WO2022021934A1 - 一种大跨度铁路桥梁行车安全防风设计方法及减风装置 - Google Patents

一种大跨度铁路桥梁行车安全防风设计方法及减风装置 Download PDF

Info

Publication number
WO2022021934A1
WO2022021934A1 PCT/CN2021/086380 CN2021086380W WO2022021934A1 WO 2022021934 A1 WO2022021934 A1 WO 2022021934A1 CN 2021086380 W CN2021086380 W CN 2021086380W WO 2022021934 A1 WO2022021934 A1 WO 2022021934A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
bridge
subsystem
weather
bridge deck
Prior art date
Application number
PCT/CN2021/086380
Other languages
English (en)
French (fr)
Inventor
苗润池
高宗余
李龙安
许磊平
段雪炜
康晋
屈爱平
何友娣
Original Assignee
中铁大桥勘测设计院集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁大桥勘测设计院集团有限公司 filed Critical 中铁大桥勘测设计院集团有限公司
Priority to EP21850463.7A priority Critical patent/EP4089563A4/en
Publication of WO2022021934A1 publication Critical patent/WO2022021934A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B19/00Protection of permanent way against development of dust or against the effect of wind, sun, frost, or corrosion; Means to reduce development of noise
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design

Definitions

  • the present application relates to the technical field of bridge engineering, in particular to a windproof design method and a wind reduction device for driving safety of a large-span railway bridge.
  • wind barriers are set up on bridges to suppress and reduce the wind speed of the bridge deck, starting from the source of lateral wind, to prevent wind and reduce wind.
  • the purpose is to enhance the driving stability of high-speed trains.
  • the embodiments of the present application provide a wind protection design method and a wind reduction device for driving safety of a large-span railway bridge, which are combined with the characteristics of the wind environment at the bridge site and the coupling effect between the bridge, the train, and the wind to carry out the precise design of wind protection and wind reduction.
  • the present application provides a method for designing a large-span railway bridge for driving safety and windproofing, comprising the following steps:
  • the bridge deck is not lower than the train traffic safety index ⁇ weather on both sides of the strait under the action of the U weather , and the speed limit regulation of the trains on both sides of the strait under the action of the U weather , the following are obtained for the U bridge deck .
  • the windmill-bridge coupling system is established, and the windmill-bridge coupling analysis is carried out on the vehicle traffic safety index under the action of the U-bridge deck , and the actual response results of the bridge and the vehicle under the action of the limit train speed and multiple U- bridge decks are obtained;
  • the actual response result and the dynamic response evaluation standard are compared and analyzed, and a U bridge deck value corresponding to the actual response result conforming to the dynamic response evaluation standard is selected, combined with the U bridge deck acting on the undercarriage segment speed limit regulation,
  • the wind speed reduction coefficient range of the wind barrier is determined, and the wind reduction device 100 is designed in the form of a porous combination.
  • the wind profile index formula is:
  • Z is the height of the wind profile, in m;
  • U S10 is the wind speed at the height of 10m at the bridge site, in m/s;
  • U Z is the wind speed at the height Z at the bridge site, in m/s;
  • is the wind speed profile at the bridge site exponent of the power.
  • the method for obtaining ⁇ of the wind profile index formula is as follows:
  • the least squares method is used to fit the ⁇ of U Z varying with the height Z of the bridge site to obtain ⁇ 1 , ⁇ 2 , ... ⁇ n corresponding to each meteorological station;
  • the method of converting U weather into U bridge deck is as follows:
  • K 2 is the cross-sectional shape correction coefficient.
  • the method for deriving the speed limit regulation of the undercarriage segment under the action of the U bridge deck is as follows:
  • the windmill-bridge coupling system includes a wind subsystem, a vehicle subsystem, a track subsystem and a bridge subsystem; the vehicle subsystem and the track subsystem have wheel-rail interaction forces; the track subsystem It has a bridge-rail interaction force with the bridge subsystem; the wind load of the wind subsystem acts on the bridge subsystem and the vehicle subsystem.
  • the windmill bridge coupling system is represented as:
  • M V , C V , K V refspectively the vehicle subsystem mass matrix, damping matrix, and stiffness matrix
  • M T , C T , K T are the mass matrix, damping matrix, and stiffness matrix of the orbital subsystem, respectively;
  • M B , C B , K B respectively the mass matrix, damping matrix, and stiffness matrix of the bridge subsystem
  • X V , — are the displacement, velocity, and acceleration vectors of the vehicle subsystem, respectively;
  • XT are the displacement, velocity, and acceleration vectors of the orbital subsystem, respectively;
  • X B , — are the displacement, velocity, and acceleration vectors of the bridge subsystem, respectively;
  • F BT , F TB — is the interaction force between the track and the bridge
  • F WV , F WB - the wind subsystem acts on the wind load on the vehicle and the bridge, respectively.
  • both the gamma weather and the gamma deck include wheel load shedding rate and vertical acceleration.
  • the equivalent wind speed U eq of the bridge deck after the wind speed reduction of the U bridge deck passing through the wind barrier is expressed as:
  • ⁇ s represents the wind speed reduction factor
  • f represents the set safety factor
  • the present application provides a wind reduction device based on the above-mentioned design method for driving safety of large-span railway bridges.
  • the wind reduction device includes a plurality of vertically arranged wind barrier columns, and a A number of wind barrier bars between the barrier columns; the wind barrier columns are fixed to the bridge structure through embedded parts, and a number of the wind barrier columns are fixedly connected by a plurality of horizontal wind barrier cables;
  • the fastening bolts are installed on the two wind barrier columns, each wind barrier is provided with various circular holes of different sizes, and the wind speed reduction coefficient is realized by the arrangement and combination of various circular holes of different sizes.
  • the embodiments of the present application provide a wind-proof design method and a wind-reducing device for driving safety of a long-span railway bridge.
  • the wind-reducing device not only the actual wind environment at the bridge site, but also the distance between the bridge and the train and the wind is considered.
  • the coupling effect of the bridge and the vehicle is calculated accurately and finely, and the actual response results of the bridge and the vehicle are compared with the dynamic response evaluation standard, so that the designed wind reduction device can effectively ensure the safety and comfort of the bridge and the vehicle; compared with the traditional
  • the rough design method of the present application is more precise and clear, and there is no need to leave a large margin for the reduction effect of the air reducing device, and the air reducing device is more economical and practical.
  • FIG. 1 is a flow chart of a method for designing a large-span railway bridge for driving safety and windproofing according to an embodiment of the present application.
  • FIG. 2 is a simplified schematic diagram of the wind reducing device provided by the embodiment of the present application (the wind barrier does not contain round holes).
  • FIG. 3 is a left side view of FIG. 1 .
  • FIG. 4 is a front view of a wind barrier provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a power-exponential fitting curve provided by an embodiment of the present application.
  • FIG. 6 is a finite element solution model of a windmill bridge provided by an embodiment of the present application.
  • the present invention discloses an embodiment of a windproof design method for driving safety of large-span railway bridges.
  • the windproof design method is used to reduce the adverse effects of wind on vehicles and bridges, and to improve the running of high-speed trains on large-span bridges. time, the stability of the vehicle and the axle.
  • the windbreak design method includes the following steps:
  • the wind reduction device 100 Compare and analyze the actual response result and the dynamic response evaluation standard, select a U bridge deck value corresponding to the actual response result in line with the dynamic response evaluation standard, and determine the speed limit of the vehicle section under the action of the U bridge deck to determine the value of the wind barrier.
  • the wind reduction device 100 is designed in the form of a porous combination.
  • Z is the height of the wind profile, in m;
  • U S10 is the wind speed at the height of 10m at the bridge site, in m/s;
  • U Z is the wind speed at the height Z at the bridge site, in m/s;
  • is the wind speed profile at the bridge site exponent of the power.
  • the basis of the wind protection design method is that there are multiple weather stations near the bridge site area, and there is also a weather station at the location of the bridge site area.
  • the least squares method is used to fit the ⁇ of U Z varying with the height Z of the bridge site to obtain ⁇ 1 , ⁇ 2 , ... ⁇ n corresponding to each meteorological station;
  • weather station OK first weather station 0.144 second weather station 0.066 Third Weather Station 0.096 average value 0.102
  • the first weather station and the second weather station are weather stations near the bridge site area
  • the third weather station is the weather station at the location of the bridge site area.
  • K 1 is obtained by comparing and analyzing the wind observation data of the first meteorological station and the second meteorological station with the wind observation data of the third meteorological station in the same period.
  • Step 2 Convert U S10 to U Z ,
  • Step 3 Convert U Z to U bridge deck , Among them, K 2 is the cross-sectional shape correction coefficient. Among them, U Z represents the unobstructed wind speed, and U bridge deck represents the bridge deck wind speed affected by various structures such as steel truss girder. K 2 is calculated from known bridge parameters including shape, stiffness and strength of steel girders, etc.
  • K 1 1.3 is calculated by comparing the wind observation data of the first meteorological station and the second meteorological station with the wind observation data of the third meteorological station in the same period, and calculated according to the known bridge parameters.
  • K 2 0.8 is obtained.
  • Step 1 Get the speed limit regulations of trains on both sides of the Taiwan Strait under the action of U weather ;
  • Step 2 Combine And ⁇ bridge deck ⁇ ⁇ weather , calculate the speed limit regulations of trains under the action of U bridge deck .
  • Table 1.3 shows the design effect that the R&D personnel want to achieve, but the safety of the vehicle and axle still needs further verification.
  • a windmill-bridge coupling system is established, and the windmill-bridge coupling system includes a wind subsystem, a vehicle subsystem, a rail subsystem and a bridge subsystem; the vehicle subsystem and the rail subsystem have wheel-rail interaction forces; the rail subsystem and The bridge subsystem has the bridge-rail interaction force; the wind load of the wind subsystem acts on the bridge subsystem and the vehicle subsystem.
  • the windmill-bridge coupling system can take each subsystem (wind subsystem, vehicle subsystem, track subsystem and bridge subsystem) as an independent individual.
  • the wind subsystem is established based on the known wind observation data, and the vehicle subsystem is based on The known vehicle parameters are established, the track subsystem is established according to the track design parameters (including structural parameters and mechanical parameters), and the bridge subsystem is established according to the bridge design parameters (including structural parameters and mechanical parameters).
  • the coupling solution is obtained through the wheel-rail interaction, bridge-rail interaction, wind-bridge interaction and windmill interaction among the various subsystems.
  • the wheel-rail interaction force is an external force for the two subsystems of the vehicle and the track;
  • the bridge-rail interaction force is also an external force for the two subsystems of the track and the bridge;
  • the wind load is an external force for the two subsystems of the bridge and the vehicle.
  • External force after this treatment, the differential equations of motion of the vehicle, track and bridge subsystems can be solved separately by stepwise integration.
  • windmill-bridge coupling system is expressed as:
  • M V , C V , K V are the mass matrix, damping matrix, and stiffness matrix of the vehicle subsystem, respectively;
  • M T , C T , K T are the mass matrix, damping matrix, and stiffness matrix of the track subsystem, respectively;
  • M B , C B , K B are the mass matrix, damping matrix, and stiffness matrix of the bridge subsystem, respectively;
  • X V , — are the displacement, velocity, and acceleration vectors of the vehicle subsystem, respectively;
  • XT are the displacement, velocity, and acceleration vectors of the orbital subsystem, respectively;
  • X B , — are the displacement, velocity, and acceleration vectors of the bridge subsystem, respectively;
  • F BT , F TB — is the interaction force between the track and the bridge
  • the finite element solution model of the windmill-bridge is established, and the separate iterative analysis of the windmill-bridge coupling system is performed to obtain the dynamic responses of the bridge and the train.
  • the dynamic responses here are: Actual response result.
  • the ⁇ bridge deck is the safety index of vehicle traffic under the action of the bridge deck and the U bridge deck ;
  • the driving safety indicators are evaluated by the dynamic response of each bridge and train.
  • the driving safety index includes the following dynamic responses, derailment coefficient, wheel load reduction rate, acceleration and Sperling index, etc.
  • the present invention is limited in space, only the control dynamic response index is given, and the dynamic response index not given is always normal. Select representative motor vehicles and trailers. The motor vehicles and trailers run safely, comfortably and stably.
  • the known dynamic response evaluation standards are shown in Table 1.4
  • the train speed of 200 km/h is a representative limit train speed.
  • G trains have a speed of 250-350km/h
  • D-head trains have a speed of 160-250km/h, mainly 200km/h.
  • 200km/h is taken as an example for calculation.
  • 250 km/h or 350 km/h may also be selected as the representative limit train speed.
  • the ultimate goal is to ensure that the dynamic response of the motor train and trailer subjected to the windmill- bridge coupling analysis meets the dynamic response evaluation standard after the wind-proof and wind-reduction design. , all the dynamic responses of the motor car and the trailer conform to the dynamic response evaluation standard; therefore, it is only necessary to satisfy the equivalent wind speed U eq of the U bridge deck after the windbreak and wind reduction in Table 1.3. The technical requirements for obtaining the wind speed reduction factor are shown in Table 1.6.
  • a U bridge deck value of 25m/s corresponding to the actual response result in line with the dynamic response evaluation standard is selected, and the wind barrier is determined in combination with the U bridge deck action of the speed limit regulation of the sub-vehicle segment (Table 1.3).
  • the range of wind speed reduction coefficient is ⁇ s ⁇ 0.66. After the wind speed reduction coefficient range is determined, the wind barrier design is carried out in the form of porous combination.
  • the present invention also discloses an embodiment of a wind reduction device based on the above-mentioned large-span railway bridge driving safety windproof design method.
  • the wind reduction device 100 includes a wind barrier column 1, a wind barrier A plurality of wind barrier columns 1 are arranged vertically, and a plurality of wind barrier bars 2 are arranged horizontally between two adjacent wind barrier columns 1 .
  • the wind barrier columns 1 are fixed to the bridge structure through embedded parts 5 , and both ends of each wind barrier strip 2 are installed on the two wind barrier columns 1 through fastening bolts 4 .
  • a variety of circular holes of different sizes are opened on each wind barrier strip 2 in the form of a porous combination.
  • the various circular holes of different sizes are arranged and combined to meet the wind speed reduction coefficient required by the design.
  • the design form of the porous combination adopted in the present invention has high efficiency and flexible design, and the porous combination can be flexibly combined to form the wind speed reduction coefficient required by the design;
  • the barrier cable 3 further strengthens the strength of the wind reducing device 100, making the wind reducing device 100 more firm and reliable.
  • each wind barrier 2 is bent up and down.
  • the wind barrier column 1 has a certain width, half of which is connected to the left wind barrier bar 2 and the other half is connected to the right wind barrier bar 2 .
  • the material of the wind reducing device 100 is steel; the circular holes of each wind barrier 2 are arranged and combined by circular holes with diameters of 8 mm, 12.5 mm, 16 mm and 25 mm.
  • the height of the wind reducing device 100 can be adjusted according to the number of wind barrier strips 5 .
  • the arrangement and combination of four kinds of circular holes 8mm, 12.5mm, 16mm and 25mm can better and faster design the wind speed reduction coefficient that meets the design requirements.
  • the wind barrier adopts the form of porous
  • the opening diameter is mainly a combination of 8mm, 12.5mm, 16mm and 25mm
  • the wind barrier reduction coefficient is 0.66 (that is, the air permeability of the wind barrier is 36.5%).
  • the height of the strip is 0.25m, and it is bolted to the wind barrier column.
  • the height of the wind barrier is determined to be 3.5m, and 14 wind barrier strips are used.
  • the wind-proof design method and the wind-reducing device for driving safety of a large-span railway bridge of the present invention have clear objectives.
  • the wind-reducing device not only the actual wind environment at the bridge site is considered, but also the bridge and train, The coupling effect between winds is calculated accurately and finely, and the actual response results of bridges and vehicles are compared with the dynamic response evaluation standards. Safety and comfort effectively improve the working efficiency of designers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

一种大跨度铁路桥梁行车安全防风设计方法及减风装置,涉及桥梁工程技术领域。该方法包括:根据桥梁的桥址区附近的气象站提供的风观测数据,求得风剖面指数公式的幂指数α;利用风剖面指数公式将U 气象转换成U 桥面;建立风车桥耦合系统,基于γ 桥面不低于γ 气象、以及U 气象作用下两岸列车分段限速规定,得出U 桥面作用下列车分段限速规定;进行风车桥耦合分析,得出在界限列车车速和多个U 桥面作用下桥梁及车辆的实际响应结果;将实际响应结果与动力响应评定标准进行对比分析,选定一个U 桥面,结合U 桥面作用下列车分段限速规定,确定风障的风速折减系数,进行减风装置设计。该方法结合桥梁桥址处风环境特性以及桥梁与列车、风之间的耦合效应,进行风障防风减风精准设计。

Description

一种大跨度铁路桥梁行车安全防风设计方法及减风装置 技术领域
本申请涉及桥梁工程技术领域,特别涉及一种大跨度铁路桥梁行车安全防风设计方法及减风装置。
背景技术
目前,随着我国国民经济的发展,桥梁跨度越来越大,列车运行速度也越来越高。大跨度桥梁对风力的作用更为敏感,列车的高速运行速度使风、列车与桥梁之间的耦合作用更为显著,而风、列车与桥梁之间的耦合作用会影响高速列车的行车速度以及行车稳定性。但是,在高效且快节奏的现代社会中,众所周知,高速列车需要保证全天候、准点和安全运行。如何通过研究铁路桥梁行车安全防风减风设计,对保证高速列车全天候、准点和安全运行起着不可忽略的作用。
相关技术中,为了增强高速列车在侧向风作用下的行车稳定性和安全性,在桥梁上设置风障,抑制和降低桥面的风速,从侧向风产生的源头入手,达到防风减风的目的,增强高速列车的行车稳定性。
但是,在进行风障设计时,多是针对风障自身外形结构设计和减风效果的粗略研究;未能系统考虑桥梁桥址处风环境特性,桥梁与列车、风之间耦合效应等因素,风障防风减风设计不够准确,无法有效保障铁路桥梁的行车安全。
发明内容
本申请实施例提供一种大跨度铁路桥梁行车安全防风设计方法及减风装置,结合桥梁桥址处风环境特性以及桥梁与列车、风之间的耦合效应,进行风障防风减风精准设计。
第一方面,本申请提供了一种大跨度铁路桥梁行车安全防风设计 方法,包含以下步骤:
根据桥梁的桥址区附近的气象站提供的风观测数据,对风剖面指数公式进行数据拟合并求得风剖面指数公式的幂指数α;
利用所述风剖面指数公式将所述风观测数据中的气象台站风速U 气象,转换成桥梁桥面风速U 桥面
基于U 桥面作用下列车行车安全指标γ 桥面不低于U 气象作用下两岸陆地的列车行车安全指标γ 气象、以及U 气象作用下两岸列车分段限速规定,求出U 桥面作用下列车分段限速规定;
建立风车桥耦合系统,对U 桥面作用下列车行车安全指标进行风车桥耦合分析,得出在界限列车车速和多个U 桥面作用下桥梁及车辆的实际响应结果;
将所述实际响应结果与动力响应评定标准进行对比分析,选定一个所述实际响应结果符合动力响应评定标准对应的U 桥面值,结合所述U 桥面作用下列车分段限速规定,确定风障的风速折减系数范围,用多孔组合的形式进行减风装置100的设计。
在此过程中,如果发现风车桥耦合系统,所有的实际响应结果都符合动力响应评定标准,则说明该地区的无需进行减风装置100的设计。
一些实施例中,所述风剖面指数公式:
Figure PCTCN2021086380-appb-000001
其中,Z为风剖面高度,单位m;U S10为桥址处高度10m的风速,单位m/s;U Z为桥址处高度Z的风速,单位m/s;α为桥址处风速剖面的幂指数。
一些实施例中,求得风剖面指数公式的α的方法如下:
调取所述大跨度铁路桥梁周边的多个气象站一段时间的完整风观测数据;
分别对每个气象站的风观测数据,采用最小二乘法进行U Z随桥址高度Z变化的α的拟合,得到对应每个气象站的α 1、α 2、…α n
求取α 1、α 2、…α n的平均值,得到α;其中,n为气象站总数。
一些实施例中,将U 气象转换成U 桥面的方法如下:
将U 气象换算成U S10,U S10=K 1×U 气象,其中,K 1为地形修正系数;
将U S10换算成U Z
Figure PCTCN2021086380-appb-000002
将U Z换算成U 桥面
Figure PCTCN2021086380-appb-000003
其中,K 2为截面形状修正系数。
一些实施例中,得出U 桥面作用下列车分段限速规定的方法如下:
调取U 气象作用下两岸陆地的列车分段限速规定;
结合
Figure PCTCN2021086380-appb-000004
以及γ 桥面≥γ 气象,计算U 桥面作用下列车分段限速规定。
一些实施例中,所述风车桥耦合系统包含风子系统、车辆子系统、轨道子系统和桥梁子系统;所述车辆子系统和轨道子系统具有轮轨相互作用力;所述轨道子系统和桥梁子系统具有桥轨相互作用力;所述风子系统的风荷载作用于所述桥梁子系统和车辆子系统。
一些实施例中,所述风车桥耦合系统表示为:
Figure PCTCN2021086380-appb-000005
M V、C V、K V—分别为所述车辆子系统质量矩阵、阻尼矩阵、刚度矩阵;
M T、C T、K T—分别为所述轨道子系统质量矩阵、阻尼矩阵、刚度矩阵;
M B、C B、K B—分别为所述桥梁子系统质量矩阵、阻尼矩阵、刚度矩阵;
X V
Figure PCTCN2021086380-appb-000006
—分别为所述车辆子系统位移、速度、加速度向量;
X T
Figure PCTCN2021086380-appb-000007
—分别为所述轨道子系统位移、速度、加速度向量;
X B
Figure PCTCN2021086380-appb-000008
—分别为所述桥梁子系统位移、速度、加速度向量;
F V-T、F T-V—为车辆与轨道间相互作用力;
F B-T、F T-B—为轨道与桥梁间相互作用力;
F W-V、F W-B—所述风子系统分别作用于车辆、桥梁上的风荷载。
一些实施例中,所述γ 气象和γ 桥面均包含轮重减载率和竖向加速度。
一些实施例中,所述U 桥面经过风障的风速折减之后的桥面等效风速U eq表示为
U eq=λ s×U 桥面×f
其中,λ s表示风速折减系数;f表示设定的安全系数。
第二方面,本申请提供了一种基于上述的大跨度铁路桥梁行车安全防风设计方法的减风装置,所述减风装置包含若干竖直设置的风障立柱,以及水平设置于两相邻风障立柱之间的若干风障条;所述风障立柱通过预埋件固定于桥梁结构,若干所述风障立柱通过多根水平风障拉索固定连接;每个风障条的两端通过紧固螺栓安装在两个风障立 柱上,每个风障条上开设多种大小不等的圆形孔,所述风速折减系数通过多种大小不等的圆形孔排列组合来实现。
本申请提供的技术方案带来的有益效果包括:
本申请实施例提供了一种大跨度铁路桥梁行车安全防风设计方法及减风装置,在进行减风装置设计时,不仅考虑桥梁桥址处的实际风环境,还考虑桥梁与列车、风之间的耦合效应,进行精准精细化计算,并将桥梁及车辆的实际响应结果与动力响应评定标准进行对比分析,使得设计的减风装置能够有效保障桥梁及车辆的安全性和舒适性;相对于传统的粗略设计方法,本申请的设计方法更加精准明确,无须使减风装置的折减效果留有超大余量,减风装置更加经济实用。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的大跨度铁路桥梁行车安全防风设计方法的流程图。
图2为本申请实施例提供的减风装置的简化示意图(风障条不含圆孔)。
图3为图1的左视图。
图4为本申请实施例提供的风障条的主视图。
图5为本申请实施例提供的幂指数拟合曲线示意图。
图6为本申请实施例提供的风车桥有限元求解模型。
附图标记:100、减风装置;1、风障立柱;2、风障条;3、风障拉索;4、紧固螺栓;5、预埋件。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,本发明公开了一种大跨度铁路桥梁行车安全防风设计方法的实施例,该防风设计方法用于减弱风力对车、桥的不良影响,提升高速列车在大跨度桥梁上行驶时,车和桥的稳定性。
该防风设计方法包含以下步骤:
S1:根据桥梁的桥址区附近的气象站提供的风观测数据,将风观测数据代入到风剖面指数公式中,对风剖面指数公式进行数据拟合并求得风剖面指数公式的幂指数α;
S2:利用风剖面指数公式将风观测数据中的气象台站风速U 气象,转换成桥梁桥面风速U 桥面
S3:基于U 桥面作用下列车行车安全指标γ 桥面不低于U 气象作用下两岸陆地的列车行车安全指标γ 气象、以及U 气象作用下两岸列车分段限速规定,得出U 桥面作用下列车分段限速规定;
S4:建立风车桥耦合系统,对U 桥面作用下列车行车安全指标进行风车桥耦合分析,得出在界限列车车速和多个U 桥面作用下桥梁及车辆的实际响应结果;
S5:将实际响应结果与动力响应评定标准进行对比分析,选定一个实际响应结果符合动力响应评定标准对应的U 桥面值,结合U 桥面作用下列车分段限速规定,确定风障的风速折减系数范围,用多孔组合的 形式进行减风装置100的设计。
具体地,风剖面指数公式:
Figure PCTCN2021086380-appb-000009
其中,Z为风剖面高度,单位m;U S10为桥址处高度10m的风速,单位m/s;U Z为桥址处高度Z的风速,单位m/s;α为桥址处风速剖面的幂指数。
具体地,该防风设计方法的基础是桥址区附近有多个气象站,且在桥址区所在位置也有一个气象站。
如图5所示,进一步地,求得风剖面指数公式的α的方法如下:
调取大跨度铁路桥梁周边的多个气象站一段时间的完整风观测数据;
分别对每个气象站的风观测数据,采用最小二乘法进行U Z随桥址高度Z变化的α的拟合,得到对应每个气象站的α 1、α 2、…α n
求取α 1、α 2、…α n的平均值,得到α;其中,n为气象站总数。本发明在求取风剖面指数公式的幂指数时,采用多个气象站的风观测数据进行拟合求解,得到的α更加准确和更具代表性。
在甲工程实施中,大跨度桥梁周边有3个气象站,通过调取3个气象站1整年的完整测风资料,采用最小二乘法,进行风速随高度变化α幂指数的拟合,确定幂指数α,得出结果如下:
表1.1 三个气象站测风资料拟合幂指数
气象站 幂指数
第一气象站 0.144
第二气象站 0.066
第三气象站 0.096
平均值 0.102
其中,第一气象站和第二气象站是桥址区附近的气象站,第三气象站是桥址区所在位置的气象站。由表1.1,取平均值,桥址处风速剖面的幂指数α=0.102,桥址处风剖面指数公式为:
Figure PCTCN2021086380-appb-000010
进一步地,将U 气象转换成U 桥面的方法如下:
第一步:将U 气象换算成U S10,U S10=K 1×U 气象,其中,K 1为地形修正系数。以甲工程实施为例,K 1通过将第一气象站和第二气象站的风观测数据,与第三气象站同一时期的风观测数据进行对比分析得到的。
第二步:将U S10换算成U Z
Figure PCTCN2021086380-appb-000011
第三步:将U Z换算成U 桥面
Figure PCTCN2021086380-appb-000012
其中,K 2为截面形状修正系数。其中,U Z代表的是没有遮挡的风速,而U 桥面代表的是受到钢桁梁等多种结构遮挡影响的桥面风速。K 2是根据已知的桥梁参数(包含钢桁梁的形状、刚度和强度等等)计算得出。
在甲工程实例中,通过将第一气象站和第二气象站的风观测数据,与第三气象站同一时期的风观测数据进行对比分析计算得到K 1=1.3,根据已知的桥梁参数计算得到K 2=0.8。
进一步地,在甲工程实例中,桥梁桥面的高度Z=62.8m,综上,可得到
Figure PCTCN2021086380-appb-000013
由此可知,在甲工程实例中,由于地形以及桥梁形状的影响,在桥址区的桥面风速U 桥面比同等高度的气象站风速U 气象大1.254倍。
进一步地,得出U 桥面作用下列车分段限速规定的方法如下:
第一步:调取U 气象作用下两岸陆地的列车分段限速规定;
第二步:结合
Figure PCTCN2021086380-appb-000014
以及γ 桥面≥γ 气象,计算U 桥面作用下列车分段限速规定。
在甲工程实例中,两岸陆地的列车在U 气象作用下,已知的分段限速规定如表1.2。
表1.2 两岸陆地的列车在U 气象下的分段限速规定
U 气象(m/s) 规定
<20 正常运行
20~25 列车限速200km/h以下
25~30 列车限速120km/h以下
>30 停运
在表1.2的基础上,结合U 桥面=1.254×U 气象,以及U 桥面作用下列车行车安全指标γ 桥面不低于U 气象作用下两岸陆地的列车行车安全指标γ 气象(即在桥面形式的列车,各方面安全性能不能比在两岸陆地行驶的列车的效果差),得出在桥面行驶,即U 桥面作用下列车的分段限速规定。其中,当γ 桥面>γ 气象时,求出的分段限速规定,见表1.3。
表1.3 在U 桥面下的分段限速规定
U 桥面(m/s) 规定
<25.1 正常运行
25.1~31.4 正常运行
31.4~37.6 列车限速200km/h以下
>37.6 停运
表1.3就是研发人员想要达到的设计效果,但是车、桥是否安全还需要进一步验证。进一步地,建立风车桥耦合系统,风车桥耦合 系统包含风子系统、车辆子系统、轨道子系统和桥梁子系统;车辆子系统和轨道子系统具有轮轨相互作用力;轨道子系统和桥梁子系统具有桥轨相互作用力;风子系统的风荷载作用于桥梁子系统和车辆子系统。
风车桥耦合系统可以以各个子系统(风子系统、车辆子系统、轨道子系统和桥梁子系统)作为独立的个体,风子系统根据已知的风观测数据建立而成,车辆子系统根据已知的车辆参数建立而成,轨道子系统根据轨道设计参数(包含结构参数和力学参数)建立而成,桥梁子系统根据桥梁设计参数(包含结构参数和力学参数)建立而成。通过各个子系统之间的轮轨相互作用、桥轨相互作用、风桥相互作用和风车相互作用而耦合求解。
轮轨相互作用力对车辆、轨道两个子系统而言均是外力;桥轨相互作用力对轨道、桥梁两个子系统而言也均是外力;风荷载对桥梁、车辆两个子系统而言均是外力;经过这样处理后,车辆、轨道、桥梁子系统的运动微分方程就可采用逐步积分法分别求解。
具体地,风车桥耦合系统表示为:
Figure PCTCN2021086380-appb-000015
M V、C V、K V—分别为车辆子系统质量矩阵、阻尼矩阵、刚度矩阵;
M T、C T、K T—分别为轨道子系统质量矩阵、阻尼矩阵、刚度矩阵;
M B、C B、K B—分别为桥梁子系统质量矩阵、阻尼矩阵、刚度矩阵;
X V
Figure PCTCN2021086380-appb-000016
—分别为车辆子系统位移、速度、加速度向量;
X T
Figure PCTCN2021086380-appb-000017
—分别为轨道子系统位移、速度、加速度向量;
X B
Figure PCTCN2021086380-appb-000018
—分别为桥梁子系统位移、速度、加速度向量;
F V-T、F T-V—为车辆与轨道间相互作用力;
F B-T、F T-B—为轨道与桥梁间相互作用力;
F W-V、F W-B—风子系统分别作用于车辆、桥梁上的风荷载。
如图6所示,在风车桥耦合系统的基础上,建立风车桥有限元求解模型,对风车桥耦合系统进行分离迭代分析,得到桥梁和列车的动力响应,此处的动力响应为实际响应结果。具体地,γ 桥面为在桥梁桥面,U 桥面作用下列车行车安全指标;γ 气象为在两岸,U 气象作用下列车行车安全指标。行车安全指标都是通过各个桥梁与列车的动力响应来进行评定的。行车安全指标包含以下动力响应,脱轨系数、轮重减载率、加速度以及Sperling指标等等,本发明限于篇幅,只给出控制性动力响应指标,未给出的动力响应指标均始终正常。选取有代表性的动车和拖车,动车和拖车安全、舒适且稳定的行驶,已知的动力响应评定标准见表1.4
表1.4 动力响应评定标准
Figure PCTCN2021086380-appb-000019
在甲工程实例中,经过风车桥耦合系统进行风车桥耦合分析,计算得到动车及拖车的实际响应结果,三种有代表性的工况见表1.5。
表1.5 动车及拖车的动力响应
Figure PCTCN2021086380-appb-000020
其中,列车车速200km/h是具有代表性的界限列车车速。在中国高速动车组中,G字头列车,时速在250~350km/h,D字头列车普通动车组,时速在160~250km/h,以200km/h为主。本实施例中,选取200km/h为例,进行计算。在其余实施例中,还可以选取250km/h或者350km/h作为代表性的界限列车车速。
由表1.4和表1.5可知,在界限列车车速为200km/h时,当U 桥面为25m/s或小于25m/s时,动车或拖车的动力响应全部符合动力响应评定标准。当风速达到30m/s时,动车及拖车的轮重减载率均大于动力响应评定标准0.6,限于篇幅,不同风速下的未列出的响应指标均满足动力响应评定标准。进一步地,在其余实施例中,还可以对25m/s~30m/s之间的风速进行计算分析。
当桥梁桥面风速达到30m/s时桥梁列车行车安全不符合动力响应评定标准,行车不安全,因此需要进行防风减风设计。
最终目的是为了在进行防风减风设计之后,进行风车桥耦合分析的动车及拖车的动力响应符合动力响应评定标准;为了达到上述目的,根据表1.5可知,当U 桥面≤25m/s时,动车及拖车所有动力响应均符合动力响应评定标准;因此只需要将U 桥面在经过防风减风之 后的等效风速U eq满足表1.3即可。得出风速折减系数的技术要求见表1.6。
表1.6 风速折减系数的技术要求
Figure PCTCN2021086380-appb-000021
具体地,U 桥面经过风障的风速折减之后的桥面等效风速U eq表示为U eq=λ s×U 桥面×f;其中,λ s表示风速折减系数;f表示设定的安全系数,安全系数是为了在设计时留有一定的余量。因此,表1.6的计算结果λ s<0.66,来源于0.66=31.4/25/1.2。
具体地,在本实施例中,选定了一个实际响应结果符合动力响应评定标准对应的U 桥面值25m/s,结合U 桥面作用下列车分段限速规定即表1.3,确定风障的风速折减系数范围为λ s<0.66。在确定风速折减系数范围之后,采用多孔组合的形式进行风障设计。
如图2、图3和图4所示,本发明还公开了一种基于上述大跨度铁路桥梁行车安全防风设计方法的减风装置的实施例,减风装置100包含风障立柱1、风障条2和风障拉索3,若干风障立柱1竖直设置,若干风障条2水平设置在两相邻的风障立柱1之间。风障立柱1通过预埋件5固定于桥梁结构,每个风障条2的两端通过紧固螺栓4安装在两个风障立柱1上。每个风障条2上开设多种大小不等的圆形孔,呈现多孔组合的形式,多种大小不等的圆形孔通过排列组合来满足设计需求的风速折减系数。本发明采用的多孔组合的设计形式,效率高, 且设计灵活,多孔灵活组合成设计需求的风速折减系数;减风装置100采用风障立柱1和风障条2,设计长度可以自由加长,风障拉索3进一步加强了减风装置100的强度,使减风装置100更加牢固可靠。优选地,每个风障条2沿上下弯折。
具体地,风障立柱1具有一定的宽度,其一半连接左边的风障条2,另一半连接右边的风障条2。进一步地,减风装置100的材料为钢材;每个风障条2的圆形孔采用直径为8mm、12.5mm、16mm和25mm的圆形孔排列组合。在实际设计的过程中,减风装置100的高度可以根据风障条5的数量进行调整。采用四种圆形孔8mm、12.5mm、16mm和25mm的排列组合可以更好更快设计出满足设计需求的风速折减系数。
在甲工程实例中,风障条采用多孔形式,开孔直径主要为8mm、12.5mm、16mm和25mm的组合,风障折减系数为0.66(即风障条透风率为36.5%),风障条高度为0.25m,通过螺栓连接在风障立柱上。风障高度确定为3.5m,采用14个风障条。
最后将设计好的减风装置代入到风-车-桥耦合有限元模型中进行验证,响应结果见表1.7。
表1.7 减风装置设计动车及拖车的响应对比
Figure PCTCN2021086380-appb-000022
Figure PCTCN2021086380-appb-000023
注:折减率=(无风屏障情况-设置风屏障情况)/无风屏障情况
因此,动车和拖车的竖向加速度和轮重减载率均符合动力响应评定标准(见表1.4),设计的减风装置满足列车行车安全的要求。该验证步骤使得减风装置的设计更加安全可靠。
本发明的一种大跨度铁路桥梁行车安全防风设计方法及减风装置,防风设计方法目标明确,在进行减风装置设计时,不仅考虑桥梁桥址处的实际风环境,还考虑桥梁与列车、风之间的耦合效应,进行精准精细化计算,并将桥梁及车辆的实际响应结果与动力响应评定标准进行对比分析,防风减风设计合理,使得设计的减风装置能够有效保障桥梁及车辆的安全性和舒适性,有效提高了设计人员的工作时效。
以上所述仅是本申请的具体实施方式,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种大跨度铁路桥梁行车安全防风设计方法,其特征在于,包含以下步骤:
    根据桥梁的桥址区附近的气象站提供的风观测数据,对风剖面指数公式进行数据拟合并求得风剖面指数公式的幂指数α;
    利用所述风剖面指数公式将所述风观测数据中的气象台站风速U 气象,转换成桥梁桥面风速U 桥面
    基于U 桥面作用下列车行车安全指标γ 桥面不低于U 气象作用下两岸陆地的列车行车安全指标γ 气象、以及U 气象作用下两岸列车分段限速规定,求出U 桥面作用下列车分段限速规定;
    建立风车桥耦合系统,对U 桥面作用下列车行车安全指标进行风车桥耦合分析,得出在界限列车车速和多个U 桥面作用下车辆的实际响应结果;
    将所述实际响应结果与动力响应评定标准进行对比分析,选定一个所述实际响应结果符合动力响应评定标准对应的U 桥面值,结合所述U 桥面作用下列车分段限速规定,确定风障的风速折减系数范围,采用多孔组合的形式进行减风装置(100)的设计。
  2. 如权利要求1所述的一种大跨度铁路桥梁行车安全防风设计方法,其特征在于,所述风剖面指数公式:
    Figure PCTCN2021086380-appb-100001
    其中,Z为风剖面高度,单位m;U S10为桥址处高度10m的风速,单位m/s;U Z为桥址处高度Z的风速,单位m/s;α为桥址处风速剖面的幂指数。
  3. 如权利要求2所述的一种大跨度铁路桥梁行车安全防风设计方法,其特征在于,求得风剖面指数公式的α的方法如下:
    调取所述大跨度铁路桥梁周边的多个气象站一段时间的完整风观测数据;
    分别对每个气象站的风观测数据,采用最小二乘法进行U Z随桥址高度Z变化的α的拟合,得到对应每个气象站的α 1、α 2、…α n
    求取α 1、α 2、…α n的平均值,得到α;其中,n为气象站总数。
  4. 如权利要求2所述的一种大跨度铁路桥梁行车安全防风设计方法,其特征在于,将U 气象转换成U 桥面的方法如下:
    将U 气象换算成U S10,U S10=K 1×U 气象,其中,K 1为地形修正系数;
    将U S10换算成U Z
    Figure PCTCN2021086380-appb-100002
    将U Z换算成U 桥面
    Figure PCTCN2021086380-appb-100003
    其中,K 2为截面形状修正系数。
  5. 如权利要求4所述的一种大跨度铁路桥梁行车安全防风设计方法,其特征在于,得出U 桥面作用下列车分段限速规定的方法如下:
    调取U 气象作用下两岸陆地的列车分段限速规定;
    结合
    Figure PCTCN2021086380-appb-100004
    以及γ 桥面≥γ 气象,计算U 桥面作用下列车分段限速规定。
  6. 如权利要求1所述的一种大跨度铁路桥梁行车安全防风设计方法,其特征在于:所述风车桥耦合系统包含风子系统、车辆子系统、轨道子系统和桥梁子系统;所述车辆子系统和轨道子系统具有轮轨相互作用力;所述轨道子系统和桥梁子系统具有桥轨相互作用力;所述风子系统的风荷载作用于所述桥梁子系统和车辆子系统。
  7. 如权利要求6所述的一种大跨度铁路桥梁行车安全防风设计方法,其特征在于,所述风车桥耦合系统表示为:
    Figure PCTCN2021086380-appb-100005
    M V、C V、K V—分别为所述车辆子系统质量矩阵、阻尼矩阵、刚度矩阵;
    M T、C T、K T—分别为所述轨道子系统质量矩阵、阻尼矩阵、刚度矩阵;
    M B、C B、K B—分别为所述桥梁子系统质量矩阵、阻尼矩阵、刚度矩阵;
    X V
    Figure PCTCN2021086380-appb-100006
    —分别为所述车辆子系统位移、速度、加速度向量;
    X T
    Figure PCTCN2021086380-appb-100007
    —分别为所述轨道子系统位移、速度、加速度向量;
    X B
    Figure PCTCN2021086380-appb-100008
    —分别为所述桥梁子系统位移、速度、加速度向量;
    F V-T、F T-V—为车辆与轨道间相互作用力;
    F B-T、F T-B—为轨道与桥梁间相互作用力;
    F W-V、F W-B—所述风子系统分别作用于车辆、桥梁上的风荷载。
  8. 如权利要求1所述的一种大跨度铁路桥梁行车安全防风设计方法,其特征在于:所述γ 气象和γ 桥面均包含轮重减载率和竖向加速度。
  9. 如权利要求1所述的一种大跨度铁路桥梁行车安全防风设计方法,其特征在于:
    所述U 桥面经过风障的风速折减之后的桥面等效风速U eq表示为
    U eq=λ s×U 桥面×f
    其中,λ s表示风速折减系数;f表示设定的安全系数。
  10. 一种基于权利要求1所述的大跨度铁路桥梁行车安全防风设计方法的减风装置,其特征在于:所述减风装置(100)包含若干竖直设置的风障立柱(1),以及水平设置于两相邻风障立柱(1)之间的若干风障条(2);所述风障立柱(1)通过预埋件(5)固定于桥梁结构,若干所述风障立柱(1)通过多根水平风障拉索(3)固定连接;每个风障条(2)的两端通过紧固螺栓(4)安装在两个风障立柱(1)上,每个风障条(2)上开设多种大小不等的圆形孔,所述风速折减系数通过多种大小不等的圆形孔排列组合来实现。
PCT/CN2021/086380 2020-07-27 2021-04-12 一种大跨度铁路桥梁行车安全防风设计方法及减风装置 WO2022021934A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21850463.7A EP4089563A4 (en) 2020-07-27 2021-04-12 WIND-RESISTANT DESIGN METHOD FOR TRAFFIC SAFETY OF LARGE-SPAN RAILWAY BRIDGE AND WIND REDUCTION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010732661.9 2020-07-27
CN202010732661.9A CN111931277B (zh) 2020-07-27 2020-07-27 一种大跨度铁路桥梁行车安全防风设计方法及减风装置

Publications (1)

Publication Number Publication Date
WO2022021934A1 true WO2022021934A1 (zh) 2022-02-03

Family

ID=73314209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086380 WO2022021934A1 (zh) 2020-07-27 2021-04-12 一种大跨度铁路桥梁行车安全防风设计方法及减风装置

Country Status (3)

Country Link
EP (1) EP4089563A4 (zh)
CN (1) CN111931277B (zh)
WO (1) WO2022021934A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114818083A (zh) * 2022-05-19 2022-07-29 中铁大桥勘测设计院集团有限公司 一种铁路轨道轨向高低确定方法
CN115618686A (zh) * 2022-11-08 2023-01-17 西南交通大学 一种基于行车平稳性的大跨度铁路桥梁刚度评估方法
CN115828379A (zh) * 2022-11-16 2023-03-21 西南交通大学 一种风-汽车-列车-桥梁耦合振动分析方法
CN117494277A (zh) * 2023-11-16 2024-02-02 北京交通大学 基于温度变形的大跨度高速铁路桥梁轨道的线形调控方法
CN118070405A (zh) * 2024-04-18 2024-05-24 临沂市政集团有限公司 一种基于gis和bim的斜拉桥模型构建方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111931277B (zh) * 2020-07-27 2023-11-03 中铁大桥勘测设计院集团有限公司 一种大跨度铁路桥梁行车安全防风设计方法及减风装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086722A (ja) * 2011-10-20 2013-05-13 East Japan Railway Co 車両転覆限界風速算出装置及び車両転覆限界風速算出方法
CN103577652A (zh) * 2013-11-19 2014-02-12 中铁第四勘察设计院集团有限公司 跨海大桥风屏障设计方法
CN108268711A (zh) * 2018-01-04 2018-07-10 嘉兴学院 一种风车轨桥耦合模型及桥上抗风行车准则制定方法
CN110276111A (zh) * 2019-06-04 2019-09-24 中国公路工程咨询集团有限公司 桥梁桥面的行车稳定性分析方法及装置
CN111931277A (zh) * 2020-07-27 2020-11-13 中铁大桥勘测设计院集团有限公司 一种大跨度铁路桥梁行车安全防风设计方法及减风装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111341101A (zh) * 2020-02-28 2020-06-26 西南交通大学 一种大跨度公路桥梁大风行车监测预警系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086722A (ja) * 2011-10-20 2013-05-13 East Japan Railway Co 車両転覆限界風速算出装置及び車両転覆限界風速算出方法
CN103577652A (zh) * 2013-11-19 2014-02-12 中铁第四勘察设计院集团有限公司 跨海大桥风屏障设计方法
CN108268711A (zh) * 2018-01-04 2018-07-10 嘉兴学院 一种风车轨桥耦合模型及桥上抗风行车准则制定方法
CN110276111A (zh) * 2019-06-04 2019-09-24 中国公路工程咨询集团有限公司 桥梁桥面的行车稳定性分析方法及装置
CN111931277A (zh) * 2020-07-27 2020-11-13 中铁大桥勘测设计院集团有限公司 一种大跨度铁路桥梁行车安全防风设计方法及减风装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4089563A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114818083A (zh) * 2022-05-19 2022-07-29 中铁大桥勘测设计院集团有限公司 一种铁路轨道轨向高低确定方法
CN114818083B (zh) * 2022-05-19 2024-02-02 中铁大桥勘测设计院集团有限公司 一种铁路轨道轨向高低确定方法
CN115618686A (zh) * 2022-11-08 2023-01-17 西南交通大学 一种基于行车平稳性的大跨度铁路桥梁刚度评估方法
CN115618686B (zh) * 2022-11-08 2023-09-12 西南交通大学 一种基于行车平稳性的大跨度铁路桥梁刚度评估方法
CN115828379A (zh) * 2022-11-16 2023-03-21 西南交通大学 一种风-汽车-列车-桥梁耦合振动分析方法
CN115828379B (zh) * 2022-11-16 2023-10-31 西南交通大学 一种风-汽车-列车-桥梁耦合振动分析方法
CN117494277A (zh) * 2023-11-16 2024-02-02 北京交通大学 基于温度变形的大跨度高速铁路桥梁轨道的线形调控方法
CN118070405A (zh) * 2024-04-18 2024-05-24 临沂市政集团有限公司 一种基于gis和bim的斜拉桥模型构建方法

Also Published As

Publication number Publication date
CN111931277B (zh) 2023-11-03
CN111931277A (zh) 2020-11-13
EP4089563A4 (en) 2024-02-14
EP4089563A1 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
WO2022021934A1 (zh) 一种大跨度铁路桥梁行车安全防风设计方法及减风装置
Imai et al. New train regulation method based on wind direction and velocity of natural wind against strong winds
Kikuchi et al. Study of aerodynamic coefficients used to estimate critical wind speed for vehicle overturning
Andersson et al. Assessment of train-overturning risk due to strong cross-winds
CN106250604A (zh) 桥上纵连板式无砟轨道疲劳应力谱分析方法及系统
Yang et al. Deterioration of dynamic response during high-speed train travelling in tunnel–bridge–tunnel scenario under crosswinds
Liu et al. Aerodynamic performance analysis of trains on slope topography under crosswinds
WO2016172844A1 (zh) 一种轮轨垂直力地面全连续测量方法和系统
CN107201715A (zh) 高墩大跨混凝土连续梁桥的横向刚度控制方法及桥梁
Misu et al. Prediction of frequency distribution of strong crosswind in a control section for train operations by using onsite measurement and numerical simulation
CN115525949A (zh) 铁路桥梁纵断面设计线形的评价方法及装置
Han et al. Running safety assessment of a train traversing a long-span bridge under sudden changes in wind loads owing to damaged wind barriers
Wen et al. Aerodynamic characteristics of express freight train on bridges based on wind tunnel tests
CN112373495B (zh) 一种极端环境下铁路桥上列车脱轨控制方法、系统、终端设备及可读存储介质
Yao et al. Dynamic interaction analysis and running safety assessment of the wind–train–bridge system considering the moving train’s aerodynamic coupling with crosswind
Zou et al. Experimental study of the aerodynamic characteristics of a suspended monorail vehicle-bridge system under crosswinds
Liu et al. Influences of wind barriers on the train running safety on a highway-railway one-story bridge
Tian Determination method of load balance ranges for train operation safety under strong wind
CN107133432A (zh) 高墩大跨混凝土连续刚构桥的横向刚度控制方法及桥梁
Zhou et al. Research on high-speed train load spectrum and bridge load effect spectrum
CN111896218B (zh) 一种多孔足尺风障模型的风车桥耦合系统校验方法
CN103318186B (zh) 基于铁路装车线的制动方法
Chotickai et al. Field testing and performance evaluation of a through-plate girder railway bridge
CORNICK et al. CORRESPONDENCE. WIND-PRESSURES, AND STRESSES CAUSED BY THE WIND ON BRIDGES.
Feng et al. Dynamic analysis of vehicle-track response for subway with pumping house cancelled

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021850463

Country of ref document: EP

Effective date: 20220811

NENP Non-entry into the national phase

Ref country code: DE