WO2022023660A1 - Produit a base de mof et procede de fabrication de produits a base de mof - Google Patents

Produit a base de mof et procede de fabrication de produits a base de mof Download PDF

Info

Publication number
WO2022023660A1
WO2022023660A1 PCT/FR2021/051396 FR2021051396W WO2022023660A1 WO 2022023660 A1 WO2022023660 A1 WO 2022023660A1 FR 2021051396 W FR2021051396 W FR 2021051396W WO 2022023660 A1 WO2022023660 A1 WO 2022023660A1
Authority
WO
WIPO (PCT)
Prior art keywords
mof
boehmite
irmof
particles
powder
Prior art date
Application number
PCT/FR2021/051396
Other languages
English (en)
Inventor
Patrick NGUYEN VAN NUOI
Guillaume COMTE
Giovanni MASSASSO
Original Assignee
Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Centre De Recherches Et D'etudes Europeen filed Critical Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority to US18/006,993 priority Critical patent/US20230271158A1/en
Priority to EP21758403.6A priority patent/EP4188594A1/fr
Publication of WO2022023660A1 publication Critical patent/WO2022023660A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3028Granulating, agglomerating or aggregating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing

Definitions

  • the present invention relates to an MOF-based product and to a method of manufacturing MOF-based products.
  • a metallo-organic network or "Metal Organic Framework”, most often called “MOF” according to the English abbreviation, is a material consisting of metal ions or metal clusters and organic ligands, organized in to form a porous crystal lattice.
  • MOFs are conventionally presented in the form of powders, which makes them difficult to use in said applications.
  • a product based on MOF obtained by shaping an MOF powder, said products having good mechanical strength, in particular crushing strength, which allows, among other things, their easy handling, the MOF contained in said product substantially retaining its adsorption capacity in comparison with a powder of said MOF, for a substantially identical mass of MOF.
  • a product according to the invention has good mechanical strength, while retaining a high adsorption capacity.
  • MOFs The adsorption capacity of MOFs is, in a well-known way, directly linked to the presence of small pores and a large pore volume, which come from the arrangement of organic ligands around the metal clusters. Thus, high specific surfaces can be reached, making MOFs particularly interesting for adsorbing molecules or performing separation.
  • An object of the invention is to meet, at least partially, this need.
  • this object is achieved by means of a method for manufacturing a product based on MOF comprising at least the following steps: a) mixing raw materials to form a starting charge, said starting charge comprising an MOF powder or a mixture of at least two MOF powders, a boehmite powder and optionally a powder of another ceramic material, the amount of boehmite being such that the mass ratio of the amount of boehmite to the total amount of i) boehmite, ii) the MOF powder(s) and iii) the optional powder of said other ceramic material is greater than or equal to 1% and less than or equal to 25%, the amount of optional powder of said other ceramic material being such that the mass ratio of the amount of said powder to the total amount of the MOF powder(s) and the optional powder of said other ceramic material is less than or equal to 10%, b) shaping of said starting charge, so as to obtain a preform, c) optionally, drying of said preform, d) heat treatment of said preform
  • the method according to the invention allows the manufacture of products, in particular in the form of macroscopic objects, based on MOF, having good crushing resistance without degrading the intrinsic properties of adsorption of the particles of the or MOF powder(s) used.
  • the selection of the specific binder according to the invention makes it possible to preserve the porosity of the MOF(s), without thus reducing its adsorption capacities and therefore its performance.
  • the inventors have also discovered that the method according to the invention allows the manufacture of MOF-based products that retain their physical integrity during exposure in a humid environment or in a liquid, in particular in a solvent such as water or a alcohol, as well as a high resistance to attrition.
  • the process according to the invention also has one or more of the following optional characteristics: the mass ratio of the quantity of boehmite to the total quantity of i) boehmite, ii) of the MOF powder(s) and iii ) of the optional powder of said other ceramic material is greater than or equal to 3% and less than or equal to 13%; the starting charge does not contain any powder of ceramic material other than boehmite; the boehmite of the feedstock is peptized; the starting charge consists of the MOF powder(s), boehmite, the optional powder of said ceramic material other than boehmite, a solvent, an acid, an organic binder, a plasticizer, a lubricant and pore-forming particles ; the method comprises a step c) of drying; the maximum temperature reached during step d) of heat treatment is higher than the degradation temperature of the MOF minus (reduced by) 170°C or the lowest degradation temperature of the MOFs minus 170°C and
  • the invention also relates to an MOF-based product comprising, and preferably consisting essentially of, or even consisting of, particles bonded by a binder, said binder comprising boehmite, said particles being essentially MOF particles and optionally particles of a ceramic material other than boehmite.
  • MOF-based product may comprise particles of a single MOF or a mixture of at least two populations of MOF particles, preferably at least two of said populations of MOF particles are in one different MOF, in particular chosen from the following list.
  • the MOF-based product according to the invention also has one or more of the following optional characteristics: said binder comprises boehmite and a hydrated alumina; said binder consists essentially of boehmite and a hydrated alumina; more than 90% by mass of the particles bound by said binder are MOF particles; said particles made of a ceramic material other than boehmite are particles of a material chosen from ZrO2, Al 2 O 3 , S1O2, T1O2, ZnO, SiC, C; said product consists essentially of particles bound by a binder, said binder consisting essentially of boehmite and a hydrated alumina, the particles preferably being essentially particles of MOF; the MOF particles are particles of an MOF or a mixture of at least two populations of MOF particles chosen from MOF-O, MOF-2, MOF-3, MOF-4, MOF-5, MOF-6, MOF-7, MOF-8 MOF-9, MOF-11, MOF-12, MOF-20,
  • the invention also relates to a product based on MOF obtained or capable of being obtained by the process according to the invention.
  • the invention finally relates to a liquid filtration device, a gas filtration device, a liquid storage device, a gas storage device, a catalyst support, comprising a product according to the invention, or a product obtained or capable of being obtained by the process according to the invention.
  • - Hydrated alumina is called a compound of chemical formula (Al 2 0 3 ) n .(H 2 0) m , n and m being integers.
  • boehmite is not a hydrated alumina.
  • MOF degradation temperature refers to the start temperature of the last mass loss peak of the MOF (in other words, the peak found at the highest temperatures), as observed in thermogravimetric analysis (TGA ).
  • Ceramic material is any non-metallic and non-organic material. In the context of this application, a MOF is therefore not considered as a ceramic material and carbon is considered as a ceramic material.
  • median size of a powder of particles means the size dividing said particles of the powder into first and second populations equal in mass, these first and second populations comprising only particles having a greater or equal size, or lower respectively, than the median size.
  • the median size can for example be determined using a laser particle sizer.
  • the adsorption of an MOF powder or an MOF-based product can be measured using a breakthrough curve, allowing the maximum mass quantity of a molecule (for example toluene) to be determined. can be adsorbed.
  • the adsorption is expressed as the ratio of said quantity to the mass of the MOF-based product according to the invention.
  • the verbs “contain”, “understand” and “present” must be interpreted in a broad, non-limiting way, unless otherwise indicated.
  • the starting charge comprises at least one MOF powder.
  • the starting charge comprises an MOF powder.
  • the starting charge comprises at least two MOF powders, preferably at least two of said MOF powders are in a different MOF.
  • the MOF is chosen from MOF-O, MOF-2, MOF-3, MOF-4, MOF-5, MOF-6, MOF-7, MOF-8, MOF-9, MOF-11, MOF-12 , MOF-20, MOF-25, MOF-26, MOF-31 , MOF-32, MOF-33, MOF-34, MOF-36, MOF-37, MOF-38, MOF-39, MOF-47, MOF -49, MOF-69a, MOF-69b, MOF-74, MOF-101, MOF-102, MOF-107, MOF-108, MOF-110, MOF-177, MOF-j, MOF-n, IRMOF-1 , IRMOF-2, IRMOF-3, IRMOF-4, IRMOF-5, IRMOF-6, IRMOF-7, IRMOF-8, IRMOF-9, IRMOF-10, IRMOF-11, IRMOF-12, IRMOF
  • the median size of the MOF powder is greater than 0.1 ⁇ m and/or less than 100 ⁇ m.
  • the degradation temperature of the MOF, or even of each MOF is greater than 250°C.
  • the feedstock contains a boehmite powder, in an amount such that the mass ratio of the amount of boehmite to the total amount of boehmite, the MOF powder(s) and an optional powder of a material ceramic (other than boehmite) is greater than or equal to 1% and less than 11%.
  • said mass ratio is greater than or equal to 2%, preferably greater than or equal to 3%, preferably greater than or equal to 5%.
  • the starting charge also contains a powder of a ceramic material other than boehmite, in an amount such that the mass ratio of the amount of said powder to the total amount of the powder(s) of MOF and optional powder of said other ceramic material is less than or equal to 10%.
  • said optional ceramic material other than boehmite is selected from ZrO2, Al2O3, S1O2, T1O2, ZnO, SiC, C, and mixtures thereof.
  • the starting charge contains a powder of a ceramic material other than boehmite, in an amount such that the mass ratio of the amount of said powder to the total amount of the powder(s) of MOF and said optional ceramic powder is less than 5%, preferably less than 3%, preferably less than 1%, preferably less than 0.5%.
  • the starting charge does not contain any powder of a ceramic material other than boehmite.
  • the MOF powder(s), the boehmite powder and the optional powder of another ceramic material can be provided in the form of a suspension or any other form comprising said powder.
  • the boehmite in the feedstock is peptized.
  • the peptization of boehmite is an operation well known to those skilled in the art. It consists of the dispersion of a boehmite powder in an acidic aqueous solution, so as to lead to at least partial dissolution of the boehmite particles.
  • the peptization of the boehmite in the starting charge makes it possible to increase the quantity of boehmite in said charge and/or makes it possible to reduce the viscosity of said starting charge.
  • the peptization of boehmite can be carried out by introducing the boehmite powder into water so as to obtain a suspension, then by adjusting the pH of said suspension to a value preferably greater than 1, preferably greater than 2, and /or less than 7, preferably less than 6, preferably less than 5.
  • the pH adjustment is carried out using an addition of an acid, preferably chosen from nitric acid, formic acid, maleic acid, oxalic acid and their mixtures.
  • the peptization of the boehmite of the starting charge is carried out before the introduction of the MOF powder(s) and the optional powder of a ceramic material other than boehmite.
  • the starting charge may comprise, in addition to the MOF powder(s), boehmite and the optional powder of a ceramic material other than boehmite, a solvent and/or an organic binder and/or a plasticizer and/or a lubricant and/or pore-forming particles, the natures and quantities of which are adapted to the shaping method of step b).
  • the solvent is water.
  • the amount of solvent is adapted to the shaping process implemented in step b).
  • the starting charge optionally contains an organic binder facilitating the constitution of the preform, preferably in a content of between 0.1% and 10%, preferably between 0.2% and 2% by mass based on the mass of the optional MOF powder(s), boehmite and powder of a ceramic material other than boehmite.
  • All the organic binders conventionally used for the manufacture of porous ceramic products can be implemented, for example polyvinyl alcohol (PVA) or polyethylene glycol (PEG), starch, xanthan gum, methylcellulose, ethylcellulose, carboxymethylcellulose, carboxyethylcellulose, hydroxyethylcellulose, methylstearate, ethylstearate, waxes, polyolefins, polyolefin oxides, glycerin, propionic acid, maleic acid, benzyl alcohol, isopropanol, butyl alcohol, paraffin and polyethylene dispersion, and mixtures thereof.
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • starch xanthan gum
  • the starting charge optionally contains a plasticizer, also facilitating the constitution of the preform.
  • the content of plasticizer is between 1% and 10%, preferably between 1% and 5%, by mass based on the mass of the MOF powder(s), the boehmite and the powder of a ceramic material other than the optional boehmite of the starting charge.
  • the plasticizer can constitute a binder.
  • plasticizers conventionally used for the manufacture of porous ceramic products can be implemented, for example polyethylene glycol, polyolefin oxides, hydrogenated oils, alcohols, in particular glycerol and glycol, esters, starch, and their mixtures.
  • the starting charge optionally contains a lubricant, also facilitating the constitution of the preform.
  • the lubricant content is between 1% and 10%, preferably between 1% and 5% by mass based on the mass of the MOF powder(s), the boehmite and the powder. of a ceramic material other than the optional boehmite of the starting charge.
  • lubricants conventionally used for the manufacture of porous ceramic products can be used, for example petroleum jelly and/or waxes.
  • the starting charge optionally contains pore-forming particles, well known to those skilled in the art, which are intended to be eliminated during the heat treatment of step d), thus leaving room for pores.
  • pore-forming particles well known to those skilled in the art, which are intended to be eliminated during the heat treatment of step d), thus leaving room for pores.
  • Their quantity and their dimensions are chosen so as in particular to adjust the pore volume in the MOF-based product obtained at the end of step d).
  • the choice of optional pore-forming particles is made according to the maximum temperature of the heat treatment in step d).
  • binder and/or the lubricant and/or the plasticizer depend in particular on the shaping technique used in step b).
  • the starting charge does not contain any constituents other than the MOF powder(s), boehmite, the optional powder of said ceramic material other than boehmite, a solvent, an acid, a organic binder, a plasticizer, a lubricant and pore-forming particles.
  • the feedstock contains no other constituents than the MOF powder(s), boehmite, solvent, acid, organic binder, plasticizer, lubricant and pore-forming particles.
  • the boehmite, the solvent, preferably the water and the acid are mixed so as to obtain an intimate mixture.
  • the other constituents of the starting charge in particular the MOF powder(s), the powder of a ceramic material other than boehmite, the optional binder, lubricant, plasticizer and blowing particles are added with stirring.
  • the amount of solvent, preferably water, can be added several times, in a determined amount depending on the technique chosen for shaping.
  • the mixing of the various constituents can be carried out according to any technique known to those skilled in the art, for example in a mixer, preferably in a high-intensity mixer or in a Z-arm mixer, in a turbulat, in a jar mill with balls, preferably alumina balls.
  • the mixing is carried out in a high intensity mixer or in a Z-arm mixer.
  • the total mixing time is preferably greater than 5 minutes, and preferably less than 30 minutes, preferably less than 20 minutes.
  • step b) the starting charge is shaped so as to obtain a preform.
  • the shaping can be carried out using any technique known to those skilled in the art, for example extrusion, granulation, pressing, casting, atomization, serigraphy (or "screen printing” in English), tape casting.
  • the preforms obtained can be in the form of cylinders, polylobes, rings, or spheres.
  • step c) optional, the preform is dried.
  • the maximum temperature reached during the drying cycle is lower than the MOF degradation temperature or the lowest MOF degradation temperature.
  • the maximum temperature reached during the drying cycle is greater than 50°C, preferably greater than 80°C, and preferably less than 150°C, preferably less than 120°C.
  • the drying cycle has a plateau at said maximum temperature reached.
  • the holding time at the plateau is preferably greater than 1 hour, preferably greater than 2 hours and preferably less than 20 hours, preferably less than 12 hours.
  • step d) the preform undergoes a heat treatment at a temperature below the degradation temperature of the MOF or at the lowest degradation temperature of the MOFs, so as to obtain a product based on MOF.
  • the preform is shaped so that the largest dimension of the MOF-based product is less than 100 mm, preferably less than 80 mm, preferably less than 50 mm, preferably less than 30 mm, or even less than 10 mm and/or that the smallest dimension of the MOF product in a plane perpendicular to the direction of the largest dimension is greater than 100 ⁇ m (micrometers).
  • the maximum temperature reached during the heat treatment cycle is higher than the degradation temperature of the MOF minus 170° C. or the lowest degradation temperature of the MOFs minus 170° C., preferably higher than the degradation temperature of the MOF minus 150°C or at the lowest degradation temperature of the MOFs minus 150°C, preferably higher than the degradation temperature of the MOF minus 130°C or at the lowest degradation temperature of the MOFs minus 130°C, and preferably lower than the degradation temperature of the MOF minus 5°C or the lowest degradation temperature of the MOFs minus 5°C, preferably lower than the degradation temperature of the MOF minus 10°C or the lowest temperature of degradation of MOFs minus 10°C.
  • the maximum temperature reached during the heat treatment cycle is greater than 150° C., preferably greater than 180° C., preferably above 200°C, and preferably below 300°C, preferably below 250°C.
  • the heat treatment cycle has a plateau at said maximum temperature reached.
  • the hold time at the plateau is preferably greater than 0.5 hours, preferably greater than 1 hour, preferably greater than 2 hours, and preferably less than 10 hours, preferably less than 5 hours, preferably less than 4 time.
  • the maximum temperature reached during the heat treatment in step d) is preferably above 130°C, preferably above 150°C, preferably above 170°C, preferably above 180°C, preferably above 200°C, and below 395°C, preferably below at 390°C, preferably below 300°C, preferably below 250°C.
  • the maximum temperature reached during the heat treatment of step d) is preferably higher than 90°C, preferably higher than 110°C, preferably higher than 130°C, preferably higher than 150°C, preferably higher than 180°C , preferably higher than 200°C, and lower than 255°C, preferably lower than 250°C.
  • the heat treatment is preferably carried out in air, at atmospheric pressure.
  • step c) and step d) are carried out in the same thermal cycle.
  • a product based on MOF is obtained.
  • Said MOF-based product may be in the form of cylinders, polylobes, rings, or spheres.
  • the invention also relates to an MOF-based product comprising, and preferably consisting essentially of, or even consisting of, particles bonded by a binder, said binder comprising boehmite, said particles being essentially MOF particles and optionally particles of a ceramic material other than boehmite.
  • Such a product is in particular derived from a process as described above.
  • the binder of the MOF-based product according to the invention comprises boehmite and a hydrated alumina and more preferably consists essentially of boehmite and a hydrated alumina.
  • the amount of boehmite or boehmite and hydrated alumina in said product is less than 11%, and preferably is between 1 and 10% by weight, preferably is between 3 and 10% by weight.
  • the boehmite and the hydrated alumina contained in the binder can for example be highlighted by X-ray diffraction.
  • the MOF-based product according to the invention consists of particles bound by a binder consisting essentially of boehmite and a hydrated alumina.
  • the MOF-based product according to the invention consists of particles bound by a binder comprising boehmite, said particles being for more than 90%, preferably for more than 95%, preferably for more than 97%, preferably for more than 99%, more preferably for more than 99.5% by mass of the MOF particles, the complement to the MOF particles being particles made of a ceramic material other than boehmite.
  • the MOF-based product according to the invention consists of particles bound by a binder comprising, preferably consisting essentially of boehmite and a hydrated alumina, said particles being for more than 90%, preferably for more than 95%, preferably for more than 97%, preferably for more than 99%, more preferably for more than 99.5 % by mass of the MOF particles, the complement to the MOF particles being particles made of a ceramic material other than boehmite.
  • the MOF-based product according to the invention consists essentially of MOF particles bound by a binder comprising boehmite.
  • the MOF-based product according to the invention consists essentially of MOF particles bound by a binder comprising, preferably consisting essentially of boehmite and a hydrated alumina.
  • the MOF-based product according to the invention comprises particles made of a ceramic material other than boehmite
  • said particles are particles of Zr02, Al203, Si02, Ti02, ZnO, SiC, C, and their mixtures.
  • the MOF particles of the MOF-based product according to the invention are particles of an MOF or a mixture of at least two populations of MOF particles chosen from MOF-O, MOF-2, MOF-3 , MOF-4, MOF-5, MOF-6, MOF-7, MOF-8 MOF-9, MOF-11 , MOF-12, MOF-20, MOF-25, MOF-26, MOF-31, MOF- 32, MOF-33, MOF-34, MOF-36, MOF-37, MOF-38, MOF-39, MOF-47, MOF-49, MOF-69a, MOF-69b, MOF-74, MOF-101, MOF-102, MOF-107, MOF-108, MOF-110, MOF-177, MOF-j, MOF-n, IRMOF-1, IRMOF-2, IRMOF-3, IRMOF-4, IRMOF-5, IRMOF- 6, IRMOF-7, IRMOF-8,
  • the MOF-based product according to the invention comprises a mixture of at least two populations of MOF particles, at least two of said populations of MOF particles are in a different MOF.
  • the degradation temperature of the MOF, or even of each MOF is greater than 250°C.
  • the MOF-based product according to the invention can be in the form of cylinders, polylobes, rings, or spheres.
  • the largest dimension of the product according to the invention (or the macroscopic object according to the invention) based on MOF according to the invention is less than 100 mm, preferably less than 80 mm, preferably less than 50 mm, preferably less than 30 mm, or even less than 10 mm. More preferably, the smallest dimension of the product according to the invention (or the macroscopic object according to the invention) based on MOF, in a plane perpendicular to the direction of the largest dimension, is greater than 100 ⁇ m.
  • the invention also relates to a product based on MOF obtained or capable of being obtained by the process according to the invention.
  • the toluene adsorption capacity of the examples is measured conventionally from a breakthrough curve carried out in a fixed bed, at room temperature, in a glass reactor having a diameter equal to 14 mm, with a gas flow composed of helium containing 100 ppm of toluene, injected at a flow rate of 6 liters per hour, the quantity of the products of the examples being between 0.6 g and 1 g, the said products being dried beforehand at 50° C. for 15 minutes.
  • the result is expressed in mg of toluene per gram of characterized product.
  • the crush resistance of the examples is evaluated using the following method.
  • a sample of the product of the examples to be characterized (in the form of a cylinder) is placed, on one of its circular faces (i.e. upright), on the lower plate of a Shimadzu press, model AGS-X, equipped with a 100 N sensor.
  • the upper platen of the press then descends at a speed equal to 0.5 mm/min until the sample is crushed.
  • the maximum force measured when crushing the sample is the compressive strength of the sample.
  • this operation is carried out on 5 cylinders.
  • the compressive strength value of the example announced in table 1 is an arithmetic mean of the 5 values.
  • a powder of MOF UiO-66 marketed by the company Sigma Aldrich, having a median size equal to 1.3 ⁇ m, for examples 1 to 3, a colloidal suspension of amorphous silica Nexsil 20K-30, marketed by the company Nyacol, having a solid charge equal to 30% by mass, for Example 1, outside the invention, a powder of boehmite Disperal P2, marketed by the company SASOL, for Example 2 according to the invention and Example 3 outside the invention, glacial acetic acid, marketed by the company Sigma Aldrich, for Examples 1 to 3.
  • Example 1 outside the invention, was obtained as follows. 1.67 g of Nexsil 20K-30 colloidal silica is mixed in 5.83 g of distilled water using a paddle stirrer, then 0.03 g of acetic acid is added. Then, 9.5 g of UiO-66 are added and the whole is kept under stirring for 1 hour. A starting charge is obtained in the form of a homogeneous suspension. Then, said starting charge is spread on a metal grid of thickness equal to 1 mm and perforated with circular holes of diameter equal to 1.5 mm, then scraped using a spatula on each side of the grid of so that said starting charge fills the holes of said grid. The grid is then said to be “loaded”.
  • the loaded grid is dried for 24 hours at 50°C.
  • the product present in the holes of the grid is then recovered by tapping on the grid. It comes in the form of cylinders.
  • said cylinders are dried in the following manner: they are introduced into an oven at 250° C., under air, and maintained at this temperature for 2 hours and then removed.
  • the product of Example 1 outside the invention, is in the form of cylinders with an average length equal to 0.8 mm and an average diameter equal to 1.4 mm.
  • the MOF-based product of Example 2, according to the invention, was obtained using the process according to the invention, by screen printing in the following manner.
  • step a) 0.50 g of boehmite Disperal P2 is mixed in 7.00 g of distilled water using a paddle stirrer, then 0.03 g of acetic acid is added. Then, 9.50 g of MOF UiO-66 are added and the whole is kept under stirring for 1 hour. The starting charge is then in the form of a homogeneous suspension.
  • step b) the starting charge is spread on a metal grid with a thickness equal to 1 mm and perforated with circular holes with a diameter equal to 1.5 mm, then scraped using a spatula from each side of the grid so that said starting charge fills the holes of said grid.
  • the grid is then said to be “loaded”.
  • step c) after 24 hours at room temperature, the loaded grid is dried for 24 hours at 50°C.
  • the product present in the holes of the grid is then recovered by tapping on the grid. It comes in the form of cylinders.
  • step d) said cylinders are dried as follows: they are introduced into an oven at 250° C., under air, and maintained at this temperature for 2 hours and then removed. After said drying, the product of Example 2, according to the invention, is in the form of cylinders with an average length equal to 0.8 mm and an average diameter equal to 1.4 mm.
  • Example 3 outside the invention, was obtained as follows. 1.10 g of boehmite Disperal P2 is mixed in 7.00 g of distilled water using a paddle stirrer, then 0.03 g of acetic acid is added. Then, 8.90 g of MOF UiO-66 are added and the whole is kept under stirring for 1 hour. We obtain a starting charge in the form of a homogeneous suspension. Then, said starting charge is spread on a metal grid of thickness equal to 1 mm and perforated with circular holes of diameter equal to 1.5 mm, then scraped using a spatula on each side of the grid of so that said starting charge fills the holes of said grid. The grid is then said to be “loaded”.
  • the loaded grid is dried for 24 hours at 50°C.
  • the product present in the holes of the grid is then recovered by tapping on the grid. It comes in the form of cylinders.
  • said cylinders are dried in the following manner: they are introduced into an oven at 250° C., under air, and maintained at this temperature for 2 hours and then removed.
  • the product of Example 3, outside the invention is in the form of cylinders with an average length equal to 0.8 mm and an average diameter equal to 1.4 mm.
  • Example 2 A comparison of Example 2 according to the invention and Example 3 outside the invention shows that the product of Example 2, manufactured by a process according to the invention in which the starting charge has a quantity of boehmite such that the mass ratio of the amount of said boehmite to the total amount of boehmite and MOF powder equal to 5%, has a compressive strength equal to 7N, close to the compressive strength of the product of example 3 equal to 8N, said product of Example 3 being manufactured by a process in which the starting charge has a quantity of boehmite such that the mass ratio of the quantity of said boehmite to the total quantity of boehmite and MOF powder equal to 11%.
  • the invention is not limited to the embodiments described, provided for illustration purposes only.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un produit à base de réseau métallo-organique (MOF) et son procédé de fabrication, ledit produit comprenant des particules liées par un liant, ledit liant comprenant de la boehmite, lesdites particules étant essentiellement des particules de MOF et éventuellement des particules d'un matériau céramique autre que la boehmite.

Description

DESCRIPTION
TITRE : Produit à base de MOF et procédé de fabrication de produits à base de MOF
Domaine technique
La présente invention se rapporte à un produit à base de MOF et à un procédé de fabrication de produits à base de MOF.
Technique antérieure
De façon bien connue, un réseau métallo-organique, ou « Métal Organic Framework », le plus souvent appelé « MOF » selon l’abréviation anglaise, est un matériau constitué d’ions métalliques ou de clusters métalliques et de ligands organiques, organisés de manière à former un réseau cristallin poreux.
Leur microporosité et leur surface spécifique élevées permettent d’envisager de nombreuses applications industrielles, notamment dans les domaines du stockage ou de la séparation de gaz, ainsi qu’en catalyse. Cependant, les MOFs se présentent classiquement sous la forme de poudres, ce qui rend difficile leur utilisation dans lesdites applications.
Il existe un besoin pour des produits à base de MOF, obtenus par mise en forme d’une poudre de MOF, lesdits produits présentant une bonne résistance mécanique, en particulier la résistance à l’écrasement, ce qui permet entre autres leur manipulation aisée, le MOF contenu dans ledit produit conservant sensiblement sa capacité d’adsorption par comparaison avec une poudre dudit MOF, pour une masse de MOF sensiblement identique. En particulier, un produit selon l’invention présente une bonne résistance mécanique, tout en conservant une capacité d’adsorption élevée.
La capacité d’adsorption des MOFs est, de façon bien connue, directement liée à la présence de pores de petite taille et d’un grand volume poreux, qui proviennent de l’arrangement des ligands organiques autour des clusters métalliques. Ainsi, des surfaces spécifiques élevées peuvent être atteintes rendant les MOFs particulièrement intéressants pour adsorber des molécules ou faire de la séparation.
Un but de l’invention est de répondre, au moins partiellement, à ce besoin.
Exposé de l’invention
Selon l’invention, on atteint ce but au moyen d’un procédé de fabrication d’un produit à base de MOF comprenant au moins les étapes suivantes : a) mélange de matières premières pour former une charge de départ, ladite charge de départ comportant une poudre de MOF ou un mélange d’au moins deux poudres de MOF, une poudre de boehmite et optionnellement une poudre d’un autre matériau céramique, la quantité de boehmite étant telle que le rapport massique de la quantité de boehmite sur la quantité totale i) de boehmite, ii) de la ou des poudres de MOF et iii) de la poudre optionnelle dudit autre matériau céramique est supérieur ou égal à 1% et inférieur ou égal à 25%, la quantité de poudre optionnelle dudit autre matériau céramique étant telle que le rapport massique de la quantité de ladite poudre sur la quantité totale de la ou les poudres de MOF et de la poudre optionnelle dudit autre matériau céramique est inférieure ou égale à 10%, b) mise en forme de ladite charge de départ, de manière à obtenir une préforme, c) optionnellement, séchage de ladite préforme, d) traitement thermique de ladite préforme à une température inférieure à la température de dégradation du MOF ou à la plus faible température de dégradation des MOFs, de manière à obtenir le produit à base de MOF selon l’invention.
Les inventeurs ont découvert que le procédé selon invention permettait la fabrication de produits, en particulier sous forme d’objets macroscopiques, à base de MOF, présentant une bonne résistance à l’écrasement sans dégrader les propriétés intrinsèques d’adsorption des particules de la ou des poudre(s) de MOF utilisée(s). En particulier il a été découvert que la sélection du liant spécifique selon l’invention permet de conserver la porosité du ou des MOFs, sans réduction ainsi de ses capacités d’adsorption et donc de ses performances.
Les inventeurs ont également découvert que le procédé selon l’invention permettait la fabrication de produits à base de MOF conservant leur intégrité physique lors d’une exposition dans un environnement humide ou dans un liquide, en particulier dans un solvant comme l’eau ou un alcool, ainsi qu’une résistance à l’attrition élevée.
De préférence, le procédé selon l’invention présente encore une ou plusieurs des caractéristiques optionnelles suivantes : le rapport massique de la quantité de boehmite sur la quantité totale i) de boehmite, ii) de la ou des poudre(s) de MOF et iii) de la poudre optionnelle dudit autre matériau céramique est supérieur ou égal à 3% et inférieur ou égal à 13% ; la charge de départ ne contient pas de poudre de matériau céramique autre que la boehmite ; la boehmite de la charge de départ est peptisée ; la charge de départ est constituée de la ou des poudre(s) de MOF, la boehmite, la poudre optionnelle dudit matériau céramique autre que la boehmite, un solvant, un acide, un liant organique, un plastifiant, un lubrifiant et des particules porogènes ; le procédé comporte une étape c) de séchage ; la température maximale atteinte lors de l’étape d) de traitement thermique est supérieure à la température de dégradation du MOF moins (diminuée de) 170°C ou à la plus faible température de dégradation des MOFs moins 170°C et inférieure à la température de dégradation du MOF moins 5°C ou à la plus faible température de dégradation des MOFs moins 5°C.
L’invention concerne également un produit à base de MOF comprenant, et de préférence constitué essentiellement par, voire constitué par, des particules liées par un liant, ledit liant comprenant de la boehmite, lesdites particules étant essentiellement des particules de MOF et éventuellement des particules d’un matériau céramique autre que la boehmite.
Par « produit à base de MOF » on entend que ledit produit peut comprendre des particules d’un seul MOF ou un mélange d’au moins deux populations de particules de MOF, de préférence au moins deux desdites populations de particules de MOF sont en un MOF différent, en particulier choisis dans la liste qui suit.
De préférence, le produit à base de MOF selon l’invention présente encore une ou plusieurs des caractéristiques optionnelles suivantes : ledit liant comprend de la boehmite et une alumine hydratée ; ledit liant consiste essentiellement en de la boehmite et une alumine hydratée ; plus de 90% en masse des particules liées par ledit liant sont des particules de MOF ; lesdites particules en un matériau céramique autre que la boehmite, sont des particules d’un matériau choisi parmi ZrÛ2, AI2O3, S1O2, T1O2, ZnO, SiC, C ; ledit produit consiste essentiellement en des particules liées par un liant, ledit liant consistant essentiellement en de la boehmite et une alumine hydratée, les particules étant de préférence essentiellement des particules de MOF ; les particules de MOF sont des particules d’un MOF ou un mélange d’au moins deux populations de particules de MOF choisies parmi MOF-O, MOF-2, MOF-3, MOF-4, MOF-5, MOF-6, MOF-7, MOF-8 MOF-9, MOF-11, MOF-12, MOF-20, MOF-25, MOF- 26, MOF-31, MOF-32, MOF-33, MOF-34, MOF-36, MOF-37, MOF-38, MOF-39, MOF- 47, MOF-49, MOF-69a, MOF-69b, MOF-74, MOF-101, MOF-102, MOF-107, MOF- 108, MOF-110, MOF-177, MOF-j, MOF-n, IRMOF-1, IRMOF-2, IRMOF-3, IRMOF-4, IRMOF-5, IRMOF-6, IRMOF-7, IRMOF-8, IRMOF-9, IRMOF-10, IRMOF-11, IRMOF- 12, IRMOF-13, IRMOF-14, IRMOF-15, IRMOF-16, IRMOF-17, IRMOF-18, IRMOF-19, IRMOF-20, AS 16, AS27-2, AS32, AS54-3, AS61-4, AS68-7, BPR43G2, BPR48A2, BPR49B1, BPR68D10, BPR69B1, BPR73E4, BPR76D5, BPR80D5, BPR92A2, BPR95C5, UiO-66, UiO-67, UiO-68, N013, N029, NO305, NO306A, NO330, N0332, N0333, N0335, N0336, HKUST-1, MIL-100 et MIL101 ; la plus grande dimension dudit produit est inférieure à 100 mm et/ou la plus petite dimension dudit produit selon un plan perpendiculaire à la direction de sa plus grande dimension est supérieure à 100 micromètres.
L’invention concerne aussi un produit à base de MOF obtenu ou susceptible d’être obtenu par le procédé selon l’invention.
L’invention concerne enfin un dispositif de filtration des liquides, un dispositif de filtration des gaz, un dispositif de stockage des liquides, un dispositif de stockage des gaz, un support de catalyseur, comportant un produit selon l’invention, ou un produit obtenu ou susceptible d’être obtenu par le procédé selon l’invention.
Définitions :
- On appelle « boehmite », ou oxyde d’hydroxyde d’aluminium, le composé de formule AIO(OH).
- On appelle alumine hydratée un composé de formule chimique (Al203)n.(H20)m, n et m étant des entiers. Dans le cadre de cette description, la boehmite n’est pas une alumine hydratée.
- On appelle « température de dégradation d’un MOF », la température de début du dernier pic de perte de masse du MOF (autrement dit, le pic se trouvant aux températures les plus élevées), tel qu’observé en analyse thermogravimétrique (ATG).
- On appelle « matériau céramique » tout matériau non métallique et non organique. Dans le cadre de cette demande un MOF n’est donc pas considéré comme un matériau céramique et le carbone est considéré comme un matériau céramique.
- On appelle « taille médiane » d’une poudre de particules, la taille divisant lesdites particules de la poudre, en première et deuxième populations égales en masse, ces première et deuxième populations ne comportant que des particules présentant une taille supérieure ou égale, ou inférieure respectivement, à la taille médiane. La taille médiane peut par exemple être déterminée à l’aide d’un granulomètre laser.
Tous les pourcentages de la présente description sont des pourcentages en masse, sauf indication contraire.
L’adsorption d’une poudre de MOF ou d’un produit à base de MOF peut-être mesurée à l’aide d’une courbe de percée, permettant de déterminer la quantité massique maximale d’une molécule (par exemple le toluène) pouvant être adsorbée. L’adsorption est exprimée sous la forme du rapport de ladite quantité sur la masse du produit à base de MOF selon l’invention. Les verbes « contenir », « comprendre » et « présenter » doivent être interprétés de manière large, non limitative, sauf indication contraire.
Un procédé selon l’invention va maintenant être détaillé.
A l’étape a), la charge de départ comporte au moins une poudre de MOF. Dans un mode de réalisation, la charge de départ comporte une poudre de MOF.
Dans un mode de réalisation, la charge de départ comporte au moins deux poudres de MOF, de préférence au moins deux desdites poudres de MOF sont en un MOF différent.
De préférence, le MOF est choisi parmi MOF-O, MOF-2, MOF-3, MOF-4, MOF-5, MOF-6, MOF-7, MOF-8 MOF-9, MOF-11 , MOF-12, MOF-20, MOF-25, MOF-26, MOF-31 , MOF-32, MOF-33, MOF-34, MOF-36, MOF-37, MOF-38, MOF-39, MOF-47, MOF-49, MOF-69a, MOF- 69b, MOF-74, MOF-101, MOF-102, MOF-107, MOF-108, MOF-110, MOF-177, MOF-j, MOF- n, IRMOF-1 , IRMOF-2, IRMOF-3, IRMOF-4, IRMOF-5, IRMOF-6, IRMOF-7, IRMOF-8, IRMOF-9, IRMOF-10, IRMOF-11, IRMOF-12, IRMOF-13, IRMOF-14, IRMOF-15, IRMOF-16, IRMOF-17, IRMOF-18, IRMOF-19, IRMOF-20, AS16, AS27-2, AS32, AS54-3, AS61-4, AS68- 7, BPR43G2, BPR48A2, BPR49B1, BPR68D10, BPR69B1, BPR73E4, BPR76D5, BPR80D5, BPR92A2, BPR95C5, UiO-66, UiO-67, UiO-68, N013, N029, NO305, NO306A, NO330, N0332, N0333, N0335, N0336, HKUST-1 , MIL-100 et MIL101. De préférence, le MOF est choisi parmi UiO-66 et HKUST-1.
De préférence, la taille médiane de la poudre de MOF est supérieure à 0,1 pm et/ou inférieure à 100 pm.
De préférence, la température de dégradation du MOF, voire de chaque MOF, est supérieure à 250°C.
La charge de départ contient une poudre de boehmite, en une quantité telle que le rapport massique de la quantité de boehmite sur la quantité totale de boehmite, de la ou des poudre(s) de MOF et d’une poudre optionnelle d’un matériau céramique (autre que la boehmite) est supérieur ou égal à 1 % et inférieur à 11 %. De préférence, ledit rapport massique est supérieur ou égal à 2%, de préférence supérieur ou égal à 3%, de préférence supérieur ou égal à 5%. Dans un mode de réalisation, la charge de départ contient également une poudre d’un matériau céramique autre que la boehmite, en une quantité telle que le rapport massique de la quantité de ladite poudre sur la quantité totale de la ou des poudre(s) de MOF et de poudre optionnelle dudit autre matériau céramique est inférieur ou égal à 10%.
De préférence ledit matériau céramique optionnel autre que la boehmite est choisie parmi ZrÛ2, AI2O3, S1O2, T1O2, ZnO, SiC, C, et leurs mélanges.
Dans un mode de réalisation préféré, la charge de départ contient une poudre d’un matériau céramique autre que la boehmite, en une quantité telle que le rapport massique de la quantité de ladite poudre sur la quantité totale de la ou des poudre(s) de MOF et de ladite poudre céramique optionnelle est inférieur à 5%, de préférence inférieur à 3%, de préférence inférieur à 1%, de préférence inférieur à 0,5%.
De préférence encore, la charge de départ ne contient pas de poudre d’un matériau céramique autre que la boehmite. Dans le procédé selon l’invention, la ou les poudre(s) de MOF, la poudre de boehmite et la poudre optionnelle d’un autre matériau céramique peuvent être apportées sous la forme d’une suspension ou tout autre forme comprenant ladite poudre.
Dans un mode de réalisation préféré, la boehmite de la charge de départ est peptisée. La peptisation de la boehmite est une opération bien connue de l’homme du métier. Elle consiste en la dispersion d’une poudre de boehmite dans une solution aqueuse acide, de manière à conduire à une dissolution au moins partielle des particules de boehmite. Avantageusement, la peptisation de la boehmite dans la charge de départ permet d’augmenter la quantité de boehmite dans ladite charge et/ou permet de diminuer la viscosité de ladite charge de départ. La peptisation de la boehmite peut être effectuée en introduisant la poudre de boehmite dans de l’eau de manière à obtenir une suspension, puis en ajustant le pH de ladite suspension à une valeur de préférence supérieure à 1, de préférence supérieure à 2, et/ou inférieure à 7, de préférence inférieure à 6, de préférence inférieure à 5.
Dans un mode de réalisation préféré, l’ajustement du pH est effectué à l’aide d’un ajout d’un acide, de préférence choisi parmi l’acide nitrique, l’acide formique, l’acide maléique, l’acide oxalique et leurs mélanges.
De préférence encore, la peptisation de la boehmite de la charge de départ est réalisée avant l’introduction de la ou des poudre(s) de MOF et de la poudre optionnelle d’un matériau céramique autre que la boehmite.
Comme cela est bien connu de l’homme du métier, la charge de départ peut comporter, en plus de la ou des poudre(s) de MOF, de la boehmite et de la poudre optionnelle d’un matériau céramique autre que la boehmite, un solvant et/ou un liant organique et/ou un plastifiant et/ou un lubrifiant et/ou des particules porogènes, dont les natures et les quantités sont adaptées à la méthode de mise en forme de l’étape b).
De préférence le solvant est l’eau. La quantité de solvant est adaptée au procédé de mise en forme mis en œuvre de l’étape b).
La charge de départ contient optionnellement un liant organique facilitant la constitution de la préforme, de préférence en une teneur comprise entre 0, 1 % et 10%, de préférence entre 0,2% et 2% en masse sur la base de la masse de la ou des poudre(s) de MOF, de la boehmite et de la poudre d’un matériau céramique autre que la boehmite optionnelle de la charge de départ.
Tous les liants organique classiquement utilisés pour la fabrication de produits poreux céramiques peuvent être mis en œuvre, par exemple l’alcool polyvinylique (PVA) ou les polyéthylènes glycol (PEG), l’amidon, la gomme de xanthane, la méthylcellulose, l’éthylcellulose, la carboxyméthylcellulose, la carboxyéthylcellulose, l’hydroxyéthylcellulose, le méthylstéarate, l’éthylstéarate, les cires, les polyoléfines, les oxides de polyoléfines, la glycérine, l’acide propionique, l’acide maléique, l’alcool benzylique, l’isopropanol, l’alcool butylique, une dispersion de paraffine et de polyéthylène, et leurs mélanges.
La charge de départ contient optionnellement un plastifiant, facilitant également la constitution de la préforme.
De préférence, la teneur en plastifiant est comprise entre 1% et 10%, de préférence entre 1% et 5%, en masse sur la base de la masse de la ou des poudre(s) de MOF, de la boehmite et de la poudre d’un matériau céramique autre que la boehmite optionnelle de la charge de départ. Le plastifiant peut constituer un liant.
Tous les plastifiants classiquement utilisés pour la fabrication de produits poreux céramiques peuvent être mis en œuvre, par exemple le polyéthylène glycol, les oxydes de polyoléfines, les huiles hydrogénées, les alcools, notamment le glycérol et le glycol, les esters, l’amidon, et leurs mélanges.
La charge de départ contient optionnellement un lubrifiant, facilitant également la constitution de la préforme.
De préférence, la teneur en lubrifiant est comprise entre 1% et 10%, de préférence entre 1% et 5% en masse sur la base de la masse de la ou des poudre(s) de MOF, de la boehmite et de la poudre d’un matériau céramique autre que la boehmite optionnelle de la charge de départ.
Tous les lubrifiants classiquement utilisés pour la fabrication de produits poreux céramiques peuvent être mis en œuvre, par exemple la vaseline et/ou des cires.
La charge de départ contient optionnellement des particules porogènes, bien connues de l’homme du métier, qui sont destinées à être éliminés lors du traitement thermique de l’étape d), laissant ainsi la place à des pores. Leur quantité et leurs dimensions sont choisies de manière à notamment ajuster le volume poreux dans le produit à base de MOF obtenu en fin d’étape d). Le choix des particules porogènes optionnelles est effectué en fonction de la température maximale du traitement thermique de l’étape d).
La présence et la nature du liant et/ou du lubrifiant et/ou du plastifiant sont notamment fonction de la technique de mise en forme utilisée à l’étape b).
Dans un mode de réalisation préféré, la charge de départ ne contient pas d’autres constituants que la ou les poudre(s) de MOF, la boehmite, la poudre optionnelle dudit matériau céramique autre que la boehmite, un solvant, un acide, un liant organique, un plastifiant, un lubrifiant et des particules porogènes. Dans un mode de réalisation préféré parmi tous, la charge de départ ne contient pas d’autres constituants que la ou les poudre(s) de MOF, la boehmite, un solvant, un acide, un liant organique, un plastifiant, un lubrifiant et des particules porogènes.
De préférence, la boehmite, le solvant, de préférence l’eau et l’acide sont mélangés de manière à obtenir un mélange intime. Puis les autres constituants de la charge de départ, en particulier la ou les poudre(s) de MOF, la poudre d’un matériau céramique autre que la boehmite, les liant, lubrifiant, plastifiant et particules porogènes optionnels sont ajoutés sous agitation. La quantité de solvant, de préférence de l’eau, peut être ajoutée en plusieurs fois, en une quantité déterminée en fonction de la technique choisie pour la mise en forme.
Le mélange des différents constituants peut être effectué suivant toute technique connue de l’homme du métier, par exemple en mélangeur, de préférence en mélangeur à haute intensité ou en mélangeur à bras en Z, en turbulat, en broyeur à jarre avec des billes, de préférence des billes en alumine. De préférence, le mélange est effectué dans un mélangeur à haute intensité ou dans un mélangeur à bras en Z.
Le temps total de mélange est de préférence supérieur à 5 minutes, et de préférence inférieur à 30 minutes, de préférence inférieur à 20 minutes.
A l’étape b), la charge de départ est mise en forme de manière à obtenir une préforme.
La mise en forme peut être effectuée suivant toute technique connue de l’homme du métier, par exemple l’extrusion, la granulation, le pressage, le coulage, l’atomisation, la sérigraphie (ou « screen printing » en anglais), le coulage en bande (ou « tape casting » en anglais).
Les préformes obtenues peuvent se présenter sous la forme de cylindres, de polylobés, d’anneaux, ou de sphères.
A l’étape c), optionnelle, la préforme est séchée.
La température maximale atteinte lors du cycle de séchage est inférieure à la température de dégradation du MOF ou à la plus faible température de dégradation des MOFs.
De préférence, la température maximale atteinte lors du cycle de séchage est supérieure à 50°C, de préférence supérieure à 80°C, et de préférence inférieure à 150°C, de préférence inférieure à 120°C.
De préférence encore, le cycle de séchage présente un palier à ladite température maximale atteinte. Le temps de maintien au palier est de préférence supérieur à 1 heure, de préférence supérieur à 2 heures et de préférence inférieur à 20 heures, de préférence inférieur à 12 heures.
Le séchage s’effectue de préférence sous air, à la pression atmosphérique. A l’étape d), la préforme subit un traitement thermique à une température inférieure à la température de dégradation du MOF ou à la plus faible température de dégradation des MOFs, de manière à obtenir un produit à base de MOF.
De préférence, la préforme est conformée de manière que la plus grande dimension du produit à base de MOF soit inférieure à 100 mm, de préférence inférieure à 80 mm, de préférence inférieure à 50 mm, de préférence inférieure à 30 mm, voire inférieure à 10 mm et/ou que la plus petite dimension du produit à base de MOF dans un plan perpendiculaire à la direction de la plus grande dimension soit supérieure à 100 pm (micromètres).
De préférence, la température maximale atteinte lors du cycle de traitement thermique est supérieure à la température de dégradation du MOF moins 170°C ou à la plus faible température de dégradation des MOFs moins 170°C, de préférence supérieure à la température de dégradation du MOF moins 150°C ou à la plus faible température de dégradation des MOFs moins 150°C, de préférence supérieure à la température de dégradation du MOF moins 130°C ou à la plus faible température de dégradation des MOFs moins 130°C, et de préférence inférieure à la température de dégradation du MOF moins 5°C ou à la plus faible température de dégradation des MOFs moins 5°C, de préférence inférieure à la température de dégradation du MOF moins 10°C ou à la plus faible température de dégradation des MOFs moins 10°C.
De préférence, tout en respectant les conditions décrites immédiatement précédemment, si la température de dégradation du ou des MOFs le permet, la température maximale atteinte lors du cycle de traitement thermique est supérieure à 150°C, de préférence supérieure à 180°C, de préférence supérieure à 200°C, et de préférence inférieure à 300°C, de préférence inférieure à 250°C.
De préférence encore, le cycle de traitement thermique présente un palier à ladite température maximale atteinte. Le temps de maintien au palier est de préférence supérieur à 0,5 heures, de préférence supérieur à 1 heure, de préférence supérieur à 2 heures, et de préférence inférieur à 10 heures, de préférence inférieur à 5 heures, de préférence inférieur à 4 heures.
Lorsque la poudre de MOF utilisée à l’étape a) est une poudre d’UiO-66, la température de dégradation dudit MOF étant sensiblement égale à 400°C, la température maximale atteinte lors du traitement thermique de l’étape d) est de préférence supérieure à 130°C, de préférence supérieure à 150°C, de préférence supérieure à 170°C, de préférence supérieure à 180°C, de préférence supérieure à 200°C, et inférieure à 395°C, de préférence inférieure à 390°C, de préférence inférieure à 300°C, de préférence inférieure à 250°C.
Lorsque la poudre de MOF utilisée à l’étape a) est une poudre d’HKUST-1 , la température de dégradation dudit MOF étant sensiblement égale à 260°C, la température maximale atteinte lors du traitement thermique de l’étape d) est de préférence supérieure à 90°C, de préférence supérieure à 110°C, de préférence supérieure à 130°C, de préférence supérieure à 150°C, de préférence supérieure à 180°C, de préférence supérieure à 200°C, et inférieure à 255°C, de préférence inférieure à 250°C.
Le traitement thermique s’effectue de préférence sous air, à la pression atmosphérique.
Dans un mode de réalisation, l’étape c) optionnelle et l’étape d) sont réalisées dans un même cycle thermique.
A l’issue de l’étape d), on obtient un produit à base de MOF. Ledit produit à base de MOF peut se présenter sous la forme de cylindres, de polylobés, d’anneaux, ou de sphères.
L’invention concerne également un produit à base de MOF comprenant, et de préférence constitué essentiellement par, voire constitué par, des particules liées par un liant, ledit liant comprenant de la boehmite, lesdites particules étant essentiellement des particules de MOF et éventuellement des particules d’un matériau céramique autre que la boehmite.
Un tel produit est notamment issu d’un procédé tel que précédemment décrit.
De préférence, le liant du produit à base de MOF selon l’invention comprend de la boehmite et une alumine hydratée et de préférence encore est constitué essentiellement par de la boehmite et une alumine hydratée.
Ainsi, la quantité de boehmite ou de boehmite et d’alumine hydratée dans ledit produit est inférieure à 11%, et de préférence est comprise entre 1 et 10% poids, de préférence est comprise entre 3 et 10% poids.
Dans le produit (ou objet macroscopique) à base de MOF selon l’invention, la boehmite et l’alumine hydratée contenues dans le liant peuvent être par exemple mis en évidence par diffraction X.
De préférence, le produit à base de MOF selon l’invention est constitué par des particules liées par un liant consistant essentiellement en de la boehmite et une alumine hydratée.
Dans un mode de réalisation, le produit à base de MOF selon l’invention est constitué par des particules liées par un liant comportant de la boehmite, lesdites particules étant pour plus de 90%, de préférence pour plus de 95%, de préférence pour plus de 97%, de préférence pour plus de 99%, de préférence encore pour plus de 99,5% en masse des particules de MOF, le complément aux particules de MOF étant des particules en un matériau céramique autre que la boehmite.
Dans un mode de réalisation préféré, le produit à base de MOF selon l’invention est constitué par des particules liées par un liant comportant, de préférence consistant essentiellement en de la boehmite et une alumine hydratée, lesdites particules étant pour plus de 90%, de préférence pour plus de 95%, de préférence pour plus de 97%, de préférence pour plus de 99%, de préférence encore pour plus de 99,5% en masse des particules de MOF, le complément aux particules de MOF étant des particules en un matériau céramique autre que la boehmite.
De préférence, le produit à base de MOF selon l’invention est constitué essentiellement par des particules de MOF liées par un liant comportant de la boehmite.
De préférence encore, le produit à base de MOF selon l’invention est constitué essentiellement par des particules de MOF liées par un liant comprenant, de préférence consistant essentiellement en de la boehmite et une alumine hydratée.
De préférence, lorsque le produit à base de MOF selon l’invention comporte des particules en un matériau céramique autre que la boehmite, lesdites particules sont des particules de Zr02, AI203, Si02, Ti02, ZnO, SiC, C, et leurs mélanges.
De préférence, les particules de MOF du produit à base de MOF selon l’invention sont des particules d’un MOF ou un mélange d’au moins deux populations de particules de MOF choisies parmi MOF-O, MOF-2, MOF-3, MOF-4, MOF-5, MOF-6, MOF-7, MOF-8 MOF-9, MOF-11 , MOF-12, MOF-20, MOF-25, MOF-26, MOF-31, MOF-32, MOF-33, MOF-34, MOF- 36, MOF-37, MOF-38, MOF-39, MOF-47, MOF-49, MOF-69a, MOF-69b, MOF-74, MOF-101, MOF-102, MOF-107, MOF-108, MOF-110, MOF-177, MOF-j, MOF-n, IRMOF-1 , IRMOF-2, IRMOF-3, IRMOF-4, IRMOF-5, IRMOF-6, IRMOF-7, IRMOF-8, IRMOF-9, IRMOF-10, IRMOF- 11 , IRMOF-12, IRMOF-13, IRMOF-14, IRMOF-15, IRMOF-16, IRMOF-17, IRMOF-18, IRMOF-19, IRMOF-20, AS16, AS27-2, AS32, AS54-3, AS61-4, AS68-7, BPR43G2, BPR48A2, BPR49B1, BPR68D10, BPR69B1, BPR73E4, BPR76D5, BPR80D5, BPR92A2, BPR95C5, UiO-66, UiO-67, UiO-68, N013, N029, NO305, NO306A, NO330, N0332, N0333, N0335, N0336, HKUST-1, MIL-100 et MIL101, de préférence choisies parmi UiO-66 et HKUST-1.
Dans un mode de réalisation, lorsque le produit à base de MOF selon l’invention comporte un mélange d’au moins deux populations de particules de MOF, au moins deux desdites populations de particules de MOF sont en un MOF différent.
De préférence, la température de dégradation du MOF, voire de chaque MOF, est supérieure à 250°C.
Le produit à base de MOF selon l’invention peut se présenter sous la forme de cylindres, de polylobés, d’anneaux, ou de sphères.
De préférence, la plus grande dimension du produit selon l’invention (ou l’objet macroscopique selon l’invention) à base de MOF selon l’invention est inférieure à 100 mm, de préférence inférieure à 80 mm, de préférence inférieure à 50 mm, de préférence inférieure à 30 mm, voire inférieure à 10 mm. De préférence encore, la plus petite dimension du produit selon l’invention (ou l’objet macroscopique selon l’invention) à base de MOF, dans un plan perpendiculaire à la direction de la plus grande dimension, est supérieure à 100 pm.
L’invention concerne aussi un produit à base de MOF obtenu ou susceptible d’être obtenu par le procédé selon l’invention.
Exemples
Les exemples non limitatifs suivants sont donnés dans le but d'illustrer l'invention.
Protocole de mesure
La capacité d’adsorption du toluène des exemples est mesurée classiquement à partir d’une courbe de percée réalisée en lit fixe, à température ambiante, dans un réacteur en verre présentant un diamètre égal à 14 mm, avec un flux de gaz composé d’hélium contenant 100 ppm de toluène, injecté à un débit de 6 litres par heure, la quantité des produits des exemples étant comprise entre 0,6 g et 1 g, lesdits produits étant préalablement séchés à 50°C pendant 15 minutes.
Le résultat est exprimé en mg de toluène par gramme de produit caractérisé.
La résistance à l’écrasement des exemples est évaluée à l’aide de la méthode suivante. Un échantillon du produit des exemples à caractériser (se présentant sous la forme d’un cylindre) est posé, sur une de ses faces circulaires (c’est-à-dire debout), sur le plateau inférieur d’une presse Shimadzu, modèle AGS-X, équipée d’un capteur 100 N. Le plateau supérieur de la presse descend ensuite à une vitesse égale à 0,5 mm/min jusqu’à l’écrasement de l’échantillon. La force maximale mesurée lors de l’écrasement de l’échantillon est la résistance à la compression de l’échantillon. Pour chacun des produits des exemples, cette opération est réalisée sur 5 cylindres. La valeur de résistance à la compression de l’exemple annoncée dans le tableau 1 est une moyenne arithmétique des 5 valeurs.
Protocole de fabrication
Les matières premières suivantes ont été utilisées pour la fabrication des exemples. une poudre de MOF UiO-66, commercialisée par la société Sigma Aldrich, présentant une taille médiane égale à 1 ,3 pm, pour les exemples 1 à 3, une suspension colloïdale de silice amorphe Nexsil 20K-30, commercialisée par la société Nyacol, présentant une charge solide égale à 30% en masse, pour l’exemple 1, hors invention, une poudre de boehmite Disperal P2, commercialisée par la société SASOL, pour l’exemple 2 selon l’invention et l’exemple 3 hors invention, de l’acide acétique glacial, commercialisé par la société Sigma Aldrich, pour les exemples 1 à 3.
Le produit de l’exemple 1 , hors invention, a été obtenu de la manière suivante. 1 ,67 g de silice colloïdale Nexsil 20K-30 est mélangée dans 5,83 g d’eau distillée à l’aide d’un agitateur à pales, puis 0,03 g d’acide acétique est ajouté. Ensuite, 9,5 g de UiO-66 sont ajoutés et l’ensemble est maintenu sous agitation pendant 1 heure. On obtient une charge de départ se présentant sous la forme d’une suspension homogène. Puis, ladite charge de départ est étalée sur une grille métallique d’épaisseur égale à 1 mm et perforée de trous circulaires de diamètre égal à 1,5 mm, puis raclée à l’aide d’une spatule de chaque côté de la grille de manière à ce que ladite charge de départ remplisse les trous de ladite grille. La grille est alors dite « chargée ». Après 24 heures de maintien à température ambiante, la grille chargée est séchée pendant 24 heures à 50°C. Le produit présent dans les trous de la grille est ensuite récupéré à l’aide de tapotements sur la grille. Il se présente sous la forme de cylindres. Puis lesdits cylindres sont séchés de la manière suivante : ils sont introduits dans une étuve à 250°C, sous air, et maintenus à cette température pendant 2 heures puis retirés. Après ledit séchage, le produit de l’exemple 1, hors invention, se présente sous la forme de cylindres de longueur moyenne égale à 0,8 mm et de diamètre moyen égal à 1 ,4 mm.
Le produit à base de MOF de l’exemple 2, selon l’invention, a été obtenu à l’aide du procédé selon l’invention, par sérigraphie de la manière suivante. A l’étape a), 0,50 g de boehmite Disperal P2 est mélangée dans 7,00 g d’eau distillée à l’aide d’un agitateur à pales, puis 0,03 g d’acide acétique est ajouté. Ensuite, 9,50 g de MOF UiO-66 sont ajoutés et l’ensemble est maintenu sous agitation pendant 1 heure. La charge de départ se présente alors sous la forme d’une suspension homogène. A l’étape b), la charge de départ est étalée sur une grille métallique d’épaisseur égale à 1 mm et perforée de trous circulaires de diamètre égal à 1 ,5 mm, puis raclée à l’aide d’une spatule de chaque côté de la grille de manière à ce que ladite charge de départ remplisse les trous de ladite grille. La grille est alors dite « chargée ». A l’étape c), après 24 heures de maintien à température ambiante, la grille chargée est séchée pendant 24 heures à 50°C. Le produit présent dans les trous de la grille est ensuite récupéré à l’aide de tapotements sur la grille. Il se présente sous la forme de cylindres. Puis à l’étape d), lesdits cylindres sont séchés de la manière suivante ils sont introduits dans une étuve à 250°C, sous air, et maintenus à cette température pendant 2 heures puis retirés. Après ledit séchage, le produit de l’exemple 2, selon l’invention, se présente sous la forme de cylindres de longueur moyenne égale à 0,8 mm et de diamètre moyen égal à 1,4 mm.
Le produit de l’exemple 3, hors invention, a été obtenu de la manière suivante. 1,10 g de boehmite Disperal P2 est mélangée dans 7,00 g d’eau distillée à l’aide d’un agitateur à pales, puis 0,03 g d’acide acétique est ajouté. Ensuite, 8,90 g de MOF UiO-66 sont ajoutés et l’ensemble est maintenu sous agitation pendant 1 heure. On obtient une charge de départ se présentant sous la forme d’une suspension homogène. Puis, ladite charge de départ est étalée sur une grille métallique d’épaisseur égale à 1 mm et perforée de trous circulaires de diamètre égal à 1,5 mm, puis raclée à l’aide d’une spatule de chaque côté de la grille de manière à ce que ladite charge de départ remplisse les trous de ladite grille. La grille est alors dite « chargée ». Après 24 heures de maintien à température ambiante, la grille chargée est séchée pendant 24 heures à 50°C. Le produit présent dans les trous de la grille est ensuite récupéré à l’aide de tapotements sur la grille. Il se présente sous la forme de cylindres. Puis lesdits cylindres sont séchés de la manière suivante : ils sont introduits dans une étuve à 250°C, sous air, et maintenus à cette température pendant 2 heures puis retirés. Après ledit séchage, le produit de l’exemple 3, hors invention, se présente sous la forme de cylindres de longueur moyenne égale à 0,8 mm et de diamètre moyen égal à 1 ,4 mm.
Le tableau 1 suivant résume les résultats obtenus. [Tableau 1]
Figure imgf000015_0001
(*) : hors invention
Une comparaison de l’exemple 1 comparatif, et de l’exemple 2 selon l’invention, montre que le produit de l’exemple 2 présente une résistance à la compression égale à 7N, bien supérieure à celle du produit de l’exemple 1 égale à 1 N, les deux produits présentant une capacité d’adsorption du toluène voisines.
Une comparaison de l’exemple 2 selon l’invention et de l’exemple 3 hors invention montre que le produit de l’exemple 2, fabriqué par un procédé selon l’invention dans lequel la charge de départ présente une quantité de boehmite telle que le rapport massique de la quantité de ladite boehmite sur la quantité totale de boehmite et de poudre de MOF égale à 5%, présente une résistance à la compression égale à 7N, voisine de la résistance à la compression du produit de l’exemple 3 égale à 8N, ledit produit de l’exemple 3 étant fabriqué par un procédé dans lequel la charge de départ présente une quantité de boehmite telle que le rapport massique de la quantité de ladite boehmite sur la quantité totale de boehmite et de poudre de MOF égale à 11%. Bien entendu, l'invention n'est pas limitée aux modes de réalisation décrits, fournis seulement à des fins d'illustration.

Claims

REVENDICATIONS
1. Produit à base de MOF, ledit produit comprenant des particules liées par un liant, ledit liant comprenant de la boehmite, lesdites particules étant essentiellement des particules de MOF et éventuellement des particules d’un matériau céramique autre que la boehmite.
2. Produit à base de MOF selon la revendication précédente, dans lequel la quantité de boehmite dans ledit produit est inférieure à 11%, et de préférence est comprise entre 1 et 10% poids, de préférence est comprise entre 3 et 10% poids.
3. Produit à base de MOF selon l’une des revendications précédentes, ledit produit comprenant des particules liées par un liant, ledit liant étant constitué essentiellement par, de préférence constitué par de la boehmite ou de la boehmite et une alumine hydratée.
4. Produit à base de MOF selon l’une des revendications précédentes, ledit produit comportant des particules liées par un liant, ledit liant consistant essentiellement en de la boehmite et une alumine hydratée.
5. Produit à base de MOF selon l’une des revendications précédentes, dans lequel plus de 90% en masse des particules liées par ledit liant sont des particules de MOF.
6. Produit à base de MOF selon l’une des revendications précédentes, dans lequel lesdites particules en un matériau céramique autre que la boehmite, sont des particules d’un matériau choisi parmi ZrÛ2, AI2O3, S1O2, T1O2, ZnO, SiC, C.
7. Produit à base de MOF selon l’une des revendications précédentes, ledit produit consistant essentiellement en des particules liées par un liant, ledit liant consistant essentiellement en de la boehmite et une alumine hydratée, les particules étant de préférence essentiellement des particules de MOF.
8. Produit à base de MOF selon l’une des revendications précédentes, dans lequel les particules de MOF sont des particules d’un MOF ou un mélange d’au moins deux populations de particules de MOF choisies parmi MOF-0, MOF-2, MOF-3, MOF-4, MOF-
5, MOF-6, MOF-7, MOF-8 MOF-9, MOF-11, MOF-12, MOF-20, MOF-25, MOF-26, MOF- 31, MOF-32, MOF-33, MOF-34, MOF-36, MOF-37, MOF-38, MOF-39, MOF-47, MOF-49, MOF-69a, MOF-69b, MOF-74, MOF-101, MOF-102, MOF-107, MOF-108, MOF-110, MOF-177, MOF-j, MOF-n, IRMOF-1, IRMOF-2, IRMOF-3, IRMOF-4, IRMOF-5, IRMOF-
6, IRMOF-7, IRMOF-8, IRMOF-9, IRMOF-10, IRMOF-11, IRMOF-12, IRMOF-13, IRMOF- 14, IRMOF-15, IRMOF-16, IRMOF-17, IRMOF-18, IRMOF-19, IRMOF-20, AS16, AS27- 2, AS32, AS54-3, AS61-4, AS68-7, BPR43G2, BPR48A2, BPR49B1, BPR68D10, BPR69B1, BPR73E4, BPR76D5, BPR80D5, BPR92A2, BPR95C5, UiO-66, UiO-67, UiO- 68, N013, N029, NO305, NO306A, NO330, N0332, N0333, N0335, N0336, HKUST-1, MIL-100 et MIL101.
9. Produit à base de MOF selon l’une des revendications précédentes, dans lequel la plus grande dimension dudit produit est inférieure à 100 mm et/ou la plus petite dimension dudit produit selon un plan perpendiculaire à la direction de sa plus grande dimension est supérieure à 100 micromètres.
10. Procédé d’obtention d’un produit à base de MOF selon l’une des revendications précédentes, comprenant les étapes suivantes : a) mélange de matières premières pour former une charge de départ, ladite charge de départ comportant une poudre de MOF ou un mélange d’au moins deux poudres de MOF, une poudre de boehmite et optionnellement une poudre d’un autre matériau céramique, la quantité de boehmite étant telle que le rapport massique de la quantité de boehmite sur la quantité totale i) de boehmite, ii) de la ou des poudre(s) de MOF et iii) éventuellement de la poudre dudit autre matériau céramique est supérieur ou égal à 1% et inférieur à 11%, la quantité de poudre dudit autre matériau céramique étant telle que le rapport massique de la quantité de ladite poudre sur la quantité totale de la ou des poudre(s) de MOF et éventuellement de la poudre dudit autre matériau céramique est inférieure ou égale à 10%, b) mise en forme de ladite charge de départ, de manière à obtenir une préforme, c) optionnellement, séchage de ladite préforme, d) traitement thermique de ladite préforme à une température inférieure à la température de dégradation du MOF ou à la plus faible température de dégradation des MOFs.
11. Procédé d’obtention d’un produit à base de MOF selon la revendication précédente, dans lequel le rapport massique de la quantité de boehmite sur la quantité totale i) de boehmite, ii) de la ou des poudre(s) de MOF et iii) de la poudre optionnelle dudit autre matériau céramique est supérieur ou égal à 3% et inférieur à 11%.
12. Procédé d’obtention d’un produit à base de MOF selon l’une des revendications 10 ou 11, dans lequel la charge de départ ne contient pas de poudre de matériau céramique autre que la boehmite.
13. Procédé d’obtention d’un produit à base de MOF selon l’une des revendications 10 à 12, dans lequel la boehmite de la charge de départ est peptisée.
14. Procédé d’obtention d’un produit à base de MOF selon l’une des revendications 10 à 13, dans lequel la charge de départ est constituée de la ou des poudre(s) de MOF, la boehmite, la poudre optionnelle dudit matériau céramique autre que la boehmite, un solvant, un acide, un liant organique, un plastifiant, un lubrifiant et des particules porogènes.
15. Procédé d’obtention d’un produit à base de MOF selon l’une des revendication 10 à 14, comportant une étape c) de séchage.
16. Procédé d’obtention d’un produit à base de MOF selon l’une des revendications 10 à 15, dans lequel la température maximale atteinte lors de l’étape d) de traitement thermique est supérieure à la température de dégradation du MOF moins 170°C ou à la plus faible température de dégradation des MOFs moins 170°C et inférieure à la température de dégradation du MOF moins 5°C ou à la plus faible température de dégradation des MOFs moins 5°C.
17. Dispositif comportant un produit selon l’une des revendications 1 à 9, ledit dispositif étant choisi parmi un dispositif de filtration des liquides, dispositif de filtration des gaz, dispositif de stockage des liquides, dispositif de stockage des gaz, support de catalyseur.
PCT/FR2021/051396 2020-07-27 2021-07-26 Produit a base de mof et procede de fabrication de produits a base de mof WO2022023660A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/006,993 US20230271158A1 (en) 2020-07-27 2021-07-26 Mof-based product and method for producing mof-based products
EP21758403.6A EP4188594A1 (fr) 2020-07-27 2021-07-26 Produit a base de mof et procede de fabrication de produits a base de mof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2007897A FR3112698B3 (fr) 2020-07-27 2020-07-27 Produit à base de MOF et procédé de fabrication de produits à base de MOF
FRFR2007897 2020-07-27

Publications (1)

Publication Number Publication Date
WO2022023660A1 true WO2022023660A1 (fr) 2022-02-03

Family

ID=73793303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051396 WO2022023660A1 (fr) 2020-07-27 2021-07-26 Produit a base de mof et procede de fabrication de produits a base de mof

Country Status (4)

Country Link
US (1) US20230271158A1 (fr)
EP (1) EP4188594A1 (fr)
FR (1) FR3112698B3 (fr)
WO (1) WO2022023660A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140208650A1 (en) * 2013-01-31 2014-07-31 Basf Se Metal-Organic Framework Extrudates With High Packing Density And Tunable Pore Volume

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140208650A1 (en) * 2013-01-31 2014-07-31 Basf Se Metal-Organic Framework Extrudates With High Packing Density And Tunable Pore Volume

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GRANDE CARLOS A. ET AL: "Multiscale investigation of adsorption properties of novel 3D printed UTSA-16 structures", CHEMICAL ENGENEERING JOURNAL, vol. 402, 8 July 2020 (2020-07-08), AMSTERDAM, NL, pages 126166, XP055786086, ISSN: 1385-8947, DOI: 10.1016/j.cej.2020.126166 *

Also Published As

Publication number Publication date
US20230271158A1 (en) 2023-08-31
FR3112698A3 (fr) 2022-01-28
FR3112698B3 (fr) 2022-07-22
EP4188594A1 (fr) 2023-06-07

Similar Documents

Publication Publication Date Title
EP0073703B1 (fr) Composition d'alumine pour le revêtement d'un support de catalyseur son procédé de préparation et le support de catalyseur obtenu
EP2059339B1 (fr) Composition a réductibilité élevée à base d'un oxyde de cérium nanométrique sur un support, procédé de préparation et utilisation comme catalyseur
EP0145584B1 (fr) Procédé catalytique pour le traitement des gaz d'échappement
EP3043902B1 (fr) Adsorbants zéolithiques de haute surface externe comprenant du baryum et/ou due potassium et leurs utilisations
CA2918929C (fr) Materiau zeolithique a base de zeolithe mesoporeuse
EP1735242A1 (fr) Composition a base d'oxydes de zirconium et d'yttrium, procede de preparation et utilisation dans un systeme catalytique
EP0055164B1 (fr) Procédé de préparation d'agglomérés d'alumine
WO2005082782A2 (fr) Composition a base d'oxydes de zirconium, de praseodyme, de lanthane ou de neodyme, procede de preparation et utilisation dans un systeme catalytique
WO2018115749A1 (fr) Produits céramiques poreux de sous oxydes de titane
WO2010037963A1 (fr) Procede de fabrication d'un materiau poreux en sic
FR3010072A1 (fr) Materiau zeolithique a base de zeolithe mesoporeuse
FR2634757A1 (fr) Procede de fabrication d'agglomeres d'alumine et agglomeres obtenus
FR2907348A1 (fr) Utilisation d'alumines comme masse de captation de complexes organometalliques du silicium
EP4188594A1 (fr) Produit a base de mof et procede de fabrication de produits a base de mof
WO2021245356A1 (fr) Liant pour composition de moulage par injection
FR3086953A1 (fr) Billes frittees en carbure(s) de tungstene
WO2021122201A1 (fr) Support catalytique comprenant des microsphères creuses
FR3064998A1 (fr) Produit poreux ceramique
EP3415483B1 (fr) Procédé de préparation de solides à partir d'un mélange d'au moins deux poudres de malachite
FR3110907A1 (fr) Procédé de synthèse d’une zéolithe IZM-6 en présence d’un structurant organique azoté
WO2022269184A1 (fr) Procede de fabrication de produit a base de mof et poudre de grains en un produit a base de mof
EP3415232A1 (fr) Procede de preparation de solides a partir d'un melange d'au moins une poudre de malachite et une poudre d'oxyde et utilisation de ces solides
EP4247552A1 (fr) Procede de preparation d'un catalyseur a base de zeolithe de code structural mfi presentant une densite et une tenue mecanique ameliorees
WO2023089164A1 (fr) Materiau comprenant une silice mise en forme par extrusion avec un liant phosphopotassique ou phosphate de cesium presentant des proprietes mecaniques ameliorees et son procede de preparation
FR3065651A1 (fr) Procede de preparation d'un monolithe a porosite multimodale

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21758403

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021758403

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021758403

Country of ref document: EP

Effective date: 20230227