stage to add the inside of the system. It was replaced with nitrogen for 30 minutes. Then, the flask was immersed in a water bath at 70 ° C. again to raise the temperature, and the polymerization reaction was carried out for 60 minutes to obtain a slurry containing a hydrogel polymer.
  • the flask was immersed in an oil bath set at 125 ° C., and 176.6 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.42 g (1.05 mmol) of a 3 mass% sodium sulfite aqueous solution and 5.89 g of a 4.5 mass% diethylenetriamine 5-sodium acetate aqueous solution were added to the flask as an inorganic reducing agent under stirring. A slurry containing polymer particles was obtained.
  • the flask was immersed again in an oil bath set at 125 ° C., and 67.2 g (243.8 g in total) of water was added to the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. I pulled it out. Then, n-heptane and water were evaporated at 125 ° C. and dried to obtain polymer particles.
  • a pulverized polymer particle was obtained by pulverizing 30 g of the polymer particles with a small pulverizer (Wonder Blender WB-1) for 10 seconds.
  • the pulverized polymer particles were classified using a sieve having a mesh size of 850 ⁇ m, a sieve having a mesh size of 180 ⁇ m, and a receiver. Those that passed through a sieve having a mesh size of 850 ⁇ m and remained on the sieve of 180 ⁇ m were recovered as polymer particles 6A, and those that passed through the sieve of 180 ⁇ m were recovered as polymer particles 6B.
  • Production example 7 [Preparation of aqueous monomer solution] 340.0 g (4.72 mol) of 100% acrylic acid was placed in a separable flask having an internal volume of 2 L. After adding 293.6 g of ion-exchanged water while stirring the inside of the flask, 295.1 g of 48% by mass sodium hydroxide was added dropwise under an ice bath to obtain a monomer concentration of 45% by mass and a neutralization rate of 75 mol. % Sodium acrylate partially neutralized solution was prepared.
  • the stirrer was rotated to uniformly disperse the components to obtain a mixture (sodium acrylate partial neutralization solution concentration 38% by mass). Then, the upper part of the stainless steel vat was covered with a polyethylene film. After adjusting the temperature of the mixture in the stainless steel vat to 25 ° C., the mixture was replaced with nitrogen to reduce the amount of dissolved oxygen to 0.1 ppm or less.
  • the hydrogel polymer was coarsely crushed in the same manner as in Production Example 1.
  • the amount of the hydrogel-like polymer charged into the meat chopper was 792 g, and the amount of the hydrogel coarse crushed product discharged from the meat chopper and recovered was 690 g.
  • the hydrogel coarse crushed material was spread on a sieve having an opening of 850 ⁇ m and dried in a hot air dryer (manufactured by ADVANTEC, model number: DRE320DB) set at 105 ° C. for 3 hours to obtain a gel-dried product.
  • the dried gel product was pulverized and classified, passed through a sieve having a mesh size of 850 ⁇ m, and the residue remaining on the sieve having a mesh size of 180 ⁇ m was passed through a sieve having polymer particles 7A and 180 ⁇ m. It was recovered as coalesced particles 7B.
  • Production Example 8 A slurry containing polymer particles was obtained in the same manner as in Production Example 6.
  • the polymer particles were pulverized with a small crusher (Wonder Blender WB-1) for 10 seconds to obtain a pulverized polymer particle.
  • the pulverized polymer particles were classified using a sieve having a mesh size of 850 ⁇ m, a sieve having a mesh size of 180 ⁇ m, and a receiver. Those that passed through a sieve having a mesh size of 850 ⁇ m and remained on the sieve of 180 ⁇ m were recovered as polymer particles 8A, and those that passed through the sieve of 180 ⁇ m were recovered as polymer particles 8B.
  • Example 1 3.75 g of polymer particles 1B were added as raw material fine particles to a 100 ml new disposable cup (made by AS ONE Corporation, CODE1-4620-01). While stirring the raw material fine particles at 600 r / min using a magnetic stirrer bar (8 mm ⁇ x 45 mm without ring), use a macropipettor (manufactured by Shibata Scientific Technology Co., Ltd., 10 mL capacity) to remove 5.63 g of ion-exchanged water. The mixture was added dropwise at a rate of 1 g / sec for 1 minute.
  • Examples 2 to 8 and Comparative Examples 1 to 4> The same operation as in Example 1 was carried out using the raw material fine particles and the polymer particles shown in Table 1 as the raw material particles.
  • ⁇ Particle particle size distribution The particle size distribution of the particles was measured in an environment of room temperature (25 ⁇ 2 ° C.) and humidity of 50 ⁇ 10% according to the following procedure. That is, the JIS standard sieves were combined in this order from the top, a sieve with an opening of 850 ⁇ m, a sieve with an opening of 180 ⁇ m, and a saucer. The particles to be measured were placed in the best combined sieve and classified according to JIS Z 8815 (1994) using a low-tap shaker (manufactured by Iida Seisakusho Co., Ltd.).
  • ⁇ Residual monomer content of water-absorbent resin particles The residual monomer content of the water-absorbent resin particles was measured by the following procedure in an environment of room temperature (25 ⁇ 2 ° C.) and humidity of 50 ⁇ 10%.
  • 500 g of physiological saline was placed in a beaker having an internal volume of 500 mL, and the mixture was stirred at 600 rpm using a stirrer (stirrer stand: model M-16GM manufactured by Koike Precision Instruments Mfg. Co., Ltd., stirrer tip: diameter 0.7 cm, length 3 cm). 2.0 g of particles to be measured was added to the stirred physiological saline, and the mixture was stirred for 60 minutes.
  • the contents of the beaker were filtered through a JIS standard sieve having an opening of 75 ⁇ m and a filter paper (filter paper No. 5C manufactured by ADVANTEC), and separated into a water-absorbing gel and a filtrate (extract).
  • the content of the monomer dissolved in the obtained filtrate was measured by high performance liquid chromatography.
  • the residual monomer to be measured is acrylic acid and its alkali metal salt. The measured value was converted into a value per measured particle mass and used as the residual monomer content (ppm).
  • a non-woven fabric with a size of 60 mm x 170 mm (product name: Heat Pack MWA-18, manufactured by Nippon Paper Papylia Co., Ltd.) was folded in half in the longitudinal direction to adjust the size to 60 mm x 85 mm.
  • a 60 mm ⁇ 85 mm non-woven fabric bag was produced by crimping the non-woven fabrics to each other on both sides extending in the longitudinal direction with a heat seal (a crimped portion having a width of 5 mm was formed on both sides along the longitudinal direction).
  • 0.2 g of the above-mentioned raw material fine particles was contained in the non-woven fabric bag. Then, the non-woven fabric bag was closed by crimping the remaining one side extending in the lateral direction with a heat seal.
  • the entire non-woven fabric bag was completely moistened by floating the non-woven fabric bag on 1000 g of physiological saline contained in a stainless steel vat (240 mm ⁇ 320 mm ⁇ 45 mm) without folding the non-woven fabric bag.
  • a stainless steel vat 240 mm ⁇ 320 mm ⁇ 45 mm
  • the non-woven fabric bag was taken out from the physiological saline solution. Then, the non-woven fabric bag was put in a centrifuge (manufactured by Kokusan Co., Ltd., model number: H-122). After the centrifugal force in the centrifuge reached 250 G, the non-woven fabric bag was dehydrated for 3 minutes. After dehydration, it was weighed mass M a nonwoven bag containing the mass of gel. Subjected to the same operation as the aforementioned operation on the woven bags without containing ingredients microparticles was measured mass M b of the nonwoven fabric bag.
  • CRC [g / g] ⁇ (M a- M b ) -M c ⁇ / M c
  • the amount of fine powder having a particle diameter of less than 180 ⁇ m was suppressed after re-pulverization.

Abstract

Disclosed is a method for producing water-absorbable resin particles, comprising mixing first polymer particles each having a particle diameter of less than 180 μm with second polymer particles each having a particle diameter of 180 μm or more to produce aggregated masses and pulverizing the aggregated masses, wherein the residual monomer amount in the first polymer particles is 250 ppm or more.

Description

吸水性樹脂粒子の製造方法Manufacturing method of water-absorbent resin particles
 本発明は、吸水性樹脂粒子の製造方法に関する。 The present invention relates to a method for producing water-absorbent resin particles.
 吸水性樹脂粒子は、紙おむつ、生理用品等の衛生材料、保水剤、土壌改良剤等の農園芸材料、止水剤、結露防止剤等の工業資材などの分野で広く使用されている。吸水性樹脂粒子は、粒子径が小さすぎると、操作性が悪い、急激に吸水してママコになりやすい、吸水特性が劣る、吸水性樹脂粒子を用いた製品の歩留まりが低下するといった問題がある。そのため、製造された粒子を分級して一定以上の粒子径を有する粒子のみを採取する、又は粒子径が小さい粒子を凝集させて所望の粒子径にまで粒子径を増大させるといった方法が採用されている。 Water-absorbent resin particles are widely used in the fields of sanitary materials such as disposable diapers and sanitary products, agricultural and horticultural materials such as water retention agents and soil conditioners, and industrial materials such as water stop agents and dew condensation inhibitors. If the particle size of the water-absorbent resin particles is too small, there are problems such as poor operability, rapid water absorption and easy mamaco, poor water absorption characteristics, and a decrease in the yield of products using the water-absorbent resin particles. .. Therefore, a method is adopted in which the produced particles are classified and only particles having a particle diameter of a certain value or more are collected, or particles having a small particle diameter are aggregated to increase the particle diameter to a desired particle diameter. There is.
 例えば特許文献1には、粉砕された重合体のうちの180μm以下の粒径を有する微粉及び300μm以上の粒径を有する重合体を混合してスチームを添加しながら再造粒する段階を含む高吸水性樹脂の製造方法が開示されている。 For example, Patent Document 1 includes a step of mixing fine powder having a particle size of 180 μm or less and a polymer having a particle size of 300 μm or more among the pulverized polymers and re-granulating while adding steam. A method for producing a water-absorbent resin is disclosed.
特表2016-529368号公報Special Table 2016-528368
 しかしながら、従来の吸水性樹脂粒子では、製造工程において凝集により得られた凝集塊を再粉砕する際に、微粉が多く発生しやすいといった問題がある。 However, the conventional water-absorbent resin particles have a problem that a large amount of fine powder is likely to be generated when the agglomerates obtained by agglutination in the manufacturing process are reground.
 本発明は、微粉の発生量を低減することができる吸水性樹脂粒子の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing water-absorbent resin particles capable of reducing the amount of fine powder generated.
 本発明の一側面は、粒子径が180μm未満である第1重合体粒子と、粒子径が180μm以上である第2重合体粒子とを混合して凝集塊を得ること、及び、該凝集塊を粉砕することを含み、上記第1重合体粒子における残存単量体量が250ppm以上である、吸水性樹脂粒子の製造方法に関する。 One aspect of the present invention is to mix the first polymer particles having a particle size of less than 180 μm and the second polymer particles having a particle size of 180 μm or more to obtain an agglomerate, and to obtain the agglomerates. The present invention relates to a method for producing water-absorbent resin particles, which comprises pulverizing and has a residual monomer amount of 250 ppm or more in the first polymer particles.
 上記製造方法において、上記第1重合体粒子及び上記第2重合体粒子が、アクリル酸又はその塩の架橋重合体を含んでもよい。 In the above production method, the first polymer particles and the second polymer particles may contain a crosslinked polymer of acrylic acid or a salt thereof.
 上記製造方法において、第2重合体粒子の粒子径が180~850μmであってよい。 In the above production method, the particle size of the second polymer particles may be 180 to 850 μm.
 上記製造方法は、凝集塊を得る工程において、第1重合体粒子及び第2重合体粒子に加えて、更に水性液を混合することを含むことが好ましい。 The above production method preferably includes mixing an aqueous solution in addition to the first polymer particles and the second polymer particles in the step of obtaining agglomerates.
 本発明の別の一側面は、粒子径が180μm未満である第1重合体粒子と、粒子径が180μm以上である第2重合体粒子とを混合して凝集塊を得ること、該凝集塊を粉砕すること、及び、上記第1重合体粒子における残存単量体量を250ppm以上に調整することとを含む、吸水性樹脂粒子の微粉発生を抑制する方法に関する。 Another aspect of the present invention is to obtain an agglomerate by mixing a first polymer particle having a particle size of less than 180 μm and a second polymer particle having a particle size of 180 μm or more to obtain an agglomerate. The present invention relates to a method for suppressing the generation of fine powder of water-absorbent resin particles, which comprises pulverizing and adjusting the amount of residual monomer in the first polymer particles to 250 ppm or more.
 本発明の吸水性樹脂粒子の製造方法により、微粉の発生量を低減することができる。 The amount of fine powder generated can be reduced by the method for producing water-absorbent resin particles of the present invention.
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 本明細書において、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。(ポリ)」とは、「ポリ」の接頭語がある場合及びない場合の双方を意味するものとする。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことをいう。本明細書に例示する材料は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「生理食塩水」とは、0.9質量%塩化ナトリウム水溶液をいう。 In this specification, "acrylic" and "methacryl" are collectively referred to as "(meth) acrylic". Similarly, "acrylate" and "methacrylate" are also referred to as "(meth) acrylate". "(Poly)" shall mean both with and without the "poly" prefix. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. "Water-soluble" means that it exhibits a solubility in water of 5% by mass or more at 25 ° C. The materials exemplified in the present specification may be used alone or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. "Saline" refers to a 0.9% by mass sodium chloride aqueous solution.
 本実施形態に係る吸水樹脂粒子の製造方法は、粒子径が180μm未満である第1重合体粒子(以下、「原料微粒子」ともいう。)と、粒子径が180μm以上である第2重合体粒子(以下、「原料粒子」ともいう。)とを混合して凝集塊を得ること、及び、該凝集塊を粉砕することを含み、第1重合体粒子における残存単量体量が250ppm以下である。本実施形態に係る製造方法は、原料微粒子及び原料粒子を調製する工程を含んでいてよい。 The method for producing water-absorbent resin particles according to the present embodiment includes first polymer particles having a particle size of less than 180 μm (hereinafter, also referred to as “raw material fine particles”) and second polymer particles having a particle size of 180 μm or more. (Hereinafter, also referred to as “raw material particles”) are mixed to obtain agglomerates, and the agglomerates are crushed, and the amount of residual monomer in the first polymer particles is 250 ppm or less. .. The production method according to the present embodiment may include a step of preparing raw material fine particles and raw material particles.
<重合体粒子の調製>
 本実施形態に係る方法により得られる吸水性樹脂粒子は、重合体を含む。重合体は、例えば、エチレン性不飽和単量体を含有する単量体を重合させて得ることができる。重合体は架橋重合体であってよい。本実施形態に係る方法により得られる吸水樹脂粒子は、エチレン性不飽和単量体に由来する構造単位を有することができる。エチレン性不飽和単量体としては、水溶性エチレン性不飽和単量体を用いることができる。
<Preparation of polymer particles>
The water-absorbent resin particles obtained by the method according to the present embodiment contain a polymer. The polymer can be obtained, for example, by polymerizing a monomer containing an ethylenically unsaturated monomer. The polymer may be a crosslinked polymer. The water-absorbent resin particles obtained by the method according to the present embodiment can have a structural unit derived from an ethylenically unsaturated monomer. As the ethylenically unsaturated monomer, a water-soluble ethylenically unsaturated monomer can be used.
 重合方法としては、例えば、水溶液重合法、逆相懸濁重合法、バルク重合法、沈殿重合法等が挙げられる。これらのなかでは、得られる吸水性樹脂粒子の良好な吸水特性の確保、及び、重合反応の制御が容易である観点から、水溶液重合法又は逆相懸濁重合法が好ましい。以下には、重合方法として水溶液重合法及び逆相懸濁重合法の例を説明する。 Examples of the polymerization method include an aqueous solution polymerization method, a reverse phase suspension polymerization method, a bulk polymerization method, a precipitation polymerization method and the like. Among these, the aqueous solution polymerization method or the reverse phase suspension polymerization method is preferable from the viewpoint of ensuring good water absorption characteristics of the obtained water-absorbent resin particles and facilitating control of the polymerization reaction. Hereinafter, examples of the aqueous solution polymerization method and the reverse phase suspension polymerization method will be described as the polymerization method.
[水溶液重合法]
 エチレン性不飽和単量体は水溶性であることが好ましく、例えば、(メタ)アクリル酸、マレイン酸、無水マレイン酸、フマル酸等のα,β-不飽和カルボン酸及びその塩等のカルボン酸系単量体;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体;N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体及びその4級化物等;ビニルスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸及びそれらの塩等のスルホン酸系単量体等が挙げられる。これらのエチレン性不飽和単量体は、1種を単独で使用してもよく、2種以上を併用してもよい。
[Aqueous solution polymerization method]
The ethylenically unsaturated monomer is preferably water-soluble, and for example, α, β-unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, maleic anhydride, and fumaric acid, and carboxylic acids such as salts thereof. System monomer; Nonionic singles such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, etc. Quantities: Amino group-containing unsaturated monomers such as N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, diethylaminopropyl (meth) acrylamide, and quaternized products thereof; vinyl sulfonic acid Examples thereof include sulfonic acid-based monomers such as acid, styrene sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, 2- (meth) acryloylethanesulfonic acid and salts thereof. These ethylenically unsaturated monomers may be used alone or in combination of two or more.
 エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩、(メタ)アクリルアミド、並びにN,N-ジメチルアクリルアミドからなる群から選ばれる少なくとも1種であることが好ましい。具体的にはエチレン性不飽和単量体は、(メタ)アクリル酸及びその塩から選択される少なくとも1種であることが好ましい。また、(メタ)アクリル酸及びその塩に、他のエチレン性不飽和単量体を共重合させて用いてよい。この場合、エチレン性不飽和単量体の総量のうち、上記(メタ)アクリル酸及びその塩が70~100モル%用いられることが好ましく、80~100モル%用いられることがより好ましく、90~100モル%用いられることが更に好ましい。エチレン性不飽和単量体は、アクリル酸及びその塩の少なくとも一方を含むことが好ましい。原料微粒子及び原料粒子は、アクリル酸又はその塩の架橋重合体を含むことが好ましい。 The ethylenically unsaturated monomer is preferably at least one selected from the group consisting of (meth) acrylic acid and salts thereof, (meth) acrylamide, and N, N-dimethylacrylamide. Specifically, the ethylenically unsaturated monomer is preferably at least one selected from (meth) acrylic acid and salts thereof. Further, (meth) acrylic acid and a salt thereof may be copolymerized with another ethylenically unsaturated monomer. In this case, 70 to 100 mol% of the above (meth) acrylic acid and a salt thereof are preferably used, more preferably 80 to 100 mol%, and 90 to 90 to 100 mol% of the total amount of the ethylenically unsaturated monomer. It is more preferable to use 100 mol%. The ethylenically unsaturated monomer preferably contains at least one of acrylic acid and a salt thereof. The raw material fine particles and the raw material particles preferably contain a crosslinked polymer of acrylic acid or a salt thereof.
 エチレン性不飽和単量体が(メタ)アクリル酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸等のように酸基を有する場合、必要に応じてその酸基が予めアルカリ性中和剤により中和されたものを用いることができる。このようなアルカリ性中和剤としては、例えば水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニア等が挙げられる。これらのアルカリ性中和剤は、中和操作を簡便にするために水溶液の状態にして用いてもよい。アルカリ性中和剤は1種を単独で使用してもよく、2種以上を併用してもよい。なお、酸基の中和は、原料であるエチレン性不飽和単量体の重合前に行ってもよく、重合中又は重合後に行ってもよい。 When the ethylenically unsaturated monomer has an acid group such as (meth) acrylic acid and 2- (meth) acrylamide-2-methylpropanesulfonic acid, the acid group is previously an alkaline neutralizer if necessary. Can be used as neutralized by. Examples of such an alkaline neutralizer include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like. These alkaline neutralizers may be used in the form of an aqueous solution in order to simplify the neutralization operation. One type of alkaline neutralizer may be used alone, or two or more types may be used in combination. The acid group may be neutralized before the polymerization of the ethylenically unsaturated monomer as a raw material, or during or after the polymerization.
 アルカリ性中和剤によるエチレン性不飽和単量体の中和度は、得られる吸水性樹脂粒子の浸透圧を高めることで吸水性能を高め、かつ余剰のアルカリ性中和剤の存在に起因する安全性等に問題が生じないようにする観点から、通常、10~100モル%であることが好ましく、30~90モル%であることがより好ましく、40~85モル%であることが更に好ましく、50~80モル%であることがより更に好ましい。ここで、中和度はエチレン性不飽和単量体が有する全ての酸基に対する中和度とする。 The degree of neutralization of the ethylenically unsaturated monomer by the alkaline neutralizer enhances the water absorption performance by increasing the osmotic pressure of the obtained water-absorbent resin particles, and is safe due to the presence of the excess alkaline neutralizer. From the viewpoint of preventing problems such as, usually, it is preferably 10 to 100 mol%, more preferably 30 to 90 mol%, further preferably 40 to 85 mol%, and 50. It is even more preferably ~ 80 mol%. Here, the degree of neutralization is the degree of neutralization for all the acid groups of the ethylenically unsaturated monomer.
 エチレン性不飽和単量体は、通常、水溶液として用いることが好適である。エチレン性不飽和単量体を含む水溶液(以下、単に「単量体水溶液」という)におけるエチレン性不飽和単量体の濃度は、通常20質量%以上飽和濃度以下とすればよく、25~70質量%が好ましく、30~50質量%がより好ましい。 The ethylenically unsaturated monomer is usually preferably used as an aqueous solution. The concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer (hereinafter, simply referred to as "monomeric aqueous solution") may be usually 20% by mass or more and the saturation concentration or less, and is 25 to 70. The mass% is preferable, and 30 to 50% by mass is more preferable.
 単量体水溶液は、重合開始剤を含んでいてよい。単量体水溶液に含まれる単量体の重合は、単量体水溶液に重合開始剤を添加し、必要により加熱、光照射等を行うことで開始される。重合開始剤としては、光重合開始剤又はラジカル重合開始剤が挙げられ、なかでも水溶性ラジカル重合開始剤が好ましく用いられる。重合開始剤は、例えばアゾ系化合物、過酸化物等であってよい。 The monomer aqueous solution may contain a polymerization initiator. The polymerization of the monomer contained in the aqueous monomer solution is started by adding a polymerization initiator to the aqueous monomer solution and, if necessary, heating, irradiating with light or the like. Examples of the polymerization initiator include a photopolymerization initiator and a radical polymerization initiator, and among them, a water-soluble radical polymerization initiator is preferably used. The polymerization initiator may be, for example, an azo compound, a peroxide or the like.
 アゾ系化合物としては、例えば、2,2’-アゾビス[2-(N-フェニルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス{2-[N-(4-クロロフェニル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス{2-[N-(4-ヒドロキシフェニル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス[2-(N-ベンジルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[N-(2-ヒドロキシエチル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、2,2’-アゾビス(2-メチルプロピオンアミド)二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二硫酸塩二水和物、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]等のアゾ系化合物等を挙げることができる。良好な吸水性能を有する吸水性樹脂粒子が得られやすいという観点から、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩及び2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物が好ましい。これらのアゾ系化合物は、1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of the azo compound include 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride and 2,2'-azobis {2- [N- (4-chlorophenyl) amidino] propane}. Dihydrochloride, 2,2'-azobis {2- [N- (4-hydroxyphenyl) amidino] propane} dihydrochloride, 2,2'-azobis [2- (N-benzylamidino) propane] dihydrochloride , 2,2'-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis {2- [N- (2-Hydroxyethyl) amidino] propane} dihydrochloride, 2,2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2 -(2-Imidazoline-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (4,5,6,7-tetrahydro-1H-1,3-diazepine-2-yl) propane] Dihydrochloride, 2,2'-azobis [2- (5-hydroxy-3,4,5,6-tetrahydropyrimidine-2-yl) propane] dihydrochloride, 2,2'-azobis {2- [1 -(2-Hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, 2,2'-azobis (2-methylpropionamide) dihydrochloride, 2,2'-azobis [2- (2) -Imidazoline-2-yl) propane] disulfate dihydrate, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate, 2,2'-azobis Examples thereof include azo compounds such as [2-methyl-N- (2-hydroxyethyl) propionamide]. From the viewpoint that water-absorbent resin particles having good water-absorbing performance can be easily obtained, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis {2- [1- (2-hydroxy) Ethyl) -2-imidazolin-2-yl] propane} dihydrochloride and 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate are preferred. One of these azo compounds may be used alone, or two or more thereof may be used in combination.
 過酸化物としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート等の有機過酸化物類;過酸化水素等の過酸化物が挙げられる。これらの過酸化物のなかでも、良好な吸水性能を有する吸水性樹脂粒子が得られる観点から、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、過酸化水素を用いることが好ましく、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウムを用いることがより好ましい。これらの過酸化物は、1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of the peroxide include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t. -Organic peroxides such as butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate; peroxides such as hydrogen peroxide can be mentioned. Among these peroxides, potassium persulfate, ammonium persulfate, sodium persulfate, and hydrogen peroxide are preferably used from the viewpoint of obtaining water-absorbent resin particles having good water absorption performance, and potassium persulfate and persulfate are used. It is more preferable to use ammonium sulfate and sodium persulfate. One of these peroxides may be used alone, or two or more thereof may be used in combination.
 また、重合開始剤と還元剤とを組み合わせて用いて、レドックス重合開始剤として用いることもできる。還元剤としては、例えば、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、及びL-アスコルビン酸等が挙げられる。 It can also be used as a redox polymerization initiator by using a polymerization initiator and a reducing agent in combination. Examples of the reducing agent include sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, L-ascorbic acid and the like.
 重合開始剤の総使用量は、急激な重合反応を回避し、重合反応時間を短縮し、かつ得られる原料微粒子における残存単量体量を適切な範囲に増加させる観点から、重合に用いられるエチレン性不飽和単量体100モルに対して0.001~1モルが好ましく、0.005~0.5モルがより好ましく、0.008~0.3モルが更に好ましく、0.01~0.2モルがより更に好ましい。 The total amount of the polymerization initiator used is ethylene used in the polymerization from the viewpoint of avoiding a rapid polymerization reaction, shortening the polymerization reaction time, and increasing the amount of residual monomer in the obtained raw material fine particles to an appropriate range. It is preferably 0.001 to 1 mol, more preferably 0.005 to 0.5 mol, still more preferably 0.008 to 0.3 mol, and 0.01 to 0. 2 mol is even more preferred.
 単量体水溶液は、内部架橋剤を含むことが好ましい。内部架橋剤を含むことにより、得られる架橋重合体が、その内部架橋構造として、重合反応による自己架橋に加え、内部架橋剤による架橋を有することができる。内部架橋剤としては、例えば重合性不飽和基を2個以上有する化合物が用いられ、好ましくは、重合性不飽和基を2個有する化合物が使用される。例えば、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、トリメチロールプロパン、グリセリンポリオキシエチレングリコール、ポリオキシプロピレングリコール、及び(ポリ)グリセリン等のポリオール類のジ又はトリ(メタ)アクリル酸エステル類;上記ポリオールとマレイン酸及びフマル酸等の不飽和酸類とを反応させて得られる不飽和ポリエステル類;N,N’-メチレンビス(メタ)アクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ又はトリ(メタ)アクリル酸エステル類;トリレンジイソシアネートやヘキサメチレンジイソシアネート等のポリイソシアネートと(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉;アリル化セルロース;ジアリルフタレート;N,N’,N”-トリアリルイソシアヌレート;ジビニルベンゼン等が挙げられる。 The monomer aqueous solution preferably contains an internal cross-linking agent. By including the internal cross-linking agent, the obtained cross-linked polymer can have cross-linking by the internal cross-linking agent in addition to self-cross-linking by the polymerization reaction as its internal cross-linking structure. As the internal cross-linking agent, for example, a compound having two or more polymerizable unsaturated groups is used, and preferably, a compound having two polymerizable unsaturated groups is used. For example, di or tri (meth) acrylic acid esters of polyols such as (poly) ethylene glycol, (poly) propylene glycol, trimethylpropane, glycerin polyoxyethylene glycol, polyoxypropylene glycol, and (poly) glycerin; Unsaturated polyesters obtained by reacting the above polyol with unsaturated acids such as maleic acid and fumaric acid; bisacrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxide and (meth) acrylic acid. Di or tri (meth) acrylic acid esters obtained by reaction; carbamil di (meth) acrylate obtained by reacting polyisocyanate such as tolylene diisocyanate or hexamethylene diisocyanate with hydroxyethyl (meth) acrylate. Esters; allylated starch; allylated cellulose; diallyl phthalate; N, N', N "-triallyl isocyanurate; divinylbenzene and the like.
 また、上記重合性不飽和基を2個以上有する化合物の他に、反応性官能基を2個以上有する化合物を内部架橋剤として用いることができる。例えば、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び(ポリ)グリセリンジグリシジルエーテル等のグリシジル基含有化合物;(ポリ)エチレングリコール、(ポリ)プロピレングリコール、(ポリ)グリセリン、ペンタエリスリトール、エチレンジアミン、ポリエチレンイミン、グリシジル(メタ)アクリレート等が挙げられる。これらのなかでは、低温での反応性に優れている観点から、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び(ポリ)グリセリンジグリシジルエーテルが好ましい。これら内部架橋剤は、1種を単独で使用してもよく、2種以上を併用してもよい。 Further, in addition to the compound having two or more polymerizable unsaturated groups, a compound having two or more reactive functional groups can be used as an internal cross-linking agent. For example, glycidyl group-containing compounds such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether; (poly) ethylene glycol, (poly) propylene glycol, (poly). Examples thereof include glycerin, pentaerythritol, ethylenediamine, polyethyleneimine, and glycidyl (meth) acrylate. Among these, (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether are preferable from the viewpoint of excellent reactivity at low temperature. These internal cross-linking agents may be used alone or in combination of two or more.
 内部架橋剤を使用する場合、その使用量は、得られる吸水性樹脂粒子の吸水能等の吸水性能を十分に高めるために、エチレン性不飽和単量体100モルに対して、0.0001モル以上が好ましく、0.001モル以上がより好ましく、0.003モル以上が更に好ましく、0.01モル以上がより更に好ましい。 When an internal cross-linking agent is used, the amount used is 0.0001 mol with respect to 100 mol of the ethylenically unsaturated monomer in order to sufficiently enhance the water absorption performance such as the water absorption capacity of the obtained water-absorbent resin particles. The above is preferable, 0.001 mol or more is more preferable, 0.003 mol or more is further preferable, and 0.01 mol or more is further preferable.
 内部架橋剤の添加は、架橋重合体を不溶化させ、好適な吸水能をもたらすものの、内部架橋剤の添加量の増大は、得られる吸水性樹脂粒子の吸水能の低下につながることから、内部架橋剤の量は、エチレン性不飽和単量体100モルに対して、例えば0.50モル以下であることが好ましく、より好ましくは0.25モル以下であり、更に好ましくは0.05モル以下である。 Although the addition of the internal cross-linking agent insolubilizes the cross-linked polymer and brings about a suitable water absorption capacity, an increase in the amount of the internal cross-linking agent added leads to a decrease in the water absorption capacity of the obtained water-absorbent resin particles. The amount of the agent is preferably, for example, 0.50 mol or less, more preferably 0.25 mol or less, still more preferably 0.05 mol or less, based on 100 mol of the ethylenically unsaturated monomer. is there.
 単量体水溶液には、必要に応じて、連鎖移動剤、増粘剤等の添加剤が含まれていてもよい。連鎖移動剤としては、例えば、チオール類、チオール酸類、第2級アルコール類、次亜リン酸、亜リン酸等が挙げられる。増粘剤としては、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ポリエチレングリコール、ポリアクリル酸、ポリアクリル酸中和物、ポリアクリルアミド等が挙げられる。これらは1種を単独で使用してもよく、2種以上を併用してもよい。単量体水溶液には、適宜、水以外の水溶性有機溶媒等が配合されていてもよい。 The monomer aqueous solution may contain additives such as a chain transfer agent and a thickener, if necessary. Examples of the chain transfer agent include thiols, thiol acids, secondary alcohols, hypophosphorous acid, phosphorous acid and the like. Examples of the thickener include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, polyethylene glycol, polyacrylic acid, neutralized polyacrylic acid, polyacrylamide and the like. One of these may be used alone, or two or more thereof may be used in combination. A water-soluble organic solvent other than water may be appropriately added to the monomer aqueous solution.
(重合)
 重合方式としては、例えば、単量体水溶液を撹拌しない状態(例えば、静置状態)で重合する静置重合方式、反応装置内で単量体水溶液を撹拌しながら重合する撹拌重合方式等であってよい。静置重合方式である水溶液静置重合により含水ゲル状重合体を得ることが好ましい。静置重合方式では、重合完了時、反応容器中に存在した単量体水溶液と略同じ体積を占める単一のブロック状の含水ゲル状重合体が得られる。
(polymerization)
Examples of the polymerization method include a static polymerization method in which the monomer aqueous solution is polymerized without stirring (for example, a static state), a stirring polymerization method in which the monomer aqueous solution is polymerized while being stirred in the reaction apparatus, and the like. It's okay. It is preferable to obtain a hydrogel-like polymer by aqueous solution static polymerization, which is a static polymerization method. In the static polymerization method, when the polymerization is completed, a single block-shaped hydrogel polymer that occupies substantially the same volume as the aqueous monomer solution present in the reaction vessel can be obtained.
 製造の形態は、回分、半連続、連続等であってよい。例えば、水溶液静置連続重合においては、連続重合装置に単量体水溶液を連続的に供給しながら重合反応を行い、連続的な(例えば帯状の)含水ゲルを得ることができる。 The form of production may be batch, semi-continuous, continuous, etc. For example, in the aqueous solution static continuous polymerization, a continuous (for example, strip-shaped) hydrogel can be obtained by carrying out the polymerization reaction while continuously supplying the monomeric aqueous solution to the continuous polymerization apparatus.
 重合温度は、使用する重合開始剤によって異なるが、重合を迅速に進行させ、重合時間を短くすることにより生産性を高めるとともに、重合熱をより容易に除去して円滑に反応を行う観点から、0~130℃が好ましく、10~110℃がより好ましい。重合時間は、使用する重合開始剤の種類や量、反応温度等に応じて適宜設定されるが、1~200分が好ましく、5~100分がより好ましい。 The polymerization temperature varies depending on the polymerization initiator used, but from the viewpoint of increasing the productivity by rapidly advancing the polymerization and shortening the polymerization time, and more easily removing the heat of polymerization to carry out the reaction smoothly. 0 to 130 ° C. is preferable, and 10 to 110 ° C. is more preferable. The polymerization time is appropriately set according to the type and amount of the polymerization initiator used, the reaction temperature, and the like, but is preferably 1 to 200 minutes, more preferably 5 to 100 minutes.
 エチレン性不飽和単量体を重合して得られる塊状の含水ゲル状重合体の含水率は、粗砕工程が実施しやすいという観点から30~80質量%が好ましく、40~75質量%がより好ましく、50~70質量%が更に好ましい。含水率は、単量体水溶液の水分量、重合後の乾燥、加湿等の操作により調整される。なお、含水ゲル状重合体の含水率とは、含水ゲル状重合体の総質量に占める水の含量を質量%で表したものである。 The water content of the massive hydrogel polymer obtained by polymerizing the ethylenically unsaturated monomer is preferably 30 to 80% by mass, more preferably 40 to 75% by mass from the viewpoint of easy implementation of the rough crushing step. It is preferable, and more preferably 50 to 70% by mass. The water content is adjusted by operations such as the water content of the aqueous monomer solution, drying after polymerization, and humidification. The water content of the hydrogel polymer is the content of water in the total mass of the hydrogel polymer in% by mass.
(粗砕)
 本実施形態に係る吸水性樹脂粒子(原料微粒子及び原料粒子)の製造方法は、含水ゲル状重合体を粗砕する工程を含んでもよい。粗砕により、含水ゲル粗砕物が得られる。含水ゲル粗砕物は、粒子状であってよく、粒子が連なったような細長い形状であってもよい。含水ゲル粗砕物の最小辺のサイズは、例えば、0.1~15mm程度であってよく、1.0~10mm程度であることが好ましい。含水ゲル粗砕物の最大辺のサイズは、0.1~200mm程度であってよく、1.0~150mm程度であることが好ましい。
(Rough crushing)
The method for producing water-absorbent resin particles (raw material fine particles and raw material particles) according to the present embodiment may include a step of coarsely crushing a hydrogel polymer. By coarse crushing, a hydrogel coarse crushed material is obtained. The hydrogel crushed product may be in the form of particles, or may have an elongated shape in which particles are connected. The size of the minimum side of the hydrogel crushed product may be, for example, about 0.1 to 15 mm, preferably about 1.0 to 10 mm. The size of the maximum side of the hydrogel crushed product may be about 0.1 to 200 mm, preferably about 1.0 to 150 mm.
 粗砕装置としては、例えば、ニーダー(例えば、加圧式ニーダー、双腕型ニーダー等)、ミートチョッパー、カッターミル、ファーマミル等を用いることができる。なかでも、双腕型ニーダー、ミートチョッパー、カッターミルがより好ましい。粗砕装置は後述のゲル乾燥物の粉砕装置と同一種類であってもよい。 As the coarse crushing device, for example, a kneader (for example, a pressurized kneader, a double-armed kneader, etc.), a meat chopper, a cutter mill, a pharma mill, or the like can be used. Of these, a double-armed kneader, a meat chopper, and a cutter mill are more preferable. The coarse crushing device may be of the same type as the crushing device for dried gel products described later.
 含水ゲル状重合体を粗砕する際は、粗砕装置投入前に、含水ゲル状重合体を適度な大きさ(例えば5cm角程度)に予め裁断してもよい。 When the hydrogel polymer is roughly crushed, the hydrogel polymer may be pre-cut to an appropriate size (for example, about 5 cm square) before being put into the crusher.
(乾燥)
 本実施形態に係る吸水性樹脂粒子(原料微粒子及び原料粒子)の製造方法は、含水ゲル粗砕物を乾燥する工程を含んでもよい。含水ゲル粗砕物中の水を含む溶媒を加熱及び/又は送風により除去することで、含水ゲル粗砕物を乾燥し、ゲル乾燥物を得ることができる。乾燥の方法は、自然乾燥、加熱乾燥、噴霧乾燥、凍結乾燥等の一般的方法であってよい。乾燥は、例えば常圧下又は減圧下であってよく、乾燥効率を高めるために窒素等の気流下等で行ってもよい。乾燥は、複数の方法を組み合わせて用いてもよい。乾燥が常圧で行われる場合の乾燥温度は、好ましくは70~250℃であり、より好ましくは80~200℃である。乾燥工程はゲル粗砕物の含水率が20質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下になるまで行う。乾燥温度は、原料微粒子における残存単量体量を適切な範囲に増加させる観点から、120℃以上が好ましく、150℃以上がより好ましく、180℃以上が更に好ましい。
(Dry)
The method for producing water-absorbent resin particles (raw material fine particles and raw material particles) according to the present embodiment may include a step of drying a hydrogel coarse crushed product. By removing the solvent containing water in the hydrogel crushed material by heating and / or blowing air, the hydrogel crushed material can be dried to obtain a gel-dried product. The drying method may be a general method such as natural drying, heat drying, spray drying, freeze drying and the like. The drying may be performed under normal pressure or reduced pressure, for example, and may be performed under an air flow such as nitrogen in order to improve the drying efficiency. For drying, a plurality of methods may be used in combination. When the drying is carried out at normal pressure, the drying temperature is preferably 70 to 250 ° C, more preferably 80 to 200 ° C. The drying step is carried out until the water content of the crude gel crushed product is 20% by mass or less, preferably 10% by mass or less, and more preferably 5% by mass or less. The drying temperature is preferably 120 ° C. or higher, more preferably 150 ° C. or higher, still more preferably 180 ° C. or higher, from the viewpoint of increasing the amount of residual monomer in the raw material fine particles to an appropriate range.
(粉砕)
 本実施形態に係る吸水性樹脂粒子(原料微粒子及び原料粒子)の製造方法は、ゲル乾燥物を更に粉砕する工程を含んでもよい。ゲル乾燥物の粉砕により、ゲル粉砕物が得られる。ゲル乾燥物の粉砕は、公知の粉砕機を使用することができ、例えば、ローラーミル(ロールミル)、スタンプミル、ジェットミル、高速回転粉砕機(ハンマーミル、ピンミル、ロータビータミル等)、容器駆動型ミル(回転ミル、振動ミル、遊星ミル等)等が使用できる。好ましくは、高速回転粉砕機が使用される。粉砕機は、出口側に多孔板やスクリーン、グリッド等の、粉砕粒子の最大粒子径を制御する開口部を有していてもよい。開口部の形状は多角形、円形等であってよく、開口部の最大径は0.1~5mmであってよく、0.3~3.0mmが好ましく、0.5~1.5mmがより好ましい。
(Crushing)
The method for producing water-absorbent resin particles (raw material fine particles and raw material particles) according to the present embodiment may include a step of further pulverizing the gel dried product. A gel pulverized product is obtained by pulverizing the gel dried product. A known crusher can be used for crushing the dried gel product, for example, a roller mill (roll mill), a stamp mill, a jet mill, a high-speed rotary crusher (hammer mill, pin mill, rotor beater mill, etc.), container drive. Mold mills (rotary mills, vibration mills, planetary mills, etc.) can be used. Preferably, a high speed rotary grinder is used. The crusher may have an opening on the outlet side, such as a perforated plate, a screen, or a grid, for controlling the maximum particle size of the crushed particles. The shape of the opening may be polygonal, circular, etc., and the maximum diameter of the opening may be 0.1 to 5 mm, preferably 0.3 to 3.0 mm, more preferably 0.5 to 1.5 mm. preferable.
(分級)
 本実施形態に係る吸水性樹脂粒子の製造方法は、後述する造粒工程の前に、必要に応じてゲル粉砕物を分級する工程を含んでもよい。分級とは、ある粒子群を、粒子径に応じて、2つ又はそれ以上の数の、粒度分布の異なる粒子群に分ける操作のことをいう。また、分級後の粒子の一部を再度粉砕して、粉砕工程と分級工程とを繰り返すなど、複数の分級工程を行ってもよく、後述する表面架橋工程後に分級工程を行ってもよい。
(Classification)
The method for producing water-absorbent resin particles according to the present embodiment may include, if necessary, a step of classifying the pulverized gel product before the granulation step described later. Classification refers to an operation of dividing a certain particle group into two or more particle groups having different particle size distributions according to the particle size. Further, a plurality of classification steps may be performed, such as re-crushing a part of the particles after classification and repeating the crushing step and the classification step, or the classification step may be performed after the surface cross-linking step described later.
 ゲル粉砕物の分級は、公知の分級方法を使用することができ、例えば、スクリーン分級、風力分級等であってよく、スクリーン分級であることが好ましい。スクリーン分級としては、振動篩、ロータリシフタ、円筒撹拌篩、ブロワシフタ、ロータップ式振とう器等が挙げられる。スクリーン分級とはスクリーンを振動させることによって、スクリーン上の粒子を、スクリーンの網目を通過する粒子と通過しない粒子とに分級する方法をいう。風力分級とは、空気の流れを利用して粒子を分級する方法をいう。 A known classification method can be used for the classification of the pulverized gel product, for example, screen classification, wind power classification, etc., and screen classification is preferable. Examples of the screen classification include a vibrating sieve, a rotary shifter, a cylindrical stirring sieve, a blower shifter, and a low-tap type shaker. Screen classification is a method of classifying particles on a screen into particles that pass through the mesh of the screen and particles that do not pass through the screen by vibrating the screen. Wind power classification is a method of classifying particles using the flow of air.
 造粒工程の前に分級を行う場合、例えば、粒子径が180μmである粒子と、粒子径が180μm以上である粒子とに分けることが好ましく、粒子径が180μmである粒子と、粒子径が180~850μmである粒子とをそれぞれ選択して回収することがより好ましい。ただし本実施形態に係る製造方法において、造粒工程の前の分級は行わなくてもよい。 When classification is performed before the granulation step, for example, it is preferable to divide the particles into particles having a particle diameter of 180 μm and particles having a particle diameter of 180 μm or more, and particles having a particle diameter of 180 μm and particles having a particle diameter of 180 μm are separated. It is more preferable to select and recover the particles having a diameter of about 850 μm. However, in the production method according to the present embodiment, the classification before the granulation step does not have to be performed.
(表面架橋)
 本実施形態に係る吸水性樹脂粒子(原料微粒子及び原料粒子)の製造方法は、表面架橋工程を含んでもよい。表面架橋は、例えば、表面架橋を行うための架橋剤(表面架橋剤)を架橋重合体に対して添加して反応させることにより行うことができる。水溶液重合法においては、表面架橋剤の添加は、粉砕工程後のいずれかの時期に行えばよく、分級工程の前若しくは後、又は後述する造粒工程の前若しくは後の粒子に対して行うことができる。後述する造粒工程後に、更に分級等による粒子の粒度分布調整を行う場合は、粒度分布調整を行った後で表面架橋を行うことが好ましい。表面架橋剤を添加し表面架橋処理を行うことにより、架橋重合体の表面近傍の架橋密度が高まるため、得られる吸水性樹脂粒子の吸水性能を高めることができる。
(Surface cross-linking)
The method for producing water-absorbent resin particles (raw material fine particles and raw material particles) according to the present embodiment may include a surface cross-linking step. The surface cross-linking can be carried out, for example, by adding a cross-linking agent (surface cross-linking agent) for performing the surface cross-linking to the cross-linked polymer and reacting it. In the aqueous solution polymerization method, the surface cross-linking agent may be added at any time after the pulverization step, and is carried out before or after the classification step, or before or after the granulation step described later. Can be done. When the particle size distribution is further adjusted by classification or the like after the granulation step described later, it is preferable to perform surface cross-linking after adjusting the particle size distribution. By adding a surface cross-linking agent and performing the surface cross-linking treatment, the cross-linking density in the vicinity of the surface of the cross-linked polymer is increased, so that the water absorption performance of the obtained water-absorbent resin particles can be improved.
 表面架橋剤の添加は、例えば、表面架橋剤溶液の添加、又は表面架橋剤溶液の噴霧添加により行うことができる。表面架橋剤の添加形態は、表面架橋剤を均一に分散する観点から、表面架橋剤を水及び/又はアルコール等の溶媒に溶解し、表面架橋剤溶液として添加することが好ましい。また、表面架橋工程は、1回又は2回以上の複数回に分割して実施してもよい。 The surface cross-linking agent can be added, for example, by adding a surface cross-linking agent solution or by spraying the surface cross-linking agent solution. From the viewpoint of uniformly dispersing the surface cross-linking agent, the surface cross-linking agent is preferably added as a surface cross-linking agent solution by dissolving the surface cross-linking agent in a solvent such as water and / or alcohol. Further, the surface cross-linking step may be carried out once or divided into two or more times.
 表面架橋剤は、例えば、エチレン性不飽和単量体由来の官能基との反応性を有する官能基(反応性官能基)を2個以上含有するものであってよい。表面架橋剤としては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物等が挙げられる。これらのなかでも、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)エチレングリコールトリグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物及び/又はエチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール等のポリオール類が好ましく、ポリグリシジル化合物がより好ましい。これらの表面架橋剤は、1種を単独で使用してもよく、2種以上を併用してもよい。例えばポリグリシジル化合物とポリオール類とを組み合わせて使用してよい。 The surface cross-linking agent may contain, for example, two or more functional groups (reactive functional groups) having reactivity with a functional group derived from an ethylenically unsaturated monomer. Examples of the surface cross-linking agent include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol di. Polyglycidyl compounds such as glycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin, epibromhydrin, α- Haloepoxy compounds such as methyl epichlorohydrin; compounds having two or more reactive functional groups such as isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-oxetane methanol, 3-ethyl-3- Oxetane compounds such as oxetane methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl-3-oxetane ethanol; 1,2-ethylenebisoxazoline Oxetane compounds such as; carbonate compounds such as ethylene carbonate; hydroxyalkylamide compounds such as bis [N, N-di (β-hydroxyethyl)] adipamide and the like. Among these, (poly) ethylene glycol diglycidyl ether, (poly) ethylene glycol triglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) ) Polyglycidyl compounds such as glycerol polyglycidyl ether and / or polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, polyoxyethylene glycol and polyoxypropylene glycol are preferable, and polyglycidyl compounds are preferable. More preferred. These surface cross-linking agents may be used alone or in combination of two or more. For example, a polyglycidyl compound and polyols may be used in combination.
 表面架橋剤の添加量は、吸水性樹脂粒子の表面近傍の架橋密度を適度に高める観点から、通常、重合に使用したエチレン性不飽和単量体の総量100モルに対して、好ましくは0.0001~1モル、より好ましくは0.001~0.5モルである。 The amount of the surface cross-linking agent added is preferably 0, with respect to 100 mol of the total amount of the ethylenically unsaturated monomer usually used for the polymerization, from the viewpoint of appropriately increasing the cross-linking density near the surface of the water-absorbent resin particles. It is 0001 to 1 mol, more preferably 0.001 to 0.5 mol.
 表面架橋工程は、エチレン性不飽和単量体100質量部に対して1~200質量部の範囲の水の存在下で行うことが好ましい。適宜、水及び/又はアルコール等の水溶性有機溶媒を用いることで水分量を調整することができる。表面架橋工程時の水分量を調整することによって、より好適に吸水性樹脂粒子の粒子表面近傍における架橋を施すことができる。 The surface cross-linking step is preferably carried out in the presence of water in the range of 1 to 200 parts by mass with respect to 100 parts by mass of the ethylenically unsaturated monomer. The amount of water can be adjusted by appropriately using a water-soluble organic solvent such as water and / or alcohol. By adjusting the amount of water in the surface cross-linking step, the water-absorbent resin particles can be more preferably cross-linked in the vicinity of the particle surface.
 表面架橋剤の処理温度は、使用する表面架橋剤に応じて適宜設定され、20~250℃であってよく、処理時間は、1~200分が好ましく、5~100分がより好ましい。 The treatment temperature of the surface cross-linking agent is appropriately set according to the surface cross-linking agent used, and may be 20 to 250 ° C., and the treatment time is preferably 1 to 200 minutes, more preferably 5 to 100 minutes.
 表面架橋は、一度のみ行ってもよく、複数のタイミングで行ってもよい。表面架橋は、粉砕工程後の実施に代えて、又は粉砕工程後の実施に加えて、粗砕後粉砕前に実施してもよい。 Surface cross-linking may be performed only once or at multiple timings. The surface cross-linking may be carried out after the pulverization step or before the pulverization in addition to the execution after the pulverization step.
[逆相懸濁重合法]
 次に重合法として逆相懸濁重合法を用いる場合について説明する。エチレン性不飽和単量体は水溶性であることが好ましく、例えば、(メタ)アクリル酸及びその塩、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等が挙げられる。エチレン性不飽和単量体がアミノ基を有する場合、当該アミノ基は4級化されていてもよい。エチレン性不飽和単量体は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。上述の単量体のカルボキシル基、アミノ基等の官能基は、後述する表面架橋工程において架橋が可能な官能基として機能し得る。
[Reverse phase suspension polymerization method]
Next, a case where a reverse phase suspension polymerization method is used as the polymerization method will be described. The ethylenically unsaturated monomer is preferably water-soluble, for example, (meth) acrylic acid and a salt thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and a salt thereof, (meth) acrylamide, N. , N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylamino Examples thereof include propyl (meth) acrylate and diethylaminopropyl (meth) acrylamide. When the ethylenically unsaturated monomer has an amino group, the amino group may be quaternized. The ethylenically unsaturated monomer may be used alone or in combination of two or more. The functional groups such as the carboxyl group and the amino group of the above-mentioned monomer can function as functional groups capable of cross-linking in the surface cross-linking step described later.
 これらのなかでも、工業的に入手が容易である観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩、アクリルアミド、メタクリルアミド、並びに、N,N-ジメチルアクリルアミドからなる群より選ばれる少なくとも一種の化合物を含むことが好ましく、(メタ)アクリル酸及びその塩、並びに、アクリルアミドからなる群より選ばれる少なくとも一種の化合物を含むことがより好ましい。吸水特性を更に高める観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも一種の化合物を含むことが更に好ましい。すなわち、吸水性樹脂粒子は、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも一種に由来する構造単位を有することが好ましい。 Among these, from the viewpoint of industrial availability, the ethylenically unsaturated monomer is a group consisting of (meth) acrylic acid and salts thereof, acrylamide, methacrylamide, and N, N-dimethylacrylamide. It is preferable to contain at least one compound selected from the above, and it is more preferable to contain at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof, and acrylamide. From the viewpoint of further enhancing the water absorption property, the ethylenically unsaturated monomer further preferably contains at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof. That is, the water-absorbent resin particles preferably have a structural unit derived from at least one selected from the group consisting of (meth) acrylic acid and salts thereof.
 吸水性樹脂粒子(原料微粒子及び原料粒子)を得るための単量体としては、上述のエチレン性不飽和単量体以外の単量体が使用されてもよい。このような単量体は、例えば、上述のエチレン性不飽和単量体を含む水溶液に混合して用いることができる。エチレン性不飽和単量体の使用量は、単量体全量(吸水性樹脂粒子を得るための単量体全量。例えば、架橋重合体の構造単位を与える単量体の全量。以下同様。)に対して70~100モル%であってよく、80~100モル%、90~100モル%、95~100モル%、又は100モル%であってよい。なかでも、(メタ)アクリル酸及びその塩の割合が単量体全量に対して70~100モル%であってよく、80~100モル%、90~100モル%、95~100モル%、又は100モル%であってよい。「(メタ)アクリル酸及びその塩の割合」は、(メタ)アクリル酸及びその塩の合計量の割合を意味する。 As the monomer for obtaining the water-absorbent resin particles (raw material fine particles and raw material particles), a monomer other than the above-mentioned ethylenically unsaturated monomer may be used. Such a monomer can be used, for example, by mixing with an aqueous solution containing the above-mentioned ethylenically unsaturated monomer. The amount of the ethylenically unsaturated monomer used is the total amount of the monomer (the total amount of the monomer for obtaining the water-absorbent resin particles. For example, the total amount of the monomer giving the structural unit of the crosslinked polymer. The same shall apply hereinafter). It may be 70 to 100 mol%, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or 100 mol%. Among them, the ratio of (meth) acrylic acid and its salt may be 70 to 100 mol% with respect to the total amount of the monomer, 80 to 100 mol%, 90 to 100 mol%, 95 to 100 mol%, or It may be 100 mol%. "Ratio of (meth) acrylic acid and its salt" means the ratio of the total amount of (meth) acrylic acid and its salt.
 本実施形態によれば、吸水性樹脂粒子の一例として、エチレン性不飽和単量体に由来する構造単位を有する架橋重合体を含む吸水性樹脂粒子であって、エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも1種の化合物を含み、(メタ)アクリル酸及びその塩の割合が、吸水性樹脂粒子を得るための単量体全量に対して70~100モル%である、吸水性樹脂粒子を提供することができる。 According to the present embodiment, as an example of the water-absorbent resin particles, the water-absorbent resin particles containing a crosslinked polymer having a structural unit derived from the ethylenically unsaturated monomer, wherein the ethylenically unsaturated monomer is used. , At least one compound selected from the group consisting of (meth) acrylic acid and salts thereof, and the ratio of (meth) acrylic acid and salts thereof is based on the total amount of monomers for obtaining water-absorbent resin particles. It is possible to provide water-absorbent resin particles in an amount of 70 to 100 mol%.
 エチレン性不飽和単量体は、通常、水溶液として用いることが好適である。エチレン性不飽和単量体を含む水溶液(以下、単に「単量体水溶液」という。)におけるエチレン性不飽和単量体の濃度は、20質量%以上飽和濃度以下が好ましく、25~70質量%がより好ましく、30~55質量%が更に好ましい。水溶液において使用される水としては、水道水、蒸留水、イオン交換水等が挙げられる。 The ethylenically unsaturated monomer is usually preferably used as an aqueous solution. The concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer (hereinafter, simply referred to as "monomeric aqueous solution") is preferably 20% by mass or more and preferably 25 to 70% by mass. Is more preferable, and 30 to 55% by mass is further preferable. Examples of the water used in the aqueous solution include tap water, distilled water, ion-exchanged water and the like.
 単量体水溶液は、エチレン性不飽和単量体が酸基を有する場合、その酸基をアルカリ性中和剤によって中和して用いてもよい。エチレン性不飽和単量体における、アルカリ性中和剤による中和度は、得られる吸水性樹脂粒子の浸透圧を高くし、吸水特性を更に高める観点から、エチレン性不飽和単量体中の酸性基の10~100モル%であることが好ましく、50~90モル%であることがより好ましく、60~80モル%であることが更に好ましい。アルカリ性中和剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニアなどが挙げられる。アルカリ性中和剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。アルカリ性中和剤は、中和操作を簡便にするために水溶液の状態で用いられてもよい。エチレン性不飽和単量体の酸基の中和は、例えば、水酸化ナトリウム、水酸化カリウム等の水溶液を上述の単量体水溶液に滴下して混合することにより行うことができる。 When the ethylenically unsaturated monomer has an acid group, the aqueous monomer solution may be used by neutralizing the acid group with an alkaline neutralizer. The degree of neutralization of the ethylenically unsaturated monomer by the alkaline neutralizing agent increases the osmotic pressure of the obtained water-absorbent resin particles and further enhances the water-absorbing characteristics. It is preferably 10 to 100 mol%, more preferably 50 to 90 mol%, and even more preferably 60 to 80 mol% of the group. Examples of the alkaline neutralizing agent include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like. The alkaline neutralizer may be used alone or in combination of two or more. The alkaline neutralizer may be used in the form of an aqueous solution to simplify the neutralization operation. Neutralization of the acid group of the ethylenically unsaturated monomer can be performed, for example, by adding an aqueous solution of sodium hydroxide, potassium hydroxide or the like to the above-mentioned monomer aqueous solution and mixing them.
 逆相懸濁重合法においては、界面活性剤の存在下、炭化水素分散媒中で単量体水溶液を分散し、ラジカル重合開始剤等を用いてエチレン性不飽和単量体の重合を行うことができる。 In the reverse phase suspension polymerization method, an aqueous monomer solution is dispersed in a hydrocarbon dispersion medium in the presence of a surfactant, and an ethylenically unsaturated monomer is polymerized using a radical polymerization initiator or the like. Can be done.
 界面活性剤としては、例えば、ノニオン系界面活性剤、アニオン系界面活性剤等が挙げられる。ノニオン系界面活性剤としては、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル等が挙げられる。アニオン系界面活性剤としては、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテルスルホン酸塩、ポリオキシエチレンアルキルエーテルのリン酸エステル、ポリオキシエチレンアルキルアリルエーテルのリン酸エステル等が挙げられる。界面活性剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 Examples of the surfactant include nonionic surfactants, anionic surfactants and the like. Nonionic surfactants include sorbitan fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, and polyoxyethylene. Alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl ether, Examples thereof include polyethylene glycol fatty acid ester. Anionic surfactants include fatty acid salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl ether sulfonates, and polyoxyethylene alkyl ether phosphates. , Phosphate ester of polyoxyethylene alkyl allyl ether and the like. The surfactant may be used alone or in combination of two or more.
 W/O型逆相懸濁の状態が良好であり、好適な粒子径を有する吸水性樹脂粒子(原料微粒子及び原料粒子)が得られやすく、工業的に入手が容易である観点から、界面活性剤は、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル及びショ糖脂肪酸エステルからなる群より選ばれる少なくとも一種の化合物を含むことが好ましい。吸水性樹脂粒子の適切な粒度分布が得られやすい観点、並びに、吸水性樹脂粒子の吸水特性及びそれを用いた吸収体及び吸収性物品の性能が向上しやすい観点から、界面活性剤は、ショ糖脂肪酸エステルを含むことが好ましく、ショ糖ステアリン酸エステルがより好ましい。 Surfactant from the viewpoint that the W / O type reverse phase suspension is in a good state, water-absorbent resin particles (raw material fine particles and raw material particles) having a suitable particle size can be easily obtained, and are industrially easily available. The agent preferably contains at least one compound selected from the group consisting of sorbitan fatty acid ester, polyglycerin fatty acid ester and sucrose fatty acid ester. From the viewpoint that an appropriate particle size distribution of the water-absorbent resin particles can be easily obtained, and from the viewpoint that the water-absorbing characteristics of the water-absorbent resin particles and the performance of the absorber and the absorbent article using the same can be easily improved, the surfactant is used as a detergent. It preferably contains a sugar fatty acid ester, more preferably a sucrose stearic acid ester.
 界面活性剤の使用量は、使用量に対する効果が充分に得られる観点、及び、経済的である観点から、単量体水溶液100質量部に対して、0.05~10質量部が好ましく、0.08~5質量部がより好ましく、0.1~3質量部が更に好ましい。 The amount of the surfactant used is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the aqueous monomer solution from the viewpoint of obtaining a sufficient effect on the amount used and economically. .08 to 5 parts by mass is more preferable, and 0.1 to 3 parts by mass is further preferable.
 逆相懸濁重合では、上述の界面活性剤と共に高分子系分散剤を併せて用いてもよい。高分子系分散剤としては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられる。高分子系分散剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。高分子系分散剤としては、単量体の分散安定性に優れる観点から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、及び、酸化型エチレン・プロピレン共重合体からなる群より選ばれる少なくとも一種が好ましい。 In reverse phase suspension polymerization, a polymer-based dispersant may be used in combination with the above-mentioned surfactant. Examples of the polymer dispersant include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene / propylene / diene / terpolymer), and maleic anhydride. Modified polybutadiene, maleic anhydride / ethylene copolymer, maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, maleic anhydride / butadiene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer Examples thereof include coalescence, oxidized polyethylene, oxidized polypropylene, oxidized ethylene / propylene copolymer, ethylene / acrylic acid copolymer, ethyl cellulose, ethyl hydroxyethyl cellulose and the like. The polymer-based dispersant may be used alone or in combination of two or more. As the polymer-based dispersant, from the viewpoint of excellent dispersion stability of the monomer, maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, and maleic anhydride / ethylene copolymer weight. Combined, maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, and oxidized ethylene / propylene copolymer At least one selected from the group consisting of coalescing is preferable.
 高分子系分散剤の使用量は、使用量に対する効果が充分に得られる観点、及び、経済的である観点から、単量体水溶液100質量部に対して、0.05~10質量部が好ましく、0.08~5質量部がより好ましく、0.1~3質量部が更に好ましい。 The amount of the polymer-based dispersant used is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the aqueous monomer solution from the viewpoint of obtaining a sufficient effect on the amount used and from the viewpoint of economic efficiency. , 0.08 to 5 parts by mass is more preferable, and 0.1 to 3 parts by mass is further preferable.
 炭化水素分散媒は、炭素数6~8の鎖状脂肪族炭化水素、及び、炭素数6~8の脂環式炭化水素からなる群より選ばれる少なくとも一種の化合物を含んでいてもよい。炭化水素分散媒としては、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の鎖状脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などが挙げられる。炭化水素分散媒は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 The hydrocarbon dispersion medium may contain at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms. Hydrocarbon dispersion media include chain aliphatic hydrocarbons such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, and n-octane; cyclohexane. , Methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane and other alicyclic hydrocarbons; benzene, Examples include aromatic hydrocarbons such as toluene and xylene. The hydrocarbon dispersion medium may be used alone or in combination of two or more.
 炭化水素分散媒は、工業的に入手が容易であり、かつ、品質が安定している観点から、n-ヘプタン及びシクロヘキサンからなる群より選ばれる少なくとも一種を含んでいてもよい。また、同様の観点から、上述の炭化水素分散媒の混合物としては、例えば、市販されているエクソールヘプタン(エクソンモービル社製:n-ヘプタン及び異性体の炭化水素75~85%含有)を用いてもよい。 The hydrocarbon dispersion medium may contain at least one selected from the group consisting of n-heptane and cyclohexane from the viewpoint of being industrially easily available and having stable quality. From the same viewpoint, as the mixture of the above-mentioned hydrocarbon dispersion medium, for example, commercially available ExxonHeptane (manufactured by ExxonMobil: containing 75 to 85% of n-heptane and isomeric hydrocarbons) is used. You may.
 炭化水素分散媒の使用量は、重合熱を適度に除去し、重合温度を制御しやすい観点から、単量体水溶液100質量部に対して、30~1000質量部が好ましく、40~500質量部がより好ましく、50~400質量部が更に好ましい。炭化水素分散媒の使用量が30質量部以上であることにより、重合温度の制御が容易である傾向がある。炭化水素分散媒の使用量が1000質量部以下であることにより、重合の生産性が向上する傾向があり、経済的である。 The amount of the hydrocarbon dispersion medium used is preferably 30 to 1000 parts by mass and 40 to 500 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of appropriately removing the heat of polymerization and easily controlling the polymerization temperature. Is more preferable, and 50 to 400 parts by mass is further preferable. When the amount of the hydrocarbon dispersion medium used is 30 parts by mass or more, the polymerization temperature tends to be easily controlled. When the amount of the hydrocarbon dispersion medium used is 1000 parts by mass or less, the productivity of polymerization tends to be improved, which is economical.
 ラジカル重合開始剤は水溶性であることが好ましく、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、過酸化水素等の過酸化物;2,2’-アゾビス(2-アミジノプロパン)2塩酸塩、2,2’-アゾビス[2-(N-フェニルアミジノ)プロパン]2塩酸塩、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]2塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]2塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}2塩酸塩、2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]、4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物などが挙げられる。ラジカル重合開始剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。ラジカル重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、2,2’-アゾビス(2-アミジノプロパン)2塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]2塩酸塩、及び、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}2塩酸塩からなる群より選ばれる少なくとも一種が好ましい。 The radical polymerization initiator is preferably water-soluble, for example, persulfates such as potassium persulfate, ammonium persulfate, sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t. -Peroxides such as butyl cumylperoxide, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, hydrogen peroxide; 2,2'-azobis (2-amidinopropane) ) 2 hydrochloride, 2,2'-azobis [2- (N-phenylamidino) propane] 2 hydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] 2 hydrochloride, 2,2 '-Azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} Dihydrochloride, 2,2'-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, 2,2'-azobis [2-methyl-N- (2-Hydroxyethyl) -propionamide], azo compounds such as 4,4'-azobis (4-cyanovaleric acid) and the like can be mentioned. The radical polymerization initiator may be used alone or in combination of two or more. Examples of the radical polymerization initiator include potassium persulfate, ammonium persulfate, sodium persulfate, 2,2'-azobis (2-amidinopropane) dihydrochloride, and 2,2'-azobis [2- (2-imidazolin-2-). Il) Propane] 2 hydrochloride and at least one selected from the group consisting of 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} 2 hydrochloride. Is preferable.
 ラジカル重合開始剤の使用量は、エチレン性不飽和単量体1モルに対して0.05~10ミリモルであってよい。ラジカル重合開始剤の使用量が0.05ミリモル以上であると、重合反応に長時間を要さず、効率的である。ラジカル重合開始剤の使用量が10ミリモル以下であると、急激な重合反応が起こることを抑制しやすい。 The amount of the radical polymerization initiator used may be 0.05 to 10 mmol per 1 mol of the ethylenically unsaturated monomer. When the amount of the radical polymerization initiator used is 0.05 mmol or more, the polymerization reaction does not require a long time and is efficient. When the amount of the radical polymerization initiator used is 10 mmol or less, it is easy to suppress the occurrence of a rapid polymerization reaction.
 上述のラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、L-アスコルビン酸等の還元剤と併用して、レドックス重合開始剤として用いることもできる。 The above-mentioned radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
 重合反応の際、重合に用いる単量体水溶液は、連鎖移動剤を含んでいてもよい。連鎖移動剤としては、次亜リン酸塩類、チオール類、チオール酸類、第2級アルコール類、アミン類等が挙げられる。 At the time of the polymerization reaction, the aqueous monomer solution used for the polymerization may contain a chain transfer agent. Examples of the chain transfer agent include hypophosphates, thiols, thiolic acids, secondary alcohols, amines and the like.
 吸水性樹脂粒子(原料微粒子及び原料粒子)の粒子径を制御するために、重合に用いる単量体水溶液は、増粘剤を含んでいてもよい。増粘剤としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、カルボキシメチルセルロース、ポリエチレングリコール、ポリアクリルアミド、ポリエチレンイミン、デキストリン、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド等が挙げられる。なお、重合時の撹拌速度が同じであれば、単量体水溶液の粘度が高いほど、得られる粒子の中位粒子径は大きくなる傾向にある。 In order to control the particle size of the water-absorbent resin particles (raw material fine particles and raw material particles), the monomer aqueous solution used for the polymerization may contain a thickener. Examples of the thickener include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide and the like. If the stirring speed at the time of polymerization is the same, the higher the viscosity of the aqueous monomer solution, the larger the medium particle size of the obtained particles tends to be.
 重合の際に自己架橋による内部架橋が生じ得るが、内部架橋剤を用いることで架橋を施してもよい。内部架橋剤を用いると、吸水性樹脂粒子の吸水特性を制御しやすい。内部架橋剤は、通常、重合反応の際に反応液に添加される。内部架橋剤としては、例えば、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類のジ又はトリ(メタ)アクリル酸エステル類;上述のポリオール類と不飽和酸(マレイン酸、フマール酸等)とを反応させて得られる不飽和ポリエステル類;N,N’-メチレンビス(メタ)アクリルアミド等のビス(メタ)アクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ又はトリ(メタ)アクリル酸エステル類;ポリイソシアネート(トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)と(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N”-トリアリルイソシアヌレート、ジビニルベンゼン等の,重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、ポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物;イソシアネート化合物(2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)などの、反応性官能基を2個以上有する化合物などが挙げられる。内部架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。内部架橋剤としては、ポリグリシジル化合物が好ましく、ジグリシジルエーテル化合物がより好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び、(ポリ)グリセリンジグリシジルエーテルからなる群より選ばれる少なくとも一種が更に好ましい。 Internal cross-linking may occur due to self-cross-linking during polymerization, but cross-linking may be performed by using an internal cross-linking agent. When an internal cross-linking agent is used, it is easy to control the water absorption characteristics of the water-absorbent resin particles. The internal cross-linking agent is usually added to the reaction solution during the polymerization reaction. Examples of the internal cross-linking agent include di or tri (meth) acrylic acid esters of polyols such as ethylene glycol, propylene glycol, trimethylpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Unsaturated polyesters obtained by reacting polyols with unsaturated acids (maleic acid, fumaric acid, etc.); bis (meth) acrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxides and (meth) Di or tri (meth) acrylic acid esters obtained by reacting with acrylic acid; di (meth) obtained by reacting polyisocyanate (tolylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylate. ) Acrylic acid carbamil esters; compounds having two or more polymerizable unsaturated groups such as allylated starch, allylated cellulose, diallyl phthalate, N, N', N "-triallyl isocyanurate, divinylbenzene; Polys such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol diglycidyl ether, polyglycerol polyglycidyl ether, etc. Glycidyl compounds; haloepoxy compounds such as epichlorohydrin, epibromhydrin, α-methylepichlorohydrin; 2 reactive functional groups such as isocyanate compounds (2,4-tolylene diisocyanate, hexamethylene diisocyanate, etc.) Examples thereof include compounds having more than one. The internal cross-linking agent may be used alone or in combination of two or more. As the internal cross-linking agent, a polyglycidyl compound is preferable, and a diglycidyl ether compound is used. Is more preferable, and at least one selected from the group consisting of (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether is further preferable.
 内部架橋剤の使用量は、吸収性物品において優れた浸透速度を得やすい観点、及び、得られる重合体が適度に架橋されることにより水溶性の性質が抑制され、充分な吸水量が得られやすい観点から、エチレン性不飽和単量体1モル当たり、30ミリモル以下が好ましく、0.01~10ミリモルがより好ましく、0.012~5ミリモルが更に好ましく、0.015~1ミリモルが特に好ましく、0.02~0.1ミリモルが極めて好ましく、0.025~0.08ミリモルが非常に好ましい。 The amount of the internal cross-linking agent used is from the viewpoint that an excellent permeation rate can be easily obtained in an absorbent article, and the water-soluble property is suppressed by appropriately cross-linking the obtained polymer, so that a sufficient water absorption amount can be obtained. From the viewpoint of ease, 30 mmol or less is preferable, 0.01 to 10 mmol is more preferable, 0.012 to 5 mmol is further preferable, and 0.015 to 1 mmol is particularly preferable, per 1 mol of the ethylenically unsaturated monomer. , 0.02 to 0.1 mmol is very preferred, and 0.025 to 0.08 mmol is very preferred.
 エチレン性不飽和単量体、ラジカル重合開始剤、必要に応じて内部架橋剤を含む水相と、炭化水素分散媒、界面活性剤、必要に応じて高分子系分散剤等を含む油相とを混合した状態において撹拌下で加熱し、油中水系において逆相懸濁重合を行うことができる。 An aqueous phase containing an ethylenically unsaturated monomer, a radical polymerization initiator and an internal cross-linking agent if necessary, and an oil phase containing a hydrocarbon dispersion medium, a surfactant and a polymer-based dispersant if necessary. Can be heated under stirring in a mixed state to carry out reverse phase suspension polymerization in an aqueous system in oil.
 逆相懸濁重合を行う際には、界面活性剤(必要に応じて更に高分子系分散剤)の存在下で、エチレン性不飽和単量体を含む単量体水溶液を炭化水素分散媒に分散させる。このとき、重合反応を開始する前であれば、界面活性剤、高分子系分散剤等の添加時期は、単量体水溶液の添加の前後どちらであってもよい。 When performing reverse phase suspension polymerization, a monomer aqueous solution containing an ethylenically unsaturated monomer is used as a hydrocarbon dispersion medium in the presence of a surfactant (more polymer-based dispersant if necessary). Disperse. At this time, the timing of adding the surfactant, the polymer-based dispersant, or the like may be either before or after the addition of the aqueous monomer solution, as long as it is before the start of the polymerization reaction.
 そのなかでも、得られる吸水性樹脂に残存する炭化水素分散媒の量を低減しやすい観点から、高分子系分散剤を分散させた炭化水素分散媒に単量体水溶液を分散させた後に界面活性剤を更に分散させてから重合を行うことが好ましい。 Among them, from the viewpoint of easily reducing the amount of the hydrocarbon dispersion medium remaining in the obtained water-absorbent resin, the surface activity is applied after the monomer aqueous solution is dispersed in the hydrocarbon dispersion medium in which the polymer-based dispersant is dispersed. It is preferable to further disperse the agent before carrying out the polymerization.
 逆相懸濁重合は、1段、又は、2段以上の多段で行うことができる。逆相懸濁重合は、生産性を高める観点から、2~3段で行うことが好ましい。逆相懸濁重合を多段で実施することで、1段目の粒子を集合させた形状(例えば球形一次粒子が複数集合して形成されたブドウの房状)の吸水性樹脂を得てもよい。 Reverse phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. Reversed phase suspension polymerization is preferably carried out in 2 to 3 steps from the viewpoint of increasing productivity. By performing the reverse phase suspension polymerization in multiple stages, a water-absorbent resin having a shape in which the particles of the first stage are aggregated (for example, a tuft of grapes formed by a plurality of spherical primary particles) may be obtained. ..
 2段以上の多段で逆相懸濁重合を行う場合には、1段目の逆相懸濁重合を行った後、1段目の重合反応で得られた反応混合物にエチレン性不飽和単量体を添加して混合し、1段目と同様の方法で2段目以降の逆相懸濁重合を行えばよい。2段目以降の各段における逆相懸濁重合では、エチレン性不飽和単量体の他に、上述のラジカル重合開始剤及び/又は内部架橋剤を、2段目以降の各段における逆相懸濁重合の際に添加するエチレン性不飽和単量体の量を基準として、上述のエチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行うことが好ましい。なお、2段目以降の各段における逆相懸濁重合では、必要に応じて内部架橋剤を用いてもよい。内部架橋剤を用いる場合は、各段に供するエチレン性不飽和単量体の量を基準として、上述のエチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行うことが好ましい。 When reverse-phase suspension polymerization is carried out in two or more stages, an ethylenically unsaturated single amount is added to the reaction mixture obtained in the first-step polymerization reaction after the first-step reverse-phase suspension polymerization is carried out. The bodies may be added and mixed, and the reverse phase suspension polymerization of the second and subsequent steps may be carried out in the same manner as in the first step. In the reverse phase suspension polymerization in each stage of the second and subsequent stages, in addition to the ethylenically unsaturated monomer, the above-mentioned radical polymerization initiator and / or internal cross-linking agent is used in the reverse phase of each stage of the second and subsequent stages. Based on the amount of ethylenically unsaturated monomer added during suspension polymerization, reverse-phase suspension polymerization is carried out by adding within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer. Is preferable. An internal cross-linking agent may be used in the reverse phase suspension polymerization in each of the second and subsequent stages, if necessary. When an internal cross-linking agent is used, it is added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer based on the amount of the ethylenically unsaturated monomer provided in each stage, and the suspension is reversed. It is preferable to carry out turbid polymerization.
 重合反応の温度は、使用するラジカル重合開始剤によって異なるが、重合を迅速に進行させ、重合時間を短くすることにより、経済性を高めるとともに、容易に重合熱を除去して円滑に反応を行う観点から、20~150℃が好ましく、40~120℃がより好ましい。反応時間は、通常、0.5~4時間である。重合反応の終了は、例えば、反応系内の温度上昇の停止により確認することができる。これにより、エチレン性不飽和単量体の重合体は、通常、含水ゲルの状態で得られる。 The temperature of the polymerization reaction varies depending on the radical polymerization initiator used, but by rapidly advancing the polymerization and shortening the polymerization time, the efficiency is improved and the heat of polymerization is easily removed to carry out the reaction smoothly. From the viewpoint, 20 to 150 ° C. is preferable, and 40 to 120 ° C. is more preferable. The reaction time is usually 0.5-4 hours. The completion of the polymerization reaction can be confirmed, for example, by stopping the temperature rise in the reaction system. As a result, the polymer of the ethylenically unsaturated monomer is usually obtained in the state of a hydrogel.
 重合後、得られた含水ゲル状重合体に重合後架橋剤を添加して加熱することで架橋を施してもよい。重合後に架橋を行うことで含水ゲル状重合体の架橋度を高めて吸水特性を更に向上させることができる。 After polymerization, cross-linking may be performed by adding a cross-linking agent to the obtained hydrogel polymer and heating it. By performing cross-linking after the polymerization, the degree of cross-linking of the hydrogel polymer can be increased to further improve the water absorption characteristics.
 重合後架橋を行うための架橋剤としては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等の、2個以上のエポキシ基を有する化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等の、2個以上のイソシアネート基を有する化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物などが挙げられる。これらのなかでも、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、ポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物が好ましい。架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 Examples of the cross-linking agent for performing post-polymerization cross-linking include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Compounds having two or more epoxy groups such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether; Haloepoxide compounds; compounds having two or more isocyanate groups such as 2,4-tolylene diisocyanate, hexamethylene diisocyanate; oxazoline compounds such as 1,2-ethylene bisoxazoline; carbonate compounds such as ethylene carbonate; bis [N, Examples thereof include hydroxyalkylamide compounds such as N-di (β-hydroxyethyl)] adipamide. Among these, polyglycidyl compounds such as (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol diglycidyl ether, and polyglycerol polyglycidyl ether are available. preferable. The cross-linking agent may be used alone or in combination of two or more.
 重合後架橋剤の量は、好適な吸水特性が得られやすい観点から、エチレン性不飽和単量体1モル当たり、30ミリモル以下、10ミリモル以下、又は0.01~5ミリモルであってよい。 The amount of the cross-linking agent after polymerization may be 30 mmol or less, 10 mmol or less, or 0.01 to 5 mmol per mole of the ethylenically unsaturated monomer from the viewpoint that suitable water absorption characteristics can be easily obtained.
 重合後架橋剤の添加時期としては、重合に用いられるエチレン性不飽和単量体の重合後であればよく、多段重合の場合は、多段重合後に添加されることが好ましい。なお、重合時及び重合後の発熱、工程遅延による滞留、架橋剤添加時の系の開放、及び架橋剤添加に伴う水の添加等による水分の変動を考慮して、重合後架橋剤は、含水率(後述)の観点から、[重合直後の含水率±3質量%]の領域で添加することが好ましい。 The timing of adding the cross-linking agent after polymerization may be after the polymerization of the ethylenically unsaturated monomer used for polymerization, and in the case of multi-stage polymerization, it is preferable to add it after multi-stage polymerization. The post-polymerization cross-linking agent contains water in consideration of heat generation during and after polymerization, retention due to process delay, opening of the system when the cross-linking agent is added, and fluctuation of water content due to addition of water accompanying the addition of the cross-linking agent. From the viewpoint of rate (described later), it is preferable to add in the region of [moisture content immediately after polymerization ± 3% by mass].
 引き続き、得られた含水ゲル状重合体から水分を除去するために乾燥を行うことにより重合体粒子(例えば、エチレン性不飽和単量体に由来する構造単位を有する重合体粒子)が得られる。乾燥方法としては、例えば、(a)含水ゲル状重合体が炭化水素分散媒に分散した状態で、外部から加熱することにより共沸蒸留を行い、炭化水素分散媒を還流させて水分を除去する方法、(b)デカンテーションにより含水ゲル状重合体を取り出し、減圧乾燥する方法、(c)フィルターにより含水ゲル状重合体をろ別し、減圧乾燥する方法等が挙げられる。(b)又は(c)の方法を行うと、原料微粒子における残存単量体量が多くなり、本実施形態に係る製造方法を実施するに適切な範囲になりやすい傾向にある。 Subsequently, by carrying out drying to remove water from the obtained hydrogel-like polymer, polymer particles (for example, polymer particles having a structural unit derived from an ethylenically unsaturated monomer) can be obtained. As a drying method, for example, (a) in a state where the hydrogel polymer is dispersed in a hydrocarbon dispersion medium, azeotropic distillation is performed by heating from the outside, and the hydrocarbon dispersion medium is refluxed to remove water. Examples thereof include (b) a method of taking out the hydrogel polymer by decantation and drying under reduced pressure, and (c) a method of filtering the hydrogel polymer with a filter and drying under reduced pressure. When the method (b) or (c) is performed, the amount of residual monomers in the raw material fine particles increases, and tends to be within an appropriate range for carrying out the production method according to the present embodiment.
 吸水性樹脂粒子(原料微粒子及び原料粒子)の製造においては、乾燥工程(水分除去工程)又はそれ以降の工程において、架橋剤を用いて含水ゲル状重合体の表面部分(表面及び表面近傍)の表面架橋が行われることが好ましい。表面架橋を行うことで、吸水特性などを制御しやすい。表面架橋は、含水ゲル状重合体が特定の含水率であるタイミングで行われることが好ましい。表面架橋の時期は、含水ゲル状重合体の含水率が5~50質量%である時点が好ましく、10~40質量%である時点がより好ましく、15~35質量%である時点が更に好ましい。 In the production of water-absorbent resin particles (raw material fine particles and raw material particles), in the drying step (moisture removing step) or a subsequent step, a cross-linking agent is used to cover the surface portion (surface and vicinity of the surface) of the hydrogel polymer. It is preferable that surface cross-linking is performed. By performing surface cross-linking, it is easy to control water absorption characteristics. The surface cross-linking is preferably performed at a timing when the water-containing gel polymer has a specific water content. The time of surface cross-linking is preferably when the water content of the hydrogel polymer is 5 to 50% by mass, more preferably 10 to 40% by mass, and even more preferably 15 to 35% by mass.
 含水ゲル状重合体の含水率(質量%)は、次の式で算出される。
  含水率=[Ww/(Ww+Ws)]×100
 Ww:全重合工程の重合前の単量体水溶液に含まれる水分量から、乾燥工程により系外部に排出された水分量を差し引いた量に、表面架橋剤等を混合する際に必要に応じて用いられる水分量を加えた含水ゲル状重合体の水分量。
 Ws:含水ゲル状重合体を構成するエチレン性不飽和単量体、架橋剤、開始剤等の材料の仕込量から算出される固形分量。
The water content (mass%) of the water-containing gel polymer is calculated by the following formula.
Moisture content = [Ww / (Ww + Ws)] x 100
Ww: If necessary when mixing a surface cross-linking agent or the like, the amount of water contained in the monomer aqueous solution before polymerization in the entire polymerization step minus the amount of water discharged to the outside of the system in the drying step. The amount of water in the hydrogel polymer to which the amount of water used is added.
Ws: A solid content calculated from the amount of materials such as an ethylenically unsaturated monomer, a cross-linking agent, and an initiator that constitute a hydrogel polymer.
 表面架橋を行うための架橋剤(表面架橋剤)としては、例えば、反応性官能基を2個以上有する化合物を挙げることができる。表面架橋剤としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物などが挙げられる。表面架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。表面架橋剤としては、ポリグリシジル化合物が好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び、ポリグリセロールポリグリシジルエーテルからなる群より選ばれる少なくとも一種がより好ましい。 Examples of the cross-linking agent (surface cross-linking agent) for performing surface cross-linking include compounds having two or more reactive functional groups. Examples of the surface cross-linking agent include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol diglycidyl ether. , (Poly) Glycerin diglycidyl ether, (Poly) Glycerin triglycidyl ether, Trimethylol propantriglycidyl ether, (Poly) propylene glycol diglycidyl ether, (Poly) glycerol Polyglycidyl compounds and other polyglycidyl compounds; Epichlorohydrin , Epibrom hydrin, α-methyl epichlorohydrin and other haloepoxy compounds; 2,4-tolylene diisocyanate, hexamethylene diisocyanate and other isocyanate compounds; 3-methyl-3-oxetane methanol, 3-ethyl-3-oxetane Oxetane compounds such as methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl-3-oxetane ethanol; 1,2-ethylenebisoxazoline and the like. Oxetane compounds; carbonate compounds such as ethylene carbonate; hydroxyalkylamide compounds such as bis [N, N-di (β-hydroxyethyl)] adipamide and the like. The surface cross-linking agent may be used alone or in combination of two or more. As the surface cross-linking agent, a polyglycidyl compound is preferable, and (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol diglycidyl ether, and polyglycerol are used. At least one selected from the group consisting of polyglycidyl ether is more preferable.
 表面架橋剤の使用量は、好適な吸水特性が得られやすい観点から、重合に使用するエチレン性不飽和単量体1モルに対して、0.01~20ミリモルが好ましく、0.05~10ミリモルがより好ましく、0.1~5ミリモルが更に好ましく、0.15~1ミリモルが特に好ましく、0.2~0.5ミリモルが極めて好ましい。 The amount of the surface cross-linking agent used is preferably 0.01 to 20 mmol, preferably 0.05 to 10 to 1 mol of the ethylenically unsaturated monomer used for polymerization, from the viewpoint that suitable water absorption characteristics can be easily obtained. Millimole is more preferable, 0.1 to 5 mmol is further preferable, 0.15 to 1 mmol is particularly preferable, and 0.2 to 0.5 mmol is extremely preferable.
 表面架橋後において、公知の方法で水及び炭化水素分散媒を留去すること、加熱減圧下で乾燥すること等により、表面架橋乾燥品された重合体粒子を得ることができる。 After surface cross-linking, polymer particles that have been surface-crosslinked and dried can be obtained by distilling water and a hydrocarbon dispersion medium by a known method, drying under heating and reduced pressure, and the like.
 重合反応は、撹拌翼を有する各種撹拌機を用いて行うことができる。撹拌翼としては、平板翼、格子翼、パドル翼、プロペラ翼、アンカー翼、タービン翼、ファウドラー翼、リボン翼、フルゾーン翼、マックスブレンド翼等を用いることができる。 The polymerization reaction can be carried out using various stirrers having stirring blades. As the stirring blade, flat plate blades, lattice blades, paddle blades, propeller blades, anchor blades, turbine blades, Faudler blades, ribbon blades, full zone blades, max blend blades and the like can be used.
 重合体粒子は必要に応じてその粒度分布の一部又は全部の粒子を粉砕してもよい。粉砕は、公知の粉砕機を使用することができ、例えば、ローラーミル(ロールミル)、スタンプミル、ジェットミル、高速回転粉砕機(ハンマーミル、ピンミル、ロータビータミル等)、容器駆動型ミル(回転ミル、振動ミル、遊星ミル等)等が使用できる。好ましくは、高速回転粉砕機が使用される。粉砕機は、出口側に多孔板やスクリーン、グリッド等の、粉砕粒子の最大粒子径を制御する開口部を有していてもよい。開口部の形状は多角形、円形等であってよく、開口部の最大径は0.1~5mmであってよく、0.3~3.0mmが好ましく、0.5~1.5mmがより好ましい。 The polymer particles may be pulverized with a part or all of the particle size distribution, if necessary. A known crusher can be used for crushing, for example, a roller mill (roll mill), a stamp mill, a jet mill, a high-speed rotary crusher (hammer mill, pin mill, rotor beater mill, etc.), and a container-driven mill (rotary). Mills, vibration mills, planetary mills, etc.) can be used. Preferably, a high speed rotary grinder is used. The crusher may have an opening on the outlet side, such as a perforated plate, a screen, or a grid, for controlling the maximum particle size of the crushed particles. The shape of the opening may be polygonal, circular, etc., and the maximum diameter of the opening may be 0.1 to 5 mm, preferably 0.3 to 3.0 mm, more preferably 0.5 to 1.5 mm. preferable.
<造粒>
 本実施形態に係る製造方法は、粒子径が180μm未満である第1重合体粒子(原料微粒子)と、粒子径が180μm以上である第2重合体粒子(原料粒子)とを混合して凝集塊を得ること(凝集工程)、及び、該凝集塊を粉砕すること(再粉砕工程)を含む。以下、凝集工程及び再粉砕工程を合わせて「造粒」とも称する。
<Granulation>
In the production method according to the present embodiment, the first polymer particles (raw material fine particles) having a particle size of less than 180 μm and the second polymer particles (raw material particles) having a particle size of 180 μm or more are mixed and aggregated. (Aggregation step) and crushing the agglomerate (re-grinding step). Hereinafter, the agglomeration step and the regrinding step are collectively referred to as "granulation".
 原料微粒子及び原料粒子としては、上述の方法により得られた重合体粒子を用いることができ、必要に応じて粒径を所定の範囲にするために分級されたものであってよい。凝集に際し、原料微粒子と原料粒子とは、それぞれ別々に調製したものを混合してもよいし、粒子を製造した時点で原料微粒子と原料粒子とが混在している状態の場合はそのまま用いてもよい。原料微粒子と原料粒子とは、成分組成が同一であってもよく、異なってもよい。原料粒子の粒子径は180~850μmの範囲であることが好ましい。 As the raw material fine particles and the raw material particles, the polymer particles obtained by the above-mentioned method can be used, and may be classified so as to keep the particle size within a predetermined range, if necessary. At the time of aggregation, the raw material fine particles and the raw material particles may be mixed separately, or may be used as they are when the raw material fine particles and the raw material particles are mixed at the time of producing the particles. Good. The raw material fine particles and the raw material particles may have the same or different component compositions. The particle size of the raw material particles is preferably in the range of 180 to 850 μm.
 凝集は、公知の方法によって行うことができる。凝集は、例えば、原料微粒子、原料粒子、及び水性液を混合することにより行うことができる。水性液としては、例えば、水であってよく、水溶性塩類又は親水性有機溶媒等の成分を含む水性液であってよい。水性液中の水の割合は、例えば90~100質量%であってよい。原料微粒子と原料粒子とを混合する際の温度は、40~150℃が好ましく、60~100℃がより好ましい。 Aggregation can be performed by a known method. Aggregation can be performed, for example, by mixing raw material fine particles, raw material particles, and an aqueous liquid. The aqueous solution may be, for example, water, or may be an aqueous solution containing a component such as a water-soluble salt or a hydrophilic organic solvent. The proportion of water in the aqueous solution may be, for example, 90 to 100% by mass. The temperature at which the raw material fine particles and the raw material particles are mixed is preferably 40 to 150 ° C, more preferably 60 to 100 ° C.
 原料微粒子と原料粒子との混合割合は、任意の割合であってよく、例えば原料微粒子と原料粒子との合計量に対して、原料微粒子の量が1質量%以上、5質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、70質量%以上、80質量%以上又は90質量%以上であってよく、99質量%以下、95質量%以下、90質量%以下、80質量%以下、70質量%以下、60質量%以下、50質量%以下、40質量%以上、30質量%以下、20質量%以下、10質量%以下、5質量%以下であってもよい。 The mixing ratio of the raw material fine particles and the raw material particles may be any ratio. For example, the amount of the raw material fine particles is 1% by mass or more, 5% by mass or more, and 10% by mass with respect to the total amount of the raw material fine particles and the raw material particles. % Or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, or 90% by mass or more, 99% by mass. Below, 95% by mass or less, 90% by mass or less, 80% by mass or less, 70% by mass or less, 60% by mass or less, 50% by mass or less, 40% by mass or more, 30% by mass or less, 20% by mass or less, 10% by mass. Hereinafter, it may be 5% by mass or less.
 混合に用いる水性液の量は、原料微粒子及び原料粒子の合計100質量部に対して、例えば、10質量部以上、20質量部以上、30質量部以上、又は40質量部以上であってよく、70質量部以下、60質量部以下、又は50質量部以下であってよい。 The amount of the aqueous liquid used for mixing may be, for example, 10 parts by mass or more, 20 parts by mass or more, 30 parts by mass or more, or 40 parts by mass or more with respect to a total of 100 parts by mass of the raw material fine particles and the raw material particles. It may be 70 parts by mass or less, 60 parts by mass or less, or 50 parts by mass or less.
 凝集時の混合の順序は特に制限されないが、例えば、原料微粒子と原料粒子とを予め混合した後で、水性液を添加してもよく、原料微粒子と水性液とを予め混合した後で、原料粒子を添加してもよい。原料微粒子及び/又は原料粒子に水性液を混合する方法としては特に制限されないが、例えば水性液を少量ずつ滴下してもよく、噴霧してもよく、水蒸気の状態で混合してもよい。水性液中に原料微粒子及び/又は原料粒子を添加してもよい。 The order of mixing at the time of aggregation is not particularly limited. For example, the raw material fine particles and the raw material particles may be mixed in advance and then the aqueous liquid may be added, or the raw material fine particles and the aqueous liquid may be mixed in advance and then the raw material. Particles may be added. The method for mixing the raw material fine particles and / or the raw material particles with the aqueous liquid is not particularly limited, but for example, the aqueous liquid may be dropped little by little, sprayed, or mixed in the state of steam. Raw material fine particles and / or raw material particles may be added to the aqueous solution.
 次に、凝集により得られた凝集塊を粉砕する。造粒時の粉砕は、公知の粉砕機を使用することができ、例えば、ローラーミル(ロールミル)、スタンプミル、ジェットミル、高速回転粉砕機(ハンマーミル、ピンミル、ロータビータミル等)、容器駆動型ミル(回転ミル、振動ミル、遊星ミル等)等が使用できる。好ましくは、高速回転粉砕機が使用される。粉砕機は、出口側に多孔板やスクリーン、グリッド等の、粉砕粒子の最大粒子径を制御する開口部を有していてもよい。開口部の形状は多角形、円形等であってよく、開口部の最大径は0.1~5mmであってよく、0.3~3.0mmが好ましく、0.5~1.5mmがより好ましい。 Next, the agglomerated mass obtained by agglutination is crushed. A known crusher can be used for crushing during granulation, for example, a roller mill (roll mill), a stamp mill, a jet mill, a high-speed rotary crusher (hammer mill, pin mill, rotor beater mill, etc.), container drive. Mold mills (rotary mills, vibration mills, planetary mills, etc.) can be used. Preferably, a high speed rotary grinder is used. The crusher may have an opening on the outlet side, such as a perforated plate, a screen, or a grid, for controlling the maximum particle size of the crushed particles. The shape of the opening may be polygonal, circular, etc., and the maximum diameter of the opening may be 0.1 to 5 mm, preferably 0.3 to 3.0 mm, more preferably 0.5 to 1.5 mm. preferable.
 造粒時の凝集後、粉砕前には、重合体粒子の乾燥を行うことが好ましい。乾燥させることにより、その後の粉砕をより容易に行うことができる。乾燥は、例えば、加熱、送風等によって行うことができ、加熱により乾燥することが好ましい。加熱乾燥の場合、加熱温度は75℃以上であることが好ましい。加熱温度は例えば100℃以下であってよい。 It is preferable to dry the polymer particles after agglutination during granulation and before pulverization. Subsequent pulverization can be performed more easily by drying. The drying can be performed by, for example, heating, blowing air, or the like, and it is preferable to dry by heating. In the case of heat drying, the heating temperature is preferably 75 ° C. or higher. The heating temperature may be, for example, 100 ° C. or lower.
 本実施形態に係る吸水性樹脂粒子の製造方法は、造粒して得られた粒子を表面架橋する工程を含んでいてもよい。 The method for producing water-absorbent resin particles according to the present embodiment may include a step of surface-crosslinking the particles obtained by granulation.
 本実施形態に係る製造方法においては、原料微粒子における残存単量体量は250ppm以上である。残存単量体とは、重合に寄与していない単量体であり、後述の測定方法によって測定されるものである。残存単量体には、重合時に反応せずに残ったもの、及び、重合後の工程において重合体粒子の一部が分解することで生じた単量体等が含まれる。 In the production method according to the present embodiment, the amount of residual monomer in the raw material fine particles is 250 ppm or more. The residual monomer is a monomer that does not contribute to the polymerization, and is measured by the measuring method described later. Residual monomers include those that remain unreacted during polymerization, and monomers produced by the decomposition of part of the polymer particles in the post-polymerization step.
 本実施形態に係る製造方法により、造粒して得られる重合体粒子において、微粉、例えば粒子径が180μm以下である粒子の発生量を低減することができる。本実施形態に係る製造方法を採用することにより、得られる造粒重合体粒子の粒度分布がより狭く鋭いものとなり、廃棄される又は再造粒が必要な微粉の発生を抑え、より効率的に吸水性樹脂粒子を製造することができる。また、吸収体、吸収性物品等の、吸水性樹脂粒子を利用する製品の製造時において、粉塵の発生を抑制することができる。 According to the production method according to the present embodiment, it is possible to reduce the amount of fine particles, for example, particles having a particle diameter of 180 μm or less, generated in the polymer particles obtained by granulation. By adopting the production method according to the present embodiment, the particle size distribution of the obtained granulated polymer particles becomes narrower and sharper, the generation of fine powders that need to be discarded or re-granulated is suppressed, and more efficiently. Water-absorbent resin particles can be produced. In addition, it is possible to suppress the generation of dust during the production of products using water-absorbent resin particles such as absorbers and absorbent articles.
 原料微粒子における残存単量体量は、270ppm以上、290ppm以上、350ppm以上、400ppm以上、500ppm以上、600ppm以上、800ppm以上、又は1000ppm以上であってもよい。原料微粒子における残存単量体量は、例えば、3000ppm以下、2500ppm以下又は2300ppm以下であってもよい。一方、原料粒子における残存単量体量は、原料微粒子における残存単量体量と同等であってもよく、異なってもよい。 The amount of residual monomer in the raw material fine particles may be 270 ppm or more, 290 ppm or more, 350 ppm or more, 400 ppm or more, 500 ppm or more, 600 ppm or more, 800 ppm or more, or 1000 ppm or more. The amount of residual monomer in the raw material fine particles may be, for example, 3000 ppm or less, 2500 ppm or less, or 2300 ppm or less. On the other hand, the amount of residual monomer in the raw material particles may be the same as or different from the amount of residual monomer in the raw material fine particles.
 原料微粒子における残存単量体量は、理論上は重合後の粒子に単量体を外部から添加することによって増加させることも可能である。しかしながら、本実施形態に係る製造方法において、微粉の発生量をより確実に低減する観点から、原料微粒子における残存単量体量は、このような外部から添加されたものではなく、粒子内部に存在するもの、すなわち粒子の重合時に用いられた単量体に由来するものであることが好ましい。 Theoretically, the amount of residual monomer in the raw material fine particles can be increased by adding a monomer to the polymerized particles from the outside. However, in the production method according to the present embodiment, from the viewpoint of more reliably reducing the amount of fine powder generated, the amount of residual monomer in the raw material fine particles is not added from the outside but exists inside the particles. That is, it is preferably derived from the monomer used during the polymerization of the particles.
 原料微粒子における残存単量体量は、測定する粒子の250倍量の生理食塩水中で1時間撹拌した後の溶液中に溶解している単量体量を測定することにより求めることができる。測定は高速液体クロマトグラフィーにより行うことができる。測定対象の単量体は、原料微粒子の重合に用いた単量体とする。原料微粒子における残存単量体量の測定は、造粒に供される直前の状態の粒子、すなわち凝集に供されるまでに行われる全ての工程を経た後の粒子に対して行うことが好ましい。 The amount of residual monomer in the raw material fine particles can be determined by measuring the amount of monomer dissolved in the solution after stirring for 1 hour in 250 times the amount of the particles to be measured in physiological saline. The measurement can be performed by high performance liquid chromatography. The monomer to be measured is the monomer used for the polymerization of the raw material fine particles. The amount of residual monomer in the raw material fine particles is preferably measured on the particles in the state immediately before being subjected to granulation, that is, the particles after all the steps performed before being subjected to aggregation.
 造粒に用いる原料微粒子のCRC(遠心分離機保持容量)は、例えば25~60g/gであってよく、27~55g/gであることが好ましい。CRCの具体的な測定方法は後述の実施例に示される。 The CRC (centrifuge holding capacity) of the raw material fine particles used for granulation may be, for example, 25 to 60 g / g, preferably 27 to 55 g / g. A specific method for measuring CRC will be shown in Examples described later.
<吸水性樹脂粒子>
 本実施形態に係る吸水性樹脂粒子は、造粒して得られた架橋重合体のみから構成されていてもよいが、例えば、ゲル安定剤、金属キレート剤(エチレンジアミン4酢酸及びその塩、ジエチレントリアミン5酢酸及びその塩、例えばジエチレントリアミン5酢酸5ナトリウム等)、流動性向上剤(滑剤)等の追加成分を更に含むことができる。追加成分は、架橋重合体の粒子の内部、表面上、又はこれらの両方に配置され得る。
<Water-absorbent resin particles>
The water-absorbent resin particles according to the present embodiment may be composed only of the crosslinked polymer obtained by granulation, and may be composed of, for example, a gel stabilizer, a metal chelating agent (ethylenediaminetetraacetic acid and a salt thereof, diethylenetriamine 5). Additional components such as acetic acid and salts thereof, such as diethylenetriamine-5 sodium acetate), fluidity improvers (lubricants), etc. can be further included. Additional components may be placed inside, on the surface, or both of the particles of the crosslinked polymer.
 吸水性樹脂粒子は、架橋重合体の表面上に配置された複数の無機粒子を含んでいてもよい。例えば、架橋重合体と無機粒子とを混合することにより、架橋重合体の表面上に無機粒子を配置することができる。この無機粒子は、非晶質シリカ等のシリカ粒子であってもよい。 The water-absorbent resin particles may contain a plurality of inorganic particles arranged on the surface of the crosslinked polymer. For example, by mixing the crosslinked polymer and the inorganic particles, the inorganic particles can be arranged on the surface of the crosslinked polymer. The inorganic particles may be silica particles such as amorphous silica.
 吸水性樹脂粒子が、表面上に配置された無機粒子を含む場合、無機粒子の含有量は、架橋重合体の全質量100部を基準として下記の範囲であってよい。無機粒子の含有量は、0.05質量部以上、0.1質量部以上、0.15質量部以上、又は0.2質量部以上であってよい。無機粒子の含有量は、5.0質量部以下、3.0質量部以下、1.0質量部以下、0.5質量部以下、又は0.3質量部以下であってよい。 When the water-absorbent resin particles include inorganic particles arranged on the surface, the content of the inorganic particles may be in the following range based on 100 parts of the total mass of the crosslinked polymer. The content of the inorganic particles may be 0.05 parts by mass or more, 0.1 parts by mass or more, 0.15 parts by mass or more, or 0.2 parts by mass or more. The content of the inorganic particles may be 5.0 parts by mass or less, 3.0 parts by mass or less, 1.0 part by mass or less, 0.5 parts by mass or less, or 0.3 parts by mass or less.
 本実施形態に係る吸水性樹脂粒子の形状としては、略球状、破砕状、顆粒状又はこれらの形状を有する一次粒子が凝集して形成された形状等が挙げられる。本実施形態に係る吸水性樹脂粒子の中位粒子径は、130~800μm、200~850μm、250~700μm、300~600μm、又は300~450μmであってよい。本実施形態に係る吸水性樹脂粒子は、篩による分級を用いた粒度調整等の操作を行うことにより最終的に粒度分布を調整してもよい。 Examples of the shape of the water-absorbent resin particles according to the present embodiment include a substantially spherical shape, a crushed shape, a granular shape, and a shape formed by aggregating primary particles having these shapes. The medium particle size of the water-absorbent resin particles according to the present embodiment may be 130 to 800 μm, 200 to 850 μm, 250 to 700 μm, 300 to 600 μm, or 300 to 450 μm. The water-absorbent resin particles according to the present embodiment may be finally adjusted in particle size distribution by performing an operation such as particle size adjustment using classification by a sieve.
 本実施形態に係る製造方法により得られる吸水性樹脂粒子は、例えば、紙おむつ、生理用品等の衛生材料、保水剤、土壌改良剤等の農園芸材料、止水剤、結露防止剤等の工業資材などの分野において用いることができる。 The water-absorbent resin particles obtained by the production method according to the present embodiment include, for example, sanitary materials such as disposable diapers and sanitary products, agricultural and horticultural materials such as water retention agents and soil conditioners, and industrial materials such as water stop agents and dew condensation inhibitors. It can be used in such fields.
 本実施形態の一側面は、粒子径が180μm未満である第1重合体粒子(原料微粒子)と、粒子径が180μm以上である第2重合体粒子(原料粒子)とを混合して凝集塊を得ること、該凝集塊を粉砕すること、及び、第1重合体粒子における残存単量体量を250ppm以上に調整することとを含む、吸水性樹脂粒子の微粉発生を抑制する方法に関する。造粒に用いられる原料微粒子における残存単量体量を250ppm以上に調整することによって、得られる粒子における微粉発生を抑制することができる。原料微粒子における残存単量体量を250ppm以上に調整する方法としては、上述のとおり、例えば重合開始剤の使用量を多くすること、乾燥温度を上げること等によって行うことができる。 One aspect of this embodiment is to mix first polymer particles (raw material fine particles) having a particle size of less than 180 μm and second polymer particles (raw material particles) having a particle size of 180 μm or more to form agglomerates. The present invention relates to a method for suppressing the generation of fine particles of water-absorbent resin particles, which comprises obtaining, crushing the agglomerates, and adjusting the amount of residual monomers in the first polymer particles to 250 ppm or more. By adjusting the amount of residual monomer in the raw material fine particles used for granulation to 250 ppm or more, it is possible to suppress the generation of fine particles in the obtained particles. As described above, the method for adjusting the amount of residual monomer in the raw material fine particles to 250 ppm or more can be carried out, for example, by increasing the amount of the polymerization initiator used, raising the drying temperature, or the like.
 以下、実施例及び比較例を用いて本発明の内容を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the content of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
製造例1
[単量体水溶液の調製]
 2Lのセパラブルフラスコに130.0g(1.80モル)の100%アクリル酸を入れた。フラスコ内を撹拌しながらイオン交換水112.3gを加えた後、氷浴下で112.85gの48質量%水酸化ナトリウムを滴下することにより、単量体濃度45質量%、中和率75モル%のアクリル酸ナトリウム部分中和液を調製した。
Manufacturing example 1
[Preparation of aqueous monomer solution]
130.0 g (1.80 mol) of 100% acrylic acid was placed in a 2 L separable flask. After adding 112.3 g of ion-exchanged water while stirring the inside of the flask, 112.85 g of 48% by mass sodium hydroxide was added dropwise under an ice bath to obtain a monomer concentration of 45% by mass and a neutralization rate of 75 mol. % Sodium acrylate partially neutralized solution was prepared.
[重合]
 ステンレスバット(φ20cm)内に撹拌子(直径8mm、長さ40mm)を入れ、重合に用いる単量体として上記アクリル酸ナトリウム部分中和液(単量体濃度45質量%、アクリル酸の中和率75モル%)340.0g、イオン交換水58.5g、及び内部架橋剤としてエチレングリコールジグリシジルエーテル0.0541g(0.311ミリモル)を加えた。その後、撹拌子を回転させ、成分を均一に分散させて混合物(アクリル酸ナトリウム部分中和液濃度38質量%)を得た。その後、該ステンレスバットの上部をポリエチレンフィルムでカバーした。該ステンレスバット内の混合物の温度を25℃に調整した後、混合物を窒素置換し溶存酸素量を0.1ppm以下にした。
[polymerization]
A stirrer (diameter 8 mm, length 40 mm) is placed in a stainless steel bat (φ20 cm), and the sodium acrylate partially neutralized solution (monomer concentration 45% by mass, acrylate neutralization rate) is used as a monomer for polymerization. (75 mol%) 340.0 g, ion-exchanged water 58.5 g, and ethylene glycol diglycidyl ether 0.0541 g (0.311 mmol) as an internal cross-linking agent were added. Then, the stirrer was rotated to uniformly disperse the components to obtain a mixture (sodium acrylate partial neutralization solution concentration 38% by mass). Then, the upper part of the stainless steel vat was covered with a polyethylene film. After adjusting the temperature of the mixture in the stainless steel vat to 25 ° C., the mixture was replaced with nitrogen to reduce the amount of dissolved oxygen to 0.1 ppm or less.
 次いで、上記ステンレスバットに、2質量%2,2’-アゾビス(2-アミジノプロパン)2塩酸塩水溶液3.09g(0.228ミリモル)、0.5質量%L-アスコルビン酸水溶液0.49g、及び0.35質量%過酸化水素水0.53gを順番に300rpmの撹拌下で滴下することによって、単量体水溶液を調製した。0.35質量%過酸化水素水滴下直後に重合が開始した。重合開始から12分後、得られた含水ゲル状重合体をステンレスバットに入れたまま75℃の水浴に浸して20分間熟成させた。得られた含水ゲル状重合体の厚みは1.3cmであった。 Next, in the above stainless steel bat, 3.09 g (0.228 mmol) of a 2 mass% 2,2'-azobis (2-amidinopropane) dihydrochloride aqueous solution, 0.49 g of a 0.5 mass% L-ascorbic acid aqueous solution, And 0.53 g of 0.35 mass% hydrochloric acid aqueous solution were sequentially added dropwise under stirring at 300 rpm to prepare a monomer aqueous solution. Polymerization started immediately after the addition of 0.35% by mass hydrogen peroxide solution. Twelve minutes after the start of the polymerization, the obtained hydrogel polymer was immersed in a water bath at 75 ° C. in a stainless steel vat and aged for 20 minutes. The thickness of the obtained hydrogel polymer was 1.3 cm.
[含水ゲル状重合体の粗砕]
 熟成後の含水ゲル状重合体全量をステンレスバットから取り出し、5cm間隔の格子状に切れ目を入れて裁断した。5cm間隔で裁断した含水ゲル状重合体の全量を喜連ローヤル社製ミートチョッパー12VR-750SDXに順次投入し、粗砕した。ミートチョッパーの出口に位置するプレートの穴の径は6.4mmとした。粗砕は、ミートチョッパーのプレートから、粗砕されたゲル(含水ゲル粗砕物)が出てこなくなるまで行った。このとき、ミートチョッパーに投入した含水ゲル状重合体量は348gであり、ミートチョッパーから排出され回収できた含水ゲル粗砕物は235gであった。
[Rough crushing of hydrogel polymer]
The entire amount of the hydrogel-like polymer after aging was taken out from the stainless steel vat, and cuts were made in a grid pattern at 5 cm intervals and cut. The entire amount of the hydrogel polymer cut at 5 cm intervals was sequentially charged into a meat chopper 12VR-750SDX manufactured by Kiren Royal Co., Ltd., and coarsely crushed. The diameter of the hole in the plate located at the outlet of the meat chopper was 6.4 mm. The coarse crushing was carried out until no coarsely crushed gel (hydrous gel coarse crushed material) came out from the plate of the meat chopper. At this time, the amount of the hydrogel-like polymer charged into the meat chopper was 348 g, and the amount of the hydrogel coarse product discharged from the meat chopper and recovered was 235 g.
[含水ゲル粗砕物の乾燥]
 含水ゲル粗砕物を目開き850μmの篩上に広げ、180℃に設定した熱風乾燥機(ADVANTEC社製、型番:DRE320DB)で30分間乾燥させ、ゲル乾燥物を得た。
[Drying hydrogel crushed material]
The hydrogel coarse crushed material was spread on a sieve having an opening of 850 μm and dried in a hot air dryer (manufactured by ADVANTEC, model number: DRE320DB) set at 180 ° C. for 30 minutes to obtain a gel-dried product.
[ゲル乾燥物の粉砕]
 上述のゲル乾燥物を、超遠心粉砕機(ヴァーダー・サイエンティフィック株式会社製、ZM200、6本刃ローター、ローター回転数:6000rpm、スクリーン梯形孔:1.00mm)で粉砕して重合体粒子粉砕物を得た。
[Crushing dried gel]
The above-mentioned gel dried product is crushed by an ultracentrifugation crusher (ZM200 manufactured by Verder Scientific Co., Ltd., 6-blade rotor, rotor rotation speed: 6000 rpm, screen trapezoidal hole: 1.00 mm) to crush polymer particles. I got something.
[重合体粒子粉砕物の分級]
 重合体粒子粉砕物を目開き850μmの篩、180μmの篩、及び受け器を用いて分級した。目開き850μmの篩を通過し、180μmの篩上に残留したものを重合体粒子1A、180μmの篩を通過したものを重合体粒子1Bとして回収した。
[Classification of crushed polymer particles]
The pulverized polymer particles were classified using a sieve having an opening of 850 μm, a sieve having a size of 180 μm, and a receiver. Those that passed through a sieve having a mesh size of 850 μm and remained on the sieve of 180 μm were recovered as polymer particles 1A, and those that passed through the sieve of 180 μm were recovered as polymer particles 1B.
製造例2
[単量体水溶液の調製]
 製造例1と同様にして、単量体濃度45質量%、中和率75モル%のアクリル酸ナトリウム部分中和液を調製した。
Manufacturing example 2
[Preparation of aqueous monomer solution]
A partial neutralizing solution of sodium acrylate having a monomer concentration of 45% by mass and a neutralization rate of 75 mol% was prepared in the same manner as in Production Example 1.
[重合]
 内面がフッ素樹脂コーティングされたステンレス製バット(外寸法:210mm×170mm、高さ30mm)内に撹拌子(直径8mm、長さ40mm)を入れ、重合に用いる単量体としてアクリル酸ナトリウム部分中和液(単量体濃度45質量%、アクリル酸の中和率75モル%)340.0g、イオン交換水58.9g、及び内部架橋剤としてエチレングリコールジグリシジルエーテル0.0077g(0.044ミリモル)を加えた。その後、撹拌子を回転させ、成分を均一に分散させて混合物(アクリル酸ナトリウム部分中和液濃度38質量%)を得た。その後、該ステンレスバットの上部をポリエチレンフィルムでカバーした。該ステンレスバット内の混合物の温度を25℃に調整後、混合物を窒素置換し溶存酸素量を0.1ppm以下にした。
[polymerization]
A stirrer (diameter 8 mm, length 40 mm) is placed in a stainless steel bat (outer dimensions: 210 mm x 170 mm, height 30 mm) whose inner surface is coated with fluororesin, and sodium acrylate is partially neutralized as a monomer used for polymerization. Liquid (monomer concentration 45% by mass, neutralization rate of acrylic acid 75 mol%) 340.0 g, ion-exchanged water 58.9 g, and ethylene glycol diglycidyl ether 0.0077 g (0.044 mmol) as an internal cross-linking agent. Was added. Then, the stirrer was rotated to uniformly disperse the components to obtain a mixture (sodium acrylate partial neutralization solution concentration 38% by mass). Then, the upper part of the stainless steel vat was covered with a polyethylene film. After adjusting the temperature of the mixture in the stainless steel vat to 25 ° C., the mixture was replaced with nitrogen to reduce the amount of dissolved oxygen to 0.1 ppm or less.
 次いで、上記ステンレスバットに、2質量%過硫酸カリウム水溶液3.09g(0.229ミリモル)、及び0.5質量%L-アスコルビン酸水溶液0.65gを順番に300rpmの撹拌下で滴下することによって、単量体水溶液を調製した。0.5質量%L-アスコルビン酸水溶液0.65g滴下直後に重合が開始した。重合開始から25分後、得られた含水ゲル状重合体をステンレスバットに入れたまま75℃の水浴に浸して20分間熟成させた。得られた含水ゲル状重合体の厚みは1.3cmであった。 Then, 3.09 g (0.229 mmol) of a 2 mass% potassium persulfate aqueous solution and 0.65 g of a 0.5 mass% L-ascorbic acid aqueous solution were sequentially added dropwise to the stainless steel bat under stirring at 300 rpm. , A monomeric aqueous solution was prepared. Polymerization started immediately after adding 0.65 g of a 0.5 mass% L-ascorbic acid aqueous solution. Twenty-five minutes after the start of the polymerization, the obtained hydrogel polymer was immersed in a water bath at 75 ° C. while still in a stainless steel vat and aged for 20 minutes. The thickness of the obtained hydrogel polymer was 1.3 cm.
 製造例1と同様にして含水ゲル状重合体を粗砕した。ミートチョッパーに投入した含水ゲル状重合体量は347gであり、ミートチョッパーから排出され回収できた含水ゲル粗砕物は188gであった。製造例1と同様にしてゲルの乾燥、粉砕、及び分級を行い、目開き850μmの篩を通過し、180μmの篩上に残留したものを重合体粒子2A、180μmの篩を通過したものを重合体粒子2Bとして回収した。 The hydrogel polymer was coarsely crushed in the same manner as in Production Example 1. The amount of the hydrogel-like polymer charged into the meat chopper was 347 g, and the amount of the hydrogel coarse crushed product discharged from the meat chopper and recovered was 188 g. The gel was dried, pulverized, and classified in the same manner as in Production Example 1, passed through a sieve having an opening of 850 μm, and what remained on the sieve with a mesh size of 180 μm was passed through a sieve of polymer particles 2A and 180 μm and was weighted. It was recovered as coalesced particles 2B.
製造例3
[単量体水溶液の調製]
 製造例1と同様にして、単量体濃度45質量%、中和率75モル%のアクリル酸ナトリウム部分中和液を調製した。
Manufacturing example 3
[Preparation of aqueous monomer solution]
A partial neutralizing solution of sodium acrylate having a monomer concentration of 45% by mass and a neutralization rate of 75 mol% was prepared in the same manner as in Production Example 1.
[重合]
 ステンレスバット(φ20cm)内に撹拌子(直径8mm、長さ40mm)を入れ、重合に用いる単量体としてアクリル酸ナトリウム部分中和液(単量体濃度45質量%、アクリル酸の中和率75モル%)340.0g、イオン交換水47.7g、及び内部架橋剤としてエチレングリコールジグリシジルエーテル0.0541g(0.311ミリモル)を加えた。その後、撹拌子を回転させ、成分を均一に分散させて混合物(アクリル酸ナトリウム部分中和液濃度38質量%)を得た。その後、該ステンレスバットの上部をポリエチレンフィルムでカバーした。該ステンレスバット内の混合物の温度を25℃に調整後、混合物を窒素置換し溶存酸素量を0.1ppm以下にした。
[polymerization]
A stirrer (diameter 8 mm, length 40 mm) is placed in a stainless steel bat (φ20 cm), and a partial neutralizing solution of sodium acrylate (monomer concentration 45% by mass, neutralization rate of acrylic acid 75) is used as a monomer for polymerization. 340.0 g (molar%), 47.7 g of ion-exchanged water, and 0.0541 g (0.311 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added. Then, the stirrer was rotated to uniformly disperse the components to obtain a mixture (sodium acrylate partial neutralization solution concentration 38% by mass). Then, the upper part of the stainless steel vat was covered with a polyethylene film. After adjusting the temperature of the mixture in the stainless steel vat to 25 ° C., the mixture was replaced with nitrogen to reduce the amount of dissolved oxygen to 0.1 ppm or less.
 次いで、上記ステンレスバットに、2質量%過硫酸カリウム水溶液12.37g(0.915ミリモル)、及び0.5質量%L-アスコルビン酸水溶液2.54gを順番に300rpmの撹拌下で滴下することによって、単量体水溶液を調整した。0.5質量%L-アスコルビン酸水溶液滴下直後に重合が開始した。重合開始から12分後、得られた含水ゲル状重合体をステンレスバットに入れたまま75℃の水浴に浸して20分間熟成させた。得られた含水ゲル状重合体の厚みは1.3cmであった。 Then, 12.37 g (0.915 mmol) of a 2 mass% potassium persulfate aqueous solution and 2.54 g of a 0.5 mass% L-ascorbic acid aqueous solution were sequentially added dropwise to the stainless steel bat under stirring at 300 rpm. , Aqueous monomer solution was prepared. Polymerization started immediately after dropping the 0.5 mass% L-ascorbic acid aqueous solution. Twelve minutes after the start of the polymerization, the obtained hydrogel polymer was immersed in a water bath at 75 ° C. in a stainless steel vat and aged for 20 minutes. The thickness of the obtained hydrogel polymer was 1.3 cm.
[含水ゲル状重合体の粗砕]
 製造例1と同様にして、含水ゲル状重合体の粗砕を行った。ミートチョッパーに投入した含水ゲル状重合体量は345gであり、ミートチョッパーから排出され回収できた含水ゲル粗砕物は198gであった。
[Rough crushing of hydrogel polymer]
The hydrogel polymer was coarsely crushed in the same manner as in Production Example 1. The amount of the hydrogel-like polymer charged into the meat chopper was 345 g, and the amount of the hydrogel coarse crushed product discharged from the meat chopper and recovered was 198 g.
 製造例1と同様にして、ゲルの乾燥、粉砕、及び分級を行い、目開き850μmの篩を通過し、180μmの篩上に残留したものを重合体粒子3A、180μmの篩を通過したものを重合体粒子3Bとして回収した。 The gel was dried, pulverized, and classified in the same manner as in Production Example 1, passed through a sieve having a mesh size of 850 μm, and what remained on the sieve having a mesh size of 180 μm was passed through a sieve having polymer particles 3A and 180 μm. It was recovered as polymer particles 3B.
製造例4
[単量体水溶液の調製]
 製造例1と同様にして、単量体濃度45質量%、中和率75モル%のアクリル酸ナトリウム部分中和液を調製した。
Manufacturing example 4
[Preparation of aqueous monomer solution]
A partial neutralizing solution of sodium acrylate having a monomer concentration of 45% by mass and a neutralization rate of 75 mol% was prepared in the same manner as in Production Example 1.
[重合]
 ステンレスバット(φ20cm)内に撹拌子(直径8mm、長さ40mm)を入れ、重合に用いる単量体としてアクリル酸ナトリウム部分中和液(単量体濃度45質量%、アクリル酸の中和率75モル%)340.0g、イオン交換水32.6g、及び内部架橋剤としてエチレングリコールジグリシジルエーテル0.0541g(0.311ミリモル)を加えた。その後、撹拌子を回転させ、成分を均一に分散させて混合物(アクリル酸ナトリウム部分中和液濃度38質量%)を得た。その後、該ステンレスバットの上部をポリエチレンフィルムでカバーした。該ステンレスバット内の混合物の温度を25℃に調整後、混合物を窒素置換し溶存酸素量を0.1ppm以下にした。
[polymerization]
A stirrer (diameter 8 mm, length 40 mm) is placed in a stainless steel bat (φ20 cm), and a partial neutralizing solution of sodium acrylate (monomer concentration 45% by mass, neutralization rate of acrylic acid 75) is used as a monomer for polymerization. 340.0 g (molar%), 32.6 g of ion-exchanged water, and 0.0541 g (0.311 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added. Then, the stirrer was rotated to uniformly disperse the components to obtain a mixture (sodium acrylate partial neutralization solution concentration 38% by mass). Then, the upper part of the stainless steel vat was covered with a polyethylene film. After adjusting the temperature of the mixture in the stainless steel vat to 25 ° C., the mixture was replaced with nitrogen to reduce the amount of dissolved oxygen to 0.1 ppm or less.
 次いで、上記ステンレスバットに、2質量%過硫酸カリウム水溶液24.75g(1.831ミリモル)、及び0.5質量%L-アスコルビン酸水溶液5.20gを順番に300rpmの撹拌下で滴下することによって、単量体水溶液を調製した。0.5質量%L-アスコルビン酸水溶液滴下直後に重合が開始した。重合開始から10分後、得られた含水ゲル状重合体をステンレスバットに入れたまま75℃の水浴に浸して20分間熟成させた。得られた含水ゲル状重合体の厚みは1.3cmであった。 Then, 24.75 g (1.831 mmol) of a 2 mass% potassium persulfate aqueous solution and 5.20 g of a 0.5 mass% L-ascorbic acid aqueous solution were sequentially added dropwise to the stainless steel bat under stirring at 300 rpm. , A monomeric aqueous solution was prepared. Polymerization started immediately after dropping the 0.5 mass% L-ascorbic acid aqueous solution. After 10 minutes from the start of the polymerization, the obtained hydrogel polymer was immersed in a water bath at 75 ° C. in a stainless steel vat and aged for 20 minutes. The thickness of the obtained hydrogel polymer was 1.3 cm.
[含水ゲル状重合体の粗砕]
 製造例1と同様にして、含水ゲル状重合体の粗砕を行った。ミートチョッパーに投入した含水ゲル状重合体量は352gであり、ミートチョッパーから排出され回収できた含水ゲル粗砕物は196gであった。
[Rough crushing of hydrogel polymer]
The hydrogel polymer was coarsely crushed in the same manner as in Production Example 1. The amount of the hydrogel-like polymer charged into the meat chopper was 352 g, and the amount of the hydrogel coarse crushed product discharged from the meat chopper and recovered was 196 g.
 製造例1と同様にして、ゲルの乾燥、粉砕及び分級を行い、目開き850μmの篩を通過し、180μmの篩上に残留したものを重合体粒子4A、180μmの篩を通過したものを重合体粒子4Bとして回収した。 In the same manner as in Production Example 1, the gel was dried, pulverized and classified, passed through a sieve having an opening of 850 μm, and what remained on the sieve with a mesh size of 180 μm was passed through a sieve of polymer particles 4A and 180 μm and was weighted. It was recovered as coalesced particles 4B.
製造例5
 製造例4と同様にしてゲル乾燥物の粉砕までの工程を行い、重合体粒子粉砕物を得た。
Production example 5
The steps up to pulverization of the dried gel product were carried out in the same manner as in Production Example 4 to obtain a pulverized polymer particle product.
[表面架橋]
 フッ素樹脂製の碇型撹拌翼を備えた内径11cmの丸底円筒型セパラブルフラスコに重合体粒子粉砕物25.0gを入れた。別途、エチレングリコールジグリシジルエーテル0.060g、水3.6g、プロピレングリコール1.20g、及びイソプロピルアルコール1.20gを混合して架橋剤水溶液を得た。該架橋剤水溶液を、上記フラスコに500rpmで撹拌しながら添加した。添加して得られた混合物を、フッ素樹脂コーティングされたトレイに均一に広げた後、180℃で40分加熱した。室温まで冷却した後、850μmのメッシュを通すことにより、表面架橋を施した重合体粒子粉砕物を得た。
[Surface cross-linking]
25.0 g of pulverized polymer particles was placed in a round-bottomed cylindrical separable flask having an inner diameter of 11 cm equipped with a fluororesin-made anchor-shaped stirring blade. Separately, 0.060 g of ethylene glycol diglycidyl ether, 3.6 g of water, 1.20 g of propylene glycol, and 1.20 g of isopropyl alcohol were mixed to obtain an aqueous cross-linking agent. The aqueous cross-linking agent was added to the flask with stirring at 500 rpm. The mixture obtained by adding was uniformly spread on a fluororesin-coated tray, and then heated at 180 ° C. for 40 minutes. After cooling to room temperature, a 850 μm mesh was passed through the mixture to obtain a surface-crosslinked polymer particle pulverized product.
 表面架橋後の重合体粒子粉砕物20gを、目開き850μmの篩、180μmの篩、及び受け器を用いて分級した。目開き850μmの篩を通過し、180μmの篩上に残留したものを重合体粒子5A、180μmの篩を通過したものを重合体粒子5Bとして回収した。 20 g of the pulverized polymer particles after surface cross-linking were classified using a sieve having an opening of 850 μm, a sieve having a mesh size of 180 μm, and a receiver. Those that passed through a sieve having a mesh size of 850 μm and remained on the sieve of 180 μm were recovered as polymer particles 5A, and those that passed through the sieve of 180 μm were recovered as polymer particles 5B.
製造例6
 還流冷却器、滴下ロート、窒素ガス導入管、及び、撹拌機として翼径5cmの4枚傾斜パドル翼を2段で有する撹拌翼を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン293gを入れ、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加し、撹拌しつつ80℃まで昇温することにより分散剤を溶解した。形成された溶液を50℃まで冷却した。
Production example 6
A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and an internal volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having four inclined paddle blades with a blade diameter of 5 cm in two stages as a stirrer. Prepared. To this flask, 293 g of n-heptane as a hydrocarbon dispersion medium was added, 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals Co., Ltd., High Wax 1105A) was added as a polymer-based dispersant, and the mixture was stirred. The dispersant was dissolved by raising the temperature to 80 ° C. The formed solution was cooled to 50 ° C.
 一方、内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)を入れ、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下して75モル%の中和を行った。その後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HEC AW-15F)、水溶性ラジカル重合剤として過硫酸カリウム0.0736g(0.272ミリモル)、及び内部架橋剤としてエチレングリコールジグリシジルエーテル0.011g(0.063ミリモル)をビーカーに加えて溶解することにより、第1段目の水溶液を調製した。 On the other hand, 92.0 g (1.03 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer was placed in a beaker having an internal volume of 300 mL, and cooled from the outside by 20.9 mass. 147.7 g of a% aqueous sodium hydroxide solution was added dropwise to neutralize 75 mol%. After that, 0.092 g of hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HEC AW-15F) as a thickener, 0.0736 g (0.272 mmol) of potassium persulfate as a water-soluble radical polymerization agent, and ethylene glycol as an internal cross-linking agent. An aqueous solution of the first stage was prepared by adding 0.011 g (0.063 mmol) of diglycidyl ether to a beaker and dissolving it.
 n-ヘプタン6.62gに界面活性剤としてショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370、HLB:3)を0.736g加熱溶解することにより、界面活性剤溶液を得た。第1段目の水溶液を上記フラスコに添加して10分間撹拌した後、該界面活性剤溶液を添加して、撹拌機の回転数を550rpmまで増速して撹拌しながら系内を窒素で十分に置換した。その後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより、第1段目の重合スラリー液を得た。 A surfactant solution is prepared by heating and dissolving 0.736 g of sucrose stearic acid ester (Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370, HLB: 3) as a surfactant in 6.62 g of n-heptane. Obtained. After adding the first-stage aqueous solution to the flask and stirring for 10 minutes, the surfactant solution is added, the rotation speed of the stirrer is increased to 550 rpm, and the inside of the system is sufficiently nitrogen while stirring. Replaced with. Then, the flask was immersed in a water bath at 70 ° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry solution.
 別の内容積500mLのビーカーに水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液128.8g(1.44モル)を入れ、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った。その後、水溶性ラジカル重合開始剤として過硫酸カリウム0.090g(0.333ミリモル)、及び内部架橋剤としてエチレングリコールジグリシジルエーテル0.013g(0.075ミリモル)をビーカーに加えて溶解することにより、第2段目の水溶液を調製した。 In another beaker with an internal volume of 500 mL, 128.8 g (1.44 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer was placed, and 27 mass% of water was added while cooling from the outside. 159.0 g of an aqueous sodium oxide solution was added dropwise to neutralize 75 mol%. Then, 0.090 g (0.333 mmol) of potassium persulfate as a water-soluble radical polymerization initiator and 0.013 g (0.075 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent are added to the beaker to dissolve them. , The second stage aqueous solution was prepared.
 撹拌機の回転数を1000rpmとして撹拌しながら、上記フラスコ系内を25℃に冷却した後、第2段目の水溶液の全量を、第1段目の重合スラリー液に添加して、系内を窒素で30分間置換した。その後、再度フラスコを70℃の水浴に浸漬して昇温し、重合反応を60分間行うことにより、含水ゲル状重合体を含むスラリーを得た。 After cooling the inside of the flask system to 25 ° C. while stirring at a stirring speed of 1000 rpm, the entire amount of the aqueous solution of the second stage is added to the polymerized slurry liquid of the first stage to add the inside of the system. It was replaced with nitrogen for 30 minutes. Then, the flask was immersed in a water bath at 70 ° C. again to raise the temperature, and the polymerization reaction was carried out for 60 minutes to obtain a slurry containing a hydrogel polymer.
 その後、125℃に設定した油浴にフラスコを浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら、176.6gの水を系外へ抜き出した。その後、フラスコに無機還元剤として3質量%の亜硫酸ナトリウム水溶液4.42g(1.05ミリモル)、及び4.5質量%のジエチレントリアミン5酢酸5ナトリウム水溶液5.89gを撹拌下で添加することにより、重合体粒子を含むスラリーを得た。 After that, the flask was immersed in an oil bath set at 125 ° C., and 176.6 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.42 g (1.05 mmol) of a 3 mass% sodium sulfite aqueous solution and 5.89 g of a 4.5 mass% diethylenetriamine 5-sodium acetate aqueous solution were added to the flask as an inorganic reducing agent under stirring. A slurry containing polymer particles was obtained.
 その後、125℃に設定した油浴にフラスコを再び浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら、更に67.2g(合計243.8g)の水を系外へ抜き出した。その後、n-ヘプタン及び水を125℃にて蒸発させて乾燥させることによって、重合体粒子を得た。 Then, the flask was immersed again in an oil bath set at 125 ° C., and 67.2 g (243.8 g in total) of water was added to the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. I pulled it out. Then, n-heptane and water were evaporated at 125 ° C. and dried to obtain polymer particles.
[乾燥物の分級]
 重合体粒子30gを小型粉砕機(Wonder Blender WB-1)で10秒間粉砕することにより、重合体粒子粉砕物を得た。目開き850μmの篩、180μmの篩、及び受け器を用いて、重合体粒子粉砕物を分級した。目開き850μmの篩を通過し、180μmの篩上に残留したものを重合体粒子6A、180μmの篩を通過したものを重合体粒子6Bとして回収した。
[Classification of dried products]
A pulverized polymer particle was obtained by pulverizing 30 g of the polymer particles with a small pulverizer (Wonder Blender WB-1) for 10 seconds. The pulverized polymer particles were classified using a sieve having a mesh size of 850 μm, a sieve having a mesh size of 180 μm, and a receiver. Those that passed through a sieve having a mesh size of 850 μm and remained on the sieve of 180 μm were recovered as polymer particles 6A, and those that passed through the sieve of 180 μm were recovered as polymer particles 6B.
製造例7
[単量体水溶液の調製]
 内容積2Lのセパラブルフラスコに340.0g(4.72モル)の100%アクリル酸を入れた。フラスコ内を撹拌しながらイオン交換水293.6gを加えた後、氷浴下で295.1gの48質量%水酸化ナトリウムを滴下することにより、単量体濃度45質量%、中和率75モル%のアクリル酸ナトリウム部分中和液を調製した。
Production example 7
[Preparation of aqueous monomer solution]
340.0 g (4.72 mol) of 100% acrylic acid was placed in a separable flask having an internal volume of 2 L. After adding 293.6 g of ion-exchanged water while stirring the inside of the flask, 295.1 g of 48% by mass sodium hydroxide was added dropwise under an ice bath to obtain a monomer concentration of 45% by mass and a neutralization rate of 75 mol. % Sodium acrylate partially neutralized solution was prepared.
[重合]
 撹拌子(直径8mm、長さ45mm)を2個備えたフッ素樹脂コーティングされた18-8ステンレス製容器(外寸:297mm×232mm×高さ50mm)内に、重合に用いる単量体としてアクリル酸ナトリウム部分中和液(単量体濃度45質量%、アクリル酸の中和率75モル%)980.9g、イオン交換水94.5g、及び内部架橋剤としてエチレングリコールジグリシジルエーテル0.141g(0.809ミリモル)を加えた。その後、撹拌子を回転させ、成分を均一に分散させて混合物(アクリル酸ナトリウム部分中和液濃度38質量%)を得た。その後、該ステンレスバットの上部をポリエチレンフィルムでカバーした。該ステンレスバット内の混合物の温度を25℃に調整後、混合物を窒素置換し溶存酸素量を0.1ppm以下にした。
[polymerization]
Acrylic acid as a monomer used for polymerization in a fluororesin-coated 18-8 stainless steel container (outer dimensions: 297 mm x 232 mm x height 50 mm) equipped with two stirrers (diameter 8 mm, length 45 mm). 980.9 g of sodium partial neutralization solution (monogenic concentration 45% by mass, neutralization rate of acrylic acid 75 mol%), 94.5 g of ion-exchanged water, and 0.141 g (0) of ethylene glycol diglycidyl ether as an internal cross-linking agent. .809 mmol) was added. Then, the stirrer was rotated to uniformly disperse the components to obtain a mixture (sodium acrylate partial neutralization solution concentration 38% by mass). Then, the upper part of the stainless steel vat was covered with a polyethylene film. After adjusting the temperature of the mixture in the stainless steel vat to 25 ° C., the mixture was replaced with nitrogen to reduce the amount of dissolved oxygen to 0.1 ppm or less.
 次いで、上記ステンレスバットに、2質量%過硫酸カリウム水溶液40.44g(2.992ミリモル)、及び0.5質量%L-アスコルビン酸水溶液8.68gを順番に300rpmの撹拌下で滴下することによって、単量体水溶液を調製した。0.5質量%L-アスコルビン酸水溶液滴下直後に重合が開始した。重合開始から9分後、得られた含水ゲル状重合体を容器に入れたまま75℃の水浴に浸して20分間熟成させた。得られた含水ゲル状重合体の厚みは1.7cmであった。 Then, 40.44 g (2.992 mmol) of a 2 mass% potassium persulfate aqueous solution and 8.68 g of a 0.5 mass% L-ascorbic acid aqueous solution were sequentially added dropwise to the stainless steel bat under stirring at 300 rpm. , A monomeric aqueous solution was prepared. Polymerization started immediately after dropping the 0.5 mass% L-ascorbic acid aqueous solution. After 9 minutes from the start of the polymerization, the obtained hydrogel polymer was immersed in a water bath at 75 ° C. in a container and aged for 20 minutes. The thickness of the obtained hydrogel polymer was 1.7 cm.
 製造例1と同様にして含水ゲル状重合体の粗砕を行った。ミートチョッパーに投入した含水ゲル状重合体量は792gであり、ミートチョッパーから排出され回収できた含水ゲル粗砕物は690gであった。 The hydrogel polymer was coarsely crushed in the same manner as in Production Example 1. The amount of the hydrogel-like polymer charged into the meat chopper was 792 g, and the amount of the hydrogel coarse crushed product discharged from the meat chopper and recovered was 690 g.
[含水ゲル粗砕物の乾燥]
 含水ゲル粗砕物を目開き850μmの篩上に広げ、105℃に設定した熱風乾燥機(ADVANTEC社製、型番:DRE320DB)で3時間乾燥させ、ゲル乾燥物を得た。
[Drying hydrogel crushed material]
The hydrogel coarse crushed material was spread on a sieve having an opening of 850 μm and dried in a hot air dryer (manufactured by ADVANTEC, model number: DRE320DB) set at 105 ° C. for 3 hours to obtain a gel-dried product.
 製造例1と同様にして、ゲル乾燥物の粉砕及び分級を行い、目開き850μmの篩を通過し、180μmの篩上に残留したものを重合体粒子7A、180μmの篩を通過したものを重合体粒子7Bとして回収した。 In the same manner as in Production Example 1, the dried gel product was pulverized and classified, passed through a sieve having a mesh size of 850 μm, and the residue remaining on the sieve having a mesh size of 180 μm was passed through a sieve having polymer particles 7A and 180 μm. It was recovered as coalesced particles 7B.
製造例8
 製造例6と同様にして、重合体粒子を含むスラリーを得た。
Production Example 8
A slurry containing polymer particles was obtained in the same manner as in Production Example 6.
 その後、125℃に設定した油浴に、スラリーの入ったフラスコを再び浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら、更に89.1g(合計265.7g)の水を系外へ抜き出した。その後、フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、83℃で2時間保持した。その後、n-ヘプタンと水を125℃にて蒸発させて乾燥させることによって、重合体粒子を得た。 Then, the flask containing the slurry was immersed again in an oil bath set at 125 ° C., and 89.1 g (total 265.7 g) was further immersed while refluxing n-heptane by azeotropic distillation of n-heptane and water. ) Water was extracted from the system. Then, 4.42 g (0.507 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the flask was kept at 83 ° C. for 2 hours. Then, n-heptane and water were evaporated at 125 ° C. and dried to obtain polymer particles.
 この重合体粒子30gを小型粉砕機(Wonder Blender WB-1)で10秒間粉砕することにより、重合体粒子粉砕物を得た。目開き850μmの篩、180μmの篩、及び受け器を用いて、重合体粒子粉砕物を分級した。目開き850μmの篩を通過し、180μmの篩上に残留したものを重合体粒子8A、180μmの篩を通過したものを重合体粒子8Bとして回収した。 30 g of the polymer particles were pulverized with a small crusher (Wonder Blender WB-1) for 10 seconds to obtain a pulverized polymer particle. The pulverized polymer particles were classified using a sieve having a mesh size of 850 μm, a sieve having a mesh size of 180 μm, and a receiver. Those that passed through a sieve having a mesh size of 850 μm and remained on the sieve of 180 μm were recovered as polymer particles 8A, and those that passed through the sieve of 180 μm were recovered as polymer particles 8B.
<実施例1>
 100mlニューディスポカップ(アズワン株式会社製、CODE1-4620-01)に原料微粒子として重合体粒子1Bを3.75g投入した。マグネチックスターラーバー(8mmφ×45mmのリング無し)を用いて原料微粒子を600r/分で撹拌しながら、マクロピペッター(柴田科学株式会社製、10mL容量)を用いて5.63gのイオン交換水を0.1g/秒の速度で1分間滴下した。
<Example 1>
3.75 g of polymer particles 1B were added as raw material fine particles to a 100 ml new disposable cup (made by AS ONE Corporation, CODE1-4620-01). While stirring the raw material fine particles at 600 r / min using a magnetic stirrer bar (8 mmφ x 45 mm without ring), use a macropipettor (manufactured by Shibata Scientific Technology Co., Ltd., 10 mL capacity) to remove 5.63 g of ion-exchanged water. The mixture was added dropwise at a rate of 1 g / sec for 1 minute.
 その後、上記カップ内に原料粒子として重合体粒子1Aを8.75g投入し、更に600r/分で1分間撹拌することにより、凝集塊を得た。スパチュラを用いて該凝集塊の全量をガラスシャーレ(内径5.8cm)に移し、80℃に設定した熱風乾燥機(ADVANTEC社製、型番:DRE320DB)で150分間乾燥させることにより、凝集塊の乾燥体を得た。 After that, 8.75 g of polymer particles 1A were put into the cup as raw material particles, and the mixture was further stirred at 600 r / min for 1 minute to obtain agglomerates. Dry the agglomerates by transferring the entire amount of the agglomerates to a glass petri dish (inner diameter 5.8 cm) using a spatula and drying with a hot air dryer (manufactured by ADVANTEC, model number: DRE320DB) set at 80 ° C. for 150 minutes. I got a body.
 凝集塊の乾燥体からφ3cmを超えないものを採取し、その全量を超遠心粉砕機(ヴァーダー・サイエンティフィック株式会社製、ZM200、6本刃ローター、ローター回転数:6000rpm、スクリーン梯形孔:1.00mm)に投入して粉砕した。凝集塊の乾燥体を粉砕して得られた粒子を、目開き850μmの篩、180μmの篩及び受け器を用いて分級した。分級結果を表2に示す。 Collect the agglutinated agglomerates that do not exceed φ3 cm, and use an ultracentrifuge crusher (manufactured by Verder Scientific Co., Ltd., ZM200, 6-flute rotor, rotor speed: 6000 rpm, screen trapezoidal hole: 1) It was put into 0.00 mm) and crushed. The particles obtained by pulverizing the dried agglomerates were classified using a sieve having an opening of 850 μm, a sieve having a mesh size of 180 μm, and a receiver. The classification results are shown in Table 2.
<実施例2~8及び比較例1~4>
 原料微粒子及び原料粒子として表1に示す重合体粒子を用いて、実施例1と同様の操作を行った。
<Examples 2 to 8 and Comparative Examples 1 to 4>
The same operation as in Example 1 was carried out using the raw material fine particles and the polymer particles shown in Table 1 as the raw material particles.
<粒子の粒度分布>
 粒子の粒度分布は下記手順により室温(25±2℃)、湿度50±10%の環境下で測定した。すなわち、JIS標準篩を上から、目開き850μmの篩、目開き180μmの篩及び受け皿の順に組み合わせた。組み合わせた最上の篩に、測定する粒子を入れ、ロータップ式振とう器(株式会社飯田製作所製)を用いてJIS Z 8815(1994)に準じて分級した。
<Particle particle size distribution>
The particle size distribution of the particles was measured in an environment of room temperature (25 ± 2 ° C.) and humidity of 50 ± 10% according to the following procedure. That is, the JIS standard sieves were combined in this order from the top, a sieve with an opening of 850 μm, a sieve with an opening of 180 μm, and a saucer. The particles to be measured were placed in the best combined sieve and classified according to JIS Z 8815 (1994) using a low-tap shaker (manufactured by Iida Seisakusho Co., Ltd.).
<吸水性樹脂粒子の残存単量体含量>
 吸水性樹脂粒子の残存単量体含量を下記手順により室温(25±2℃)、湿度50±10%の環境下で測定した。内容積500mLのビーカーに生理食塩水500gを入れ、スターラー(スターラー台:小池精密機器製作所製モデルM-16GM、スターラーチップ:直径0.7cm、長さ3cm)を用いて600rpmで撹拌させた。撹拌させている生理食塩水に、測定する粒子2.0gを添加して60分間撹拌させた。ビーカーの内容物を、目開き75μmのJIS標準篩、及びろ紙(ADVANTEC社製、濾紙No.5C)によりろ過して、吸水ゲルとろ液(抽出液)とに分離した。得られたろ液中に溶解している単量体含量を、高速液体クロマトグラフィーにより測定した。測定対象とした残存単量体は、アクリル酸及びそのアルカリ金属塩である。測定値を、測定した粒子質量当たりの値に換算して残存単量体含量(ppm)とした。
[高速液体クロマトグラフィー]
品名:日本ウォーターズ株式会社、ACQUITY(登録商標)UPLC
カラム:UPLC(登録商標)HSST-3(1.8μm、2.1mm×50mm)
検出器:フォトダイオードアレイ(PDA)検出器
キャリア:0.1%リン酸水溶液
<Residual monomer content of water-absorbent resin particles>
The residual monomer content of the water-absorbent resin particles was measured by the following procedure in an environment of room temperature (25 ± 2 ° C.) and humidity of 50 ± 10%. 500 g of physiological saline was placed in a beaker having an internal volume of 500 mL, and the mixture was stirred at 600 rpm using a stirrer (stirrer stand: model M-16GM manufactured by Koike Precision Instruments Mfg. Co., Ltd., stirrer tip: diameter 0.7 cm, length 3 cm). 2.0 g of particles to be measured was added to the stirred physiological saline, and the mixture was stirred for 60 minutes. The contents of the beaker were filtered through a JIS standard sieve having an opening of 75 μm and a filter paper (filter paper No. 5C manufactured by ADVANTEC), and separated into a water-absorbing gel and a filtrate (extract). The content of the monomer dissolved in the obtained filtrate was measured by high performance liquid chromatography. The residual monomer to be measured is acrylic acid and its alkali metal salt. The measured value was converted into a value per measured particle mass and used as the residual monomer content (ppm).
[High Performance Liquid Chromatography]
Product name: Japan Waters Corp., ACQUITY (registered trademark) UPLC
Column: UPLC® HSST-3 (1.8 μm, 2.1 mm × 50 mm)
Detector: Photodiode array (PDA) Detector carrier: 0.1% aqueous phosphoric acid solution
<CRC測定>
 EDANA法(NWSP 241.0.R2(15)、page.769~778)を参考に、原料微粒子のCRCを下記の手順で室温(25±2℃)、湿度50±10%の環境下で測定した。
<CRC measurement>
With reference to the EDANA method (NWSP 241.0.R2 (15), page.769-778), the CRC of the raw material fine particles was measured in an environment of room temperature (25 ± 2 ° C) and humidity of 50 ± 10% by the following procedure. did.
 60mm×170mmの大きさの不織布(製品名:ヒートパックMWA-18、日本製紙パピリア株式会社製)を長手方向に半分に折ることで60mm×85mmの大きさに調整した。長手方向に延びる両辺のそれぞれにおいて不織布同士をヒートシールで圧着することにより60mm×85mmの不織布バッグを作製した(幅5mmの圧着部を長手方向に沿って両辺に形成した)。不織布バッグの内部に上述の原料微粒子を0.2g収容した。その後、短手方向に延びる残りの一辺をヒートシールで圧着することにより不織布バッグを閉じた。 A non-woven fabric with a size of 60 mm x 170 mm (product name: Heat Pack MWA-18, manufactured by Nippon Paper Papylia Co., Ltd.) was folded in half in the longitudinal direction to adjust the size to 60 mm x 85 mm. A 60 mm × 85 mm non-woven fabric bag was produced by crimping the non-woven fabrics to each other on both sides extending in the longitudinal direction with a heat seal (a crimped portion having a width of 5 mm was formed on both sides along the longitudinal direction). 0.2 g of the above-mentioned raw material fine particles was contained in the non-woven fabric bag. Then, the non-woven fabric bag was closed by crimping the remaining one side extending in the lateral direction with a heat seal.
 不織布バッグが折り重ならない状態で、ステンレス製バット(240mm×320mm×45mm)に収容された生理食塩水1000g上に不織布バッグを浮かべることにより、不織布バッグの全体を完全に湿らせた。不織布バッグを生理食塩水に投入してから1分後にスパチュラにて不織布バッグを生理食塩水に浸漬することにより、ゲルが収容された不織布バッグを得た。 The entire non-woven fabric bag was completely moistened by floating the non-woven fabric bag on 1000 g of physiological saline contained in a stainless steel vat (240 mm × 320 mm × 45 mm) without folding the non-woven fabric bag. One minute after the non-woven fabric bag was put into the physiological saline solution, the non-woven fabric bag was immersed in the physiological saline solution with a spatula to obtain a non-woven fabric bag containing the gel.
 不織布バッグを生理食塩水に投入してから30分(浮かべた時間1分、及び浸漬時間29分の合計)後に生理食塩水の中から不織布バッグを取り出した。そして、遠心分離機(株式会社コクサン製、型番:H-122)に不織布バッグを入れた。遠心分離機における遠心力が250Gに到達した後、3分間不織布バッグの脱水を行った。脱水後、ゲルの質量を含む不織布バッグの質量Mを秤量した。原料微粒子を収容することなく不織布バッグに対して上述の操作と同様の操作を施し、不織布バッグの質量Mを測定した。下記式に基づきCRCを算出した。Mは、測定に用いた原料微粒子の質量は0.2gである。結果を表1に示す。
  CRC[g/g]={(M-M)-M}/M
Thirty minutes after the non-woven fabric bag was put into the physiological saline solution (a total of 1 minute of floating time and 29 minutes of immersion time), the non-woven fabric bag was taken out from the physiological saline solution. Then, the non-woven fabric bag was put in a centrifuge (manufactured by Kokusan Co., Ltd., model number: H-122). After the centrifugal force in the centrifuge reached 250 G, the non-woven fabric bag was dehydrated for 3 minutes. After dehydration, it was weighed mass M a nonwoven bag containing the mass of gel. Subjected to the same operation as the aforementioned operation on the woven bags without containing ingredients microparticles was measured mass M b of the nonwoven fabric bag. The CRC was calculated based on the following formula. M c is the mass of raw material particles used for the measurement is 0.2 g. The results are shown in Table 1.
CRC [g / g] = {(M a- M b ) -M c } / M c
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例で得られた吸水性樹脂粒子は、再粉砕を行った後において粒子径180μm未満の微粉の発生量が抑えられていた。 In the water-absorbent resin particles obtained in the examples, the amount of fine powder having a particle diameter of less than 180 μm was suppressed after re-pulverization.

Claims (5)

  1.  粒子径が180μm未満である第1重合体粒子と、粒子径が180μm以上である第2重合体粒子とを混合して凝集塊を得ること、及び、該凝集塊を粉砕することを含み、前記第1重合体粒子における残存単量体量が250ppm以上である、吸水性樹脂粒子の製造方法。 The present invention comprises mixing the first polymer particles having a particle size of less than 180 μm and the second polymer particles having a particle size of 180 μm or more to obtain agglomerates, and crushing the agglomerates. A method for producing water-absorbent resin particles, wherein the amount of residual monomers in the first polymer particles is 250 ppm or more.
  2.  前記第1重合体粒子及び前記第2重合体粒子が、アクリル酸又はその塩の架橋重合体を含む、請求項1に記載の方法。 The method according to claim 1, wherein the first polymer particles and the second polymer particles contain a crosslinked polymer of acrylic acid or a salt thereof.
  3.  前記第2重合体粒子の粒子径が180~850μmである、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the second polymer particles have a particle size of 180 to 850 μm.
  4.  凝集塊を得る工程において、前記第1重合体粒子及び前記第2重合体粒子に加えて、更に水性液を混合することを含む、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, further comprising mixing an aqueous liquid in addition to the first polymer particles and the second polymer particles in the step of obtaining agglomerates.
  5.  粒子径が180μm未満である第1重合体粒子と、粒子径が180μm以上である第2重合体粒子とを混合して凝集塊を得ること、該凝集塊を粉砕すること、及び、前記第1重合体粒子における残存単量体量を250ppm以上に調整することとを含む、吸水性樹脂粒子の微粉発生を抑制する方法。 The first polymer particles having a particle size of less than 180 μm and the second polymer particles having a particle size of 180 μm or more are mixed to obtain an agglomerate, the agglomerates are crushed, and the first A method for suppressing the generation of fine powder of water-absorbent resin particles, which comprises adjusting the amount of residual monomer in the polymer particles to 250 ppm or more.
PCT/JP2020/033754 2019-09-09 2020-09-07 Method for producing water-absorbable resin particles WO2021049451A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021545519A JPWO2021049451A1 (en) 2019-09-09 2020-09-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019163908 2019-09-09
JP2019-163908 2019-09-09

Publications (1)

Publication Number Publication Date
WO2021049451A1 true WO2021049451A1 (en) 2021-03-18

Family

ID=74867034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033754 WO2021049451A1 (en) 2019-09-09 2020-09-07 Method for producing water-absorbable resin particles

Country Status (2)

Country Link
JP (1) JPWO2021049451A1 (en)
WO (1) WO2021049451A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114292421A (en) * 2021-12-27 2022-04-08 万华化学集团股份有限公司 Method for recycling water-absorbent resin with abnormal particle size

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299234A (en) * 2005-02-15 2006-11-02 Nippon Shokubai Co Ltd Water absorbent resin and method for production thereof
JP2008533213A (en) * 2005-03-25 2008-08-21 株式会社日本触媒 Method for producing water-absorbent resin granulated product and water-absorbent resin granulated product
JP2016529368A (en) * 2013-08-27 2016-09-23 エルジー・ケム・リミテッド Method for producing superabsorbent resin
JP2017500381A (en) * 2013-12-11 2017-01-05 エルジー・ケム・リミテッド Superabsorbent resin and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299234A (en) * 2005-02-15 2006-11-02 Nippon Shokubai Co Ltd Water absorbent resin and method for production thereof
JP2008533213A (en) * 2005-03-25 2008-08-21 株式会社日本触媒 Method for producing water-absorbent resin granulated product and water-absorbent resin granulated product
JP2016529368A (en) * 2013-08-27 2016-09-23 エルジー・ケム・リミテッド Method for producing superabsorbent resin
JP2017500381A (en) * 2013-12-11 2017-01-05 エルジー・ケム・リミテッド Superabsorbent resin and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114292421A (en) * 2021-12-27 2022-04-08 万华化学集团股份有限公司 Method for recycling water-absorbent resin with abnormal particle size
CN114292421B (en) * 2021-12-27 2023-12-19 万华化学集团股份有限公司 Method for reutilizing water-absorbent resin with abnormal particle size

Also Published As

Publication number Publication date
JPWO2021049451A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP6913107B2 (en) Manufacturing method of water-absorbent resin powder and its manufacturing equipment
EP2905072B1 (en) Absorbent and manufacturing method therefor
TWI302541B (en) Water-absorbent resin and its production process
JP5718817B2 (en) Method for producing water absorbent resin powder
US9878304B2 (en) Method of manufacturing water-absorbent resin composition
EP3124502B1 (en) Method for producing water-absorbent resin particle
EP3777802A1 (en) Absorbent article
EP3778721A1 (en) Water-absorbing resin particles
EP3896106A1 (en) Water-absorbent resin particles
WO2018174175A1 (en) Method for producing water-absorbing resin
WO2021049451A1 (en) Method for producing water-absorbable resin particles
CN108026195B (en) Method for preparing superabsorbent polymer
CN116897077A (en) Micronizing device for super absorbent polymer hydrogel
CN113785006B (en) Process for the preparation of superabsorbent polymer compositions
EP3896098A1 (en) Absorption body and absorptive article
WO2021235524A1 (en) Method for producing water absorbent resin particles
WO2022025003A1 (en) Water-absorbent resin particles, and method for producing water-absorbent resin particles
WO2021049467A1 (en) Method for producing crosslinked polymer particles, and crosslinked polymer gel
WO2022075256A1 (en) Method for producing water-absorbing resin particles
WO2022075258A1 (en) Method for producing water-absorbing resin particles
CN113748156B (en) Process for the preparation of superabsorbent polymers
WO2022075289A1 (en) Method for producing water-absorbing resin particles
WO2021049487A1 (en) Water absorbent resin particles, absorbent article, and production method for water absorbent resin particles
JP2022088113A (en) Method for producing water-absorbing resin particle
WO2021049493A1 (en) Method for producing water-absorbent resin particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545519

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862804

Country of ref document: EP

Kind code of ref document: A1