WO2022021828A1 - 一种自冲孔铆接工艺质量状态的自动判定方法 - Google Patents

一种自冲孔铆接工艺质量状态的自动判定方法 Download PDF

Info

Publication number
WO2022021828A1
WO2022021828A1 PCT/CN2021/074616 CN2021074616W WO2022021828A1 WO 2022021828 A1 WO2022021828 A1 WO 2022021828A1 CN 2021074616 W CN2021074616 W CN 2021074616W WO 2022021828 A1 WO2022021828 A1 WO 2022021828A1
Authority
WO
WIPO (PCT)
Prior art keywords
riveting
quality
displacement
result
point
Prior art date
Application number
PCT/CN2021/074616
Other languages
English (en)
French (fr)
Inventor
刘蕾
梁端
刘宏婕
汤东华
Original Assignee
安徽巨一科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽巨一科技股份有限公司 filed Critical 安徽巨一科技股份有限公司
Priority to EP21849745.1A priority Critical patent/EP4024150A4/en
Publication of WO2022021828A1 publication Critical patent/WO2022021828A1/zh
Priority to US17/706,940 priority patent/US20220212245A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/28Control devices specially adapted to riveting machines not restricted to one of the preceding subgroups
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/02Riveting procedures
    • B21J15/025Setting self-piercing rivets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/28Control devices specially adapted to riveting machines not restricted to one of the preceding subgroups
    • B21J15/285Control devices specially adapted to riveting machines not restricted to one of the preceding subgroups for controlling the rivet upset cycle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32184Compare time, quality, state of operators with threshold value
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32191Real time statistical process monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32201Build statistical model of past normal proces, compare with actual process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32368Quality control

Definitions

  • the invention relates to the technical field of white car riveting technology, in particular to an automatic determination method for the quality state of a self-piercing riveting process.
  • Self-piercing riveting process is one of the common processes for aluminum alloy body connection. SPR is to press the rivet directly into the plate to be riveted, that is, the upper plate and the lower plate, through the power provided by the hydraulic cylinder or the servo motor. , filled in the riveting mold after forming, as shown in Figure 1 (a) to (e), thus forming a brand-new automobile body-in-white plate connection technology for stable connection. Whether the quality of SPR riveting is qualified or not plays an important role in the strength of the car.
  • T min unit is mm
  • LL unit is mm
  • LR unit is mm
  • rivet The horizontal distance between the right tip of the tail and the right entry point of the rivet cutting into the bottom plate, this value is the interlocking amount on the right side
  • Y unit is mm
  • the SPR quality inspection method in the prior art is mainly: select a certain station in an automated production line for random inspection, visually inspect the appearance of the rivet point and use an instrument to measure the height of the rivet head, and compare whether there is a change with the previous period, so as to judge the riveting quality.
  • the purpose of the present invention is to provide an automatic determination method for the quality status of the self-piercing riveting process, so as to ensure accurate identification of the riveting quality.
  • the present invention proposes an automatic method for judging the quality status of a self-piercing riveting process, comprising the following steps:
  • S1 Standard value input: input the standard values of the above-mentioned riveting pressure F B , F C , F D , slope K max , K max /2, and position X kmax , X kmax /2, K CDmin in the server; the slope refers to FX
  • the slope value of the riveting force F in the force-displacement curve K max refers to the maximum slope value, K max /2 refers to the half value of the maximum slope, and K CDmin refers to the slope value of the corresponding standard riveting force between the displacement points C and D.
  • S3 Data comparison and riveting quality judgment: riveting the measured values of riveting pressure F B1 , F C1 , F D1 , slope K max1 , K max1 /2, K CDmin1 , and positions X kmax1 , X kmax1 /2 with the standard value of the server
  • the pressures FB , FC , FD , the slopes K max , K max /2 , K CDmin , and the positions X kmax and X kmax /2 are respectively compared.
  • the measured values of riveting pressure F B1 , F C1 , F D1 are compared with the server's standard value riveting pressure F B , F C , and F D respectively, and the slopes K max1 , K max1 /2 and K CDmin1 are compared with the server's standard value slope.
  • K max , K max /2, and K CDmin are compared respectively, and the positions X kmax1 and X kmax1 /2 are respectively compared with the standard value positions X kmax and X kmax /2 of the server. So as to determine the existence of quality defects.
  • the standard value input in the server is obtained through the riveting process test.
  • the data acquisition system connected with the riveting equipment is used to collect the riveting force F and the corresponding displacement X during the riveting process.
  • the data acquisition system judges the yield of the rivet through the internal preset quality judgment method, specifically through the values of F B1 and F C1 ; F max1 and X kmax1 / 2 judge that T min is unqualified; F max1 and K max1 judge the interlocking Unqualified; K CDmin1 judges the quality defect of edge cracking, K CDmin1 refers to the slope value of the measured riveting force between the displacement point C and D point; F max1 judges the cracking of the riveting die.
  • the above scheme gives the selection of different groups of values to determine quality defects such as rivet yield, T min failure, interlock failure, edge cracking, etc.
  • the specific logic is to select the corresponding standard after the measured value of the corresponding group. Values are compared to realize the judgment of quality defects.
  • B is equal to the sum of the thickness of the upper plate and the depth of the riveting die
  • C is equal to the length of the rivet minus 2mm
  • D is equal to the length of the rivet minus the height of the rivet head
  • F B1 is the riveting force corresponding to any point between the displacement of 0mm and the displacement of B
  • F C1 Point is the riveting force corresponding to any point between point B and point C
  • point F D1 is the riveting force corresponding to any point between point C and point D.
  • the specific corresponding determination method is determined by the force and displacement curve of FX formed by the experimental data, where B, C, and D refer to the displacement positions in the above curve, and the corresponding riveting force can be determined after the displacement position is determined in combination with the above curve.
  • the data acquisition system is also used for outputting a quality report.
  • the method for automatically judging the quality status of the self-piercing riveting process of the present invention acquires the riveting parameters and process curves of the riveting process in real time through the data acquisition system, and then calculates the riveting parameters and process curves according to the real-time changes of the riveting pressure curve and the overlapping information of the riveted plates.
  • the measured value of the riveting quality state, and the measured value is compared with the set standard value, which can automatically judge the quality state of the riveting process, improve the quality monitoring efficiency, realize the full detection of riveting points, and greatly reduce the riveting quality.
  • the body-in-white is scrapped, avoiding mass production of defective body-in-white that cannot be found, and ensuring the riveting quality of the body-in-white.
  • the first result is obtained by comparing FB and FB1 , and by comparing FC and FC1 , to determine whether the yield of the rivet is acceptable;
  • the standard value includes the standard value of the first riveting pressure F B , the standard value of the second riveting pressure F C , the standard value of the third riveting pressure F D , and the standard value of the maximum riveting force F max , the maximum slope standard value K max , the measured slope value K CDmin1 , the measured value X kmax1 of the displacement point corresponding to K max1 , the measured values include: the measured value of the first riveting pressure F B1 , the measured value of the second riveting pressure F C1 , The measured value of the third riveting pressure F D1 , the measured value of the maximum riveting force F max1 , the measured value of the maximum slope K max1 , the measured value of the slope K CDmin1 , and the measured value X kmax1 of the displacement point corresponding to K max1 ; it can automatically judge the quality status of the riveting process , improve the efficiency of quality monitoring, realize the full inspection of riveting points, to ensure the quality
  • the displacement value from the initial displacement point to the displacement point B is R+P, where R represents the thickness of the upper plate, and P represents the depth of the riveting die;
  • the displacement value from the initial displacement point to the displacement point C is (W-2) mm, where W represents the length of the rivet;
  • the displacement value from the initial displacement point to the displacement point D is W-H, where H represents the height of the rivet head
  • the initial displacement point is the contact point when the rivet initially contacts the upper plate.
  • Fig. 1 is the structural representation of the deformation process of plate and rivet in the self-piercing riveting process of the present invention
  • Fig. 2 is one of the structural schematic diagrams after the rivet and the plate are deformed when the self-piercing riveting of the present invention is completed;
  • Fig. 3 is the second structural schematic diagram after the rivet and the plate are deformed when the self-piercing riveting is completed;
  • FIG. 4 is one of the schematic flow charts of a method for automatically determining the quality status of a self-piercing riveting process according to the present invention
  • Fig. 6 is the quality defect judgment table diagram of the self-piercing riveting process quality state acquisition system of the present invention.
  • Fig. 7 is the pressure displacement curve diagram of the self-piercing riveting process quality state acquisition system of the present invention.
  • Fig. 8 is the slope displacement curve diagram of the self-piercing riveting process quality state acquisition system of the present invention.
  • FIG. 9 is the second schematic flow chart of a method for automatically determining the quality status of a self-piercing riveting process according to the present invention.
  • an automatic method for determining the quality status of a self-piercing riveting process includes the following steps:
  • Standard value input input the standard values of the above riveting pressure F B , F C , F D , slope K max , K max /2, and position X kmax , X kmax /2, K CDmin in the server; the slope refers to FX
  • the slope value of the riveting force F in the force-displacement curve K max refers to the maximum slope value, K max /2 refers to the half value of the maximum slope, and K CDmin refers to the slope value of the corresponding standard riveting force between the displacement points C and D.
  • the measured values of riveting pressure F B1 , F C1 , F D1 are compared with the server's standard value riveting pressure F B , F C , and F D respectively, and the slopes K max1 , K max1 /2 and K CDmin1 are compared with the server's standard value slope.
  • K max , K max /2, and K CDmin are compared respectively, and the positions X kmax1 and X kmax1 /2 are respectively compared with the standard value positions X kmax and X kmax /2 of the server. So as to determine the existence of quality defects.
  • B is equal to the sum of the thickness of the upper plate and the depth of the riveting die
  • C is equal to the length of the rivet minus 2mm
  • D is equal to the length of the rivet minus the height of the rivet head
  • F B1 is the riveting force corresponding to any point between the displacement of 0mm and the displacement of B
  • F C1 point is the riveting force corresponding to any point between point B and point C
  • point F D1 is the riveting force corresponding to any point between point C and point D.
  • the specific corresponding determination method is determined by the force and displacement curve of FX formed by the experimental data.
  • the defects of riveting are specifically determined according to the measured values below:
  • the output rivet is judged to be unqualified for yielding.
  • the output T min is unqualified.
  • the output interlock is unqualified.
  • the edge cracking quality defect is output.
  • the measured value F max1 is m times the system configuration standard value F max , and m ⁇ (0,0.5), then the judgment condition is satisfied, and the riveting is qualified; otherwise, the riveting is unqualified, and an early warning is issued, as shown in Figure 5.
  • the riveting database is obtained through a large number of riveting process tests.
  • a data acquisition system connected to the riveting equipment is used to collect the riveting force F and the corresponding displacement X during the riveting process, so as to form the riveting process.
  • database The data in the database is processed, and the riveting force F-displacement X curve is generated by fitting the data in the riveting database, as shown in Figure 5, the slope of the riveting force K-displacement X curve, as shown in Figure 6, NO means that the riveting quality of each riveting point is qualified; if YES appears, it means that there is a failure.
  • the method for determining the standard value is to select the riveting data of the riveting points with quality defects such as qualified rivet yield, qualified Tmin puncture, qualified interlocking, and no edge cracking in the riveting database, and calculate the corresponding riveting data of this part.
  • Real-time test calculation values of riveting pressure FB , FC , FD , slope K max , K max /2, and position X kmax , X kmax/2 and then calculate the standard value of these values through a specific algorithm.
  • technicians or operators can judge whether the riveting point is qualified according to the data in the quality report that can be output by the data acquisition system and the corresponding quality status, and at the same time, the export of the quality report can facilitate subsequent quality tracking.
  • the standard value includes the standard value of the first riveting pressure F B , the standard value of the second riveting pressure F C , the standard value of the third riveting pressure F D , and the standard value of the maximum riveting force F max , the maximum slope standard value K max , the measured slope value K CDmin1 , the measured value X kmax1 of the displacement point corresponding to K max1 , the measured values include: the measured value of the first riveting pressure F B1 , the measured value of the second riveting pressure F C1 , The measured value of the third riveting pressure F D1 , the measured value of the maximum riveting force F max1 , the measured value of the maximum slope K max1 , the measured value of the slope K CDmin1 , and the measured value X kmax1 of the displacement point corresponding to K max1 ; it can automatically judge the quality status of the riveting process , improve the efficiency of quality monitoring and realize full inspection of riveting points to ensure the riveting quality
  • the quality status of the actual riveting includes the first result, that is, whether the yield of the rivet is qualified, the second result is whether the T min is qualified, and the third result is whether the interlock is qualified.
  • the displacement value from the initial displacement point to the displacement point B is R+P, where R represents the thickness of the upper plate, and P represents the depth of the riveting die;
  • the displacement value from the initial displacement point to the displacement point C is (W-2) mm, where W represents the length of the rivet;
  • the displacement value from the initial displacement point to the displacement point D is W-H, where H represents the height of the rivet head
  • the initial displacement point is the contact point when the rivet initially contacts the upper plate.
  • the riveting force F and the displacement X corresponding to the riveting force F during the riveting process are collected by using a data acquisition system connected with the riveting equipment, so as to form a riveting database, wherein,
  • the riveting force F and the displacement X corresponding to the riveting force F can be understood as: for example, 1 riveting force F is collected for every displacement of 1mm, or 5 riveting forces are collected for every 1mm of displacement, which can be adjusted according to the actual situation, and will not be repeated here.
  • the riveting force can be obtained through the force sensor, and the displacement value can be obtained through the distance sensor.
  • the test data namely the riveting force F and the displacement X corresponding to the riveting force F, are processed, and multiple riveting force F-displacement X curves are generated through the fitting algorithm, as shown in Figure 5, and the slope of the riveting force K-displacement X curve , as shown in FIG. 6 , wherein the fitting algorithm is also known to those skilled in the art, and details are not described here.
  • the process of determining the standard value includes: selecting the data of the riveting point with qualified rivet yield, qualified Tmin puncture, qualified interlock, and no edge cracking and other quality defects in the riveting database, and calculating the riveting pressure F corresponding to this part of the riveting data B , FC , FD , slope K max , K max /2, and real-time test calculation values of positions X kmax , X kmax/2 , and then calculate the standard values of these parameters through a specific algorithm, thereby obtaining the above-mentioned passing parameters Determine the relationship between the first result, the second result, the third result and the fourth result, that is to say, through a large number of riveting process tests, it is determined that the first result, the second result and the third result can be obtained by the above four methods respectively. and the fourth result.
  • the user can obtain the standard value by searching in the riveting database, wherein the standard value includes the standard value of the first riveting pressure F B , the standard value of the second riveting pressure F C , and the standard value of the third riveting pressure F D , the standard value of the maximum riveting force F max , the standard value of the maximum slope K max , the measured value of the slope K CDmin1 , and the measured value X kmax1 of the displacement point corresponding to K max1 ;
  • the measured value includes: the measured value of the first riveting pressure F B1 , the measured value of the second riveting pressure F C1 , the measured value of the third riveting pressure F D1 , the measured value of the maximum riveting force F max1 , the measured value of the maximum slope K max1 , the measured value of the slope K CDmin1 , and the measured value X kmax1 of the displacement point corresponding to K max1 ;
  • the quality status of the actual riveting is obtained, and a quality report is obtained, wherein the quality report can be in the form of EXCEL or WORD. , which is convenient for users to view.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Insertion Pins And Rivets (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

提供了一种自冲孔铆接工艺质量状态的自动判定方法,包括如下步骤:标准值输入(S1)、实时数据采集(S2)、数据对比及铆接质量判断(S3)。自冲孔铆接工艺质量状态的自动判定方法,通过数据采集系统实时获取铆接过程的铆接参数及过程曲线,再根据铆接压力曲线的实时变化以及铆接的板材搭接信息,计算出能判定铆接质量状态的实测值,并将该实测值与设定的标准值进行比较,能自动判断铆接工艺的质量状态,提高质量监测效率、实现铆点全检测,极大的减少铆接质量失效导致的白车身报废,避免大量生产出质量有缺陷的白车身无法发现,保证白车身铆接质量。

Description

一种自冲孔铆接工艺质量状态的自动判定方法 技术领域
本发明涉及白车铆接工艺技术领域,具体涉及一种自冲孔铆接工艺质量状态的自动判定方法。
背景技术
自冲孔铆接工艺(SPR)是铝合金车身连接的常用工艺之一。SPR是通过液压缸或伺服电机提供动力将铆钉直接压入待铆接板材即上层板材和下层板材,待铆接板材即上层板材和下层板材在铆钉如半空心铆钉等的压力作用下和铆钉发生塑性变形,成型后充盈于铆模之中,如图1中(a)至(e)所示,从而形成稳定连接的一种全新的汽车白车身板材连接技术。SPR铆接质量是否合格,对汽车的强度起着重要的作用。
现有技术中判定铆接质量时主要考量以下几个重要的参数:1)T min(单位为mm)–剩余材料最小厚度:在铆模边缘发生塑性变形后,待铆接板材剩余最薄的部分;2)LL(单位为mm)–铆钉尾部左侧尖端与铆钉切入底层板材的左侧切入点之间的水平距离,此数值为左侧的互锁量;3)LR(单位为mm)–铆钉尾部右侧尖端与铆钉切入底层板材的右侧切入点之间的水平距离,此数值为右侧的互锁量;4)Y(单位为mm)–平面度。对于沉头铆钉,此铆钉头的表面应该和顶层板材的基面平齐;对于盘头铆钉,铆钉头的下部应该和顶层板材紧密贴合,如图2所示。
通过上述参数能具体判断每一个铆接点质量是否存在质量缺陷,进而判断铆接点是否合格。铆接完成后,若铆接质量出现铆接质量缺陷,主要表现为剩余板厚不合格、互锁值不合格、铆钉头高度不合格,这些铆接质量缺陷都是铆钉内部缺陷,从外观无法观察,需要对铆接点进行剖切,并通过尺子对其进行测量才能获取。如果在自动化生产的产线出现此类缺陷,若无法发现判断出铆接质量缺陷,将会导致批量白车身不合格情况,甚至白车身报废的严重后果。
现有技术中SPR质量检查方法主要是:在自动化生产线选择某一个工位进行抽检,进行目视检查铆点外观及使用仪器测量铆钉头高度,比较与前期的是否存在变化,从而判断铆接质量。
然而现有技术中的人工检测方法存在以下问题:
1、使用现有操作方法需要人工检查铆点,存在人工检查只能判断外观和铆钉头高度Y的变化,无法判断铆钉的内部质量情况,准确率较低。
2、使用现有操作方法只能对部分铆点进行检查,无法做到全检,且会产生一个专门检验的工位,占用专门的人员和空间,影响产线节拍、且人工检查效率低。
为保证准确的识别铆接质量防止生产出大量SPR铆接质量有问题的白车身,我们需要使用一种更加准确的SPR铆接质量的监控方法。
发明内容
为克服现有技术的缺陷,本发明的目的在于提供一种自冲孔铆接工艺质量状态的自动判定方法,以保证准确的识别铆接质量。
为此,本发明提出了一种自冲孔铆接工艺质量状态的自动判定方法,包括如下步骤:
S1:标准值输入:在服务器中输入上述铆接压力F B、F C、F D、斜率K max、K max/2、以及位置X kmax、X kmax/2、K CDmin的标准值;斜率指F-X力与位移曲线中铆接力F的斜率值,K max指最大斜率值、K max/2指最大斜率一半值,K CDmin指位移C点和D点间对应标准铆接力的斜率值。
S2:实时数据采集:通过数据采集系统实时采集铆接过程中的铆接力F、及与之对应的位移X,得出铆接压力F B1、F C1、F D1、斜率K max1、K max1/2、K CDmin1、以及位置X kmax、X kmax/2的实测值。
S3:数据对比及铆接质量判断:将实测值铆接压力F B1、F C1、F D1、斜率K max1、K max1/2、K CDmin1、以及位置X kmax1、X kmax1/2与服务器的标准值铆接压力F B、F C、F D、斜率K max、K max/2、K CDmin、以及位置X kmax、X kmax/2分别对应进行对比。具体指实测值铆接压力F B1、F C1、F D1与服务器的标准值铆接压力F B、F C、F D分别对应比较,斜率K max1、K max1/2、K CDmin1与服务器的标准值斜率K max、K max/2、K CDmin分别对应比较,位置X kmax1、X kmax1/2与服务器的标准值位置X kmax、X kmax/2分别对应进行对比。从而判定质量缺陷的存在。
进一步地,服务器中输入的标准值通过铆接工艺试验获取,在铆接工艺试验时使用与铆接设备连接的数据采集系统采集铆接过程中的铆接力F、及与之对应的位移X。
进一步地,数据采集系统通过内部预设的质量判断方法,具体通过F B1、F C1的值来判断铆钉屈服;F max1和X kmax1/2判断T min不合格;F max1和K max1判断互锁不合格;K CDmin1判断边缘开裂质量缺陷,K CDmin1指位移C点和D点间对应实测铆接力的斜率值;F max1判断铆模开裂。具体来说上述方案给出了选用不同组别的值来判定铆钉屈服、T min不合格、互锁不合格、边缘开裂等质量缺陷,具体的逻辑是选取相应组别的实测值后对应的标准值进行对比,实现对质量缺陷的判断。
进一步地,B等于上层板厚度和铆模深度之和,C等于铆钉长度减2mm,D等于铆钉长度减铆钉头高度;F B1为位移0mm到B位移之间任一点对应的铆接力,F C1点为B点与C点之间的任意一点对应的铆接力;F D1点为C点到D点之间的任意一点对应的铆接力。具体对应确定方式通过实验数据形成的F-X的力与位移曲线确定,其中B、C、D指得是上述曲线中的位移位置,确定了位移位置结合上述曲线即可确定对应的铆接力。
进一步地,所述数据采集系统还用于输出质量报表。
本发明的自冲孔铆接工艺质量状态的自动判定方法,通过数据采集系统实时获取铆接过程的铆接参数及过程曲线,再根据铆接压力曲线的实时变化以及铆接的板材搭接信息,计算出能判定铆接质量状态的实测值,并将该实测值与设定的标准值进行比较,能自动判断铆接工艺的质量状态,提高质量监测效率、实现铆点全检测,极大的减少铆接质量失效导致的白车身报废,避免大量生产出质量有缺陷的白车身无法发现,保证白车身铆接质量。
进一步,包括如下步骤:
接收输入的位移点B所对应的第一铆接压力标准值F B、位移点C所对应的第二铆接压力标准值F C、位移点D所对应的第三铆接压力标准值F D、标准铆接压力曲线中的最大铆接力标准值F max以及最大斜率标准值K max、位移点C与位移点D之间的斜率标准值K CDmin、K max所对应的位移点的标准值X kmax
实时采集并根据实际铆接过程中的铆接压力F及与铆接压力F对应的位移,得到初始位移点至位移点B之间的任一位移点所对应的第一铆接压力实测值F B1、位移点B至位移点C之间的任一位移点所对应的第二铆接压力实测值F C1、位移点C至位移点D之间的任一位移点所对应的第三铆接压力实测值F D1、实际铆接 压力曲线的最大铆接力实测值F max1以及最大斜率实测值K max1、位移点C与位移点D之间的斜率实测值K CDmin1、K max1对应的位移点的实测值X kmax1
通过对比F B和F B1、且通过对比F C和F C1,以确定铆钉屈服是否合格,得到第一结果;
通过对比F D和F D1、且通过判断X kmax1的值是否大于(X kmax/2+0.5)mm,以确定T min是否合格,得到第二结果;
通过判断F max1是否为F max的1.2倍以及判断K max1是否为K max的1.4倍,以确定互锁是否合格,得到第三结果;
通过对比K CDmin1是否小于K CDmin,以确定是否存在边缘开裂的质量缺陷,得到第四结果;
根据所述第一结果、所述第二结果、所述第三结果和所述第四结果得到实际铆接的质量状态。
采用上述进一步方案的有益效果是:
通过对比标准值和实际铆接过程中的实测值,其中,标准值包括第一铆接压力标准值F B、第二铆接压力标准值F C、第三铆接压力标准值F D、最大铆接力标准值F max、最大斜率标准值K max、斜率实测值K CDmin1、K max1对应的位移点的实测值X kmax1,实测值包括:第一铆接压力实测值F B1、第二铆接压力实测值F C1、第三铆接压力实测值F D1、最大铆接力实测值F max1、最大斜率实测值K max1、斜率实测值K CDmin1、K max1对应的位移点的实测值X kmax1;能自动判断铆接工艺的质量状态,提高质量监测效率、实现铆点全检测,以保证白车身铆接质量,极大的减少铆接质量失效所导致的白车身报废的情况,避免无法发现大量生产出质量有缺陷的白车身的情况的发生。
进一步,当F D1>F D且F C1>F C时,第一结果为铆钉屈服不合格,否则,第一结果铆钉屈服合格;
当F D1>F D且X kmax1的值大于(X kmax/2+0.5)mm时,第二结果为T min不合格,否则,第二结果为T min合格;
当F max1为F max的1.2倍且K max1为K max的1.4倍时,第三输出结果为互锁不合格,否则第三输出结果为互锁合格;
当K CDmin1<K CDmin时,第四结果为存在边缘开裂的质量缺陷,否则,不存在边缘开裂的质量缺陷。
进一步,从初始位移点到位移点B之间的位移值为R+P,其中,R表示上层板厚度,P表示铆模深度;
从初始位移点到位移点C之间的位移值为(W-2)mm,其中,W表示铆钉长度;
从初始位移点到位移点D之间的位移值为W-H,其中,H表示铆钉头高度;
其中,初始位移点为铆钉初始接触上层板材时的接触点。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明的自冲孔铆接工艺中板材和铆钉形变过程的结构示意图;
图2为本发明的自冲孔铆接完成时铆钉和板材形变后的结构示意图之一;
图3为本发明的自冲孔铆接完成时铆钉和板材形变后的结构示意图之二;
图4为本发明的一种自冲孔铆接工艺质量状态的自动判定方法的流程示意图之一;
图5为本发明的自冲孔铆接工艺质量状态采集系统的详细工作原理图;
图6为本发明的自冲孔铆接工艺质量状态采集系统的质量缺陷判断表图;
图7为本发明的自冲孔铆接工艺质量状态采集系统的压力位移曲线图;
图8为本发明的自冲孔铆接工艺质量状态采集系统的斜率位移曲线图;
图9为本发明的一种自冲孔铆接工艺质量状态的自动判定方法的流程示意图之二;
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
图4-图9示出了根据本发明的一些实施例。
如图4所示,一种自冲孔铆接工艺质量状态的自动判定方法,包括如下步骤:
S1、标准值输入:在服务器中输入上述铆接压力F B、F C、F D、斜率K max、K max/2、以及位置X kmax、X kmax/2、K CDmin的标准值;斜率指F-X力与位移曲线中铆接力F的斜率值,K max指最大斜率值、K max/2指最大斜率一半值,K CDmin指位移C点和D点间对应标准铆接力的斜率值。
S2、实时数据采集:通过数据采集系统实时采集铆接过程中的铆接力F、及与之对应的位移X,得出铆接压力F B1、F C1、F D1、斜率K max1、K max1/2、K CDmin1、以及位置X kmax、X kmax/2的实测值。
S3、数据对比及铆接质量判断:将实测值铆接压力F B1、F C1、F D1、斜率K max1、K max1/2、K CDmin1、以及位置X kmax1、X kmax1/2与服务器的标准值铆接压力F B、F C、F D、斜率K max、K max/2、K CDmin、以及位置X kmax、X kmax/2分别对应进行对比。具体指实测值铆接压力F B1、F C1、F D1与服务器的标准值铆接压力F B、F C、F D分别对应比较,斜率K max1、K max1/2、K CDmin1与服务器的标准值斜率K max、K max/2、K CDmin分别对应比较,位置X kmax1、X kmax1/2与服务器的标准值位置X kmax、X kmax/2分别对应进行对比。从而判定质量缺陷的存在。
其中,B等于上层板厚度和铆模深度之和,C等于铆钉长度减2mm,D等于铆钉长度减铆钉头高度;F B1为位移0mm到B位移之间任一点对应的铆接力,F C1点为B点与C点之间的任意一点对应的铆接力;F D1点为C点到D点之间的任意一点对应的铆接力。具体对应确定方式通过实验数据形成的F-X的力与位移曲线确定。
具体地,下面根据各项实测值对铆接的缺陷进行具体地判定:
若实测值F B1、F C1均大于系统配置标准值F B、F C则判断输出铆钉屈服不合格。
若实测值F D1大于配置值且实测值X kmax1/2是大于配置值标准值X kmax/2在0.5以上,则输出T min不合格。
若实测值F max1是系统配置标准值F max的1.2倍,且实测值K max1是系统配置标准值K max的1.4倍,则输出互锁不合格。
若实测值K CDmin1小于系统配置标准值K CDmin则输出边缘开裂质量缺陷。
若实测值F max1是系统配置标准值F max的m倍,且m∈(0,0.5),则满足判定条件,判定铆接合格;反之铆接不合格,并发出预警,如图5所示。
具体地,所述铆接数据库通过大量铆接工艺试验获取,在铆接工艺试验时使用与铆接设备连接的数据采集系统采集铆接过程中的铆接力F、及与之对应的位移X,从而形成所述铆接数据库。并对数据库中的数据进行处理,将铆接数据库中的数据通过拟合算法生成铆接力F-位移X曲线,如图5所示,铆接力的斜率K-位移X曲线,如图6所示,NO表示各个铆接点的铆接质量合格;如出现YES则表示出现故障。
具体地,标准值确定的方法,在所述铆接数据库中选取铆钉屈服合格、Tmin穿刺合格、互锁合格、无边缘开裂等质量缺陷的铆接点的铆接数据,并计算出这一部分铆接数据相应的铆接压力F B、F C、F D、斜率K max、K max/2、以及位置X kmax、X kmax/2的实时测试计算值,再通过特定算法计算出这些数值的标准值。
其中,通过采集系统中的预设的质量判断标准,不仅可以判断铆接点是否合格,进一步能具体判断每一个铆接点质量是否存在铆钉屈服、T min穿刺不合格、互锁不合格、边缘开裂等质量缺陷,并生成质量报表。
其中,技术人员或操作人员可以根据所述数据采集系统还能输出的质量报表中的数据、以及对应的质量状况,判断铆接点是否合格,同时,质量报表的导出可以方便后续质量追踪。
较优地,在上述技术方案中,包括如下步骤:
S10、接收输入的位移点B所对应的第一铆接压力标准值F B、位移点C所对应的第二铆接压力标准值F C、位移点D所对应的第三铆接压力标准值F D、标准铆接压力曲线中的最大铆接力标准值F max以及最大斜率标准值K max、位移点C与位移点D之间的斜率标准值K CDmin、K max所对应的位移点的标准值X kmax
S11、实时采集并根据实际铆接过程中的铆接压力F及与铆接压力F对应的位移,得到初始位移点至位移点B之间的任一位移点所对应的第一铆接压力实测值F B1、位移点B至位移点C之间的任一位移点所对应的第二铆接压力实测值F C1、位移点C至位移点D之间的任一位移点所对应的第三铆接压力实测值F D1、实际铆接压力曲线的最大铆接力实测值F max1以及最大斜率实测值K max1、位移点C与位移点D之间的斜率实测值K CDmin1、K max1对应的位移点的实测值X kmax1
S12、通过对比F B和F B1、且通过对比F C和F C1,以确定铆钉屈服是否合格,得到第一结果;
通过对比F D和F D1、且通过判断X kmax1的值是否大于(X kmax/2+0.5)mm,以确定T min是否合格,得到第二结果;
通过判断F max1是否为F max的1.2倍以及判断K max1是否为K max的1.4倍,以确定互锁是否合格,得到第三结果;
通过对比K CDmin1是否小于K CDmin,以确定是否存在边缘开裂的质量缺陷,得到第四结果;
根据所述第一结果、所述第二结果、所述第三结果和所述第四结果得到实际铆接的质量状态。
通过对比标准值和实际铆接过程中的实测值,其中,标准值包括第一铆接压力标准值F B、第二铆接压力标准值F C、第三铆接压力标准值F D、最大铆接力标准值F max、最大斜率标准值K max、斜率实测值K CDmin1、K max1对应的位移点的实测值X kmax1,实测值包括:第一铆接压力实测值F B1、第二铆接压力实测值F C1、第三铆接压力实测值F D1、最大铆接力实测值F max1、最大斜率实测值K max1、斜率实测值K CDmin1、K max1对应的位移点的实测值X kmax1;能自动判断铆接工艺的质量状态,提高质量监测效率、实现铆点全检测,以保证白车身铆接质量,极大的减少铆接质量失效所导致的白车身报废的情况,避免无法发现大量生产出质量有缺陷的白车身的情况的发生。
其中,实际铆接的质量状态中包括第一结果即铆钉屈服是否合格、第二结果即T min是否合格、第三结果即互锁是否合格
较优地,在上述技术方案中,具体地:
1)当F D1>F D且F C1>F C时,第一结果为铆钉屈服不合格,否则,第一结果铆钉屈服合格;
2)当F D1>F D且X kmax1的值大于(X kmax/2+0.5)mm时,第二结果为T min不合格,否则,第二结果为T min合格;
3)当F max1为F max的1.2倍且K max1为K max的1.4倍时,第三结果为互锁不合格,否则第三结果为互锁合格;
4)当K CDmin1<K CDmin时,第四结果为存在边缘开裂的质量缺陷,否则,不存在边缘开裂的质量缺陷。
其中,从初始位移点到位移点B之间的位移值为R+P,其中,R表示上层板厚度,P表示铆模深度;
从初始位移点到位移点C之间的位移值为(W-2)mm,其中,W表示铆钉长度;
从初始位移点到位移点D之间的位移值为W-H,其中,H表示铆钉头高度;
其中,初始位移点为铆钉初始接触上层板材时的接触点。
具体地,可预先进行大量铆接工艺试验,在铆接工艺试验时使用与铆接设备连接的数据采集系统采集铆接过程中的铆接力F及与铆接力F对应的位移X,从而形成铆接数据库,其中,铆接力F及与铆接力F对应的位移X可理解为:例如每位移1mm采集1个铆接力F,或每位移1mm采集5个铆接力,可根据实际情况进行调整,在此不做赘述,其中,可通过力传感器获取铆接力,以及通过距离传感器得到位移值,力传感器和距离传感器选取与安装为本领域技术人员所悉知,在此不做赘述,并对数据库中的每次铆接工艺试验的数据即铆接力F及与铆接力F对应的位移X进行处理,通过拟合算法生成多个铆接力F-位移X曲线,如图5所示,以及铆接力的斜率K-位移X曲线,如图6所示,其中,拟合算法也为本领域技术人员所悉知,在此不做赘述。
确定标准值的过程包括:在所述铆接数据库中选取铆钉屈服合格、Tmin穿刺合格、互锁合格、无边缘开裂等质量缺陷的铆接点的数据,并计算出这一部分铆接数据相应的铆接压力F B、F C、F D、斜率K max、K max/2、以及位置X kmax、X kmax/2的实时测试计算值,再通过特定算法计算出这些参数的标准值,由此得到上述通过参数确定出第一结果、第二结果、第三结果和第四结果的关系,也就是说,通过大量的铆接工艺试验确定通过上述四种方式来分别得到第一结果、第二结果、第三结果和第四结果。
下面通过另外一个实施例对本申请的一种自冲孔铆接工艺质量状态的自动判定方法进行阐述,具体地:
S20、接收输入的标准值,具体地:
接收用户输入的标准值,用户可通过在铆接数据库中进行查找,得到标准值,其中,标准值包括第一铆接压力标准值F B、第二铆接压力标准值F C、第三铆接压力标准值F D、最大铆接力标准值F max、最大斜率标准值K max、斜率实测值K CDmin1、K max1对应的位移点的实测值X kmax1
S21、获取实测值,具体地:
通过数据采集系统实时采集并根据实际铆接过程中的铆接压力F及与铆接压力F对应的位移,得到实测值,其中,实测值包括:第一铆接压力实测值F B1、第二铆接压力实测值F C1、第三铆接压力实测值F D1、最大铆接力实测值F max1、最大斜率实测值K max1、斜率实测值K CDmin1、K max1对应的位移点的实测值X kmax1
S22、得到第一结果、第二结果、第三结果和第四结果,具体地:
1)通过对比F B和F B1、且通过对比F C和F C1,以确定铆钉屈服是否合格,得到第一结果;具体地:
当F D1>F D且F C1>F C时,第一结果为铆钉屈服不合格,否则,第一结果铆钉屈服合格;
2)通过对比F D和F D1、且通过判断X kmax1的值是否大于(X kmax/2+0.5)mm,以确定T min是否合格,得到第二结果;具体地:
当F D1>F D且X kmax1的值大于(X kmax/2+0.5)mm时,第二结果为T min不合格,否则,第二结果为T min合格;
3)通过判断F max1是否为F max的1.2倍以及判断K max1是否为K max的1.4倍,以确定互锁是否合格,得到第三结果;具体地:
当F max1为F max的1.2倍且K max1为K max的1.4倍时,第三结果为互锁不合格,否则第三结果为互锁合格;
4)通过对比K CDmin1是否小于K CDmin,以确定是否存在边缘开裂的质量缺陷,得到第四结果;
当K CDmin1<K CDmin时,第四结果为存在边缘开裂的质量缺陷,否则,不存在边缘开裂的质量缺陷。
S23、得到实际铆接的质量状态,输出质量报表,具体地:
根据所述第一结果、所述第二结果、所述第三结果和所述第四结果得到实际铆接的质量状态,得到质量报表,其中,质量报表具体可为EXCEL表格的形式或WORD的形式,便于用户进行查看。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种自冲孔铆接工艺质量状态的自动判定方法,其特征在于,包括如下步骤:
    S1:标准值输入:在服务器中输入铆接压力F B、F C、F D、斜率K max、K max/2、K CDmin、以及位置X kmax、X kmax/2的标准值;
    S2:实时数据采集:通过数据采集系统实时采集铆接过程中的铆接压力F、及与之对应的位移X,得出铆接压力F B1、F C1、F D1、斜率K max1、K max1/2、K CDmin1、以及位置X kmax1、X kmax1/2的实测值;
    S3:数据对比及铆接质量判断:将实测值铆接压力F B1、F C1、F D1、斜率K max1、K max1/2、K CDmin1、以及位置X kmax1、X kmax1/2与服务器的标准值铆接压力F B、F C、F D、斜率K max、K max/2、K CDmin、以及位置X kmax、X kmax/2分别对应进行对比,以自动判定铆接工艺质量状态。
  2. 根据权利要求1所述的自冲孔铆接工艺质量状态的自动判定方法,其特征在于,标准值通过铆接工艺试验获取,在铆接工艺试验时使用与铆接设备连接的数据采集系统采集铆接过程中的铆接力F、及与之对应的位移X。
  3. 根据权利要求1所述的自冲孔铆接工艺质量状态的自动判定方法,其特征在于,数据采集系统通过内部预设的质量判断方法,具体通过F B1、F C1的值来判断铆钉屈服;F max1和X kmax1/2判断T min不合格;F max1和K max1判断互锁不合格;K CDmin1判断边缘开裂质量缺陷;F max1判断铆模开裂。
  4. 根据权利要求1所述的自冲孔铆接工艺质量状态的自动判定方法,其特征在于,B等于上层板厚度和铆模深度之和,C等于铆钉长度减2mm,D等于铆钉长度减铆钉头高度;F B1为位移0mm到B位移之间任一点对应的铆接力,F C1点为B点与C点之间的任意一点对应的铆接力;F D1点为C点到D点之间的任意一点对应的铆接力。
  5. 根据权利要求1所述的自冲孔铆接工艺质量状态的自动判定方法,其特征在于,所述数据采集系统还用于输出质量报表。
  6. 根据权利要求1所述的自冲孔铆接工艺质量状态的自动判定方法,其特征在于,包括如下步骤:
    接收输入的位移点B所对应的第一铆接压力标准值F B、位移点C所对应的第二铆接压力标准值F C、位移点D所对应的第三铆接压力标准值F D、标准铆接压力曲线中的最大铆接力标准值F max以及最大斜率标准值K max、位移点C与位移点D之间的斜率标准值K CDmin、K max所对应的位移点的标准值X kmax
    实时采集并根据实际铆接过程中的铆接压力F及与铆接压力F对应的位移,得到初始位移点至位移点B之间的任一位移点所对应的第一铆接压力实测值F B1、位移点B至位移点C之间的任一位移点所对应的第二铆接压力实测值F C1、位移点C至位移点D之间的任一位移点所对应的第三铆接压力实测值F D1、实际铆接压力曲线的最大铆接力实测值F max1以及最大斜率实测值K max1、位移点C与位移点D之间的斜率实测值K CDmin1、K max1对应的位移点的实测值X kmax1
    通过对比F B和F B1、且通过对比F C和F C1,以确定铆钉屈服是否合格,得到第一结果;
    通过对比F D和F D1、且通过判断X kmax1的值是否大于(X kmax/2+0.5)mm,以确定T min是否合格,得到第二结果;
    通过判断F max1是否为F max的1.2倍以及判断K max1是否为K max的1.4倍,以确定互锁是否合格,得到第三结果;
    通过对比K CDmin1是否小于K CDmin,以确定是否存在边缘开裂的质量缺陷,得到第四结果;
    根据所述第一结果、所述第二结果、所述第三结果和所述第四结果得到实际铆接的质量状态。
  7. 根据权利要求6所述的自冲孔铆接工艺质量状态的自动判定方法,其特征在于,当F D1>F D且F C1>F C时,第一结果为铆钉屈服不合格,否则,第一结果铆钉屈服合格;
    当F D1>F D且X kmax1的值大于(X kmax/2+0.5)mm时,第二结果为T min不合格,否则,第二结果为T min合格;
    当F max1为F max的1.2倍且K max1为K max的1.4倍时,第三输出结果为互锁不合格,否则第三输出结果为互锁合格;
    当K CDmin1<K CDmin时,第四结果为存在边缘开裂的质量缺陷,否则,不存在边缘开裂的质量缺陷。
  8. 根据权利要求6或7所述的自冲孔铆接工艺质量状态的自动判定方法,其特征在于,
    从初始位移点到位移点B之间的位移值为R+P,其中,R表示上层板厚度,P表示铆模深度;
    从初始位移点到位移点C之间的位移值为(W-2)mm,其中,W表示铆钉长度;
    从初始位移点到位移点D之间的位移值为W-H,其中,H表示铆钉头高度;
    其中,初始位移点为铆钉初始接触上层板材时的接触点。
PCT/CN2021/074616 2020-07-29 2021-02-01 一种自冲孔铆接工艺质量状态的自动判定方法 WO2022021828A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21849745.1A EP4024150A4 (en) 2020-07-29 2021-02-01 AUTOMATIC DETERMINATION METHOD FOR QUALITY STATE OF SELF-DRILLING RIVETING PROCESS
US17/706,940 US20220212245A1 (en) 2020-07-29 2022-03-29 Method for automatically determining quality of a self-piercing riveting process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010745833.6 2020-07-29
CN202010745833.6A CN111966062A (zh) 2020-07-29 2020-07-29 一种自冲孔铆接工艺质量状态的自动判定方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/706,940 Continuation US20220212245A1 (en) 2020-07-29 2022-03-29 Method for automatically determining quality of a self-piercing riveting process

Publications (1)

Publication Number Publication Date
WO2022021828A1 true WO2022021828A1 (zh) 2022-02-03

Family

ID=73363039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074616 WO2022021828A1 (zh) 2020-07-29 2021-02-01 一种自冲孔铆接工艺质量状态的自动判定方法

Country Status (4)

Country Link
US (1) US20220212245A1 (zh)
EP (1) EP4024150A4 (zh)
CN (1) CN111966062A (zh)
WO (1) WO2022021828A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111966062A (zh) * 2020-07-29 2020-11-20 安徽巨一科技股份有限公司 一种自冲孔铆接工艺质量状态的自动判定方法
CN112541707B (zh) * 2020-12-24 2024-04-09 安徽巨一科技股份有限公司 Fds底层板厚度判定方法、装置、电子设备和存储介质
CN116429565B (zh) * 2023-06-13 2023-08-29 天津正道机械制造有限公司 一种金属材料无铆钉连接的接头质量检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080177512A1 (en) * 2007-01-18 2008-07-24 Andreas Wenzel Online determination of the quality characteristics for punch riveting and clinching
CN102004056A (zh) * 2010-12-24 2011-04-06 上海交通大学 自冲铆接质量在线检测系统及其检测方法
FR2961119B1 (fr) * 2010-06-11 2012-07-13 Ct Tech Des Ind Mecaniques Methode d'evaluation de la qualite du rivetage des assemblages rivetes et dispositif de mise en ?uvre
EP3117924A1 (de) * 2015-07-17 2017-01-18 Robert Bosch Gmbh Verfahren zum verbinden wenigstens zweier bauteile mittels einer stanznietvorrichtung und fertigungseinrichtung
CN108500195A (zh) * 2018-04-04 2018-09-07 眉山中车紧固件科技有限公司 智能铆接质量监测方法
CN108971409A (zh) * 2018-06-30 2018-12-11 合肥巨智能装备有限公司 一种基于力和位移曲线的铝车身自冲铆接质量控制方法
CN109883364A (zh) * 2019-03-25 2019-06-14 东风汽车集团有限公司 一种用于自冲铆接接头的质量评价方法
CN111966062A (zh) * 2020-07-29 2020-11-20 安徽巨一科技股份有限公司 一种自冲孔铆接工艺质量状态的自动判定方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10164005A1 (de) * 2001-12-28 2003-07-17 Hammerstein Gmbh C Rob Verfahren zur Qualitätskontrolle eines Nietverbindungsvorgangs
DE102015001922A1 (de) * 2015-02-13 2016-08-18 Audi Ag Verfahren zum Ermitteln einer Qualität eines Fügevorgangs und Vorrichtung zum Ermitteln einer Qualität eines Fügevorgangs
CN105382172B (zh) * 2015-12-15 2017-06-16 眉山中车紧固件科技有限公司 智能铆接监测方法及系统
EP3433046A2 (en) * 2016-03-25 2019-01-30 Arconic Inc. Resistance welding fasteners, joints and methods for joining dissimilar materials
GB201616970D0 (en) * 2016-10-06 2016-11-23 Jaguar Land Rover Limited Method and controller for detecting material cracking during installation of a self-piercing rivet
CN110153355B (zh) * 2018-02-13 2020-06-09 上海交通大学 自冲摩擦铆焊质量在线检测及铆焊工艺控制方法和系统
CN208019356U (zh) * 2018-04-04 2018-10-30 眉山中车紧固件科技有限公司 智能铆接系统
CN110625403B (zh) * 2019-08-16 2022-04-19 广州瑞松北斗汽车装备有限公司 板件连接方法、前地板生产方法及前地板生产线

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080177512A1 (en) * 2007-01-18 2008-07-24 Andreas Wenzel Online determination of the quality characteristics for punch riveting and clinching
FR2961119B1 (fr) * 2010-06-11 2012-07-13 Ct Tech Des Ind Mecaniques Methode d'evaluation de la qualite du rivetage des assemblages rivetes et dispositif de mise en ?uvre
CN102004056A (zh) * 2010-12-24 2011-04-06 上海交通大学 自冲铆接质量在线检测系统及其检测方法
EP3117924A1 (de) * 2015-07-17 2017-01-18 Robert Bosch Gmbh Verfahren zum verbinden wenigstens zweier bauteile mittels einer stanznietvorrichtung und fertigungseinrichtung
CN108500195A (zh) * 2018-04-04 2018-09-07 眉山中车紧固件科技有限公司 智能铆接质量监测方法
CN108971409A (zh) * 2018-06-30 2018-12-11 合肥巨智能装备有限公司 一种基于力和位移曲线的铝车身自冲铆接质量控制方法
CN109883364A (zh) * 2019-03-25 2019-06-14 东风汽车集团有限公司 一种用于自冲铆接接头的质量评价方法
CN111966062A (zh) * 2020-07-29 2020-11-20 安徽巨一科技股份有限公司 一种自冲孔铆接工艺质量状态的自动判定方法

Also Published As

Publication number Publication date
EP4024150A1 (en) 2022-07-06
CN111966062A (zh) 2020-11-20
EP4024150A4 (en) 2023-10-11
US20220212245A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
WO2022021828A1 (zh) 一种自冲孔铆接工艺质量状态的自动判定方法
CN102004056B (zh) 自冲铆接质量在线检测系统及其检测方法
CN100480687C (zh) 用于轿车车身点焊的实时质量检测与报警的方法
CN104457841B (zh) 电阻点焊质量在线监测方法
US20230083207A1 (en) Intrinsic process signal-based online spatter detection method for resistance spot welding, and system
JP6680430B1 (ja) 生産ラインにおける品質と設備の統合的監視方法
JP2000126952A (ja) 組み立てステ―ション及びその管理方法
CN113029933B (zh) 焊接质量检测系统及超声波焊接设备、焊接质量检测方法
CN113909667B (zh) 一种基于振动数据的超声波焊接机的焊接质量评估方法
Summerville et al. Nugget diameter in resistance spot welding: a comparison between a dynamic resistance based approach and ultrasound C-scan
CN106931918B (zh) 一种铆接接头几何参数检测方法
KR101634864B1 (ko) 금속 패널의 리벳이음 검사방법
Shao et al. Characterization and monitoring of tool wear in ultrasonic metal welding
CN115034666A (zh) 一种提高铝型材合格率的生产监控系统
CN112015149A (zh) 一种轻量化车身连接质量辅助判定方法
CN103487136B (zh) 一种利用电阻点焊过程声发射信号能量当量定量检测焊接喷溅的方法
CN104007182B (zh) 一种利用声发射信号频谱定量检测电阻点焊熔核形核质量的方法
CN112683774B (zh) 一种用于新能源汽车车身的自冲铆接质量检测装置和方法
CN112100753B (zh) 一种大数据的自冲铆接头关键几何参数的预测系统及方法
CN111006755B (zh) 用于超声波焊头机械振动的静态检测方法
CN112676676A (zh) 极耳焊接方法
CN108801814B (zh) 一种激光拼焊板成形极限曲线测试方法
Tsuruya et al. Forming state recognition in deep drawing process with machine learning
KR102599072B1 (ko) 레이저 스캐닝 기반 spr 체결 품질 판단 방법
CN105486753A (zh) 用于检测压板缺陷的设备及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021849745

Country of ref document: EP

Effective date: 20220330

NENP Non-entry into the national phase

Ref country code: DE