WO2022024492A1 - Polyester film for polarizer protection and polarizing plate comprising said polyester film - Google Patents

Polyester film for polarizer protection and polarizing plate comprising said polyester film Download PDF

Info

Publication number
WO2022024492A1
WO2022024492A1 PCT/JP2021/018052 JP2021018052W WO2022024492A1 WO 2022024492 A1 WO2022024492 A1 WO 2022024492A1 JP 2021018052 W JP2021018052 W JP 2021018052W WO 2022024492 A1 WO2022024492 A1 WO 2022024492A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester film
polarizing element
film
polarizing plate
stretching
Prior art date
Application number
PCT/JP2021/018052
Other languages
French (fr)
Japanese (ja)
Inventor
健吾 山内
一志 北岸
慎太郎 東
哲朗 池田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202180058424.1A priority Critical patent/CN116057435A/en
Priority to KR1020227035968A priority patent/KR20230038639A/en
Publication of WO2022024492A1 publication Critical patent/WO2022024492A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a polyester film for protecting a polarizing element and a polarizing plate containing the polyester film.
  • a polarizing plate is often arranged on at least one side of a display cell due to the image forming method.
  • image display devices have tended to have more diversified functions and uses, and are required to be able to withstand use in harsher environments, and one of them is required to be able to withstand use in humid environments.
  • the polarizing plate generally has a structure in which a polarizing element is sandwiched between two protective films, and as the protective film, triacetyl cellulose, an acrylic resin, a cycloolefin resin and the like are widely used.
  • the present invention has been made to solve the above-mentioned conventional problems, and the main object thereof is polarization which can contribute to the improvement of the humidification durability of the polarizing plate while using a general polyester resin as the resin material.
  • the purpose is to provide a polyester film for child protection.
  • the polyester film for protecting a polarizing element of the present invention is the first when the temperature and humidity are raised at a constant rate in 50 minutes from the initial condition of 25 ° C. and 10% RH to the high temperature and high humidity condition of 85 ° C. and 85% RH.
  • the dimensional change rate A (%) in the direction of 1 and the dimensional change rate B (%) in the second direction orthogonal to the first direction satisfy the following equations (1) to (3). -110 x A + 101 x B ⁇ 130 ... (1) -1 ⁇ A ⁇ 1 ... (2) -1 ⁇ B ⁇ 1 ... (3)
  • the polarizing element protective polyester film is formed from polyethylene terephthalate and / or modified polyethylene terephthalate.
  • the modified polyethylene terephthalate comprises a building block derived from diethylene glycol, 1,4-butanediol, 1,3-propanediol or isophthalic acid.
  • the polyester film for protecting a polarizing element has a thickness of 80 ⁇ m or less.
  • a polarizing plate is provided.
  • the polarizing plate includes a polarizing element and a polyester film for protecting the polarizing element arranged on one side of the polarizing element, the thickness of the polarizing element is 20 ⁇ m or less.
  • the polarizing plate further includes an easy-adhesion layer arranged on the polarizing element side of the polyester film for protecting a polarizing element.
  • the easy-adhesion layer contains fine particles.
  • the refractive index of the easy-adhesion layer is 1.55 or less.
  • the surface on the polarizing element side of the polyester film for protecting the polarizing element is a surface-treated surface.
  • the surface treatment is a corona treatment or a plasma treatment.
  • the present invention it is possible to provide a polyester film for protecting a stator that can contribute to the improvement of the humidification durability of the polarizing plate while using a general polyester resin as the resin material.
  • FIG. 3 is a schematic cross-sectional view of a polarizing plate according to another embodiment of the present invention.
  • polyester film for protecting a extruder of the present invention (hereinafter, also simply referred to as a polyester film) has a temperature and humidity of 50 minutes from an initial condition of 25 ° C. 10% RH to a high temperature and high humidity condition of 85 ° C. 85% RH.
  • ⁇ (3) is satisfied.
  • the dimensional change rate can be obtained by the formula ⁇ (dimension (length) in high temperature humidification condition-dimension (length) in initial condition ⁇ / dimension in initial condition ⁇ ⁇ 100.
  • the dimensional change rate when the dimensional change rate satisfies the above relationship, it is possible to obtain a polyester film capable of improving the humidification durability of the polarizing element when used for protecting the polarizing element.
  • the dimensional change rate can be controlled mainly by adjusting the film forming conditions when producing the polyester film.
  • the film forming conditions include stretching conditions (stretching temperature, stretching ratio, stretching speed, MD / TD stretching order), preheating temperature before stretching, heat treatment temperature after stretching, heat treatment time after stretching, and MD / TD direction after stretching.
  • the mitigation rate of The stretching temperature, stretching ratio and stretching speed can be appropriately adjusted for each MD / TD.
  • the first direction corresponds to the transport direction (MD) when producing the polyester film.
  • the second direction may correspond to a TD orthogonal to the MD.
  • the dimensional change rate A and the dimensional change rate B satisfy the following formula (1a). -70 x A + 101 x B ⁇ 90 ... (1a) If the dimensional change rate satisfies such a relationship, the above-mentioned effect of the present invention becomes more remarkable.
  • the dimensional change rate A and the dimensional change rate B satisfy the following formula (1b), and more preferably the following formula (1b'). -110 x A + 101 x B ⁇ 108 ... (1b) -110 x A + 101 x B ⁇ 84 ... (1b') If the dimensional change rate satisfies such a relationship, the above-mentioned effect of the present invention becomes more remarkable.
  • the dimensional change rate A (%) in the first direction is ⁇ 0.8% to 1%, preferably ⁇ 0.65% to 0.8%, more preferably. Is -0.6% to 0.7%.
  • the dimensional change rate B (%) in the second direction is -1% to 0.8%, preferably -0.8% to 0.65%, more preferably. Is -0.7% to 0.6%.
  • the polyester film has a crystallinity of preferably 30% or more, more preferably 40% or more, still more preferably 50% or more, as measured by differential scanning calorimetry (DSC).
  • the upper limit of the crystallinity is, for example, 70%. Within such a range, a polyester film having excellent heat resistance and mechanical properties and suitable as a polarizing element protective film can be obtained.
  • the thickness of the polyester film is preferably 80 ⁇ m or less, more preferably 10 ⁇ m to 80 ⁇ m, and further preferably 20 ⁇ m to 50 ⁇ m.
  • the total light transmittance of the polyester film is preferably 80% or more, more preferably 85% or more, further preferably 90% or more, and particularly preferably 95% or more.
  • the haze of the polyester film is preferably 1.0% or less, more preferably 0.7% or less, still more preferably 0.5% or less, and particularly preferably 0.3% or less.
  • the polyester film of the present invention is formed of a polyester resin.
  • the polyester resin can be obtained by condensation polymerization of a carboxylic acid component and a polyol component.
  • Examples of the carboxylic acid component include aromatic dicarboxylic acid, aliphatic dicarboxylic acid, and alicyclic dicarboxylic acid.
  • Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, benzylmalonic acid, 1,4-naphthalic acid, diphenic acid, 4,4'-oxybenzoic acid, and 2,5-naphthalenedicarboxylic acid.
  • Examples of the aliphatic dicarboxylic acid include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, azelaic acid, zebacic acid and fumaric acid.
  • Examples thereof include maleic acid, itaconic acid, thiodipropionic acid and diglycolic acid.
  • examples of the alicyclic dicarboxylic acid include 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and 2,5-norbornandicarboxylic acid.
  • Examples include acids and adamantandicarboxylic acids.
  • the carboxylic acid component may be a derivative such as an ester, chloride or acid anhydride, for example, dimethyl 1,4-cyclohexanedicarboxylic acid, dimethyl 2,6-naphthalenedicarboxylic acid, dimethyl isophthalate, dimethyl terephthalate. And contains diphenyl terephthalate.
  • the carboxylic acid component may be used alone or in combination of two or more.
  • Typical examples of the polyol component are dihydric alcohols.
  • the dihydric alcohol include aliphatic diols, alicyclic diols, and aromatic diols.
  • the aliphatic diol include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,3-propanediol, 2,4-dimethyl-2-ethylhexane-1,3-diol, and 2, 2-Dimethyl-1,3-propanediol (neopentyl glycol), 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-2-isobutyl-1,3-propanediol, 1,3- Examples include butadiol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentaned
  • alicyclic diol examples include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, spiroglycol, tricyclodecanedimethanol, adamantandiol, 2,2,4. , 4-Tetramethyl-1,3-cyclobutanediol.
  • aromatic diol examples include 4,4'-thiodiphenol, 4,4'-methylenediphenol, 4,4'-(2-norbornenilidene) diphenol, 4,4'-dihydroxybiphenol, o-, Included are m- and p-dihydroxybenzene, 4,4'-isopropyridenephenol, 4,4'-isopropyridenebis (2,6-cyclochlorophenol) 2,5-naphthalenediol and p-xylenediol.
  • the polyol component may be used alone or in combination of two or more.
  • polyester resin polyethylene terephthalate and / or modified polyethylene terephthalate is preferably used, and polyethylene terephthalate is more preferably used. By using these resins, it is possible to obtain a polyester film having excellent mechanical properties and easy control of dimensional change. Polyethylene terephthalate and modified polyethylene terephthalate may be blended and used.
  • modified polyethylene terephthalate examples include modified polyethylene terephthalate containing a structural unit derived from diethylene glycol, 1,4-butanediol, 1,3-propanediol or isophthalic acid.
  • the proportion of diethylene glycol in the polyol component is preferably more than 0 mol% and 10 mol% or less, more preferably more than 0 mol% and 3 mol% or less.
  • the proportion of 1,4-butanediol in the polyol component is preferably more than 0 mol% and 10 mol% or less, more preferably more than 0 mol% and 3 mol% or less.
  • the proportion of 1,3-propanediol in the polyol component is preferably more than 0 mol% and 10 mol% or less, more preferably more than 0 mol% and 3 mol% or less.
  • the proportion of isophthalic acid in the carboxylic acid component is preferably more than 0 mol% and 10 mol% or less, more preferably more than 0 mol% and 8 mol% or less. Within such a range, a polyester film having good crystallinity can be obtained.
  • the mol% described above is mol% with respect to the total of all polymer repeating units.
  • the weight average molecular weight of the polyester resin is preferably 10,000 to 100,000, more preferably 20,000 to 75,000. With such a weight average molecular weight, a film that is easy to handle during molding and has excellent mechanical strength can be obtained.
  • the weight average molecular weight can be measured by GPC (solvent: THF).
  • a polyester film with an easy-adhesion layer contains, for example, a water-based polyurethane and an oxazoline-based cross-linking agent. Details of the easy-adhesion layer are described in, for example, Japanese Patent Application Laid-Open No. 2010-55062. The entire description of the publication is incorporated herein by reference.
  • the easy-adhesion layer contains any suitable fine particles.
  • the fine particles may be inorganic fine particles or organic fine particles.
  • the inorganic fine particles include inorganic oxides such as silica, titania, alumina, and zirconia, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, calcium phosphate, and the like.
  • the organic fine particles include silicone-based resin, fluorine-based resin, (meth) acrylic-based resin, and the like. Among these, silica is preferable.
  • the particle size (number average primary particle size) of the fine particles is preferably 10 nm to 200 nm, more preferably 20 nm to 60 nm.
  • the thickness of the easy-adhesion layer is preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less, and further preferably 0.35 ⁇ m or less. Within such a range, it is possible to obtain a polyester film with an easily adhesive layer that does not easily impair the optical characteristics of other members when applied to an image display device.
  • the refractive index of the easy-adhesion layer is preferably 1.55 or less, more preferably 1.5 or less. Within such a range, it is possible to obtain a polyester film with an easily adhesive layer that does not easily impair the optical characteristics of other members when applied to an image display device.
  • the polyester film may include an anti-block layer on at least one side thereof.
  • the configuration of the anti-block layer the configuration of the easy-adhesion layer described above may be adopted.
  • the anti-block layer contains the fine particles.
  • At least one surface of the polyester film may be a surface-treated surface.
  • the surface treatment any appropriate treatment may be adopted.
  • corona treatment, plasma treatment and the like can be mentioned.
  • the polyester film can be obtained through a molding step of molding a film-forming material (resin composition) containing the polyester-based resin into a film, and a stretching step of stretching the molded film.
  • the stretching step comprises a preheat treatment of the film performed prior to film stretching and a heat treatment performed after film stretching.
  • a relaxation treatment may be performed in which the film is shrunk in the width direction while the film is held by the tenter.
  • the polyester film is provided in a long shape (or a shape cut out from a long body).
  • the film-forming material may contain an additive or a solvent in addition to the polyester-based resin.
  • any suitable additive may be adopted depending on the purpose.
  • Specific examples of additives include reactive diluents, plasticizers, surfactants, fillers, antioxidants, antioxidants, UV absorbers, leveling agents, thixotropic agents, antistatic agents, conductive materials, and flame retardants. Can be mentioned.
  • the number, type, combination, addition amount and the like of the additives can be appropriately set according to the purpose.
  • any appropriate molding processing method can be adopted. Specific examples include a compression molding method, a transfer molding method, an injection molding method, an extrusion molding method, a blow molding method, a powder molding method, an FRP molding method, a cast coating method (for example, a casting method), a calendar molding method, and a hot press.
  • a compression molding method a transfer molding method, an injection molding method, an extrusion molding method, a blow molding method, a powder molding method, an FRP molding method, a cast coating method (for example, a casting method), a calendar molding method, and a hot press.
  • Extrusion molding method or cast coating method is preferable. This is because the smoothness of the obtained film can be enhanced and good optical uniformity can be obtained.
  • the film stretching method may be uniaxial stretching or biaxial stretching.
  • uniaxial stretching is adopted as the stretching method of the film, and the film is stretched in the length direction (MD) of the film.
  • the biaxial stretching may be sequential biaxial stretching or simultaneous biaxial stretching. Sequential biaxial stretching or simultaneous biaxial stretching is typically performed using a tenter stretching machine. Therefore, the stretching direction of the film is typically the length direction (MD) and the width direction (TD) of the film.
  • sequential biaxial stretching is adopted as the stretching method of the film. It is preferable to perform MD stretching after TD stretching to obtain the polyester film. By doing so, it is possible to mitigate the influence of Boeing that occurs during TD stretching, and to make the angle between the first direction (MD) and the slow axis of the polyester film an appropriate value. ..
  • the stretching temperature is preferably Tg + 5 ° C. to Tg + 50 ° C., more preferably Tg + 5 ° C. to Tg + 30 ° C., and even more preferably Tg + 10 ° C. to Tg + 20 ° C. with respect to the glass transition temperature (Tg) of the film.
  • Tg glass transition temperature
  • the draw ratio in MD is preferably 1.1 times to 8 times, more preferably 2.5 times to 6.5 times, still more preferably 3 times to 6 times, and particularly preferably 3 times to 3 times. It is 5 times. Within such a range, it is possible to obtain a polyester film having an excellent effect of imparting humidification durability while keeping the dimensional change rate within a desired range.
  • the draw ratio in TD is preferably 1.1 times to 11 times, more preferably 2.5 times to 6.5 times, still more preferably 3 times to 6 times, and particularly preferably 3 times to 3 times. It is 5 times. Within such a range, it is possible to obtain a polyester film having an excellent effect of imparting humidification durability while keeping the dimensional change rate within a desired range.
  • the ratio of the stretching ratio in TD to the stretching ratio in MD is preferably more than 0.1 and 7 or less, more preferably 0.2 to 5, and even more preferably 0. It is .3 to 4, more preferably 0.4 to 3, particularly preferably 0.5 to 2, and most preferably 0.6 to 1.7. Within such a range, the relationship between the dimensional change rate in the first direction (MD) and the dimensional change rate in the second direction (TD) is kept within a desired range, and the polyester has an excellent effect of imparting humidification durability. You can get the film.
  • the stretching speed in MD is preferably 5% / sec to 100% / sec, more preferably 8% / sec to 80% / sec, and further preferably 8% / sec to 60% / sec. Within such a range, it is possible to obtain a polyester film having an excellent effect of imparting humidification durability while keeping the dimensional change rate within a desired range.
  • the stretching speed in TD is preferably 5% / sec to 100% / sec, more preferably 8% / sec to 80% / sec, and further preferably 8% / sec to 60% / sec. Within such a range, it is possible to obtain a polyester film having an excellent effect of imparting humidification durability while keeping the dimensional change rate within a desired range.
  • the temperature of the preheat treatment is preferably 80 ° C. to 150 ° C., more preferably 90 ° C. to 130 ° C.
  • the preheat treatment time is preferably 10 seconds to 100 seconds, more preferably 15 seconds to 80 seconds. Within such a range, it is possible to obtain a polyester film having an excellent effect of imparting humidification durability while keeping the dimensional change rate within a desired range.
  • the temperature of the heat treatment is preferably 100 ° C. to 250 ° C., more preferably 120 ° C. to 200 ° C., and even more preferably 130 ° C. to 180 ° C. Within such a range, it is possible to obtain a polyester film having an excellent effect of imparting humidification durability while keeping the dimensional change rate within a desired range.
  • the heat treatment time is preferably 2 seconds to 50 seconds, more preferably 5 seconds to 40 seconds, still more preferably 8 seconds to 30 seconds. Within such a range, a polyester film having excellent transparency, good crystallinity, and excellent durability can be obtained.
  • the relaxation treatment is performed after the film is stretched (after the heat treatment when the heat treatment is performed).
  • the relaxation treatment is a treatment in which the film is shrunk in the width direction while being held by the tenter.
  • the temperature during the relaxation treatment is preferably 80 ° C. to 210 ° C., more preferably 90 ° C. to 200 ° C.
  • the temperature during the relaxation treatment is preferably 80 ° C. to 150 ° C., more preferably 90 ° C. to 140 ° C.
  • the temperature during the relaxation treatment is preferably 150 ° C. to 210 ° C., more preferably 160 ° C. to 200 ° C.
  • the shrinkage rate in the relaxation treatment is preferably more than 0% and 5% or less, and more preferably 0.5% to 3%.
  • FIG. 1 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention.
  • the polarizing plate 100 includes a polarizing element 10 and a polyester film 20 arranged on one side of the polarizing element 10.
  • the polyester film 20 As the polyester film 20, the polyester film of the present invention described in Section A above is used. Any suitable alternative polarizing element protective film may be placed on the other side of the polarizing element, and the polarizing element protective film may not be placed.
  • the polarizing element 10 and the polyester film 20 (or another polarizing element protective film) are laminated via an adhesive layer 30.
  • the polyester film 20 has a surface-treated surface (for example, a corona-treated surface, a plasma-treated surface), it is preferable that the surface of the polyester film 20 on the polarizing element 10 side is the surface-treated surface.
  • the polarizing plate can be applied to an image display device so that the side on which the polyester film is arranged is the visual recognition side.
  • the polarizing plate When the polarizing plate is applied to a liquid crystal display device, the polarizing plate provided with the polyester film may be arranged on the visual side of the liquid crystal cell or on the back side.
  • the polarizing element any appropriate polarizing element can be adopted.
  • the resin film forming the polarizing element may be a single-layer resin film or a laminated body having two or more layers.
  • the polarizing element composed of a single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer-based partially saponified film.
  • a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer-based partially saponified film.
  • PVA polyvinyl alcohol
  • a partially formalized PVA-based film ethylene / vinyl acetate copolymer-based partially saponified film
  • examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine and a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride.
  • the dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution.
  • the draw ratio of the uniaxial stretching is preferably 3 to 7 times.
  • the stretching may be performed after the dyeing treatment or may be performed while dyeing. Further, it may be dyed after being stretched.
  • the PVA-based film is subjected to a swelling treatment, a crosslinking treatment, a cleaning treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt and blocking inhibitor on the surface of the PVA-based film, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.
  • the polarizing element obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin.
  • Examples thereof include a polarizing element obtained by using a laminate with a PVA-based resin layer coated and formed on a base material.
  • the polarizing element obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further comprise, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution.
  • a high temperature eg, 95 ° C. or higher
  • the obtained resin base material / polarizing element laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizing element), and the resin base material is peeled off from the resin base material / polarizing element laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface and used. Details of the method for producing such a polarizing element are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire description of the publication is incorporated herein by reference.
  • the thickness of the polarizing element is, for example, 1 ⁇ m to 80 ⁇ m. In one embodiment, the thickness of the polarizing element is preferably 20 ⁇ m or less, more preferably 3 ⁇ m to 15 ⁇ m.
  • the polyester film of the present invention has a large polarizing element protection effect, and can effectively prevent cracks in the polarizing element, for example. Therefore, it is possible to use a thin polarizing element even in a harsh environment such as a high temperature and a large temperature change.
  • the polarizing element and the polarizing element protective film can be laminated via any suitable adhesive layer.
  • the adhesive layer is formed from an adhesive composition containing a polyvinyl alcohol-based resin.
  • the absorption axis direction of the polarizing element and the first direction (typically MD) of the polyester film are substantially parallel. If the polarizing plate is configured so that the absorption axis of the polarizing element and the first direction of the polyester film are substantially parallel to each other, the polyester film and the polarizing element can be synchronized and preferably change in shape. As a result, cracking of the stator is prevented.
  • the slow axis angle of the polyester film is preferably such that the angle formed by the absorption axis direction of the polarizing element is the same, and the angle formed by the two axes is preferably 0 ° ⁇ 10 °, more preferably 0 ° ⁇ 7 °.
  • the slow phase axis angle is an angle when the roll flow direction is 0 °.
  • FIG. 2 is a schematic cross-sectional view of a polarizing plate according to another embodiment of the present invention.
  • the polarizing plate 200 further includes an easy-adhesion layer 40 arranged on the polarizing element 10 side of the polyester film 20.
  • the polyester film A with an easy-adhesion layer is arranged on the polarizing element 10 so that the easy-adhesion layer 40 is on the side of the polarizing element 10.
  • the easy-adhesion layer described in the above item A can be adopted.
  • the polyester film 20 has a surface-treated surface (for example, a corona-treated surface and a plasma-treated surface), it is preferable that the surface of the polyester film 20 on the decoder 10 side (easy-adhesion layer 40 side) is the surface-treated surface.
  • a surface-treated surface for example, a corona-treated surface and a plasma-treated surface
  • Image display device The above polarizing plate can be applied to an image display device.
  • Typical examples of the image display device include a liquid crystal display device and an organic electroluminescence (EL) display device. Since the image display device adopts a configuration well known in the industry, detailed description thereof will be omitted.
  • EL organic electroluminescence
  • the dimensional change at the time when the temperature reached 85 ° C. and 85% RH was defined as the dimensional change rate of the film. It should be noted that the case where the numerical value changes in the positive direction indicates expansion and the case where the numerical value changes in the negative direction indicates contraction with respect to the initial stage.
  • the degree of polarization (degree of polarization after humidification) of the evaluation sample was measured in the same manner as above.
  • Humidification durability was evaluated according to the following criteria from the amount of change in the degree of polarization after humidification with respect to the degree of initial polarization. ⁇ The amount of change in the degree of polarization after the humidification test with respect to the initial degree of polarization is 1% or less ⁇ The amount of change in the degree of polarization after the humidification test with respect to the initial degree of polarization is less than 10% ⁇ The amount of change in the degree of polarization after the humidification test with respect to the initial degree of polarization Is 10% or more
  • IPA copolymer PET amorphous isophthalic acid copolymer polyethylene terephthalate (IPA copolymer PET) film (thickness: 100 ⁇ m) having a water absorption rate of 0.75% and a Tg of 75 ° C.
  • One side of the substrate is corona-treated, and polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetoacetyl-modified PVA (polymerization degree 1200, acetoacetyl modification degree 4.6) are applied to the corona-treated surface.
  • a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water for 30 seconds (insolubilization treatment).
  • the polarizing plate was immersed in a dyeing bath having a liquid temperature of 30 ° C. while adjusting the iodine concentration and the immersion time so that the polarizing plate had a predetermined transmittance.
  • 0.2 parts by weight of iodine was mixed with 100 parts by weight of water, and 1.5 parts by weight of potassium iodide was mixed and immersed in the obtained iodine aqueous solution for 60 seconds (dyeing treatment). .. Then, it was immersed in a cross-linked bath having a liquid temperature of 30 ° C.
  • a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water for 30 seconds.
  • the laminate is immersed in an aqueous solution of boric acid having a liquid temperature of 70 ° C. (an aqueous solution obtained by blending 4 parts by weight of boric acid and 5 parts by weight of potassium iodide with respect to 100 parts by weight of water).
  • uniaxial stretching was performed between rolls having different peripheral speeds so that the total stretching ratio was 5.5 times in the longitudinal direction (longitudinal direction) (underwater stretching).
  • the laminate is immersed in a washing bath at a liquid temperature of 30 ° C. (an aqueous solution obtained by mixing 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment), and has a peelable substrate. Obtained a stator.
  • the obtained amorphous polyester resin film was biaxially stretched by a stretching machine KAROIV manufactured by Bruckner to obtain a polyester film A (thickness: 20 ⁇ m).
  • the draw ratio was 3.1 times in the length direction (MD) and 3.9 times in the width direction (TD).
  • the MD stretching temperature was 95 ° C.
  • the TD stretching temperature was 110 ° C.
  • the stretching speed was 30% / sec for both MD and TD.
  • heat treatment was performed at 180 ° C. for 10 seconds while maintaining the dimensions, and then a relaxation treatment was performed in which the width of the tenter was narrowed while the film was held by the tenter to shrink the film by 1% in the width direction. ..
  • Example 1 The polyester film A manufactured in Production Example 2 is corona-treated, and the product name "Superflex 210R” manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. is 15.2 wt% and the product name "WS-700” manufactured by Nippon Catalyst Co., Ltd. is 2.7 wt%. After drying, the aqueous solution in which% was dissolved was applied so that the film thickness became 300 ⁇ m, and dried at 80 ° C. for 1 minute to obtain a polyester film A with an easy-adhesion layer. The polyester film with an easy-adhesion layer was attached to the surface of the polarizing element with a substrate obtained in Production Example 1 via a UV curable adhesive.
  • the curable adhesive was coated so as to have a total thickness of about 1.0 ⁇ m, and bonded using a roll machine. Then, UV light was irradiated from the polyester film A side to cure the adhesive. Then, the substrate was peeled off from the PVA-based resin layer to obtain a polarizing plate (polarizer (transmittance 42.3%, thickness 5 ⁇ m) / protective film (polyester film)). The polyester film A and the polarizing element were laminated so that the MD direction of the polyester film A and the absorption axis direction of the polarizing element were substantially parallel to each other. The obtained polarizing plate was subjected to the above evaluations (1) and (2). The results are shown in Table 1.
  • Example 2 A polarizing plate was obtained in the same manner as in Example 1 except that the polyester film B produced in Production Example 3 was used instead of the polyester film A produced in Production Example 2. The obtained polarizing plate was subjected to the above evaluations (1) and (2). The results are shown in Table 1.
  • Example 3 A polarizing plate was obtained in the same manner as in Example 1 except that the polyester film C produced in Production Example 4 was used instead of the polyester film A produced in Production Example 2. The obtained polarizing plate was subjected to the above evaluations (1) and (2). The results are shown in Table 1.
  • Example 4 A polarizing plate was obtained in the same manner as in Example 1 except that the polyester film D produced in Production Example 5 was used instead of the polyester film A produced in Production Example 2. The obtained polarizing plate was subjected to the above evaluations (1) and (2). The results are shown in Table 1.
  • Example 5 A polarizing plate was obtained in the same manner as in Example 1 except that the polyester film E produced in Production Example 6 was used instead of the polyester film A produced in Production Example 2. The obtained polarizing plate was subjected to the above evaluations (1) and (2). The results are shown in Table 1.
  • Example 6 A polarizing plate was obtained in the same manner as in Example 1 except that the polyester film F produced in Production Example 7 was used instead of the polyester film A produced in Production Example 2. The obtained polarizing plate was subjected to the above evaluations (1) and (2). The results are shown in Table 1.
  • Polarizer 10 Polarizer 20 Polyester film 30 Adhesive layer 40 Easy adhesive layer 100, 200 Polarizing plate

Abstract

The present invention provides a polyester film for polarizer protection, which is capable of contributing to the improvement of the durability of a polarizing plate in a humidified environment, while using a common polyester resin as a resin material. A polyester film for polarizer protection according to the present invention is configured such that if the temperature and the humidity are raised from the initial state at 25°C at 10% RH to the high-temperature high-humidity state at 85°C at 85% RH at constant rates for 50 minutes, the dimensional change rate A (%) in a first direction and the dimensional change rate B (%) in a second direction that is perpendicular to the first direction satisfy the formulae (1) to (3) described below. (1): -110 × A + 101 × B ≤ 130 (2): -1 ≤ A ≤ 1 (3): -1 ≤ B ≤ 1

Description

偏光子保護用ポリエステルフィルム、および該ポリエステルフィルムを含む偏光板A polyester film for protecting a stator and a polarizing plate containing the polyester film.
 本発明は、偏光子保護用ポリエステルフィルム、および該ポリエステルフィルムを含む偏光板に関する。 The present invention relates to a polyester film for protecting a polarizing element and a polarizing plate containing the polyester film.
 画像表示装置(例えば、液晶表示装置、有機EL表示装置)には、その画像形成方式に起因して、多くの場合、表示セルの少なくとも一方の側に偏光板が配置されている。近年、画像表示装置は、機能、用途がさらに多様化する傾向にあり、より過酷な環境での使用に耐え得ることが求められ、そのひとつとして、多湿環境下での使用に耐え得ることが求められている。偏光板は一般に偏光子を2枚の保護フィルムで挟持する構成を有しており、保護フィルムとしてはトリアセチルセルロース、アクリル系樹脂、シクロオレフィン系樹脂等が広く用いられている。 In an image display device (for example, a liquid crystal display device or an organic EL display device), a polarizing plate is often arranged on at least one side of a display cell due to the image forming method. In recent years, image display devices have tended to have more diversified functions and uses, and are required to be able to withstand use in harsher environments, and one of them is required to be able to withstand use in humid environments. Has been done. The polarizing plate generally has a structure in which a polarizing element is sandwiched between two protective films, and as the protective film, triacetyl cellulose, an acrylic resin, a cycloolefin resin and the like are widely used.
 偏光板の耐久性(特に、耐湿性)向上のためには、保護フィルムを形成する樹脂材料の特性面から、当該耐久性向上を図る手段がとられることが一般的である。しかしながら、樹脂材料の特性向上を図るとなると、多大な時間およびコストがかかるという問題が生じる。 In order to improve the durability (particularly, moisture resistance) of the polarizing plate, it is common to take measures to improve the durability from the characteristic aspect of the resin material forming the protective film. However, there is a problem that it takes a lot of time and cost to improve the characteristics of the resin material.
特開平8-271733号公報Japanese Unexamined Patent Publication No. 8-271733
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、樹脂材料としては一般的なポリエステル系樹脂を用いつつも、偏光板の加湿耐久性向上に寄与し得る偏光子保護用ポリエステルフィルムを提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and the main object thereof is polarization which can contribute to the improvement of the humidification durability of the polarizing plate while using a general polyester resin as the resin material. The purpose is to provide a polyester film for child protection.
 本発明の偏光子保護用ポリエステルフィルムは、25℃10%RHの初期条件から、85℃85%RHの高温高湿条件まで、温度および湿度を50分で等速上昇させた際の、第1の方向における寸法変化率A(%)と、第1の方向に直交する第2の方向における寸法変化率B(%)とが、下記式(1)~(3)を満たす。
 -110×A+101×B≦130  ・・・(1)
 -1≦A≦1 ・・・(2)
 -1≦B≦1 ・・・(3)
 1つの実施形態においては、、上記偏光子保護用ポリエステルフィルムは、ポリエチレンテレフタレートおよび/または変性ポリエチレンテレフタレートから形成される。 
 1つの実施形態においては、上記変性ポリエチレンテレフタレートが、ジエチレングリコール、1,4-ブタンジオール、1,3-プロパンジオールまたはイソフタル酸由来の構成単位を含む。
 1つの実施形態においては、上記偏光子保護用ポリエステルフィルムは、厚みが、80μm以下である。
 本発明の別の局面によれば、偏光板が提供される。この偏光板は、偏光子と、該偏光子の一方の側に配置された上記偏光子保護用ポリエステルフィルムとを備える
 1つの実施形態においては、上記偏光子の厚みが、20μm以下である。
 1つの実施形態においては、上記偏光板は、上記偏光子保護用ポリエステルフィルムの上記偏光子側に配置された易接着層をさらに含む。
 1つの実施形態においては、上記易接着層が、微粒子を含む。
 1つの実施形態においては、上記易接着層の屈折率が、1.55以下である。
 1つの実施形態においては、上記偏光子保護用ポリエステルフィルムの前記偏光子側の面が、表面処理面である。
 1つの実施形態においては、上記表面処理が、コロナ処理またはプラズマ処理である。
The polyester film for protecting a polarizing element of the present invention is the first when the temperature and humidity are raised at a constant rate in 50 minutes from the initial condition of 25 ° C. and 10% RH to the high temperature and high humidity condition of 85 ° C. and 85% RH. The dimensional change rate A (%) in the direction of 1 and the dimensional change rate B (%) in the second direction orthogonal to the first direction satisfy the following equations (1) to (3).
-110 x A + 101 x B ≤ 130 ... (1)
-1 ≤ A ≤ 1 ... (2)
-1 ≤ B ≤ 1 ... (3)
In one embodiment, the polarizing element protective polyester film is formed from polyethylene terephthalate and / or modified polyethylene terephthalate.
In one embodiment, the modified polyethylene terephthalate comprises a building block derived from diethylene glycol, 1,4-butanediol, 1,3-propanediol or isophthalic acid.
In one embodiment, the polyester film for protecting a polarizing element has a thickness of 80 μm or less.
According to another aspect of the invention, a polarizing plate is provided. In one embodiment, the polarizing plate includes a polarizing element and a polyester film for protecting the polarizing element arranged on one side of the polarizing element, the thickness of the polarizing element is 20 μm or less.
In one embodiment, the polarizing plate further includes an easy-adhesion layer arranged on the polarizing element side of the polyester film for protecting a polarizing element.
In one embodiment, the easy-adhesion layer contains fine particles.
In one embodiment, the refractive index of the easy-adhesion layer is 1.55 or less.
In one embodiment, the surface on the polarizing element side of the polyester film for protecting the polarizing element is a surface-treated surface.
In one embodiment, the surface treatment is a corona treatment or a plasma treatment.
 本発明によれば、樹脂材料としては一般的なポリエステル系樹脂を用いつつも、偏光板の加湿耐久性向上に寄与し得る偏光子保護用ポリエステルフィルムを提供することができる。 According to the present invention, it is possible to provide a polyester film for protecting a stator that can contribute to the improvement of the humidification durability of the polarizing plate while using a general polyester resin as the resin material.
本発明の1つの実施形態による偏光板の概略断面図である。It is a schematic sectional drawing of the polarizing plate by one Embodiment of this invention. 本発明の別の実施形態による偏光板の概略断面図である。FIG. 3 is a schematic cross-sectional view of a polarizing plate according to another embodiment of the present invention.
 以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
A.ポリエステルフィルム
 本発明の偏光子保護用ポリエステルフィルム(以下、単にポリエステルフィルムともいう)は、25℃10%RHの初期条件から、85℃85%RHの高温高湿条件まで、温度および湿度を50分で等速上昇させた際の、第1の方向における寸法変化率A(%)と、第1の方向に直交する第2の方向における寸法変化率B(%)とが、下記式(1)~(3)を満たす。
 -110×A+101×B≦130  ・・・(1)
 -1≦A≦1 ・・・(2)
 -1≦B≦1 ・・・(3)
なお、寸法変化率は、{(高温加湿条件における寸法(長さ)-初期条件における寸法(長さ))/初期条件における寸法}×100の式により求めることができる。
A. Polyester film The polyester film for protecting a extruder of the present invention (hereinafter, also simply referred to as a polyester film) has a temperature and humidity of 50 minutes from an initial condition of 25 ° C. 10% RH to a high temperature and high humidity condition of 85 ° C. 85% RH. The dimensional change rate A (%) in the first direction and the dimensional change rate B (%) in the second direction orthogonal to the first direction when the film is increased at a constant velocity in the following equation (1). ~ (3) is satisfied.
-110 x A + 101 x B ≤ 130 ... (1)
-1 ≤ A ≤ 1 ... (2)
-1 ≤ B ≤ 1 ... (3)
The dimensional change rate can be obtained by the formula {(dimension (length) in high temperature humidification condition-dimension (length) in initial condition} / dimension in initial condition} × 100.
 本発明においては、寸法変化率が上記関係を満たすことにより、偏光子保護に用いた際に、偏光子の加湿耐久性を向上させ得るポリエステルフィルムを得ることができる。上記寸法変化率は、主に、ポリエステルフィルムを製造する際の製膜条件を調整することにより制御することができる。製膜条件としては、延伸条件(延伸温度、延伸倍率、延伸速度、MD/TD延伸順序)、延伸前の予熱温度、延伸後の熱処理温度、延伸後の熱処理時間、延伸後のMD/TD方向の緩和率等が挙げられる。延伸温度、延伸倍率および延伸速度は、MD/TDごとに適切に調整され得る。一般的な樹脂であるポリエステルを用い、樹脂材料自体の特性最適化に依らずに、製膜条件の調整にて、加湿耐久性付与効果を発揮する偏光子保護フィルムが得られたことは、本発明の大きな成果である。本発明においては、ポリエステルを材料とすることにより、安価に偏光子保護フィルムが得られる点、延伸により機械的特性(例えば、弾性率)を制御しやすい点でも有利である。1つの実施形態においては、上記第1の方向は、ポリエステルフィルムを製造する際の搬送方向(MD)に相当する。また、上記第2の方向はMDに直交するTDに相当し得る。 In the present invention, when the dimensional change rate satisfies the above relationship, it is possible to obtain a polyester film capable of improving the humidification durability of the polarizing element when used for protecting the polarizing element. The dimensional change rate can be controlled mainly by adjusting the film forming conditions when producing the polyester film. The film forming conditions include stretching conditions (stretching temperature, stretching ratio, stretching speed, MD / TD stretching order), preheating temperature before stretching, heat treatment temperature after stretching, heat treatment time after stretching, and MD / TD direction after stretching. The mitigation rate of The stretching temperature, stretching ratio and stretching speed can be appropriately adjusted for each MD / TD. It is a book that a polarizing element protective film that exhibits the effect of imparting humidification durability was obtained by adjusting the film forming conditions using polyester, which is a general resin, without relying on optimizing the characteristics of the resin material itself. It is a great achievement of the invention. In the present invention, using polyester as a material is advantageous in that a polarizing element protective film can be obtained at low cost and that mechanical properties (for example, elastic modulus) can be easily controlled by stretching. In one embodiment, the first direction corresponds to the transport direction (MD) when producing the polyester film. Further, the second direction may correspond to a TD orthogonal to the MD.
 1つの実施形態においては、上記寸法変化率Aと、寸法変化率Bとは、下記式(1a)を満たす。
 -70×A+101×B≦90 ・・・(1a)
 寸法変化率がこのような関係を満たしていれば、上記本発明の効果はより顕著となる。
In one embodiment, the dimensional change rate A and the dimensional change rate B satisfy the following formula (1a).
-70 x A + 101 x B ≤ 90 ... (1a)
If the dimensional change rate satisfies such a relationship, the above-mentioned effect of the present invention becomes more remarkable.
 1つの実施形態においては、上記寸法変化率Aと、寸法変化率Bとは、下記式(1b)を満たし、より好ましくは下記式(1b’)を満たす。
 -110×A+101×B≦108 ・・・(1b)
 -110×A+101×B≦84 ・・・(1b’)
 寸法変化率がこのような関係を満たしていれば、上記本発明の効果はより顕著となる。
In one embodiment, the dimensional change rate A and the dimensional change rate B satisfy the following formula (1b), and more preferably the following formula (1b').
-110 x A + 101 x B ≤ 108 ... (1b)
-110 x A + 101 x B ≤ 84 ... (1b')
If the dimensional change rate satisfies such a relationship, the above-mentioned effect of the present invention becomes more remarkable.
 1つの実施形態においては、上記第1の方向における寸法変化率A(%)は、-0.8%~1%であり、好ましくは-0.65%~0.8%であり、さらに好ましくは-0.6%~0.7%である。1つの実施形態においては、上記第2の方向における寸法変化率B(%)は、-1%~0.8%であり、好ましくは-0.8%~0.65%であり、さらに好ましくは-0.7%~0.6%である。 In one embodiment, the dimensional change rate A (%) in the first direction is −0.8% to 1%, preferably −0.65% to 0.8%, more preferably. Is -0.6% to 0.7%. In one embodiment, the dimensional change rate B (%) in the second direction is -1% to 0.8%, preferably -0.8% to 0.65%, more preferably. Is -0.7% to 0.6%.
 上記ポリエステルフィルムは、示差走査熱量測定(DSC)で測定される結晶化度が好ましくは30%以上であり、より好ましくは40%以上であり、さらに好ましくは50%以上である。結晶化度の上限は、例えば70%である。このような範囲であれば、耐熱性および機械的特性に優れ、偏光子保護フィルムとして好適なポリエステルフィルムを得ることができる。 The polyester film has a crystallinity of preferably 30% or more, more preferably 40% or more, still more preferably 50% or more, as measured by differential scanning calorimetry (DSC). The upper limit of the crystallinity is, for example, 70%. Within such a range, a polyester film having excellent heat resistance and mechanical properties and suitable as a polarizing element protective film can be obtained.
 上記ポリエステルフィルムの厚みは、好ましくは80μm以下であり、より好ましくは10μm~80μmであり、さらに好ましくは20μm~50μmである。 The thickness of the polyester film is preferably 80 μm or less, more preferably 10 μm to 80 μm, and further preferably 20 μm to 50 μm.
 上記ポリエステルフィルムの全光線透過率は、好ましくは80%以上であり、より好ましくは85%以上であり、さらに好ましくは90%以上であり、特に好ましくは95%以上である。上記ポリエステルフィルムのヘイズは、好ましくは1.0%以下であり、より好ましくは0.7%以下であり、さらに好ましくは0.5%以下であり、特に好ましくは0.3%以下である。 The total light transmittance of the polyester film is preferably 80% or more, more preferably 85% or more, further preferably 90% or more, and particularly preferably 95% or more. The haze of the polyester film is preferably 1.0% or less, more preferably 0.7% or less, still more preferably 0.5% or less, and particularly preferably 0.3% or less.
 本発明のポリエステルフィルムは、ポリエステル系樹脂から形成される。ポリエステル系樹脂は、カルボン酸成分とポリオール成分との縮合重合により得ることができる。 The polyester film of the present invention is formed of a polyester resin. The polyester resin can be obtained by condensation polymerization of a carboxylic acid component and a polyol component.
 カルボン酸成分としては、芳香族ジカルボン酸、脂肪族ジカルボン酸、脂環族ジカルボン酸が挙げられる。芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ベンジルマロン酸、1,4-ナフタール酸、ジフェニン酸、4,4′-オキシ安息香酸、2,5-ナフタレンジカルボン酸が挙げられる。脂肪族ジカルボン酸としては、例えば、マロン酸、ジメチルマロン酸、コハク酸、グルタール酸、アジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタール酸、アゼライン酸、ゼバシン酸、フマール酸、マレイン酸、イタコン酸、チオジプロピオン酸、ジグリコール酸が挙げられる。脂環族ジカルボン酸としては、例えば、1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2,5-ノルボルナンジカルボン酸、アダマンタンジカルボン酸が挙げられる。カルボン酸成分は、エステル、塩化物、酸無水物のような誘導体であってもよく、例えば、1,4-シクロヘキサンジカルボン酸ジメチル、2,6-ナフタレンジカルボン酸ジメチル、イソフタル酸ジメチル、テレフタル酸ジメチルおよびテレフタル酸ジフェニルを含む。カルボン酸成分は、単独で用いてもよく2種以上を併用してもよい。 Examples of the carboxylic acid component include aromatic dicarboxylic acid, aliphatic dicarboxylic acid, and alicyclic dicarboxylic acid. Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, benzylmalonic acid, 1,4-naphthalic acid, diphenic acid, 4,4'-oxybenzoic acid, and 2,5-naphthalenedicarboxylic acid. Examples of the aliphatic dicarboxylic acid include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, azelaic acid, zebacic acid and fumaric acid. Examples thereof include maleic acid, itaconic acid, thiodipropionic acid and diglycolic acid. Examples of the alicyclic dicarboxylic acid include 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and 2,5-norbornandicarboxylic acid. Examples include acids and adamantandicarboxylic acids. The carboxylic acid component may be a derivative such as an ester, chloride or acid anhydride, for example, dimethyl 1,4-cyclohexanedicarboxylic acid, dimethyl 2,6-naphthalenedicarboxylic acid, dimethyl isophthalate, dimethyl terephthalate. And contains diphenyl terephthalate. The carboxylic acid component may be used alone or in combination of two or more.
 ポリオール成分としては、代表的には二価アルコールが挙げられる。二価アルコールとしては、脂肪族ジオール、脂環族ジオール、芳香族ジオールが挙げられる。脂肪族ジオールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール、2,4-ジメチル-2-エチルヘキサン-1,3-ジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2-エチル-2-ブチル-1,3-プロパンジオール、2-エチル-2-イソブチル-1,3-プロパンジオール、1,3-ブタジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、2,2,4-トリメチル-1,6-ヘキサンジオールが挙げられる。脂環族ジオールとしては、例えば、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、スピログリコール、トリシクロデカンジメタノール、アダマンタンジオール、2,2,4,4-テトラメチル-1,3-シクロブタンジオールが挙げられる。芳香族ジオールとしては、例えば、4,4′-チオジフェノール、4,4′-メチレンジフェノール、4,4′-(2-ノルボルニリデン)ジフェノール、4,4′-ジヒドロキシビフェノール、o-,m-およびp-ジヒドロキシベンゼン、4,4′-イソプロピリデンフェノール、4,4′-イソプロピリデンビス(2,6-シクロロフェノール)2,5-ナフタレンジオールおよびp-キシレンジオールが挙げられる。ポリオール成分は、単独で用いてもよく2種以上を併用してもよい。 Typical examples of the polyol component are dihydric alcohols. Examples of the dihydric alcohol include aliphatic diols, alicyclic diols, and aromatic diols. Examples of the aliphatic diol include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,3-propanediol, 2,4-dimethyl-2-ethylhexane-1,3-diol, and 2, 2-Dimethyl-1,3-propanediol (neopentyl glycol), 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-2-isobutyl-1,3-propanediol, 1,3- Examples include butadiol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, and 2,2,4-trimethyl-1,6-hexanediol. Be done. Examples of the alicyclic diol include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, spiroglycol, tricyclodecanedimethanol, adamantandiol, 2,2,4. , 4-Tetramethyl-1,3-cyclobutanediol. Examples of the aromatic diol include 4,4'-thiodiphenol, 4,4'-methylenediphenol, 4,4'-(2-norbornenilidene) diphenol, 4,4'-dihydroxybiphenol, o-, Included are m- and p-dihydroxybenzene, 4,4'-isopropyridenephenol, 4,4'-isopropyridenebis (2,6-cyclochlorophenol) 2,5-naphthalenediol and p-xylenediol. The polyol component may be used alone or in combination of two or more.
 上記ポリエステル系樹脂としては、好ましくはポリエチレンテレフタレートおよび/または変性ポリエチレンテレフタレートが用いられ、より好ましくはポリエチレンテレフタレートが用いられる。これらの樹脂を用いれば、機械的特性に優れ、寸法変化の制御が容易なポリエステルフィルムを得ることができる。ポリエチレンテレフタレートと変性ポリエチレンテレフタレートとはブレンドして用いてもよい。 As the polyester resin, polyethylene terephthalate and / or modified polyethylene terephthalate is preferably used, and polyethylene terephthalate is more preferably used. By using these resins, it is possible to obtain a polyester film having excellent mechanical properties and easy control of dimensional change. Polyethylene terephthalate and modified polyethylene terephthalate may be blended and used.
 変性ポリエチレンテレフタレートとしては、例えば、ジエチレングリコール、1,4-ブタンジオール、1,3-プロパンジオールまたはイソフタル酸由来の構成単位を含む変性ポリエチレンテレフタレートが挙げられる。ポリオール成分におけるジエチレングリコールの割合は、好ましくは0モル%を超えて10モル%以下であり、より好ましくは0モル%を超えて3モル%以下である。ポリオール成分における1,4-ブタンジオールの割合は、好ましくは0モル%を超えて10モル%以下であり、より好ましくは0モル%を超えて3モル%以下である。ポリオール成分における1,3-プロパンジオールの割合は、好ましくは0モル%を超えて10モル%以下であり、より好ましくは0モル%を超えて3モル%以下である。カルボン酸成分におけるイソフタル酸の割合は、好ましくは0モル%を超えて10モル%以下であり、より好ましくは0モル%を超えて8モル%以下である。このような範囲であれば、良好な結晶性を有するポリエステルフィルムを得ることができる。なお、上記に記載のモル%は、ポリマー全繰り返し単位の合計に対するモル%である。 Examples of the modified polyethylene terephthalate include modified polyethylene terephthalate containing a structural unit derived from diethylene glycol, 1,4-butanediol, 1,3-propanediol or isophthalic acid. The proportion of diethylene glycol in the polyol component is preferably more than 0 mol% and 10 mol% or less, more preferably more than 0 mol% and 3 mol% or less. The proportion of 1,4-butanediol in the polyol component is preferably more than 0 mol% and 10 mol% or less, more preferably more than 0 mol% and 3 mol% or less. The proportion of 1,3-propanediol in the polyol component is preferably more than 0 mol% and 10 mol% or less, more preferably more than 0 mol% and 3 mol% or less. The proportion of isophthalic acid in the carboxylic acid component is preferably more than 0 mol% and 10 mol% or less, more preferably more than 0 mol% and 8 mol% or less. Within such a range, a polyester film having good crystallinity can be obtained. The mol% described above is mol% with respect to the total of all polymer repeating units.
 ポリエステル系樹脂の重量平均分子量は、好ましくは10000~100000であり、より好ましくは20000~75000である。このような重量平均分子量であれば、成形時の取り扱いが容易であり、かつ、優れた機械的強度を有するフィルムが得られ得る。重量平均分子量は、GPC(溶媒:THF)により測定され得る。 The weight average molecular weight of the polyester resin is preferably 10,000 to 100,000, more preferably 20,000 to 75,000. With such a weight average molecular weight, a film that is easy to handle during molding and has excellent mechanical strength can be obtained. The weight average molecular weight can be measured by GPC (solvent: THF).
 1つの実施形態においては、易接着層付ポリエステルフィルムが提供される。易接着層は、例えば、水系ポリウレタンとオキサゾリン系架橋剤とを含む。易接着層の詳細は、例えば特開2010-55062号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 In one embodiment, a polyester film with an easy-adhesion layer is provided. The easy-adhesion layer contains, for example, a water-based polyurethane and an oxazoline-based cross-linking agent. Details of the easy-adhesion layer are described in, for example, Japanese Patent Application Laid-Open No. 2010-55062. The entire description of the publication is incorporated herein by reference.
 1つの実施形態においては、上記易接着層は、任意の適切な微粒子を含む。微粒子を含む易接着層を形成することにより、巻き取り時に生じるブロッキングを効果的に抑制することができる。上記微粒子は、無機系微粒子であってもよく、有機系微粒子であってもよい。無機系微粒子としては、例えば、シリカ、チタニア、アルミナ、ジルコニア等の無機酸化物、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、燐酸カルシウム等が挙げられる。有機系微粒子としては、例えば、シリコーン系樹脂、フッ素系樹脂、(メタ)アクリル系樹脂等が挙げられる。これらの中でも、好ましくは、シリカである。 In one embodiment, the easy-adhesion layer contains any suitable fine particles. By forming the easy-adhesion layer containing fine particles, blocking that occurs during winding can be effectively suppressed. The fine particles may be inorganic fine particles or organic fine particles. Examples of the inorganic fine particles include inorganic oxides such as silica, titania, alumina, and zirconia, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, calcium phosphate, and the like. Can be mentioned. Examples of the organic fine particles include silicone-based resin, fluorine-based resin, (meth) acrylic-based resin, and the like. Among these, silica is preferable.
 上記微粒子の粒子径(数平均一次粒子径)は、好ましくは10nm~200nm、さらに好ましくは20nm~60nmである。 The particle size (number average primary particle size) of the fine particles is preferably 10 nm to 200 nm, more preferably 20 nm to 60 nm.
 上記易接着層の厚みは、好ましくは2μm以下であり、より好ましくは1μm以下であり、さらに好ましくは0.35μm以下である。このような範囲であれば、画像表示装置に適用した際に他部材の光学特性を阻害し難い易接着層付ポリエステルフィルムを得ることができる。 The thickness of the easy-adhesion layer is preferably 2 μm or less, more preferably 1 μm or less, and further preferably 0.35 μm or less. Within such a range, it is possible to obtain a polyester film with an easily adhesive layer that does not easily impair the optical characteristics of other members when applied to an image display device.
 1つの実施形態においては、上記易接着層の屈折率は、好ましくは1.55以下であり、より好ましくは1.5以下である。このような範囲であれば、画像表示装置に適用した際に他部材の光学特性を阻害し難い易接着層付ポリエステルフィルムを得ることができる。 In one embodiment, the refractive index of the easy-adhesion layer is preferably 1.55 or less, more preferably 1.5 or less. Within such a range, it is possible to obtain a polyester film with an easily adhesive layer that does not easily impair the optical characteristics of other members when applied to an image display device.
 1つの実施形態においては、上記ポリエステルフィルムは、その少なくとも一方の側に、アンチブロック層を備え得る。アンチブロック層の構成は、上記で説明した易接着層の構成が採用され得る。好ましくは、アンチブロック層は、上記微粒子を含む。 In one embodiment, the polyester film may include an anti-block layer on at least one side thereof. As the configuration of the anti-block layer, the configuration of the easy-adhesion layer described above may be adopted. Preferably, the anti-block layer contains the fine particles.
 1つの実施形態においては、上記ポリエステルフィルムは、少なくとも一方の面が、表面処理面であってもよい。表面処理としては、任意の適切な処理が採用され得る。例えば、コロナ処理、プラズマ処理等が挙げられる。 In one embodiment, at least one surface of the polyester film may be a surface-treated surface. As the surface treatment, any appropriate treatment may be adopted. For example, corona treatment, plasma treatment and the like can be mentioned.
(ポリエステルフィルムの製造方法)
 上記ポリエステルフィルムは、上記ポリエステル系樹脂を含むフィルム形成材料(樹脂組成物)をフィルム状に成形する成形工程、および、該成形されたフィルムを延伸する延伸工程を経て得られ得る。好ましくは、延伸工程は、フィルム延伸の前に行われるフィルムの予熱処理、およびフィルム延伸の後に行われる熱処理を含む。また、フィルム延伸の後に、フィルムをテンターで保持したまま、フィルムを幅方向に収縮させる緩和処理を行ってもよい。1つの実施形態においては、ポリエステルフィルムは長尺状(または長尺体から切り出した形状)で提供される。
(Manufacturing method of polyester film)
The polyester film can be obtained through a molding step of molding a film-forming material (resin composition) containing the polyester-based resin into a film, and a stretching step of stretching the molded film. Preferably, the stretching step comprises a preheat treatment of the film performed prior to film stretching and a heat treatment performed after film stretching. Further, after the film is stretched, a relaxation treatment may be performed in which the film is shrunk in the width direction while the film is held by the tenter. In one embodiment, the polyester film is provided in a long shape (or a shape cut out from a long body).
 フィルム形成材料は、上記ポリエステル系樹脂に加えて、添加剤を含んでいてもよく、溶媒を含んでいてもよい。添加剤としては、目的に応じて任意の適切な添加剤が採用され得る。添加剤の具体例としては、反応性希釈剤、可塑剤、界面活性剤、充填剤、酸化防止剤、老化防止剤、紫外線吸収剤、レベリング剤、チクソトロピー剤、帯電防止剤、導電材、難燃剤が挙げられる。添加剤の数、種類、組み合わせ、添加量等は目的に応じて適切に設定され得る。 The film-forming material may contain an additive or a solvent in addition to the polyester-based resin. As the additive, any suitable additive may be adopted depending on the purpose. Specific examples of additives include reactive diluents, plasticizers, surfactants, fillers, antioxidants, antioxidants, UV absorbers, leveling agents, thixotropic agents, antistatic agents, conductive materials, and flame retardants. Can be mentioned. The number, type, combination, addition amount and the like of the additives can be appropriately set according to the purpose.
 フィルム形成材料からフィルムを形成する方法としては、任意の適切な成形加工法が採用され得る。具体例としては、圧縮成形法、トランスファー成形法、射出成形法、押出成形法、ブロー成形法、粉末成形法、FRP成形法、キャスト塗工法(例えば、流延法)、カレンダー成形法、熱プレス法等が挙げられる。押出成形法またはキャスト塗工法が好ましい。得られるフィルムの平滑性を高め、良好な光学的均一性を得ることができるからである。 As a method for forming a film from a film forming material, any appropriate molding processing method can be adopted. Specific examples include a compression molding method, a transfer molding method, an injection molding method, an extrusion molding method, a blow molding method, a powder molding method, an FRP molding method, a cast coating method (for example, a casting method), a calendar molding method, and a hot press. The law etc. can be mentioned. Extrusion molding method or cast coating method is preferable. This is because the smoothness of the obtained film can be enhanced and good optical uniformity can be obtained.
 フィルムの延伸方法は、一軸延伸であってもよく、二軸延伸であってもよい。 The film stretching method may be uniaxial stretching or biaxial stretching.
 1つの実施形態においては、上記フィルムの延伸方法として、一軸延伸が採用され、上記フィルムの長さ方向(MD)に延伸される。 In one embodiment, uniaxial stretching is adopted as the stretching method of the film, and the film is stretched in the length direction (MD) of the film.
 二軸延伸は、逐次二軸延伸であってもよく、同時二軸延伸であってもよい。逐次二軸延伸または同時二軸延伸は、代表的にはテンター延伸機を用いて行われる。したがって、フィルムの延伸方向は、代表的にはフィルムの長さ方向(MD)および幅方向(TD)である。 The biaxial stretching may be sequential biaxial stretching or simultaneous biaxial stretching. Sequential biaxial stretching or simultaneous biaxial stretching is typically performed using a tenter stretching machine. Therefore, the stretching direction of the film is typically the length direction (MD) and the width direction (TD) of the film.
 1つの実施形態においては、上記フィルムの延伸方法として、逐次二軸延伸が採用される。TD延伸の後、MD延伸を行って、上記ポリエステルフィルムを得ることが好ましい。このようにすれば、TD延伸の際に生じるボーイングの影響を緩和して、ポリエステルフィルムにおける第1の方向(MD)と、遅相軸とのなす角度を適切な値とすることが可能となる。 In one embodiment, sequential biaxial stretching is adopted as the stretching method of the film. It is preferable to perform MD stretching after TD stretching to obtain the polyester film. By doing so, it is possible to mitigate the influence of Boeing that occurs during TD stretching, and to make the angle between the first direction (MD) and the slow axis of the polyester film an appropriate value. ..
 延伸温度は、フィルムのガラス転移温度(Tg)に対し、好ましくはTg+5℃~Tg+50℃であり、より好ましくはTg+5℃~Tg+30℃であり、さらに好ましくはTg+10℃~Tg+20℃である。このような温度で延伸することにより、遅相軸の方向および線膨張係数がバランスよく制御されたポリエステルフィルムを得ることができる。また、透明性に優れるポリエステルフィルムを得ることができる。 The stretching temperature is preferably Tg + 5 ° C. to Tg + 50 ° C., more preferably Tg + 5 ° C. to Tg + 30 ° C., and even more preferably Tg + 10 ° C. to Tg + 20 ° C. with respect to the glass transition temperature (Tg) of the film. By stretching at such a temperature, a polyester film in which the direction of the slow phase axis and the linear expansion coefficient are controlled in a well-balanced manner can be obtained. In addition, a polyester film having excellent transparency can be obtained.
 MDにおける延伸倍率は、好ましくは1.1倍~8倍であり、より好ましくは2.5倍~6.5倍であり、さらに好ましくは3倍~6倍であり、特に好ましくは3倍~5倍である。このような範囲であれば、寸法変化率を所望の範囲に収めつつ、加湿耐久性付与効果に優れるポリエステルフィルムを得ることができる。 The draw ratio in MD is preferably 1.1 times to 8 times, more preferably 2.5 times to 6.5 times, still more preferably 3 times to 6 times, and particularly preferably 3 times to 3 times. It is 5 times. Within such a range, it is possible to obtain a polyester film having an excellent effect of imparting humidification durability while keeping the dimensional change rate within a desired range.
 TDにおける延伸倍率は、好ましくは1.1倍~11倍であり、より好ましくは2.5倍~6.5倍であり、さらに好ましくは3倍~6倍であり、特に好ましくは3倍~5倍である。このような範囲であれば、寸法変化率を所望の範囲に収めつつ、加湿耐久性付与効果に優れるポリエステルフィルムを得ることができる。 The draw ratio in TD is preferably 1.1 times to 11 times, more preferably 2.5 times to 6.5 times, still more preferably 3 times to 6 times, and particularly preferably 3 times to 3 times. It is 5 times. Within such a range, it is possible to obtain a polyester film having an excellent effect of imparting humidification durability while keeping the dimensional change rate within a desired range.
 TDにおける延伸倍率とMDにおける延伸倍率との比(MD延伸倍率/TD延伸倍率)は、好ましくは0.1より大きく7以下であり、より好ましくは0.2~5であり、さらに好ましくは0.3~4であり、さらに好ましくは0.4~3であり、特に好ましくは0.5~2であり、最も好ましくは0.6~1.7である。このような範囲であれば、第1の方向(MD)の寸法変化率と、第2の方向(TD)の寸法変化率との関係を所望の範囲に収め、加湿耐久性付与効果に優れるポリエステルフィルムを得ることができる。 The ratio of the stretching ratio in TD to the stretching ratio in MD (MD stretching ratio / TD stretching ratio) is preferably more than 0.1 and 7 or less, more preferably 0.2 to 5, and even more preferably 0. It is .3 to 4, more preferably 0.4 to 3, particularly preferably 0.5 to 2, and most preferably 0.6 to 1.7. Within such a range, the relationship between the dimensional change rate in the first direction (MD) and the dimensional change rate in the second direction (TD) is kept within a desired range, and the polyester has an excellent effect of imparting humidification durability. You can get the film.
 MDにおける延伸速度は、好ましくは5%/sec~100%/secであり、より好ましくは8%/sec~80%/secであり、さらに好ましくは8%/sec~60%/secである。このような範囲であれば、寸法変化率を所望の範囲に収めつつ、加湿耐久性付与効果に優れるポリエステルフィルムを得ることができる。 The stretching speed in MD is preferably 5% / sec to 100% / sec, more preferably 8% / sec to 80% / sec, and further preferably 8% / sec to 60% / sec. Within such a range, it is possible to obtain a polyester film having an excellent effect of imparting humidification durability while keeping the dimensional change rate within a desired range.
 TDにおける延伸速度は、好ましくは5%/sec~100%/secであり、より好ましくは8%/sec~80%/secであり、さらに好ましくは8%/sec~60%/secである。このような範囲であれば、寸法変化率を所望の範囲に収めつつ、加湿耐久性付与効果に優れるポリエステルフィルムを得ることができる。 The stretching speed in TD is preferably 5% / sec to 100% / sec, more preferably 8% / sec to 80% / sec, and further preferably 8% / sec to 60% / sec. Within such a range, it is possible to obtain a polyester film having an excellent effect of imparting humidification durability while keeping the dimensional change rate within a desired range.
 予熱処理の温度は、好ましくは80℃~150℃であり、より好ましくは90℃~130℃である。また、予熱処理の時間は、好ましくは10秒~100秒であり、より好ましくは15秒~80秒である。このような範囲であれば、寸法変化率を所望の範囲に収めつつ、加湿耐久性付与効果に優れるポリエステルフィルムを得ることができる。 The temperature of the preheat treatment is preferably 80 ° C. to 150 ° C., more preferably 90 ° C. to 130 ° C. The preheat treatment time is preferably 10 seconds to 100 seconds, more preferably 15 seconds to 80 seconds. Within such a range, it is possible to obtain a polyester film having an excellent effect of imparting humidification durability while keeping the dimensional change rate within a desired range.
 熱処理の温度は、好ましくは100℃~250℃であり、より好ましくは120℃~200℃であり、さらに好ましくは130℃~180℃である。このような範囲であれば、寸法変化率を所望の範囲に収めつつ、加湿耐久性付与効果に優れるポリエステルフィルムを得ることができる。熱処理の時間は、好ましくは2秒~50秒であり、より好ましくは5秒~40秒であり、さらに好ましくは8秒~30秒である。このような範囲であれば、透明性に優れ、かつ、良好な結晶性を有し耐久性に優れるポリエステルフィルムを得ることができる。 The temperature of the heat treatment is preferably 100 ° C. to 250 ° C., more preferably 120 ° C. to 200 ° C., and even more preferably 130 ° C. to 180 ° C. Within such a range, it is possible to obtain a polyester film having an excellent effect of imparting humidification durability while keeping the dimensional change rate within a desired range. The heat treatment time is preferably 2 seconds to 50 seconds, more preferably 5 seconds to 40 seconds, still more preferably 8 seconds to 30 seconds. Within such a range, a polyester film having excellent transparency, good crystallinity, and excellent durability can be obtained.
 1つの実施形態においては、フィルム延伸の後(熱処理を行う場合は熱処理の後)、緩和処理が行われる。緩和処理は、フィルムをテンターで保持したまま、フィルムを幅方向に収縮させる処理である。緩和処理時の温度は、好ましくは80℃~210℃であり、より好ましくは90℃~200℃である。1つの実施形態においては、緩和処理時の温度は、好ましくは80℃~150℃であり、より好ましくは90℃~140℃である。別の実施形態においては、緩和処理時の温度は、好ましくは150℃~210℃であり、より好ましくは160℃~200℃である。このような温度範囲であれば、ポリエステルフィルムを構成する樹脂を結晶化させることができる。緩和処理における収縮率は、好ましくは0%より大きく5%以下であり、さらに好ましくは0.5%~3%である。 In one embodiment, the relaxation treatment is performed after the film is stretched (after the heat treatment when the heat treatment is performed). The relaxation treatment is a treatment in which the film is shrunk in the width direction while being held by the tenter. The temperature during the relaxation treatment is preferably 80 ° C. to 210 ° C., more preferably 90 ° C. to 200 ° C. In one embodiment, the temperature during the relaxation treatment is preferably 80 ° C. to 150 ° C., more preferably 90 ° C. to 140 ° C. In another embodiment, the temperature during the relaxation treatment is preferably 150 ° C. to 210 ° C., more preferably 160 ° C. to 200 ° C. Within such a temperature range, the resin constituting the polyester film can be crystallized. The shrinkage rate in the relaxation treatment is preferably more than 0% and 5% or less, and more preferably 0.5% to 3%.
B.偏光板
 図1は、本発明の1つの実施形態による偏光板の概略断面図である。偏光板100は、偏光子10と、偏光子10の一方の側に配置されたポリエステルフィルム20とを備える。ポリエステルフィルム20としては、上記A項で説明した本発明のポリエステルフィルムが用いられる。偏光子の他方の側には任意の適切な別の偏光子保護フィルムが配置されてもよく、偏光子保護フィルムは配置されなくてもよい。1つの実施形態においては、偏光子10とポリエステルフィルム20(または別の偏光子保護フィルム)は、接着剤層30を介して積層される。ポリエステルフィルム20が表面処理面(例えば、コロナ処理面、プラズマ処理面)を有する場合、ポリエステルフィルム20の偏光子10側の面が、表面処理面であることが好ましい。
B. Polarizing Plate FIG. 1 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention. The polarizing plate 100 includes a polarizing element 10 and a polyester film 20 arranged on one side of the polarizing element 10. As the polyester film 20, the polyester film of the present invention described in Section A above is used. Any suitable alternative polarizing element protective film may be placed on the other side of the polarizing element, and the polarizing element protective film may not be placed. In one embodiment, the polarizing element 10 and the polyester film 20 (or another polarizing element protective film) are laminated via an adhesive layer 30. When the polyester film 20 has a surface-treated surface (for example, a corona-treated surface, a plasma-treated surface), it is preferable that the surface of the polyester film 20 on the polarizing element 10 side is the surface-treated surface.
 1つの実施形態においては、上記偏光板は、上記ポリエステルフィルムが配置された側が視認側となるように画像表示装置に適用され得る。また、上記偏光板を液晶表示装置に適用する場合、ポリエステルフィルムを備える偏光板は、液晶セルの視認側に配置されてもよく、背面側に配置されてもよい。 In one embodiment, the polarizing plate can be applied to an image display device so that the side on which the polyester film is arranged is the visual recognition side. When the polarizing plate is applied to a liquid crystal display device, the polarizing plate provided with the polyester film may be arranged on the visual side of the liquid crystal cell or on the back side.
 偏光子としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。 As the polarizing element, any appropriate polarizing element can be adopted. For example, the resin film forming the polarizing element may be a single-layer resin film or a laminated body having two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of the polarizing element composed of a single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer-based partially saponified film. Examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine and a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride. Preferably, since the PVA-based film is excellent in optical properties, a polarizing element obtained by dyeing a PVA-based film with iodine and uniaxially stretching it is used.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution. The draw ratio of the uniaxial stretching is preferably 3 to 7 times. The stretching may be performed after the dyeing treatment or may be performed while dyeing. Further, it may be dyed after being stretched. If necessary, the PVA-based film is subjected to a swelling treatment, a crosslinking treatment, a cleaning treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt and blocking inhibitor on the surface of the PVA-based film, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 Specific examples of the polarizing element obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin. Examples thereof include a polarizing element obtained by using a laminate with a PVA-based resin layer coated and formed on a base material. The polarizing element obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it. It is produced by forming a PVA-based resin layer on the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; and stretching and dyeing the laminate to make the PVA-based resin layer a stator. obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further comprise, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution. The obtained resin base material / polarizing element laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizing element), and the resin base material is peeled off from the resin base material / polarizing element laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface and used. Details of the method for producing such a polarizing element are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire description of the publication is incorporated herein by reference.
 偏光子の厚みは、例えば1μm~80μmである。1つの実施形態においては、偏光子の厚みは、好ましくは20μm以下であり、さらに好ましくは3μm~15μmである。本発明のポリエステルフィルムは偏光子保護効果が大きく、例えば、偏光子のクラックを効果的に防止することができる。そのため、高温、温度変化の大きい等の過酷な環境下においても、薄い偏光子を用いることが可能となる。 The thickness of the polarizing element is, for example, 1 μm to 80 μm. In one embodiment, the thickness of the polarizing element is preferably 20 μm or less, more preferably 3 μm to 15 μm. The polyester film of the present invention has a large polarizing element protection effect, and can effectively prevent cracks in the polarizing element, for example. Therefore, it is possible to use a thin polarizing element even in a harsh environment such as a high temperature and a large temperature change.
 偏光子と偏光子保護フィルム(ポリエステルフィルム)は、任意の適切な接着剤層を介して積層され得る。好ましくは、接着剤層は、ポリビニルアルコール系樹脂を含む接着剤組成物から形成される。 The polarizing element and the polarizing element protective film (polyester film) can be laminated via any suitable adhesive layer. Preferably, the adhesive layer is formed from an adhesive composition containing a polyvinyl alcohol-based resin.
 1つの実施形態においては、偏光子の吸収軸方向と、ポリエステルフィルムの第1の方向(代表的にはMD)とは略平行である。偏光子の吸収軸とポリエステルフィルムの第1の方向とが略平行となるようにして、偏光板を構成すれば、当該ポリエステルフィルムと偏光子とが同調して好ましく形状変化することができる。その結果、偏光子のクラックが防止される。ポリエステルフィルムの遅相軸角度は、偏光子の吸収軸方向となす角度が一致するほど好ましく、2つの軸のなす角度が好ましくは0°±10°であり、より好ましくは0°±7°であり、さらに好ましくは0°±5°である。このような範囲であれば、画像表示装置に適用した際の虹ムラの発生が少ない、ポリエステルフィルムを得ることができる。なお、遅相軸角度はロール流れ方向を0°としたときの角度である。 In one embodiment, the absorption axis direction of the polarizing element and the first direction (typically MD) of the polyester film are substantially parallel. If the polarizing plate is configured so that the absorption axis of the polarizing element and the first direction of the polyester film are substantially parallel to each other, the polyester film and the polarizing element can be synchronized and preferably change in shape. As a result, cracking of the stator is prevented. The slow axis angle of the polyester film is preferably such that the angle formed by the absorption axis direction of the polarizing element is the same, and the angle formed by the two axes is preferably 0 ° ± 10 °, more preferably 0 ° ± 7 °. Yes, more preferably 0 ° ± 5 °. Within such a range, a polyester film with less occurrence of rainbow unevenness when applied to an image display device can be obtained. The slow phase axis angle is an angle when the roll flow direction is 0 °.
 図2は、本発明の別の実施形態による偏光板の概略断面図である。偏光板200は、ポリエステルフィルム20の偏光子10側に配置された易接着層40をさらに備える。1つの実施形態においては、易接着層40が偏光子10の側となるようにして、易接着層付ポリエステルフィルムAが、偏光子10上に配置される。易接着層としては、上記A項に記載の易接着層が採用され得る。ポリエステルフィルム20が表面処理面(例えば、コロナ処理面、プラズマ処理面)を有する場合、ポリエステルフィルム20の偏光子10側(易接着層40側)の面が、表面処理面であることが好ましい。 FIG. 2 is a schematic cross-sectional view of a polarizing plate according to another embodiment of the present invention. The polarizing plate 200 further includes an easy-adhesion layer 40 arranged on the polarizing element 10 side of the polyester film 20. In one embodiment, the polyester film A with an easy-adhesion layer is arranged on the polarizing element 10 so that the easy-adhesion layer 40 is on the side of the polarizing element 10. As the easy-adhesion layer, the easy-adhesion layer described in the above item A can be adopted. When the polyester film 20 has a surface-treated surface (for example, a corona-treated surface and a plasma-treated surface), it is preferable that the surface of the polyester film 20 on the decoder 10 side (easy-adhesion layer 40 side) is the surface-treated surface.
C.画像表示装置
 上記偏光板は、画像表示装置に適用され得る。画像表示装置の代表例としては、液晶表示装置、有機エレクトロルミネセンス(EL)表示装置が挙げられる。画像表示装置は業界で周知の構成が採用されるので、詳細な説明は省略する。
C. Image display device The above polarizing plate can be applied to an image display device. Typical examples of the image display device include a liquid crystal display device and an organic electroluminescence (EL) display device. Since the image display device adopts a configuration well known in the industry, detailed description thereof will be omitted.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。実施例における各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例における「部」および「%」は重量基準である。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method of each characteristic in the examples is as follows. Unless otherwise specified, "parts" and "%" in the examples are based on weight.
(1)寸法変化率
 実施例および比較例で用いたポリエステルフィルムについて、MD(第1の方向)を長手方向とする短冊状サンプルおよびTD(第2の方向)を長手方向とする短冊状サンプルを準備した。熱機械分析装置(TMA)(NETZSCH社製、商品名「TMA4000SE」)を用いて、当該サンプルの寸法変化率を測定した。
 本評価ではフィルムは短手を4mm幅で切削し、チャック間を約20mmでサンプルを装着した。初期条件として25℃10%RHで安定させてから、50分間で85℃85%RHになるように温度及び湿度を等速で上昇させた。85℃85%RHとなった時点での寸法変化をフィルムの寸法変化率とした。なお、初期を基準として、数値が正の方向へ変化する場合が膨脹、負の方向へ変化する場合が収縮を表している。
(1) Dimensional change rate For the polyester films used in the examples and comparative examples, strip-shaped samples having MD (first direction) in the longitudinal direction and strip-shaped samples having TD (second direction) in the longitudinal direction were prepared. Got ready. The dimensional change rate of the sample was measured using a thermomechanical analyzer (TMA) (manufactured by NETZSCH, trade name "TMA4000SE").
In this evaluation, the short side of the film was cut with a width of 4 mm, and the sample was mounted with a gap of about 20 mm between the chucks. After stabilizing at 25 ° C. and 10% RH as an initial condition, the temperature and humidity were raised at a constant velocity so as to reach 85 ° C. and 85% RH in 50 minutes. The dimensional change at the time when the temperature reached 85 ° C. and 85% RH was defined as the dimensional change rate of the film. It should be noted that the case where the numerical value changes in the positive direction indicates expansion and the case where the numerical value changes in the negative direction indicates contraction with respect to the initial stage.
(2)加湿耐久性
 実施例および比較例で得られた偏光板の偏光子のポリエステルフィルムとは反対側の面と、無アルカリガラスとを、粘着剤を介して貼り合わせて評価用サンプルを得た。紫外可視近赤外分光光度計(日本分光社製、商品名「V7100」、VAP-7070自動偏光フィルム測定装置付き)を用いて、当該評価用サンプルの偏光度(初期偏光度)を測定した。その後、85℃85%RHの恒温恒湿装置に1000時間投入した。次いで、評価用サンプルを常温に戻した後、上記同様に、評価用サンプルの偏光度(加湿後偏光度)を測定した。初期偏光度に対する加湿後偏光度の変化量から、下記の基準で、加湿耐久性を評価した。
 ◎ 初期偏光度に対する加湿試験後の偏光度の変化量が1%以下
 〇 初期偏光度に対する加湿試験後の偏光度の変化量が10%未満
 × 初期偏光度に対する加湿試験後の偏光度の変化量が10%以上
(2) Humidification durability The surface of the polarizing plate obtained in Examples and Comparative Examples on the opposite side of the polyester film and the non-alkali glass are bonded to each other via an adhesive to obtain an evaluation sample. rice field. The degree of polarization (initial degree of polarization) of the evaluation sample was measured using an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation, trade name "V7100", with VAP-7070 automatic polarizing film measuring device). Then, it was put into a constant temperature and humidity constant device of 85 ° C. and 85% RH for 1000 hours. Then, after returning the evaluation sample to room temperature, the degree of polarization (degree of polarization after humidification) of the evaluation sample was measured in the same manner as above. Humidification durability was evaluated according to the following criteria from the amount of change in the degree of polarization after humidification with respect to the degree of initial polarization.
◎ The amount of change in the degree of polarization after the humidification test with respect to the initial degree of polarization is 1% or less 〇 The amount of change in the degree of polarization after the humidification test with respect to the initial degree of polarization is less than 10% × The amount of change in the degree of polarization after the humidification test with respect to the initial degree of polarization Is 10% or more
[製造例1]偏光子の作製
 基材として、長尺状で、吸水率0.75%、Tg75℃の非晶質のイソフタル酸共重合ポリエチレンテレフタレート(IPA共重合PET)フィルム(厚み:100μm)を用いた。基材の片面に、コロナ処理を施し、このコロナ処理面に、ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(重合度1200、アセトアセチル変性度4.6%、ケン化度99.0モル%以上、日本合成化学工業社製、商品名「ゴーセファイマーZ200」)を9:1の比で含む水溶液を25℃で塗布および乾燥して、厚み11μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、120℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.0倍に自由端一軸延伸した(空中補助延伸)。
 次いで、積層体を、液温30℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴に、偏光板が所定の透過率となるようにヨウ素濃度、浸漬時間を調整しながら浸漬させた。本実施例では、水100重量部に対して、ヨウ素を0.2重量部配合し、ヨウ化カリウムを1.5重量部配合して得られたヨウ素水溶液に60秒間浸漬させた(染色処理)。
 次いで、液温30℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を3重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(水100重量部に対して、ホウ酸を4重量部配合し、ヨウ化カリウムを5重量部配合して得られた水溶液)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸)。
 その後、積層体を液温30℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させ(洗浄処理)、剥離可能な基材付き偏光子を得た。
[Production Example 1] Preparation of Polarizer As a base material, an amorphous isophthalic acid copolymer polyethylene terephthalate (IPA copolymer PET) film (thickness: 100 μm) having a water absorption rate of 0.75% and a Tg of 75 ° C. Was used. One side of the substrate is corona-treated, and polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetoacetyl-modified PVA (polymerization degree 1200, acetoacetyl modification degree 4.6) are applied to the corona-treated surface. %, Degree of polymerization of 99.0 mol% or more, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer Z200") is applied at a ratio of 9: 1 and dried at 25 ° C. to a thickness of 11 μm. A PVA-based resin layer was formed to prepare a laminated body.
The obtained laminate was uniaxially stretched at the free end in the vertical direction (longitudinal direction) 2.0 times between rolls having different peripheral speeds in an oven at 120 ° C. (aerial auxiliary stretching).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 30 ° C. (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, the polarizing plate was immersed in a dyeing bath having a liquid temperature of 30 ° C. while adjusting the iodine concentration and the immersion time so that the polarizing plate had a predetermined transmittance. In this example, 0.2 parts by weight of iodine was mixed with 100 parts by weight of water, and 1.5 parts by weight of potassium iodide was mixed and immersed in the obtained iodine aqueous solution for 60 seconds (dyeing treatment). ..
Then, it was immersed in a cross-linked bath having a liquid temperature of 30 ° C. (a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, the laminate is immersed in an aqueous solution of boric acid having a liquid temperature of 70 ° C. (an aqueous solution obtained by blending 4 parts by weight of boric acid and 5 parts by weight of potassium iodide with respect to 100 parts by weight of water). However, uniaxial stretching was performed between rolls having different peripheral speeds so that the total stretching ratio was 5.5 times in the longitudinal direction (longitudinal direction) (underwater stretching).
Then, the laminate is immersed in a washing bath at a liquid temperature of 30 ° C. (an aqueous solution obtained by mixing 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment), and has a peelable substrate. Obtained a stator.
[製造例2]ポリエステルフィルムAの製造
 ポリエステル樹脂(ポリエチレンテレフタレート、ベルポリエステルプロダクツ社製、IV値0.75dl/g(フェノール:1,1,2,2,-テトラクロロエタン=6:4混合溶媒 溶液濃度0.4g/dl)を100℃で10時間真空乾燥をした後、単軸押出機(東洋精機社製、スクリュー径25mm、シリンダー設定温度:280℃)、Tダイ(幅500mm、設定温度:280℃)、チルロール(設定温度:50℃)および巻取機を備えたフィルム製膜装置を用いて、厚み200μmの非晶性ポリエステル系樹脂フィルムを作製した。
 得られた非晶性ポリエステル系樹脂フィルムブルックナー社製延伸機KAROIVにて、二軸延伸を行い、ポリエステルフィルムA(厚み:20μm)を得た。延伸倍率は、長さ方向(MD)に3.1倍、幅方向(TD)に3.9倍とした。MD延伸温度は95℃、TD延伸温度は110℃とし、延伸速度はMD、TDともに30%/secとした。また、延伸処理後、寸法を維持したまま、180℃で10秒間熱処理を行い、その後、フィルムをテンターで保持したまま、テンター幅を狭めることにより、幅方向に1%収縮させる緩和処理を行った。
[Production Example 2] Production of polyester film A Polyester resin (polyester terephthalate, manufactured by Bell Polyester Products, Inc., IV value 0.75 dl / g (phenol: 1,1,2,2, -tetrachloroethane = 6: 4 mixed solvent solution) After vacuum drying the concentration 0.4 g / dl) at 100 ° C for 10 hours, a single-screw extruder (manufactured by Toyo Seiki Co., Ltd., screw diameter 25 mm, cylinder set temperature: 280 ° C), T-die (width 500 mm, set temperature: An amorphous polyester resin film having a thickness of 200 μm was prepared using a film forming apparatus equipped with a chill roll (set temperature: 50 ° C.) and a winder.
The obtained amorphous polyester resin film was biaxially stretched by a stretching machine KAROIV manufactured by Bruckner to obtain a polyester film A (thickness: 20 μm). The draw ratio was 3.1 times in the length direction (MD) and 3.9 times in the width direction (TD). The MD stretching temperature was 95 ° C., the TD stretching temperature was 110 ° C., and the stretching speed was 30% / sec for both MD and TD. In addition, after the stretching treatment, heat treatment was performed at 180 ° C. for 10 seconds while maintaining the dimensions, and then a relaxation treatment was performed in which the width of the tenter was narrowed while the film was held by the tenter to shrink the film by 1% in the width direction. ..
[製造例3]ポリエステルフィルムBの製造
 延伸倍率を長さ方向(MD)に3倍、幅方向(TD)に3.7倍としたこと、緩和処理時の収縮率を2%としたこと以外は、製造例2と同様にして、ポリエステルフィルムB(厚み:24μm)を得た。
[Manufacturing Example 3] Production of polyester film B Except that the draw ratio was set to 3 times in the length direction (MD) and 3.7 times in the width direction (TD), and the shrinkage rate during the relaxation treatment was set to 2%. Obtained a polyester film B (thickness: 24 μm) in the same manner as in Production Example 2.
[製造例4]ポリエステルフィルムCの製造
 延伸倍率を長さ方向(MD)に3.2倍、幅方向(TD)に3.8倍としたこと、緩和処理時の収縮率を2%としたこと以外は、製造例2と同様にして、ポリエステルフィルムC(厚み:20μm)を得た。
[Production Example 4] Production of polyester film C The draw ratio was set to 3.2 times in the length direction (MD) and 3.8 times in the width direction (TD), and the shrinkage rate during the relaxation treatment was set to 2%. A polyester film C (thickness: 20 μm) was obtained in the same manner as in Production Example 2.
[製造例5]ポリエステルフィルムDの製造
 延伸倍率を長さ方向(MD)に3.3倍、幅方向(TD)に3.7倍としたこと、緩和処理時の収縮率を2%としたこと以外は、製造例2と同様にして、ポリエステルフィルムD(厚み:20μm)を得た。
[Manufacturing Example 5] Production of Polyester Film D The stretch ratio was 3.3 times in the length direction (MD) and 3.7 times in the width direction (TD), and the shrinkage rate during the relaxation treatment was 2%. A polyester film D (thickness: 20 μm) was obtained in the same manner as in Production Example 2.
[製造例6]ポリエステルフィルムEの製造
 延伸倍率を長さ方向(MD)に3.4倍、幅方向(TD)に3.6倍としたこと、TD延伸温度を115℃としたこと、緩和処理時の収縮率を3%としたこと以外は、製造例2と同様にして、ポリエステルフィルムE(厚み:22μm)を得た。
[Manufacturing Example 6] Production of Polyester Film E The stretching ratio was set to 3.4 times in the length direction (MD) and 3.6 times in the width direction (TD), the TD stretching temperature was set to 115 ° C, and relaxation was achieved. A polyester film E (thickness: 22 μm) was obtained in the same manner as in Production Example 2 except that the shrinkage rate during the treatment was 3%.
[製造例7]ポリエステルフィルムFの製造
 延伸倍率を長さ方向(MD)に3.4倍、幅方向(TD)に3.6倍としたこと、MD延伸温度を90℃とし、TD延伸温度を120℃としたこと、延伸後の熱処理温度を160℃としたこと、緩和処理時の収縮率を3%としたこと以外は、製造例2と同様にして、ポリエステルフィルムF(厚み:22μm)を得た。
[Manufacturing Example 7] Production of Polyester Film F The stretching ratio was 3.4 times in the length direction (MD) and 3.6 times in the width direction (TD), the MD stretching temperature was 90 ° C, and the TD stretching temperature was set. Polyester film F (thickness: 22 μm) in the same manner as in Production Example 2, except that the temperature was 120 ° C., the heat treatment temperature after stretching was 160 ° C., and the shrinkage rate during the relaxation treatment was 3%. Got
[製造例8]ポリエステルフィルムGの製造
 延伸倍率を長さ方向(MD)に3.3倍、幅方向(TD)に3.6倍としたこと、MD延伸温度を90℃とし、TD延伸温度を120℃としたこと、延伸後の熱処理温度を140℃としたこと、緩和処理時の収縮率を3%としたこと以外は、製造例2と同様にして、ポリエステルフィルムG(厚み:23μm)を得た。
[Manufacturing Example 8] Production of Polyester Film G The stretching ratio was 3.3 times in the length direction (MD) and 3.6 times in the width direction (TD), the MD stretching temperature was 90 ° C, and the TD stretching temperature was set. Polyester film G (thickness: 23 μm) in the same manner as in Production Example 2, except that the temperature was 120 ° C., the heat treatment temperature after stretching was 140 ° C., and the shrinkage rate during the relaxation treatment was 3%. Got
[実施例1]
 製造例2で製造したポリエステルフィルムAにコロナ処理を行い、第一工業製薬社製の商品名「スーパーフレックス210R」15.2wt%と、日本触媒社製の商品名「WS-700」2.7wt%を溶解させた水溶液を乾燥後膜厚が300μmになるように塗工し、80℃で1分間乾燥させたて易接着層付ポリエステルフィルムAを得た。
 製造例1で得た基材付き偏光子の偏光子表面に、UV硬化型接着剤を介して、上記易接着層付ポリエステルフィルムを貼り合わせた。具体的には、硬化型接着剤の総厚みが約1.0μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光をポリエステルフィルムA側から照射して接着剤を硬化させた。その後、基材をPVA系樹脂層から剥離し、偏光板(偏光子(透過率42.3%、厚み5μm)/保護フィルム(ポリエステルフィルム))を得た。なお、ポリエステルフィルムAと偏光子とは、ポリエステルフィルムAのMD方向と偏光子の吸収軸方向とが略平行となるようにして積層した。
 得られた偏光板について、上記評価(1)~(2)に供した。結果を表1に示す。
[Example 1]
The polyester film A manufactured in Production Example 2 is corona-treated, and the product name "Superflex 210R" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. is 15.2 wt% and the product name "WS-700" manufactured by Nippon Catalyst Co., Ltd. is 2.7 wt%. After drying, the aqueous solution in which% was dissolved was applied so that the film thickness became 300 μm, and dried at 80 ° C. for 1 minute to obtain a polyester film A with an easy-adhesion layer.
The polyester film with an easy-adhesion layer was attached to the surface of the polarizing element with a substrate obtained in Production Example 1 via a UV curable adhesive. Specifically, the curable adhesive was coated so as to have a total thickness of about 1.0 μm, and bonded using a roll machine. Then, UV light was irradiated from the polyester film A side to cure the adhesive. Then, the substrate was peeled off from the PVA-based resin layer to obtain a polarizing plate (polarizer (transmittance 42.3%, thickness 5 μm) / protective film (polyester film)). The polyester film A and the polarizing element were laminated so that the MD direction of the polyester film A and the absorption axis direction of the polarizing element were substantially parallel to each other.
The obtained polarizing plate was subjected to the above evaluations (1) and (2). The results are shown in Table 1.
[実施例2]
 製造例2で製造したポリエステルフィルムAに代えて、製造例3で製造したポリエステルフィルムBを用いたこと以外は、実施例1と同様にして偏光板を得た。
 得られた偏光板について、上記評価(1)~(2)に供した。結果を表1に示す。
[Example 2]
A polarizing plate was obtained in the same manner as in Example 1 except that the polyester film B produced in Production Example 3 was used instead of the polyester film A produced in Production Example 2.
The obtained polarizing plate was subjected to the above evaluations (1) and (2). The results are shown in Table 1.
[実施例3]
 製造例2で製造したポリエステルフィルムAに代えて、製造例4で製造したポリエステルフィルムCを用いたこと以外は、実施例1と同様にして偏光板を得た。
 得られた偏光板について、上記評価(1)~(2)に供した。結果を表1に示す。
[Example 3]
A polarizing plate was obtained in the same manner as in Example 1 except that the polyester film C produced in Production Example 4 was used instead of the polyester film A produced in Production Example 2.
The obtained polarizing plate was subjected to the above evaluations (1) and (2). The results are shown in Table 1.
[実施例4]
 製造例2で製造したポリエステルフィルムAに代えて、製造例5で製造したポリエステルフィルムDを用いたこと以外は、実施例1と同様にして偏光板を得た。
 得られた偏光板について、上記評価(1)~(2)に供した。結果を表1に示す。
[Example 4]
A polarizing plate was obtained in the same manner as in Example 1 except that the polyester film D produced in Production Example 5 was used instead of the polyester film A produced in Production Example 2.
The obtained polarizing plate was subjected to the above evaluations (1) and (2). The results are shown in Table 1.
[実施例5]
 製造例2で製造したポリエステルフィルムAに代えて、製造例6で製造したポリエステルフィルムEを用いたこと以外は、実施例1と同様にして偏光板を得た。
 得られた偏光板について、上記評価(1)~(2)に供した。結果を表1に示す。
[Example 5]
A polarizing plate was obtained in the same manner as in Example 1 except that the polyester film E produced in Production Example 6 was used instead of the polyester film A produced in Production Example 2.
The obtained polarizing plate was subjected to the above evaluations (1) and (2). The results are shown in Table 1.
[実施例6]
 製造例2で製造したポリエステルフィルムAに代えて、製造例7で製造したポリエステルフィルムFを用いたこと以外は、実施例1と同様にして偏光板を得た。
 得られた偏光板について、上記評価(1)~(2)に供した。結果を表1に示す。
[Example 6]
A polarizing plate was obtained in the same manner as in Example 1 except that the polyester film F produced in Production Example 7 was used instead of the polyester film A produced in Production Example 2.
The obtained polarizing plate was subjected to the above evaluations (1) and (2). The results are shown in Table 1.
[比較例1]
 製造例2で製造したポリエステルフィルムAに代えて、製造例8で製造したポリエステルフィルムGを用いたこと以外は、実施例1と同様にして偏光板を得た。
 得られた偏光板について、上記評価(1)~(2)に供した。結果を表1に示す。
[Comparative Example 1]
A polarizing plate was obtained in the same manner as in Example 1 except that the polyester film G produced in Production Example 8 was used instead of the polyester film A produced in Production Example 2.
The obtained polarizing plate was subjected to the above evaluations (1) and (2). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
10   偏光子
20   ポリエステルフィルム
30   接着剤層
40   易接着層
100、200  偏光板
 
10 Polarizer 20 Polyester film 30 Adhesive layer 40 Easy adhesive layer 100, 200 Polarizing plate

Claims (11)

  1.  25℃10%RHの初期条件から、85℃85%RHの高温高湿条件まで、温度および湿度を50分で等速上昇させた際の、第1の方向における寸法変化率A(%)と、第1の方向に直交する第2の方向における寸法変化率B(%)とが、下記式(1)~(3)を満たす、偏光子保護用ポリエステルフィルム。
     -110×A+101×B≦130  ・・・(1)
     -1≦A≦1 ・・・(2)
     -1≦B≦1 ・・・(3)
    The dimensional change rate A (%) in the first direction when the temperature and humidity are increased at a constant rate in 50 minutes from the initial condition of 25 ° C. 10% RH to the high temperature and high humidity condition of 85 ° C. 85% RH. , A polyester film for protecting a transducer in which the dimensional change rate B (%) in the second direction orthogonal to the first direction satisfies the following formulas (1) to (3).
    -110 x A + 101 x B ≤ 130 ... (1)
    -1 ≤ A ≤ 1 ... (2)
    -1 ≤ B ≤ 1 ... (3)
  2.  ポリエチレンテレフタレートおよび/または変性ポリエチレンテレフタレートから形成される、請求項1に記載の偏光子保護用ポリエステルフィルム。  The polyester film for protecting a polarizing element according to claim 1, which is formed from polyethylene terephthalate and / or modified polyethylene terephthalate. It was
  3.  前記変性ポリエチレンテレフタレートが、ジエチレングリコール、1,4-ブタンジオール、1,3-プロパンジオールまたはイソフタル酸由来の構成単位を含む、請求項2に記載の偏光子保護用ポリエステルフィルム。 The polyester film for protecting a polarizing element according to claim 2, wherein the modified polyethylene terephthalate contains a structural unit derived from diethylene glycol, 1,4-butanediol, 1,3-propanediol or isophthalic acid.
  4.  厚みが、80μm以下である、請求項1から3のいずれかに記載の偏光子保護用ポリエステルフィルム。 The polyester film for protecting a polarizing element according to any one of claims 1 to 3, which has a thickness of 80 μm or less.
  5.  偏光子と、該偏光子の一方の側に配置された請求項1から4のいずれかに記載の偏光子保護用ポリエステルフィルムとを備える、偏光板。 A polarizing plate comprising a polarizing element and a polyester film for protecting the polarizing element according to any one of claims 1 to 4, which is arranged on one side of the polarizing element.
  6.  前記偏光子の厚みが、20μm以下である、請求項5に記載の偏光板。 The polarizing plate according to claim 5, wherein the polarizing element has a thickness of 20 μm or less.
  7.  前記偏光子保護用ポリエステルフィルムの前記偏光子側に配置された易接着層をさらに含む、請求項5または6に記載の偏光板。 The polarizing plate according to claim 5 or 6, further comprising an easy-adhesion layer arranged on the polarizing element side of the polarizing element protection polyester film.
  8.  前記易接着層が、微粒子を含む、請求項7に記載の偏光板。 The polarizing plate according to claim 7, wherein the easily adhesive layer contains fine particles.
  9.  前記易接着層の屈折率が、1.55以下である、請求項5から8のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 5 to 8, wherein the refractive index of the easy-adhesion layer is 1.55 or less.
  10.  前記偏光子保護用ポリエステルフィルムの前記偏光子側の面が、表面処理面である、請求項5から9のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 5 to 9, wherein the surface on the polarizing element side of the polyester film for protecting the polarizing element is a surface-treated surface.
  11.  前記表面処理が、コロナ処理またはプラズマ処理である、請求項10に記載の偏光板。
     
    The polarizing plate according to claim 10, wherein the surface treatment is a corona treatment or a plasma treatment.
PCT/JP2021/018052 2020-07-30 2021-05-12 Polyester film for polarizer protection and polarizing plate comprising said polyester film WO2022024492A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180058424.1A CN116057435A (en) 2020-07-30 2021-05-12 Polyester film for protecting polarizer and polarizer comprising same
KR1020227035968A KR20230038639A (en) 2020-07-30 2021-05-12 A polyester film for protecting a polarizer and a polarizing plate including the polyester film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020129146A JP2022025941A (en) 2020-07-30 2020-07-30 Polyester film for polarizer protection, and polarizing plate including the polyester film
JP2020-129146 2020-07-30

Publications (1)

Publication Number Publication Date
WO2022024492A1 true WO2022024492A1 (en) 2022-02-03

Family

ID=80038041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018052 WO2022024492A1 (en) 2020-07-30 2021-05-12 Polyester film for polarizer protection and polarizing plate comprising said polyester film

Country Status (4)

Country Link
JP (1) JP2022025941A (en)
KR (1) KR20230038639A (en)
CN (1) CN116057435A (en)
WO (1) WO2022024492A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219620A (en) * 2003-01-14 2004-08-05 Konica Minolta Holdings Inc Polarizing plate protective film, and polarizing plate and liquid crystal display device using the same,
JP2009160830A (en) * 2008-01-08 2009-07-23 Toray Ind Inc Polyester-based laminate film and polarizing plate
JP2010046817A (en) * 2008-08-19 2010-03-04 Toyobo Co Ltd Biaxially oriented laminated polyester film
JP2011002476A (en) * 2009-06-16 2011-01-06 Nitto Denko Corp Protective film for polarizing plate, polarizing plate and liquid crystal display device
JP2013064821A (en) * 2011-09-16 2013-04-11 Konica Minolta Advanced Layers Inc Hard coat film, polarizing plate and image display apparatus
JP2014006447A (en) * 2012-06-26 2014-01-16 Dainippon Printing Co Ltd Deflection plate integrated optical laminate
JP2016143046A (en) * 2015-02-05 2016-08-08 コニカミノルタ株式会社 Lateral electric field mode liquid crystal display device
WO2016147767A1 (en) * 2015-03-13 2016-09-22 東レ株式会社 Polyester film for optical use and polarizing plate using same
JP2016200835A (en) * 2016-08-10 2016-12-01 東洋紡株式会社 Polarizing plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271733A (en) 1995-04-03 1996-10-18 Fujimori Kogyo Kk Front side protective sheet for front side polarizing plate, its production and sticking method of front side protective sheet to polarizing base film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219620A (en) * 2003-01-14 2004-08-05 Konica Minolta Holdings Inc Polarizing plate protective film, and polarizing plate and liquid crystal display device using the same,
JP2009160830A (en) * 2008-01-08 2009-07-23 Toray Ind Inc Polyester-based laminate film and polarizing plate
JP2010046817A (en) * 2008-08-19 2010-03-04 Toyobo Co Ltd Biaxially oriented laminated polyester film
JP2011002476A (en) * 2009-06-16 2011-01-06 Nitto Denko Corp Protective film for polarizing plate, polarizing plate and liquid crystal display device
JP2013064821A (en) * 2011-09-16 2013-04-11 Konica Minolta Advanced Layers Inc Hard coat film, polarizing plate and image display apparatus
JP2014006447A (en) * 2012-06-26 2014-01-16 Dainippon Printing Co Ltd Deflection plate integrated optical laminate
JP2016143046A (en) * 2015-02-05 2016-08-08 コニカミノルタ株式会社 Lateral electric field mode liquid crystal display device
WO2016147767A1 (en) * 2015-03-13 2016-09-22 東レ株式会社 Polyester film for optical use and polarizing plate using same
JP2016200835A (en) * 2016-08-10 2016-12-01 東洋紡株式会社 Polarizing plate

Also Published As

Publication number Publication date
JP2022025941A (en) 2022-02-10
KR20230038639A (en) 2023-03-21
CN116057435A (en) 2023-05-02

Similar Documents

Publication Publication Date Title
JP6973584B2 (en) Laminated film
JP2024009095A (en) Polyester film and polarizer including the same
JP7156435B2 (en) polyester film
JP2023159195A (en) Polyester film, and polarizing plate including the same
WO2022024492A1 (en) Polyester film for polarizer protection and polarizing plate comprising said polyester film
WO2022024494A1 (en) Polarizer-protecting polyester film and polarizing plate including said polyester film
WO2022024493A1 (en) Polyester film for protecting polarizer and polarizing plate including said polyester film
JP7154188B2 (en) Polyester film and polarizing plate containing said polyester film
WO2020158084A1 (en) Polyester film, and polarizing plate comprising polyester film
WO2022210249A1 (en) Polyester film for protection of polarizer, and polarizing plate using same
WO2022070512A1 (en) Retardation film, polarizing plate with retardation layer, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850120

Country of ref document: EP

Kind code of ref document: A1