WO2021049467A1 - Method for producing crosslinked polymer particles, and crosslinked polymer gel - Google Patents

Method for producing crosslinked polymer particles, and crosslinked polymer gel Download PDF

Info

Publication number
WO2021049467A1
WO2021049467A1 PCT/JP2020/033833 JP2020033833W WO2021049467A1 WO 2021049467 A1 WO2021049467 A1 WO 2021049467A1 JP 2020033833 W JP2020033833 W JP 2020033833W WO 2021049467 A1 WO2021049467 A1 WO 2021049467A1
Authority
WO
WIPO (PCT)
Prior art keywords
crosslinked polymer
gel
polymer particles
polymerization
water absorption
Prior art date
Application number
PCT/JP2020/033833
Other languages
French (fr)
Japanese (ja)
Inventor
志保 岡澤
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2021545532A priority Critical patent/JPWO2021049467A1/ja
Publication of WO2021049467A1 publication Critical patent/WO2021049467A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to a method for producing crosslinked polymer particles and a crosslinked polymer gel.
  • an absorber containing water-absorbent resin particles has been used as an absorbent article for absorbing a liquid containing water as a main component (for example, urine) (see, for example, Patent Document 1 below).
  • the water-absorbent resin particles can be obtained, for example, by using crosslinked polymer particles obtained by coarsely crushing, drying, or the like a crosslinked polymer gel obtained by polymerizing an ethylenically unsaturated monomer.
  • the water-absorbent resin particles constituting the absorber are required to have excellent water-absorbing ability, and the crosslinked polymer particles used for obtaining such water-absorbent resin particles are also excellent. It is required to have water absorption capacity.
  • One aspect of the present invention is to provide a method for producing crosslinked polymer particles capable of suppressing a decrease in water absorption capacity in the crosslinked polymer particles obtained by subjecting the coarsely crushed treatment.
  • Another aspect of the present invention is to provide a crosslinked polymer gel capable of obtaining the crosslinked polymer particles.
  • the present inventor has found that the water absorption capacity of the crosslinked polymer particles may be lowered by coarsely crushing the crosslinked polymer gel, and then the crosslinked polymer gel to be coarsely crushed in the coarse crushing step is specified. It has been found that it is possible to suppress a decrease in water absorption capacity of the crosslinked polymer particles when a test force is applied.
  • One aspect of the present invention includes a rough crushing step of coarsely crushing a crosslinked polymer gel having a structural unit derived from an ethylenically unsaturated monomer, and is obtained after polymerization by the following procedures (1) to (3).
  • a method for producing crosslinked polymer particles having a gel hardness of 70 N or more and less than 450 N (1) A rectangular parallelepiped test piece of 20 mm ⁇ 20 mm ⁇ 17 mm is obtained from the crosslinked polymer gel.
  • the flat surface of the jig having a flat surface is brought into contact with the 20 mm ⁇ 20 mm surface of the test piece from the upper side in the vertical direction.
  • An operation of pushing the jig into the test piece by 15 mm in the vertical direction is performed, and the maximum value of the load applied to the jig during the operation is obtained as the gel hardness after polymerization.
  • Another aspect of the present invention is a crosslinked polymer gel having a structural unit derived from an ethylenically unsaturated monomer, which has a post-polymerization gel hardness of 70 N obtained by the following procedures (1) to (3).
  • a crosslinked polymer gel having a value of more than 450 N and less than 450 N.
  • a rectangular parallelepiped test piece of 20 mm ⁇ 20 mm ⁇ 17 mm is obtained from the crosslinked polymer gel.
  • the flat surface of the jig having a flat surface is brought into contact with the 20 mm ⁇ 20 mm surface of the test piece from the upper side in the vertical direction.
  • An operation of pushing the jig into the test piece by 15 mm in the vertical direction is performed, and the maximum value of the load applied to the jig during the operation is obtained as the gel hardness after polymerization.
  • each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • “Saline” refers to a 0.9% by mass sodium chloride aqueous solution.
  • Room temperature means 25 ° C ⁇ 2 ° C.
  • the method for producing crosslinked polymer particles according to the present embodiment includes a roughing step of coarsely crushing a crosslinked polymer gel having a structural unit derived from an ethylenically unsaturated monomer.
  • the crosslinked polymer gel according to this embodiment has a structural unit derived from an ethylenically unsaturated monomer.
  • the gel hardness after polymerization (hereinafter, sometimes referred to as “test force”) obtained by the following procedures (1) to (3) is 70 N or more and less than 450 N.
  • a rectangular parallelepiped test piece of 20 mm ⁇ 20 mm ⁇ 17 mm is obtained from the crosslinked polymer gel.
  • the difference B water absorption capacity before coarse crushing-
  • the difference B water absorption capacity before coarse crushing-
  • the ratio ([B / A] x 100) of "water absorption capacity after coarse crushing)" is kept to 10% or less, and increase the water absorption capacity with the rough crushing treatment (the above reduction rate is a negative value). There is also).
  • the present inventor has found that when the crosslinked polymer gel imparts the above-mentioned test force, it gives an excellent crude crushing yield when the crosslinked polymer gel is roughly crushed. That is, according to the present embodiment, an excellent crude crushing yield (for example, 50% or more) can be obtained when the crosslinked polymer gel is coarsely crushed.
  • the cause of these effects is not clear, but the present inventor speculates as follows.
  • the cause is not limited to the following contents. That is, when the crosslinked polymer gel giving the above-mentioned test force is subjected to the roughing treatment, the retention of the crosslinked polymer particles during the roughing treatment is suppressed, the load of excessive force is suppressed, and the like, so that the crosslinked polymer particles are subjected to the roughing treatment. It is presumed that a decrease in water absorption capacity can be suppressed and an excellent coarse crushing yield can be obtained.
  • the crosslinked polymer gel When the crosslinked polymer gel that does not give the above-mentioned test force is subjected to the roughing treatment, the crosslinked polymer gel is excessively soft, so that the crosslinked polymer gel is unnecessarily stretched or kneaded in the roughing apparatus.
  • the crosslinked polymer gel is crushed and unnecessary heat (friction heat, compression heat, etc. in the device) is applied to the crosslinked polymer gel during coarse crushing, the crosslinked polymer gel is altered in quality, and the water absorption capacity is likely to decrease and excellent coarseness is obtained. It is presumed that it is difficult to obtain the crushing yield.
  • a rectangular parallelepiped test piece of 20 mm ⁇ 20 mm ⁇ 17 mm is obtained from the crosslinked polymer gel according to the present embodiment.
  • the test piece can be obtained by cutting out from a massive crosslinked polymer gel.
  • a solid gel having no visible voids can be used as the test piece.
  • step (2) the flat surface of the jig (pressure sensitive shaft) having a flat surface is brought into contact with the 20 mm ⁇ 20 mm surface of the test piece from the upper side in the vertical direction.
  • a jig having a flat surface and capable of transmitting the load applied when it comes into contact with the test piece to the detector can be used.
  • the shape of the flat surface is circular, and the diameter of the circular flat surface is 20 mm.
  • the jig includes a flat plate portion (for example, a disk portion) having a flat surface in contact with the test piece. It is preferable that the entire flat plate portion is not immersed in the test piece during the operation of step (3).
  • the thickness of the flat plate portion is 5 mm.
  • the jig is pushed into the test piece by 15 mm in the vertical direction, and the maximum value (unit: N) of the load applied to the jig during the operation is obtained as the above-mentioned test force.
  • N the maximum value of the load applied to the jig during the operation.
  • the test force is 80N or more, 85N or more, 88N or more, 90N or more from the viewpoint of easily suppressing a decrease in water absorption capacity of the crosslinked polymer particles due to the coarse crushing treatment and from the viewpoint of easily obtaining an excellent coarse crushing yield.
  • 95N or more, 100N or more, 103N or more, 105N or more, 110N or more, 120N or more, 130N or more, 140N or more, 150N or more, 160N or more, 170N or more, or 180N or more is preferable.
  • the test force is 400 N or less, 350 N or less, 300 N or less, 250 N or less from the viewpoint of easily suppressing a decrease in water absorption capacity of the crosslinked polymer particles due to the coarse crushing treatment and from the viewpoint of easily obtaining an excellent coarse crushing yield. , 200N or less, 190N or less, or 180N or less is preferable.
  • the test force the test force at room temperature can be used.
  • the method for producing a crosslinked polymer gel according to the present embodiment includes a polymerization step of polymerizing a monomer composition containing an ethylenically unsaturated monomer.
  • the monomer composition may contain water, an organic solvent and the like.
  • the monomer composition may be a monomer aqueous solution.
  • Examples of the polymerization method of the monomer composition include an aqueous solution polymerization method and a bulk polymerization method. Among these, from the viewpoint that good water absorption performance (high water absorption capacity of crosslinked polymer particles, suppression of decrease in water absorption capacity of crosslinked polymer particles due to coarse crushing treatment, etc.) can be easily obtained, an excellent coarse crushing yield is obtained.
  • the aqueous polymerization method is preferable from the viewpoint of easy acquisition and easy control of the polymerization reaction. In the following, a case where the aqueous solution polymerization method is used as an example of the polymerization method will be described.
  • ethylenically unsaturated monomer a water-soluble ethylenically unsaturated monomer can be used.
  • the ethylenically unsaturated monomer include ⁇ , ⁇ -unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, maleic anhydride and fumaric acid, and carboxylic acid-based monomers such as salts thereof;
  • Nonionic monomers such as meta) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate;
  • N, N -Amino group-containing unsaturated monomers such as diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, diethylaminopropyl (meth) acrylamide, and quaternary products
  • Examples thereof include acids, 2- (meth) acrylamide-2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid, and sulfonic acid-based monomers such as salts thereof.
  • the ethylenically unsaturated monomer can contain at least one (meth) acrylic acid compound selected from the group consisting of (meth) acrylic acid and salts thereof.
  • the ethylenically unsaturated monomer may contain both (meth) acrylic acid and a salt of (meth) acrylic acid.
  • salts of ⁇ , ⁇ -unsaturated carboxylic acid include alkali metal salts (sodium salt, potassium salt, etc.), alkaline earth metal salts (calcium salt, etc.) and the like.
  • the ethylenically unsaturated monomer having an acid group may have the acid group neutralized in advance with an alkaline neutralizer.
  • alkaline neutralizing agent include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like.
  • the alkaline neutralizer may be used in the form of an aqueous solution in order to simplify the neutralization operation.
  • the acid group may be neutralized before the polymerization of the ethylenically unsaturated monomer as a raw material, or during or after the polymerization.
  • the degree of neutralization of the ethylenically unsaturated monomer by the alkaline neutralizer has good water absorption performance by increasing the osmotic pressure (high water absorption capacity of the crosslinked polymer particles, water absorption of the crosslinked polymer particles due to the coarse crushing treatment). From the viewpoint of easily obtaining (such as suppressing deterioration of ability), from the viewpoint of easily obtaining an excellent crude crushing yield, and from the viewpoint of suppressing defects caused by the presence of excess alkaline neutralizer, 10 to 100 mol%, 30 It is preferably from 90 mol%, 40 to 85 mol%, or 50 to 80 mol%.
  • the "neutralization degree” is the neutralization degree for all the acid groups of the ethylenically unsaturated monomer.
  • the content of the (meth) acrylic acid compound is preferably in the following range based on the total mass of the monomer composition.
  • the content of the (meth) acrylic acid compound is 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more, or from the viewpoint of easily obtaining an excellent crude crushing yield. 35% by mass or more is preferable.
  • the content of the (meth) acrylic acid compound is 60% by mass or less, 55% by mass or less, 50% by mass or less, 50% by mass from the viewpoint that good water absorption performance (high water absorption ability of crosslinked polymer particles, etc.) can be easily obtained. %, 45% by mass or less, or 40% by mass or less is preferable. From these viewpoints, the content of the (meth) acrylic acid compound is preferably 10 to 60% by mass.
  • the content of the (meth) acrylic acid compound is the total amount of the monomers contained in the monomer composition and / or the total amount of the ethylenically unsaturated monomer contained in the monomer composition. The following range is preferable with reference to.
  • the content of the (meth) acrylic acid compound is preferably 50 mol% or more, 70 mol% or more, 90 mol% or more, 95 mol% or more, 97 mol% or more, or 99 mol% or more.
  • the monomer contained in the monomer composition and / or the ethylenically unsaturated monomer contained in the monomer composition is substantially composed of a (meth) acrylic acid compound (substantially).
  • 100 mol% of the monomer contained in the monomer composition and / or the ethylenically unsaturated monomer contained in the monomer composition is a (meth) acrylic acid compound). It may be.
  • the monomer composition may contain a polymerization initiator.
  • the polymerization of the monomer contained in the monomer composition may be started by adding a polymerization initiator to the monomer composition and, if necessary, heating, irradiating with light or the like.
  • the polymerization initiator include a photopolymerization initiator and a radical polymerization initiator, and a water-soluble radical polymerization initiator is preferable.
  • the polymerization initiator preferably contains at least one selected from the group consisting of azo compounds and peroxides from the viewpoint of easily obtaining good water absorption performance (high water absorption capacity of crosslinked polymer particles, etc.), and is roughly crushed. It is more preferable to contain a peroxide from the viewpoint of easily suppressing a decrease in the water absorption capacity of the crosslinked polymer particles due to the treatment.
  • Examples of the azo compound include 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride and 2,2'-azobis ⁇ 2- [N- (4-chlorophenyl) amidino] propane ⁇ dihydrochloride.
  • Azo-based compounds are 2,2'-azobis (2-methylpropionamide) dihydrochloride and 2,2'-azobis from the viewpoint that good water absorption performance (high water absorption capacity of crosslinked polymer particles, etc.) can be easily obtained.
  • Peroxides include persulfates such as potassium persulfate, ammonium persulfate, sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t-butyl. Examples thereof include organic peroxides such as peroxyacetate, t-butylperoxyisobutyrate, and t-butylperoxypivalate.
  • Peroxides are potassium persulfate, ammonium persulfate, and peroxide from the viewpoint that good water absorption performance (high water absorption capacity of crosslinked polymer particles, etc.) can be easily obtained and excellent crude crushing yield can be easily obtained. It preferably contains at least one selected from the group consisting of sodium sulfate.
  • the content of the polymerization initiator is preferably in the following range with respect to 1 mol of the (meth) acrylic acid compound.
  • the content of the polymerization initiator is excellent from the viewpoint that good water absorption performance (high water absorption capacity of crosslinked polymer particles, suppression of decrease in water absorption capacity of crosslinked polymer particles due to coarse crushing treatment, etc.) can be easily obtained. From the viewpoint of easily obtaining the yield and shortening the polymerization reaction time, 0.001 mmol or more, 0.003 mmol or more, 0.015 mmol or more, 0.03 mmol or more, 0.06 mmol or more, 0.
  • the content of the polymerization initiator is excellent from the viewpoint that good water absorption performance (high water absorption capacity of crosslinked polymer particles, suppression of decrease in water absorption capacity of crosslinked polymer particles due to coarse crushing treatment, etc.) can be easily obtained. From the viewpoint of easily obtaining the yield and avoiding a rapid polymerization reaction, 5 mmol or less, 4 mmol or less, 2 mmol or less, 1 mmol or less, 0.8 mmol or less, 0.5 mmol or less, 0. It is preferably 4 mmol or less, or 0.3 mmol or less. From these viewpoints, the content of the polymerization initiator is preferably 0.001 to 5 mmol. It is easy to adjust the test force by adjusting the content of the polymerization initiator.
  • the monomer composition may contain a reducing agent.
  • the reducing agent include sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, L-ascorbic acid and the like.
  • a polymerization initiator and a reducing agent may be used in combination.
  • the monomer composition may contain an oxidizing agent.
  • the oxidizing agent include hydrogen peroxide, sodium perborate, perphosphoric acid and salts thereof, potassium permanganate and the like.
  • the monomer composition may contain an internal cross-linking agent.
  • the obtained cross-linked polymer can have a cross-linked structure by the internal cross-linking agent in addition to the self-cross-linking structure by the polymerization reaction as the internal cross-linking structure.
  • Examples of the internal cross-linking agent include compounds having two or more reactive functional groups (for example, polymerizable unsaturated groups).
  • Examples of the internal cross-linking agent include di or tri (meth) acrylic acid esters of polyols such as (poly) ethylene glycol, (poly) propylene glycol, trimethylolpropane, glycerin polyoxyethylene glycol, polyoxypropylene glycol, and (poly) glycerin.
  • Unsaturated polyesters obtained by reacting the above polyol with an unsaturated acid (maleic acid, fumaric acid, etc.); (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin Glycidyl group-containing compounds such as diglycidyl ether and glycidyl (meth) acrylate; bisacrylamides such as N, N'-methylenebis (meth) acrylamide; di or tri (meth) obtained by reacting polyepoxide with (meth) acrylic acid.
  • unsaturated acid maleic acid, fumaric acid, etc.
  • the internal cross-linking agent has good water absorption performance (high cross-linked polymer particles).
  • the content of the internal cross-linking agent is preferably in the following range with respect to 1 mol of the (meth) acrylic acid compound.
  • the content of the internal cross-linking agent is excellent from the viewpoint that good water absorption performance (high water absorption capacity of the cross-linked polymer particles, suppression of deterioration of the water absorption capacity of the cross-linked polymer particles due to the coarse crushing treatment, etc.) can be easily obtained. From the viewpoint of easily obtaining the crude crushing yield, 0.01 mmol or more, 0.05 mmol or more, 0.08 mmol or more, 0.1 mmol or more, 0.15 mmol or more, 0.2 mmol or more, 0.5 mmol As mentioned above, 1 mmol or more, or 1.5 mmol or more is preferable.
  • the content of the internal cross-linking agent is 10 mmol or less from the viewpoint that good water absorption performance (high water absorption capacity of the cross-linked polymer particles, suppression of deterioration of the water absorption capacity of the cross-linked polymer particles due to the coarse crushing treatment, etc.) can be easily obtained. , 8 mmol or less, 5 mmol or less, 3 mmol or less, or 2 mmol or less is preferable. From these viewpoints, the content of the internal cross-linking agent is preferably 0.01 to 10 mmol. It is easy to adjust the test force by adjusting the content of the internal cross-linking agent.
  • the monomer composition may contain additives such as a chain transfer agent, a thickener, and an inorganic filler as components different from the above-mentioned components.
  • a chain transfer agent include thiols, thiol acids, secondary alcohols, hypophosphorous acid, phosphorous acid, achlorine and the like.
  • the thickener include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, polyethylene glycol, polyacrylic acid, neutralized polyacrylic acid, polyacrylamide and the like.
  • the inorganic filler include metal oxides, ceramics, and viscous minerals.
  • a polymerization method for aqueous solution polymerization As a polymerization method for aqueous solution polymerization, a static polymerization method in which the monomer composition is polymerized without stirring (for example, a static state); a stirring polymerization method in which the monomer composition is polymerized while stirring in a reaction apparatus. And so on.
  • a static polymerization method when the polymerization is completed, a single block-shaped gel occupying substantially the same volume as the monomer composition present in the reaction vessel is obtained.
  • the form of polymerization may be batch, semi-continuous, continuous, or the like.
  • the polymerization reaction can be carried out while continuously supplying the monomer composition to the continuous polymerization apparatus to continuously obtain a gel.
  • the polymerization temperature varies depending on the polymerization initiator used, but from the viewpoint of rapidly advancing the polymerization, increasing the productivity by shortening the polymerization time, removing the heat of polymerization, and facilitating the smooth reaction, 0 to 0 to It is preferably 130 ° C. or 10 to 110 ° C.
  • the maximum value of the polymerization temperature may be 25 ° C. or higher, 30 ° C. or higher, 40 ° C. or higher, 50 ° C. or higher, or 60 ° C. or higher.
  • the maximum value of the polymerization temperature may be 110 ° C. or lower, 105 ° C. or lower, 100 ° C. or lower, or 95 ° C. or lower.
  • the maximum value of the polymerization temperature may be 25 to 110 ° C.
  • the polymerization time is appropriately set depending on the type and amount of the polymerization initiator used, the reaction temperature, and the like, but is preferably 1 to 200 minutes or 5 to 100 minutes.
  • the crosslinked polymer particles according to this embodiment can have a structural unit derived from an ethylenically unsaturated monomer.
  • the crosslinked polymer particles according to the present embodiment are, for example, crosslinked polymer particles obtained by coarsely crushing, drying and pulverizing the crosslinked polymer gel according to the present embodiment, and the coarsely crushed product obtained in the coarse crushing step is used. It can be obtained by drying (for example, hot air drying at 180 ° C. for 30 minutes) and pulverization (for example, pulverization with a centrifugal pulverizer).
  • the crosslinked polymer particles according to the present embodiment may be obtained by drying and pulverizing the coarse crushed product and then classifying the pulverized product with a sieve having an opening of 850 ⁇ m and a sieve having an opening of 106 ⁇ m.
  • Examples of the shape of the crosslinked polymer particles according to the present embodiment include substantially spherical, crushed, and granular shapes.
  • the crosslinked polymer particles according to the present embodiment may be any as long as they can retain water, and the liquid to be absorbed may contain water.
  • the crosslinked polymer particles according to the present embodiment can absorb body fluids such as urine, sweat, and blood (for example, menstrual blood).
  • the crosslinked polymer particles according to this embodiment can be used as a constituent component of the absorber. This embodiment can be used in the fields of, for example, sanitary materials such as disposable diapers and sanitary products; agricultural and horticultural materials such as water retention agents and soil conditioners; and industrial materials such as water stop agents and dew condensation inhibitors.
  • the crosslinked polymer particles according to the present embodiment are a gel stabilizer; a metal chelating agent (ethylenediamine tetraacetic acid and a salt thereof, diethylenetriamine 5 acetic acid and a salt thereof (for example, diethylenetriamine 5 sodium acetate), etc.); a fluidity improver (lubricant).
  • a metal chelating agent ethylenediamine tetraacetic acid and a salt thereof, diethylenetriamine 5 acetic acid and a salt thereof (for example, diethylenetriamine 5 sodium acetate), etc.
  • a fluidity improver lubricant
  • Other components such as may be further contained.
  • Other components may be located inside, on the surface, or both of crosslinked polymers having structural units derived from ethylenically unsaturated monomers.
  • the crosslinked polymer particles according to the present embodiment may contain inorganic particles arranged on the surface of the crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer.
  • the inorganic particles can be arranged on the surface of the crosslinked polymer.
  • the inorganic particles include silica particles such as amorphous silica.
  • the water absorption capacity of the crosslinked polymer particles according to the present embodiment in the physiological saline solution may be in the following range.
  • Water absorption capacity is 30 g / g or more, 35 g / g or more, 40 g / g or more, 45 g / g or more, 50 g / g or more, 55 g / g or more, 60 g / g or more, 65 g / g or more, 65.3 g / g or more. Or, it may be 70 g / g or more.
  • the water absorption capacity may be 80 g / g or less, 77 g / g or less, 75 g / g or less, or 72 g / g or less.
  • the water absorption capacity may be 30 to 80 g / g or 50 to 80 g / g.
  • the water absorption capacity the water absorption capacity at room temperature can be used.
  • the water absorption capacity can be measured by the method described in Examples described later.
  • the medium particle size of the crosslinked polymer particles (crosslinked polymer particles before water absorption) according to the present embodiment may be in the following range.
  • the medium particle size may be 200 ⁇ m or more, 250 ⁇ m or more, 300 ⁇ m or more, or 350 ⁇ m or more.
  • the medium particle size may be 600 ⁇ m or less, 550 ⁇ m or less, 500 ⁇ m or less, 450 ⁇ m or less, or 400 ⁇ m or less. From these viewpoints, the medium particle size may be 100 to 600 ⁇ m.
  • the crosslinked polymer particles according to the present embodiment may have a desired particle size distribution at the time of being obtained by the production method described later, but the particle size distribution can be adjusted by performing an operation such as particle size adjustment using classification with a sieve. May be adjusted.
  • the method for producing the crosslinked polymer particles according to the present embodiment includes a gel preparation step for producing a crosslinked polymer gel by the method for producing a crosslinked polymer gel according to the present embodiment, and a crude product by coarsely crushing the crosslinked polymer gel.
  • a coarse crushing step for obtaining for example, a gel crushed product
  • a drying step for drying the crushed product to obtain a dried product for example, a crushing step for crushing the dried product to obtain a crushed product.
  • the method for producing crosslinked polymer particles according to the present embodiment may include a classification step of classifying the pulverized product (for example, classifying the pulverized product with a sieve having an opening of 850 ⁇ m and a sieve having an opening of 106 ⁇ m) after the pulverization step. ..
  • a kneader pressurized kneader, double-armed kneader, etc.
  • a meat chopper a cutter mill, a pharma mill, or the like
  • a pharma mill a pharma mill, or the like
  • a dried product for example, gel dried product
  • a dried product can be obtained by removing liquid components (water, etc.) in the pyroclastic material by heating and / or blowing air.
  • the drying method may be natural drying, heat drying, spray drying, freeze drying or the like.
  • the drying temperature is, for example, 70 to 250 ° C.
  • Crushers in the crushing process include roller mills (roll mills), stamp mills, jet mills, high-speed rotary crushers (hammer mills, pin mills, rotor beater mills, etc.), container-driven mills (rotary mills, vibration mills, planetary mills, etc.). ) And so on.
  • the water-absorbent resin particles according to the present embodiment can be obtained by cross-linking the crosslinked polymer particles obtained in the coarse crushing step (crosslinking step).
  • the cross-linking may be surface cross-linking to the cross-linked polymer particles.
  • the cross-linking can be performed, for example, by reacting a cross-linking agent (for example, a surface cross-linking agent) with the cross-linked polymer particles.
  • the cross-linking density of the cross-linked polymer particles (for example, the cross-linking density near the surface of the cross-linked polymer particles) is increased, so that the water absorption performance (water absorption amount under load in the water-absorbent resin particles, etc.) It is easy to increase the water absorption rate, etc.).
  • the surface cross-linking agent may contain, for example, two or more functional groups (reactive functional groups) having reactivity with a functional group derived from an ethylenically unsaturated monomer.
  • functional groups reactive functional groups
  • examples of the surface cross-linking agent include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol di.
  • Polyglycidyl compounds such as glycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin, epibromhydrin, ⁇ - Haloepoxy compounds such as methyl epichlorohydrin; compounds having two or more reactive functional groups such as isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-oxetane methanol, 3-ethyl-3- Oxetane compounds such as oxetane methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl-3-
  • polyglycidyl compounds such as (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and (poly) glycerol polyglycidyl ether.
  • polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, polyoxyethylene glycol, polyoxypropylene glycol are preferable, and polyglycidyl compounds are more preferable.
  • These surface cross-linking agents may be used alone or in combination of two or more.
  • a polyglycidyl compound and polyols may be used in combination.
  • the amount of the surface cross-linking agent added is preferably 0, with respect to 100 mol of the total amount of the ethylenically unsaturated monomer usually used for the polymerization, from the viewpoint of appropriately increasing the cross-linking density in the vicinity of the surface of the cross-linked polymer particles. It is 0001 to 1 mol, more preferably 0.001 to 0.5 mol.
  • the surface cross-linking step is preferably carried out in the presence of water in the range of 1 to 200 parts by mass with respect to 100 parts by mass of the ethylenically unsaturated monomer.
  • the amount of water can be adjusted by appropriately using a water-soluble organic solvent such as water and / or alcohol.
  • a water-soluble organic solvent such as water and / or alcohol.
  • the treatment temperature of the surface cross-linking agent is appropriately set according to the surface cross-linking agent used, and may be 20 to 250 ° C., and the treatment time is preferably 1 to 200 minutes, more preferably 5 to 100 minutes.
  • the liquid absorbing method according to the present embodiment includes a step of bringing the liquid to be absorbed into contact with the crosslinked polymer particles according to the present embodiment. According to this embodiment, it is possible to provide the application of the crosslinked polymer particles to the liquid absorbing liquid.
  • the present embodiment it is a method for adjusting the water absorption capacity of the crosslinked polymer particles (a method for suppressing a decrease in the water absorption capacity due to the coarse crushing treatment), and the crosslinked polymer gel according to the present embodiment is described above (1). It is possible to provide a method for adjusting the water absorption capacity, which comprises an adjusting step for adjusting the test force measured by the procedure of (3). In the adjusting step, the test force can be adjusted to each of the above ranges (for example, 70 N or more and less than 450 N).
  • the crosslinked polymer gel according to the present embodiment includes a selection step of selecting crosslinked polymer particles based on the test force measured by the above-mentioned procedures (1) to (3).
  • a method for producing coalesced particles can be provided.
  • the test force can be adjusted to each of the above ranges (for example, 70 N or more and less than 450 N).
  • Example 1 Preparation of hydrogel polymer> (Example 1) 340.0 g (4.72 mol) of 100% acrylic acid was placed in a 2 L separable flask. After adding 293.6 g of ion-exchanged water while stirring the inside of the separable flask, 295.1 g of 48% by mass sodium hydroxide was added dropwise under an ice bath to obtain a monomer concentration of 45% by mass of sodium acrylate. A partially neutralized solution was prepared.
  • Partial neutralization of the acrylic acid in an 18-8 stainless steel container (stainless steel bat, outer dimensions: 297 mm x 232 mm x height 50 mm) equipped with two stir bars (diameter 8 mm, length 45 mm) and coated with fluororesin.
  • an 18-8 stainless steel container stainless steel bat, outer dimensions: 297 mm x 232 mm x height 50 mm
  • two stir bars (diameter 8 mm, length 45 mm) and coated with fluororesin.
  • 908.9 g of the liquid 133.8 g of ion-exchanged water, and 0.141 g of ethylene glycol diglycidyl ether (internal cross-linking agent, 0.809 mmol)
  • rotate the stirrer to uniformly disperse the components. Obtained a mixture.
  • the upper part of the container was covered with a polyethylene film.
  • the amount of dissolved oxygen was adjusted to 0.1 ppm or less by substituting nitrogen in the mixture. Then, 8.09 g of a 2 mass% potassium persulfate aqueous solution (radical polymerization initiator, 0.599 mmol) and 1.74 g of a 0.5 mass% L-ascorbic acid aqueous solution were sequentially added to a syringe (Termo Co., Ltd.) under stirring at 300 rpm.
  • a monomer aqueous solution was prepared by dropping the mixture using a disposable syringe having a volume of 50 mL. The acrylic acid concentration in the aqueous monomer solution was 38.9%.
  • the polymerization started immediately after the 0.5 mass% L-ascorbic acid aqueous solution or the like was added dropwise.
  • the viscosity of the aqueous monomer solution increased and the stirrer stopped.
  • the polymerization temperature reached a peak temperature of 64 ° C. 22 minutes after the addition of a 0.5 mass% L-ascorbic acid aqueous solution or the like.
  • the container was immersed in a water bath at 75 ° C. and aged for 20 minutes to obtain a hydrogel polymer.
  • the thickness of the hydrogel polymer was about 17 mm.
  • Example 2 The amount of ion-exchanged water was changed from 133.8 g to 124.0 g, and the amount of 2 mass% potassium persulfate aqueous solution was changed from 8.09 g (0.599 mmol) to 16.18 g (1.197 mmol).
  • a monomer aqueous solution was prepared by performing the same operation as in Example 1 except that the amount of the 0.5 mass% L-ascorbic acid aqueous solution was changed from 1.74 g to 3.47 g. Then, a hydrogel-like polymer was obtained by performing the same operation as in Example 1. As a result of the polymerization, the polymerization temperature reached a peak temperature of 85 ° C. 11 minutes after the addition of a 0.5 mass% L-ascorbic acid aqueous solution or the like.
  • Example 3 The amount of ion-exchanged water was changed from 133.8 g to 123.8 g, and the amount of 2 mass% potassium persulfate aqueous solution was changed from 8.09 g (0.599 mmol) to 16.18 g (1.197 mmol). That, the amount of 0.5 mass% L-ascorbic acid aqueous solution was changed from 1.74 g to 3.47 g, and the amount of ethylene glycol diglycidyl ether was changed from 0.141 g (0.809 mmol) to 0.283 g.
  • a monomer aqueous solution was prepared by performing the same operation as in Example 1 except that the value was changed to (1.625 mmol).
  • a hydrogel-like polymer was obtained by performing the same operation as in Example 1.
  • the polymerization temperature reached the peak temperature of 95 ° C. 13 minutes after the addition of a 0.5 mass% L-ascorbic acid aqueous solution or the like.
  • Example 4 The amount of ion-exchanged water was changed from 133.8 g to 127.3 g, and instead of 8.09 g (0.599 mmol) of the 2 mass% potassium persulfate aqueous solution, 14.25 g (1.) of the 2 mass% sodium persulfate aqueous solution. 197 mmol) was used, and the amount of the 0.5 mass% L-ascorbic acid aqueous solution was changed from 1.74 g to 3.47 g. An aqueous solution was prepared. Then, a hydrogel-like polymer was obtained by performing the same operation as in Example 1. As a result of the polymerization, the polymerization temperature reached a peak temperature of 86 ° C. 11 minutes after the addition of a 0.5 mass% L-ascorbic acid aqueous solution or the like.
  • Example 5 The amount of ion-exchanged water was changed from 133.8 g to 122.9 g, and the amount of 2 mass% potassium persulfate aqueous solution was changed from 8.09 g (0.599 mmol) to 16.18 g (1.197 mmol). That, the amount of the 0.5 mass% L-ascorbic acid aqueous solution was changed from 1.74 g to 3.47 g, and the ethylene glycol diglycidyl ether was changed from 0.141 g (0.809 mmol) to 1.240 g (7).
  • a monomer aqueous solution was prepared by carrying out the same operation as in Example 1 except that it was changed to .119 mmol).
  • a hydrogel-like polymer was obtained by performing the same operation as in Example 1.
  • the polymerization temperature reached a peak temperature of 98 ° C. 10 minutes after the addition of a 0.5 mass% L-ascorbic acid aqueous solution or the like.
  • Example 6 The amount of ion-exchanged water was changed from 133.8 g to 94.5 g, and the amount of 2 mass% potassium persulfate aqueous solution was changed from 8.09 g (0.599 mmol) to 40.44 g (2.992 mmol).
  • a monomer aqueous solution was prepared by performing the same operation as in Example 1 except that the amount of the 0.5 mass% L-ascorbic acid aqueous solution was changed from 1.74 g to 8.68 g. Then, a hydrogel-like polymer was obtained by performing the same operation as in Example 1. As a result of the polymerization, the polymerization temperature reached a peak temperature of 102 ° C. 6 minutes after the addition of a 0.5 mass% L-ascorbic acid aqueous solution or the like.
  • Example 7 The amount of ion-exchanged water was changed from 133.8 g to 65.0 g, and the amount of 2 mass% potassium persulfate aqueous solution was changed from 8.09 g (0.599 mmol) to 64.71 g (4.788 mmol).
  • a monomer aqueous solution was prepared by performing the same operation as in Example 1 except that the amount of the 0.5 mass% L-ascorbic acid aqueous solution was changed from 1.74 g to 13.89 g. Then, a hydrogel-like polymer was obtained by performing the same operation as in Example 1. As a result of the polymerization, the polymerization temperature reached the peak temperature of 107 ° C. 4 minutes after the addition of a 0.5 mass% L-ascorbic acid aqueous solution or the like.
  • a hydrogel-like polymer was obtained by performing the same operation as in Example 1.
  • the polymerization temperature reached the peak temperature of 104 ° C. 4 minutes after the addition of a 0.5 mass% L-ascorbic acid aqueous solution or the like.
  • the polymerization started immediately after dropping 0.35% by mass hydrogen peroxide solution or the like. Then, a hydrogel-like polymer was obtained by performing the same operation as in Example 1. As a result of the polymerization, the polymerization temperature reached the peak temperature of 104 ° C. 2 minutes after the addition of 0.35 mass% hydrogen peroxide solution or the like.
  • ⁇ Compression test> By cutting the hydrogel polymer, a rectangular parallelepiped test piece of 20 mm ⁇ 20 mm ⁇ 17 mm was obtained.
  • a measuring instrument 100 having a load cell 10 having a capacity of 500 N (measurement upper limit setting: 450 N) and a pressure sensitive shaft 20 (a rod-shaped jig having a disk 30 having a diameter of 20 mm and a thickness of 5 mm at the tip).
  • EZtest product name
  • model number: EZ-SX model number
  • the test piece 40 was placed on the measuring table 50 of the measuring instrument 100 so that the 20 mm ⁇ 20 mm surface of the test piece 40 faced upward in the vertical direction.
  • Shimadzu autograph software "Trapezium X" (manufactured by Shimadzu Corporation)
  • the position of the pressure sensitive shaft 20 in the vertical direction is adjusted, and the center of the test piece 40 is located at the center of the disk 30 of the pressure sensitive shaft 20. Adjusted to be positioned.
  • the pressure sensitive shaft 20 was lowered until the load cell 10 sensed a test force of 0.01 N, and the disk 30 of the pressure sensitive shaft 20 and the surface of the test piece 40 were brought into contact with each other.
  • the position of the pressure sensitive shaft 20 was adjusted to the measurement start position by raising the pressure sensitive shaft 20 by 0.05 mm.
  • the disk 30 was pushed into the test piece 40 by 15 mm at a scanning speed of 30 mm / min, and the maximum value (room temperature) of the test force at this time was measured.
  • the results are shown in Table 1.
  • the pulverized product was classified by a sieve having an opening of 850 ⁇ m and a sieve having an opening of 106 ⁇ m to recover the dried pulverized product of the pre-grinding hydrogel remaining on the sieve having an opening of 106 ⁇ m.
  • the pulverized product was classified by a sieve having an opening of 850 ⁇ m and a sieve having an opening of 106 ⁇ m to recover the dried pulverized product (crosslinked polymer particles) of the hydrous gel after coarse crushing remaining on the sieve having an opening of 106 ⁇ m. ..
  • 10 load cell, 20 ... pressure sensitive shaft, 30 ... disk, 40 ... test piece, 50 ... measuring table, 100 ... measuring instrument.

Abstract

A method for producing crosslinked polymer particles comprising a coarse grinding step for coarse grinding a crosslinked polymer gel that has a structural unit derived from an ethylenically unsaturated monomer, wherein the gel hardness after polymerization, as obtained by the procedures (1) to (3) described below, is not less than 70 N but less than 450 N. (1) A test piece having a rectangular solid shape of 20 mm × 20 mm × 17 mm is obtained from the crosslinked polymer gel. (2) A flat surface of a jig having the flat surface is brought into contact with the 20 mm × 20 mm surface of the test piece from the upper side in the vertical direction. (3) An operation wherein the jig is pressed into the test piece by 15 mm in the vertical direction is performed, and the maximum value of the load undertaken by the jig during this operation is obtained as the above-described gel hardness after polymerization.

Description

架橋重合体粒子の製造方法、及び、架橋重合体ゲルMethod for producing crosslinked polymer particles and crosslinked polymer gel
 本発明は、架橋重合体粒子の製造方法、及び、架橋重合体ゲルに関する。 The present invention relates to a method for producing crosslinked polymer particles and a crosslinked polymer gel.
 従来、水を主成分とする液体(例えば尿)を吸収するための吸収性物品には、吸水性樹脂粒子を含有する吸収体が用いられている(例えば、下記特許文献1参照)。吸水性樹脂粒子は、例えば、エチレン性不飽和単量体を重合して得られる架橋重合体ゲルを粗砕、乾燥等して得られる架橋重合体粒子を用いて得ることができる。 Conventionally, an absorber containing water-absorbent resin particles has been used as an absorbent article for absorbing a liquid containing water as a main component (for example, urine) (see, for example, Patent Document 1 below). The water-absorbent resin particles can be obtained, for example, by using crosslinked polymer particles obtained by coarsely crushing, drying, or the like a crosslinked polymer gel obtained by polymerizing an ethylenically unsaturated monomer.
特開平06-345819号公報Japanese Unexamined Patent Publication No. 06-345819
 水を主成分とする液体が吸収性物品に供された際、吸収性物品の吸収体に液体が充分吸収されなければ、余剰の液体は吸収体物品の表面を流れる等して吸収性物品の外に漏れるといった不具合が生じ得る。そのため、吸収体を構成する吸水性樹脂粒子に対しては、優れた吸水能を有することが求められ、このような吸水性樹脂粒子を得るために用いられる架橋重合体粒子に対しても、優れた吸水能を有することが求められる。 When a liquid containing water as a main component is provided to an absorbent article, if the liquid is not sufficiently absorbed by the absorbent body of the absorbent article, the excess liquid flows on the surface of the absorbent article and the absorbent article is used. Problems such as leakage to the outside may occur. Therefore, the water-absorbent resin particles constituting the absorber are required to have excellent water-absorbing ability, and the crosslinked polymer particles used for obtaining such water-absorbent resin particles are also excellent. It is required to have water absorption capacity.
 架橋重合体粒子を得るに際して粗砕処理を行うことにより、その後の乾燥処理において好適な乾燥効率で均一に乾燥しやすいことから、性能が安定した架橋重合体粒子を短時間に得ることができる。しかしながら、当該粗砕を行うことによって架橋重合体粒子の吸水能が低下することを避けることが求められる。 By performing the coarse crushing treatment when obtaining the crosslinked polymer particles, it is easy to uniformly dry the crosslinked polymer particles with a suitable drying efficiency in the subsequent drying treatment, so that the crosslinked polymer particles having stable performance can be obtained in a short time. However, it is required to avoid a decrease in the water absorption capacity of the crosslinked polymer particles due to the coarse crushing.
 本発明の一側面は、粗砕処理を施して得られる架橋重合体粒子において吸水能の低下を抑制することが可能な架橋重合体粒子の製造方法を提供することを目的とする。本発明の他の一側面は、前記架橋重合体粒子を得ることが可能な架橋重合体ゲルを提供することを目的とする。 One aspect of the present invention is to provide a method for producing crosslinked polymer particles capable of suppressing a decrease in water absorption capacity in the crosslinked polymer particles obtained by subjecting the coarsely crushed treatment. Another aspect of the present invention is to provide a crosslinked polymer gel capable of obtaining the crosslinked polymer particles.
 本発明者は、架橋重合体ゲルを粗砕することによって架橋重合体粒子の吸水能が低下する場合があることを見出した上で、粗砕工程において粗砕される架橋重合体ゲルが特定の試験力を与える場合に架橋重合体粒子における吸水能の低下を抑制可能であることを見出した。 The present inventor has found that the water absorption capacity of the crosslinked polymer particles may be lowered by coarsely crushing the crosslinked polymer gel, and then the crosslinked polymer gel to be coarsely crushed in the coarse crushing step is specified. It has been found that it is possible to suppress a decrease in water absorption capacity of the crosslinked polymer particles when a test force is applied.
 本発明の一側面は、エチレン性不飽和単量体に由来する構造単位を有する架橋重合体ゲルを粗砕する粗砕工程を備え、下記(1)~(3)の手順により得られる重合後ゲル硬度が70N以上450N未満である、架橋重合体粒子の製造方法を提供する。
(1)前記架橋重合体ゲルから20mm×20mm×17mmの直方体状の試験片を得る。
(2)平坦面を有する治具の前記平坦面を前記試験片の20mm×20mmの面に鉛直方向の上側から接触させる。
(3)鉛直方向に前記治具を前記試験片に15mm押し込む操作を行い、当該操作中に前記治具に負荷される荷重の最大値を前記重合後ゲル硬度として得る。
One aspect of the present invention includes a rough crushing step of coarsely crushing a crosslinked polymer gel having a structural unit derived from an ethylenically unsaturated monomer, and is obtained after polymerization by the following procedures (1) to (3). Provided is a method for producing crosslinked polymer particles having a gel hardness of 70 N or more and less than 450 N.
(1) A rectangular parallelepiped test piece of 20 mm × 20 mm × 17 mm is obtained from the crosslinked polymer gel.
(2) The flat surface of the jig having a flat surface is brought into contact with the 20 mm × 20 mm surface of the test piece from the upper side in the vertical direction.
(3) An operation of pushing the jig into the test piece by 15 mm in the vertical direction is performed, and the maximum value of the load applied to the jig during the operation is obtained as the gel hardness after polymerization.
 本発明の他の一側面は、エチレン性不飽和単量体に由来する構造単位を有する架橋重合体ゲルであって、下記(1)~(3)の手順により得られる重合後ゲル硬度が70N以上450N未満である、架橋重合体ゲルを提供する。
(1)前記架橋重合体ゲルから20mm×20mm×17mmの直方体状の試験片を得る。
(2)平坦面を有する治具の前記平坦面を前記試験片の20mm×20mmの面に鉛直方向の上側から接触させる。
(3)鉛直方向に前記治具を前記試験片に15mm押し込む操作を行い、当該操作中に前記治具に負荷される荷重の最大値を前記重合後ゲル硬度として得る。
Another aspect of the present invention is a crosslinked polymer gel having a structural unit derived from an ethylenically unsaturated monomer, which has a post-polymerization gel hardness of 70 N obtained by the following procedures (1) to (3). Provided is a crosslinked polymer gel having a value of more than 450 N and less than 450 N.
(1) A rectangular parallelepiped test piece of 20 mm × 20 mm × 17 mm is obtained from the crosslinked polymer gel.
(2) The flat surface of the jig having a flat surface is brought into contact with the 20 mm × 20 mm surface of the test piece from the upper side in the vertical direction.
(3) An operation of pushing the jig into the test piece by 15 mm in the vertical direction is performed, and the maximum value of the load applied to the jig during the operation is obtained as the gel hardness after polymerization.
 上述の架橋重合体粒子の製造方法、及び、上述の架橋重合体ゲルによれば、粗砕処理を施して得られる架橋重合体粒子において吸水能の低下を抑制することができる。 According to the above-mentioned method for producing crosslinked polymer particles and the above-mentioned crosslinked polymer gel, it is possible to suppress a decrease in water absorption capacity of the crosslinked polymer particles obtained by performing a coarse crushing treatment.
 本発明の一側面によれば、粗砕処理を施して得られる架橋重合体粒子において吸水能の低下を抑制することが可能な架橋重合体粒子の製造方法を提供することができる。本発明の他の一側面によれば、前記架橋重合体粒子を得ることが可能な架橋重合体ゲルを提供することができる。 According to one aspect of the present invention, it is possible to provide a method for producing crosslinked polymer particles capable of suppressing a decrease in water absorption capacity in the crosslinked polymer particles obtained by subjecting the coarse crushing treatment. According to another aspect of the present invention, it is possible to provide a crosslinked polymer gel capable of obtaining the crosslinked polymer particles.
圧縮試験の試験内容を説明するための図である。It is a figure for demonstrating the test content of a compression test. 圧縮試験の試験内容を説明するための図である。It is a figure for demonstrating the test content of a compression test.
 以下、本発明の実施形態について詳細に説明する。但し、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.
 本明細書において、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことをいう。本明細書に例示する材料は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「生理食塩水」とは、0.9質量%塩化ナトリウム水溶液をいう。「室温」は、25℃±2℃を意味する。 In this specification, "acrylic" and "methacryl" are collectively referred to as "(meth) acrylic". Similarly, "acrylate" and "methacrylate" are also referred to as "(meth) acrylate". In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. "Water-soluble" means that it exhibits a solubility in water of 5% by mass or more at 25 ° C. The materials exemplified in the present specification may be used alone or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. "Saline" refers to a 0.9% by mass sodium chloride aqueous solution. "Room temperature" means 25 ° C ± 2 ° C.
 本実施形態に係る架橋重合体粒子の製造方法は、エチレン性不飽和単量体に由来する構造単位を有する架橋重合体ゲルを粗砕する粗砕工程を備える。本実施形態に係る架橋重合体ゲルは、エチレン性不飽和単量体に由来する構造単位を有する。本実施形態においては、下記(1)~(3)の手順により得られ重合後ゲル硬度(以下、場合により「試験力」という)が70N以上450N未満である。
(1)架橋重合体ゲルから20mm×20mm×17mmの直方体状の試験片を得る。
(2)平坦面を有する治具の前記平坦面を試験片の20mm×20mmの面に鉛直方向の上側から接触させる。
(3)鉛直方向に治具を試験片に15mm押し込む操作を行い、当該操作中に治具に負荷される荷重の最大値を上述の重合後ゲル硬度(試験力)として得る。
The method for producing crosslinked polymer particles according to the present embodiment includes a roughing step of coarsely crushing a crosslinked polymer gel having a structural unit derived from an ethylenically unsaturated monomer. The crosslinked polymer gel according to this embodiment has a structural unit derived from an ethylenically unsaturated monomer. In the present embodiment, the gel hardness after polymerization (hereinafter, sometimes referred to as “test force”) obtained by the following procedures (1) to (3) is 70 N or more and less than 450 N.
(1) A rectangular parallelepiped test piece of 20 mm × 20 mm × 17 mm is obtained from the crosslinked polymer gel.
(2) The flat surface of the jig having a flat surface is brought into contact with the 20 mm × 20 mm surface of the test piece from the upper side in the vertical direction.
(3) An operation of pushing the jig vertically into the test piece by 15 mm is performed, and the maximum value of the load applied to the jig during the operation is obtained as the above-mentioned post-polymerization gel hardness (test force).
 本実施形態によれば、粗砕処理を施して得られる架橋重合体粒子において吸水能の低下を抑制することができる。例えば、本実施形態によれば、粗砕処理に伴う吸水能の減少率として、「粗砕前の吸水能A」に対する「粗砕処理に伴う吸水能の差分B(粗砕前の吸水能-粗砕後の吸水能)」の割合([B/A]×100)を10%以下に留めることが可能であり、粗砕処理に伴い吸水能を増加させる(上記減少率が負の値である)こともできる。 According to this embodiment, it is possible to suppress a decrease in water absorption capacity in the crosslinked polymer particles obtained by performing the coarse crushing treatment. For example, according to the present embodiment, as the reduction rate of the water absorption capacity due to the coarse crushing treatment, the difference B (water absorption capacity before coarse crushing-) of the water absorption capacity due to the rough crushing treatment with respect to the “water absorption capacity A before coarse crushing treatment”. It is possible to keep the ratio ([B / A] x 100) of "water absorption capacity after coarse crushing)" to 10% or less, and increase the water absorption capacity with the rough crushing treatment (the above reduction rate is a negative value). There is also).
 また、本発明者は、架橋重合体ゲルが上述の試験力を与える場合に、当該架橋重合体ゲルを粗砕したときに優れた粗砕収率を与えることを見出した。すなわち、本実施形態によれば、架橋重合体ゲルを粗砕したときに優れた粗砕収率(例えば50%以上)を得ることができる。 Further, the present inventor has found that when the crosslinked polymer gel imparts the above-mentioned test force, it gives an excellent crude crushing yield when the crosslinked polymer gel is roughly crushed. That is, according to the present embodiment, an excellent crude crushing yield (for example, 50% or more) can be obtained when the crosslinked polymer gel is coarsely crushed.
 これらの効果が得られる原因は明らかではないが、本発明者は下記のように推察している。但し、原因は下記の内容に限定されない。すなわち、上述の試験力を与える架橋重合体ゲルに粗砕処理を施す場合、粗砕処理中の滞留が抑制されること、過剰な力の負荷が抑制されること等により、架橋重合体粒子の吸水能の低下を抑制することができると共に優れた粗砕収率が得られると推察される。上述の試験力を与えない架橋重合体ゲルに粗砕処理を施す場合、架橋重合体ゲルが過剰に柔らかいことから、粗砕装置内で架橋重合体ゲルが不必要に引き延ばされたり練りこまれたりされ、粗砕中に架橋重合体ゲルに不要な熱(装置内における摩擦熱、圧縮熱等)が加わることにより架橋重合体ゲルが変質して、吸水能が低下しやすいと共に優れた粗砕収率が得られづらいと推察される。 The cause of these effects is not clear, but the present inventor speculates as follows. However, the cause is not limited to the following contents. That is, when the crosslinked polymer gel giving the above-mentioned test force is subjected to the roughing treatment, the retention of the crosslinked polymer particles during the roughing treatment is suppressed, the load of excessive force is suppressed, and the like, so that the crosslinked polymer particles are subjected to the roughing treatment. It is presumed that a decrease in water absorption capacity can be suppressed and an excellent coarse crushing yield can be obtained. When the crosslinked polymer gel that does not give the above-mentioned test force is subjected to the roughing treatment, the crosslinked polymer gel is excessively soft, so that the crosslinked polymer gel is unnecessarily stretched or kneaded in the roughing apparatus. When the crosslinked polymer gel is crushed and unnecessary heat (friction heat, compression heat, etc. in the device) is applied to the crosslinked polymer gel during coarse crushing, the crosslinked polymer gel is altered in quality, and the water absorption capacity is likely to decrease and excellent coarseness is obtained. It is presumed that it is difficult to obtain the crushing yield.
 上述の試験力を評価する圧縮試験における工程(1)では、本実施形態に係る架橋重合体ゲルから20mm×20mm×17mmの直方体状の試験片を得る。試験片は、塊状の架橋重合体ゲルから切り出すことにより得ることができる。試験片としては、目視にて確認し得る空隙を有さない中実のゲルを用いることができる。 In the step (1) in the compression test for evaluating the above-mentioned test force, a rectangular parallelepiped test piece of 20 mm × 20 mm × 17 mm is obtained from the crosslinked polymer gel according to the present embodiment. The test piece can be obtained by cutting out from a massive crosslinked polymer gel. As the test piece, a solid gel having no visible voids can be used.
 工程(2)では、平坦面を有する治具(感圧軸)の当該平坦面を試験片の20mm×20mmの面に鉛直方向の上側から接触させる。工程(2)では、平坦面を有しており、かつ、試験片に接触したときに負荷される荷重を検出器に伝達可能な治具を用いることができる。平坦面の形状は円形であり、円形の平坦面の直径は20mmである。治具は、試験片に接触する平坦面を有する平板部(例えば円板部)を備えている。平板部は、工程(3)の操作時にその全体が試験片に浸漬しないことが好ましい。平板部の厚さは、5mmである。工程(2)において治具を試験片に接触させた後に治具を試験片から引き離す方向に移動させてもよい。 In step (2), the flat surface of the jig (pressure sensitive shaft) having a flat surface is brought into contact with the 20 mm × 20 mm surface of the test piece from the upper side in the vertical direction. In the step (2), a jig having a flat surface and capable of transmitting the load applied when it comes into contact with the test piece to the detector can be used. The shape of the flat surface is circular, and the diameter of the circular flat surface is 20 mm. The jig includes a flat plate portion (for example, a disk portion) having a flat surface in contact with the test piece. It is preferable that the entire flat plate portion is not immersed in the test piece during the operation of step (3). The thickness of the flat plate portion is 5 mm. After the jig is brought into contact with the test piece in the step (2), the jig may be moved in the direction of pulling away from the test piece.
 工程(3)では、鉛直方向に治具を試験片に15mm押し込む操作を行い、当該操作中に治具に負荷される荷重の最大値(単位:N)を上述の試験力として得る。15mm押し込む操作を採用することにより、治具が試験片(厚さ17mm)を貫通することを抑制できる。試験力としては、治具に負荷される鉛直方向の荷重を得ることができる。治具を試験力に押し込むことに伴い荷重が増加する傾向にあり、治具が試験片に15mm押し込まれた際に荷重の最大値(図1の符号P参照)が得られる傾向にある。治具の走査速度は、30mm/minである。 In the step (3), the jig is pushed into the test piece by 15 mm in the vertical direction, and the maximum value (unit: N) of the load applied to the jig during the operation is obtained as the above-mentioned test force. By adopting the operation of pushing in by 15 mm, it is possible to prevent the jig from penetrating the test piece (thickness 17 mm). As the test force, a vertical load applied to the jig can be obtained. The load tends to increase as the jig is pushed into the test force, and the maximum value of the load (see reference numeral P in FIG. 1) tends to be obtained when the jig is pushed into the test piece by 15 mm. The scanning speed of the jig is 30 mm / min.
 試験力は、粗砕処理に起因する架橋重合体粒子の吸水能の低下を抑制しやすい観点、及び、優れた粗砕収率を得やすい観点から、80N以上、85N以上、88N以上、90N以上、95N以上、100N以上、103N以上、105N以上、110N以上、120N以上、130N以上、140N以上、150N以上、160N以上、170N以上、又は、180N以上が好ましい。試験力は、粗砕処理に起因する架橋重合体粒子の吸水能の低下を抑制しやすい観点、及び、優れた粗砕収率を得やすい観点から、400N以下、350N以下、300N以下、250N以下、200N以下、190N以下、又は、180N以下が好ましい。試験力としては、室温における試験力を用いることができる。 The test force is 80N or more, 85N or more, 88N or more, 90N or more from the viewpoint of easily suppressing a decrease in water absorption capacity of the crosslinked polymer particles due to the coarse crushing treatment and from the viewpoint of easily obtaining an excellent coarse crushing yield. , 95N or more, 100N or more, 103N or more, 105N or more, 110N or more, 120N or more, 130N or more, 140N or more, 150N or more, 160N or more, 170N or more, or 180N or more is preferable. The test force is 400 N or less, 350 N or less, 300 N or less, 250 N or less from the viewpoint of easily suppressing a decrease in water absorption capacity of the crosslinked polymer particles due to the coarse crushing treatment and from the viewpoint of easily obtaining an excellent coarse crushing yield. , 200N or less, 190N or less, or 180N or less is preferable. As the test force, the test force at room temperature can be used.
 本実施形態に係る架橋重合体ゲルの製造方法は、エチレン性不飽和単量体を含有する単量体組成物を重合する重合工程を備える。単量体組成物は、水、有機溶媒等を含有してよい。単量体組成物は、単量体水溶液であってよい。単量体組成物の重合方法としては、水溶液重合法、バルク重合法等が挙げられる。これらの中では、良好な吸水性能(架橋重合体粒子の高い吸水能、粗砕処理に起因する架橋重合体粒子の吸水能の低下抑制等)が得られやすい観点、優れた粗砕収率を得やすい観点、及び、重合反応の制御が容易である観点から、水溶液重合法が好ましい。以下においては、重合方法の一例として水溶液重合法を用いた場合について説明する。 The method for producing a crosslinked polymer gel according to the present embodiment includes a polymerization step of polymerizing a monomer composition containing an ethylenically unsaturated monomer. The monomer composition may contain water, an organic solvent and the like. The monomer composition may be a monomer aqueous solution. Examples of the polymerization method of the monomer composition include an aqueous solution polymerization method and a bulk polymerization method. Among these, from the viewpoint that good water absorption performance (high water absorption capacity of crosslinked polymer particles, suppression of decrease in water absorption capacity of crosslinked polymer particles due to coarse crushing treatment, etc.) can be easily obtained, an excellent coarse crushing yield is obtained. The aqueous polymerization method is preferable from the viewpoint of easy acquisition and easy control of the polymerization reaction. In the following, a case where the aqueous solution polymerization method is used as an example of the polymerization method will be described.
 エチレン性不飽和単量体としては、水溶性エチレン性不飽和単量体を用いることができる。エチレン性不飽和単量体としては、(メタ)アクリル酸、マレイン酸、無水マレイン酸、フマル酸等のα,β-不飽和カルボン酸、及び、その塩などのカルボン酸系単量体;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体;N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体、及び、その第4級化物;ビニルスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸、及び、それらの塩等のスルホン酸系単量体などが挙げられる。エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも一種の(メタ)アクリル酸化合物を含むことができる。エチレン性不飽和単量体は、(メタ)アクリル酸、及び、(メタ)アクリル酸の塩の双方を含んでよい。α,β-不飽和カルボン酸((メタ)アクリル酸等)の塩としては、アルカリ金属塩(ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(カルシウム塩等)などが挙げられる。 As the ethylenically unsaturated monomer, a water-soluble ethylenically unsaturated monomer can be used. Examples of the ethylenically unsaturated monomer include α, β-unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, maleic anhydride and fumaric acid, and carboxylic acid-based monomers such as salts thereof; Nonionic monomers such as meta) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate; N, N -Amino group-containing unsaturated monomers such as diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, diethylaminopropyl (meth) acrylamide, and quaternary products thereof; vinyl sulfonic acid, styrene sulfone. Examples thereof include acids, 2- (meth) acrylamide-2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid, and sulfonic acid-based monomers such as salts thereof. The ethylenically unsaturated monomer can contain at least one (meth) acrylic acid compound selected from the group consisting of (meth) acrylic acid and salts thereof. The ethylenically unsaturated monomer may contain both (meth) acrylic acid and a salt of (meth) acrylic acid. Examples of salts of α, β-unsaturated carboxylic acid ((meth) acrylic acid, etc.) include alkali metal salts (sodium salt, potassium salt, etc.), alkaline earth metal salts (calcium salt, etc.) and the like.
 酸基を有するエチレン性不飽和単量体((メタ)アクリル酸等)は、酸基が予めアルカリ性中和剤により中和されていてよい。アルカリ性中和剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニアなどが挙げられる。アルカリ性中和剤は、中和操作を簡便化するために水溶液の状態にして用いてもよい。酸基の中和は、原料であるエチレン性不飽和単量体の重合前に行ってもよく、重合中又は重合後に行ってもよい。 The ethylenically unsaturated monomer having an acid group ((meth) acrylic acid, etc.) may have the acid group neutralized in advance with an alkaline neutralizer. Examples of the alkaline neutralizing agent include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like. The alkaline neutralizer may be used in the form of an aqueous solution in order to simplify the neutralization operation. The acid group may be neutralized before the polymerization of the ethylenically unsaturated monomer as a raw material, or during or after the polymerization.
 アルカリ性中和剤によるエチレン性不飽和単量体の中和度は、浸透圧を高めることで良好な吸水性能(架橋重合体粒子の高い吸水能、粗砕処理に起因する架橋重合体粒子の吸水能の低下抑制等)が得られやすい観点、優れた粗砕収率を得やすい観点、及び、余剰のアルカリ性中和剤の存在に起因する不具合を抑制する観点から、10~100モル%、30~90モル%、40~85モル%、又は、50~80モル%が好ましい。「中和度」は、エチレン性不飽和単量体が有する全ての酸基に対する中和度とする。 The degree of neutralization of the ethylenically unsaturated monomer by the alkaline neutralizer has good water absorption performance by increasing the osmotic pressure (high water absorption capacity of the crosslinked polymer particles, water absorption of the crosslinked polymer particles due to the coarse crushing treatment). From the viewpoint of easily obtaining (such as suppressing deterioration of ability), from the viewpoint of easily obtaining an excellent crude crushing yield, and from the viewpoint of suppressing defects caused by the presence of excess alkaline neutralizer, 10 to 100 mol%, 30 It is preferably from 90 mol%, 40 to 85 mol%, or 50 to 80 mol%. The "neutralization degree" is the neutralization degree for all the acid groups of the ethylenically unsaturated monomer.
 (メタ)アクリル酸化合物の含有量は、単量体組成物の全質量を基準として下記の範囲が好ましい。(メタ)アクリル酸化合物の含有量は、優れた粗砕収率を得やすい観点から、10質量%以上、15質量%以上、20質量%以上、25質量%以上、30質量%以上、又は、35質量%以上が好ましい。(メタ)アクリル酸化合物の含有量は、良好な吸水性能(架橋重合体粒子の高い吸水能等)が得られやすい観点から、60質量%以下、55質量%以下、50質量%以下、50質量%未満、45質量%以下、又は、40質量%以下が好ましい。これらの観点から、(メタ)アクリル酸化合物の含有量は、10~60質量%が好ましい。 The content of the (meth) acrylic acid compound is preferably in the following range based on the total mass of the monomer composition. The content of the (meth) acrylic acid compound is 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more, or from the viewpoint of easily obtaining an excellent crude crushing yield. 35% by mass or more is preferable. The content of the (meth) acrylic acid compound is 60% by mass or less, 55% by mass or less, 50% by mass or less, 50% by mass from the viewpoint that good water absorption performance (high water absorption ability of crosslinked polymer particles, etc.) can be easily obtained. %, 45% by mass or less, or 40% by mass or less is preferable. From these viewpoints, the content of the (meth) acrylic acid compound is preferably 10 to 60% by mass.
 (メタ)アクリル酸化合物の含有量は、単量体組成物に含有される単量体の合計量、及び/又は、単量体組成物に含有されるエチレン性不飽和単量体の合計量を基準として下記の範囲が好ましい。(メタ)アクリル酸化合物の含有量は、50モル%以上、70モル%以上、90モル%以上、95モル%以上、97モル%以上、又は、99モル%以上が好ましい。単量体組成物に含有される単量体、及び/又は、単量体組成物に含有されるエチレン性不飽和単量体は、実質的に(メタ)アクリル酸化合物からなる態様(実質的に、単量体組成物に含有される単量体、及び/又は、単量体組成物に含有されるエチレン性不飽和単量体の100モル%が(メタ)アクリル酸化合物である態様)であってもよい。 The content of the (meth) acrylic acid compound is the total amount of the monomers contained in the monomer composition and / or the total amount of the ethylenically unsaturated monomer contained in the monomer composition. The following range is preferable with reference to. The content of the (meth) acrylic acid compound is preferably 50 mol% or more, 70 mol% or more, 90 mol% or more, 95 mol% or more, 97 mol% or more, or 99 mol% or more. The monomer contained in the monomer composition and / or the ethylenically unsaturated monomer contained in the monomer composition is substantially composed of a (meth) acrylic acid compound (substantially). In addition, 100 mol% of the monomer contained in the monomer composition and / or the ethylenically unsaturated monomer contained in the monomer composition is a (meth) acrylic acid compound). It may be.
 単量体組成物は、重合開始剤を含有してよい。単量体組成物に含まれる単量体の重合は、単量体組成物に重合開始剤を添加し、必要により加熱、光照射等を行うことで開始してよい。重合開始剤としては、光重合開始剤、ラジカル重合開始剤等が挙げられ、水溶性ラジカル重合開始剤が好ましい。重合開始剤は、良好な吸水性能(架橋重合体粒子の高い吸水能等)が得られやすい観点から、アゾ系化合物及び過酸化物からなる群より選ばれる少なくとも一種を含むことが好ましく、粗砕処理に起因する架橋重合体粒子の吸水能の低下を抑制しやすい観点から、過酸化物を含むことがより好ましい。 The monomer composition may contain a polymerization initiator. The polymerization of the monomer contained in the monomer composition may be started by adding a polymerization initiator to the monomer composition and, if necessary, heating, irradiating with light or the like. Examples of the polymerization initiator include a photopolymerization initiator and a radical polymerization initiator, and a water-soluble radical polymerization initiator is preferable. The polymerization initiator preferably contains at least one selected from the group consisting of azo compounds and peroxides from the viewpoint of easily obtaining good water absorption performance (high water absorption capacity of crosslinked polymer particles, etc.), and is roughly crushed. It is more preferable to contain a peroxide from the viewpoint of easily suppressing a decrease in the water absorption capacity of the crosslinked polymer particles due to the treatment.
 アゾ系化合物としては、2,2’-アゾビス[2-(N-フェニルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス{2-[N-(4-クロロフェニル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス{2-[N-(4-ヒドロキシフェニル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス[2-(N-ベンジルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]二塩酸塩、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[N-(2-ヒドロキシエチル)アミジノ]プロパン}二塩酸塩、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二硫酸塩二水和物、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]等が挙げられる。アゾ系化合物は、良好な吸水性能(架橋重合体粒子の高い吸水能等)が得られやすい観点から、2,2’-アゾビス(2-メチルプロピオンアミド)二塩酸塩、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、及び、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物からなる群より選ばれる少なくとも一種を含むことが好ましい。 Examples of the azo compound include 2,2'-azobis [2- (N-phenylamidino) propane] dihydrochloride and 2,2'-azobis {2- [N- (4-chlorophenyl) amidino] propane} dihydrochloride. Salt, 2,2'-azobis {2- [N- (4-hydroxyphenyl) amidino] propane} dihydrochloride, 2,2'-azobis [2- (N-benzylamidino) propane] dihydrochloride, 2 , 2'-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis {2- [N- (2) -Hydroxyethyl) amidino] propane} dihydrochloride, 2,2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2-( 2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (4,5,6,7-tetrahydro-1H-1,3-diazepine-2-yl) propane] dihydrochloride Salt, 2,2'-azobis [2- (5-hydroxy-3,4,5,6-tetrahydropyrimidine-2-yl) propane] dihydrochloride, 2,2'-azobis {2- [1-( 2-Hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate, 2, 2'-azobis [N- (2-carboxyethyl) -2-methylpropion amidine] tetrahydrate, 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide] and the like can be mentioned. Be done. Azo-based compounds are 2,2'-azobis (2-methylpropionamide) dihydrochloride and 2,2'-azobis from the viewpoint that good water absorption performance (high water absorption capacity of crosslinked polymer particles, etc.) can be easily obtained. (2-Amidinopropane) dihydrochloride, 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, and 2,2'- It preferably contains at least one selected from the group consisting of azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate.
 過酸化物としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート等の有機過酸化物類などが挙げられる。過酸化物は、良好な吸水性能(架橋重合体粒子の高い吸水能等)が得られやすい観点、及び、優れた粗砕収率を得やすい観点から、過硫酸カリウム、過硫酸アンモニウム、及び、過硫酸ナトリウムからなる群より選ばれる少なくとも一種を含むことが好ましい。 Peroxides include persulfates such as potassium persulfate, ammonium persulfate, sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t-butyl. Examples thereof include organic peroxides such as peroxyacetate, t-butylperoxyisobutyrate, and t-butylperoxypivalate. Peroxides are potassium persulfate, ammonium persulfate, and peroxide from the viewpoint that good water absorption performance (high water absorption capacity of crosslinked polymer particles, etc.) can be easily obtained and excellent crude crushing yield can be easily obtained. It preferably contains at least one selected from the group consisting of sodium sulfate.
 重合開始剤の含有量は、(メタ)アクリル酸化合物1モルに対して、下記の範囲が好ましい。重合開始剤の含有量は、良好な吸水性能(架橋重合体粒子の高い吸水能、粗砕処理に起因する架橋重合体粒子の吸水能の低下抑制等)が得られやすい観点、優れた粗砕収率を得やすい観点、及び、重合反応時間を短縮する観点から、0.001ミリモル以上、0.003ミリモル以上、0.015ミリモル以上、0.03ミリモル以上、0.06ミリモル以上、0.08ミリモル以上、0.1ミリモル以上、0.15ミリモル以上、0.2ミリモル以上、又は、0.25ミリモル以上が好ましい。重合開始剤の含有量は、良好な吸水性能(架橋重合体粒子の高い吸水能、粗砕処理に起因する架橋重合体粒子の吸水能の低下抑制等)が得られやすい観点、優れた粗砕収率を得やすい観点、及び、急激な重合反応を回避しやすい観点から、5ミリモル以下、4ミリモル以下、2ミリモル以下、1ミリモル以下、0.8ミリモル以下、0.5ミリモル以下、0.4ミリモル以下、又は、0.3ミリモル以下が好ましい。これらの観点から、重合開始剤の含有量は、0.001~5ミリモルが好ましい。重合開始剤の含有量を調整することにより試験力を調整しやすい。 The content of the polymerization initiator is preferably in the following range with respect to 1 mol of the (meth) acrylic acid compound. The content of the polymerization initiator is excellent from the viewpoint that good water absorption performance (high water absorption capacity of crosslinked polymer particles, suppression of decrease in water absorption capacity of crosslinked polymer particles due to coarse crushing treatment, etc.) can be easily obtained. From the viewpoint of easily obtaining the yield and shortening the polymerization reaction time, 0.001 mmol or more, 0.003 mmol or more, 0.015 mmol or more, 0.03 mmol or more, 0.06 mmol or more, 0. It is preferably 08 mmol or more, 0.1 mmol or more, 0.15 mmol or more, 0.2 mmol or more, or 0.25 mmol or more. The content of the polymerization initiator is excellent from the viewpoint that good water absorption performance (high water absorption capacity of crosslinked polymer particles, suppression of decrease in water absorption capacity of crosslinked polymer particles due to coarse crushing treatment, etc.) can be easily obtained. From the viewpoint of easily obtaining the yield and avoiding a rapid polymerization reaction, 5 mmol or less, 4 mmol or less, 2 mmol or less, 1 mmol or less, 0.8 mmol or less, 0.5 mmol or less, 0. It is preferably 4 mmol or less, or 0.3 mmol or less. From these viewpoints, the content of the polymerization initiator is preferably 0.001 to 5 mmol. It is easy to adjust the test force by adjusting the content of the polymerization initiator.
 単量体組成物は、還元剤を含有してよい。還元剤としては、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第1鉄、L-アスコルビン酸等が挙げられる。重合開始剤と還元剤とを併用してよい。 The monomer composition may contain a reducing agent. Examples of the reducing agent include sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, L-ascorbic acid and the like. A polymerization initiator and a reducing agent may be used in combination.
 単量体組成物は、酸化剤を含有してよい。酸化剤としては、過酸化水素、過ホウ酸ナトリウム、過リン酸及びその塩、過マンガン酸カリウム等が挙げられる。 The monomer composition may contain an oxidizing agent. Examples of the oxidizing agent include hydrogen peroxide, sodium perborate, perphosphoric acid and salts thereof, potassium permanganate and the like.
 単量体組成物は、内部架橋剤を含有してよい。内部架橋剤を用いることにより、得られる架橋重合体が、その内部架橋構造として、重合反応による自己架橋構造に加え、内部架橋剤による架橋構造を有することができる。 The monomer composition may contain an internal cross-linking agent. By using the internal cross-linking agent, the obtained cross-linked polymer can have a cross-linked structure by the internal cross-linking agent in addition to the self-cross-linking structure by the polymerization reaction as the internal cross-linking structure.
 内部架橋剤としては、反応性官能基(例えば重合性不飽和基)を2個以上有する化合物等が挙げられる。内部架橋剤としては、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、トリメチロールプロパン、グリセリンポリオキシエチレングリコール、ポリオキシプロピレングリコール、(ポリ)グリセリン等のポリオールのジ又はトリ(メタ)アクリル酸エステル類;上記ポリオールと不飽和酸(マレイン酸、フマル酸等)とを反応させて得られる不飽和ポリエステル類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、グリシジル(メタ)アクリレート等のグリシジル基含有化合物;N,N’-メチレンビス(メタ)アクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ又はトリ(メタ)アクリル酸エステル類;ポリイソシアネート(トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)と(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉;アリル化セルロース;ジアリルフタレート;N,N’,N”-トリアリルイソシアヌレート;ジビニルベンゼン;ペンタエリスリトール;エチレンジアミン;ポリエチレンイミンなどが挙げられる。内部架橋剤は、良好な吸水性能(架橋重合体粒子の高い吸水能、粗砕処理に起因する架橋重合体粒子の吸水能の低下抑制等)が得られやすい観点、優れた粗砕収率を得やすい観点、及び、低温での反応性に優れる観点から、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び、(ポリ)グリセリンジグリシジルエーテルからなる群より選ばれる少なくとも一種を含むことが好ましい。 Examples of the internal cross-linking agent include compounds having two or more reactive functional groups (for example, polymerizable unsaturated groups). Examples of the internal cross-linking agent include di or tri (meth) acrylic acid esters of polyols such as (poly) ethylene glycol, (poly) propylene glycol, trimethylolpropane, glycerin polyoxyethylene glycol, polyoxypropylene glycol, and (poly) glycerin. Class: Unsaturated polyesters obtained by reacting the above polyol with an unsaturated acid (maleic acid, fumaric acid, etc.); (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin Glycidyl group-containing compounds such as diglycidyl ether and glycidyl (meth) acrylate; bisacrylamides such as N, N'-methylenebis (meth) acrylamide; di or tri (meth) obtained by reacting polyepoxide with (meth) acrylic acid. Meta) acrylic acid esters; di (meth) acrylic acid carbamil esters obtained by reacting polyisocyanates (tolylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylic acid; allylated starch; allyl Cellified cellulose; diallyl phthalate; N, N', N "-triallyl isocyanurate; divinylbenzene; pentaerythritol; ethylenediamine; polyethyleneimine, etc. The internal cross-linking agent has good water absorption performance (high cross-linked polymer particles). From the viewpoint that water absorption capacity, suppression of decrease in water absorption capacity of crosslinked polymer particles due to coarse crushing treatment, etc.) can be easily obtained, excellent crude crushing yield can be easily obtained, and reactivity at low temperature is excellent. It is preferable to contain at least one selected from the group consisting of (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether.
 内部架橋剤の含有量は、(メタ)アクリル酸化合物1モルに対して下記の範囲が好ましい。内部架橋剤の含有量は、良好な吸水性能(架橋重合体粒子の高い吸水能、粗砕処理に起因する架橋重合体粒子の吸水能の低下抑制等)が得られやすい観点、及び、優れた粗砕収率を得やすい観点から、0.01ミリモル以上、0.05ミリモル以上、0.08ミリモル以上、0.1ミリモル以上、0.15ミリモル以上、0.2ミリモル以上、0.5ミリモル以上、1ミリモル以上、又は、1.5ミリモル以上が好ましい。内部架橋剤の含有量は、良好な吸水性能(架橋重合体粒子の高い吸水能、粗砕処理に起因する架橋重合体粒子の吸水能の低下抑制等)が得られやすい観点から、10ミリモル以下、8ミリモル以下、5ミリモル以下、3ミリモル以下、又は、2ミリモル以下が好ましい。これらの観点から、内部架橋剤の含有量は、0.01~10ミリモルが好ましい。内部架橋剤の含有量を調整することにより試験力を調整しやすい。 The content of the internal cross-linking agent is preferably in the following range with respect to 1 mol of the (meth) acrylic acid compound. The content of the internal cross-linking agent is excellent from the viewpoint that good water absorption performance (high water absorption capacity of the cross-linked polymer particles, suppression of deterioration of the water absorption capacity of the cross-linked polymer particles due to the coarse crushing treatment, etc.) can be easily obtained. From the viewpoint of easily obtaining the crude crushing yield, 0.01 mmol or more, 0.05 mmol or more, 0.08 mmol or more, 0.1 mmol or more, 0.15 mmol or more, 0.2 mmol or more, 0.5 mmol As mentioned above, 1 mmol or more, or 1.5 mmol or more is preferable. The content of the internal cross-linking agent is 10 mmol or less from the viewpoint that good water absorption performance (high water absorption capacity of the cross-linked polymer particles, suppression of deterioration of the water absorption capacity of the cross-linked polymer particles due to the coarse crushing treatment, etc.) can be easily obtained. , 8 mmol or less, 5 mmol or less, 3 mmol or less, or 2 mmol or less is preferable. From these viewpoints, the content of the internal cross-linking agent is preferably 0.01 to 10 mmol. It is easy to adjust the test force by adjusting the content of the internal cross-linking agent.
 単量体組成物は、必要に応じて、上述の各成分とは異なる成分として、連鎖移動剤、増粘剤、無機フィラー等の添加剤を含有してよい。連鎖移動剤としては、チオール類、チオール酸類、第2級アルコール類、次亜リン酸、亜リン酸、アクロレイン等が挙げられる。増粘剤としては、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ポリエチレングリコール、ポリアクリル酸、ポリアクリル酸中和物、ポリアクリルアミド等が挙げられる。無機フィラーとしては、金属酸化物、セラミック、粘度鉱物等が挙げられる。 If necessary, the monomer composition may contain additives such as a chain transfer agent, a thickener, and an inorganic filler as components different from the above-mentioned components. Examples of the chain transfer agent include thiols, thiol acids, secondary alcohols, hypophosphorous acid, phosphorous acid, achlorine and the like. Examples of the thickener include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, polyethylene glycol, polyacrylic acid, neutralized polyacrylic acid, polyacrylamide and the like. Examples of the inorganic filler include metal oxides, ceramics, and viscous minerals.
 水溶液重合の重合方式としては、単量体組成物を撹拌しない状態(例えば、静置状態)で重合する静置重合方式;反応装置内で単量体組成物を撹拌しながら重合する撹拌重合方式等が挙げられる。静置重合方式では、重合完了時、反応容器中に存在した単量体組成物と略同じ体積を占める単一のブロック状のゲルが得られる。 As a polymerization method for aqueous solution polymerization, a static polymerization method in which the monomer composition is polymerized without stirring (for example, a static state); a stirring polymerization method in which the monomer composition is polymerized while stirring in a reaction apparatus. And so on. In the static polymerization method, when the polymerization is completed, a single block-shaped gel occupying substantially the same volume as the monomer composition present in the reaction vessel is obtained.
 重合の形態は、回分、半連続、連続等であってよい。例えば、静置重合方式を連続重合にて行う場合、連続重合装置に単量体組成物を連続的に供給しながら重合反応を行い、連続的にゲルを得ることができる。 The form of polymerization may be batch, semi-continuous, continuous, or the like. For example, when the static polymerization method is carried out by continuous polymerization, the polymerization reaction can be carried out while continuously supplying the monomer composition to the continuous polymerization apparatus to continuously obtain a gel.
 重合温度は、使用する重合開始剤によって異なるが、重合を迅速に進行させ、重合時間を短くすることにより生産性を高めると共に、重合熱を除去して円滑に反応を行いやすい観点から、0~130℃又は10~110℃が好ましい。重合温度の最大値は、25℃以上、30℃以上、40℃以上、50℃以上、又は、60℃以上であってよい。重合温度の最大値は、110℃以下、105℃以下、100℃以下、又は、95℃以下であってよい。これらの観点から、重合温度の最大値は、25~110℃であってよい。重合時間は、使用する重合開始剤の種類及び量、反応温度等に応じて適宜設定されるが、1~200分又は5~100分が好ましい。 The polymerization temperature varies depending on the polymerization initiator used, but from the viewpoint of rapidly advancing the polymerization, increasing the productivity by shortening the polymerization time, removing the heat of polymerization, and facilitating the smooth reaction, 0 to 0 to It is preferably 130 ° C. or 10 to 110 ° C. The maximum value of the polymerization temperature may be 25 ° C. or higher, 30 ° C. or higher, 40 ° C. or higher, 50 ° C. or higher, or 60 ° C. or higher. The maximum value of the polymerization temperature may be 110 ° C. or lower, 105 ° C. or lower, 100 ° C. or lower, or 95 ° C. or lower. From these viewpoints, the maximum value of the polymerization temperature may be 25 to 110 ° C. The polymerization time is appropriately set depending on the type and amount of the polymerization initiator used, the reaction temperature, and the like, but is preferably 1 to 200 minutes or 5 to 100 minutes.
 本実施形態に係る架橋重合体粒子は、エチレン性不飽和単量体に由来する構造単位を有することができる。本実施形態に係る架橋重合体粒子は、例えば、本実施形態に係る架橋重合体ゲルを粗砕、乾燥及び粉砕して得られる架橋重合体粒子であり、粗砕工程において得られた粗砕物を乾燥(例えば180℃で30分間熱風乾燥)及び粉砕(例えば遠心粉砕機で粉砕)して得ることができる。本実施形態に係る架橋重合体粒子は、粗砕物を乾燥及び粉砕した後に分級(例えば、粉砕物を目開き850μmの篩及び目開き106μmの篩で分級)して得てもよい。本実施形態に係る架橋重合体粒子の形状としては、略球状、破砕状、顆粒状等が挙げられる。本実施形態に係る架橋重合体粒子は、水を保水可能であればよく、吸液対象の液は水を含むことができる。本実施形態に係る架橋重合体粒子は、尿、汗、血液(例えば経血)等の体液を吸液できる。本実施形態に係る架橋重合体粒子は、吸収体の構成成分として用いることができる。本実施形態は、例えば、紙おむつ、生理用品等の衛生材料;保水剤、土壌改良剤等の農園芸材料;止水剤、結露防止剤等の工業資材などの分野において用いることができる。 The crosslinked polymer particles according to this embodiment can have a structural unit derived from an ethylenically unsaturated monomer. The crosslinked polymer particles according to the present embodiment are, for example, crosslinked polymer particles obtained by coarsely crushing, drying and pulverizing the crosslinked polymer gel according to the present embodiment, and the coarsely crushed product obtained in the coarse crushing step is used. It can be obtained by drying (for example, hot air drying at 180 ° C. for 30 minutes) and pulverization (for example, pulverization with a centrifugal pulverizer). The crosslinked polymer particles according to the present embodiment may be obtained by drying and pulverizing the coarse crushed product and then classifying the pulverized product with a sieve having an opening of 850 μm and a sieve having an opening of 106 μm. Examples of the shape of the crosslinked polymer particles according to the present embodiment include substantially spherical, crushed, and granular shapes. The crosslinked polymer particles according to the present embodiment may be any as long as they can retain water, and the liquid to be absorbed may contain water. The crosslinked polymer particles according to the present embodiment can absorb body fluids such as urine, sweat, and blood (for example, menstrual blood). The crosslinked polymer particles according to this embodiment can be used as a constituent component of the absorber. This embodiment can be used in the fields of, for example, sanitary materials such as disposable diapers and sanitary products; agricultural and horticultural materials such as water retention agents and soil conditioners; and industrial materials such as water stop agents and dew condensation inhibitors.
 本実施形態に係る架橋重合体粒子は、ゲル安定剤;金属キレート剤(エチレンジアミン4酢酸及びその塩、ジエチレントリアミン5酢酸及びその塩(例えばジエチレントリアミン5酢酸5ナトリウム)等);流動性向上剤(滑剤)などの他成分を更に含んでよい。他成分は、エチレン性不飽和単量体に由来する構造単位を有する架橋重合体の内部、表面上、又は、これらの両方に配置され得る。 The crosslinked polymer particles according to the present embodiment are a gel stabilizer; a metal chelating agent (ethylenediamine tetraacetic acid and a salt thereof, diethylenetriamine 5 acetic acid and a salt thereof (for example, diethylenetriamine 5 sodium acetate), etc.); a fluidity improver (lubricant). Other components such as may be further contained. Other components may be located inside, on the surface, or both of crosslinked polymers having structural units derived from ethylenically unsaturated monomers.
 本実施形態に係る架橋重合体粒子は、エチレン性不飽和単量体に由来する構造単位を有する架橋重合体の表面上に配置された無機粒子を含んでよい。例えば、架橋重合体と無機粒子とを混合することにより、架橋重合体の表面上に無機粒子を配置することができる。無機粒子としては、例えば、非晶質シリカ等のシリカ粒子が挙げられる。 The crosslinked polymer particles according to the present embodiment may contain inorganic particles arranged on the surface of the crosslinked polymer having a structural unit derived from an ethylenically unsaturated monomer. For example, by mixing the crosslinked polymer and the inorganic particles, the inorganic particles can be arranged on the surface of the crosslinked polymer. Examples of the inorganic particles include silica particles such as amorphous silica.
 本実施形態に係る架橋重合体粒子の生理食塩水の吸水能は、下記の範囲であってよい。吸水能は、30g/g以上、35g/g以上、40g/g以上、45g/g以上、50g/g以上、55g/g以上、60g/g以上、65g/g以上、65.3g/g以上、又は、70g/g以上であってよい。吸水能は、80g/g以下、77g/g以下、75g/g以下、又は、72g/g以下であってよい。これらの観点から、吸水能は、30~80g/g又は50~80g/gであってよい。吸水能としては、室温における吸水能を用いることができる。吸水能は、後述する実施例に記載の方法によって測定できる。 The water absorption capacity of the crosslinked polymer particles according to the present embodiment in the physiological saline solution may be in the following range. Water absorption capacity is 30 g / g or more, 35 g / g or more, 40 g / g or more, 45 g / g or more, 50 g / g or more, 55 g / g or more, 60 g / g or more, 65 g / g or more, 65.3 g / g or more. Or, it may be 70 g / g or more. The water absorption capacity may be 80 g / g or less, 77 g / g or less, 75 g / g or less, or 72 g / g or less. From these viewpoints, the water absorption capacity may be 30 to 80 g / g or 50 to 80 g / g. As the water absorption capacity, the water absorption capacity at room temperature can be used. The water absorption capacity can be measured by the method described in Examples described later.
 本実施形態に係る架橋重合体粒子(吸水前の架橋重合体粒子)の中位粒子径は、下記の範囲であってよい。中位粒子径は、200μm以上、250μm以上、300μm以上、又は、350μm以上であってよい。中位粒子径は、600μm以下、550μm以下、500μm以下、450μm以下、又は、400μm以下であってよい。これらの観点から、中位粒子径は、100~600μmであってよい。本実施形態に係る架橋重合体粒子は、後述する製造方法により得られた時点で所望の粒度分布を有していてよいが、篩による分級を用いた粒度調整等の操作を行うことにより粒度分布を調整してもよい。 The medium particle size of the crosslinked polymer particles (crosslinked polymer particles before water absorption) according to the present embodiment may be in the following range. The medium particle size may be 200 μm or more, 250 μm or more, 300 μm or more, or 350 μm or more. The medium particle size may be 600 μm or less, 550 μm or less, 500 μm or less, 450 μm or less, or 400 μm or less. From these viewpoints, the medium particle size may be 100 to 600 μm. The crosslinked polymer particles according to the present embodiment may have a desired particle size distribution at the time of being obtained by the production method described later, but the particle size distribution can be adjusted by performing an operation such as particle size adjustment using classification with a sieve. May be adjusted.
 本実施形態に係る架橋重合体粒子の製造方法は、本実施形態に係る架橋重合体ゲルの製造方法により架橋重合体ゲルを作製するゲル作製工程と、架橋重合体ゲルを粗砕して粗砕物(例えばゲル粗砕物)を得る粗砕工程と、粗砕物を乾燥して乾燥物を得る乾燥工程と、乾燥物を粉砕して粉砕物を得る粉砕工程と、を備えてよい。本実施形態に係る架橋重合体粒子の製造方法は、粉砕工程の後に、粉砕物を分級(例えば、粉砕物を目開き850μmの篩及び目開き106μmの篩で分級)する分級工程を備えてよい。 The method for producing the crosslinked polymer particles according to the present embodiment includes a gel preparation step for producing a crosslinked polymer gel by the method for producing a crosslinked polymer gel according to the present embodiment, and a crude product by coarsely crushing the crosslinked polymer gel. A coarse crushing step for obtaining (for example, a gel crushed product), a drying step for drying the crushed product to obtain a dried product, and a crushing step for crushing the dried product to obtain a crushed product may be provided. The method for producing crosslinked polymer particles according to the present embodiment may include a classification step of classifying the pulverized product (for example, classifying the pulverized product with a sieve having an opening of 850 μm and a sieve having an opening of 106 μm) after the pulverization step. ..
 粗砕工程における粗砕装置としては、例えば、ニーダー(加圧式ニーダー、双腕型ニーダー等)、ミートチョッパー、カッターミル、ファーマミル等を用いることができる。 As the crushing device in the crushing step, for example, a kneader (pressurized kneader, double-armed kneader, etc.), a meat chopper, a cutter mill, a pharma mill, or the like can be used.
 乾燥工程では、粗砕物中の液体成分(水等)を加熱及び/又は送風により除去することで乾燥物(例えばゲル乾燥物)を得ることができる。乾燥方法は、自然乾燥、加熱乾燥、噴霧乾燥、凍結乾燥等であってよい。乾燥温度は、例えば70~250℃である。 In the drying step, a dried product (for example, gel dried product) can be obtained by removing liquid components (water, etc.) in the pyroclastic material by heating and / or blowing air. The drying method may be natural drying, heat drying, spray drying, freeze drying or the like. The drying temperature is, for example, 70 to 250 ° C.
 粉砕工程における粉砕機としては、ローラーミル(ロールミル)、スタンプミル、ジェットミル、高速回転粉砕機(ハンマーミル、ピンミル、ロータビータミル等)、容器駆動型ミル(回転ミル、振動ミル、遊星ミル等)などが挙げられる。 Crushers in the crushing process include roller mills (roll mills), stamp mills, jet mills, high-speed rotary crushers (hammer mills, pin mills, rotor beater mills, etc.), container-driven mills (rotary mills, vibration mills, planetary mills, etc.). ) And so on.
 本実施形態に係る吸水性樹脂粒子は、粗砕工程において得られた架橋重合体粒子を追架橋させること(追架橋工程)により得ることができる。追架橋は、架橋重合体粒子に対する表面架橋であってよい。追架橋は、例えば、架橋剤(例えば表面架橋剤)を架橋重合体粒子と反応させることにより行うことができる。架橋剤を用いて追架橋を行うことにより、架橋重合体粒子の架橋密度(例えば、架橋重合体粒子の表面近傍の架橋密度)が高まるため、吸水性能(吸水性樹脂粒子における荷重下吸水量、吸水速度等)を高めやすい。 The water-absorbent resin particles according to the present embodiment can be obtained by cross-linking the crosslinked polymer particles obtained in the coarse crushing step (crosslinking step). The cross-linking may be surface cross-linking to the cross-linked polymer particles. The cross-linking can be performed, for example, by reacting a cross-linking agent (for example, a surface cross-linking agent) with the cross-linked polymer particles. By performing additional cross-linking using a cross-linking agent, the cross-linking density of the cross-linked polymer particles (for example, the cross-linking density near the surface of the cross-linked polymer particles) is increased, so that the water absorption performance (water absorption amount under load in the water-absorbent resin particles, etc.) It is easy to increase the water absorption rate, etc.).
 表面架橋剤は、例えば、エチレン性不飽和単量体由来の官能基との反応性を有する官能基(反応性官能基)を2個以上含有するものであってよい。表面架橋剤としては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物等が挙げられる。これらの中でも、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物及び/又はエチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール等のポリオール類が好ましく、ポリグリシジル化合物がより好ましい。これらの表面架橋剤は、1種を単独で使用してもよく、2種以上を併用してもよい。例えばポリグリシジル化合物とポリオール類とを組み合わせて使用してよい。 The surface cross-linking agent may contain, for example, two or more functional groups (reactive functional groups) having reactivity with a functional group derived from an ethylenically unsaturated monomer. Examples of the surface cross-linking agent include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol di. Polyglycidyl compounds such as glycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin, epibromhydrin, α- Haloepoxy compounds such as methyl epichlorohydrin; compounds having two or more reactive functional groups such as isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-oxetane methanol, 3-ethyl-3- Oxetane compounds such as oxetane methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl-3-oxetane ethanol; 1,2-ethylenebisoxazoline Oxetane compounds such as; carbonate compounds such as ethylene carbonate; hydroxyalkylamide compounds such as bis [N, N-di (β-hydroxyethyl)] adipamide and the like. Among these, polyglycidyl compounds such as (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and (poly) glycerol polyglycidyl ether. And / or polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, polyoxyethylene glycol, polyoxypropylene glycol are preferable, and polyglycidyl compounds are more preferable. These surface cross-linking agents may be used alone or in combination of two or more. For example, a polyglycidyl compound and polyols may be used in combination.
 表面架橋剤の添加量は、架橋重合体粒子の表面近傍の架橋密度を適度に高める観点から、通常、重合に使用したエチレン性不飽和単量体の総量100モルに対して、好ましくは0.0001~1モル、より好ましくは0.001~0.5モルである。 The amount of the surface cross-linking agent added is preferably 0, with respect to 100 mol of the total amount of the ethylenically unsaturated monomer usually used for the polymerization, from the viewpoint of appropriately increasing the cross-linking density in the vicinity of the surface of the cross-linked polymer particles. It is 0001 to 1 mol, more preferably 0.001 to 0.5 mol.
 表面架橋工程は、エチレン性不飽和単量体100質量部に対して1~200質量部の範囲の水の存在下で行うことが好ましい。適宜、水及び/又はアルコール等の水溶性有機溶媒を用いることで水分量を調整することができる。表面架橋工程時の水分量を調整することによって、より好適に吸水性樹脂粒子の粒子表面近傍における架橋を施すことができる。 The surface cross-linking step is preferably carried out in the presence of water in the range of 1 to 200 parts by mass with respect to 100 parts by mass of the ethylenically unsaturated monomer. The amount of water can be adjusted by appropriately using a water-soluble organic solvent such as water and / or alcohol. By adjusting the amount of water in the surface cross-linking step, the water-absorbent resin particles can be more preferably cross-linked in the vicinity of the particle surface.
 表面架橋剤の処理温度は、使用する表面架橋剤に応じて適宜設定され、20~250℃であってよく、処理時間は、1~200分が好ましく、5~100分がより好ましい。 The treatment temperature of the surface cross-linking agent is appropriately set according to the surface cross-linking agent used, and may be 20 to 250 ° C., and the treatment time is preferably 1 to 200 minutes, more preferably 5 to 100 minutes.
 本実施形態によれば、本実施形態に係る架橋重合体粒子を用いた吸液方法を提供することができる。本実施形態に係る吸液方法は、本実施形態に係る架橋重合体粒子に吸液対象の液を接触させる工程を備える。本実施形態によれば、吸液への架橋重合体粒子の応用を提供することができる。 According to the present embodiment, it is possible to provide a liquid absorbing method using the crosslinked polymer particles according to the present embodiment. The liquid absorbing method according to the present embodiment includes a step of bringing the liquid to be absorbed into contact with the crosslinked polymer particles according to the present embodiment. According to this embodiment, it is possible to provide the application of the crosslinked polymer particles to the liquid absorbing liquid.
 本実施形態によれば、架橋重合体粒子の吸水能の調整方法(粗砕処理に伴う吸水能の低下の抑制方法)であって、本実施形態に係る架橋重合体ゲルに関して上述した(1)~(3)の手順により測定される試験力を調整する調整工程を備える、吸水能の調整方法を提供することができる。調整工程では、試験力を上述の各範囲(例えば70N以上450N未満)に調整することができる。 According to the present embodiment, it is a method for adjusting the water absorption capacity of the crosslinked polymer particles (a method for suppressing a decrease in the water absorption capacity due to the coarse crushing treatment), and the crosslinked polymer gel according to the present embodiment is described above (1). It is possible to provide a method for adjusting the water absorption capacity, which comprises an adjusting step for adjusting the test force measured by the procedure of (3). In the adjusting step, the test force can be adjusted to each of the above ranges (for example, 70 N or more and less than 450 N).
 本実施形態によれば、本実施形態に係る架橋重合体ゲルに関して上述した(1)~(3)の手順により測定される試験力に基づき架橋重合体粒子を選定する選定工程を備える、架橋重合体粒子の製造方法を提供することができる。選定工程では、試験力を上述の各範囲(例えば70N以上450N未満)に調整することができる。 According to the present embodiment, the crosslinked polymer gel according to the present embodiment includes a selection step of selecting crosslinked polymer particles based on the test force measured by the above-mentioned procedures (1) to (3). A method for producing coalesced particles can be provided. In the selection step, the test force can be adjusted to each of the above ranges (for example, 70 N or more and less than 450 N).
 以下、実施例及び比較例を用いて本発明の内容を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the content of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
<含水ゲル状重合体の作製>
(実施例1)
 2Lのセパラブルフラスコに340.0g(4.72モル)の100%アクリル酸を入れた。セパラブルフラスコ内を撹拌しながらイオン交換水293.6gを加えた後、氷浴下で295.1gの48質量%水酸化ナトリウムを滴下することにより、単量体濃度45質量%のアクリル酸ナトリウム部分中和液を調製した。
<Preparation of hydrogel polymer>
(Example 1)
340.0 g (4.72 mol) of 100% acrylic acid was placed in a 2 L separable flask. After adding 293.6 g of ion-exchanged water while stirring the inside of the separable flask, 295.1 g of 48% by mass sodium hydroxide was added dropwise under an ice bath to obtain a monomer concentration of 45% by mass of sodium acrylate. A partially neutralized solution was prepared.
 撹拌子(直径8mm、長さ45mm)を2個備えると共にフッ素樹脂コーティングされた18-8ステンレス製容器(ステンレスバット、外寸:297mm×232mm×高さ50mm)内に、上記アクリル酸部分中和液908.9g、イオン交換水133.8g、及び、エチレングリコールジグリシジルエーテル0.141g(内部架橋剤、0.809ミリモル)を入れた後、撹拌子を回転させて成分を均一に分散させることにより混合物を得た。その後、容器の上部をポリエチレンフィルムでカバーした。容器内の前記混合物の温度を25℃に調整後、混合物を窒素置換することにより溶存酸素量を0.1ppm以下に調整した。次いで、2質量%過硫酸カリウム水溶液8.09g(ラジカル重合開始剤、0.599ミリモル)及び0.5質量%L-アスコルビン酸水溶液1.74gを順に300rpmの撹拌下で、注射器(テルモ株式会社製、容積50mLのディスポシリンジ)を用いて滴下することにより単量体水溶液を調製した。単量体水溶液中のアクリル酸濃度は38.9%であった。 Partial neutralization of the acrylic acid in an 18-8 stainless steel container (stainless steel bat, outer dimensions: 297 mm x 232 mm x height 50 mm) equipped with two stir bars (diameter 8 mm, length 45 mm) and coated with fluororesin. After adding 908.9 g of the liquid, 133.8 g of ion-exchanged water, and 0.141 g of ethylene glycol diglycidyl ether (internal cross-linking agent, 0.809 mmol), rotate the stirrer to uniformly disperse the components. Obtained a mixture. Then, the upper part of the container was covered with a polyethylene film. After adjusting the temperature of the mixture in the container to 25 ° C., the amount of dissolved oxygen was adjusted to 0.1 ppm or less by substituting nitrogen in the mixture. Then, 8.09 g of a 2 mass% potassium persulfate aqueous solution (radical polymerization initiator, 0.599 mmol) and 1.74 g of a 0.5 mass% L-ascorbic acid aqueous solution were sequentially added to a syringe (Termo Co., Ltd.) under stirring at 300 rpm. A monomer aqueous solution was prepared by dropping the mixture using a disposable syringe having a volume of 50 mL. The acrylic acid concentration in the aqueous monomer solution was 38.9%.
 上述のとおり0.5質量%L-アスコルビン酸水溶液等を滴下した後、直ちに重合が開始した。単量体水溶液で重合反応が進行した結果、単量体水溶液の粘度が増加し撹拌子が停止した。0.5質量%L-アスコルビン酸水溶液等を滴下してから22分後に重合温度がピーク温度64℃に達した。その後、温度が低下することが確認された後、容器を75℃の水浴に浸して20分間熟成させることにより含水ゲル状重合体を得た。含水ゲル状重合体の厚さは約17mmであった。 As described above, the polymerization started immediately after the 0.5 mass% L-ascorbic acid aqueous solution or the like was added dropwise. As a result of the polymerization reaction proceeding with the aqueous monomer solution, the viscosity of the aqueous monomer solution increased and the stirrer stopped. The polymerization temperature reached a peak temperature of 64 ° C. 22 minutes after the addition of a 0.5 mass% L-ascorbic acid aqueous solution or the like. Then, after confirming that the temperature was lowered, the container was immersed in a water bath at 75 ° C. and aged for 20 minutes to obtain a hydrogel polymer. The thickness of the hydrogel polymer was about 17 mm.
(実施例2)
 イオン交換水の量を133.8gから124.0gへ変更したこと、2質量%過硫酸カリウム水溶液の量を8.09g(0.599ミリモル)から16.18g(1.197ミリモル)へ変更したこと、及び、0.5質量%L-アスコルビン酸水溶液の量を1.74gから3.47gへ変更したこと以外は実施例1と同様の操作を行うことにより単量体水溶液を調製した。その後、実施例1と同様の操作を行うことにより含水ゲル状重合体を得た。重合結果として、0.5質量%L-アスコルビン酸水溶液等を滴下してから11分後に重合温度がピーク温度85℃に達した。
(Example 2)
The amount of ion-exchanged water was changed from 133.8 g to 124.0 g, and the amount of 2 mass% potassium persulfate aqueous solution was changed from 8.09 g (0.599 mmol) to 16.18 g (1.197 mmol). A monomer aqueous solution was prepared by performing the same operation as in Example 1 except that the amount of the 0.5 mass% L-ascorbic acid aqueous solution was changed from 1.74 g to 3.47 g. Then, a hydrogel-like polymer was obtained by performing the same operation as in Example 1. As a result of the polymerization, the polymerization temperature reached a peak temperature of 85 ° C. 11 minutes after the addition of a 0.5 mass% L-ascorbic acid aqueous solution or the like.
(実施例3)
 イオン交換水の量を133.8gから123.8gへ変更したこと、2質量%過硫酸カリウム水溶液の量を8.09g(0.599ミリモル)から16.18g(1.197ミリモル)へ変更したこと、0.5質量%L-アスコルビン酸水溶液の量を1.74gから3.47gへ変更したこと、及び、エチレングリコールジグリシジルエーテルの量を0.141g(0.809ミリモル)から0.283g(1.625ミリモル)へ変更したこと以外は実施例1と同様の操作を行うことにより単量体水溶液を調製した。その後、実施例1と同様の操作を行うことにより含水ゲル状重合体を得た。重合結果として、0.5質量%L-アスコルビン酸水溶液等を滴下してから13分後に重合温度がピーク温度95℃に達した。
(Example 3)
The amount of ion-exchanged water was changed from 133.8 g to 123.8 g, and the amount of 2 mass% potassium persulfate aqueous solution was changed from 8.09 g (0.599 mmol) to 16.18 g (1.197 mmol). That, the amount of 0.5 mass% L-ascorbic acid aqueous solution was changed from 1.74 g to 3.47 g, and the amount of ethylene glycol diglycidyl ether was changed from 0.141 g (0.809 mmol) to 0.283 g. A monomer aqueous solution was prepared by performing the same operation as in Example 1 except that the value was changed to (1.625 mmol). Then, a hydrogel-like polymer was obtained by performing the same operation as in Example 1. As a result of the polymerization, the polymerization temperature reached the peak temperature of 95 ° C. 13 minutes after the addition of a 0.5 mass% L-ascorbic acid aqueous solution or the like.
(実施例4)
 イオン交換水の量を133.8gから127.3gへ変更したこと、2質量%過硫酸カリウム水溶液8.09g(0.599ミリモル)に代えて2質量%過硫酸ナトリウム水溶液14.25g(1.197ミリモル)を用いたこと、及び、0.5質量%L-アスコルビン酸水溶液の量を1.74gから3.47gへ変更したこと以外は実施例1と同様の操作を行うことにより単量体水溶液を調製した。その後、実施例1と同様の操作を行うことにより含水ゲル状重合体を得た。重合結果として、0.5質量%L-アスコルビン酸水溶液等を滴下してから11分後に重合温度がピーク温度86℃に達した。
(Example 4)
The amount of ion-exchanged water was changed from 133.8 g to 127.3 g, and instead of 8.09 g (0.599 mmol) of the 2 mass% potassium persulfate aqueous solution, 14.25 g (1.) of the 2 mass% sodium persulfate aqueous solution. 197 mmol) was used, and the amount of the 0.5 mass% L-ascorbic acid aqueous solution was changed from 1.74 g to 3.47 g. An aqueous solution was prepared. Then, a hydrogel-like polymer was obtained by performing the same operation as in Example 1. As a result of the polymerization, the polymerization temperature reached a peak temperature of 86 ° C. 11 minutes after the addition of a 0.5 mass% L-ascorbic acid aqueous solution or the like.
(実施例5)
 イオン交換水の量を133.8gから122.9gへ変更したこと、2質量%過硫酸カリウム水溶液の量を8.09g(0.599ミリモル)から16.18g(1.197ミリモル)へ変更したこと、0.5質量%L-アスコルビン酸水溶液の量を1.74gから3.47gへ変更したこと、及び、エチレングリコールジグリシジルエーテルを0.141g(0.809ミリモル)から1.240g(7.119ミリモル)へ変更したこと以外は実施例1と同様の操作を行うことにより単量体水溶液を調製した。その後、実施例1と同様の操作を行うことにより含水ゲル状重合体を得た。重合結果として、0.5質量%L-アスコルビン酸水溶液等を滴下してから10分後に重合温度がピーク温度98℃に達した。
(Example 5)
The amount of ion-exchanged water was changed from 133.8 g to 122.9 g, and the amount of 2 mass% potassium persulfate aqueous solution was changed from 8.09 g (0.599 mmol) to 16.18 g (1.197 mmol). That, the amount of the 0.5 mass% L-ascorbic acid aqueous solution was changed from 1.74 g to 3.47 g, and the ethylene glycol diglycidyl ether was changed from 0.141 g (0.809 mmol) to 1.240 g (7). A monomer aqueous solution was prepared by carrying out the same operation as in Example 1 except that it was changed to .119 mmol). Then, a hydrogel-like polymer was obtained by performing the same operation as in Example 1. As a result of the polymerization, the polymerization temperature reached a peak temperature of 98 ° C. 10 minutes after the addition of a 0.5 mass% L-ascorbic acid aqueous solution or the like.
(実施例6)
 イオン交換水の量を133.8gから94.5gへ変更したこと、2質量%過硫酸カリウム水溶液の量を8.09g(0.599ミリモル)から40.44g(2.992ミリモル)へ変更したこと、及び、0.5質量%L-アスコルビン酸水溶液の量を1.74gから8.68gへ変更したこと以外は実施例1と同様の操作を行うことにより単量体水溶液を調製した。その後、実施例1と同様の操作を行うことにより含水ゲル状重合体を得た。重合結果として、0.5質量%L-アスコルビン酸水溶液等を滴下してから6分後に重合温度がピーク温度102℃に達した。
(Example 6)
The amount of ion-exchanged water was changed from 133.8 g to 94.5 g, and the amount of 2 mass% potassium persulfate aqueous solution was changed from 8.09 g (0.599 mmol) to 40.44 g (2.992 mmol). A monomer aqueous solution was prepared by performing the same operation as in Example 1 except that the amount of the 0.5 mass% L-ascorbic acid aqueous solution was changed from 1.74 g to 8.68 g. Then, a hydrogel-like polymer was obtained by performing the same operation as in Example 1. As a result of the polymerization, the polymerization temperature reached a peak temperature of 102 ° C. 6 minutes after the addition of a 0.5 mass% L-ascorbic acid aqueous solution or the like.
(実施例7)
 イオン交換水の量を133.8gから65.0gへ変更したこと、2質量%過硫酸カリウム水溶液の量を8.09g(0.599ミリモル)から64.71g(4.788ミリモル)へ変更したこと、及び、0.5質量%L-アスコルビン酸水溶液の量を1.74gから13.89gへ変更したこと以外は実施例1と同様の操作を行うことにより単量体水溶液を調製した。その後、実施例1と同様の操作を行うことにより含水ゲル状重合体を得た。重合結果として、0.5質量%L-アスコルビン酸水溶液等を滴下してから4分後に重合温度がピーク温度107℃に達した。
(Example 7)
The amount of ion-exchanged water was changed from 133.8 g to 65.0 g, and the amount of 2 mass% potassium persulfate aqueous solution was changed from 8.09 g (0.599 mmol) to 64.71 g (4.788 mmol). A monomer aqueous solution was prepared by performing the same operation as in Example 1 except that the amount of the 0.5 mass% L-ascorbic acid aqueous solution was changed from 1.74 g to 13.89 g. Then, a hydrogel-like polymer was obtained by performing the same operation as in Example 1. As a result of the polymerization, the polymerization temperature reached the peak temperature of 107 ° C. 4 minutes after the addition of a 0.5 mass% L-ascorbic acid aqueous solution or the like.
(比較例1)
 イオン交換水の量を133.8gから65.1gへ変更したこと、エチレングリコールジグリシジルエーテルの量を0.141g(0.809ミリモル)から0.0236g(0.135ミリモル)へ変更したこと、2質量%過硫酸カリウム水溶液の量を8.09g(0.599ミリモル)から64.71g(4.788ミリモル)へ変更したこと、及び、0.5質量%L-アスコルビン酸水溶液の量を1.74gから13.89gへ変更したこと以外は実施例1と同様の操作を行うことにより単量体水溶液を調製した。その後、実施例1と同様の操作を行うことにより含水ゲル状重合体を得た。重合結果として、0.5質量%L-アスコルビン酸水溶液等を滴下してから4分後に重合温度がピーク温度104℃に達した。
(Comparative Example 1)
The amount of ion-exchanged water was changed from 133.8 g to 65.1 g, and the amount of ethylene glycol diglycidyl ether was changed from 0.141 g (0.809 mmol) to 0.0236 g (0.135 mmol). The amount of the 2 mass% potassium persulfate aqueous solution was changed from 8.09 g (0.599 mmol) to 64.71 g (4.788 mmol), and the amount of the 0.5 mass% L-ascorbic acid aqueous solution was changed to 1. A monomer aqueous solution was prepared by performing the same operation as in Example 1 except that the amount was changed from .74 g to 13.89 g. Then, a hydrogel-like polymer was obtained by performing the same operation as in Example 1. As a result of the polymerization, the polymerization temperature reached the peak temperature of 104 ° C. 4 minutes after the addition of a 0.5 mass% L-ascorbic acid aqueous solution or the like.
(比較例2)
 実施例1と同様の操作を行うことによりアクリル酸部分中和液を調製した。
(Comparative Example 2)
An acrylic acid partial neutralizing solution was prepared by performing the same operation as in Example 1.
 撹拌子(直径8mm、長さ45mm)を2個備えると共にフッ素樹脂コーティングされた18-8ステンレス製容器(ステンレスバット、外寸:297mm×232mm×高さ50mm)内に、上記アクリル酸ナトリウム部分中和液908.9g、イオン交換水130.6g、及び、エチレングリコールジグリシジルエーテル0.141g(内部架橋剤、0.809ミリモル)を入れた後、撹拌子を回転させて成分を均一に分散させることにより混合物を得た。その後、容器の上部をポリエチレンフィルムでカバーした。容器内の前記混合物の温度を25℃に調整後、混合物を窒素置換することにより溶存酸素量を0.1ppm以下に調整した。次いで、5質量%V-50水溶液(2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、和光純薬工業株式会社製)6.47g(1.193ミリモル)、0.5質量%L-アスコルビン酸水溶液3.06g、及び、0.35質量%過酸化水素水3.43gを、順に300rpmの撹拌下で注射器(テルモ株式会社製、容積50mLのディスポシリンジ)を用いて滴下することにより単量体水溶液を調製した。単量体水溶液中のアクリル酸濃度は38.9%であった。 In the sodium acrylate portion in an 18-8 stainless steel container (stainless steel bat, outer dimensions: 297 mm × 232 mm × height 50 mm) provided with two stir bars (diameter 8 mm, length 45 mm) and coated with fluororesin. After adding 908.9 g of Japanese solution, 130.6 g of ion-exchanged water, and 0.141 g of ethylene glycol diglycidyl ether (internal cross-linking agent, 0.809 mmol), the stirrer is rotated to uniformly disperse the components. This gave the mixture. Then, the upper part of the container was covered with a polyethylene film. After adjusting the temperature of the mixture in the container to 25 ° C., the amount of dissolved oxygen was adjusted to 0.1 ppm or less by substituting nitrogen in the mixture. Next, 5.47 g (1.193 mmol) of a 5 mass% V-50 aqueous solution (2,2'-azobis (2-amidinopropane) dihydrochloride, manufactured by Wako Pure Chemical Industries, Ltd.), 0.5 mass% L. -By dropping 3.06 g of an aqueous ascorbic acid solution and 3.43 g of a 0.35 mass% hydrogen peroxide solution in order using a syringe (manufactured by Telmo Co., Ltd., a disposable syringe having a volume of 50 mL) under stirring at 300 rpm. A monomer aqueous solution was prepared. The acrylic acid concentration in the aqueous monomer solution was 38.9%.
 上述のとおり0.35質量%過酸化水素水等を滴下した後、直ちに重合が開始した。その後、実施例1と同様の操作を行うことにより含水ゲル状重合体を得た。重合結果として、0.35質量%過酸化水素水等を滴下してから2分後に重合温度がピーク温度104℃に達した。 As described above, the polymerization started immediately after dropping 0.35% by mass hydrogen peroxide solution or the like. Then, a hydrogel-like polymer was obtained by performing the same operation as in Example 1. As a result of the polymerization, the polymerization temperature reached the peak temperature of 104 ° C. 2 minutes after the addition of 0.35 mass% hydrogen peroxide solution or the like.
<圧縮試験>
 含水ゲル状重合体を裁断することにより20mm×20mm×17mmの直方体状の試験片を得た。図2に示すように、容量500N(測定上限設定:450N)のロードセル10に感圧軸20(直径20mm、厚さ5mmの円板30を先端に具備する棒状の治具)を備える測定器具100(株式会社島津製作所製、商品名:EZtest、型番:EZ-SX)を準備した。円板30の平坦面が水平方向に沿うように調整した。試験片40の20mm×20mmの面が鉛直方向の上方を向くように測定器具100の測定台50に試験片40を置いた。島津オートグラフ用ソフトウェア「トラペジウムX」(株式会社島津製作所製)を用いて、鉛直方向における感圧軸20の位置を調整すると共に試験片40の中心が感圧軸20の円板30の中央に位置するように調整した。
<Compression test>
By cutting the hydrogel polymer, a rectangular parallelepiped test piece of 20 mm × 20 mm × 17 mm was obtained. As shown in FIG. 2, a measuring instrument 100 having a load cell 10 having a capacity of 500 N (measurement upper limit setting: 450 N) and a pressure sensitive shaft 20 (a rod-shaped jig having a disk 30 having a diameter of 20 mm and a thickness of 5 mm at the tip). (Manufactured by Shimadzu Corporation, product name: EZtest, model number: EZ-SX) was prepared. The flat surface of the disk 30 was adjusted to be along the horizontal direction. The test piece 40 was placed on the measuring table 50 of the measuring instrument 100 so that the 20 mm × 20 mm surface of the test piece 40 faced upward in the vertical direction. Using the Shimadzu autograph software "Trapezium X" (manufactured by Shimadzu Corporation), the position of the pressure sensitive shaft 20 in the vertical direction is adjusted, and the center of the test piece 40 is located at the center of the disk 30 of the pressure sensitive shaft 20. Adjusted to be positioned.
 ロードセル10が0.01Nの試験力を感知するまで感圧軸20を下げ、感圧軸20の円板30と試験片40の表面とを接触させた。次に、感圧軸20を0.05mm上昇させることにより感圧軸20の位置を測定開始位置に調整した。続いて、走査速度30mm/minで円板30を試験片40に15mm押し込み、このときの試験力の最大値(室温)を測定した。結果を表1に示す。 The pressure sensitive shaft 20 was lowered until the load cell 10 sensed a test force of 0.01 N, and the disk 30 of the pressure sensitive shaft 20 and the surface of the test piece 40 were brought into contact with each other. Next, the position of the pressure sensitive shaft 20 was adjusted to the measurement start position by raising the pressure sensitive shaft 20 by 0.05 mm. Subsequently, the disk 30 was pushed into the test piece 40 by 15 mm at a scanning speed of 30 mm / min, and the maximum value (room temperature) of the test force at this time was measured. The results are shown in Table 1.
<粗砕前含水ゲルの吸水能>
 上述の含水ゲル状重合体を裁断して得られた5mm×5mm×17mmの含水ゲルを180℃で30分間熱風乾燥することにより乾燥物(ゲル乾燥物)を得た。次に、遠心粉砕機(ヴァーダー・サイエンティフィック株式会社製、製品名:ZM200、6本刃ローター、ローター回転数:6000rpm、スクリーン梯形孔:1.00mm)を用いてこの乾燥物15gを粉砕することにより粉砕物を得た。続いて、粉砕物を目開き850μmの篩及び目開き106μmの篩で分級することにより、目開き106μmの篩上に残留した粗砕前含水ゲルの乾燥粉砕物を回収した。
<Water absorption capacity of hydrogel before coarse crushing>
A 5 mm × 5 mm × 17 mm hydrogel obtained by cutting the above hydrogel polymer was dried with hot air at 180 ° C. for 30 minutes to obtain a dried product (gel dried product). Next, 15 g of this dried product is crushed using a centrifugal crusher (manufactured by Verder Scientific Co., Ltd., product name: ZM200, 6-blade rotor, rotor rotation speed: 6000 rpm, screen trapezoidal hole: 1.00 mm). As a result, a crushed product was obtained. Subsequently, the pulverized product was classified by a sieve having an opening of 850 μm and a sieve having an opening of 106 μm to recover the dried pulverized product of the pre-grinding hydrogel remaining on the sieve having an opening of 106 μm.
 容積500mLのビーカーに生理食塩水500gを量り取った。次に、マグネチックスターラーバー(8mmφ×長さ30mm、リング無し)を用いて600rpmで撹拌させながら、ママコが発生しないように上述の乾燥粉砕物2.0gを生理食塩水に分散させた。撹拌させた状態で60分間放置することにより粒子を充分に膨潤させることにより、膨潤ゲルを含む分散液を得た。続いて、目開き75μm標準篩の質量Wa[g]を測定した後、上述の分散液をこの標準篩に通した。そして、水平に対して約30度の傾斜角に篩を傾けた状態で30分間放置することにより余剰の水分を除去した。膨潤ゲルが残存した篩の質量Wb[g]を測定し、下記式により粗砕前含水ゲル(乾燥粉砕物)の吸水能Wc[g/g](室温)を求めた。結果を表1に示す。
  粗砕前含水ゲルの吸水能Wc=(Wb-Wa)/2.0
500 g of physiological saline was weighed in a beaker having a volume of 500 mL. Next, while stirring at 600 rpm using a magnetic stirrer bar (8 mmφ × length 30 mm, no ring), 2.0 g of the above-mentioned dried pulverized product was dispersed in physiological saline so as not to generate mamaco. The particles were sufficiently swollen by leaving them to stand for 60 minutes in a stirred state to obtain a dispersion liquid containing a swollen gel. Subsequently, after measuring the mass Wa [g] of the standard sieve having an opening of 75 μm, the above-mentioned dispersion liquid was passed through this standard sieve. Then, the excess water was removed by leaving the sieve at an inclination angle of about 30 degrees with respect to the horizontal for 30 minutes. The mass Wb [g] of the sieve on which the swelling gel remained was measured, and the water absorption capacity Wc [g / g] (room temperature) of the hydrogel before coarse crushing (dry pulverized product) was determined by the following formula. The results are shown in Table 1.
Water absorption capacity of hydrogel before coarse grinding Wc = (Wb-Wa) /2.0
<含水ゲル状重合体の粗砕>
 上述の含水ゲル状重合体を容器から取り出した後、50mm間隔の格子状に切れ目を入れることにより含水ゲル状重合体を裁断した。裁断した含水ゲル状重合体を粗砕装置(喜連ローヤル株式会社製のミートチョッパー12VR-750SDX)に順次投入して粗砕することにより粗砕物(含水ゲル粗砕物)を得た。ミートチョッパーの出口に位置するプレートの穴(円形)の径は6.4mmであった。粗砕は、ミートチョッパーのプレートから粗砕物が出てこなくなるまで行った。このとき、ミートチョッパーに投入した含水ゲル状重合体の量Ga[g](=200g)、及び、排出されて回収できた粗砕物Gb[g]を用いて粗砕収率を下記式から算出した。結果を表1に示す。
  粗砕収率[質量%]=(Gb/Ga)×100
<Coarse crushing of hydrogel polymer>
After taking out the above-mentioned hydrogel polymer from the container, the hydrogel polymer was cut by making cuts in a grid pattern at intervals of 50 mm. The cut hydrogel polymer was sequentially put into a coarse crusher (meat chopper 12VR-750SDX manufactured by Kiren Royal Co., Ltd.) and coarsely crushed to obtain a crude product (hydrous gel coarse crushed product). The diameter of the hole (circular) of the plate located at the outlet of the meat chopper was 6.4 mm. The crushing was carried out until no crushed material came out from the plate of the meat chopper. At this time, the crude crushing yield was calculated from the following formula using the amount Ga [g] (= 200 g) of the hydrogel polymer charged into the meat chopper and the pyroclastic material Gb [g] that was discharged and recovered. did. The results are shown in Table 1.
Crude crushing yield [mass%] = (Gb / Ga) × 100
<粗砕物の乾燥及び粉砕>
 上述の粗砕物を180℃で30分間熱風乾燥することにより乾燥物(ゲル乾燥物)を得た。次に、遠心粉砕機(ヴァーダー・サイエンティフィック株式会社製、製品名:ZM200、6本刃ローター、ローター回転数:6000rpm、スクリーン梯形孔:1.00mm)を用いて乾燥物15gを粉砕することにより粉砕物を得た。続いて、粉砕物を目開き850μmの篩及び目開き106μmの篩で分級することにより、目開き106μmの篩上に残留した粗砕後含水ゲルの乾燥粉砕物(架橋重合体粒子)を回収した。
<Drying and crushing of coarse crushed material>
The above-mentioned pyroclastic material was dried with hot air at 180 ° C. for 30 minutes to obtain a dried product (gel dried product). Next, 15 g of the dried product is crushed using a centrifugal crusher (manufactured by Verder Scientific Co., Ltd., product name: ZM200, 6-flute rotor, rotor rotation speed: 6000 rpm, screen trapezoidal hole: 1.00 mm). Obtained a crushed product. Subsequently, the pulverized product was classified by a sieve having an opening of 850 μm and a sieve having an opening of 106 μm to recover the dried pulverized product (crosslinked polymer particles) of the hydrous gel after coarse crushing remaining on the sieve having an opening of 106 μm. ..
<粗砕後含水ゲルの吸水能、及び、吸水能の変化率>
 上述の粗砕前含水ゲルの吸水能Wcと同様の方法により粗砕後含水ゲルの吸水能Wd[g/g](室温)を測定した。また、粗砕前含水ゲルの吸水能Wc及び粗砕後含水ゲルの吸水能Wdを用いて下記式より吸水能の変化率を求めた。結果を表1に示す。
  吸水能の変化率[%]=(Wc-Wd)/Wc×100
<Water absorption capacity of hydrogel after coarse crushing and rate of change in water absorption capacity>
The water absorption capacity Wd [g / g] (room temperature) of the water-containing gel after coarse crushing was measured by the same method as the water absorption capacity Wc of the water-containing gel before coarse crushing. Further, the rate of change in water absorption capacity was determined from the following formula using the water absorption capacity Wc of the water-containing gel before coarse crushing and the water absorption capacity Wd of the water-containing gel after coarse crushing. The results are shown in Table 1.
Rate of change in water absorption [%] = (Wc-Wd) / Wc × 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1によれば、粗砕工程において粗砕される架橋重合体ゲルが特定の試験力を与える場合に架橋重合体粒子における吸水能の低下を抑制可能であることが確認される。 According to Table 1, it is confirmed that when the crosslinked polymer gel coarsely crushed in the coarse crushing step gives a specific test force, it is possible to suppress a decrease in water absorption capacity of the crosslinked polymer particles.
 10…ロードセル、20…感圧軸、30…円板、40…試験片、50…測定台、100…測定器具。 10 ... load cell, 20 ... pressure sensitive shaft, 30 ... disk, 40 ... test piece, 50 ... measuring table, 100 ... measuring instrument.

Claims (6)

  1.  エチレン性不飽和単量体に由来する構造単位を有する架橋重合体ゲルを粗砕する粗砕工程を備え、
     下記(1)~(3)の手順により得られる重合後ゲル硬度が70N以上450N未満である、架橋重合体粒子の製造方法。
    (1)前記架橋重合体ゲルから20mm×20mm×17mmの直方体状の試験片を得る。
    (2)平坦面を有する治具の前記平坦面を前記試験片の20mm×20mmの面に鉛直方向の上側から接触させる。
    (3)鉛直方向に前記治具を前記試験片に15mm押し込む操作を行い、当該操作中に前記治具に負荷される荷重の最大値を前記重合後ゲル硬度として得る。
    A rough crushing step for coarsely crushing a crosslinked polymer gel having a structural unit derived from an ethylenically unsaturated monomer is provided.
    A method for producing crosslinked polymer particles, wherein the gel hardness after polymerization obtained by the following procedures (1) to (3) is 70 N or more and less than 450 N.
    (1) A rectangular parallelepiped test piece of 20 mm × 20 mm × 17 mm is obtained from the crosslinked polymer gel.
    (2) The flat surface of the jig having a flat surface is brought into contact with the 20 mm × 20 mm surface of the test piece from the upper side in the vertical direction.
    (3) An operation of pushing the jig into the test piece by 15 mm in the vertical direction is performed, and the maximum value of the load applied to the jig during the operation is obtained as the gel hardness after polymerization.
  2.  前記エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも一種を含む、請求項1に記載の架橋重合体粒子の製造方法。 The method for producing crosslinked polymer particles according to claim 1, wherein the ethylenically unsaturated monomer contains at least one selected from the group consisting of (meth) acrylic acid and a salt thereof.
  3.  前記粗砕工程において得られた粗砕物を乾燥及び粉砕して得られる架橋重合体粒子の吸水能が30~80g/gである、請求項1又は2に記載の架橋重合体粒子の製造方法。 The method for producing crosslinked polymer particles according to claim 1 or 2, wherein the crosslinked polymer particles obtained by drying and pulverizing the coarsely crushed product obtained in the coarse crushing step have a water absorption capacity of 30 to 80 g / g.
  4.  エチレン性不飽和単量体に由来する構造単位を有する架橋重合体ゲルであって、
     下記(1)~(3)の手順により得られる重合後ゲル硬度が70N以上450N未満である、架橋重合体ゲル。
    (1)前記架橋重合体ゲルから20mm×20mm×17mmの直方体状の試験片を得る。
    (2)平坦面を有する治具の前記平坦面を前記試験片の20mm×20mmの面に鉛直方向の上側から接触させる。
    (3)鉛直方向に前記治具を前記試験片に15mm押し込む操作を行い、当該操作中に前記治具に負荷される荷重の最大値を前記重合後ゲル硬度として得る。
    A crosslinked polymer gel having a structural unit derived from an ethylenically unsaturated monomer.
    A crosslinked polymer gel having a post-polymerization gel hardness of 70 N or more and less than 450 N obtained by the following procedures (1) to (3).
    (1) A rectangular parallelepiped test piece of 20 mm × 20 mm × 17 mm is obtained from the crosslinked polymer gel.
    (2) The flat surface of the jig having a flat surface is brought into contact with the 20 mm × 20 mm surface of the test piece from the upper side in the vertical direction.
    (3) An operation of pushing the jig into the test piece by 15 mm in the vertical direction is performed, and the maximum value of the load applied to the jig during the operation is obtained as the gel hardness after polymerization.
  5.  前記エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも一種を含む、請求項4に記載の架橋重合体ゲル。 The crosslinked polymer gel according to claim 4, wherein the ethylenically unsaturated monomer contains at least one selected from the group consisting of (meth) acrylic acid and a salt thereof.
  6.  当該架橋重合体ゲルを粗砕、乾燥及び粉砕して得られる架橋重合体粒子の吸水能が30~80g/gである、請求項4又は5に記載の架橋重合体ゲル。

     
    The crosslinked polymer gel according to claim 4 or 5, wherein the crosslinked polymer particles obtained by coarsely crushing, drying and pulverizing the crosslinked polymer gel have a water absorption capacity of 30 to 80 g / g.

PCT/JP2020/033833 2019-09-09 2020-09-07 Method for producing crosslinked polymer particles, and crosslinked polymer gel WO2021049467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021545532A JPWO2021049467A1 (en) 2019-09-09 2020-09-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-163872 2019-09-09
JP2019163872 2019-09-09

Publications (1)

Publication Number Publication Date
WO2021049467A1 true WO2021049467A1 (en) 2021-03-18

Family

ID=74865684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033833 WO2021049467A1 (en) 2019-09-09 2020-09-07 Method for producing crosslinked polymer particles, and crosslinked polymer gel

Country Status (2)

Country Link
JP (1) JPWO2021049467A1 (en)
WO (1) WO2021049467A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339381A (en) * 1992-06-10 1993-12-21 Nippon Shokubai Co Ltd Production of water-absorptive resin and water absorbent
JPH09124879A (en) * 1995-10-31 1997-05-13 Sanyo Chem Ind Ltd Modified water-absorptive resin particle and its production
JPH1067805A (en) * 1996-06-05 1998-03-10 Nippon Shokubai Co Ltd Manufacture of crosslinked polymer
JP2015530433A (en) * 2012-08-30 2015-10-15 モアシス インコーポレーション Porous gel and use thereof
WO2018092864A1 (en) * 2016-11-16 2018-05-24 株式会社日本触媒 Production method for water-absorbing resin powder, and production device for same
JP2018119142A (en) * 2017-01-23 2018-08-02 住友精化株式会社 Method for producing crosslinked polymer and method for producing water-absorbing resin
JP2018162455A (en) * 2017-03-24 2018-10-18 住友精化株式会社 Method for producing water-absorbing resin
JP2018164732A (en) * 2017-03-28 2018-10-25 Sdpグローバル株式会社 Absorbent article
JP2019094444A (en) * 2017-11-24 2019-06-20 Sdpグローバル株式会社 Water-absorbable resin particle and production method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339381A (en) * 1992-06-10 1993-12-21 Nippon Shokubai Co Ltd Production of water-absorptive resin and water absorbent
JPH09124879A (en) * 1995-10-31 1997-05-13 Sanyo Chem Ind Ltd Modified water-absorptive resin particle and its production
JPH1067805A (en) * 1996-06-05 1998-03-10 Nippon Shokubai Co Ltd Manufacture of crosslinked polymer
JP2015530433A (en) * 2012-08-30 2015-10-15 モアシス インコーポレーション Porous gel and use thereof
WO2018092864A1 (en) * 2016-11-16 2018-05-24 株式会社日本触媒 Production method for water-absorbing resin powder, and production device for same
JP2018119142A (en) * 2017-01-23 2018-08-02 住友精化株式会社 Method for producing crosslinked polymer and method for producing water-absorbing resin
JP2018162455A (en) * 2017-03-24 2018-10-18 住友精化株式会社 Method for producing water-absorbing resin
JP2018164732A (en) * 2017-03-28 2018-10-25 Sdpグローバル株式会社 Absorbent article
JP2019094444A (en) * 2017-11-24 2019-06-20 Sdpグローバル株式会社 Water-absorbable resin particle and production method thereof

Also Published As

Publication number Publication date
JPWO2021049467A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
EP3124502B1 (en) Method for producing water-absorbent resin particle
US8875415B2 (en) Method for drying granular water-containing gel-like cross-linked polymer
JP5587348B2 (en) Method for producing water absorbent resin
CN102712763B (en) Method for producing water absorbent resin
KR102373041B1 (en) Production method for polyacrylic acid (polyacrylate) water-absorptive resin
KR20150091363A (en) Polyacrylate super-absorbent polymer and manufacturing method therefor
JP7355646B2 (en) Manufacturing method of water absorbent resin
EP3029077B1 (en) Process for producing water-absorbent resin particles
JP7105586B2 (en) Method for manufacturing water absorbent resin
WO2021049467A1 (en) Method for producing crosslinked polymer particles, and crosslinked polymer gel
CN113166461A (en) Method for producing superabsorbent polymer and superabsorbent polymer
US20180273705A1 (en) Method for preparing superabsorbent polymer
EP3896098A1 (en) Absorption body and absorptive article
WO2021006149A1 (en) Cross-linked polymer particle production method and cross-linked polymer gel
WO2021049451A1 (en) Method for producing water-absorbable resin particles
WO2021235524A1 (en) Method for producing water absorbent resin particles
WO2022025003A1 (en) Water-absorbent resin particles, and method for producing water-absorbent resin particles
WO2022075258A1 (en) Method for producing water-absorbing resin particles
WO2022025122A1 (en) Method for producing water-absorbing resin particles
WO2021132026A1 (en) Method for producing water-absorbent resin particles
WO2022024789A1 (en) Method for producing water-absorbing resin particles
WO2021049493A1 (en) Method for producing water-absorbent resin particles
WO2021187325A1 (en) Method for producing absorbent resin particles
WO2022181452A1 (en) Method for producing water absorbent resin particles
JP2022087997A (en) Method of producing water-absorbing resin particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545532

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864039

Country of ref document: EP

Kind code of ref document: A1