WO2022022627A1 - 一种不间断电源、通断控制模块、控制方法及系统 - Google Patents

一种不间断电源、通断控制模块、控制方法及系统 Download PDF

Info

Publication number
WO2022022627A1
WO2022022627A1 PCT/CN2021/109197 CN2021109197W WO2022022627A1 WO 2022022627 A1 WO2022022627 A1 WO 2022022627A1 CN 2021109197 W CN2021109197 W CN 2021109197W WO 2022022627 A1 WO2022022627 A1 WO 2022022627A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
uninterruptible power
control module
control
current
Prior art date
Application number
PCT/CN2021/109197
Other languages
English (en)
French (fr)
Inventor
张春涛
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP21848760.1A priority Critical patent/EP4184749A4/en
Publication of WO2022022627A1 publication Critical patent/WO2022022627A1/zh
Priority to US18/161,336 priority patent/US20230179013A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements

Definitions

  • the present application relates to the technical field of electronic power, and in particular, to an uninterruptible power supply, an on-off control module, a control method and a system.
  • UPS Uninterruptible power supply
  • UPS mainly includes: rectifier, inverter and battery.
  • the power input supplies power to the load through the rectifier and the inverter, and charges the battery through the rectifier, so that the UPS can output a stable voltage; when the mains input fails, the battery stores its own energy through the inverter. load power supply.
  • the input side of the UPS is connected to the power supply (mains) through the on-off control module, and the output side of the UPS is connected to the load through the on-off control module.
  • the switch itself will have the problem of arcing, so only the circuit breaker (CB) or load switch (LS) with arc extinguishing function can be selected, but the cost of using the above devices is high, the volume is large, and the arc The service life of the above devices will still be shortened, so regular maintenance and replacement are required, which further increases the cost.
  • the present application provides an uninterruptible power supply, an on-off control module, a control method and a system, which can avoid the arcing problem and thus reduce the cost of using the on-off control module.
  • the present application provides an uninterruptible power supply, an input end of the uninterruptible power supply is connected to a power supply through a first on-off control module, and the uninterruptible power supply includes: a controller. After receiving the first control signal sent by the first on-off control module, the controller controls the current in the line connected between the uninterruptible power supply and the first on-off control module to be zero. At this time, the first on-off control module is turned off again, so that the first on-off control module can realize zero-current shutdown, thereby reducing the loss when the first on-off control module is turned off, and prolonging the duration of the on-off control module. Service life, and further, lower cost and smaller on-off control modules that do not have the function of preventing arcing, such as fuses, isolating switches or plug-in terminals, can also be used.
  • the uninterruptible power supply further includes: a rectifier, an inverter and a battery.
  • the rectifier is used to convert the alternating current provided by the power source into direct current and then transmit it to the battery and the inverter;
  • the inverter is used to convert the obtained direct current into alternating current to supply power to the load of the uninterruptible power supply;
  • the battery is used to supply power to the uninterruptible power supply when the rectifier stops working.
  • the inverter outputs direct current.
  • the controller is specifically used to control the rectifier to stop working and the battery to output direct current to the inverter when the rectifier works normally and receives the first control signal sent by the first on-off control module, so that the uninterruptible power supply is connected to the first on-off control module.
  • the current in the connected line is zero.
  • the uninterruptible power supply is switched from the main circuit power supply working mode to the battery power supply working mode.
  • the current in the line connecting the uninterruptible power supply and the first on-off control module is zero, and then the first on-off control module is turned off. , so that the first on-off control module can realize zero-current off during the process of switching the working state of the uninterruptible power supply.
  • the uninterruptible power supply further includes a bypass circuit.
  • One end of the bypass circuit is connected to the input end of the rectifier, and the other end is connected to the output end of the inverter.
  • a bypass circuit is used to allow the power supply to power the load directly when enabled.
  • the controller is specifically used to control the bypass circuit to be disconnected so as to connect the uninterruptible power supply to the first on-off control module in a circuit when the bypass circuit is enabled and receives the first control signal sent by the first on-off control module. current is zero.
  • the working state of the rectifier is switched from the working state of the bypass power supply to the working state of stopping the output (turning off), so that the current in the line connecting the uninterruptible power supply and the first on-off control module is zero, and then the first on-off control module is turned off.
  • a control module so that the first on-off control module can realize zero-current shutdown during the shutdown process of the uninterruptible power supply.
  • the present application also provides another uninterruptible power supply, an output end of the uninterruptible power supply is connected to a load through a second on-off control module, and the uninterruptible power supply includes: a controller.
  • the controller is configured to control the uninterruptible power supply to shut down after receiving the second control signal sent by the second on-off control module.
  • the present application controls the uninterruptible power supply to turn off earlier than the second on-off control module, and the final result is still to make the uninterruptible power supply.
  • the power supply stops supplying power to the load, which will not affect the load side, but realizes the zero-current shutdown of the second on-off control, thereby reducing the loss when the second on-off control module is turned off, and prolonging the on-off control
  • the service life of the module can also use lower cost, smaller size on-off control modules that do not have the anti-arc function, such as fuses, isolation switches or plug-in terminals.
  • the present application also provides an on-off control module, one end of the on-off control module is connected to an uninterruptible power supply, and the other end is connected to a power supply.
  • the on-off control module is used to send the first control signal to the uninterruptible power supply, and when it is determined that the current in the line connected to the uninterruptible power supply is zero, it switches to the disconnected state, and the first control signal is used to indicate the uninterruptible power supply.
  • the controller controls the current in the line connecting the uninterruptible power supply and the first on-off control module to be zero.
  • the on-off control module may be any one of a fuse, a plug-in terminal, and an isolation switch.
  • the present application also provides another on-off control module, one end of the on-off control module is connected to the uninterruptible power supply, and the other end is connected to the load of the uninterruptible power supply.
  • the on-off control module is used to send a second control signal to the uninterruptible power supply, and when it is determined that the current in the line connected to the uninterruptible power supply is zero, it switches to the disconnected state, and the second control signal is used to indicate the uninterruptible power supply.
  • the controller controls the shutdown of the uninterruptible power supply.
  • the on-off control module may be any one of a fuse, a plug-in terminal, and an isolation switch.
  • the present application also provides a method for controlling an uninterruptible power supply, wherein the input end of the uninterruptible power supply is connected to the power supply through a first on-off control module, and the method includes: when receiving the first on-off control module sent the first on-off control module. After controlling the signal, the current in the line connecting the uninterruptible power supply and the first on-off control module is controlled to be zero.
  • the uninterruptible power supply further includes: a rectifier, an inverter and a battery.
  • the rectifier is used to convert the alternating current provided by the power source into direct current and then transmit it to the battery and the inverter;
  • the inverter is used to convert the obtained direct current into alternating current to supply power to the load of the uninterruptible power supply;
  • the battery is used to reverse the operation when the rectifier stops working.
  • the converter outputs direct current.
  • the current in the line connecting the uninterruptible power supply and the first on-off control module is controlled to be zero, which specifically includes:
  • the rectifier works normally and receives the first control signal sent by the first on-off control module, the rectifier is controlled to stop working and the battery outputs direct current to the inverter, so that the uninterruptible power supply is connected to the first on-off control module in the line. current is zero.
  • the uninterruptible power supply further includes a bypass circuit.
  • One end of the bypass circuit is connected to the input end of the rectifier, and the other end is connected to the output end of the inverter; the bypass circuit is used to make the power supply directly supply power to the load when enabled.
  • the current in the line connecting the uninterruptible power supply and the first on-off control module is controlled to be zero, which specifically includes:
  • the bypass circuit After the bypass circuit is enabled and the first control signal sent by the first on-off control module is received, the bypass circuit is controlled to be disconnected so that the current in the line connecting the uninterruptible power supply and the first on-off control module is zero.
  • the present application also provides another method for controlling an uninterruptible power supply, wherein the output end of the uninterruptible power supply is connected to a load through a second on-off control module, and the method includes:
  • the uninterruptible power supply After receiving the second control signal sent by the second on-off control module, the uninterruptible power supply is controlled to shut down.
  • the present application also provides a control method for on-off control module, one end of the on-off control module is connected to an uninterruptible power supply, and the other end is connected to a power supply, and the method includes:
  • the present application also provides another method for controlling an on-off control module, wherein one end of the on-off control module is connected to an uninterruptible power supply, and the other end is connected to a load of the uninterruptible power supply, and the method includes:
  • the present application further provides an uninterruptible power supply system, which includes the uninterruptible power supply or the on-off control module provided in the above implementation manner.
  • the uninterruptible power supply of the uninterruptible power supply system may include an on-off control module (ie, the first on-off control module) at the input end, or an on-off control module (ie, the second on-off control module) at the output end ), or include on-off control modules at both the input and output.
  • the first on-off control module When the input end of the uninterruptible power supply provided by the present application is connected to the power supply through the first on-off control module, the first on-off control module sends a first control signal to the controller of the uninterruptible power supply, and the controller further controls the uninterruptible power supply to communicate with the first on-off control module.
  • the current in the line between the on-off control modules is zero, and then the first on-off control module is turned off, so that the first on-off control module can realize zero-current shutdown.
  • the second on-off control module When the output end of the uninterruptible power supply is connected to the load through the second on-off control module, the second on-off control module sends a second control signal to the controller of the uninterruptible power supply, and the controller further controls the uninterruptible power supply to stop working, so as to make the uninterruptible power supply stop working.
  • the current in the line between the power supply and the first on-off control module is zero, and then the second on-off control module is turned off, so that the second on-off control module can realize zero-current off.
  • the technical solution provided by the present application avoids arcing when the on-off control module connected to the uninterruptible power supply is turned off, thereby reducing the loss when the on-off control module is turned off, and prolonging the on-off control module. Furthermore, the on-off control module with lower cost and smaller volume that does not have the anti-arc function, such as fuse, isolating switch or plug-in terminal, can also be used.
  • Fig. 1 is the schematic diagram of the power distribution mode of UPS input and output
  • FIG. 2 is a schematic diagram of an uninterruptible power supply provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another uninterruptible power supply provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another uninterruptible power supply provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of still another uninterruptible power supply provided by an embodiment of the present application.
  • FIG. 6 is a flowchart of a method for controlling an uninterruptible power supply provided by an embodiment of the present application
  • FIG. 7 is a flowchart of a control method for an on-off control module provided by an embodiment of the present application.
  • FIG. 8 is a flowchart of another method for controlling an uninterruptible power supply provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of another control method for an on-off control module provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an uninterruptible power supply system provided by an embodiment of the present application.
  • FIG. 1 the figure is a schematic diagram of the power distribution mode of the UPS input and output.
  • the input side of the UPS 10 is connected to the power source 20 through the input on-off control module K1, and the output side of the UPS 10 is connected to the load 30 through the output on-off control module K2.
  • K1 and K2 are disconnected with current, due to the existence of currents I1 and I2, there will be arcing problems in K1 and K2. Therefore, it is required to have arc extinguishing function for K1 and K2, so only those with arc extinguishing function can be selected. Circuit breakers and load switches with high volume and cost. And since arcing will damage K1 and K2 themselves, which will shorten the life of K1 and K2, so even if K1 and K2 have the arc extinguishing function, they need to be replaced regularly, which increases the maintenance cost.
  • the embodiments of the present application provide an uninterruptible power supply, an on-off control module, a control method and a system.
  • the on-off control module Before the on-off control module is disconnected, the on-off control module sends a control signal to the UPS, so that the control of the UPS
  • the current in the line connecting the UPS and the on-off control module is controlled by the controller to be zero, thereby realizing zero-current shutdown, avoiding the problem of switch arcing, on the one hand, reducing the loss when the on-off control module is turned off, extending the The service life of the on-off control module is shortened, and on the other hand, the on-off control module with lower cost and smaller volume without the anti-arc function can be used.
  • connection should be understood in a broad sense.
  • connection may be a fixed connection, a detachable connection, or an integral body; it may be a direct connection, or a Indirect connections can be made through an intermediary.
  • FIG. 2 this figure is a schematic diagram of an uninterruptible power supply provided by an embodiment of the present application.
  • the input end of the uninterruptible power supply UPS10 is connected to the power supply 20 through the first on-off control module K1.
  • the power source 20 may be mains power.
  • the first on-off control module K1 is used for sending the first control signal S1 to the UPS 10 .
  • the first control signal S1 is used to instruct the controller (not shown in the figure) of the UPS 10 to control the current in the line connected between the UPS 10 and the first on-off control module K1 to be zero.
  • the controller of the UPS 10 controls the current in the line connected between the UPS 10 and the first on-off control module K1 to be zero, that is, the current I1 at this time is zero.
  • the UPS 10 may be in a stop working state, or use an internal battery to supply power to the load 30 , which is not specifically limited in this embodiment of the present application.
  • the first on-off control module K1 switches to the off state after determining that the current I1 is zero. At this time, the first on-off control module K1 realizes zero-current shutdown, thereby reducing the loss when the first on-off control module K1 is turned off.
  • the first on-off control module before the first on-off control module is disconnected, the first on-off control module is made to send the first control signal to the UPS, and then the controller of the UPS is made to control the UPS and the UPS.
  • the current in the line connected to the first on-off control module is zero, thereby realizing zero-current shutdown, avoiding the problem of arcing, reducing the loss when the first on-off control module is turned off, and prolonging the
  • a lower-cost on-off control module without the anti-arc function can also be used, for example, an isolating switch (IS), a fuse (Fuse) or a plug-in switch can be used. Terminals, etc., to reduce the cost and volume of the on-off control module.
  • avoiding arcing also avoids triggering the connected protection circuit, thus ensuring that fuses used in the circuit are not affected.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • this figure is a schematic diagram of another uninterruptible power supply provided by an embodiment of the present application.
  • the output end of the uninterruptible power supply UPS10 is connected to the load 30 through the second on-off control module K2.
  • the second on-off control module K2 is configured to send a second control signal S2 to the UPS 10, where the second control signal S2 is used to instruct a controller (not shown in the figure) of the UPS 10 to control the UPS 10 to shut down.
  • the controller of the UPS 10 controls the UPS 10 to shut down, that is, the current I2 at this time is zero.
  • the embodiment of the present application controls the UPS 10 to turn off earlier than the second on-off control module K2, and the final result is still to make the UPS 10 turn off. Stopping the power supply to the load 30 does not affect the load side.
  • the second on-off control module K2 switches to the off state after determining that the current I2 is zero. At this time, the second on-off control module K2 realizes zero-current shutdown, thereby reducing the loss when the second on-off control module K2 is turned off.
  • the second on-off control module before the second on-off control module is disconnected, the second on-off control module is made to send the second control signal to the UPS, and then the controller of the UPS is made to control the UPS to stop. work, so as to realize zero-current shutdown and avoid the problem of arcing.
  • an on-off control module with lower cost that does not have an anti-arc function for example, an isolating switch (IS) or a fuse (Fuse) can be used to reduce the cost and volume of the on-off control module.
  • IS isolating switch
  • Fuse fuse
  • avoiding arcing also avoids triggering the connected protection circuit, thus ensuring that fuses used in the circuit are not affected.
  • this figure is a schematic diagram of another uninterruptible power supply provided by an embodiment of the present application.
  • the input end of the uninterruptible power supply UPS10 shown in the figure is connected to the power supply 20 through the first on-off control module K1, and the output end is connected to the load 30 through the second on-off control module K2.
  • the working principles of the first on-off control module K1 , the second on-off control module K2 and the controller of the UPS 10 may refer to the above embodiments, which will not be repeated in the embodiments of the present application.
  • FIG. 4 The working principle of the controller when the UPS 10 is in different working states is specifically described below by taking FIG. 4 as an example.
  • FIG. 4 For the working principle of the controller of the UPS in FIG. 2 or FIG. 3 , reference may be made to the corresponding part in the description of FIG. 4 .
  • this figure is a schematic diagram of still another uninterruptible power supply provided by an embodiment of the present application.
  • the uninterruptible power supply UPS10 specifically includes: a rectifier 101 , an inverter 102 , a battery 103 and a bypass circuit 104 .
  • the rectifier 101 is used to convert the alternating current provided by the power source 10 into direct current and transmit it to the battery 103 to charge the battery 103 , and convert the alternating current to direct current and transmit it to the inverter 102 .
  • the inverter 102 converts the obtained direct current into alternating current to supply power to the load of the uninterruptible power supply.
  • the battery 103 is used to output DC power to the inverter 102 when the rectifier 101 stops working.
  • bypass circuit 104 One end of the bypass circuit 104 is connected to the input end of the rectifier 101 , and the other end is connected to the output end of the inverter 102 .
  • the bypass circuit 104 is used to allow the power supply 20 to directly power the load 30 when enabled.
  • the UPS 10 can control the states of the main circuit switch Q1 , the battery switch Q2 and the bypass switch Q3 in the UPS 10 to change the working state, which will be described in detail below.
  • the main circuit of the UPS works, that is, the main circuit switch Q1 is closed, and the battery switch Q2 and the bypass switch Q3 are both disconnected.
  • the AC power input from the power source 20 to the UPS supplies power to the load 30 through the rectifier 101 and the inverter 102 , and charges the battery 103 through the rectifier 101 , so that the UPS can output a stable voltage to the load 30 .
  • the first on-off control module K1 When the first on-off control module K1 needs to be disconnected in this working state, the first on-off control module K1 sends a first control signal to the controller of the UPS 10, so that the controller controls the rectifier 101 to stop working and the battery 103 to the inverter
  • the device 102 outputs DC power, even if the UPS is switched from the main circuit output to the battery output, at this time the main circuit switch Q1 is switched to the off state, and the battery switch Q2 is switched to the closed state, thereby making the line connected between the UPS and the first on-off control module K1 The current in is zero.
  • the first on-off control module K1 is turned off, so that the first on-off control module K1 can realize zero-current shutdown.
  • the power source 20 When the input of the power source 20 fails, the power source 20 needs to stop supplying power, or the rectifier 101 fails, the battery 103 of the UPS supplies power to the load 30 . At this time, the battery switch Q2 is closed, the main circuit switch Q1 and the bypass switch Q3 are both open, and the inverter 102 converts the DC power provided by the battery 103 into AC power to supply power to the load 30 .
  • the bypass circuit 104 starts to work, the bypass switch Q3 is turned on, the main circuit switch Q1 and the battery switch Q2 are both closed, and the power source 20 directly supplies power to the load 30 .
  • the first on-off control module K1 When the first on-off control module K1 needs to be disconnected in this working state, the first on-off control module K1 sends a first control signal to the controller of the UPS 10, so that the controller controls the bypass circuit 104 to be disconnected.
  • the circuit switch Q3 is switched to the off state, so that the current in the line connected between the UPS and the first on-off control module K1 is zero. Then, the first on-off control module K1 is turned off, so that the first on-off control module K1 can realize zero-current shutdown.
  • the second on-off control module K2 when the second on-off control module K2 needs to be disconnected, it means that there is no need to supply power to the load 30 at this time, so the second on-off control module K2 sends the second on-off control module K2 to the UPS controller.
  • the technical solution provided by the present application avoids arcing when the on-off control module connected to the input end and the output end of the uninterruptible power supply is turned off, thereby reducing the loss when the on-off control module is turned off. , prolongs the service life of the on-off control module, so it is also possible to use a low-cost on-off control module without the anti-arc function, such as isolating switches, fuses and plug-in terminals, etc., to reduce the on-off control. Module cost and size. And because the on-off control module does not need to have the arc extinguishing function, it can ensure that the fuse works normally and will not trigger the protection action by mistake.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the embodiments of the present application also provide a control method applied to the uninterruptible power supply and on-off control module, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 6 is a flowchart of a method for controlling an uninterruptible power supply provided by an embodiment of the present application.
  • the method includes the following steps:
  • S601 Receive a first control signal sent by a first on-off control module.
  • the input end of the uninterruptible power supply is connected to the power supply through a first on-off control module, and the first on-off control module sends a first control signal to the UPS before disconnection.
  • S602 Control the current in the line connected between the uninterruptible power supply and the first on-off control module to be zero.
  • the UPS in practical application mainly includes a rectifier, an inverter, a battery and a bypass circuit, etc., and its working states include main circuit power supply, battery power supply and bypass power supply.
  • the rectifier converts the alternating current output from the power supply into direct current, one part charges the battery, and the other part supplies power to the load after passing through the inverter.
  • the UPS will switch to the battery power supply state, and the DC power provided by the battery will supply power to the load after passing through the inverter.
  • the above steps are specifically when the rectifier works normally and receives the first on-off control module.
  • the rectifier is controlled to stop working and the battery outputs direct current to the inverter, so that the current in the line connecting the uninterruptible power supply and the first on-off control module is zero.
  • the UPS When the UPS is in a battery-powered state, the current in the line connected between the UPS and the first on-off control module is zero, and at this time, the first on-off control module can be directly turned off to achieve zero-current off.
  • the bypass circuit starts, and the power supply directly supplies power to the load through the bypass circuit.
  • the first on-off control module needs to be turned off, it means that it is no longer necessary to supply power to the load at this time. Therefore, after the UPS receives the first control signal sent by the first on-off control module, the control bypass circuit is disconnected to Make the current in the line connecting the uninterruptible power supply and the first on-off control module to zero.
  • FIG. 7 is a flowchart of a control method for an on-off control module provided by an embodiment of the present application.
  • the method includes the following steps:
  • S701 Send a first control signal to the uninterruptible power supply, where the first control signal is used to instruct the uninterruptible power supply controller to control the current in the line connected between the uninterruptible power supply and the first on-off control module to be zero.
  • the method provided by the present application avoids arcing when the on-off control module connected to the input end of the uninterruptible power supply is turned off, thereby reducing the loss when the on-off control module is turned off, and prolonging the on-off time.
  • an on-off control module with lower cost and smaller volume that does not have the anti-arc function can also be used.
  • the protection circuit connected to the input end will not be triggered by mistake, and the fuse can be normally used at the input end of the uninterruptible power supply.
  • FIG. 8 is a flowchart of another method for controlling an uninterruptible power supply provided by an embodiment of the present application.
  • the method includes the following steps:
  • S801 Receive a second control signal sent by a second on-off control module.
  • the output end of the uninterruptible power supply is connected to the load through the second on-off control module.
  • the second on-off control module needs to be turned off, it means that the uninterruptible power supply does not need to supply power to the load at this time. Therefore, the embodiment of the present application controls the uninterruptible power supply to advance.
  • the second on-off control module is turned off, the final result is still that the uninterruptible power supply stops supplying power to the load, which will not affect the load side.
  • FIG. 9 is a flowchart of another control method for an on-off control module provided by an embodiment of the present application
  • the method includes the following steps:
  • S901 Send a second control signal to the uninterruptible power supply, where the second control signal is used to instruct the uninterruptible power supply controller to control the uninterruptible power supply to shut down.
  • the method provided by the present application avoids arcing when the on-off control module connected to the output end of the uninterruptible power supply is turned off, thereby reducing the loss when the on-off control module is turned off, and prolonging the on-off time.
  • the on-off control module with lower cost and smaller volume that does not have the anti-arc function can also be used to reduce the cost and volume of the on-off control module.
  • the protection circuit connected to the output end will not be triggered by mistake, and the fuse can be normally used at the output end of the uninterruptible power supply.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the embodiment of the present application further provides an uninterruptible power supply system, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 10 this figure is a schematic diagram of an uninterruptible power supply system provided by an embodiment of the present application.
  • the uninterruptible power supply system may be in the form of 1001, that is, it includes a UPS 10 and a first on-off control module K1.
  • a first control signal is sent to the UPS 10 to make the current in the line connected between the UPS 10 and the first on-off control module K1 to be zero, and then the first on-off control module K1 is disconnected.
  • module K1 so the first on-off control module K1 realizes zero-current off.
  • the uninterruptible power supply system may be in the form of 1002, that is, including the UPS 10 and the second on-off control module K2.
  • a second control signal is sent to the UPS 10 to turn off the UPS 10, so the current in the line connected between the UPS 10 and the second on-off control module K2 is zero, and then the second on-off control module K2 is disconnected.
  • Two on-off control modules K2, so the second on-off control module K2 realizes zero-current shutdown.
  • the uninterruptible power supply system may be in the form of 1003, that is, including the UPS 10, the first on-off control module K1 and the second on-off control module K2, and the working principle at this time is equivalent to the above two The combination of these implementations is not repeated in this embodiment of the present application.
  • the uninterruptible power supply system controls the current in the on-off control module and the connection line of the uninterruptible power supply to be zero before the on-off control module is turned off, which prevents the on-off control module from turning off.
  • the on-off control module can be connected to the input end and/or the output end of the uninterruptible power supply.
  • the protection circuit connected to the output terminal or the input terminal will not be triggered by mistake, and fuses can be normally used at the output terminal and the input terminal of the uninterruptible power supply.
  • the controller of the uninterruptible power supply in the above embodiments of the present application may be an application specific integrated circuit (ASIC), a programmable logic device (Programmable Logic Device, PLD), a digital signal processor (Digital Signal Processor, DSP) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (Complex Programmable Logic Device, CPLD), a field-programmable gate array (Field-programmable Gate Array, FPGA), a general array logic (Generic Array Logic, GAL) or any combination thereof.
  • the application examples are not specifically limited.
  • the controller can be integrated with the controller in the uninterruptible power supply that controls the working state of the organizer and the switch tube in the inverter, or can be set up separately, which is not specifically limited in this application.
  • At least one (item) refers to one or more, and "a plurality” refers to two or more.
  • “And/or” is used to describe the relationship between related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B exist , where A and B can be singular or plural.
  • the character “/” generally indicates that the related objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

本申请提供的一种不间断电源、通断控制模块、控制方法及系统,涉及电子电力技术领域。其中,该不间断电源输入端通过第一通断控制模块连接电源,不间断电源的控制器用于当接收第一通断控制模块发送的第一控制信号后,控制不间断电源与第一通断控制模块连接的线路中的电流为零。不间断电源的输出端通过第二通断控制模块连接负载,不间断电源的控制器,用于当接收第二通断控制模块发送的第二控制信号后,控制不间断电源关机。利用本申请的技术方案,能够避免出现拉弧问题,因此能够降低使用通断控制模块的成本。

Description

一种不间断电源、通断控制模块、控制方法及系统
本申请要求于2020年07月31日提交中国国家知识产权局、申请号为202010762754.6、发明名称为“一种不间断电源、通断控制模块、控制方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子电力技术领域,尤其涉及一种不间断电源、通断控制模块、控制方法及系统。
背景技术
不间断电源(uninterruptible power supply,UPS),是能够持续为负载供应电力的设备,UPS主要包括:整流器、逆变器和电池。当电源输入正常时,电源输入通过整流器和逆变器给负载供电,并且通过整流器给电池充电,UPS能够输出稳定的电压;当市电输入故障时,电池将自身储存的电能通过逆变器向负载供电。
UPS的输入侧通过通断控制模块和电源(市电)连接,UPS的输出侧通过通断控制模块连接负载,在对两侧的通断控制模块进行断开操作时,由于线路中存在电流,开关本身会存在拉弧问题,因此只能选择具有灭弧功能的断路器(Circuit Breaker,CB)或负荷开关(Load Switch,LS),但采用以上器件的成本较高、体积大,并且拉弧依旧会缩短以上器件的使用寿命,因此需要定期维护更换,进一步提高了成本。
发明内容
为了解决现有技术存在的上述问题,本申请提供了一种不间断电源、通断控制模块、控制方法及系统,能够避免出现拉弧问题,因此能够降低使用通断控制模块的成本。
第一方面,本申请提供了一种不间断电源,该不间断电源的输入端通过第一通断控制模块连接电源,不间断电源包括:控制器。该控制器当接收第一通断控制模块发送的第一控制信号后,控制不间断电源与第一通断控制模块连接的线路中的电流为零。此时再关断第一通断控制模块,以使第一通断控制模块能够实现零电流关断,进而减小了第一通断控制模块关断时的损耗,延长了通断控制模块的使用寿命,进一步的,还可以采用成本更低、体积更小的不具备防拉弧功能的通断控制模块,例如熔断器、隔离开关或插拔端子等。
结合第一方面,在第一种可能的实现方式中,不间断电源还包括:整流器、逆变器和电池。整流器用于将电源提供的交流电转换为直流电后传输至电池和逆变器;逆变器用于将获取的直流电转换为交流电后为不间断电源的负载供电;电池用于当整流器停止工作时,向逆变器输出直流电。控制器具体用于当整流器正常工作且接收第一通断控制模块发送的第一控制信号时,控制整流器停止工作且电池向逆变器输出直流电,以使不间断电源与第一通断控制模块连接的线路中的电流为零。
此时不间断电源由主路供电工作模式切换为电池供电的工作模式,先使得不间断电源与第一通断控制模块连接的线路中的电流为零,然后再关断第一通断控制模块,以使第一通断控制模块在不间断电源切换工作状态的过程中能够实现零电流关断。
结合第一方面,在第二种可能的实现方式中,不间断电源还包括旁路电路。旁路电路的一端连接整流器的输入端,另一端连接逆变器的输出端。旁路电路用于在启用时使电源 直接为负载供电。控制器具体用于当旁路电路启用且接收第一通断控制模块发送的第一控制信号后,控制所述旁路电路断开以使不间断电源与第一通断控制模块连接的线路中的电流为零。
此时整流器由旁路供电的工作状态切换为停止输出(关闭)的工作状态,先使得不间断电源与第一通断控制模块连接的线路中的电流为零,然后再关断第一通断控制模块,以使第一通断控制模块在不间断电源的关闭过程中能够实现零电流关断。
第二方面,本申请还提供了另一种不间断电源,该不间断电源的输出端通过第二通断控制模块连接负载,不间断电源包括:控制器。该控制器用于当接收第二通断控制模块发送的第二控制信号后,控制所述不间断电源关机。
当第二通断控制模块需要关断时,意味着此时不需要不间断电源向负载供电,因此本申请控制不间断电源提前于第二通断控制模块关断,最终结果依旧是使不间断电源停止向负载供电,并不会对负载侧造成影响,但是实现了第二通断控制的零电流关断,进而减小了第二通断控制模块关断时的损耗,延长了通断控制模块的使用寿命,进一步的,还可以采用成本更低、体积更小的不具备防拉弧功能的通断控制模块,例如熔断器、隔离开关或插拔端子等。
第三方面,本申请还提供了一种通断控制模块,该通断控制模块的一端连接不间断电源,另一端连接电源。通断控制模块用于向不间断电源发送第一控制信号,以及当确定与不间断电源连接的线路中的电流为零时,切换为断开状态,第一控制信号用于指示不间断电源的控制器控制不间断电源与第一通断控制模块连接的线路中的电流为零。
结合第三方面,在第一种可能的实现方式中,通断控制模块可以为熔断器、插拔端子和隔离开关中的任意一种。
第四方面,本申请还提供了另一种通断控制模块,该通断控制模块的一端连接不间断电源,另一端连接不间断电源的负载。通断控制模块用于向不间断电源发送第二控制信号,以及当确定与不间断电源连接的线路中的电流为零时,切换为断开状态,第二控制信号用于指示不间断电源的控制器控制不间断电源关机。
结合第四方面,在第一种可能的实现方式中,通断控制模块可以为熔断器、插拔端子和隔离开关中的任意一种。
第五方面,本申请还提供了一种不间断电源的控制方法,不间断电源的输入端通过第一通断控制模块连接电源,该方法包括:当接收第一通断控制模块发送的第一控制信号后,控制不间断电源与第一通断控制模块连接的线路中的电流为零。
结合第五方面,在第一种可能的实现方式中,不间断电源还包括:整流器、逆变器和电池。整流器用于将电源提供的交流电转换为直流电后传输至电池和逆变器;逆变器用于将获取的直流电转换为交流电后为不间断电源的负载供电;电池用于当整流器停止工作时向逆变器输出直流电。当接收第一通断控制模块发送的第一控制信号后,控制不间断电源与第一通断控制模块连接的线路中的电流为零,具体包括:
当整流器正常工作且接收第一通断控制模块发送的第一控制信号时,控制整流器停止工作且电池向逆变器输出直流电,以使不间断电源与第一通断控制模块连接的线路中的电 流为零。
结合第五方面,在第二种可能的实现方式中,不间断电源还包括旁路电路。旁路电路的一端连接整流器的输入端,另一端连接逆变器的输出端;旁路电路用于在启用时使电源直接为负载供电。当接收第一通断控制模块发送的第一控制信号后,控制不间断电源与第一通断控制模块连接的线路中的电流为零,具体包括:
当旁路电路启用且接收第一通断控制模块发送的第一控制信号后,控制旁路电路断开以使不间断电源与第一通断控制模块连接的线路中的电流为零。
第六方面,本申请还提供了另一种不间断电源的控制方法,不间断电源的输出端通过第二通断控制模块连接负载,该方法包括:
当接收第二通断控制模块发送的第二控制信号后,控制不间断电源关机。
第七方面,本申请还提供了一种通断控制模块的控制方法,通断控制模块的一端连接不间断电源,另一端连接电源,该方法包括:
向不间断电源发送第一控制信号,第一控制信号用于指示不间断电源的控制器控制不间断电源与第一通断控制模块连接的线路中的电流为零;
当确定与不间断电源连接的线路中的电流为零时,切换为断开状态。
第八方面,本申请还提供了另一种通断控制模块的控制方法,所述通断控制模块的一端连接不间断电源,另一端连接所述不间断电源的负载,该方法包括:
向不间断电源发送第二控制信号,第二控制信号用于指示不间断电源的控制器控制不间断电源关机;
当确定与不间断电源连接的线路中的电流为零时,切换为断开状态。
第九方面,本申请还提供了一种不间断电源系统,该系统包括以上实现方式中提供的不间断电源或者通断控制模块。具体而言,不间断电源系统的不间断电源可以在输入端处包括通断控制模块(即第一通断控制模块),或在输出端处包括通断控制模块(即第二通断控制模块),或在输入端和输出端处均包括通断控制模块。
本申请提供的技术方案至少具有以下优点:
本申请提供的不间断电源的输入端通过第一通断控制模块连接电源时,第一通断控制模块向不间断电源的控制器发送第一控制信号,控制器进而控制不间断电源与第一通断控制模块之间线路中的电流为零,然后关断第一通断控制模块,以使第一通断控制模块能够实现零电流关断。不间断电源的输出端通过第二通断控制模块连接负载时,第二通断控制模块向不间断电源的控制器发送第二控制信号,控制器进而控制不间断电源停止工作,以使不间断电源与第一通断控制模块之间线路中的电流为零,然后关断第二通断控制模块,以使第二通断控制模块能够实现零电流关断。
综上所述,本申请提供的技术方案避免了不间断电源连接的通断控制模块在关断时出现拉弧,进而减小了通断控制模块关断时的损耗,延长了通断控制模块的使用寿命,进一步的,还可以采用成本更低、体积更小的不具备防拉弧功能的通断控制模块,例如熔断器、隔离开关或插拔端子等。
附图说明
图1为UPS输入和输出的配电方式的示意图;
图2为本申请实施例提供的一种不间断电源的示意图;
图3为本申请实施例提供的另一种不间断电源的示意图;
图4为本申请实施例提供的又一种不间断电源的示意图;
图5为本申请实施例提供的再一种不间断电源的示意图;
图6为本申请实施例提供的一种不间断电源的控制方法的流程图;
图7为本申请实施例提供的一种通断控制模块的控制方法的流程图;
图8为本申请实施例提供的另一种不间断电源的控制方法的流程图;
图9为本申请实施例提供的另一种通断控制模块的控制方法的流程图;
图10为本申请实施例提供的一种不间断电源系统的示意图。
具体实施方式
为了使本技术领域的人员更清楚地理解本申请方案,下面首先说明UPS输入和输出的配电方式。
参见图1,该图为UPS输入和输出的配电方式的示意图。
UPS10的输入侧通过输入通断控制模块K1和电源20连接,UPS10的输出侧通过输出通断控制模块K2连接负载30。在对K1和K2进行带电流断开操作时,由于存在电流I1和I2,会导致K1和K2存在拉弧问题,因此要求对K1和K2具备灭弧功能,因此只能选择具备灭弧功能但体积和成本均较高的断路器和负荷开关。并且由于拉弧会对K1和K2本身造成损伤,进而缩短K1和K2的寿命,因此即便K1和K2具备灭弧功能,也需要定期进行更换,提升了维护成本。
为了解决以上问题,本申请实施例提供了一种不间断电源、通断控制模块、控制方法及系统,在通断控制模块断开之前,通断控制模块向UPS发送控制信号,使得UPS的控制器控制UPS与通断控制模块的连接的线路中的电流为零,从而实现了零电流关断,避免了开关拉弧的问题,一方面减小了通断控制模块关断时的损耗,延长了通断控制模块的使用寿命,另一方面还可以采用成本更低、体积更小的不具备防拉弧功能的通断控制模块。
为了使本技术领域的人员更清楚地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请说明中的“第一”、“第二”等用词仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接连接,也可以通过中间媒介间接连接。
实施例一:
本申请实施例提供了一种不间断电源,下面结合附图具体说明。
参见图2,该图为本申请实施例提供的一种不间断电源的示意图。
图示不间断电源UPS10的输入端通过第一通断控制模块K1连接电源20。
在一些实施例中,电源20可以为市电。
第一通断控制模块K1用于向UPS10发送第一控制信号S1。该第一控制信号S1用于指示UPS10的控制器(图中未示出)控制UPS10与第一通断控制模块K1连接的线路中的电流为零。
UPS10的控制器当接收到的第一控制信号S1后,控制UPS10与第一通断控制模块K1连接的线路中的电流为零,即此时的电流I1为零。此时UPS10可以处于停止工作状态,或者利用内部的电池为负载30供电,本申请实施例对此不作具体限定。
第一通断控制模块K1当确定电流I1为零后,再切换为断开状态。此时第一通断控制模块K1实现了零电流关断,进而减小了第一通断控制模块K1关断时的损耗。
综上所述,利用本申请实施例提供的方案,在第一通断控制模块断开之前,使第一通断控制模块先向UPS发送第一控制信号,进而使UPS的控制器控制UPS与第一通断控制模块的连接的线路中的电流为零,从而实现了零电流关断,避免了拉弧的问题,一方面减小了第一通断控制模块关断时的损耗,延长了通断控制模块的使用寿命,另一方面还可以采用成本更低的不具备防拉弧功能的通断控制模块,例如可以使用隔离开关(Isolating Switch,IS)、熔断器(Fuse)或插拔端子等,以降低通断控制模块的成本与体积。此外,避免拉弧还可以避免触发连接的保护电路,因此可以确保在电路中使用的熔断器不受影响。
实施例二:
参见图3,该图为本申请实施例提供的另一种不间断电源的示意图。
图示不间断电源UPS10的输出端通过第二通断控制模块K2连接负载30。
第二通断控制模块K2用于向UPS10发送第二控制信号S2,该第二控制信号S2用于指示UPS10的控制器(图中未示出)控制UPS10关机。
UPS10的控制器当接收到的第二控制信号S2后,控制UPS10关机,即此时的电流I2为零。
当第二通断控制模块K2需要关断时,意味着此时不需要UPS10向负载30供电,因此本申请实施例控制UPS10提前于第二通断控制模块K2关断,最终结果依旧是使UPS10停止向负载30供电,并不会对负载侧造成影响。
第二通断控制模块K2当确定电流I2为零后,再切换为断开状态。此时第二通断控制模块K2实现了零电流关断,进而减小了第二通断控制模块K2关断时的损耗。
综上所述,利用本申请实施例提供的方案,在第二通断控制模块断开之前,使第二通断控制模块先向UPS发送第二控制信号,进而使UPS的控制器控制UPS停止工作,从而实现了零电流关断,避免了拉弧的问题,一方面减小了第二通断控制模块关断时的损耗,延长了通断控制模块的使用寿命,另一方面还可以采用成本更低的不具备防拉弧功能的通断控制模块,例如可以使用隔离开关(Isolating Switch,IS)或者熔断器(Fuse),以降低通断控制模块的成本与体积。此外,避免拉弧还可以避免触发连接的保护电路,因此可以确保在电路中使用的熔断器不受影响。
实施例三:
参见图4,该图为本申请实施例提供的又一种不间断电源的示意图。
图示所示的不间断电源UPS10的输入端通过第一通断控制模块K1连接电源20,输出 端通过第二通断控制模块K2连接负载30。
其中,关于第一通断控制模块K1、第二通断控制模块K2和UPS10的控制器的工作原理可以参见以上的实施例,本申请实施例在此不再赘述。
下面以图4为例具体说明UPS10处于不同工作状态下控制器的工作原理。对于图2或图3中的UPS的控制器的工作原理可以参照图4说明中的对应部分。
参见图5,该图为本申请实施例提供的再一种不间断电源的示意图。
其中,不间断电源UPS10具体包括:整流器101、逆变器102、电池103和旁路电路104。
其中,整流器101用于将电源10提供的交流电转换为直流电后传输至电池103,以为电池103充电,还将交流电转换为直流电后传输至逆变器102。
逆变器102将获取的直流电转换为交流电后为不间断电源的负载供电。
电池103用于当整流器101停止工作时向逆变器102输出直流电。
旁路电路104的一端连接整流器101的输入端,另一端连接逆变器102的输出端。
旁路电路104用于在启用时使电源20直接为负载30供电。
具体的,UPS10可以控制UPS10中的主路开关Q1、电池开关Q2和旁路开关Q3的状态以改变工作状态,下面具体说明。
当电源10正常供电且UPS无故障时UPS的主路工作,即主路开关Q1闭合,电池开关Q2和旁路开关Q3均断开。此时电源20输入UPS的交流电经过整流器101和逆变器102给负载30供电,并且通过整流器101给电池103充电,UPS能够向负载30输出稳定的电压。
当此工作状态下需要断开第一通断控制模块K1时,第一通断控制模块K1向UPS10的控制器发送第一控制信号,以使控制器控制整流器101停止工作且电池103向逆变器102输出直流电,即使UPS由主路输出切换为电池输出,此时主路开关Q1切换为断开状态,电池开关Q2切换为闭合状态,进而使得UPS与第一通断控制模块K1连接的线路中的电流为零。然后再关断第一通断控制模块K1,以使第一通断控制模块K1能够实现零电流关断。
当电源20输入故障、需要电源20停止供电或整流器101故障时,由UPS的电池103向负载30供电。此时电池开关Q2闭合,主路开关Q1和旁路开关Q3均断开,逆变器102将电池103提供的直流电转换为交流电后为负载30供电。
由于此工作状态下主路开关Q1断开,UPS与第一通断控制模块K1连接的线路中的电流为零,因此可以关断第一通断控制模块K1,此时已经实现了零电流关断。
当逆变器102故障时,旁路电路104启动工作,此时旁路开关Q3导通,主路开关Q1和电池开关Q2均闭合,电源20直接向负载30供电。
当此工作状态下需要断开第一通断控制模块K1时,第一通断控制模块K1向UPS10的控制器发送第一控制信号,以使控制器控制旁路电路104断开,此时旁路开关Q3切换为断开状态,进而使得UPS与第一通断控制模块K1连接的线路中的电流为零。然后再关断第一通断控制模块K1,以使第一通断控制模块K1能够实现零电流关断。
但是,对于以上任意一种UPS工作状态,当需要断开第二通断控制模块K2时,表征此时不需要向负载30供电,因此第二通断控制模块K2向UPS的控制器发送第二控制信号,以指示UPS的控制器控制UPS关机。UPS关机后的输出电流为零,再断开第二通断控制模块K2,进而实现了零电流关断。
综上所述,本申请提供的技术方案避免了与不间断电源的输入端和输出端连接的通断控制模块在关断时出现拉弧,进而减小了通断控制模块关断时的损耗,延长了通断控制模块的使用寿命,因此还可以采用成本更低的不具备防拉弧功能的通断控制模块,例如可以采用隔离开关、熔断器和插拔端子等,以降低通断控制模块的成本与体积。并且由于通断控制模块不需要具备灭弧功能,因此可以确保熔断器正常工作,不会误触发保护动作。
实施例四:
基于以上实施例提供的不间断电源和通断控制模块,本申请实施例还提供了应用于该不间断电源和通断控制模块的控制方法,下面结合附图具体说明。
参见图6,该图为本申请实施例提供的一种不间断电源的控制方法的流程图。
该方法包括以下步骤:
S601:接收第一通断控制模块发送的第一控制信号。
不间断电源的输入端通过第一通断控制模块连接电源,第一通断控制模块在断开前向UPS发送第一控制信号。
S602:控制不间断电源与第一通断控制模块连接的线路中的电流为零。
此时由于线路中的电流为零,在断开第一通断控制模块时即实现了零电流关断,降低了第一通断控制模块的损耗。
具体的,实际应用中的UPS主要包括整流器、逆变器、电池和旁路电路等,其工作状态包括主路供电、电池供电和旁路供电。
当主路供电时,整流器将电源输出的交流电转换为直流电,一部分为电池充电,另一部分经过逆变器后为负载供电。此时若切断第一通断控制模块,UPS转入电池供电状态,及电池提供的直流电经逆变器后为负载供电,此时以上步骤具体为当整流器正常工作且接收第一通断控制模块发送的第一控制信号时,控制整流器停止工作且电池向逆变器输出直流电,以使不间断电源与第一通断控制模块连接的线路中的电流为零。
当UPS处于电池供电状态时,UPS与第一通断控制模块连接的线路中的电流为零,此时第一通断控制模块可以直接关断并且实现零电流关断。
当UPS处于旁路供电时,旁路电路启动,此时电源通过旁路电路直接为负载供电。当需要关断第一通断控制模块时,意味着此时不再需要为负载供电,因此在UPS在接收到第一通断控制模块发送的第一控制信号后,控制旁路电路断开以使不间断电源与第一通断控制模块连接的线路中的电流为零。
相应的,参见图7,该图为本申请实施例提供的一种通断控制模块的控制方法的流程图。
该方法包括以下步骤:
S701:向不间断电源发送第一控制信号,第一控制信号用于指示不间断电源的控制器 控制不间断电源与第一通断控制模块连接的线路中的电流为零。
S702:当确定与不间断电源连接的线路中的电流为零时,切换为断开状态。
综上所述,本申请提供的方法避免了不间断电源的输入端连接的通断控制模块在关断时出现拉弧,进而减小了通断控制模块关断时的损耗,延长了通断控制模块的使用寿命,还可以采用成本更低、体积更小的不具备防拉弧功能的通断控制模块。进一步的,由于避免了拉弧现象,因此不会误触发输入端连接的保护电路,可以正常在不间断电源的输入端使用熔断器。
参见图8,该图为本申请实施例提供的另一种不间断电源的控制方法的流程图。
该方法包括以下步骤:
S801:接收第二通断控制模块发送的第二控制信号。
不间断电源的输出端通过第二通断控制模块连接负载,第二通断控制模块需要关断时,意味着此时不需要不间断电源向负载供电,因此本申请实施例控制不间断电源提前于第二通断控制模块关断,最终结果依旧是使不间断电源停止向负载供电,并不会对负载侧造成影响。
S802:控制不间断电源关机。
参见图9,该图为本申请实施例提供的另一种通断控制模块的控制方法的流程图
该方法包括以下步骤:
S901:向不间断电源发送第二控制信号,第二控制信号用于指示不间断电源的控制器控制不间断电源关机。
S902:当确定与不间断电源连接的线路中的电流为零时,切换为断开状态。
综上所述,本申请提供的方法避免了不间断电源的输出端连接的通断控制模块在关断时出现拉弧,进而减小了通断控制模块关断时的损耗,延长了通断控制模块的使用寿命,还可以采用成本更低、体积更小的不具备防拉弧功能的通断控制模块,以降低通断控制模块的成本与体积。进一步的,由于避免了拉弧现象,因此不会误触发输出端连接的保护电路,可以正常在不间断电源的输出端使用熔断器。
实施例五:
基于以上实施例提供的不间断电源和通断控制模块,本申请实施例还提供了一种不间断电源系统,下面结合附图具体说明。
参见图10,该图为本申请实施例提供的一种不间断电源系统的示意图。
在一种可能的实现方式中,该不间断电源系统可以为1001的形式,即包括UPS10和第一通断控制模块K1。此时,第一通断控制模块K1关断前,向UPS10发送第一控制信号以使UPS10与第一通断控制模块K1连接的线路中的电流为零,然后再断开第一通断控制模块K1,因此第一通断控制模块K1实现了零电流关断。
在另一种可能的实现方式中,该不间断电源系统可以为1002的形式,即包括UPS10和第二通断控制模块K2。此时,第二通断控制模块K2关断前,向UPS10发送第二控制信号以使UPS10关闭,因此UPS10与第二通断控制模块K2连接的线路中的电流为零,然后再断开第二通断控制模块K2,因此第二通断控制模块K2实现了零电流关断。
在又一种可能的实现方式中,该不间断电源系统可以为1003的形式,即包括UPS10、第一通断控制模块K1和第二通断控制模块K2,此时的工作原理相当于以上两种实现方式的结合,本申请实施例在此不再赘述。
综上所述,本申请实施例提供的不间断电源系统在通断控制模块关断前,控制通断控制模块和不间断电源连接线路中的电流为零,避免了通断控制模块在关断时出现拉弧,进而减小了通断控制模块关断时的损耗,延长了通断控制模块的使用寿命,还可以采用成本更低、体积更小的不具备防拉弧功能的通断控制模块。其中,通断控制模块可以连接在不间断电源的输入端和/或输出端。进一步的,由于避免了拉弧现象,因此不会误触发输出端或输入端连接的保护电路,可以正常在不间断电源的输出端和输入端使用熔断器。
本申请以上实施例中的不间断电源的控制器可以为专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Programmable Logic Device,PLD)、数字信号处理器(Digital Signal Processor,DSP)或其组合。上述PLD可以是复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、现场可编程逻辑门阵列(Field-programmable Gate Array,FPGA)、通用阵列逻辑(Generic Array Logic,GAL)或其任意组合,本申请实施例不作具体限定。
其中,该控制器可以与不间断电源中控制整理器和逆变器中开关管工作状态的控制器集成在一起,或者单独设置,本申请对此不作具体限定。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元及模块可以是或者也可以不是物理上分开的。另外,还可以根据实际的需要选择其中的部分或者全部单元和模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (15)

  1. 一种不间断电源,其特征在于,所述不间断电源的输入端通过第一通断控制模块连接电源,所述不间断电源包括:控制器;
    所述控制器,用于当接收所述第一通断控制模块发送的第一控制信号后,控制所述不间断电源与所述第一通断控制模块连接的线路中的电流为零。
  2. 根据权利要求1所述的不间断电源,其特征在于,所述不间断电源还包括:整流器、逆变器和电池;
    所述整流器,用于将所述电源提供的交流电转换为直流电后传输至所述电池和逆变器;
    所述逆变器,用于将获取的直流电转换为交流电后为所述不间断电源的负载供电;
    所述电池,用于当所述整流器停止工作时,向所述逆变器输出直流电;
    所述控制器,具体用于当所述整流器正常工作且接收所述第一通断控制模块发送的第一控制信号时,控制所述整流器停止工作且所述电池向所述逆变器输出直流电,以使所述不间断电源与所述第一通断控制模块连接的线路中的电流为零。
  3. 根据权利要求2所述的不间断电源,其特征在于,所述不间断电源还包括旁路电路;
    所述旁路电路的一端连接所述整流器的输入端,另一端连接所述逆变器的输出端;
    所述旁路电路用于在启用时使所述电源直接为所述负载供电;
    所述控制器,具体用于当所述旁路电路启用且接收所述第一通断控制模块发送的第一控制信号后,控制所述旁路电路断开以使所述不间断电源与所述第一通断控制模块连接的线路中的电流为零。
  4. 一种不间断电源,其特征在于,所述不间断电源的输出端通过第二通断控制模块连接负载,所述不间断电源包括:控制器;
    所述控制器,用于当接收所述第二通断控制模块发送的第二控制信号后,控制所述不间断电源关机。
  5. 一种通断控制模块,其特征在于,所述通断控制模块的一端连接不间断电源,另一端连接电源;
    所述通断控制模块,用于向所述不间断电源发送第一控制信号,以及当确定与所述不间断电源连接的线路中的电流为零时,切换为断开状态,所述第一控制信号用于指示所述不间断电源的控制器控制所述不间断电源与所述第一通断控制模块连接的线路中的电流为零。
  6. 根据权利要求5所述的通断控制模块,其特征在于,所述通断控制模块为以下中的任意一种:
    熔断器、插拔端子和隔离开关。
  7. 一种通断控制模块,其特征在于,所述通断控制模块的一端连接不间断电源,另一端连接所述不间断电源的负载;
    所述通断控制模块,用于向所述不间断电源发送第二控制信号,以及当确定与所述不间断电源连接的线路中的电流为零时,切换为断开状态,所述第二控制信号用于指示所述不间断电源的控制器控制所述不间断电源关机。
  8. 根据权利要求7所述的通断控制模块,其特征在于,所述通断控制模块为以下中的任意一种:
    熔断器、插拔端子和隔离开关。
  9. 一种不间断电源的控制方法,其特征在于,所述不间断电源的输入端通过第一通断控制模块连接电源,所述方法包括:
    当接收所述第一通断控制模块发送的第一控制信号后,控制所述不间断电源与所述第一通断控制模块连接的线路中的电流为零。
  10. 根据权利要求9所述的控制方法,其特征在于,所述不间断电源还包括:整流器、逆变器和电池;所述整流器,用于将所述电源提供的交流电转换为直流电后传输至所述电池和逆变器;所述逆变器,用于将获取的直流电转换为交流电后为所述不间断电源的负载供电;所述电池,用于当所述整流器停止工作时,向所述逆变器输出直流电,所述当接收所述第一通断控制模块发送的第一控制信号后,控制所述不间断电源与所述第一通断控制模块连接的线路中的电流为零,具体包括:
    当所述整流器正常工作且接收所述第一通断控制模块发送的第一控制信号时,控制所述整流器停止工作且所述电池向所述逆变器输出直流电,以使所述不间断电源与所述第一通断控制模块连接的线路中的电流为零。
  11. 根据权利要求9所述的控制方法,其特征在于,所述不间断电源还包括旁路电路;所述旁路电路的一端连接所述整流器的输入端,另一端连接所述逆变器的输出端;所述旁路电路用于在启用时使所述电源直接为所述负载供电,所述当接收所述第一通断控制模块发送的第一控制信号后,控制所述不间断电源与所述第一通断控制模块连接的线路中的电流为零,具体包括:
    当所述旁路电路启用且接收所述第一通断控制模块发送的第一控制信号后,控制所述旁路电路断开以使所述不间断电源与所述第一通断控制模块连接的线路中的电流为零。
  12. 一种不间断电源的控制方法,其特征在于,所述不间断电源的输出端通过第二通断控制模块连接负载,所述方法包括:
    当接收所述第二通断控制模块发送的第二控制信号后,控制所述不间断电源关机。
  13. 一种通断控制模块的控制方法,其特征在于,所述通断控制模块的一端连接不间断电源,另一端连接电源,所述方法包括:
    向所述不间断电源发送第一控制信号,所述第一控制信号用于指示所述不间断电源的控制器控制所述不间断电源与所述第一通断控制模块连接的线路中的电流为零;
    当确定与所述不间断电源连接的线路中的电流为零时,切换为断开状态。
  14. 一种通断控制模块的控制方法,其特征在于,所述通断控制模块的一端连接不间断电源,另一端连接所述不间断电源的负载,所述方法包括:
    向所述不间断电源发送第二控制信号,所述第二控制信号用于指示所述不间断电源的控制器控制所述不间断电源关机;
    当确定与所述不间断电源连接的线路中的电流为零时,切换为断开状态。
  15. 一种不间断电源系统,其特征在于,所述系统包括权利要求1-3中任意一项所述的 不间断电源和权利要求5-6中任意一项所述的通断控制模块,或,所述系统包括权利要求4所述的不间断电源和权利要求7-8中任意一项所述的通断控制模块。
PCT/CN2021/109197 2020-07-31 2021-07-29 一种不间断电源、通断控制模块、控制方法及系统 WO2022022627A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21848760.1A EP4184749A4 (en) 2020-07-31 2021-07-29 UNINTERRUPTED POWER SUPPLY, ON-OFF CONTROL MODULE, CONTROL METHOD AND SYSTEM
US18/161,336 US20230179013A1 (en) 2020-07-31 2023-01-30 Uninterruptible Power Supply, On-Off Control Module, Control Method, and System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010762754.6A CN114069817A (zh) 2020-07-31 2020-07-31 一种不间断电源、通断控制模块、控制方法及系统
CN202010762754.6 2020-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/161,336 Continuation US20230179013A1 (en) 2020-07-31 2023-01-30 Uninterruptible Power Supply, On-Off Control Module, Control Method, and System

Publications (1)

Publication Number Publication Date
WO2022022627A1 true WO2022022627A1 (zh) 2022-02-03

Family

ID=80037654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109197 WO2022022627A1 (zh) 2020-07-31 2021-07-29 一种不间断电源、通断控制模块、控制方法及系统

Country Status (4)

Country Link
US (1) US20230179013A1 (zh)
EP (1) EP4184749A4 (zh)
CN (1) CN114069817A (zh)
WO (1) WO2022022627A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130015704A1 (en) * 2011-07-13 2013-01-17 National Tsing Hua University Uninterruptible power supply
CN103337901A (zh) * 2013-06-28 2013-10-02 华为技术有限公司 不间断供电的方法和不间断电源
CN111162599A (zh) * 2018-11-07 2020-05-15 纬颖科技服务股份有限公司 电源供应装置及电源供应方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814264B2 (ja) * 2008-01-25 2011-11-16 三菱電機株式会社 無停電電源装置
US8674823B1 (en) * 2009-05-12 2014-03-18 Plug ID, LLC. Power management system
JP5486604B2 (ja) * 2009-09-25 2014-05-07 東芝三菱電機産業システム株式会社 無停電電源装置
CN103683468B (zh) * 2012-09-17 2016-08-24 台达电子工业股份有限公司 电源系统以及电源系统的控制方法
CN103683469B (zh) * 2012-09-26 2016-04-06 力博特公司 一种不间断电源输入切换的控制方法及设备
CN203491725U (zh) * 2013-07-08 2014-03-19 佛山市新光宏锐电源设备有限公司 一种新型高可靠性ups
US9334749B2 (en) * 2013-10-18 2016-05-10 Abb Technology Ag Auxiliary power system for turbine-based energy generation system
JP6441503B2 (ja) * 2015-11-27 2018-12-19 東芝三菱電機産業システム株式会社 無停電電源装置
US10305322B2 (en) * 2015-12-01 2019-05-28 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply device
US10637279B2 (en) * 2017-02-22 2020-04-28 Vertiv Corporation Method of mitigating effects of AC input voltage surge in a transformer-less rectifier uninterruptible power supply system
EP3772154A1 (en) * 2019-07-31 2021-02-03 ABB Schweiz AG A power supply system, and an uninterruptible power supply including the power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130015704A1 (en) * 2011-07-13 2013-01-17 National Tsing Hua University Uninterruptible power supply
CN103337901A (zh) * 2013-06-28 2013-10-02 华为技术有限公司 不间断供电的方法和不间断电源
CN111162599A (zh) * 2018-11-07 2020-05-15 纬颖科技服务股份有限公司 电源供应装置及电源供应方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184749A4

Also Published As

Publication number Publication date
EP4184749A4 (en) 2024-02-21
US20230179013A1 (en) 2023-06-08
EP4184749A1 (en) 2023-05-24
CN114069817A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
JP3089153U (ja) 停電照明機能を有する直流無停電電源装置
WO2019114547A1 (zh) 可扩展式充换电设备及其充放电单元
TW201018053A (en) DC UPS configured as intrinsic power transfer switch
KR20200030819A (ko) 전원 공급 장치 및 전원 공급 시스템
WO2022022627A1 (zh) 一种不间断电源、通断控制模块、控制方法及系统
CN113555948A (zh) 供电控制系统、供电控制方法以及通信设备
WO2024109401A1 (zh) 储能系统和黑启动装置
CN102214918A (zh) 高可靠性供电系统、方法及变频器系统
CN114825576A (zh) 一种高效交直流混合不间断供电系统
WO2023185382A1 (zh) 一种固态变压器和供电设备
CN204068280U (zh) 三相负荷自动平衡器的换相装置
JP7191497B1 (ja) 船舶の電源系統システム、および、船舶の電源系統システムの使用方法
WO2014008857A1 (zh) 控制与保护开关电器的保护模块
CN208908382U (zh) 一种混合型双电源转换装置及双电源系统
JP2012165558A (ja) 無停電電源装置
CN217406197U (zh) 无缝并离网切换的储能系统
CN114825318A (zh) 一种交直流混合的不间断供电系统
CN111525675A (zh) 一种交直流切换供电电路、方法及断路器
CN217882962U (zh) 供电设备及供电系统
CN221042378U (zh) 电池包切换电路及设备
CN219576701U (zh) 配电装置和供电系统
CN209929987U (zh) 一种智能监测三相不平衡的供电系统
CN104753168B (zh) 不间断电源装置
CN216489897U (zh) 一种整流器兼作逆变器和有源滤波器的ups
CN217882963U (zh) 固态双电源转换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021848760

Country of ref document: EP

Effective date: 20230217

NENP Non-entry into the national phase

Ref country code: DE