WO2022023632A1 - Procédé de détection de discontinuités et système mettant en oeuvre ce procédé - Google Patents

Procédé de détection de discontinuités et système mettant en oeuvre ce procédé Download PDF

Info

Publication number
WO2022023632A1
WO2022023632A1 PCT/FR2021/051187 FR2021051187W WO2022023632A1 WO 2022023632 A1 WO2022023632 A1 WO 2022023632A1 FR 2021051187 W FR2021051187 W FR 2021051187W WO 2022023632 A1 WO2022023632 A1 WO 2022023632A1
Authority
WO
WIPO (PCT)
Prior art keywords
transducers
signals
medium
probe
reception
Prior art date
Application number
PCT/FR2021/051187
Other languages
English (en)
Inventor
Philippe Coperet
Liévin Camus
Jean-Marc CARPEZA
Original Assignee
Socomate International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Socomate International filed Critical Socomate International
Priority to EP21745368.7A priority Critical patent/EP4189380B1/fr
Priority to US18/014,652 priority patent/US20230273161A1/en
Priority to CA3188943A priority patent/CA3188943A1/fr
Priority to CN202180059202.1A priority patent/CN116171382A/zh
Publication of WO2022023632A1 publication Critical patent/WO2022023632A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/015Attenuation, scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays

Definitions

  • the present invention relates to a method for detecting discontinuity in a product, in particular by using probing by ultrasonic waves.
  • patent document FR 2830 328 shows a method for detecting discontinuities using several beams simultaneously in several directions, but such a method generates interference in receptions, and the signal-to-noise ratio is degraded compared to a single-beam method.
  • the aim of the present invention is to improve discontinuity detection methods of this type, in particular to improve the quality of detection at high speed.
  • the discontinuity detection method according to the present disclosure is implemented using a probe comprising a plurality of transducers forming an active surface and adapted to emit and receive an ultrasonic wave in the medium, and the method comprising the steps of:
  • a transmission sequence in which: a plurality of transmitting transducers are chosen from among the transducers of the probe, each transmitting transducer of the plurality of transmitting transducers having a determined spatial position such that the spatial positions of the plurality of transducers emitters are distributed uniformly and randomly over the active surface of the probe, and for each emitter transducer of the plurality of emitter transducers, a time offset is defined such that the time offsets of the plurality of emitter transducers are distributed in such a way uniform and random over a predetermined transmission duration,
  • a focusing delay corresponding to a determined focusing law for the transmitting transducer is calculated, for a desired sounding target point in the medium, and taking into account the time shift of the transmitter transducer considered, a focused signal is calculated for each transmitter transducer which is the sum of the signals in reception from the plurality of transducers of the probe, realigned by the focusing delay, a synthetic signal is calculated which is the sum of the focused signals of all the emitting transducers, and the synthetic signal is analyzed to deduce therefrom a detection level in the medium at the target point, and the detection is deduced therefrom of a discontinuity.
  • the probing method causes little interference, and the quality of detection is improved, particularly at high speed.
  • this method only needs a single transmission sequence.
  • the detection and/or the image is totally carried out in post-processing, and the particular sequence and possibly its processing makes it possible to avoid interference between the recorded received signals as much as possible and/or to reduce the effects of this interference, which allows to provide fast and accurate discontinuity detection (amplitude of the detection level).
  • the method further comprises, before calculating the focused signal, a step in which the interference between several discontinuities is reduced, by the process consisting in:
  • the model curve is a polynomial curve.
  • the focusing delay is determined as a function of the speed of movement of the medium relative to the probe, or vice versa.
  • the processing of the signals in reception is iterated for a plurality of target points to establish an image of the medium representative of the different levels of detection in said target points.
  • the present disclosure also relates to a discontinuity detection system which implements the above method.
  • This system comprises a probe comprising a plurality of transducers suitable for transmitting and receiving an ultrasonic wave in the medium, and a processing unit connected to the probe, this processing unit comprising at least one memory for recording signals in reception, a controller to implement the process.
  • FIG. 1 is a general block diagram of an example of a system implementing the method according to the invention
  • FIG. 2 is a timing diagram of the signals from the selected transmitter transducers of an example of transmission sequence of the method
  • FIG. 3 is a timing diagram of the signals received from the transducers of the probe according to the method
  • FIG. 4 is a time diagram of the phased signals obtained by the focusing delays applied to the reception signals of Figure 3;
  • FIG. 5 is a block diagram of the summation block of Figure 1;
  • FIG. 6 is an example of a focused signal obtained by summing the phased signals
  • FIG. 7 is a time diagram of the calculated focused signals and relating to the selected transmitter transducers
  • FIG. 8 is an example of a synthetic signal time plot calculated by summation of the focused signals of FIG. 7;
  • FIG. 9 is a timing diagram of the signals in reception in the case of several discontinuities in the medium and a single excitation by a single transmitter transducer;
  • FIG. 10 is an example of plotting a maximum curve as a function of the transducers for a target point on a first discontinuity.
  • the system 100 is a system for detecting discontinuity in a medium M.
  • the medium M is for example a product such as a metal part which may comprise at the inside its material one or more discontinuities or defects, such as one or more air inclusions or cracks.
  • the aim of the system and method is therefore to detect these discontinuities or defects.
  • detection we mean for example obtaining information on the presence of a discontinuity, and/or obtaining distance information and/or obtaining position information with respect to the system, and/or obtaining information on the shape of the discontinuity.
  • the product corresponding to the medium M moves at a relative speed with respect to the system 100, which imposes a very rapid detection of a discontinuity. It is important not to miss such a detection for the reliability of product control.
  • the system and method according to the present disclosure apply for example to the non-destructive testing of metal products or parts such as tubes, railway rails.
  • the system and method is optionally used during the movement of said product or during the movement by rolling on the rail.
  • FIG. 1 is an example of a functional block diagram of the system 100 which presents various processing blocks.
  • the system 100 can optionally be broken down into different functional blocks, but repeating the essential functions of the example of the system 100 described below.
  • the system 100 comprises a probe 10 which exchanges signals with a processing unit 20 connected to the probe by an electrical or optical wired link, or a wireless link, for example by radio wave.
  • the probe 10 can be located at a distance from the processing unit 20.
  • the probe 10 and the processing unit 20 are integrated into a single device, or part of the elements (functions) of the processing unit are located in the probe 10 .
  • the N transducers Tn are for example aligned along a longitudinal direction X as in FIG. 1.
  • the number N of transducers is for example between a few tens and a few hundreds.
  • a transducer Tn of the probe has a spatial position marked by the abscissa xn of this transducer along the longitudinal direction X of the probe.
  • the depth direction Z perpendicular to the longitudinal direction X corresponds to the position in depth in the medium from an origin O placed on the outer surface of the medium M, at the level of the contact between the probe 10 and the medium M. origin O, the longitudinal direction X and the depth direction Z form a frame in which elements can be located by spatial coordinates (x,z).
  • the probe 10 can be a curved probe in the form of an arc of a circle, a matrix probe in the plane shape of NxP transducers, or a matrix probe in the form of a section of a cylinder, or any other probe shape.
  • the system and method described herein will be readily adapted to such a probe.
  • the product is for example either static, or in translational displacement or in rotational displacement relative to the probe 10 of the system, or the reverse (probe which moves relative to the product).
  • the probe 10 is brought into direct or indirect contact by its active surface with an external surface of the medium M.
  • Each transducer Tn of the probe 10 is an element adapted to emit an emission wave in medium M and/or to receive a return wave in the medium in response to the nature of the medium.
  • the wave is usually an ultrasonic wave.
  • an emitting transducer Te of index e and coordinates (xe, 0) emits an emission wave Em towards a target point C inside the medium, and the medium returns from this target point C a return wave Re for example towards a receiver transducer Tr of index r and coordinates (xr, 0).
  • a ROI area of interest for probing discontinuities or defects in the medium is defined.
  • Such a zone of interest is for example rectangular with sides parallel to the directions of the marker.
  • Transducers Tn of probe 10 receive signals to transmit the transmit wave and generate signals when receiving the return wave.
  • the transducers of the probe 10 are thus connected to a transmission-reception module 110 (also identified by "T/R").
  • the transmission-reception module 110 switches to the transducers either the transmission signals prepared by the system in a transmitter control unit 113 (also identified by “Em” in the figure), or the reception signals coming from the transducers to one or more analog-digital converters 120 (also identified by "A/D” in the figure) which digitize and convert these analog type reception signals into digital data, these digital data then being recorded in one or more memories 130 (also identified by "Mem” in the figure) of the system.
  • Transmission-reception modules 110 are known and make it possible to use the transducers of a probe 10 sequentially either in transmission or in wave reception. They also include, for example, and without being limited to:
  • transmission pulsers which generate the transmission signals, typically pulses of programmable amplitude and time width, and - in the reception chain of amplifiers with programmable gain and anti-aliasing filters.
  • Emission signals and waves are typically pulses of short duration. These pulses are, for example, single or multiple rectangular signals, possibly of variable amplitudes, or signals modulated according to one or more frequencies or a combination of such signals.
  • the return waves and signals are return echoes corresponding to these emission impulses and deformed by the transmission of the medium. For simplicity in the explanations, we will speak more generally of impulses for each other.
  • the system 100 further comprises a synchronization module 114 (also identified by "Synch” in the figure) connected to the analog-to-digital converters 120 and to the memory 130 which makes it possible to trigger the digitizations (analog-to-digital conversions). digital) of the signals in reception in digital data and their recordings in the memory 130.
  • a synchronization module 114 also identified by "Synch” in the figure
  • the system 100 can optionally include an interference reduction block 150 (also identified by "IRB” in the figure) connected to the memory 130, and whose function is to modify the digital data of the signals in reception in order to eliminate or reduce interference in the reception signals due to the presence of several discontinuities or defects in the medium, by correcting the digital data.
  • an interference reduction block 150 also identified by "IRB” in the figure
  • This interference reduction block will be described in more detail below.
  • the system 100 then comprises a summation block 200 (also identified by "Accu” in the figure) connected to the preceding memory block 130 and/or to the interference reduction block 150, and which performs the calculation of the response of the medium at one or more target points C, either directly from the data of the memory 130, or from corrected data coming from the interference reduction block 150, or from a combination of the two.
  • the summation block 200 then provides a response to a monitor, screen, or any display device 117 (also identified by "Mon” in the figure) to inform the user of the system of one or more information concerning discontinuities or defects of the environment (presence, position, shape, image, etc.). This summing block 200 will be described in more detail below.
  • the system 100 comprises a delay calculator 115 (also identified by "R" in the figure) which determines the time delays or index of the position in the memory 130 of the extracts of the digital data (ie signals in reception) useful for the following blocks, i.e. the interference reduction block 150 and/or the summation block 200.
  • a delay calculator 115 also identified by "R” in the figure
  • the system 100 also optionally includes a dynamic speed corrector 116 (also identified by "Corr” in the figure) which uses a product speed measurement measured by one or more sensors (not shown) and connected to the delay calculator 115 to compensate for the displacement of the product (ie of the medium) during the propagation of the emission wave Em from the probe 10 towards the target point C and during the propagation of the return wave Re from the target point C towards the probe 10 .
  • a dynamic speed corrector 116 also identified by "Corr” in the figure
  • the delay calculator 115 uses a product speed measurement measured by one or more sensors (not shown) and connected to the delay calculator 115 to compensate for the displacement of the product (ie of the medium) during the propagation of the emission wave Em from the probe 10 towards the target point C and during the propagation of the return wave Re from the target point C towards the probe 10 .
  • a controller 300 (also identified by "Contr” in the figure) is linked to the various previous blocks to ensure general operation. More specifically, the controller 300 is connected to a transmitter control unit 113 to transmit the transmission wave Em according to a transmission procedure predetermined by the user, to the synchronization module 114 to ensure the correct acquisition of the return wave Re, to the delay calculator 115 to ensure combinations of signals in reception adapted to the desired focus, to the dynamic speed corrector 116, to the interference reduction block 150 to provide it with user's operating parameters, to the channel-forming block to control its calculation and correction parameters, and to the screen 117 to format various displays and piloting elements of the system 100.
  • controller 300 and the driver unit 113 of the system 100 construct a particular emission wave emission sequence Em.
  • emitting transducers Te each generate a pulse with a predetermined time shift so that the emission wave generated is physically a wave focused towards a target point in the medium.
  • transmission wave shots are carried out successively, each followed by waiting for the return wave and recording of the reception signals to scan multiple points in the medium and possibly construct an image thereof.
  • This technique therefore involves numerous emission wave shots.
  • This method is particularly temporally slow to probe a large area of interest or with a spatially precise resolution.
  • it makes it almost impossible to probe a product which is moving at a non-negligible speed in front of the probe.
  • one or more shots of unfocused waves such as a plane wave are used to scan an area of interest in the medium.
  • the processing of the signals of the return wave makes it possible to obtain information and to generate a fast image of the area of interest.
  • the quality of the images generated is not of good quality because the energy of the emission wave being very spatially distributed, the signal-to-noise ratio is degraded.
  • the present disclosure therefore proposes a particular emission sequence in which a certain number of emitting transducers Te are chosen in the probe 10 in a quasi-random manner, and/or the impulses of the emission signals of these emitting transducers are shifted by a quasi-random time lag te.
  • the signals in reception will have little temporal coherence and little symmetry and the spatial and temporal interference of the signals in reception is reduced, in particular in the presence of several discontinuities in the middle of the product. This therefore makes it possible to improve the quality of the detection of said discontinuities (information or image).
  • this transmission sequence makes it possible to probe substantially the entire ROI zone of interest of the medium using a single emission shot and the return wave from this shot. This technique is therefore fast and suitable for sounding product moving relative to the probe 10 of the system, for example at a speed V. This speed V is assumed to be substantially constant during the sounding process.
  • This transmission sequence is produced for example according to the following process:
  • Ne transmitting transducers Te is chosen from among the N transducers Tn of the probe 10, each transmitting transducer of the plurality of transmitting transducers having a xed spatial position determined in such a way that the spatial positions of the plurality of transmitting transducers are distributed uniformly and randomly on the active surface of the probe 10, and
  • each transmitting transducer Te of the plurality of Ne transmitting transducers a time shift te such that the time shifts te of the plurality of Ne transmitting transducers are distributed in a uniform and random manner over a predetermined transmission duration DTe, corresponding to the maximum duration of a shot in the middle Mr.
  • This transmission sequence thus defines transmission transducers Te and time lags te, each of the time lags being associated respectively with a transmitter transducer of the plurality of transmitter transducers.
  • the transmission sequence therefore defines wave transmissions (ultrasound) for transmitting transducers Ne, at time instants te with respect to an initial reference instant t0 for the transmission sequence.
  • Each emission from an emitting transducer Te of the sequence is an impulse of very short duration.
  • the number Ne of transmitter transducers Te selected is two or more.
  • the number Ne of transmitter transducers Te selected is greater than or equal to five or ten, and this number depends on the number N of transducers of the probe. This number Ne of transmitting transducers is less than the number of transducers N of the probe.
  • the number Ne of transmitter transducers Te selected is between 0.05.N and 0.25.N, that is to say between 5% and 25% of the transducers of the probe 10.
  • the transducers it is possible to obtain better qualities of detection of the discontinuities.
  • the technician will adjust the density of the transmitter transducers and the density of the signals of the transmission sequence according to a compromise to improve the quality of detection and according to the application.
  • These spatial and temporal distributions are said to be “uniformly and randomly", which means that the emissions are substantially well spaced from each other, but with random differences or deviations, in the spatial dimension and the temporal dimension.
  • these emission distributions are not regularly spaced or periodic in these two dimensions. These emission distributions are also not purely random, since they are preferably spaced from each other.
  • FIG. 2 illustrates an example of such an emission sequence, for a probe 10 having 64 transducers for which four (4) emitting transducers Te are chosen.
  • FIG. 2 represents the plots of the four emission signals of the four chosen emitting transducers, here, the index transducers 5, 26, 40 and 61.
  • the emission signals of the other transducers can therefore be damaged and they are therefore not represented in FIG. 2.
  • These transmission signals are pulses starting at respective instants te, te26, te4o and te 6i , these instants being quasi-random or rather uniformly and randomly distributed over the transmission duration DTe.
  • the indices of the transmitting transducers Te are distributed in a quasi-random manner among the possible indices 1...64 of the transducers of the probe 10, or rather distributed in a uniform and random manner in the possible indices of the transducers.
  • a first technique for obtaining a uniform and random distribution, according to the spatial or temporal dimension is to simply define a random value in the interval of the size of the spatial or temporal dimension; that is to say :
  • a second technique for obtaining a uniform and random distribution is to divide the spatial or temporal dimension into a number NI of contiguous intervals of constant and equal sizes, and to define a random value in each of said intervals.
  • each of the NI intervals of the spatial or temporal dimension contains only one element.
  • a third technique to obtain a uniform and random distribution is to divide the spatial or temporal dimension into a number NI of contiguous intervals of constant and equal sizes, and to define a value in each of said intervals with respect to a median value MI of each interval.
  • the value is equal to the median value to which is added a random value corresponding to a deviation from said median value.
  • the random value can take positive or negative values, and its amplitude can for example be limited to half the size of the interval.
  • each of the NI intervals of the spatial or temporal dimension contains only one element, but this element is placed around a central value (which is the median value of the interval), with a gap that can be driven by the set amplitude. All these techniques are to be implemented by a technician in the field with knowledge of mathematics. But, it can also use other techniques of uniform and random distribution of values in spatial and temporal space.
  • the technician will be able to determine by at least one of these techniques transmitter transducers Te in a predetermined number in the number of transducers N of the probe, and will be able to determine by at least one of these techniques the time offsets te associated with these transmitter transducers , each of these time offsets being distributed between zero and Dte (the transmission duration).
  • the number of intervals NI quoted above is equal to the predetermined (chosen) number Ne of transmitter transducers Te.
  • the transmission sequence defined according to the present disclosure makes it possible to reduce the number of interferences between pulses in the received signals, and makes it possible to improve the detection of discontinuities, as will be more apparent with the following explanations.
  • the memory 130 of the system 100 contains the N reception signals in the form of digital data, which constitutes a complete capture matrix of the medium M for the Ne emissions from the emitting transducers Te during the emission sequence, these emissions each being shifted from time lag te in the shooting of this emission sequence.
  • FIG. 3 represents, for example, the N reception signals sr obtained and stored in memory 130 following transmissions from four transmitting transducers Te as represented in FIG. 2, in the presence of a single discontinuity or defect in the medium M of the product.
  • FIG. 3 represents in a simplified way a part of the 64 signals in reception sri to sr64, to avoid too great a density of plots in this figure.
  • this figure and the following ones assume the case of a linear probe, which simplifies the distribution of the signals.
  • N transducers of the curves which do not intersect and corresponding to the returns of the Ne emission impulses are parallel curved lines, that is to say which are separated from each other in the temporal direction, by a constant which depends on the temporal variations at the emission and on the position of the discontinuity in the environment.
  • Each of these N reception signals comprises Ne pulses, corresponding to the Ne returns of the single discontinuity on the corresponding reception transducer.
  • the temporal spacings of these pulses depend on the temporal distribution of the Ne emissions but also on the spatial position of the single discontinuity in the medium M.
  • the temporal offsets between two signals in reception of two reception transducers Tr only depend on the spatial position of the unique discontinuity in the medium M.
  • the controller 300 extracts portions of the N signals in reception from the memory 130 for a target point C, a transmitter transducer Te and a receiver transducer Tr, by programming the delay calculator 115 with a focusing delay calculation, denoted Delay.
  • This focusing delay calculation is for example the following:
  • Delay te + tem + tre + tadj in which: te is the time shift of the emission from a transmitting transducer, tem is the time of the outward journey of the transmission wave from a transmitting transducer Te towards the point target C in the ROI area of interest, tre is the return travel time of the wave from return from the target point C to any transducer of the probe 10, and tadj is a resetting time on the maximum of the signals in reception.
  • Va is the speed of the transmission wave in the medium for the outward path between a transmitter transducer Te and the target point C,
  • Vr is the velocity of the return wave in the medium for the return path between the target point C and a receiving transducer Tr
  • sqrt is the square root mathematical function
  • the focus delay of the present disclosure is a receive channel-forming calculation, but it differs from a usual receive channel-forming delay by the addition of the time offset te used in the transmit sequence for each transducer. Te transmitter.
  • the preceding delay calculation can be expressed as a memory index in the memory 130 by multiplying the forward travel time tem, the return travel time tre and the time offset te by a sampling frequency Fs in the case of a system sampled with such a constant sampling frequency.
  • formulations for the delay calculations are possible and accessible to the technician in the field.
  • these formulations depend on the geometry of the probe, which modifies the distances of the outward path for the emission wave and of the return path for the transmission wave. return.
  • these formulations depend on taking into account an intermediate medium between the probe and the medium of the product, which also modifies the calculations of distances in the paths.
  • the controller 300 therefore causes the delay calculator 115 to calculate the focusing delay of the N signals in reception of the memory 130 for a target point C and a transmitter transducer Te and a receiver transducer Tr and it extracts from the memory 130 extracts of signals corresponding to a focusing at the target point C of the area of interest ROI.
  • the delay calculator 115 calculates the focusing delay of the N signals in reception of the memory 130 for a target point C and a transmitter transducer Te and a receiver transducer Tr and it extracts from the memory 130 extracts of signals corresponding to a focusing at the target point C of the area of interest ROI.
  • sp signals phased in reception
  • the previous extraction of the phased signals in reception (shifted in time by the focusing delay) will have the maximum impulses of the N transducers in reception Tr, put back into temporal coherence as this is represented in figure 4, which will make it possible by summation to obtain a focused signal (corresponding to an A-scan signal of a path formation of the prior art) having a large amplitude, which means a detection of a discontinuity at the spatial location of the target point C.
  • phased signals will not be with the maximums of the impulses aligned vertically as on Figure 4, and a summation of these phased signals will not form a focused signal with a large amplitude, which demonstrates the non-detection of a discontinuity at the spatial location of the target point C.
  • the phased reception signals of FIG. 4 can be calculated for each transmitting transducer Te, having a time offset te.
  • FIG. 4 therefore represents in a simplified manner part of the 64 phased signals in reception sp1 to sp64, again to avoid an excessive density of plots in this figure.
  • These signals phased in reception sp are then supplied either directly to the summing block 200, or supplied to the interference reduction block 150 (optional) which corrects these signals before supplying them to the summing block 200.
  • the general principle is a double summation, a first summation of the phased signals in reception sp according to the indices of the N receiver transducers Tr to obtain a focused signal sf for each excitation of a transmitter transducer Te (i.e. for each time shift te), then a second summation of the previous focused signals sf according to the indices of the Ne emitting transducers Te.
  • FIG. 5 is an example of a functional block diagram of the summation block 200 comprising various processing blocks which we are going to explain.
  • the summation block 200 comprises:
  • a first adder 210 performing the sum of the N phased signals sp in reception for a particular transmitter transducer Te to provide a focused signal sf for this transmitter transducer Te
  • a second adder 220 performing the sum of the Ne focused signals sf for each transmitting transducer Te to provide a synthetic signal
  • ss a filter and envelope detection block 240 to determine a level of the synthetic signal, denoted by ss.
  • the summing block 200 further comprises an artefact reduction block 230 (also denoted "ARB" in FIG. 5) which is a block whose function is to reduce the background noise of the processing of the system 100.
  • an artefact reduction block 230 also denoted "ARB” in FIG. 5
  • ARB artefact reduction block 230
  • the first adder 210 and the second adder 220 only perform sums of the signals that they receive as input.
  • the first adder 210 performs the sum of the N phased signals sp in reception of FIG. 4 to provide a focused signal sf (for all of the transmitting transducers Te).
  • the second adder 220 performs the sum of the focused signals sf in reception for all the Ne transmitter transducers to provide a synthetic signal ss.
  • FIG. 6 shows an example of a focused signal sf for all of the transmitting transducers Te.
  • the focused signal sf in reception comprises the Ne return pulses of the Ne transmission in the case of a single discontinuity.
  • the temporal spacings of these impulses depend on the temporal distribution of Ne impulses in emissions and on the spatial position of the target point C.
  • this focused signal sf will look different with multiple pulses of low amplitude mixed and spread over time.
  • FIG. 7 shows an example of four focused signals sf for each of the transmitter transducers Te selected for the transmission sequence, and for example the transmitter transducers of index 5, 26, 40 and 61 as selected previously, i.e. say focused sfs, sf26, sf4o and sf 6i signals.
  • These focused signals are transmitted from the memory to the summing block 200 either in parallel or in series depending on the hardware implementation chosen (for example the amount of memory available on this hardware), the general operation being controlled by the controller 300 .
  • the second adder 220 takes all the Ne focused signals sf of each transmission from the transmitter transducers, and adds them up to obtain the synthetic signal ss of FIG. 8 .
  • This synthetic signal comprises at this combination time instant ts a maximum whose value represents the level of the return wave Re for the target point C considered.
  • the synthetic signal ss is a signal comprising a sum of pulses which form a background noise b in the signal.
  • the first adder 210 performs the sum of the phased signals in reception to provide the focused signal, and also performs a sum of the phases of these signals to provide a focused phase signal for estimating how much the received phased signals are "in phase” (correlated) or out of "phase” (decorrelated) with each other.
  • this first adder 210 supplies a first signal which is the focused signal (A-scan signal) and a second signal which is a focused phase signal.
  • One way to calculate this sum of the phases is to perform the sum of the signs of the phased signals in reception. If the signals are in phase, they have the same sign and the sum of the signs takes on a large absolute value. If the signals are not correctly in phase, the sum of the signs takes on a low value in absolute value. Other ways of calculating a sum of the phases can be developed by the technician in the field.
  • the second adder 220 firstly performs the sum of the signals focused in reception for all the Ne transmitter transducers to provide a synthetic signal.
  • the second adder 220 of FIG. 5 also sums the focused phase signals for all the Ne transmitter transducers to provide a synthetic phase signal.
  • the synthetic phase signal has an absolute value which is all the greater as the signals are in phase and therefore as they correspond to a discontinuity.
  • an artefact reduction block 230 placed at the output of the second adder 220 uses the synthetic phase signal to correct the synthetic signal, and to improve its signal-to-noise ratio.
  • a basic way is to multiply the synthetic signal by the absolute value of the synthetic phase signal, normalized between zero and one.
  • the amplitude of the synthetic signal is not modified if the phased signals are "in phase” and its amplitude is reduced if the phased signals are not "in phase”. Thanks to this arrangement, a synthetic signal is obtained with a high precision amplitude with low background noise.
  • the technician in the field can use other formulations, normalizations and combinations of the synthetic signal and the synthetic phase signal to obtain a corrected css synthetic signal.
  • the filter and envelope detection block 240 recovers either the synthetic signal ss (case of the first embodiment) directly from the second adder 220, or the corrected synthetic signal css (case of the second embodiment) from the block artifact reduction 230.
  • This filter and envelope detection block 240 extracts from the input signal the value of the maximum of this signal in order to determine the level of the return wave Re for the target point C considered. This level makes it possible to estimate the presence of discontinuity at the location of the target point C.
  • system 100 implements a method comprising the steps of:
  • a transmission sequence in which: a plurality of transmitting transducers Te are chosen from among the transducers of the probe, each transmitting transducer of the plurality of transmitting transducers having a spatial position determined in such a way that the spatial positions of the plurality of transducers emitters are distributed uniformly and randomly over the active surface of the probe, and for each emitting transducer Te of the plurality of emitting transducers, a time offset te is defined such that the time offsets of the plurality of emitting transducers are distributed uniformly and randomly over a predetermined transmission duration,
  • a focusing delay corresponding to a focusing law determined for the transmitting transducer is calculated, for a target point of the desired probing zone of interest in the middle, and taking into account the time shift of the transmitter transducer considered, a focused signal sf is calculated for each transmitter transducer, which is the sum of the signals in reception from the plurality of transducers of the probe, realigned by the focusing delay, a synthetic signal ss is calculated which is the sum of the focused signals of all the transmitter transducers, and the synthetic signal is analyzed to deduce therefrom a detection level in the medium at the target point, and the detection of a discontinuity is deduced therefrom.
  • the transmit sequence of the above method is sufficient for the receive signal processing process to probe the middle of the product to detect discontinuities in the ROI area of interest at any target point or any direction. This transmission sequence is therefore very effective for rapidly probing the environment, and for avoiding or reducing interference in the sr reception signals.
  • the entire process for processing the signals in reception sp of the processing unit 20 is described here by a division into functional blocks consisting of at least the delay calculators 115, summing block 200, and controller 300, surrounded by other functional blocks some of which are optional, but this processing process can be implemented in a single or several calculation units according to an architecture defined by a technician.
  • this treatment process can be implemented in dedicated hardware such as FPGA processors, in computing hardware such as a DSP processor, or in a standard processor.
  • the power of today's FPGAs, DSPs and microprocessors allows extremely fast calculations.
  • the signal processing step in reception is iterated for a plurality of target points, in order to establish an image of the medium representative of the different detection levels.
  • this receive signal processing process is purely computational, this process can be extremely fast.
  • the scanning of the medium M of the product to detect discontinuities can be very fast, which makes it possible to quickly probe a product. For example, it becomes possible to probe a product that moves relative to the probe or vice versa.
  • interference reduction block 150 (known as "IRB") of the system 100 of FIG. are in the area of interest ROI of the medium M.
  • Nd the number of discontinuities in the medium
  • figure 9 (similar to the FIG. 3) represents the N reception signals sr obtained and stored in memory 130 following the emission of a single emitting transducer Te, in the presence of three discontinuities in the medium M of the product.
  • FIG. 9 represents in a simplified way a part of the 64 signals in reception sri to sr64, to avoid too great a density of plots in this figure.
  • This figure shows, for each receiver transducer Tr, a reception signal sr containing three impulses corresponding to the three returns of the three discontinuities.
  • Each discontinuity has a different spatial position in the medium, which is expressed in FIG. 9 by 3 curves of maximum pulses in the direction of the N transducers (one for each discontinuity): curves C1, C2 and C3. Contrary to the curves for several pulse emissions in figure 3, these curves can intersect which produces interference at the crossing points Pa and Pb in figure 9.
  • This curve of maximums M1 in particular exhibits interference around the indices of transducers corresponding to the crossing points Pa and Pb.
  • This maximum curve M1 is linked to the shape and size of the discontinuity. It is then possible to calculate a model curve CM which approximates the curve of maximums M1 by a mathematical equation, such as a polynomial equation. Techniques for approximating experimental curves of the polynomial regression type are well known.
  • the model curve CM closest to the curve of maximums M1 is determined, the model curve being a curve calculated by a polynomial equation, and reception signals csr corrected are calculated from the model curve CM, which allows significantly reduce interference.
  • the polynomial equation is for example a polynomial equation of order one (a straight line), of order two (parabola) or of order three.
  • the determination of the closest curve can be carried out by minimizing a distance between the model curve CM and the curve of maximums M1.
  • the discontinuity detection method is completed before the calculation of the focused signal, a step implemented for example by the interference reduction block and during which the interference between several discontinuities is reduced, by the process consisting in : - determining a curve of maximum signals in reception as a function of the transducers, said curve being determined by identifying the maximum signals in reception for a target point and according to the law of focusing, - calculating a model curve which approximates the curve of maximums , and
  • this dynamic speed corrector 116 (identified "Corr" in FIG. 1).
  • the purpose of this dynamic speed corrector 116 is in particular to correct the delay calculation in the case of a displacement of the probe 10 relative to the product (medium M) or vice versa.
  • a displacement at constant speed in the longitudinal direction X This is a very usual case for the continuous control of metal sections or, for example, railway rails. The speed can therefore be very high (several tens of kilometers per hour). Without correction of the delay calculation, the estimation of the detection level is completely erroneous, and in the case of an image calculation, the resulting image is totally blurred.
  • the corrected focus delay calculation is then always:
  • the preceding delay calculation can be expressed as a memory index in the memory 130 by multiplying the forward travel time tem, the return travel time tre and the time offset te by a sampling frequency Fs in the case of a system sampled with such a constant sampling frequency.
  • the system 100 retrieves from another system a speed measurement of the speed of the medium relative to the probe, or includes a sensor for measuring this speed. This speed is supplied to the dynamic speed corrector 116 which corrects the delay calculator 115, for example with the formulas explained above.
  • the discontinuity detection method is then improved by the fact that the focusing delay is determined as a function of the speed of movement of the medium relative to the probe, or vice versa.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Procédé de détection de discontinuités dans un milieu et système pour mettre en œuvre ce procédé Le procédé comprend les étapes consistant à définir une séquence d'émission dans laquelle on choisit une pluralité de transducteurs émetteurs parmi les transducteurs d'une sonde, de manière uniforme et aléatoire sur la surface active de la sonde, et on définit pour chaque transducteur émetteur un décalage temporel de manière uniforme et aléatoire sur une durée d'émission prédéterminée. Ensuite, on fait émettre la séquence d'émission dans le milieu par la pluralité de transducteurs émetteurs, on reçoit et enregistre les signaux en réception et on les traite avec une loi de focalisation adaptée aux transducteurs émetteurs et aux décalages temporels utilisés, pour en déduire un niveau de détection.

Description

Procédé de détection de discontinuités et système mettant en œuvre ce procédé
DOMAINE TECHNIQUE
La présente invention est relative à un procédé de détection de discontinuité dans un produit, notamment en utilisant un sondage par ondes ultrasonores.
ETAT DE LA TECHNIQUE ANTERIEURE
Il existe de nombreuses techniques pour détecter des discontinuités ou défauts dans un produit, et par exemple un produit métallique. Ces techniques sont du domaine du contrôle non destructif. Les techniques utilisant la propagation des ondes ultrasonores sont très efficaces pour détecter des discontinuités ou défauts dans le matériau du produit après sa fabrication ou au cours de sa durée de vie pour assurer son bon fonctionnement.
Ainsi, le document de brevet FR 2830 328 montre un procédé de détection de discontinuités utilisant plusieurs faisceaux simultanément dans plusieurs directions, mais un tel procédé génère des interférences en réceptions, et le rapport signal sur bruit est dégradé par rapport à un procédé mono faisceau.
Le document « Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive évaluation », NDT&E International 38 (2005) 701-711, évalue une technique de capture d'une matrice complète de signaux temporels entre toutes les pairs de transducteur en émission et en réception. Ces signaux temporels sont alors traités en post-traitement, par exemple par un algorithme de focalisation en chaque point du milieu.
Cependant, dans cette technique, chaque transducteur émet l'un après l'autre, les signaux en réception de tous les transducteurs sont idéalement enregistrés entre chaque tir. Ce procédé est donc insatisfaisant pour les problèmes de vitesse d'exécution. EXPOSE DE L' INVENTION
La présente invention a pour but de perfectionner des procédés de détection de discontinuité de ce type, notamment pour améliorer la qualité de détection à grande vitesse.
A cet effet, le procédé de détection de discontinuité selon la présente divulgation est mis en œuvre à l'aide d'une sonde comprenant une pluralité de transducteurs formant une surface active et adaptés pour émettre et recevoir une onde ultrasonore dans le milieu, et le procédé comprenant les étapes consistant à :
- définir une séquence d'émission dans laquelle : on choisit une pluralité de transducteurs émetteurs parmi les transducteurs de la sonde, chaque transducteur émetteur de la pluralité de transducteurs émetteurs ayant une position spatiale déterminée de telle sorte que les positions spatiales de la pluralité de transducteurs émetteurs sont réparties de manière uniforme et aléatoire sur la surface active de la sonde, et on définit pour chaque transducteur émetteur de la pluralité de transducteurs émetteurs, un décalage temporel de telle sorte que les décalages temporels de la pluralité de transducteurs émetteurs sont répartis de manière uniforme et aléatoire sur une durée d'émission prédéterminée,
- émettre la séquence d'émission dans le milieu par la pluralité de transducteurs émetteurs,
- recevoir et enregistrer des signaux en réception par la pluralité de transducteurs en réponse de la séquence d'émission émise dans le milieu,
- traiter les signaux en réception selon le processus suivant dans lequel : on calcule pour chaque transducteur émetteur, un retard de focalisation correspondant à une loi de focalisation déterminée pour le transducteur émetteur, pour un point cible de sondage souhaitée dans le milieu, et en tenant compte du décalage temporel du transducteur émetteur considéré, on calcule pour chaque transducteur émetteur, un signal focalisé qui est la somme des signaux en réception de la pluralité de transducteurs de la sonde, réalignés par le retard de focalisation, on calcule un signal synthétique qui est la somme des signaux focalisés de tous les transducteurs émetteurs, et on analyse le signal synthétique pour en déduire un niveau de détection dans le milieu au point cible, et on en déduit la détection d'une discontinuité.
Grâce à ces dispositions, le procédé de sondage provoque peu d'interférences, et la qualité de détection est améliorée particulièrement à grande vitesse.
Notamment, ce procédé n'a besoin que d'une seule séquence en émission. La détection et/ou l'image est totalement effectuée en post traitement, et la séquence particulière et éventuellement son traitement permet d'éviter au maximum les interférences entre les signaux reçus enregistrés et/ou de réduire les effets de ces interférences, ce qui permet de fournir une détection de discontinuité rapide et précise (amplitude du niveau de détection).
Dans divers modes de réalisation du procédé selon la présente divulgation, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes. Selon un aspect, le procédé comprend en outre avant le calcul du signal focalisé, une étape dans laquelle on réduit les interférences entre plusieurs discontinuités, par le processus consistant à :
- déterminer une courbe de maximums des signaux en réception en fonction des transducteurs, ladite courbe étant déterminée en repérant les maximums des signaux en réception pour un point cible et selon la loi de focalisation,
- calculer une courbe modèle qui approxime la courbe de maximums, et
- calculer des signaux en réception corrigés à partir des signaux en réception enregistrés et de la courbe modèle, lesdits signaux en réception corrigés étant ensuite utilisés à la place des signaux en réception enregistrés dans le traitement de ces signaux pour déduire le niveau de détection.
Selon un aspect, la courbe modèle est une courbe polynomiale.
Selon un aspect, le retard de focalisation est déterminé en fonction de la vitesse de déplacement du milieu par rapport à la sonde, ou inversement.
Selon un aspect, le traitement des signaux en réception est itéré pour une pluralité de point cibles pour établir une image du milieu représentative des différents niveaux de détection dans lesdits points cibles.
La présente divulgation se rapporte également à un système de détection de discontinuité qui met en œuvre le procédé précédent. Ce système comprend une sonde comprenant une pluralité de transducteurs adaptés pour émettre et recevoir une onde ultrasonore dans le milieu, et une unité de traitement reliée à la sonde, cette unité de traitement comprenant au moins une mémoire pour enregistrer des signaux en réception, un contrôleur pour mettre en œuvre le procédé.
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description suivante d'au moins un de ses modes de réalisation, donné à titre d'exemple non limitatif, en regard des dessins joints.
Sur les dessins : - la figure 1 est un schéma fonctionnel général d'un exemple de système implémentant le procédé selon l'invention ;
- la figure 2 est un diagramme temporel des signaux des transducteurs émetteurs sélectionnés d'un exemple de séquence d'émission du procédé ;
- la figure 3 est un diagramme temporel des signaux en réception des transducteurs de la sonde selon le procédé ;
- la figure 4 est un diagramme temporel des signaux phasés obtenus par les retards de focalisation appliqués aux signaux en réception de la figure 3 ;
- la figure 5 est un schéma fonctionnel du bloc de sommation de la figure 1 ;
- la figure 6 est un exemple de signal focalisé obtenu par sommation des signaux phasés ;
- la figure 7 est un diagramme temporel des signaux focalisés calculés et relatifs aux transducteurs émetteurs sélectionnés ;
- la figure 8 est un exemple de tracé temporel de signal synthétique calculé par sommation des signaux focalisés de la figure 7 ;
- la figure 9 est un diagramme temporel des signaux en réception dans le cas de plusieurs discontinuités dans le milieu et d'une unique excitation par un seul transducteur émetteur ;
- la figure 10 est un exemple de tracé de courbe de maximum en fonction des transducteurs pour un point cible sur une première discontinuité.
Sur les différentes figures, les mêmes références numériques désignent des éléments identiques ou similaires.
DESCRIPTION DETAILLEE
Un exemple de réalisation d'un système de détection de discontinuités ou défauts d'un milieu d'un produit et un exemple d'un procédé mis en œuvre par ce système sont décrits ci-dessous de manière illustrative et non limitative.
Selon cet exemple de système selon la présente divulgation et illustré en figures 1, le système 100 est un système de détection de discontinuité dans un milieu M. Le milieu M est par exemple un produit tel qu'une pièce métallique qui peut comporter à l'intérieur de son matériau une ou plusieurs discontinuités ou défauts, tels qu'une ou des inclusions d'air ou des fissures. Le but du système et procédé est donc de détecter ces discontinuités ou défauts. Par détection, on entend par exemple obtenir l'information de la présence d'une discontinuité, et/ou obtenir l'information de distance et/ou obtenir l'information de position par rapport au système, et/ou obtenir l'information de la forme de la discontinuité. Eventuellement, le produit correspondant au milieu M se déplace à une vitesse relative par rapport au système 100, ce qui impose une détection très rapide d'une discontinuité. Il est important de ne pas manquer une telle détection pour la fiabilité du contrôle du produit.
Le système et procédé selon la présente divulgation s'appliquent par exemple au contrôle non destructif de produits ou pièces métalliques telles que des tubes, des rails de chemins de fer. Notamment, le système et procédé est éventuellement utilisé pendant le déplacement dudit produit ou pendant le déplacement par roulage sur le rail.
La figure 1 est un exemple de schéma bloc fonctionnel du système 100 qui présente différents blocs de traitements. Le système 100 peut éventuellement être décomposé en blocs fonctionnels différents, mais reprenant les fonctions essentielles de l'exemple du système 100 décrit ci-après.
Dans l'exemple de la figure 1, le système 100 comprend une sonde 10 qui échange des signaux avec une unité de traitement 20 reliée à la sonde par une liaison filaire électrique ou optique, ou une liaison sans fil par exemple par onde radio. Ainsi la sonde 10 peut être localisée à distance de l'unité de traitement 20. Eventuellement, la sonde 10 et l'unité de traitement 20 sont intégrés dans un seul dispositif, ou une partie des éléments (fonctions) de l'unité de traitement sont localisés dans la sonde 10.
La sonde 10 comprend par exemple une pluralité de transducteurs Tn avec un indice n=l...N, lesdits transducteurs formant une surface active de la sonde. Les N transducteurs Tn sont par exemple alignés selon une direction longitudinale X comme sur la figure 1. En pratique, le nombre N de transducteurs est par exemple compris entre quelques dizaines et quelques centaines.
Dans le cas d'une sonde linéaire à une dimension, un transducteur Tn de la sonde a une position spatiale repérée par l'abscisse xn de ce transducteur le long de la direction longitudinale X de la sonde. La direction de profondeur Z perpendiculaire à la direction longitudinale X correspond à la position en profondeur dans le milieu à partir d'une origine O placée en surface externe du milieu M, au niveau du contact entre la sonde 10 et le milieu M. L'origine O, la direction longitudinale X et la direction en profondeur Z forment un repère dans lequel on peut repérer des éléments par des coordonnées spatiales (x,z). Eventuellement, la sonde 10 peut être une sonde courbée en arc de cercle, matricielle en forme plane de NxP transducteurs, ou matricielle en forme de tronçon de cylindre, ou tout autre forme de sonde. Le système et procédé décrits ici sera aisément adapté à une telle sonde. Ainsi, le produit est par exemple soit statique, soit en déplacement de translation soit en déplacement de rotation par rapport à la sonde 10 du système, ou l'inverse (sonde qui se déplace par rapport au produit).
La sonde 10 est mise en contact directement ou indirectement par sa surface active avec une surface externe du milieu M. Chaque transducteur Tn de la sonde 10 est un élément adapté pour émettre une onde d'émission dans le milieu M et/ou pour recevoir une onde de retour dans le milieu en réponse de la nature du milieu. L'onde est usuellement une onde ultrasonore. Par exemple, comme représenté en figure 1, un transducteur émetteur Te d'indice e et de coordonnées (xe, 0) émet une onde d'émission Em vers un point cible C à l'intérieur du milieu, et le milieu retourne depuis ce point cible C une onde de retour Re par exemple vers un transducteur récepteur Tr d'indice r et de coordonnées (xr, 0). Une zone d'intérêt ROI pour sonder des discontinuités ou défauts dans le milieu est définie. Une telle zone d'intérêt est par exemple rectangulaire avec des côtés parallèles aux directions du repère.
Les transducteurs Tn de la sonde 10 reçoivent des signaux pour émettre l'onde d'émission et génèrent des signaux lors de la réception de l'onde de retour. Les transducteurs de la sonde 10 sont ainsi reliés à un module d'émission-réception 110 (identifié également par "E/R"). Le module d'émission-réception 110 commute vers les transducteurs soit les signaux d'émission préparés par le système dans une unité de pilotage des émetteurs 113 (identifié également par "Em" sur la figure), soit les signaux en réception provenant des transducteurs vers un ou plusieurs convertisseurs analogique-digital 120 (identifié également par "A/D" sur la figure) qui numérisent et convertissent ces signaux en réception de type analogiques en données numériques, ces données numériques étant alors enregistrés dans une ou plusieurs mémoires 130 (identifié également par "Mem" sur la figure) du système.
Des modules d'émission-réception 110 sont connus et permettent d'utiliser les transducteurs d'une sonde 10 séquentiellement soit en émission soit en réception d'onde. Ils comprennent par exemple aussi et sans y être limité :
- dans la chaine d'émission, des pulseurs d'émission qui génèrent les signaux d'émission, typiquement des impulses d'amplitude et de largeur temporelle programmable, et - dans la chaine de réception des amplificateurs à gain programmable et filtres anti-aliasing.
Les signaux et ondes d'émission sont typiquement des impulses de courte durée. Ces impulses sont par exemple des signaux rectangulaires simples ou multiples, éventuellement d'amplitudes variables, ou des signaux modulés selon une ou plusieurs fréquences ou une combinaison de tels signaux. Les ondes et signaux de retour sont des échos en retour correspondants à ces impulses d'émission et déformés par la transmission du milieu. Par simplicité dans 1'explications, nous parlerons plus généralement d'impulses pour les uns et les autres.
Comme illustré en figure 1, le système 100 comprend en outre un module de synchronisation 114 (identifié également par "Synch" sur la figure) relié aux convertisseurs analogique-digital 120 et à la mémoire 130 qui permet de déclencher les numérisations (conversions analogique-digitale) des signaux en réception en données numériques et leurs enregistrements dans la mémoire 130.
En outre, le système 100 peux comprendre optionnellement un bloc de réduction d'interférence 150 (identifié également par "IRB" sur la figure) relié à la mémoire 130, et dont la fonction est de modifier les données numériques des signaux en réception afin de supprimer ou réduire les interférences dans les signaux en réception dues à la présence de plusieurs discontinuités ou défauts dans le milieu, en corrigeant les données numériques. Ce bloc de réduction d'interférence sera décrit plus en détail dans la suite.
Le système 100 comprend alors un bloc de sommation 200 (identifié également par "Accu" sur la figure) relié au précédent bloc de mémoire 130 et/ou au bloc de réduction d'interférence 150, et qui effectue le calcul de la réponse du milieu en un ou plusieurs points cibles C, soit directement à partir des données de la mémoire 130, soit à partir de données corrigées issues du bloc de réduction d'interférences 150, soit à partir d'une combinaison des deux. Le bloc de sommation 200 fournit alors une réponse à un moniteur, écran, ou tout dispositif d'affichage 117 (identifié également par "Mon" sur la figure) pour informer l'utilisateur du système d'une ou plusieurs informations concernant des discontinuités ou défauts du milieu (présence, position, forme, image, ...). Ce bloc de sommation 200 sera décrit plus en détail dans la suite.
Le système 100 comprend un calculateur de retard 115 (identifié également par "R" sur la figure) qui détermine les retards temporels ou index de la position dans la mémoire 130 des extraits des données numériques (i.e. signaux en réception) utiles pour le ou les blocs suivants, c'est à dire le bloc de réduction d'interférence 150 et/ou le bloc de sommation 200.
Le système 100 comprend en outre optionnellement un correcteur dynamique de vitesse 116 (identifié également par "Corr" sur la figure) qui utilise une mesure de vitesse du produit mesurée par un ou plusieurs capteurs (non représentés) et relié au calculateur de retards 115 pour compenser le déplacement du produit (i.e. du milieu) pendant la propagation de l'onde d'émission Em depuis la sonde 10 vers le point cible C et pendant la propagation de l'onde de retour Re depuis le point cible C vers la sonde 10.
Enfin, un contrôleur 300 (identifié également par "Contr" sur la figure) est relié aux différents précédents blocs pour assurer un fonctionnement général. Plus particulièrement, le contrôleur 300 est relié à une unité de pilotage des émetteurs 113 pour émettre l'onde d'émission Em selon une procédure d'émission prédéterminée par l'utilisateur, au module de synchronisation 114 pour assurer la bonne acquisition de l'onde de retour Re, au calculateur de retard 115 pour assurer des combinaisons des signaux en réception adaptée à la focalisation souhaitée, au correcteur dynamique de vitesse 116, au bloc de réduction d'interférences 150 pour lui fournir des paramètres de fonctionnement de l'utilisateur, au bloc de formation de voie pour contrôler ses paramètres de calcul et de correction, et à l'écran 117 pour mettre en forme divers affichages et éléments de pilotage du système 100.
Le fonctionnement du système 100 est maintenant décrit.
Notamment, le contrôleur 300 et l'unité de pilotage 113 du système 100 selon la présente divulgation construisent une séquence d'émission d'onde d'émission Em particulière.
Selon un premier art antérieur, plusieurs transducteurs émetteurs Te génèrent chacun un impulse avec un décalage temporel prédéterminé pour que l'onde d'émission générée soit physiquement une onde focalisée vers un point cible du milieu. Ainsi, plusieurs tirs d'onde d'émission sont effectués successivement, chacun suivit de l'attente de l'onde de retour et de l'enregistrement des signaux en réception pour scanner de multiples points dans le milieu et éventuellement en construire une image. Cette technique implique donc de nombreux tirs d'onde d'émission. Cette méthode est particulièrement temporellement lente pour sonder une zone d'intérêt de grande taille ou avec une résolution spatialement précise. En outre, elle rend quasi impossible le sondage d'un produit qui se déplace à une vitesse non négligeable devant la sonde.
Selon un second art antérieur, un ou plusieurs tirs d'ondes non focalisées comme une onde plane sont utilisées pour scanner une zone d'intérêt du milieu. Le traitement des signaux de l'onde de retour permet d'obtenir des informations et de générer une image rapide de la zone d'intérêt. Mais, la qualité des images générées n'est pas de bonne qualité car l'énergie de l'onde d'émission étant très spatialement répartie, le rapport signal sur bruit est dégradé.
Selon un troisième art antérieur, un tir pour chaque transducteur de la sonde est effectué, et les signaux des ondes de retour sont enregistrés. Cette technique d'enregistrement de la matrice complète des signaux, comme utilisée dans le document « Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive évaluation », NDT&E International 38 (2005) 701-711, conduit à un procédé de détection lent à cause des multiples tirs nécessaires.
La présente divulgation propose donc une séquence d'émission particulière dans laquelle on choisit un certain nombre de transducteurs émetteurs Te dans la sonde 10 de manière quasi-aléatoire, et/ou on décale les impulses des signaux d'émission de ces transducteurs émetteurs d'un décalage temporel te quasi-aléatoire. Ainsi, les signaux en réception auront peu de cohérence temporelle et peu de symétrie et on réduit les interférences spatiales et temporelles des signaux en réception, notamment en présence de plusieurs discontinuités dans le milieu du produit. Cela permet donc d'améliorer la qualité de la détection desdites discontinuités (informations ou image). En outre, cette séquence d'émission permet de sonder sensiblement la totalité de la zone d'intérêt ROI du milieu à l'aide d'un seul tir en émission et de l'onde de retour de ce tir. Cette technique est donc rapide et adaptée au sondage de produit se déplaçant par rapport à la sonde 10 du système par exemple à une vitesse V. Cette vitesse V est supposée sensiblement constante pendant le processus de sondage.
Cette séquence d'émission est produite par exemple selon le processus suivant :
- on choisit une pluralité de Ne transducteurs émetteurs Te parmi les N transducteurs Tn de la sonde 10, chaque transducteur émetteur de la pluralité de transducteurs émetteurs ayant une position spatiale xe déterminée de telle sorte les positions spatiales de la pluralité des transducteurs émetteurs sont réparties de manière uniforme et aléatoire sur la surface active de la sonde 10, et
- on définit pour chaque transducteur émetteur Te de la pluralité de Ne transducteurs émetteurs, un décalage temporel te de telle sorte que les décalages temporels te de la pluralité de Ne transducteurs émetteurs sont répartis de manière uniforme et aléatoire sur une durée d'émission DTe prédéterminée, correspondant à la durée maximum d'un tir dans le milieu M.
Cette séquence d'émission définit ainsi des transducteurs d'émission Te et des décalages temporels te, chacun des décalages temporels étant associé respectivement à un transducteur émetteur de la pluralité des transducteurs d'émetteurs. La séquence d'émission définit donc des émissions d'ondes (ultrasonore) pour Ne transducteurs émetteurs, à des instants temporels te par rapport à un instant initial tO de référence pour la séquence d'émission. Chaque émission d'un transducteur émetteur Te de la séquence est un impulse de très courte durée. Ces émissions d'impulses ultrasonores sont donc réparties spatialement selon les transducteurs émetteurs et temporellement dans une durée d'émission DTe de la séquence d'émission.
Le nombre Ne de transducteurs émetteurs Te sélectionnés est de deux ou plus. De préférence, le nombre Ne de transducteurs émetteurs Te sélectionnés est supérieur ou égal à cinq ou dix, et ce nombre dépend du nombre N de transducteurs de la sonde. Ce nombre Ne de transducteurs émetteurs est inférieur au nombre de transducteurs N de la sonde.
Par exemple, le nombre Ne de transducteurs émetteurs Te sélectionnés est compris entre 0,05.N et 0,25.N, c'est à dire entre 5% et 25% des transducteurs de la sonde 10. Ainsi, dans cette plage d'utilisation des transducteurs, on peut obtenir de meilleures qualités de détection des discontinuités.
En fait, le technicien réglera la densité des transducteurs émetteurs et la densité des signaux de la séquence d'émission selon un compromis pour améliorer la qualité de détection et selon l'application. Ces répartitions spatiales et temporelles sont dites "de manière uniforme et aléatoire", ce qui signifie que les émissions sont sensiblement bien espacées les unes des autres, mais avec des différences ou écarts aléatoires, dans la dimension spatiale et la dimension temporelle.
Autrement dit, ces répartitions d'émissions ne sont pas régulièrement espacées ou périodiques dans ces deux dimensions. Ces répartitions d'émission ne sont également pas purement aléatoires, car elles sont de préférence espacées les unes des autres.
La figure 2 illustre un exemple d'une telle séquence d'émission, pour une sonde 10 ayant 64 transducteurs pour laquelle on choisit quatre (4) transducteurs émetteurs Te. La figure 2 représente les tracés des quatre signaux d'émission des quatre transducteurs émetteurs choisis, ici, les transducteurs d'indices 5, 26, 40 et 61. Les signaux d'émission des autres transducteurs (transducteurs qui ne sont pas des transducteurs émetteurs) peuvent donc être nuis et ils ne sont donc pas représentés sur la figure 2. Nous avons donc les signaux d'émission ses, se26, se4o, et se6i. Ces signaux d'émission sont des impulses démarrant à des instants respectifs tes, te26, te4o et te6i, ces instants étant quasi- aléatoires ou plutôt répartis de manière uniforme et aléatoire dans la durée d'émission DTe. De même, les indices des transducteurs émetteurs Te sont répartis de manière quasi-aléatoire parmi les indices 1...64 possibles des transducteurs de la sonde 10, ou plutôt répartis de manière uniforme et aléatoire dans les indices possibles des transducteurs.
Une première technique pour obtenir une répartition uniforme et aléatoire, selon la dimension spatiale ou temporelle, est de simplement définir une valeur aléatoire dans l'intervalle de la taille de la dimension spatiale ou temporelle ; c'est à dire :
- pour la dimension spatiale des transducteurs, une valeur aléatoire d'un indice de transducteur entre 1 et N le nombre de transducteurs de la sonde 10 ; et
- pour la dimension temporelle, une valeur aléatoire d'un instant temporel entre tO l'instant initial pour la séquence d'émission, et (tO + DTe) l'instant final maximum de la séquence d'émission, DTe étant la durée d'émission.
Une deuxième technique pour obtenir une répartition uniforme et aléatoire, est de diviser la dimension spatiale ou temporelle en un nombre NI d'intervalles contigus de tailles constantes et égales, et de définir une valeur aléatoire dans chacun desdits intervalles.
Cela permet d'obtenir des valeurs de la dimension spatiale ou temporelles répartis de manière plus uniforme sur cette dimension. En effet, chacun des NI intervalles de la dimension spatiale ou temporelle ne contient qu'un seul élément.
Une troisième technique pour obtenir une répartition uniforme et aléatoire, est de diviser la dimension spatiale ou temporelle en un nombre NI d'intervalles contigus de tailles constantes et égales, et de définir une valeur dans chacun desdits intervalles par rapport à une valeur médiane MI de chaque intervalle. Ainsi, la valeur est égale à la valeur médiane à laquelle on ajoute une valeur aléatoire correspondant à un écart par rapport à ladite valeur médiane. La valeur aléatoire peut prendre des valeurs positives ou négatives, et son amplitude peut être par exemple limitée à la moitié de la taille de l'intervalle.
Cela permet d'obtenir des valeurs de la dimension spatiale ou temporelles répartis de manière plus uniforme sur cette dimension. En effet, non seulement chacun des NI intervalles de la dimension spatiale ou temporelle ne contient qu'un seul élément, mais cet élément est placé autour d'une valeur centrale (qui est la valeur médiane de l'intervalle), avec un écart qui peut être piloté par l'amplitude définie. Toutes ces techniques sont à mises en œuvre par un technicien du domaine ayant des connaissances en mathématiques. Mais, il peut aussi utiliser d'autres techniques de répartition uniforme et aléatoire des valeurs dans l'espace spatiale et temporel.
Ainsi, le technicien saura déterminer par au moins une de ces techniques des transducteurs émetteurs Te en un nombre prédéterminé dans le nombre de transducteurs N de la sonde, et saura déterminer par au moins une de ces techniques les décalages temporels te associés à ces transducteurs émetteurs, chacun de ces décalages temporels étant répartis entre zéro et Dte (la durée d'émission). Notamment, le nombre d'intervalles NI cité ci-dessus est égale au nombre Ne prédéterminé (choisis) de transducteurs émetteurs Te.
La séquence d'émission définie selon la présente divulgation permet de réduire le nombre d'interférences entre les impulses dans les signaux en réception, et permet d'améliorer la détection de discontinuités, comme cela sera plus apparent avec les explications suivantes.
La mémoire 130 du système 100 contient les N signaux en réception sous forme de données numériques, ce qui constitue une matrice de capture complète du milieu M pour les Ne émissions des transducteurs émetteurs Te durant la séquence d'émission, ces émissions étant chacune décalée du décalage temporel te dans le tir de cette séquence d'émission.
La figure 3 représente par exemple les N signaux en réception sr obtenus et mémorisés en mémoire 130 suite aux émissions de quatre transducteurs émetteurs Te comme représenté en figure 2, en présence d'une unique discontinuité ou défaut dans le milieu M du produit. La figure 3 représente de manière simplifiée une partie des 64 signaux en réception sri à sr64, pour éviter une trop grande densité de tracés sur cette figure. En outre, pour aider la compréhension du lecteur, cette figure et les suivantes supposent le cas d'une sonde linéaire, ce qui simplifie la répartition des signaux.
Les maximums des impulses de ces N signaux en réception forment dans le cas présent des N transducteurs des courbes qui ne se croisent pas et correspondant aux retours des Ne impulses d'émission. Ces courbes sont des lignes courbes parallèles, c'est à dire qui sont séparées l'une de l'autre dans la direction temporelle, d'une constante qui dépend des écarts temporels à l'émission et de la position de la discontinuité dans le milieu.
Chacun de ces N signaux en réception comprend Ne impulses, correspondant aux Ne retours de l'unique discontinuité sur le transducteur en réception correspondant. Les espacements temporels de ces impulses dépendent de la distribution temporelle des Ne émissions mais aussi de la position spatiale de l'unique discontinuité dans le milieu M. Cependant, les décalages temporels entre deux signaux en réception de deux transducteurs de réception Tr ne dépendent que de la position spatiale de l'unique discontinuité dans le milieu M.
Le contrôleur 300 fait extraire des portions des N signaux en réception de la mémoire 130 pour un point cible C, un transducteur émetteur Te et un transducteur récepteur Tr, en programmant le calculateur de retard 115 avec un calcul de retard de focalisation, dénoté Retard. Ce calcul de retard de focalisation est par exemple le suivant :
Retard = te + tem + tre + tadj dans lequel : te est le décalage temporel de l'émission d'un transducteur émétteur, tem est le temps du trajet aller de l'onde d'émission d'un transducteur émetteur Te vers le point cible C dans la zone d'intérêt ROI, tre est le temps du trajet de retour de l'onde de retour du point cible C vers un transducteur quelconque de la sonde 10, et tadj est un temps de recalage sur le maximum des signaux en réception.
Notamment, une formulation simplifiée de formation de voie pour un transducteur linéaire donnent par calcul géométrique les formules suivantes : tem = 1/Va.sqrt((xe -xc)2 + zc2) tre = 1/Vr.sqrt((xr -xc)2 + zc2)
(xe, ze), (xr, zr) et (xc, zc) étant les coordonnées dans le repère du transducteur émetteur Te, du transducteur récepteur, et du point cible C, et ze, zr étant nuis pour une sonde linéaire,
Va est la vitesse de l'onde d'émission dans le milieu pour le trajet aller entre un transducteur émetteur Te et le point cible C,
Vr est la vitesse de l'onde de retour dans le milieu pour le trajet de retour entre le point cible C et un transducteur en réception Tr, et sqrt est la fonction mathématique racine carré.
Le retard de focalisation de la présente divulgation est un calcul de formation de voie en réception, mais il diffère d'un retard de formation de voie en réception usuel par l'ajout du décalage temporel te utilisé dans la séquence d'émission pour chaque transducteur émetteur Te.
Le calcul de retard précédent peut être exprimé en index mémoire dans la mémoire 130 en multipliant le temps de trajet aller tem, le temps de trajet de retour tre et le décalage temporel te par une fréquence d'échantillonnage Fs dans le cas d'un système échantillonné avec une telle fréquence d'échantillonnage constante.
D'autres formulations pour les calculs de retard sont possibles et accessibles au technicien du domaine. Notamment, ces formulations dépendent de la géométrie de la sonde, ce qui modifie les distances du trajet aller pour l'onde d'émission et du trajet retour pour l'onde de retour. De même, ces formulations dépendent de la prise en compte d'un milieu intermédiaire entre la sonde et le milieu du produit, ce qui modifie également les calculs de distances dans les trajets.
Il est possible de faire des calculs de retard pour une focalisation dans une direction prédéterminée. Dans ce cas, les formules de calcul du retard sont différentes. La présente description détaille et explicite le fonctionnement dans le cas d'une focalisation vers un point cible, mais il est à la portée d'un technicien d'établir les autres formules pour une focalisation directionnelle, et de construire un procédé de détection de discontinuité et un système adapté pour cet autre type de focalisation.
Le contrôleur 300 fait donc calculer au calculateur de retard 115 le retard de focalisation des N signaux en réception de la mémoire 130 pour un point cible C et un transducteur émetteur Te et un transducteur récepteur Tr et il fait extraire de la mémoire 130 des extraits de signaux correspondant à une focalisation au point cible C de la zone d'intérêt ROI. Nous appellerons ces extraits de signaux décalés temporellement du retard de focalisation, des signaux phasés en réception, généralement désignés par sp.
Si le point cible C se situe à l'emplacement d'une discontinuité, la précédente extraction des signaux phasés en réception (décalés temporellement par le retard de focalisation) auront les maximums des impulses des N transducteurs en réception Tr, remis en cohérence temporelle comme cela est représenté en figure 4 , ce qui permettra par sommation d'obtenir un signal focalisé (correspondant à un signal A-scan d'une formation de voie de l'art antérieur) ayant une grande amplitude, ce qui signifie une détection d'une discontinuité à la localisation spatiale du point cible C.
Si le point cible C ne se situe pas à l'emplacement d'une discontinuité, les signaux phasés ne seront pas avec des maximums des impulses alignés verticalement comme sur la figure 4, et une sommation de ces signaux phasés ne formeront pas un signal focalisé avec une grande amplitude, ce qui démontre la non détection d'une discontinuité à la localisation spatiale du point cible C.
Les signaux phasés en réception de la figure 4 peuvent être calculés pour chaque transducteur émetteur Te, ayant un décalage temporel te.
La figure 4 représente donc de manière simplifiée une partie des 64 signaux phasés en réception spi à sp64, toujours pour éviter une trop grande densité de tracés sur cette figure.
Ces signaux phasés en réception sp sont alors fournis soit directement au bloc de sommation 200, soit fournis au bloc de réduction d'interférence 150 (optionnel) qui corrige ces signaux avant de les fournir au bloc de sommation 200.
Nous allons donc décrire en premier le bloc de sommation 200 qui effectue le traitement des signaux phasés en réception pour détecter une discontinuité.
Le principe général est une double sommation, une première sommation des signaux phasés en réception sp selon les indices des N transducteurs récepteurs Tr pour obtenir un signal focalisé sf pour chaque excitation d'un transducteur émetteur Te (c'est à dire pour chaque décalage temporel te), puis une seconde sommation des précédents signaux focalisés sf selon les indices des Ne transducteurs émetteurs Te.
La figure 5 est un exemple de schéma bloc fonctionnel du bloc de sommation 200 comprenant différents blocs de traitements que nous allons expliciter.
Dans l'exemple représenté, le bloc de sommation 200 comprend :
- un premier sommateur 210 effectuant la somme des N signaux phasés sp en réception pour un transducteur émetteur Te particulier pour fournir un signal focalisé sf pour ce transducteur émetteur Te, - un second sommateur 220 effectuant la somme des Ne signaux focalisés sf pour chaque transducteur émetteur Te pour fournir un signal synthétique, et
- un bloc de filtre et détection d'enveloppe 240 pour déterminer un niveau du signal synthétique, désigné par ss.
Optionnellement, le bloc de sommation 200 comprend en outre un bloc de réduction d'artéfact 230 (noté également "ARB" sur la figure 5) qui est un bloc dont la fonction est de réduire le bruit de fond du traitement du système 100.
Selon un premier mode de réalisation, le premier sommateur 210 et le second sommateur 220 effectuent uniquement des sommes des signaux qu'ils reçoivent en entrée. Le premier sommateur 210 effectue la somme des N signaux phasés sp en réception de la figure 4 pour fournir un signal focalisé sf (pour l'ensemble des transducteurs émetteurs Te). Le second sommateur 220 effectue la somme des signaux focalisés sf en réception pour tous les Ne transducteurs émetteurs pour fournir un signal synthétique ss.
La figure 6 montre un exemple de signal focalisé sf pour l'ensemble des transducteurs émetteurs Te.
Comme les signaux en réception, le signal focalisé sf en réception comprend les Ne impulses de retours des Ne émission dans le cas d'une unique discontinuité. Les espacements temporels de ces impulses dépendent de la distribution temporelle des Ne impulses en émissions et de la position spatiale du point cible C.
Toutefois, si le calcul de retard ne correspond pas à une focalisation sur un point cible correspondant à une discontinuité, ce signal focalisé sf aura un aspect différent avec de multiples impulses de faible amplitude mélangés et répartis temporellement.
Nous supposons donc sur cette figure 6, que les signaux phasés sp sont correctement focalisés sur une discontinuité du milieu M, et nous conserverons cette hypothèse pour la suite des illustrations par simplicité de compréhension et de représentation.
La figure 7 montre un exemple de quatre signaux focalisés sf pour chacun des transducteurs émetteurs Te sélectionnés pour la séquence d'émission, et par exemple les transducteurs émetteurs d'indice 5, 26, 40 et 61 tel que sélectionnés précédemment, c'est à dire des signaux focalisés sfs, sf26, sf4o et sf6i. Ces signaux focalisés sont transmis depuis la mémoire vers le bloc de sommation 200 soit en parallèle soit en série en fonction de l'implémentation matérielle choisie (par exemple de la quantité mémoire disponible sur ce matériel), le fonctionnement général étant piloté par le contrôleur 300.
Ainsi, le second sommateur 220 prend l'ensemble des Ne signaux focalisés sf de chaque émission des transducteurs émetteurs, et en fait la somme pour obtenir le signal synthétique ss de la figure 8 .
Dans le cas d'une focalisation en un point cible C correspondant à une discontinuité, la somme des signaux focalisés obtenus pour les différents transducteurs émetteurs Te vont se sommer avec une bonne cohérence à un instant temporel de combinaison ts, pour produire un signal synthétique ss tel que celui de la figure 8.
Ce signal synthétique comprend à cet instant temporel de combinaison ts un maximum dont la valeur représente le niveau de l'onde de retour Re pour le point cible C considéré. Cependant, même dans ce cas, le signal synthétique ss est un signal comprenant une somme d'impulses qui forment un bruit de fond b dans le signal.
Selon un second mode de réalisation plus perfectionné, tel que présenté en figure 5, on effectue aussi les sommes des signaux comme explicité dans le premier mode de réalisation, mais on effectue également des calculs de phase.
Ainsi, le premier sommateur 210 effectue la somme des signaux phasés en réception pour fournir le signal focalisé, et effectue également une somme des phases de ces signaux pour fournir un signal de phase focalisée destiné à estimer à quel point les signaux phasés en réception sont "en phase" (corrélés) ou ne sont pas "en phase" (décorrélés) les uns avec les autres. Ainsi, ce premier sommateur 210 fournit un premier signal qui est le signal focalisé (signal A-scan) et un deuxième signal qui est un signal de phase focalisée.
Une façon de calculer cette somme des phases est d'effectuer la somme des signes des signaux phasés en réception. Si les signaux sont en phase, ils ont le même signe et la somme des signes prend une grande valeur absolue. Si les signaux ne sont pas correctement en phase, la somme des signes prend une valeur faible en valeur absolue. D'autres façons de calculer une somme des phases peuvent être développées par le technicien du domaine.
Le second sommateur 220 effectue premièrement la somme des signaux focalisés en réception pour tous les Ne transducteurs émetteurs pour fournir un signal synthétique.
Le second sommateur 220 de la figure 5 effectue également la somme des signaux de phase focalisée pour tous les Ne transducteurs émetteurs pour fournir un signal de phase synthétique.
Comme explicité précédemment pour le signal de phase, le signal de phase synthétique a une valeur absolue d'autant plus grande que les signaux sont en phase et donc qu'ils correspondent à une discontinuité.
Par conséquent, un bloc de réduction d'artéfact 230 placé en sortie du second sommateur 220 utilise le signal de phase synthétique pour corriger le signal synthétique, et pour améliorer son rapport signal sur bruit.
Une façon élémentaire est de multiplier le signal synthétique par la valeur absolue du signal de phase synthétique, normalisée entre zéro et un. Ainsi, l'amplitude du signal synthétique n'est pas modifiée si les signaux phasés sont "en phase" et son amplitude est réduite si les signaux phasés ne sont pas "en phase". Grâce à cette disposition, on obtient un signal synthétique avec une amplitude de grande précision avec un bruit de fond réduit.
Le technicien du domaine peut utiliser d'autres formulations, normalisations et combinaisons du signal synthétique et du signal de phase synthétique pour obtenir un signal synthétique corrigé css.
Enfin, le bloc de filtre et détection d'enveloppe 240 récupère soit le signal synthétique ss (cas du premier mode de réalisation) directement depuis le second sommateur 220, soit le signal synthétique corrigé css (cas du second mode de réalisation) depuis le bloc de réduction d'artéfact 230. Ce bloc de filtre et détection d'enveloppe 240 extrait du signal en entrée la valeur du maximum de ce signal afin de déterminer le niveau de l'onde de retour Re pour le point cible C considéré. Ce niveau permet d'estimer la présence de discontinuité à la localisation du point cible C.
Par conséquent et en résumé, le système 100 selon la présente divulgation met en œuyre un procédé comprenant les étapes consistant à :
- définir une séquence d'émission dans laquelle : on choisit une pluralité de transducteurs émetteurs Te parmi les transducteurs de la sonde, chaque transducteur émetteur de la pluralité de transducteurs émetteurs ayant une position spatiale déterminée de telle sorte les positions spatiales de la pluralité de transducteurs émetteurs sont réparties de manière uniforme et aléatoire sur la surface active de la sonde, et on définit pour chaque transducteur émetteur Te de la pluralité de transducteurs émetteurs, un décalage temporel te de telle sorte que les décalages temporels de la pluralité de transducteurs émetteurs sont répartis de manière uniforme et aléatoire sur une durée d'émission prédéterminée,
- émettre la séquence d'émission dans le milieu par la pluralité de transducteurs émetteurs,
- recevoir et enregistrer des signaux en réception sr par la pluralité de transducteurs en réponse de la séquence d'émission émise dans le milieu,
- traiter les signaux en réception selon le processus suivant dans lequel : on calcule pour chaque transducteur émetteur, un retard de focalisation correspondant à une loi de focalisation déterminée pour le transducteur émetteur, pour un point cible de la zone d'intérêt de sondage souhaitée dans le milieu, et en tenant compte du décalage temporel du transducteur émetteur considéré, on calcule pour chaque transducteur émetteur, un signal focalisé sf qui est la somme les signaux en réception de la pluralité de transducteurs de la sonde, réalignés par le retard de focalisation, on calcule un signal synthétique ss qui est la somme des signaux focalisés de tous les transducteurs émetteurs, et on analyse le signal synthétique pour en déduire un niveau de détection dans le milieu au point cible, et on en déduit la détection d'une discontinuité.
La séquence d'émission du procédé précédent est suffisante pour que le processus de traitement des signaux en réception sr sonde le milieu du produit afin de détecter des discontinuités dans la zone d'intérêt ROI en tout point cible ou toute direction. Cette séquence d'émission est donc très efficace pour sonder rapidement le milieu, et pour éviter ou réduire les interférences dans les signaux en réception sr.
Tout le processus de traitement des signaux en réception sp de l'unité de traitement 20 est décrit ici par un découpage en bloc fonctionnels constitués au moins des calculateurs de retard 115, bloc de sommation 200, et contrôleur 300, entourés d'autres blocs fonctionnels dont certains sont optionnels, mais ce processus de traitement peut être implémenté dans une seule ou plusieurs unités de calcul selon une architecture définie par un technicien. Notamment, ce processus de traitement peut être implémenté dans un matériel dédié comme des processeurs FPGA, dans un matériel de calcul comme un processeur DSP, ou dans un processeur standard. La puissance des FPGA, DSP et micro processeurs actuels permet des calculs extrêmement rapides.
En réitérant le processus de traitement pour une pluralité de points cibles C à partir des mêmes signaux en réception sr enregistrés après une seule séquence d'émission telle que décrite ci-dessus, il est possible de construire une image du milieu.
Ainsi, dans le procédé de détection de discontinuité, l'étape de traitement des signaux en réception est itérée pour une pluralité de point cibles, afin d'établir une image du milieu représentative des différents niveaux de détection.
Comme ce processus de traitement des signaux en réception n'est que du calcul, ce processus peut être extrêmement rapide. Le balayage du milieu M du produit pour détecter des discontinuités peut être très rapide, ce qui permet de sonder rapidement un produit. Par exemple, il devient possible de sonder un produit qui se déplace par rapport à la sonde ou inversement.
Nous allons maintenant expliciter le fonctionnement du bloc de réduction d'interférence 150 (dit "IRB") du système 100 de la figure 1. Ce bloc de réduction d'interférence 150 a notamment pour objet de réduire les interférences pouvant arriver lorsque plusieurs discontinuités se trouvent dans la zone d'intérêt ROI du milieu M. Nous considérons que le nombre de discontinuités dans le milieu est Nd.
Pour simplifier les explications, nous supposeront dans cette partie que la séquence d'excitation ne comprend qu'une seule émission d'un puise par un seul transducteur émetteur Te (Ne = 1), mais trois discontinuités à l'intérieur du milieu (Nd = 3).
Ainsi, dans ce cas, la figure 9 (similaire à la figure 3) représente les N signaux en réception sr obtenus et mémorisés en mémoire 130 suite à l'émission d'un seul transducteurs émetteurs Te, en présence des trois discontinuités dans le milieu M du produit. La figure 9 représente de manière simplifiée une partie des 64 signaux en réception sri à sr64, pour éviter une trop grande densité de tracés sur cette figure.
On observe sur cette figure, pour chaque transducteur récepteur Tr, un signal en réception sr contenant trois impulses correspondant aux trois retours des trois discontinuités. Chaque discontinuité a une position spatiale différente dans le milieu, ce qui se traduit en figure 9 par 3 courbes de maximums d'impulses dans la direction des N transducteurs (une pour chaque discontinuité) : courbes Cl, C2 et C3. Contrairement aux courbes pour plusieurs émissions d'impulses de la figure 3, ces courbes peuvent se croiser ce qui produit des interférences aux points de croisements Pa et Pb de la figure 9.
Bien sûr, on comprendra que lorsqu'il y a plusieurs impulses en émission (Ne), cela multiplie le nombre de croisements et d'interférences entre les diverses courbes.
Ainsi, si l'on extrait les portions de signaux autour de la courbe Cl par le procédé de calcul de retard explicité précédemment, on peut tracer pour le point cible C focalisé sur la discontinuité correspondant à cette courbe Cl, une courbe de maximums Ml passant en moyenne par tous les maximum de la courbe Cl ou plutôt utilisant les valeurs des signaux en réception sr pris aux instants correspondant à la loi de retard en réception (le calcul de retard) pour le point cible C sur la première discontinuité.
Cette courbe de maximums Ml présente notamment des interférences autour des indices de transducteurs correspondant aux points de croisements Pa et Pb.
Cette courbe de maximums Ml est liée à la forme et à la taille de la discontinuité. Il est alors possible de calculer une courbe modèle CM qui approxime la courbe de maximums Ml par une équation mathématique, telle qu'une équation polynomiale. Des techniques d'approximation de courbes expérimentales de type régression polynomiales sont bien connues.
Ainsi, on détermine la courbe modèle CM la plus proche de la courbe de maximums Ml, la courbe modèle étant une courbe calculée par une équation polynomiale, et on calcule des signaux en réception csr corrigés à partir de la courbe modèle CM, ce qui permet de réduire significativement les interférences.
L'équation polynomiale est par exemple une équation polynomiale d'ordre un (une droite), d'ordre deux (parabole) ou d'ordre trois.
La détermination de la courbe la plus proche peut être effectué en minimisant une distance entre la courbe modèle CM et la courbe de maximums Ml.
Ainsi, en résumé le procédé de détection de discontinuité est complété avant le calcul du signal focalisé, une étape mise en œuvre par exemple par le bloc de réduction d'interférences et durant laquelle on réduit les interférences entre plusieurs discontinuités, par le processus consistant à : - déterminer une courbe de maximums des signaux en réception en fonction des transducteurs, ladite courbe étant déterminée en repérant les maximums des signaux en réception pour un point cible et selon la loi de focalisation, - calculer une courbe modèle qui approxime la courbe de maximums, et
- calculer des signaux en réception corrigés à partir des signaux en réception enregistrés et de la courbe modèle, lesdits signaux en réception corrigés étant ensuite utilisés à la place des signaux en réception enregistrés dans le traitement de ces signaux pour déduire le niveau de détection. Nous allons maintenant expliciter le fonctionnement du correcteur dynamique de vitesse 116 (identifié "Corr" sur la figure 1). Ce correcteur dynamique de vitesse 116 a notamment pour objet de corriger le calcul de retard dans le cas d'un déplacement de la sonde 10 par rapport au produit (milieu M) ou inversement. Nous traitons ici le cas d'un déplacement à vitesse constante dans la direction longitudinale X. C'est un cas très usuel pour le contrôle en continu de profilés métalliques ou par exemple de rails de chemin de fer. La vitesse peut donc être très importante (plusieurs dizaines de kilomètres par heure). Sans correction du calcul de retard, l'estimation du niveau de détection est complètement erronée, et dans le cas d'un calcul d'image, l'image résultante est totalement floue.
Par exemple, dans le cas du calcul de retard détaillé précédemment, le calcul de retard de focalisation corrigé est alors toujours :
Retard = te + tem + tre + tadj Mais, les temps de trajet aller tem et le temps de trajet de retour tre sont maintenant: tem = 1/Va.sqrt(((xe +dxm) - xc)2 + zc2) tre = 1/Vr.sqrt(((xr + drm + drA + drR) -xc)2 + zc2) dans lequel dxm est le déplacement du transducteur émetteur Te pendant le décalage temporel te de ce transducteur émetteur, drm est le déplacement du transducteur récepteur Tr pendant le décalage temporel te du transducteur émetteur Te, drA est le déplacement du transducteur récepteur Tr pendant le trajet aller de l'onde entre le transducteur émetteur Te et le point cible C, drR est le déplacement du transducteur récepteur Tr pendant le trajet retour de l'onde entre le point cible C et le transducteur récepteur Tr.
Le retard de focalisation ci-dessus est donc maintenant fonction de déplacements dxm, drm, drA, drR qui peuvent être aisément calculés à partir de la vitesse de déplacement du produit par rapport à la sonde 10.
Le calcul de retard précédent peut être exprimé en index mémoire dans la mémoire 130 en multipliant le temps de trajet aller tem, le temps de trajet de retour tre et le décalage temporel te par une fréquence d'échantillonnage Fs dans le cas d'un système échantillonné avec une telle fréquence d'échantillonnage constante. Ainsi, le système 100 récupère d'un autre système une mesure de vitesse de la vitesse du milieu par rapport à la sonde, ou comprend un capteur pour mesurer cette vitesse. Cette vitesse est fournie au correcteur dynamique de vitesse 116 qui corrige le calculateur de retard 115, par exemple avec les formules explicitées ci-dessus.
Le procédé de détection de discontinuité est alors amélioré par le fait que le retard de focalisation est déterminé en fonction de la vitesse de déplacement du milieu par rapport à la sonde, ou inversement.

Claims

REVENDICATIONS
1. Procédé de détection de discontinuités dans un milieu, ce procédé étant mis en œuvre à l'aide d'une sonde comprenant une pluralité de transducteurs formant une surface active et adaptés pour émettre et recevoir une onde ultrasonore dans le milieu, et le procédé comprenant les étapes consistant à :
- définir une séquence d'émission dans laquelle : on choisit une pluralité de transducteurs émetteurs parmi les transducteurs de la sonde, chaque transducteur émetteur de la pluralité de transducteurs émetteurs ayant une position spatiale déterminée de telle sorte que les positions spatiales de la pluralité de transducteurs émetteurs sont réparties de manière uniforme et aléatoire sur la surface active de la sonde, et on définit pour chaque transducteur émetteur de la pluralité de transducteurs émetteurs, un décalage temporel de telle sorte que les décalages temporels de la pluralité de transducteurs émetteurs sont répartis de manière uniforme et aléatoire sur une durée d'émission prédéterminée,
- émettre la séquence d'émission dans le milieu par la pluralité de transducteurs émetteurs,
- recevoir et enregistrer des signaux en réception par la pluralité de transducteurs en réponse de la séquence d'émission émise dans le milieu,
- traiter les signaux en réception selon le processus suivant dans lequel : on calcule pour chaque transducteur émetteur, un retard de focalisation correspondant à une loi de focalisation déterminée pour le transducteur émetteur, pour un point cible de sondage souhaitée dans le milieu, et en tenant compte du décalage temporel du transducteur émetteur considéré, on calcule pour chaque transducteur émetteur, un signal focalisé qui est la somme des signaux en réception de la pluralité de transducteurs de la sonde, réalignés par le retard de focalisation, on calcule un signal synthétique qui est la somme des signaux focalisés de tous les transducteurs émetteurs, et on analyse le signal synthétique pour en déduire un niveau de détection dans le milieu au point cible, et on en déduit la détection d'une discontinuité.
2. Procédé selon la revendication 1, comprenant en outre avant le calcul du signal focalisé, une étape dans laquelle on réduit les interférences entre plusieurs discontinuités, par le processus consistant à :
- déterminer une courbe de maximums des signaux en réception en fonction des transducteurs, ladite courbe étant déterminée en repérant les maximums des signaux en réception pour un point cible et selon la loi de focalisation,
- calculer une courbe modèle qui approxime la courbe de maximums, et
- calculer des signaux en réception corrigés à partir des signaux en réception enregistrés et de la courbe modèle, lesdits signaux en réception corrigés étant ensuite utilisés à la place des signaux en réception enregistrés dans le traitement de ces signaux pour déduire le niveau de détection.
3. Procédé selon la revendication 2, dans lequel la courbe modèle est une courbe polynomiale.
4. Procédé selon l'une des revendications 1 à 3, dans lequel le retard de focalisation est déterminé en fonction de la vitesse de déplacement du milieu par rapport à la sonde, ou inversement.
5. Procécé selon la revendication 1, dans lequel le traitement des signaux en réception est itéré pour une pluralité de point cibles, pour établir une image du milieu représentative des différents niveaux de détection dans lesdits points cibles.
6. Système de détection de discontinuité dans un milieu, comprenant une sonde (10) comprenant une pluralité de transducteurs adaptés pour émettre et recevoir une onde ultrasonore dans le milieu, et une unité de traitement (20) reliée à la sonde, cette unité de traitement (20) comprenant au moins une mémoire (130) pour enregistrer des signaux en réception, un contrôleur (300) pour mettre en œuvre le procédé selon l'une des revendication 1 à 5.
PCT/FR2021/051187 2020-07-30 2021-06-28 Procédé de détection de discontinuités et système mettant en oeuvre ce procédé WO2022023632A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21745368.7A EP4189380B1 (fr) 2020-07-30 2021-06-28 Procédé de détection de discontinuités et système mettant en oeuvre ce procédé
US18/014,652 US20230273161A1 (en) 2020-07-30 2021-06-28 Method for detecting discontinuities and system for implementing said method
CA3188943A CA3188943A1 (fr) 2020-07-30 2021-06-28 Procede de detection de discontinuites et systeme mettant en oeuvre ce procede
CN202180059202.1A CN116171382A (zh) 2020-07-30 2021-06-28 用于检测不连续性的方法和用于实施所述方法的系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2008097A FR3113135B1 (fr) 2020-07-30 2020-07-30 Procédé de détection de discontinuités et système mettant en œuvre ce procédé
FRFR2008097 2020-07-30

Publications (1)

Publication Number Publication Date
WO2022023632A1 true WO2022023632A1 (fr) 2022-02-03

Family

ID=74125283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051187 WO2022023632A1 (fr) 2020-07-30 2021-06-28 Procédé de détection de discontinuités et système mettant en oeuvre ce procédé

Country Status (6)

Country Link
US (1) US20230273161A1 (fr)
EP (1) EP4189380B1 (fr)
CN (1) CN116171382A (fr)
CA (1) CA3188943A1 (fr)
FR (1) FR3113135B1 (fr)
WO (1) WO2022023632A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4345450A1 (fr) * 2022-09-28 2024-04-03 Baker Hughes Holdings LLC Détermination de l'extension radiale de structures fissure/de défauts au-delà de la surface de coque d'objets cylindriques à l'aide de sondes à réseau à commande de phase à ultrasons

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830328A1 (fr) 2001-09-28 2003-04-04 Socomate Internat Dispositif et procede d'analyse de la structure d'un materiau

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830328A1 (fr) 2001-09-28 2003-04-04 Socomate Internat Dispositif et procede d'analyse de la structure d'un materiau

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive évaluation", NDT&E INTERNATIONAL, vol. 38, 2005, pages 701 - 711, XP002802391 *
"Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive évaluation", vol. 38, 2005, NDT&E INTERNATIONAL, pages: 701 - 711
DAVIDSEN RICHARD E. ET AL: "Two-dimensional random arrays for real time volumetric imaging", ULTRASONIC IMAGING, vol. 16, 1 January 1994 (1994-01-01), pages 143 - 163, XP055786494 *
PIETER KRUIZINGA ET AL: "Compressive 3D ultrasound imaging using a single sensor", SCIENCE ADVANCES, vol. 3, no. 12, 1 December 2017 (2017-12-01), pages e1701423, XP055594656, DOI: 10.1126/sciadv.1701423 *
RACHLIN D J ET AL: "Theoretical evaluation of some related methods for reducing acoustic speckle", 19881002; 19881002 - 19881005, 2 October 1988 (1988-10-02), pages 827 - 832, XP010075565 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4345450A1 (fr) * 2022-09-28 2024-04-03 Baker Hughes Holdings LLC Détermination de l'extension radiale de structures fissure/de défauts au-delà de la surface de coque d'objets cylindriques à l'aide de sondes à réseau à commande de phase à ultrasons

Also Published As

Publication number Publication date
EP4189380B1 (fr) 2024-05-22
EP4189380C0 (fr) 2024-05-22
EP4189380A1 (fr) 2023-06-07
CN116171382A (zh) 2023-05-26
FR3113135B1 (fr) 2022-07-01
FR3113135A1 (fr) 2022-02-04
CA3188943A1 (fr) 2022-02-03
US20230273161A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
EP0591061B1 (fr) Procédé et dispositif d'examen acoustique à retournement temporel
EP0840139B1 (fr) Procédé de traitement de signaux relatifs à un objet ayant des parties en mouvement et dispositif échographique mettant en oeuvre ce procédé
FR2965934A1 (fr) Support de memorisation, procede et systeme de resolution d'onde transversale en imagerie medicale par ultrason
FR3031448A1 (fr)
FR3003153A1 (fr) Imagerie de deplacement par arfi ultrasonore utilisant une instance temporelle adaptative
FR2844178A1 (fr) Dispositif et procede pour la mesure de l'elasticite d'un organe humain ou animal et l'etablissement d'une representation a deux ou trois dimensions de cette elasticite
FR2851662A1 (fr) Procede et dispositif de detection de discontinuites dans un milieu
CA2234465C (fr) Procede et dispositif pour le traitement de signaux representatifs d'ondes reflechies, transmises ou refractees par une structure volumique en vue d'effectuer une exploration et une analyse de cette structure
FR3047405A1 (fr)
FR3050104A1 (fr)
EP4189380B1 (fr) Procédé de détection de discontinuités et système mettant en oeuvre ce procédé
FR2839157A1 (fr) Systeme d'imagerie ultrasonore a haute resolution laterale
EP2342582B1 (fr) Procede et dispositif de sondage par propagation d'ondes
FR3046693A1 (fr)
FR3079059A1 (fr) Filtrage adaptatif de fouillis dans une imagerie par ultrasons basée sur une force de rayonnement acoustique
FR2986960A1 (fr) Procede et systeme de visualisation d'information associee dans une imagerie par onde de cisaillement ultrasonore ainsi que support de stockage lisible par ordinateur
EP0825453B1 (fr) Procédé et dispositif pour le traitement de signaux représentatifs d'ondes réfléchies ou transmises par une structure volumique en vue d'effectuer une exploration et une analyse de cette structure
FR3065811A1 (fr) Foyer variable pour imagerie par ondes de cisaillement
FR3062049A1 (fr) Imagerie par vitesse de cisaillement utilisant une coherence
Sutcliffe et al. Virtual source aperture image processing methods for non-destructive testing
FR2839877A1 (fr) Procede, sonde et appareil pour evaluer de maniere non-invasive une duree de parcours ou une vitesse d'ultra-sons le long d'une interface, notamment osseuse
EP4083659B1 (fr) Dispositif et procédé de traitement du signal issus d'un ensemble de transducteurs ultrasonores
FR3081098A1 (fr) Imagerie à onde de cisaillement reposant sur les ultrasons à intervalle accru de répétition des impulsions
FR3013850A1 (fr) Procede de reconstruction d'une surface d'une piece
WO2021023933A1 (fr) Procédé et système de caractérisation ultrasonore non invasive d'un milieu hétérogène

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21745368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3188943

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2021745368

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021745368

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE