WO2022024652A1 - プラズマ溶射用材料 - Google Patents

プラズマ溶射用材料 Download PDF

Info

Publication number
WO2022024652A1
WO2022024652A1 PCT/JP2021/024830 JP2021024830W WO2022024652A1 WO 2022024652 A1 WO2022024652 A1 WO 2022024652A1 JP 2021024830 W JP2021024830 W JP 2021024830W WO 2022024652 A1 WO2022024652 A1 WO 2022024652A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma spraying
hap
powder
film
measured
Prior art date
Application number
PCT/JP2021/024830
Other languages
English (en)
French (fr)
Inventor
直之 北村
明人 板東
勇多 津村
陽平 櫛木
Original Assignee
富田製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富田製薬株式会社 filed Critical 富田製薬株式会社
Priority to US18/007,127 priority Critical patent/US20230226255A1/en
Priority to EP21849148.8A priority patent/EP4190936A1/en
Priority to CN202180047184.5A priority patent/CN115943226A/zh
Priority to JP2021559697A priority patent/JP6999099B1/ja
Publication of WO2022024652A1 publication Critical patent/WO2022024652A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5048Phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3092Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having an open-celled or open-pored structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/24Materials or treatment for tissue regeneration for joint reconstruction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives

Definitions

  • the present invention relates to a plasma spraying material capable of forming a hydroxyapatite film having high hardness and resistance to wear even under plasma spraying conditions with low frame energy.
  • a polyetheretherketone (hereinafter, also referred to as PEEK) having strength, elasticity, chemical resistance, and X-ray permeability similar to that of autologous bone, etc.
  • Resin materials have come to be used as the base material for implants.
  • PEEK has excellent physical properties, it is bioinert and does not directly bind to biological tissue, so that there is a problem that implants using PEEK as a base material loosen.
  • biocompatibility directly binds to biological tissue
  • a method of coating the PEEK surface with a bioactive material or a method of kneading PEEK and the bioactive material has been studied.
  • the coating method is preferable in order to provide biocompatibility to the entire surface while maintaining the original physical properties of PEEK.
  • hydroxyapatite (hereinafter, also referred to as HAp) is mainly used as a bioactive material, and the coating method thereof is a plasma spraying method, a dipping method, an electrophoresis method, a flame spraying method, or the like.
  • the plasma spraying method is said to be the most preferable from the viewpoint of production efficiency and the penetration rate of equipment.
  • a method of forming a HAp film on a plastic material such as PEEK by a plasma spraying method has been reported (see, for example, Patent Document 1 and the like).
  • the plasma spraying method when a working gas such as argon gas is supplied to an arc generated by applying a voltage between the cathode and the anode, the working gas is ionized and the plasma spraying material is supplied into the plasma frame generated by the ionization.
  • the coating material melted by the temperature and airflow of the plasma frame adheres to the base material, and a film is formed. Since the plasma frame reaches around 10,000 ° C., the temperature of the base material becomes high. If the base material is a metal, it will not be decomposed by the heat of the frame, but if the base material is made of resin, it may undergo thermal decomposition or thermal denaturation.
  • the present invention is to provide a plasma spraying material capable of forming a HAp film having high hardness and resistance to wear even under plasma spraying conditions of low frame energy.
  • the average particle size (D 50 ) is 15 to 40 ⁇ m
  • the pore volume at a pore size of 2000 nm or less measured by the mercury spraying method is
  • the HAp powder having a value of 0.01 to 0.30 cc / g can form a HAp film which is capable of plasma spraying even under plasma spraying conditions of low frame energy and has high hardness and is not easily worn. It has been found that a HAp film can be formed on a resin substrate without causing thermal decomposition or thermal denaturation.
  • the present invention has been completed by further studies based on such findings.
  • Item 1 For plasma spraying, which contains HAp powder having an average particle diameter (D 50 ) of 15 to 40 ⁇ m and a pore volume of 0.01 to 0.30 cc / g at a pore diameter of 2000 nm or less measured by a mercury intrusion method. material.
  • Item 2. Item 2. The material for plasma spraying according to Item 1, wherein the pore volume is 0.01 to 0.25 cc / g.
  • Item 3. The material for plasma spraying according to Item 1 or 2, wherein the average particle size (D 50 ) is 20 to 40 ⁇ m.
  • Item 2. The plasma spraying material according to any one of Items 1 to 4, wherein the pore volume at 2000 nm or more measured by the mercury intrusion method of the HAp powder is 0.20 to 0.80 cc / g. Item 6.
  • Item 6. The material for plasma spraying according to any one of Items 1 to 5, which is used for plasma spraying using a gas composed of only one or more monatomic molecules as a working gas.
  • Item 9. Item 6. The material for plasma spraying according to Item 7 or 8, wherein the material of the base material is polyetheretherketone.
  • Item 10. Item 6. The material for plasma spraying according to Item 7 or 8, wherein the material of the base material is a titanium alloy.
  • Item 11. Item 6. The material for plasma spraying according to any one of Items 7 to 10, wherein the substrate is an implant.
  • Item 13. Item 12.
  • Item 14. Item 6. The method for forming a HAp film according to any one of Items 12 or 13, wherein the material of the base material is polyetheretherketone.
  • Item 15. Item 2. The method for forming a HAp film according to Item 12 or 13, wherein the material of the base material is a titanium alloy.
  • a material for plasma spraying of HAp powder having an average particle diameter (D 50 ) of 15 to 40 ⁇ m and a pore volume of 0.01 to 0.30 cc / g at a pore diameter of 2000 nm or less measured by a mercury intrusion method. Use as.
  • the plasma spraying material of the present invention it is possible to form a HAp film which is capable of plasma spraying and has high hardness and is not easily worn even under plasma spraying conditions of low frame energy. Therefore, by using the plasma spraying material of the present invention to perform plasma spraying on a resin base material such as PEEK with low frame energy, it is possible to suppress thermal decomposition and thermal denaturation of the resin base material. can.
  • the plasma spraying material of the present invention melts the entire particle even at a low frame energy due to the fact that the average particle size is limited to a relatively small range in the HAp powder used. It is possible, and because the pore volume at the pore diameter of 2000 nm or less measured by the mercury spraying method is limited to a relatively small range, there are few voids existing in the particles. It is presumed that the heat transfer to the inside of the particles is not blocked, the heat of the plasma frame is easily transferred to the entire particles, and the collision energy to the substrate is high. Based on such characteristics, the plasma spraying material of the present invention is considered to be able to satisfy the required performance under plasma spraying conditions with low frame energy.
  • the image which observed the appearance of the HAp powder of Examples 1 to 4 under a microscope is shown.
  • the images of the appearance of the HAp powder of Examples 5 to 6 and Comparative Example 1 observed under a microscope are shown.
  • An image of the appearance of the HAp powder of Comparative Examples 2 to 7 observed under a microscope is shown.
  • the image which observed the cross-sectional appearance of the HAp film formed by plasma spraying the HAp powder of Examples 1 to 4 with a microscope is shown.
  • the image which observed the cross-sectional appearance of the HAp film formed by plasma spraying the HAp powder of Examples 5-6 and the comparative example 5 with a microscope is shown.
  • the results of obtaining the distribution of the pore diameters of the HAp powders of Examples 1 and 2 by the mercury intrusion method are shown.
  • the results of obtaining the distribution of the pore diameters of the HAp powders of Examples 3 and 4 by the mercury intrusion method are shown.
  • the results of obtaining the distribution of the pore diameters of the HAp powders of Comparative Examples 1 to 3 by the mercury intrusion method are shown.
  • the results of obtaining the distribution of the pore diameters of the HAp powders of Comparative Examples 4 and 5 by the mercury intrusion method are shown.
  • the results of obtaining the distribution of the pore diameters of the HAp powders of Comparative Examples 6 and 7 by the mercury intrusion method are shown.
  • the results of distributing the pore diameters of the HAp powders of Examples 5 and 6 by the mercury intrusion method are shown.
  • the results of powder X-ray diffraction analysis of the HAp powder of Example 1 are shown.
  • the plasma spraying material of the present invention has an average particle diameter (D 50 ) of 15 to 40 ⁇ m and a pore volume of 0.01 to 0.30 cc / g at a pore diameter of 2000 nm or less measured by a mercury intrusion method. It is characterized by containing a certain HAp powder.
  • D 50 average particle diameter
  • a pore volume 0.01 to 0.30 cc / g at a pore diameter of 2000 nm or less measured by a mercury intrusion method. It is characterized by containing a certain HAp powder.
  • HAp is calcium phosphate represented by the chemical formula Ca 5 (PO 4 ) 3 (OH).
  • the HAp powder used in the present invention has an average particle size (D 50 ) of 15 to 40 ⁇ m.
  • the average particle size (D 50 ) of the HAp powder used in the present invention is preferably 20 to 40 ⁇ m, more preferably 20 to 30 ⁇ m, still more preferably 25 to 30 ⁇ m, and particularly preferably 26 to 30 ⁇ m.
  • the "average particle size (D 50 )" is a particle size (median size) at which the cumulative degree is 50% in the volume cumulative reference particle size distribution measured by using a laser diffraction / scattering type particle size distribution measuring device. ).
  • the HAp powder D 90 used in the present invention is not particularly limited as long as it satisfies the range of the average particle size (D 50 ), but is, for example, 30 to 70 ⁇ m, preferably 35 to 55 ⁇ m, and more preferably. 41 to 47 ⁇ m can be mentioned.
  • D 90 is a particle size having a cumulative degree of 90% in the volume cumulative reference particle size distribution measured by using a laser diffraction / scattering type particle size distribution measuring device.
  • the HAp powder D 10 used in the present invention is not particularly limited as long as it satisfies the range of the average particle size (D 50 ), but is, for example, 7 to 30 ⁇ m, preferably 10 to 25 ⁇ m, and more preferably. 14 to 19 ⁇ m can be mentioned.
  • D 10 is a particle size having a cumulative degree of 10% in the volume cumulative reference particle size distribution measured by using a laser diffraction / scattering type particle size distribution measuring device.
  • the pore volume at a pore diameter of 2000 nm or less measured by the mercury intrusion method is 0.01 to 0.30 cc / g.
  • the pore volume at a pore diameter of 2000 nm or less measured by the mercury intrusion method is preferably 0. 0.01 to 0.25 cc / g, more preferably 0.01 to 0.23 cc / g, still more preferably 0.01 to 0.22 cc / g.
  • the "pore volume at a pore diameter of 2000 nm or less measured by the mercury intrusion method” is the cumulative pore volume of a region having a pore diameter of 2000 nm or less in the pore volume measured using a mercury porosimeter.
  • the conditions of the mercury porosimeter are set so that the contact angle of mercury is 140 ° and the surface tension of mercury is 480 erg / cm 2 .
  • the pore volume at a pore diameter of 2000 nm or more measured by the mercury intrusion method is not particularly limited, but is, for example, 0.20 to 0.80 cc / g, preferably 0.30. Approximately 0.75 cc / g, more preferably 0.35 to 0.70 cc / g.
  • the "pore volume measured by the mercury intrusion method at a pore diameter of 2000 nm or more” is the cumulative pore volume of a region having a pore diameter of 2000 nm or more in the pore volume measured using a mercury porosimeter.
  • the conditions of the mercury porosimeter are the same as in the case of the above-mentioned "pore volume at a pore diameter of 2000 nm or less".
  • the mode diameter at a pore diameter of 2000 nm or less measured by the mercury intrusion method is not particularly limited, but is, for example, 3 to 1000 nm, preferably 4 to 750 nm, and more preferably 5 to 500 nm. Can be mentioned.
  • the "mode diameter at a pore diameter of 2000 nm or less measured by the mercury intrusion method” is the diameter having the highest appearance ratio in the region of the pore diameter of 2000 nm or less in the pore distribution measured by using a mercury porosimeter. Most frequent pore diameter).
  • the conditions of the mercury porosimeter are the same as in the case of the above-mentioned "pore volume at a pore diameter of 2000 nm or less".
  • the mode diameter at a pore diameter of 2000 nm or more measured by the mercury intrusion method is not particularly limited, but is, for example, 2000 to 15000 nm, preferably 5000 to 13000 nm, and more preferably 7500 to 13000 nm. , Especially preferably 8000 to 11000 nm.
  • the "mode diameter at a pore diameter of 2000 nm or more measured by the mercury intrusion method” is the diameter having the highest appearance ratio in the region of the pore diameter of 2000 nm or more in the pore distribution measured by using a mercury porosimeter. Most frequent pore diameter).
  • the conditions of the mercury porosimeter are the same as in the case of the above-mentioned "pore volume at a pore diameter of 2000 nm or less".
  • the pore volume measured by the gas adsorption method is not particularly limited, but is, for example, 0.0001 to 0.01 cc / g, preferably 0.0005 to 0.005 cc / g. g, more preferably 0.001 to 0.003 cc / g.
  • the "pore volume measured by the gas adsorption method” is a value measured by the following method using a high-speed specific surface area pore distribution measuring device. First, 1.0 to 2.0 g of HAp powder is accurately weighed, sealed in an adsorption tube, and degassed at 105 ° C. for 3 hours. Next, the adsorption isotherm of nitrogen gas was obtained under the temperature of liquid nitrogen gas, and the total pore volume (cc / g) was obtained from the gas adsorption amount at a liquid relative pressure P / P 0 (P 0 : saturated vapor pressure) of 0.995. Is calculated.
  • the average pore diameter measured by the gas adsorption method is not particularly limited, and examples thereof include 5 to 1000 nm, preferably 8 to 700 nm, and more preferably 10 to 550 nm. Be done.
  • the bulk density of the HAp powder used in the present invention is not particularly limited, but is, for example, 0.1 to 3.0 g / mL, preferably 0.4 to 2.0 g / mL, more preferably 0.6. ⁇ 1.1 g / mL can be mentioned.
  • the "bulk density” is a loose bulk density measured based on the test method specified in ASTM B212.
  • the BET specific surface area of the HAp powder used in the present invention is not particularly limited, and examples thereof include less than 5 m 2 / g, preferably 0 to 2 m 2 / g, and more preferably 0 to 1 m 2 / g.
  • the "BET specific surface area” is a value measured by the following method using a high-speed specific surface area pore distribution measuring device. First, 1.0 to 2.0 g of HAp powder is accurately weighed, sealed in an adsorption tube, and degassed at 105 ° C. for 3 hours. Next, the adsorption isotherm of nitrogen gas is obtained under the temperature of liquid nitrogen gas, and the specific surface area (m 2 / g) is calculated by the multipoint BET method using the adsorption isotherm.
  • the angle of repose of the HAp powder used in the present invention is not particularly limited, and examples thereof include 20 to 90 °, preferably 40 to 70 °, and more preferably 40 to 60 °.
  • the particle shape of the HAp powder is preferably spherical, substantially spherical, or the like.
  • the "angle of repose” is a value measured by the injection method with the vibration time set to 30 seconds and the amplitude set to 0.5 mm.
  • the particle hardness of the HAp powder used in the present invention is not particularly limited, and examples thereof include 100 to 15000 gf / mm 2 , preferably 500 to 10000 gf / mm 2 , and more preferably 800 to 8000 gf / mm 2 .
  • the "particle hardness" of the HAp powder is measured by using a particle hardness measuring device, the measurement speed is 10 ⁇ m / s, and the maximum value detection reduction rate is 80% (the threshold value for reading the peak value; 20% from the immediately preceding peak value).
  • the sample table detection load load that serves as a guide for detecting the origin position
  • 10 measurements are performed. It is a value obtained by calculating an average value.
  • the method for producing the HAp powder used in the present invention is not particularly limited as long as the HAp powder having the above-mentioned physical properties can be obtained, but as a preferable example, the production method including the following steps 1 to 5. Can be mentioned.
  • HAp is produced by a wet method including a sequential addition step of adding a suspension in which calcium is suspended.
  • Second step The HAp obtained in the first step is wet pulverized to obtain a wet pulverized product of HAp.
  • Third step The wet pulverized product of HAp obtained in the second step is dried to obtain a dried HAp powder.
  • Fourth step The dried HAp powder obtained in the third step is calcined at a temperature of more than 1050 ° C to less than 1400 ° C.
  • Fifth step By sieving the calcined HAp powder obtained in the fourth step, the HAp powder having an average particle diameter (D 50 ) of 15 to 40 ⁇ m is recovered.
  • D 50 average particle diameter
  • phosphoric acid was dropped into a suspension in which calcium hydroxide was suspended, or (2) calcium hydroxide was suspended in an aqueous phosphoric acid solution in which phosphoric acid was dissolved in water.
  • calcium ions and phosphate ions are reacted to carry out a HAp synthesis reaction [10Ca (OH) 2 + 6H 3 PO 4 ⁇ Ca 10 (PO 4 ) 6 (OH) 2 ].
  • the ratio of calcium hydroxide and phosphoric acid finally coexisting may be adjusted to be equal to the ratio of calcium and phosphorus in HAp.
  • a liquid in which calcium hydroxide is suspended in a milky liquid in water can be obtained by adding calcium oxide to water and causing a hydration reaction.
  • the added phosphoric acid is preferably in the state of an aqueous phosphoric acid solution in which phosphoric acid is dissolved in water.
  • the rate at which phosphoric acid is added dropwise may be appropriately adjusted so that the pH of the reaction solution after the addition is 9 or less.
  • the phosphorus (P) atom is 0.05 to 0.6 mol / h, preferably 0.1 to 0.3 mol / h, and more preferably 0.2 mol / h with respect to 1 mol of calcium (Ca) atom.
  • the range is listed.
  • calcium (Ca) atom is 0.
  • the range of 05 to 0.6 mol / h can be mentioned.
  • the temperature (reaction temperature) at which calcium ions and phosphate ions are reacted may be appropriately set according to the dropping amount, dropping speed, etc., but is preferably 20 ° C. or higher, preferably 20 ° C. or higher. The range of 30 to 70 ° C., more preferably 40 to 60 ° C. may be mentioned.
  • aging refers to leaving the product to stand for a certain period of time under standing or stirring.
  • the aging time may be appropriately set according to the dropping amount, dropping speed, reaction temperature, etc., but for example, the range is 0 minutes or more, preferably 0.5 to 5 hours, and more preferably 1 to 3 hours. Can be mentioned.
  • the "aging time” refers to the time during which the time when the total amount of calcium ions and phosphate ions coexist in water is set to 0 minutes and is left to stand or stir, for example, calcium hydroxide is suspended. In the case of dropping phosphoric acid into the suspended suspension, the time is calculated with the time point at which the dropping of phosphoric acid is completed as 0 minute.
  • HAp is synthesized by a wet method in which a suspension in which calcium hydroxide is suspended and phosphoric acid are mixed at the same time, the above-mentioned physical properties cannot be provided and HAp that can be subjected to plasma spraying cannot be formed. ..
  • the first step is carried out by a wet method including a sequential addition step of dropping phosphoric acid into a suspension in which calcium hydroxide is suspended. Is preferable.
  • the HAp obtained in the first step is wet pulverized to obtain a wet pulverized product of HAp.
  • the reaction solution after the first step may be subjected to wet pulverization as it is, but HAp is recovered from the concentrated solution obtained by concentrating the reaction solution after the first step and the reaction solution after the first step.
  • a suspension newly suspended in an organic solvent such as water or alcohol may be subjected to wet grinding.
  • the method of wet pulverization is not particularly limited, and for example, any method such as impact, shearing, grinding, compression, and vibration may be used.
  • the type of the wet crushing device is not particularly limited, and for example, any of high-pressure fluid collision mill, high-speed rotary slit mill, attritor, ball mill, bead mill, roll mill, ring-shaped crushing medium mill, high-speed swirling thin film mill, and the like. It may be a device. As these devices themselves, known or commercially available ones can be used. Among these wet pulverizers, a bead mill can be preferably used.
  • the type of beads is not particularly limited, but beads made of a zirconia-based material are suitable.
  • the size of the beads may be, for example, about 0.1 to 3 mm in diameter.
  • the filling amount of the beads may be appropriately set according to the size of the apparatus to be used and the like, and may be appropriately adjusted within the range of, for example, about 50 to 90% by volume.
  • the degree of wet pulverization may be appropriately adjusted, but from the viewpoint of efficiently producing HAp powder having the above-mentioned physical characteristics, the HAp particles after wet pulverization preferably have an average particle diameter of 10 ⁇ m or less. Is 5 ⁇ m or less, the maximum particle diameter is 100 ⁇ m or less, preferably 30 ⁇ m or less, and more preferably the average particle diameter is 1 to 3 ⁇ m and the maximum particle diameter is 20 ⁇ m or less.
  • the "average particle size" and the "maximum particle size" of the HAp particles after wet grinding are the median size (D50) and the maximum particle measured by using a laser diffraction / scattering type particle size distribution measuring device, respectively. The diameter.
  • the wet pulverized product of HAp obtained in the second step is dried to obtain a dried HAp powder.
  • the drying method used in the third step is not particularly limited, and examples thereof include spray drying (spray drying), box-shaped drying, band drying, vacuum drying, freeze drying, microwave drying, drum drying, and fluid drying. Can be mentioned.
  • spray drying is preferable from the viewpoint of drying spherical particles to have a suitable shape as a material for plasma spraying.
  • the conditions for spray drying are not particularly limited as long as HAp having the above-mentioned physical characteristics can be obtained.
  • the inlet temperature is 200 to 500 ° C
  • the outlet temperature is 100 to 200 ° C
  • the disk rotation speed is 5000 to 30,000 rpm. It should be set to.
  • the dried HAp powder obtained in the third step is fired at a temperature of more than 1050 ° C to less than 1400 ° C.
  • the firing treatment of HAp powder produced by a wet method is generally performed under a temperature condition of 1000 ° C. or lower, but under such a temperature condition, a HAp powder having the above-mentioned physical properties can be obtained.
  • No. in the fourth step, by setting the temperature condition of the firing treatment of the HAp powder produced in the third step to a temperature of more than 1050 ° C to less than 1400 ° C, it is possible to obtain the HAp powder having the above-mentioned physical properties. become.
  • the temperature conditions for the firing treatment in the fourth step are preferably more than 1050 ° C to 1350 ° C, and more preferably 1100 to 1300 ° C.
  • the holding time of the temperature condition of the firing process in the fourth step may be appropriately set within the range in which the HAp powder having the above-mentioned physical characteristics is generated in consideration of the temperature condition, and the temperature of the above-mentioned firing process may be set appropriately.
  • the condition may be reached even for a moment, but preferably 0.1 to 10 hours, more preferably 1 to 5 hours.
  • the calcined HAp powder obtained in the fourth step is sieved to recover the HAp powder having an average particle diameter (D 50 ) of 15 to 40 ⁇ m.
  • the mesh opening of the sieve used in the fifth step is not particularly limited as long as HAp powder having an average particle size (D 50 ) of 15 to 40 ⁇ m can be recovered, but is, for example, 500 ⁇ m or less, preferably 20 to 500 ⁇ m, and further. It is preferably 30 to 50 ⁇ m.
  • HAp powder having the above-mentioned physical characteristics (HAp powder used in the present invention) can be obtained.
  • the HAp powder used in the present invention is obtained by fractionating the HAp powder having the above-mentioned physical characteristics from the HAp powder produced by a method other than the production method including the first step to the fifth step by sieving or the like. Can also be obtained by.
  • the HAp powder is used as a material for plasma spraying.
  • the “material for plasma spraying” is a powder (powder that is a raw material of a film to be formed) to be subjected to plasma spraying.
  • plasma spraying a material (powder) for plasma spraying is heated by plasma and melted to form liquid fine particles, and the liquid fine particles are collided with a plasma jet at high speed against the surface of the base material to form a base material. It is a technique to form a film of plasma spraying material on top.
  • the material of the base material for which the HAp film is formed is not particularly limited, but for example, PEEK, polyethylene, polyester, polypropylene, polyamide, polyether, polyether, and polyether.
  • Resins such as ketone, acrylic, polystyrene, polytetrafluoroethylene, hydroxyethyl methacrylate, polyamide, polylactic acid, polyglycolic acid, polylactide, polyglycolide, polyparadioxanone, trimethylene carbonate, ⁇ -caprolactone; titanium alloy (Ti- 6Al-4V alloy, Ni-Ti, etc.), Cobalt alloy (Co-Cr-Ni alloy, Co-Cr-Mo, Co-Cr-W-Ni, etc.), Magnesium alloy (Mg-Y-RE, Mg-Ca- Zn, Mg-Li-Al, etc.) Stainless steel (SUS316L, SUS304, etc.), titanium, cobalt, molybdenum, niobium, tantalum, gold, platinum, tungsten, iridium, inconel and other metals; alumina, zirconia and other ceramics, etc.
  • titanium alloy
  • the plasma spraying material of the present invention is characterized in that it can perform plasma spraying even under plasma spraying conditions with low frame energy, and can form a HAp film having high hardness and resistance to wear, and plasma spraying conditions with low frame energy.
  • a resin particularly PEEK
  • the type (use) of the base material on which the HAp film is formed is not particularly limited, but for example, implants such as artificial joints, artificial tooth roots, and artificial bones; ventricular assist devices, artificial blood vessels, stents, pacemakers, and sutures.
  • implants such as artificial joints, artificial tooth roots, and artificial bones; ventricular assist devices, artificial blood vessels, stents, pacemakers, and sutures.
  • examples thereof include a housing of an in-vivo indwelling device such as a thread, a catheter, an artificial skin, an artificial muscle, and an intraocular lens.
  • implants particularly artificial joints
  • the plasma spraying material of the present invention can form a HAp film that can satisfy the above-mentioned required characteristics of an implant (particularly, an artificial joint), it can be used as a material for forming a HAp film provided on the surface of an implant (particularly, an artificial joint). It is preferably used.
  • the conditions for plasma spraying when forming a HAp film on a substrate using the plasma spraying material of the present invention are not particularly limited, and are usually adopted depending on the type of substrate, the thickness of the HAp film to be formed, and the like. It may be appropriately set within the range of the plasma spraying conditions.
  • the plasma spraying material of the present invention has a feature that plasma spraying is possible even under plasma spraying conditions with low frame energy, and a HAp film having high hardness and resistance to wear can be formed.
  • a preferable example of plasma spraying to which the plasma spraying material of the present invention is applied is plasma spraying conditions having a low frame energy.
  • Specific examples of plasma spraying conditions with low frame energy include conditions in which a gas having a high ratio of monatomic molecules such as argon and helium is used as the working gas in plasma spraying. Monatomic molecules such as argon and helium have lower energy holdings than diatomic molecules such as hydrogen, nitrogen and oxygen.
  • the energy becomes low, and it becomes possible to set plasma spraying conditions that can suppress thermal decomposition and thermal denaturation of a resin base material such as PEEK.
  • the working gas having a low frame energy include a gas composed of only one or more monatomic molecules, preferably a mixed gas composed of argon and helium.
  • Example 1 After adding 6 L of water and 1 kg of calcium oxide to the reaction vessel for a hydration reaction, water was added to the suspension to adjust the total to 15 L. Then, the mixture was heated to 50 ° C., and an aqueous phosphoric acid solution was added to 1 mol of calcium (Ca) atoms at a dropping rate of 0.2 mol / h until the pH reached 8. The obtained solution was heated to 95 ° C. and reacted for 2 hours.
  • the obtained reaction solution was wet-ground with 1 mm diameter zirconia beads (bead filling amount 70% (v / v)) until the average particle size was 2 ⁇ m and the maximum particle size was 15 ⁇ m, and the wet crushed product was prepared.
  • spray drying was performed at an inlet temperature of 300 ° C., an outlet temperature of 130 ° C., and a disk rotation speed of 16000 rpm using a spray dryer equipped with a disc-type spraying means, and the dried product was recovered.
  • the obtained dried product was baked at 1220 ° C. for 3 hours (heating rate 65 ° C./h) using an electric furnace (Kusaha Chemical Co., Ltd.). After allowing to cool, sieving is performed under the condition A shown in Table 1 using a tabletop sieve shaker (VSS-200S type, Tsutsui Rikagaku Kikai Co., Ltd.), and the powder that has passed through the sieve is collected and HAp powder is collected.
  • a tabletop sieve shaker VSS-200S type, Tsutsui Rikagaku Kikai Co., Ltd.
  • Example 2 HAp powder was obtained under the same conditions as in Example 1 except that the firing temperature was changed to 1300 ° C.
  • Example 3 HAp powder was obtained under the same conditions as in Example 1 except that the firing temperature was changed to 1150 ° C.
  • Example 4 After adding 6 L of water and 1 kg of calcium oxide to the reaction vessel for a hydration reaction, water was added to the suspension to adjust the total to 15 L. Then, the mixture was heated to 50 ° C., and an aqueous phosphoric acid solution was added to 1 mol of calcium (Ca) atoms at a dropping rate of 0.2 mol / h until the pH reached 8. The obtained solution was heated to 95 ° C. and reacted for 2 hours.
  • reaction solution was spray-dried at an inlet temperature of 300 ° C., an outlet temperature of 130 ° C., and a disc rotation speed of 10000 rpm using a spray dryer equipped with a disc-type spraying means, and the dried product was recovered.
  • the obtained dried product was baked at 1150 ° C. for 3 hours (heating rate 65 ° C./h) using an electric furnace (Kusaha Chemical Co., Ltd.). After allowing to cool, sieving is performed under the condition B shown in Table 1 using a tabletop sieve shaker (VSS-200S type, Tsutsui Rikagaku Kikai Co., Ltd.), and the powder that has passed through the sieve is collected and HAp powder is collected.
  • a tabletop sieve shaker VSS-200S type, Tsutsui Rikagaku Kikai Co., Ltd.
  • Example 5 The HAp powder obtained in Example 1 is sieved under the condition C shown in Table 1 using a tabletop sieve shaker (VSS-200S type, Tsutsui Rikagaku Kikai Co., Ltd.) to sieve. The passed powder was recovered to obtain HAp powder.
  • a tabletop sieve shaker VSS-200S type, Tsutsui Rikagaku Kikai Co., Ltd.
  • Example 6 The HAp powder obtained in Example 1 was sieved under the condition C shown in Table 1 using a tabletop sieve shaker (VSS-200S type, Tsutsui Rikagaku Kikai Co., Ltd.) and sieved. The powder remaining in was recovered to obtain HAp powder.
  • a tabletop sieve shaker VSS-200S type, Tsutsui Rikagaku Kikai Co., Ltd.
  • Comparative Example 1 After adding 6 L of water and 1 kg of calcium oxide to the reaction vessel for a hydration reaction, water was added to the suspension to adjust the total to 15 L. Then, the mixture was heated to 50 ° C., and an aqueous phosphoric acid solution was added to 1 mol of calcium (Ca) atoms at a dropping rate of 0.2 mol / h until the pH reached 8. The obtained solution was heated to 95 ° C. and reacted for 2 hours.
  • reaction solution was spray-dried at an inlet temperature of 300 ° C., an outlet temperature of 130 ° C., and a disc rotation speed of 11000 rpm using a spray dryer equipped with a disc-type spraying means, and the dried product was recovered.
  • the obtained dried product was baked at 800 ° C. for 3 hours (heating rate 65 ° C./h) using an electric furnace (Kusaha Chemical Co., Ltd.). After allowing to cool, HAp powder was obtained.
  • reaction solution was spray-dried at an inlet temperature of 300 ° C., an outlet temperature of 130 ° C., and a disc rotation speed of 10000 rpm using a spray dryer equipped with a disc-type spraying means, and the dried product was recovered.
  • the obtained dried product was baked at 1150 ° C. for 3 hours (heating rate 65 ° C./h) using an electric furnace (Kusaha Chemical Co., Ltd.). After allowing to cool, HAp powder was obtained.
  • Comparative Example 4 Commercially available HAp powder (Hydroxyapatite from Medicoat (Mediaple 20-15 No102)) was used.
  • Comparative Example 5 After adding 6 L of water and 1 kg of calcium oxide to the reaction vessel for a hydration reaction, water was added to the suspension to adjust the total to 15 L. Then, the mixture was heated to 50 ° C., and an aqueous phosphoric acid solution was added to 1 mol of calcium (Ca) atoms at a dropping rate of 0.2 mol / h until the pH reached 8. The obtained solution was heated to 95 ° C. and reacted for 2 hours.
  • reaction solution was spray-dried at an inlet temperature of 300 ° C., an outlet temperature of 130 ° C., and a disc rotation speed of 11000 rpm using a spray dryer equipped with a disc-type spraying means, and the dried product was recovered.
  • the obtained dried product was baked at 800 ° C. for 3 hours (heating rate 65 ° C./h) using an electric furnace (Kusaha Chemical Co., Ltd.). After allowing to cool, sieving is performed under the condition D shown in Table 1 using a tabletop sieve shaker (VSS-200S type, Tsutsui Rikagaku Kikai Co., Ltd.), and the powder that has passed through the sieve is collected and HAp powder is collected. Got
  • the obtained reaction solution was wet-ground with 1 mm diameter zirconia beads (bead filling amount 70% (v / v)) until the average particle size was 2 ⁇ m and the maximum particle size was 15 ⁇ m, and the wet crushed product was prepared.
  • spray drying was performed at an inlet temperature of 300 ° C., an outlet temperature of 130 ° C., and a disk rotation speed of 16000 rpm using a spray dryer equipped with a disc-type spraying means, and the dried product was recovered.
  • the obtained dried product was baked at 1180 ° C. for 3 hours (heating rate 65 ° C./h) using an electric furnace (Kusaha Chemical Co., Ltd.). After allowing to cool, sieving is performed under the condition D shown in Table 1 using a tabletop sieve shaker (VSS-200S type, Tsutsui Rikagaku Kikai Co., Ltd.) to recover the powder on the sieve and HAp powder.
  • Comparative Example 7 To 5 L of water, 2.5 L of a 25% by weight suspension of calcium hydroxide and 1 L of a 50% by weight solution of phosphoric acid were simultaneously added dropwise at pH 7 over 3 hours.
  • reaction solution was spray-dried at an inlet temperature of 300 ° C., an outlet temperature of 130 ° C., and a disc rotation speed of 10000 rpm using a spray dryer equipped with a disc-type spraying means, and the dried product was recovered.
  • the obtained dried product was fired at 1200 ° C. for 3 hours (heating rate 65 ° C./h) using an electric furnace (Kusaha Chemical Co., Ltd.). After allowing to cool, HAp powder was obtained.
  • the bulk density was measured based on the test method specified in ASTM B212.
  • Particle size distribution HAp powder is dispersed in water, and the particle size distribution is measured using a laser diffraction / scattering particle size distribution measuring device (Microtrac BEL Co., Ltd. "MICROTRAC MT3300EXII"), and D10, D50 (average particle size), and D90. Asked.
  • Mode diameter and pore volume with pore diameter of 2000 nm or less / 2000 nm or more (mercury press-fitting method) Using a mercury porosimeter (Quantachrome Corporation, "poremaster60GT”), the mode diameter and pore volume were measured under the following conditions. 0.1 to 1.0 g of HAp powder was sealed in a measuring cell, the contact angle of mercury was 140 °, the surface tension of mercury was 480 erg / cm 2 , and the mode diameter and pore volume were calculated from the measured pressure. The analysis range was divided into a pore diameter of 2000 nm or less and a pore diameter of 2000 nm or more.
  • the BET specific surface area was measured under the following operating conditions using a high-speed specific surface area pore distribution measuring device (Quantachrome Corporation "NOVA-4000"). Pretreatment: 1.0 to 2.0 g of HAp powder was accurately weighed, sealed in an adsorption tube, and degassed at 105 ° C. for 3 hours. Measurement and analysis: The adsorption isotherm of nitrogen gas was obtained under the temperature of liquid nitrogen gas, and the specific surface area (m 2 / g) was calculated by the multipoint BET method using the adsorption isotherm.
  • Pore volume (gas adsorption method) Using a high-speed specific surface area pore distribution measuring device (Quantachrome Corporation "NOVA-4000"), the pore volume was measured by the gas adsorption method under the following operating conditions. Pretreatment: 1.0 to 2.0 g of HAp powder was accurately weighed, sealed in an adsorption tube, and degassed at 105 ° C. for 3 hours. Measurement and analysis: Obtain the adsorption isotherm of nitrogen gas under the temperature of liquid nitrogen gas, and the total pore volume (cc / g) from the gas adsorption amount when the relative pressure P / P 0 (P 0 : saturated vapor pressure) is 0.995. ) was calculated.
  • Crystallization degree HAp powder (test sample) and sample (pretreated product) obtained by treating HAp powder at 1000 ° C for 15 hours with an X-ray diffractometer "SmartLab” (Rigaku Co., Ltd.) in the range of 2 ⁇ 25 to 50 °. Diffraction pattern was measured (measurement conditions are target: Cu, tube voltage: 40 kV, tube current: 30 mA, scan range: 25 to 50 °, scan speed: 1.000 ° / min, scan step: 0.02. °, scanning mode: continuous).
  • the ratio of the integrated intensity sum of each peak of the test sample to the integrated intensity sum of each peak of the treated product was calculated.
  • the angle of repose was measured using the POWDER TESTER PT-X type (Hosokawa Micron Co., Ltd.) with the vibration time set to 30 seconds, the amplitude set to 0.5 mm, and the frequency set to 50 Hz.
  • Particle hardness The particle hardness of HAp powder was measured under the following conditions using a New GRANO GM-N type (Okada Seiko Co., Ltd.) particle hardness measuring device. Measurement conditions: The measurement speed was set to 10 ⁇ m / s, the maximum value detection reduction rate was set to 80%, the sample table detection load was set to 10.0 gf, and measurements were performed 10 times, and the average was calculated.
  • Plasma spraying test After roughening the surface of a base material (length 30 mm, width 40 mm, thickness 3 mm) made of Ti-6Al-4V alloy by blasting, under atmospheric pressure under the plasma spraying conditions shown in Table 3. A HAp film was formed using the HAp powders of Examples 1, 5 and 6. Further, after the surface of the PEEK substrate (length 30 mm, width 40 mm, thickness 5 mm) was roughened by blasting, Examples 1 to 4 and the plasma spraying conditions shown in Table 3 under atmospheric pressure were applied. A HAp film was formed using each of the HAp powders of Comparative Examples 1 to 7.
  • the cross-sectional hardness, film thickness, surface roughness, amount of wear, impurity phase ( ⁇ -TCP ( ⁇ -type tricalcium phosphate), ⁇ -TCP ( ⁇ -type tricalcium phosphate)) can be obtained by the following methods. Calcium), TTCP (tricalcium phosphate), CaO), color difference, crystallinity, Ca / P ratio and appearance were evaluated.
  • the thickness of the HAp film was measured using a film thickness micrometer.
  • Amount of wear Using a Suga wear tester, the amount of wear under a load of 1 N, wear paper SiC # 320, and 100 times of wear was measured.
  • d lattice spacing
  • 2 ⁇ the integrated intensity of the diffraction peak with the diffraction angle
  • the Ca / P ratio of the HAp film was calculated according to the following formula.
  • Crystallization degree HAp film (test sample) and sample (pretreated product) obtained by treating HAp powder (Example 4) at 1000 ° C. for 15 hours with an X-ray diffractometer "SmartLab” (Rigaku Co., Ltd.) from 2 ⁇ 25 to Diffraction pattern was measured in the range of 50 ° (measurement conditions are target: Cu, tube voltage: 40 kV, tube current: 30 mA, scanning range: 25 to 50 °, scanning speed: 24.000 ° / min, scanning. Step: 0.02 °, scanning mode: continuous).
  • the ratio of the integrated intensity sum of each peak of the test sample to the integrated intensity sum of each peak of the treated product was calculated.
  • the cross section of the HAp film was observed at 500 times and 1000 times using an appearance scanning electron microscope.
  • FIGS. 1-1, 1-2 and 1-3 are images of the appearance of the HAp powder observed under a microscope
  • FIGS. 2-1 and 2-2 are images of the cross-sectional appearance of the HAp film observed under a microscope
  • FIG. 3 8 to 8 show the results of measuring the distribution of the pore diameter of the HAp powder by the mercury intrusion method
  • FIG. 9 shows the results of the powder X-ray diffraction analysis of the HAp powder of Example 1.
  • the HAp film formed by the plasma spraying method using the HAp powders of Examples 1 to 6 shows a cross-sectional hardness of about 1.2 times or more that of Comparative Example 5. In addition, it was confirmed that it has a resistance of 3.0 times or more with respect to the amount of wear.
  • the average particle diameter (D50) is as small as 15 to 40 ⁇ m, and the pore volume when the pore diameter is 2000 nm or less is as small as 0.01 to 0.30 cc / g, so that the frame energy is low.
  • the particles can be melted uniformly, and as a result, not only the titanium alloy base material but also the PEEK base material does not cause thermal deformation or thermal decomposition, and HAp has high hardness and low wear amount. It is probable that a film could be formed. Further, the HAp film formed by using the HAp powders of Examples 1 to 6 was maintained at a high crystallinity and a low impurity phase, so that it could be suitably used as an implant. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本発明の課題は、低いフレームエネルギーのプラズマ溶射条件でも、硬度が高く摩耗しにくいHAp皮膜を形成できるプラズマ溶射用材料を提供することである。 平均粒子径(D50)が15~40μmであり、且つ水銀圧入法によって測定される細孔径2000nm以下における細孔容積が0.01~0.30cc/gであるHAp粉末は、低いフレームエネルギーのプラズマ溶射条件でも、プラズマ溶射が可能で、且つ硬度が高く摩耗しにくいHAp皮膜を形成することができる。

Description

プラズマ溶射用材料
 本発明は、低いフレームエネルギーのプラズマ溶射条件でも、硬度が高く摩耗しにくいハイドロキシアパタイトの皮膜を形成できるプラズマ溶射用材料に関する。
 高齢化により骨折や変形性股関節症が主な原因として、人工関節や脊椎内固定器具等のインプラントを使用するケースが増加している。従来、インプラントの基材としては、強度及び安定性が高いチタン合金やCo-Cr-Ni合金等の金属材料が多用されてきた。しかしながら、金属材料は高強度であるものの、弾性が低いため自家骨への損傷を生じさせたり、X線透過性が低いため骨病変部の診断が困難になったりするという欠点があった。
 そこで、金属材料の前記欠点を解消するために、自家骨と近似した強度、弾性、耐薬品性、及びX線透過性を持つポリエーテルエーテルケトン(以下、PEEKと表記することもある)等の樹脂材料をインプラントの基材として使用されるようになっている。但し、PEEKは、優れた物性をもつものの、生体不活性であり、生体組織と直接結合しないため、PEEKを基材とするインプラントでは緩みが生じるという問題点がある。
 PEEKを基材とするインプラントの前記問題点を解決するために、PEEK表面に生体活性材料をコーティングする方法やPEEKと生体活性材料を混錬する方法により、生体親和性(生体組織と直接結合するような性能)を付与する検討等がなされている。しかしながら、混錬法では、生体活性材料とPEEKを混錬するため、PEEK本来の物性が保持できず、更に表面全体に生体活性材料を存在させることはできない。そのため、PEEK本来の物性を保持しつつ、表面全体に生体親和性を備えさせるには、コーティング法が好ましいと考えられている。
 従来、生体活性材料としてハイドロキシアパタイト(以下、HApと表記することもある)が主に使用されており、そのコーティング方法としてはプラズマ溶射法、浸漬法、電気泳動法、フレーム溶射法等の方法による皮膜形成が検討されているが、生産効率や装置の普及率の観点からプラズマ溶射法が最も好ましいとされている。従来、プラズマ溶射法によってPEEK等のプラスチック材料にHApの皮膜を形成させる手法について報告されている(例えば、特許文献1等参照)。
 一方、プラズマ溶射法では、陰極と陽極間に電圧をかけ発生したアークにアルゴンガス等の作動ガスが供給されると作動ガスが電離し、これにより発生したプラズマフレーム中にプラズマ溶射材料を供給することで、プラズマフレームが持つ温度及び気流によって溶融したコーティング材料が基材に接着し、皮膜が形成される。プラズマフレームは約10000℃付近に達するため、基材が高温になる。基材が金属の場合、フレーム熱により分解することはないが、基材が樹脂製の場合、熱分解や熱変性を起こすことがある。
特開平4-146762号公報
 プラズマ溶射法によってPEEK等の樹脂製基材にHAp皮膜を形成する場合、樹脂製基材の熱分解や熱変性を抑制するために、プラズマ溶射時のフレームエネルギーを低下させることが必要になる。しかしながら、フレームエネルギーを低下させると、皮膜を形成できなくなったり、形成された皮膜の硬度が不十分で摩耗し易くなったりする。そのため、プラズマ溶射の条件を制御するだけでは、PEEK等の樹脂製基材に高い硬度のHAp皮膜を形成することができないという問題点がある。
 そこで、本発明は、低いフレームエネルギーのプラズマ溶射条件でも、硬度が高く摩耗しにくいHAp皮膜を形成できるプラズマ溶射用材料を提供することである。
 本発明者等は、前記課題を解決すべく鋭意検討を行ったところ、平均粒子径(D50)が15~40μmであり、且つ水銀圧入法によって測定される細孔径2000nm以下における細孔容積が0.01~0.30cc/gであるHAp粉末は、低いフレームエネルギーのプラズマ溶射条件でも、プラズマ溶射が可能で、且つ硬度が高く摩耗しにくいHAp皮膜を形成することが可能になっており、樹脂製基材に対して熱分解や熱変性を生じさせることなくHAp皮膜を形成できることを見出した。本発明は、かかる知見に基づいて、更に検討を重ねることにより完成したものである。
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 平均粒子径(D50)が15~40μmであり、且つ水銀圧入法によって測定される細孔径2000nm以下における細孔容積が0.01~0.30cc/gであるHAp粉末を含む、プラズマ溶射用材料。
項2. 前記細孔容積が0.01~0.25cc/gである、項1に記載のプラズマ溶射用材料。
項3. 前記平均粒子径(D50)が20~40μmである、項1又は2に記載のプラズマ溶射用材料。
項4. 前記HAp粉末のBET比表面積が5m2/g未満である、項1~3のいずれかに記載のプラズマ溶射用材料。
項5. 前記HAp粉末の水銀圧入法によって測定される2000nm以上における細孔容積が0.20~0.80cc/gである、項1~4のいずれかに記載のプラズマ溶射用材料。
項6. 1種以上の単原子分子のみからなるガスを作動ガスとして使用するプラズマ溶射に用いられる、項1~5のいずれかに記載のプラズマ溶射用材料。
項7. 基材上での皮膜形成に使用される、項1~6のいずれかに記載のプラズマ溶射用材料。
項8. 前記基材の素材が樹脂、金属、又はセラミックである、項7に記載のプラズマ溶射用材料。
項9. 前記基材の素材がポリエーテルエーテルケトンである、項7又は8に記載のプラズマ溶射用材料。
項10. 前記基材の素材がチタン合金である、項7又は8に記載のプラズマ溶射用材料。
項11. 前記基材がインプラントである、項7~10のいずれかに記載のプラズマ溶射用材料。
項12. 項1~11のいずれかに記載のプラズマ溶射用材料をプラズマ溶射し、基材上にHAp皮膜を形成させる、HAp皮膜の形成方法。
項13. 前記基材の素材が樹脂、金属、又はセラミックである、項12に記載のHAp皮膜の形成方法。
項14. 前記基材の素材がポリエーテルエーテルケトンである、項12又は13のいずれかに記載のHAp皮膜の形成方法。
項15. 前記基材の素材がチタン合金である、項12又は13に記載のHAp皮膜の形成方法。
項16. 前記基材がインプラントである、項12~15のいずれかに記載のHAp皮膜の形成方法。
項17. 平均粒子径(D50)が15~40μmであり、且つ水銀圧入法によって測定される細孔径2000nm以下における細孔容積が0.01~0.30cc/gであるHAp粉末の、プラズマ溶射用材料としての使用。
 本発明のプラズマ溶射用材料によれば、低いフレームエネルギーのプラズマ溶射条件でも、プラズマ溶射が可能で、且つ硬度が高く摩耗しにくいHAp皮膜を形成することができる。そのため、本発明のプラズマ溶射用材料を用いて、PEEK等の樹脂製基材に対して低いフレームエネルギーでプラズマ溶射を行うことにより、当該樹脂製基材の熱分解や熱変性を抑制することができる。
 限定的な解釈を望むものではないが、本発明のプラズマ溶射用材料では、使用するHAp粉末において、平均粒子径が比較的小さい範囲に限定されていることにより低いフレームエネルギーでも粒子全体を溶融することが可能になっており、且つ水銀圧入法によって測定される細孔径2000nm以下における細孔容積が比較的小さい範囲に限定されていることに起因して、粒子内に存在する空隙が少ないため、粒子内部への熱の伝達が遮断されず、プラズマフレームの熱が粒子全体に伝達し易くなっており、更に基材への衝突エネルギーが高くなっていると類推される。本発明のプラズマ溶射用材料は、このような特性に基づいて、低いフレームエネルギーのプラズマ溶射条件での要求性能を満足できると考えられる。
実施例1~4のHAp粉末の外観を顕微鏡観察した像を示す。 実施例5~6及び比較例1のHAp粉末の外観を顕微鏡観察した像を示す。 比較例2~7のHAp粉末の外観を顕微鏡観察した像を示す。 実施例1~4のHAp粉末をプラズマ溶射することにより形成したHAp皮膜の断面外観を顕微鏡観察した像を示す。 実施例5~6及び比較例5のHAp粉末をプラズマ溶射することにより形成したHAp皮膜の断面外観を顕微鏡観察した像を示す。 実施例1及び2のHAp粉末について、水銀圧入法で細孔径の分布を求めた結果を示す。 実施例3及び4のHAp粉末について、水銀圧入法で細孔径の分布を求めた結果を示す。 比較例1~3のHAp粉末について、水銀圧入法で細孔径の分布を求めた結果を示す。 比較例4及び5のHAp粉末について、水銀圧入法で細孔径の分布を求めた結果を示す。 比較例6及び7のHAp粉末について、水銀圧入法で細孔径の分布を求めた結果を示す。 実施例5及び6のHAp粉末について、水銀圧入法で細孔径の分布を行った結果を示す。 実施例1のHAp粉末について、粉末X線回折分析を行った結果を示す。
 本発明のプラズマ溶射用材料は、平均粒子径(D50)が15~40μmであり、且つ水銀圧入法によって測定される細孔径2000nm以下における細孔容積が0.01~0.30cc/gであるHAp粉末を含むことを特徴とする。以下、本発明のプラズマ溶射用材料について詳述する。
[HAp粉末の物性]
 HApは、化学式Ca5(PO43(OH)で表されるリン酸カルシウムである。
 本発明で使用されるHAp粉末は、平均粒子径(D50)が15~40μmである。本発明で使用されるHAp粉末の平均粒子径(D50)として、好ましくは20~40μm、より好ましくは20~30μm、更に好ましくは25~30μm、特に好ましくは26~30μmが挙げられる。なお、本発明において、「平均粒子径(D50)」は、レーザー回折・散乱式粒度分布測定装置を用いて測定される体積累積基準粒度分布において累積度が50%となる粒子径(メジアン径)である。
 本発明で使用されるHAp粉末のD90については、前記平均粒子径(D50)の範囲を満たすことを限度として特に制限されないが、例えば、30~70μm、好ましくは35~55μm、より好ましくは41~47μmが挙げられる。なお、本発明において、「D90」は、レーザー回折・散乱式粒度分布測定装置を用いて測定される体積累積基準粒度分布において、累積度が90%となる粒子径である。
 本発明で使用されるHAp粉末のD10については、前記平均粒子径(D50)の範囲を満たすことを限度として特に制限されないが、例えば、7~30μm、好ましくは10~25μm、より好ましくは14~19μmが挙げられる。なお、本発明において、「D10」は、レーザー回折・散乱式粒度分布測定装置を用いて測定される体積累積基準粒度分布において、累積度が10%となる粒子径である。
 本発明で使用されるHAp粉末において、水銀圧入法によって測定される細孔径2000nm以下における細孔容積は0.01~0.30cc/gである。前述する平均粒子径の範囲と当該細孔容積の範囲を充足することにより、低いフレームエネルギーでのプラズマ溶射条件でも、プラズマ溶射が可能で、且つ硬度が高く摩耗しにくいHAp皮膜を形成することが可能になる。低いフレームエネルギーでのプラズマ溶射条件下で形成されるHAp皮膜の硬度及び耐摩耗性をより一層向上させるという観点から、水銀圧入法によって測定される細孔径2000nm以下における細孔容積として、好ましくは0.01~0.25cc/g、より好ましくは0.01~0.23cc/g、更に好ましくは0.01~0.22cc/gが挙げられる。
 本発明において、「水銀圧入法によって測定される細孔径2000nm以下における細孔容積」は、水銀ポロシメーターを用いて測定された細孔容積において、細孔径2000nm以下の領域の累積細孔容積である。当該細孔容積の測定において水銀ポロシメーターの条件は、水銀の接触角を140°、水銀の表面張力を480erg/cm2に設定される。
 本発明で使用されるHAp粉末において、水銀圧入法によって測定される細孔径2000nm以上における細孔容積については、特に制限されないが、例えば、0.20~0.80cc/g、好ましくは0.30~0.75cc/g、より好ましくは0.35~0.70cc/gが挙げられる。
 本発明において、「水銀圧入法によって測定される細孔径2000nm以上における細孔容積」は、水銀ポロシメーターを用いて測定された細孔容積において、細孔径2000nm以上の領域の累積細孔容積である。当該細孔容積の測定において、水銀ポロシメーターの条件は、前記「細孔径2000nm以下における細孔容積」の場合と同様である。
 本発明で使用されるHAp粉末において、水銀圧入法によって測定される細孔径2000nm以下におけるモード径については、特に制限されないが、例えば、3~1000nm、好ましくは4~750nm、より好ましくは5~500nmが挙げられる。
 本発明において、「水銀圧入法によって測定される細孔径2000nm以下におけるモード径」とは、水銀ポロシメーターを用いて測定された細孔分布において、細孔径2000nm以下の領域で出現比率が最も高い直径(最頻細孔直径)である。当該モード径の測定において、水銀ポロシメーターの条件は、前記「細孔径2000nm以下における細孔容積」の場合と同様である。
 本発明で使用されるHAp粉末において、水銀圧入法によって測定される細孔径2000nm以上におけるモード径については、特に制限されないが、例えば、2000~15000nm、好ましくは5000~13000nm、より好ましくは7500~13000nm、特に好ましくは8000~11000nmが挙げられる。
 本発明において、「水銀圧入法によって測定される細孔径2000nm以上におけるモード径」とは、水銀ポロシメーターを用いて測定された細孔分布において、細孔径2000nm以上の領域で出現比率が最も高い直径(最頻細孔直径)である。当該モード径の測定において、水銀ポロシメーターの条件は、前記「細孔径2000nm以下における細孔容積」の場合と同様である。
 本発明で使用されるHAp粉末において、ガス吸着法によって測定される細孔容積については、特に制限されないが、例えば、0.0001~0.01cc/g、好ましくは0.0005~0.005cc/g、より好ましくは0.001~0.003cc/gが挙げられる。
 本発明において、「ガス吸着法によって測定される細孔容積」は、高速比表面積細孔分布測定装置を用いて、以下の方法で測定される値である。先ず、HAp粉末1.0~2.0gを正確に量り、吸着管に封入し、105℃で3時間脱気する。次いで、液体窒素ガス温度下で窒素ガスの吸着等温線を求め、液相対圧P/P0(P0:飽和蒸気圧)が0.995におけるガス吸着量から全細孔容積(cc/g)を算出する。
 また、本発明で使用されるHAp粉末において、ガス吸着法によって測定される平均細孔径については、特に制限されないが、例えば、5~1000nm、好ましくは8~700nm、より好ましくは10~550nmが挙げられる。
 本発明において、「ガス吸着法によって測定される平均細孔径」は、以下の式に従って算出される値である。
 平均細孔径(nm)=4V/S×1000
  V:ガス吸着法によって測定される細孔容積(cc/g)
  S:BET比表面積(m2/g)
 また、本発明で使用されるHAp粉末の嵩密度については、特に制限されないが、例えば0.1~3.0g/mL、好ましくは0.4~2.0g/mL、より好ましくは0.6~1.1g/mLが挙げられる。
 本発明において、「嵩密度」は、ASTM B212に規定されている試験方法に基づいて測定されるゆるみ嵩密度である。
 本発明で使用されるHAp粉末のBET比表面積については、特に制限されないが、例えば、5m2/g未満、好ましくは0~2m2/g、より好ましくは0~1m2/gが挙げられる。
 本発明において、「BET比表面積」は、高速比表面積細孔分布測定装置を用いて、以下の方法で測定される値である。先ず、HAp粉末1.0~2.0gを正確に量り、吸着管に封入し、105℃で3時間脱気する。次いで、液体窒素ガス温度下で窒素ガスの吸着等温線を求め、その吸着等温線を用いて、多点BET法により比表面積(m2/g)を算出する。
 本発明で使用されるHAp粉末の安息角については、特に制限されないが、例えば、20~90°、好ましくは40~70°、より好ましくは40~60°が挙げられる。このような安息角を具備させるには、HAp粉末の粒子形状は、球形、略球状等であることが好ましい。
 本発明において、「安息角」は、注入法により、振動時間を30秒、振幅を0.5mmに設定して測定される値である。
 本発明で使用されるHAp粉末の粒子硬度については、特に制限されないが、例えば、100~15000gf/mm2、好ましくは500~10000gf/mm2、より好ましくは800~8000gf/mm2が挙げられる。
 本発明において、HAp粉末の「粒子硬度」は、粒子硬度測定装置を用いて、測定速度を10μm/s、極大値検出減少率を80%(ピーク値を読み取る閾値;直前のピーク値から20%荷重が下がった場合に、直前のピーク値を極大値として検出)、試料台検出荷重(原点位置を検出するための目安となる荷重)を10.0gfに設定して10回の測定を行い、平均値を算出することにより求められる値である。
[HAp粉末の製造方法]
 本発明で使用されるHAp粉末の製造方法については、前述する物性を備えるHAp粉末が得られることを限度として特に制限されないが、好適な一例として、下記第1工程~第5工程を含む製造方法が挙げられる。
第1工程:(1)水酸化カルシウムを懸濁させた懸濁液にリン酸を滴下する逐次添加工程を含む湿式法、又は(2)リン酸を水に溶解させたリン酸水溶液に水酸化カルシウムを懸濁させた懸濁液を添加する逐次添加工程を含む湿式法によりHApを生成させる。
第2工程:前記第1工程で得られたHApを湿式粉砕し、HApの湿式粉砕処理物を得る。
第3工程:前記第2工程で得られたHApの湿式粉砕処理物を乾燥し、乾燥HAp粉末を得る。
第4工程:前記第3工程で得られた乾燥HAp粉末に対して、1050℃超~1400℃未満の温度で焼成処理する。
第5工程:前記第4工程で得られた焼成HAp粉末を篩い分けすることにより、平均粒子径(D50)が15~40μmのHAp粉末を回収する。
 第1工程では、(1)水酸化カルシウムを懸濁させた懸濁液にリン酸を滴下する、又は(2)リン酸を水に溶解させたリン酸水溶液に水酸化カルシウムを懸濁させた懸濁液を添加することによって、カルシウムイオンとリン酸イオンを反応させて、HApの合成反応[10Ca(OH)2+6H3PO4→Ca10(PO46(OH)2]を行えばよい。前記第1工程では、最終的に共存させる水酸化カルシウムとリン酸の割合がHApのカルシウムとリンの割合と同等になるように調整すればよい。水酸化カルシウムを水中で乳液状に懸濁した液は、酸化カルシウムを水に添加して水和反応させることによって得ることができる。また、水酸化カルシウムを懸濁させた懸濁液にリン酸を滴下する場合、滴下するリン酸は、リン酸を水に溶解させたリン酸水溶液の状態であることが好ましい。水酸化カルシウムを懸濁させた懸濁液にリン酸を滴下する場合であれば、リン酸を滴下する速度については、滴下後の反応液のpHが9以下になるように適宜調整すればよいが、例えば、カルシウム(Ca)原子1molに対し、リン(P)原子が0.05~0.6mol/h、好ましくは0.1~0.3mol/h、より好ましくは0.2mol/hとなる範囲が挙げられる。また、リン酸を水に溶解させたリン酸水溶液に水酸化カルシウムを懸濁させた懸濁液を添加する場合であれば、リン(P)原子1molに対し、カルシウム(Ca)原子が0.05~0.6mol/hとなる範囲が挙げられる。
 また、第1工程において、カルシウムイオンとリン酸イオンを反応させる際の温度(反応温度)については、滴下量、滴下速度等に応じて適宜設定すればよいが、例えば、20℃以上、好ましくは30~70℃、より好ましくは40~60℃となる範囲が挙げられる。さらに効率的にカルシウムイオンとリン酸イオンを反応させ、反応液を生成させるために、カルシウムイオンとリンイオンとを全量共存させた後に、前記温度条件で熟成させることが望ましい。本発明において、熟成とは、静置又は撹拌下で一定時間置いておくことを指す。熟成時間については、滴下量、滴下速度、反応温度等に応じて適宜設定すればよいが、例えば、0分間以上、好ましくは0.5~5時間、より好ましくは1~3時間となる範囲が挙げられる。ここで、「熟成時間」とは、カルシウムイオンとリン酸イオンの全量が水中に共存した時点を0分として、静置又は撹拌下で置いておく時間を指し、例えば、水酸化カルシウムを懸濁させた懸濁液にリン酸を滴下する場合であれば、リン酸の滴下終了時点を0分として算出される時間である。
 なお、水酸化カルシウムを懸濁させた懸濁液とリン酸を同時に混合する湿式法でHApの合成を行うと、前述する物性を備えことができず、プラズマ溶射に供し得るHApは形成できなくなる。
 本発明で使用されるHAp粉末を効率的に製造するという観点から、第1工程は、水酸化カルシウムを懸濁させた懸濁液にリン酸を滴下する逐次添加工程を含む湿式法により行うことが好ましい。
 斯くして第1工程を行うことにより、HApが生成した反応液が得られる。
 第2工程では、前記第1工程で得られたHApを湿式粉砕し、HApの湿式粉砕処理物を得る。
 第2工程では、第1工程後の反応液をそのまま湿式粉砕に供してもよいが、第1工程後の反応液を濃縮した濃縮液や、第1工程後の反応液からHApを回収して水やアルコール等の有機溶媒に新たに懸濁させた懸濁液を湿式粉砕に供してもよい。
 第2工程において、湿式粉砕の方法は特に制限されず、例えば衝撃、せん断式、磨砕式、圧縮、振動等のいずれの方式で行ってもよい。また、湿式粉砕装置の種類についても、特に制限されず、例えば、高圧流体衝突ミル、高速回転スリットミル、アトライター、ボールミル、ビーズミル、ロールミル、リング状粉砕媒体ミル、高速旋回薄膜ミル等のいずれの装置であってもよい。これらの装置自体は公知又は市販のものを使用することができる。これらの湿式粉砕装置の中でも、ビーズミルを好適に用いることができる。
 湿式粉砕装置としてビーズミルを使用する場合、ビーズの種類については、特に制限されないが、ジルコニア系材料からなるビーズが好適である。ビーズの大きさは、例えば、直径0.1~3mm程度であればよい。ビーズの充填量については、用いる装置の大きさ等に応じて適宜設定すればよいが、例えば、50~90体積%程度の範囲内で適宜調整すれば良い。
 第2工程において、湿式粉砕の程度は、適宜調節すればよいが、前述する物性を備えるHAp粉末を効率的に製造するという観点から、湿式粉砕後のHAp粒子が、平均粒子径10μm以下、好ましくは5μm以下、最大粒子径100μm以下、好ましくは30μm以下、より好ましくは平均粒子径1~3μm且つ最大粒子径20μm以下となるように調整することが望ましい。本発明において、湿式粉砕後のHAp粒子の「平均粒子径」及び「最大粒子径」とは、それぞれ、レーザー回折・散乱式粒度分布測定装置を用いて測定されるメジアン径(D50)及び最大粒子径である。
 第3工程では、前記第2工程で得られたHApの湿式粉砕処理物を乾燥し、乾燥HAp粉末を得る。第3工程で使用される乾燥方式については、特に制限されないが、例えば、スプレードライ(噴霧乾燥)、箱形乾燥、バンド乾燥、真空乾燥、凍結乾燥、マイクロ波乾燥、ドラムドライヤ、流動乾燥等が挙げられる。
 これらの中でも、球状粒子に乾燥させてプラズマ溶射用材料として好適な形状を備えさせるという観点から、好ましくはスプレードライが挙げられる。スプレードライの条件としては、前述する物性を備えるHApが得られることを限度として特に制限されないが、例えば、入口温度を200~500℃、出口温度を100~200℃、ディスク回転数を5000~30000rpmに設定すればよい。
 第4工程では、前記第3工程で得られた乾燥HAp粉末に対して、1050℃超~1400℃未満の温度で焼成処理する。従来、湿式法で製造されたHAp粉末の焼成処理は、一般的には1000℃以下の温度条件で行われているが、このような温度条件では、前述する物性を具備するHAp粉末は得られない。第4工程において、前記第3工程で製造されたHAp粉末の焼成処理の温度条件を1050℃超~1400℃未満の温度に設定することによって、前述する物性を具備するHAp粉末を得ることが可能になる。第4工程における焼成処理の温度条件として、好ましくは1050℃超~1350℃、より好ましくは1100~1300℃が挙げられる。
 また、第4工程における焼成処理の温度条件の保持時間については、温度条件を勘案した上で、前述する物性を具備するHAp粉末が生成する範囲で適宜設定すればよく、前述の焼成処理の温度条件に一瞬でも達していればよいが、好ましくは0.1~10時間、更に好ましくは1~5時間が挙げられる。
 第5工程では、第4工程で得られた焼成HAp粉末を篩い分けすることにより、平均粒子径(D50)が15~40μmのHAp粉末を回収する。第5工程で使用する篩の目開きについては、平均粒子径(D50)が15~40μmのHAp粉末を回収できることを限度として特に制限されないが、例えば、500μm以下、好ましくは20~500μm、更に好ましくは30~50μmが挙げられる。
 斯くして第5工程を行うことにより、前述する物性を備えるHAp粉末(本発明で使用されるHAp粉末)を得ることができる。
 また本発明で使用されるHAp粉末は、前記第1工程~第5工程を含む製造方法以外の方法で製造されたHAp粉末から、前述する物性を備えるHAp粉末を篩い分け等によって分画することによって得ることもできる。
[用途・使用方法]
 本発明では前記HAp粉末をプラズマ溶射用材料として使用する。「プラズマ溶射用材料」とは、プラズマ溶射に供される粉末(形成される皮膜の原料となる粉末)である。また、「プラズマ溶射」とは、プラズマ溶射用材料(粉末)を、プラズマで加熱し、溶融させて液状微粒子とし、この液状微粒子をプラズマジェットとともに、基材の表面に高速で衝突させ、基材上にプラズマ溶射用材料の皮膜を形成させる技術である。
 本発明のプラズマ溶射用材料を用いたプラズマ溶射において、HAp皮膜の形成対象となる基材の素材については、特に制限されないが、例えば、PEEK、ポリエチレン、ポリエステル、ポリプロピレン、ポリアミド、ポリエーテル、ポリエーテルケトン、アクリル、ポリスチレン、ポリテトラフルオロエチレン、ヒドロキシエチルメタクリレート、ポリアミド、ポリ乳酸、ポリグリコール酸、ポリラクチド、ポリグリコリド、ポリパラジオキサノン、トリメチレンカーボネート、ε-カプロラクトン等の樹脂;チタン合金(Ti-6Al-4V合金、Ni-Ti等)、コバルト合金(Co-Cr-Ni合金、Co-Cr-Mo、Co-Cr-W-Ni等)、マグネシウム合金(Mg-Y-RE、Mg-Ca-Zn、Mg-Li-Al等)ステンレス鋼(SUS316L、SUS304等)、チタン、コバルト、モリブデン、ニオブ、タンタル、金、白金、タングステン、イリジウム、インコネル等の金属;アルミナ、ジルコニア等のセラミック等が挙げられる。本発明のプラズマ溶射用材料は、低いフレームエネルギーでのプラズマ溶射条件でも、プラズマ溶射が可能で、且つ硬度が高く摩耗しにくいHAp皮膜を形成できるという特徴があり、低いフレームエネルギーでのプラズマ溶射条件を採用することにより樹脂製基材の熱分解や熱変性を抑制することができる。このような本発明の効果を鑑みれば、HAp皮膜の形成対象となる基材の素材の好適な例として、樹脂(特にPEEK)が挙げられる。
 また、HAp皮膜の形成対象となる基材の種類(用途)については、特に制限されないが、例えば、人工関節、人工歯根、人工骨等のインプラント;補助人工心臓、人工血管、ステント、ペースメーカー、縫合糸、カテーテル、人工皮膚、人工筋肉、眼内レンズ等の生体内留置機器の筐体等が挙げられる。これらの中でも、インプラント(特に、人工関節)は、生体内で負荷がかかり易く、基材上に設けられたHAp皮膜の硬度が高く、摩耗しにくい特性が強く要求される。本発明のプラズマ溶射用材料は、インプラント(特に、人工関節)に求められる前記要求特性を満足できるHAp皮膜を形成できるので、インプラント(特に、人工関節)の表面に設けられるHAp皮膜の形成材料として好適に使用される。
 本発明のプラズマ溶射用材料を用いて基材にHAp皮膜を形成させる際のプラズマ溶射の条件については、特に制限されず、基材の種類、形成させるHAp皮膜の厚み等に応じて、通常採用されているプラズマ溶射の条件の範囲内で適宜設定すればよい。
 また、前述の通り、本発明のプラズマ溶射用材料は、低いフレームエネルギーでのプラズマ溶射条件でも、プラズマ溶射が可能で、且つ硬度が高く摩耗しにくいHAp皮膜を形成できるという特徴があるため、本発明のプラズマ溶射用材料が適用されるプラズマ溶射の好適な一例として、フレームエネルギーが低いプラズマ溶射条件が挙げられる。フレームエネルギーが低いプラズマ溶射条件の具体例としては、プラズマ溶射における作動ガスとして、アルゴン、ヘリウム等の単原子分子の比率が高いガスを使用する条件が挙げられる。アルゴン、ヘリウム等の単原子分子は、水素、窒素、酸素等の二原子分子よりも保有エネルギーが低いため、作動ガスとして単原子分子の比率が高いガスを使用することにより、プラズマ溶射時のフレームエネルギーが低くなり、PEEK等の樹脂製の基材の熱分解や熱変性を抑制できるプラズマ溶射条件にすることが可能になる。フレームエネルギーが低くなる作動ガスとして、より具体的には、1種以上の単原子分子のみからなるガス、好ましくはアルゴン及びヘリウムからなる混合ガスが挙げられる。
 以下に実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
1.プラズマ溶射用材料(HAp粉末)の製造
実施例1
 反応槽に水6L及び酸化カルシウム1kgを投入して水和反応させた後に、懸濁液に水を加え、合計15Lに調整した。次いで、50℃に加温し、pH8になるまでリン酸水溶液をカルシウム(Ca)原子1molに対し、リン(P)原子を0.2mol/hとなる滴下速度で添加した。得られた溶液を95℃に加温して2時間反応させた。
 次いで、得られた反応液を1mm径のジルコニアビーズ(ビーズ充填量70%(v/v))により平均粒子径として2μm、最大粒子径として15μmとなるまで湿式粉砕を行い、湿式粉砕処理物を得た後、ディスク式の噴霧手段を備えたスプレードライヤを用いて、入口温度300℃、出口温度130℃、ディスク回転数16000rpmにて噴霧乾燥を行い、乾燥物を回収した。
 更に、得られた乾燥物に対して、電気炉(草葉化学株式会社)を用いて1220℃で3時間焼成(昇温速度65℃/h)を行った。放冷後、卓上型ふるい振とう機(VSS-200S型、筒井理化学器械株式会社)を用いて表1に記載の条件Aにて篩過を行い、篩を通過した粉末を回収し、HAp粉末を得た。
実施例2
 焼成温度を1300℃に変更したこと以外は、実施例1と同様条件で、HAp粉末を得た。
実施例3
 焼成温度を1150℃に変更したこと以外は、実施例1と同様条件で、HAp粉末を得た。
実施例4
 反応槽に水6L及び酸化カルシウム1kgを投入して水和反応させた後に、懸濁液に水を加え、合計15Lに調整した。次いで、50℃に加温し、pH8になるまでリン酸水溶液をカルシウム(Ca)原子1molに対し、リン(P)原子を0.2mol/hとなる滴下速度で添加した。得られた溶液を95℃に加温して2時間反応させた。
 次いで、得られた反応液をディスク式の噴霧手段を備えたスプレードライヤを用いて、入口温度300℃、出口温度130℃、ディスク回転数10000rpmにて噴霧乾燥を行い、乾燥物を回収した。
 更に、得られた乾燥物に対して、電気炉(草葉化学株式会社)を用いて1150℃で3時間焼成(昇温速度65℃/h)を行った。放冷後、卓上型ふるい振とう機(VSS-200S型、筒井理化学器械株式会社)を用いて表1に記載の条件Bにて篩過を行い、篩を通過した粉末を回収し、HAp粉末を得た。
実施例5
 実施例1で得られたHAp粉末に対して、卓上型ふるい振とう機(VSS-200S型、筒井理化学器械株式会社)を用いて表1に記載の条件Cにて篩過を行い、篩を通過した粉末を回収し、HAp粉末を得た。
実施例6
 実施例1で得られたHAp粉末に対して、卓上型ふるい振とう機(VSS-200S型、筒井理化学器械株式会社)を用いて表1に記載の条件Cにて篩過を行い、篩上に残留した粉末を回収し、HAp粉末を得た。
比較例1
 反応槽に水6L及び酸化カルシウム1kgを投入して水和反応させた後に、懸濁液に水を加え、合計15Lに調整した。次いで、50℃に加温し、pH8になるまでリン酸水溶液をカルシウム(Ca)原子1molに対し、リン(P)原子を0.2mol/hとなる滴下速度で添加した。得られた溶液を95℃に加温して2時間反応させた。
 次いで、得られた反応液をディスク式の噴霧手段を備えたスプレードライヤを用いて、入口温度300℃、出口温度130℃、ディスク回転数11000rpmにて噴霧乾燥を行い、乾燥物を回収した。
 更に、得られた乾燥物に対して、電気炉(草葉化学株式会社)を用いて800℃で3時間焼成(昇温速度65℃/h)を行った。放冷後、HAp粉末を得た。
比較例2
 市販のHAp粉末(Medicoat社Hydroxyapatite(Medipure20-15No101))を使用した。
比較例3
 反応槽に水6L及び酸化カルシウム1kgを投入して水和反応させた後に、懸濁液に水を加え、合計15Lに調整した。次いで、50℃に加温し、pH8になるまでリン酸水溶液をカルシウム(Ca)原子1molに対し、リン(P)原子を0.2mol/hとなる滴下速度で添加した。得られた溶液を95℃に加温して2時間反応させた。
 次いで、得られた反応液をディスク式の噴霧手段を備えたスプレードライヤを用いて、入口温度300℃、出口温度130℃、ディスク回転数10000rpmにて噴霧乾燥を行い、乾燥物を回収した。
 更に、得られた乾燥物に対して、電気炉(草葉化学株式会社)を用いて1150℃で3時間焼成(昇温速度65℃/h)を行った。放冷後、HAp粉末を得た。
比較例4
 市販のHAp粉末(Medicoat社Hydroxyapatite(Medipure20-15No102))を使用した。
比較例5
 反応槽に水6L及び酸化カルシウム1kgを投入して水和反応させた後に、懸濁液に水を加え、合計15Lに調整した。次いで、50℃に加温し、pH8になるまでリン酸水溶液をカルシウム(Ca)原子1molに対し、リン(P)原子を0.2mol/hとなる滴下速度で添加した。得られた溶液を95℃に加温して2時間反応させた。
 次いで、得られた反応液をディスク式の噴霧手段を備えたスプレードライヤを用いて、入口温度300℃、出口温度130℃、ディスク回転数11000rpmにて噴霧乾燥を行い、乾燥物を回収した。
 更に、得られた乾燥物に対して、電気炉(草葉化学株式会社)を用いて800℃で3時間焼成(昇温速度65℃/h)を行った。放冷後、卓上型ふるい振とう機(VSS-200S型、筒井理化学器械株式会社)を用いて表1に記載の条件Dにて篩過を行い、篩を通過した粉末を回収し、HAp粉末を得た。
比較例6
 反応槽に水6L及び酸化カルシウム1kgを投入して水和反応させた後に、懸濁液に水を加え、合計15Lに調整した。次いで、50℃に加温し、pH8になるまでリン酸水溶液をカルシウム(Ca)原子1molに対し、リン(P)原子を0.2mol/hとなる滴下速度で添加した。得られた溶液を95℃に加温して2時間反応させた。
 次いで、得られた反応液を1mm径のジルコニアビーズ(ビーズ充填量70%(v/v))により平均粒子径として2μm、最大粒子径として15μmとなるまで湿式粉砕を行い、湿式粉砕処理物を得た後、ディスク式の噴霧手段を備えたスプレードライヤを用いて、入口温度300℃、出口温度130℃、ディスク回転数16000rpmにて噴霧乾燥を行い、乾燥物を回収した。
 更に、得られた乾燥物に対して、電気炉(草葉化学株式会社)を用いて1180℃で3時間焼成(昇温速度65℃/h)を行った。放冷後、卓上型ふるい振とう機(VSS-200S型、筒井理化学器械株式会社)を用いて表1に記載の条件Dにて篩過を行い、篩上の粉体を回収し、HAp粉末を得た。
比較例7
 水5Lに水酸化カルシウム25重量%懸濁液2.5L及びリン酸50重量%溶液1LをpH7にて3時間かけて同時に滴下した。
 次いで、得られた反応液をディスク式の噴霧手段を備えたスプレードライヤを用いて、入口温度300℃、出口温度130℃、ディスク回転数10000rpmにて噴霧乾燥を行い、乾燥物を回収した。
 更に、得られた乾燥物に対して、電気炉(草葉化学株式会社)を用いて1200℃3時間焼成(昇温速度65℃/h)を行った。放冷後、HAp粉末を得た。
篩過条件
 前記実施例1~6及び比較例5~6のHAp粉末の製造において、採用した篩過条件は、表1に示す通りである。
Figure JPOXMLDOC01-appb-T000001
2.プラズマ溶射用材料の評価方法
2-1.プラズマ溶射用材料の物性評価
 実施例1~6及び比較例1~7の各HAp粉末について、以下の方法で、嵩密度、粒度分布、細孔径2000nm以下/2000nm以上のモード径及び細孔容積(水銀圧入法)、BET比表面積、細孔容積(ガス吸着法)、平均細孔径(ガス吸着法)、結晶化度、安息角、粒子硬度、及び外観の評価を行った。
嵩密度
 ASTM B212に規定されている試験方法に基づいて嵩密度(ゆるみ嵩密度)を測定した。
粒度分布
 HAp粉末を水中に分散させて、レーザー回折・散乱式粒度分布測定装置(MicrotracBEL株式会社「MICROTRAC MT3300EXII」)を用いて、粒度分布を測定し、D10、D50(平均粒子径)、及びD90を求めた。
細孔径2000nm以下/2000nm以上のモード径及び細孔容積(水銀圧入法)
 水銀ポロシメーター(Quantachrome Corporation、「poremaster60GT」)を用いて、以下の条件でモード径及び細孔容積の測定を行った。HAp粉末0.1~1.0gを測定用セルに封入し、水銀の接触角を140°、水銀の表面張力を480erg/cm2として、測定した圧力からモード径及び細孔容積を算出した。なお、解析範囲は、細孔径2000nm以下と2000nm以上の範囲に分けて行った。
BET比表面積
 高速比表面積細孔分布測定装置(Quantachrome Corporation「NOVA-4000」)を用いて、以下の操作条件でBET比表面積の測定を行った。前処理:HAp粉末1.0~2.0gを正確に量り、吸着管に封入し、105℃で3時間脱気した。
測定及び解析:液体窒素ガス温度下で窒素ガスの吸着等温線を求め、その吸着等温線を用いて多点BET法により比表面積(m2/g)を算出した。
細孔容積(ガス吸着法)
 高速比表面積細孔分布測定装置(Quantachrome Corporation「NOVA-4000」)を用いて、以下の操作条件で、ガス吸着法による細孔容積の測定を行った。
前処理:HAp粉末1.0~2.0gを正確に量り、吸着管に封入し、105℃で3時間脱気した。
測定及び解析:液体窒素ガス温度下で窒素ガスの吸着等温線を求め、相対圧P/P0(P0:飽和蒸気圧)が0.995におけるガス吸着量から全細孔容積(cc/g)を算出した。
平均細孔径(ガス吸着法)
 下記の式にて平均細孔径(ガス吸着法)を算出した。
 平均細孔径(nm)=4V/S×1000
  V:細孔容積(ガス吸着法)(cc/g)
  S:BET比表面積(m2/g)
結晶化度
 HAp粉末(試験検体)、及びHAp粉末を1000℃で15時間処理したサンプル(前処理品)をX線回折装置「SmartLab」(株式会社リガク)によって2θ=25~50°の範囲で回折パターンの測定を行った(測定条件は、ターゲット:Cu、管電圧:40kV、管電流:30mA、走査範囲:25~50°、スキャンスピード:1.000°/分、スキャンステップ:0.02°、走査モード:連続)。下表2に示した格子面間隔(d)に該当する回折角(θ)を、ブラッグの式d=λ/2sinθより算出し、当該回折角(2θ)をピークトップとする回折ピークについて、前処理品の各ピークの積分強度和に対する、試験検体の各ピークの積分強度和の比率を算出した。
Figure JPOXMLDOC01-appb-T000002
安息角
 POWDER TESTER PT-X型(ホソカワミクロン株式会社)を用いて、振動時間を30秒、振幅を0.5mm、周波数50Hzに設定して、安息角の測定を行った。
粒子硬度
 粒子硬度測定装置 New GRANO GM-N型(岡田精工株式会社)を用いて、以下の条件にて、HAp粉末の粒子硬度の測定を行った。
測定条件:測定速度を10μm/s、極大値検出減少率を80%、試料台検出荷重を10.0gfに設定して、10回測定し、その平均を算出した。
外観
 電界放出形走査電子顕微鏡を用いて、500倍及び10000倍で、各HAp粉末の外観を観察した。
粉末X線回折分析
 X線回折装置「SmartLab」(株式会社リガク)によって2θ=25~50°の範囲で測定を行った(測定条件は、ターゲット:Cu、管電圧:40kV、管電流:30mA、走査範囲:20~50°、スキャンスピード:1.000°/分、スキャンステップ:0.02°、走査モード:連続)。
2-2.プラズマ溶射試験
 Ti-6Al-4V合金製の基材(縦30mm、横40mm、厚さ3mm)の表面をブラスト処理により粗面化した後、大気圧下で表3に示すプラズマ溶射条件にて、実施例1、5及び6のHAp粉末を用いてHAp皮膜を形成した。また、PEEK製の基材(縦30mm、横40mm、厚さ5mm)の表面をブラスト処理により粗面化した後、大気圧下で表3に示すプラズマ溶射条件にて、実施例1~4及び比較例1~7の各HAp粉末を用いてHAp皮膜を形成した。
 なお、下記表3に示すプラズマ溶射条件では、作動ガスとしてアルゴンガスとヘリウムガスを使用しており、フレームエネルギーが小さくなる条件になっている。そのため、PEEK製の基材に対して、HApを使用してプラズマ溶射を行っても、基材の熱変形や熱分解は生じていなかった。
Figure JPOXMLDOC01-appb-T000003
 形成されたHAp皮膜について、以下の方法で、断面硬さ、皮膜厚み、表面粗さ、摩耗量、不純物相(α-TCP(α型リン酸三カルシウム)、β-TCP(β型リン酸三カルシウム)、TTCP(リン酸四カルシウム)、CaO)、色差、結晶化度、Ca/P比及び外観の評価を行った。
断面硬さ
 ビッカース硬度計を用いて、試験力0.3kgにおけるHAp皮膜の断面硬さを測定した。
皮膜厚み
 マイクロメーターを用いて、HAp皮膜の厚みを測定した。
表面粗さ
 表面粗さ計を用いて、JIS B 0031:1994に基づきHAp皮膜の表面粗さ(算術平均粗さ:Ra)を測定した。
摩耗量
 スガ摩耗試験機を用いて、荷重1N、摩耗紙SiC♯320、摩耗回数100回における摩耗量を測定した。
不純物相
 HAp粉末(実施例3)に対して各不純物相を所定の含有量(0.5重量%、1.0重量%、2.5重量%、5.0重量%、6.0重量%)になるように混合して標準サンプルを作成した。次に標準サンプルを粉末X線回析装置「SmartLab」(株式会社リガク)によって2θ=25~50°の範囲で回折パターンの測定を行った(測定条件は、ターゲット:Cu、管電圧:40kV、管電流:30mA、走査範囲:25~50°、スキャンスピード:1.000°/分、スキャンステップ:0.02°、走査モード:連続)。下表4に示した格子面間隔(d)に該当する回折角(θ)を、ブラッグの式d=λ/2sinθより算出し、当該回折角(2θ)をピークトップとする回折ピークの積分強度を算出した。算出したHApの積分強度に対する各不純物相の積分強度比及び対応する各不純物相の含有量から検量線を作成した。続いて、HAp皮膜(試験検体)を同様の条件にて測定し、HAp、各不純物相の積分強度及び前記作成した検量線から不純物相を算出した。
Figure JPOXMLDOC01-appb-T000004
Ca/P比
 前記不純物相の含有量から、下記式に従ってHAp皮膜のCa/P比を算出した。
Figure JPOXMLDOC01-appb-M000005
結晶化度
 HAp皮膜(試験検体)、及びHAp粉末(実施例4)を1000℃で15時間処理したサンプル(前処理品)をX線回折装置「SmartLab」(株式会社リガク)によって2θ=25~50°の範囲で回折パターンの測定を行った(測定条件は、ターゲット:Cu、管電圧:40kV、管電流:30mA、走査範囲:25~50°、スキャンスピード:24.000°/分、スキャンステップ:0.02°、走査モード:連続)。前記表2に示した格子面間隔(d)に該当する回折角(θ)を、ブラッグの式d=λ/2sinθより算出し、当該回折角(2θ)をピークトップとする回折ピークについて、前処理品の各ピークの積分強度和に対する、試験検体の各ピークの積分強度和の比率を算出した。
色差
 基材上に形成したHAp皮膜について、測色色差計(日本電色工業株式会社「ZE6000」)を用いて、反射条件にてL値、a値、及びb値を求め、下記式に従ってW(白色度)を算出した。
 W=100-〔(100-L)2+(a2+b2)〕1/2
外観
 走査型電子顕微鏡を用いて、500倍及び1000倍で、HAp皮膜の断面を観察した。
3.評価結果
 得られた結果を表5及び6、並びに図1~9に示す。図1-1、図1-2及び図1-3にはHAp粉末の外観を顕微鏡観察した像、図2-1及び図2-2にはHAp皮膜の断面外観を顕微鏡観察した像、図3~8には水銀圧入法でHAp粉末の細孔径の分布を測定した結果、図9には実施例1のHAp粉末の粉末X線回折分析の結果を示す。
 比較例1~4及び比較例6のHAp粉末では、粒子径が大きいため、プラズマフレームのエネルギーが不足し、粒子自体が溶融できず、皮膜を形成できなかったと考えられる。比較例7のHAp粉末では、粒子径が小さいため、流動性が低く、溶射装置への供給が安定しなかったため、皮膜を形成できなかったと考えられる。また、比較例5のHAp粉末では、粒子径が適正であるものの、細孔容積が大きいことにより、プラズマフレームの熱が粒子全体に伝導できず、未溶融粉末が皮膜に残存し、皮膜の摩耗が増加し、皮膜の硬度が低くなったと考えられる。
 それに対し、実施例1~6のHAp粉末を使用してプラズマ溶射法により形成したHAp皮膜は、断面硬さについては、比較例5と比べて約1.2倍以上の硬さを示しており、また摩耗量については3.0倍以上の耐性を持つことが確認された。実施例1~6のHAp粉末では、平均粒子径(D50)が15~40μmと小さく、且つ細孔径2000nm以下における細孔容積が0.01~0.30cc/gと小さいため、低いフレームエネルギーであっても粒子が均一に溶融することができ、その結果、チタン合金の基材だけでなくPEEK製の基材においても熱変形や熱分解を生じさせることなく、高い硬度で摩耗量が低いHAp皮膜を形成できたと考えられる。また、実施例1~6のHAp粉末を使用して形成したHAp皮膜は、結晶化度も高く維持されており、不純物相も低く維持されているから、インプラントとして好適に使用できるものであった。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007

Claims (17)

  1.  平均粒子径(D50)が15~40μmであり、且つ水銀圧入法によって測定される細孔径2000nm以下における細孔容積が0.01~0.30cc/gであるハイドロキシアパタイト粉末を含む、プラズマ溶射用材料。
  2.  前記細孔容積が0.01~0.25cc/gである、請求項1に記載のプラズマ溶射用材料。
  3.  前記平均粒子径(D50)が20~40μmである、請求項1又は2に記載のプラズマ溶射用材料。
  4.  前記ハイドロキシアパタイト粉末のBET比表面積が5m2/g未満である、請求項1~3のいずれかに記載のプラズマ溶射用材料。
  5.  前記ハイドロキシアパタイト粉末の水銀圧入法によって測定される2000nm以上における細孔容積が0.20~0.80cc/gである、請求項1~4のいずれかに記載のプラズマ溶射用材料。
  6.  1種以上の単原子分子のみからなるガスを作動ガスとして使用するプラズマ溶射に用いられる、請求項1~5のいずれかに記載のプラズマ溶射用材料。
  7.  基材上での皮膜形成に使用される、請求項1~6のいずれかに記載のプラズマ溶射用材料。
  8.  前記基材の素材が樹脂、金属、又はセラミックである、請求項7に記載のプラズマ溶射用材料。
  9.  前記基材の素材がポリエーテルエーテルケトンである、請求項7又は8に記載のプラズマ溶射用材料。
  10.  前記基材の素材がチタン合金である、請求項7又は8に記載のプラズマ溶射用材料。
  11.  前記基材がインプラントである、請求項7~10のいずれかに記載のプラズマ溶射用材料。
  12.  請求項1~11のいずれかに記載のプラズマ溶射用材料をプラズマ溶射し、基材上にハイドロキシアパタイト皮膜を形成させる、ハイドロキシアパタイト皮膜の形成方法。
  13.  前記基材の素材が樹脂、金属、又はセラミックである、請求項12に記載のハイドロキシアパタイト皮膜の形成方法。
  14.  前記基材の素材がポリエーテルエーテルケトンである、請求項12又は13のいずれかに記載のハイドロキシアパタイト皮膜の形成方法。
  15.  前記基材の素材がチタン合金である、請求項12又は13に記載のハイドロキシアパタイト皮膜の形成方法。
  16.  前記基材がインプラントである、請求項12~15のいずれかに記載のハイドロキシアパタイト皮膜の形成方法。
  17.  平均粒子径(D50)が15~40μmであり、且つ水銀圧入法によって測定される細孔径2000nm以下における細孔容積が0.01~0.30cc/gであるハイドロキシアパタイト粉末の、プラズマ溶射用材料としての使用。
PCT/JP2021/024830 2020-07-30 2021-06-30 プラズマ溶射用材料 WO2022024652A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/007,127 US20230226255A1 (en) 2020-07-30 2021-06-30 Plasma spraying material
EP21849148.8A EP4190936A1 (en) 2020-07-30 2021-06-30 Plasma spraying material
CN202180047184.5A CN115943226A (zh) 2020-07-30 2021-06-30 等离子喷镀用材料
JP2021559697A JP6999099B1 (ja) 2020-07-30 2021-06-30 プラズマ溶射用材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-129674 2020-07-30
JP2020129674 2020-07-30

Publications (1)

Publication Number Publication Date
WO2022024652A1 true WO2022024652A1 (ja) 2022-02-03

Family

ID=80035459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024830 WO2022024652A1 (ja) 2020-07-30 2021-06-30 プラズマ溶射用材料

Country Status (5)

Country Link
US (1) US20230226255A1 (ja)
EP (1) EP4190936A1 (ja)
JP (1) JP6999099B1 (ja)
CN (1) CN115943226A (ja)
WO (1) WO2022024652A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146762A (ja) 1990-10-11 1992-05-20 Terumo Corp 硬組織補綴材料およびその製造方法
JPH1072666A (ja) * 1996-08-30 1998-03-17 Japan Steel Works Ltd:The アパタイト薄膜の成膜方法
WO2001081243A1 (fr) * 2000-04-26 2001-11-01 Ecole Polytechnique Federale De Lausanne (Epfl) Microgranules phosphocalciques
JP2003325553A (ja) * 2002-05-14 2003-11-18 Advance Co Ltd インプラントの製造方法
JP6522271B1 (ja) * 2017-12-08 2019-05-29 富田製薬株式会社 プラズマ溶射用材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146762A (ja) 1990-10-11 1992-05-20 Terumo Corp 硬組織補綴材料およびその製造方法
JPH1072666A (ja) * 1996-08-30 1998-03-17 Japan Steel Works Ltd:The アパタイト薄膜の成膜方法
WO2001081243A1 (fr) * 2000-04-26 2001-11-01 Ecole Polytechnique Federale De Lausanne (Epfl) Microgranules phosphocalciques
JP2003325553A (ja) * 2002-05-14 2003-11-18 Advance Co Ltd インプラントの製造方法
JP6522271B1 (ja) * 2017-12-08 2019-05-29 富田製薬株式会社 プラズマ溶射用材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BASTAN, F. E. ET AL.: "Spray Braying of hydroxyapatite powders: The effect of spray drying parameters and heat treatment on the particle size and morphology", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 724, 10 July 2017 (2017-07-10), pages 586 - 596, XP085149643, DOI: 10.1016/j.jallcom.2017.07.116 *

Also Published As

Publication number Publication date
CN115943226A (zh) 2023-04-07
JPWO2022024652A1 (ja) 2022-02-03
US20230226255A1 (en) 2023-07-20
EP4190936A1 (en) 2023-06-07
JP6999099B1 (ja) 2022-01-18

Similar Documents

Publication Publication Date Title
Palanivelu et al. Characterization studies on plasma sprayed (AT/HA) bi-layered nano ceramics coating on biomedical commercially pure titanium dental implant
JP7334314B2 (ja) 結晶リン酸カルシウムコーティングを有する整形外科用インプラントとその製造方法
Hamidi et al. Synthesis and characterization of eggshell-derived hydroxyapatite via mechanochemical method: A comparative study
US7767250B2 (en) Bioceramic coating of a metal-containing substrate
Guerra et al. Evolution of oxide film on the internal porosity of Ti-30Nb-13Ta-2Mn alloy foam
Shi et al. Biomimetic apatite layers on plasma-sprayed titanium coatings after surface modification
Zadorozhnyy et al. Synthesis of the hydroxyapatite coatings on the Ti substrates by mechanical alloying
Dulski et al. Impact of annealing on features of BCP coating on NiTi shape memory alloy: Preparation and physicochemical characterization
Olivier et al. Influence of electrochemical parameters on the characteristics of sono-electrodeposited calcium phosphate-coated carbon fiber cloth
Wang et al. Enhanced biocompatibility and osseointegration of calcium titanate coating on titanium screws in rabbit femur
Podgorbunsky et al. Formation on magnesium alloy MA8 bioactive coatings containing nanosized hydroxyapatite
Ha et al. NaOH treatment of vacuum-plasma-sprayed titanium on carbon fibre-reinforced poly (etheretherketone)
JP6999099B1 (ja) プラズマ溶射用材料
Fathi et al. Bioactivity evaluation of synthetic nanocrystalline hydroxyapatite
Asmawi et al. Development of bioactive ceramic coating on titanium alloy substrate for biomedical application using dip coating method
Mousavi-Semnani et al. Enhancing the biocompatibility of ZrO2 thin film on Zr-2.5 Nb alloy by anodizing treatment using an electrolyte containing biofunctional groups
Yang et al. Calcium phosphate coating on magnesium alloy by biomimetic method: investigation of morphology, composition and formation process
Bolat-ool et al. Calcium phosphate targets for RF magnetron sputtering of biocoatings
Pawłowski Synthesis, properties and applications of hydroxyapatite
Heimann Functional plasma-sprayed hydroxylapatite coatings for medical application: Clinical performance requirements and key property enhancement
JP6522271B1 (ja) プラズマ溶射用材料
Gol’dberg et al. Hydroxyapatite-calcium carbonate ceramic composite materials
CN111433386B (zh) 等离子喷镀用材料
Khodaei et al. Comparative evaluation of the effect of different types of surface modifiers on bioactivity of porous titanium implants
Enayati et al. Characterisation and corrosion properties of novel hydroxyapatite niobium plasma sprayed coating

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021559697

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021849148

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021849148

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE