WO2022021627A1 - 陶瓷插芯和光纤连接组件 - Google Patents

陶瓷插芯和光纤连接组件 Download PDF

Info

Publication number
WO2022021627A1
WO2022021627A1 PCT/CN2020/122775 CN2020122775W WO2022021627A1 WO 2022021627 A1 WO2022021627 A1 WO 2022021627A1 CN 2020122775 W CN2020122775 W CN 2020122775W WO 2022021627 A1 WO2022021627 A1 WO 2022021627A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
hole
ferrule
section
ceramic
Prior art date
Application number
PCT/CN2020/122775
Other languages
English (en)
French (fr)
Inventor
金建峰
刘光兵
Original Assignee
上海光卓通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202021559180.4U external-priority patent/CN212846044U/zh
Priority claimed from CN202021724832.5U external-priority patent/CN212483924U/zh
Application filed by 上海光卓通信设备有限公司 filed Critical 上海光卓通信设备有限公司
Publication of WO2022021627A1 publication Critical patent/WO2022021627A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means

Definitions

  • the invention relates to the technical field of optical fiber communication, in particular to a ceramic ferrule and an optical fiber connection assembly.
  • Optical fiber connectors as connection products that cooperate with optical modules, have higher and higher density requirements.
  • Traditional LC connectors have been slowly phased out, replaced by smaller fiber optic connectors such as CS, SN, and MDC.
  • the size of the multi-core optical fiber connector with the ceramic ferrule as the core in addition to the optimal design of the external structure to rationally utilize the space, the most critical factor is the spacing between the ceramic ferrules.
  • various connector manufacturers continue to introduce new connectors, and the spacing between ceramic ferrules has also changed from 6.25mm for LC to 3.8mm for CS and 3.1mm for SN.
  • a ceramic ferrule and fiber optic connection assembly is provided.
  • a ceramic ferrule includes a ferrule body, an anti-rotation structure is arranged in the middle of the ferrule body, a spring support section is located at the rear of the ferrule body, the ferrule body has an inner hole, the inner hole It includes an optical fiber channel for fixing the optical fiber filament, and a buffer layer protection channel for fixing the optical fiber buffer protection layer, and the optical fiber channel and the buffer layer protection channel are communicated through a tapered optical fiber penetration guide section.
  • An optical fiber connection assembly comprising an optical fiber adapter matched with an optical fiber connector, the optical fiber connector includes a tail pipe, a spring pusher, a spring, an inner shell and an outer shell connected in sequence, and the spring is mounted with a Ceramic ferrule as described above.
  • a ceramic ferrule includes a ferrule portion and a metal piece, a through hole is opened in the middle of the metal piece, the ferrule portion is arranged in the through hole, and the ferrule portion includes a front section and a rear section, so the The outer diameter of the front section is larger than the outer diameter of the rear section, an inner hole for the optical fiber to pass through is opened in the middle of the ferrule, and the inner hole includes a first through hole for the optical fiber cladding to pass through section, a second through-hole section, and a third through-hole section for the optical fiber coating layer and the optical fiber buffer layer to pass through, the first through-hole section and the third through-hole section passing through the second through-hole
  • the segments are connected, and the diameter of the first through-hole segment is smaller than the diameter of the third through-hole segment.
  • FIG. 1 is a cross-sectional view of a ceramic ferrule according to an embodiment.
  • FIG. 2 is an exploded perspective view of an optical fiber connector of an optical fiber connection assembly according to an embodiment.
  • FIG. 3 is a perspective view of the housing of FIG. 2 .
  • FIG. 4 is an exploded perspective view of an optical fiber adapter of an optical fiber connection assembly according to an embodiment.
  • FIG. 5 is an exploded perspective view of the light emitting structure connected to the optical fiber adapter shown in FIG. 4 .
  • FIG. 6 is a cross-sectional view of a ceramic ferrule according to another embodiment.
  • a ceramic ferrule 100 includes a ferrule body 10 .
  • the ferrule body 10 is substantially cylindrical, and a polygonal anti-rotation structure 12 with a larger diameter is provided in the middle.
  • the rear of the ferrule body 10 is the spring support section 14 for supporting the spring 240 (see FIG. 2 ).
  • the ferrule body 10 has an axially extending inner bore.
  • the inner hole includes an optical fiber channel 102 for fixing the optical fiber filament (not shown in the figure), and a buffer layer protection channel 104 for fixing the optical fiber buffer protection layer (not shown in the figure).
  • the diameter of the buffer protection channel 104 is larger than the diameter of the fiber channel 102 .
  • the cross-sectional shape of the buffer layer protection channel 104 may be a circle or a polygon, which may be specifically determined according to the shape of the optical fiber.
  • the fiber channel 102 communicates with the buffer layer protection channel 104 through the tapered fiber penetration guide section 106 .
  • the end of the buffer layer protection channel 104 is also provided with a rubber tailing reserved area 108 for strengthening the protection of the optical fiber.
  • the above-mentioned ceramic ferrule 100 has the following advantages:
  • the existing ceramic ferrule and the metal tail shank are connected.
  • the functions are combined, thereby omitting the metal tail handle, reducing the radial size and the width of the positioning surface, eliminating the traditional process of pressing the ceramic ferrule into the metal tail handle, and avoiding the possibility of failure of the ceramic ferrule.
  • the ferrule with optimized inner hole is adopted, so that the optical fiber buffer protection layer penetrates into the ceramic ferrule, so that the fiber stripping point is protected in the ceramic ferrule, the surrounding adhesive layer is uniform, the temperature variation stress is significantly reduced, and the fiber stripping The point is far away from the tail end of the ferrule, and the lateral external force acting on the buffer layer is not easy to penetrate.
  • the distance dimension in the arrangement direction of the dual-core connector and the multi-core connector can reach the outer diameter of the ceramic sleeve (the outer diameter of the ceramic sleeve).
  • the ceramic sleeves need to be isolated, and the core components of the connector butt joint need a certain floating gap in the adapter to have better anti-side pull performance, so the above ceramic ferrule 100 is used.
  • the minimum pitch dimension of the connector can be 2.1mm.
  • the size of the dual-core connector is reduced by 30%, and it can accommodate 4 cores under the current dual-core housing size, doubling the connector density. Provides strong support for more miniaturized module design and data center cabling systems.
  • a fiber optic connection assembly includes a fiber optic connector 200 and a fiber optic adapter 300 that mate with each other.
  • the fiber optic connector 200 includes a tail tube 210 , a spring pusher 230 , a spring 240 , an inner shell 250 and an outer shell 260 which are connected in sequence.
  • the above-mentioned ceramic ferrule 100 is mounted on the spring 240 .
  • the number of ceramic ferrules 100 is four. It can be understood that the number of ceramic ferrules 100 can also be two or more.
  • the spring pusher 230 of the optical fiber connector 200 is connected with the inner shell 250 through the snap structures ( 232 , 256 ), and the tail tube 210 of the optical fiber connector 200 is connected with the outer shell 260 through the snap structures ( 212 , 264 ).
  • the inner side of the housing 260 is provided with a guide inner rib 262 .
  • a guide rail 251 is provided on the surface of the inner case 250 .
  • the inner shell 250 is smoothly inserted into the outer shell 260 by sliding the inner guide ribs 262 in the guide rails 251 .
  • a guide groove 252 for introducing the ceramic ferrule 100 is provided inside the inner shell 250 .
  • a shell spring groove 254 is provided on the surface of the inner shell 250 .
  • a casing spring (not shown) is also provided inside the casing 260 , and the casing spring is limited by the casing 260 and the casing spring groove 254 for providing thrust when the casing 260 returns.
  • the inner diameter of the tail pipe 210 is larger than the outer diameter of the cable, and the outer casing 260 can be pushed and pulled.
  • the optical fiber adapter 300 includes a housing 320 , a clamping claw 340 , a ceramic sleeve 360 and a sleeve fixing member 380 which are connected in sequence.
  • the clamping claw 340 is detachably installed in the housing 320 through the clamping structure (344, 324).
  • a ceramic sleeve 360 is installed within the jaws 340 .
  • the clamping claw 340 and the sleeve fixing member 380 are fixed by the snap structure (342, 382), so as to fix the ceramic sleeve 360 therebetween.
  • the ceramic sleeve 360 is sleeved on the ferrule body 10 of the ceramic ferrule 100 and abuts against the anti-rotation structure 12 .
  • the edge of the housing 320 is provided with a positioning groove 322
  • the housing 260 of the optical fiber connector 200 is provided with a positioning member 266 matched with the positioning groove 322 to prevent the optical fiber connector 200 from shifting left and right in the housing 320 .
  • the inner shell 250 of the optical fiber connector 200 is further provided with a groove 258 which is matched with the claws 340 .
  • the positioning groove 322 on the housing 320 is matched with the positioning member 266 of the housing 260 to ensure that the optical fiber connector 200 is smoothly inserted into the optical fiber adapter 300 and resists external force in the left and right directions after assembly.
  • the front section of the housing 260 will be limited by the claws 340 of the optical fiber adapter 300 , so that external force will not be transmitted to the ceramic sleeve 360 and the ceramic ferrule 100 .
  • the positioning member 266 provided on the housing 260 of the optical fiber connector 200 can prevent the optical fiber connector 200 from being inserted in the wrong direction, and can also determine whether the optical fiber connector 200 has been inserted in place.
  • the clamping claw 340 is lifted by the inner shell 250 and then pushes against the outer shell 260, so that the outer shell 260 retreats. After the outer shell 260 is retracted, the front end of the claw 340 enters the groove 258 of the inner shell 250, and the outer shell 260 is pushed back by the shell spring to completely lock the claw 340 and the inner shell 250.
  • the tail tube 210 drags the outer shell 260 to move backward through the buckle structure (212, 264).
  • the ends of the guiding inner ribs 262 in the outer casing 260 abut against the guide rails 251 of the inner casing 250, thereby driving the inner casing 250 to move backwards, and the inner casing 250 moves backwards and then disengages from the claws 340, so that the optical fiber The connector 200 is unplugged from the fiber optic adapter 300 .
  • the above-mentioned optical fiber connector 200 has a more reasonable internal structure with higher strength, which can provide better mechanical strength, more reliable product performance, and reduce the possibility of failure of parts in the manufacturing process.
  • the optical fiber connector 200 has a more reasonable buckle structure matched with the optical fiber adapter 300, and the connection and separation with the optical fiber adapter 300 can be realized by pushing and pulling the tail tube, which is convenient to use and has less release force.
  • the other end of the casing 320 of the optical fiber adapter 300 is connected to a light emitting structure 400 .
  • the light emitting structure 400 includes a second clamping claw 420 , a second sleeve fixing member 440 and a second ceramic sleeve 460 which are connected in sequence.
  • the second ceramic ferrule 100' is inserted into the second sleeve fixing member 440 together with the second ceramic sleeve 460.
  • the first ceramic ferrule 100 and the second ceramic ferrule 100' are connected within the second ceramic sleeve 460.
  • the light emitting structure 400 further includes a fixing insert 480 for fixing the second ceramic ferrule 100 .
  • the ceramic ferrule 500 includes a ferrule part 520 and a metal piece 540 .
  • a through hole is formed in the middle of the metal piece 540, and the ferrule portion 520 is disposed in the through hole.
  • the ferrule portion 520 includes a front section 522 and a rear section 524 , and the outer diameter of the front section 522 is larger than the outer diameter of the rear section 524 .
  • the through hole includes a first section 542 and a second section 544 that communicate with each other, and the hole diameter of the first section 542 is larger than that of the second section 544 .
  • the first section 542 mates with the front section 522 and the second section 544 mates with the rear section 524.
  • the inner hole includes a first through-hole section 521 for passing through the optical fiber cladding layer, a second through-hole section 523, and a third through-hole section 525 for passing through the optical fiber coating layer and the optical fiber buffer layer.
  • the first through hole section 521 and the third through hole section 525 are connected by the second through hole section 523 .
  • the diameter of the first through-hole section 521 is smaller than that of the third through-hole section 525 .
  • the shape of the second through hole section 525 is tapered.
  • the aperture size of the first through-hole section 521 is between 125 ⁇ m and 130 ⁇ m, which is used for the optical fiber cladding to pass through (generally 125 ⁇ m), and there is basically no gap between the two.
  • the aperture of the third through-hole section 525 is 450 ⁇ m, which is used for the optical fiber coating layer and the optical fiber buffer layer to pass through.
  • the size of the optical fiber coating layer is 250 ⁇ m, and the size of the optical fiber buffer layer is 400 ⁇ m.
  • the gaps between the third through hole segments 525 are fixed by dispensing.
  • the cross-sectional shape of the third through hole segment 525 may be a circle or a polygon, which may be specifically determined according to the shape of the optical fiber.
  • the gap between the third through hole segment 525 and the optical fiber buffer layer is reduced, thus preventing the optical fiber from shifting.
  • the interface between the fiber cladding and the fiber coating is located in the tapered second through hole section 525 and the length of the second through hole section 525 in this embodiment is relatively long, stress concentration at the interface is avoided.

Abstract

一种陶瓷插芯(100),包括插芯本体(10),插芯本体(10)的中部设有防转结构(12),插芯本体(10)的后部为弹簧支撑段(14),插芯本体(10)具有内孔,内孔包括用于固定光纤纤丝的光纤通道(102),及用于固定光纤缓冲保护层的缓冲层保护通道(104),光纤通道(102)与缓冲层保护通道(104)通过锥形的光纤穿入导引段(106)连通。

Description

陶瓷插芯和光纤连接组件
相关申请的交叉引用
本申请要求于2020年08月18日提交中国专利局的、申请号为202021724832.5、申请名称为“一种一体式陶瓷插芯和光纤插口”的中国专利申请的优先权,和2020年07月31日提交中国专利局的、申请号为202021559180.4、申请名称为“一种陶瓷插芯”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光纤通信技术领域,具体涉及一种陶瓷插芯和光纤连接组件。
背景技术
随着对数据带宽要求的不断增加,数据中心向400G/800G的不断演进,对于光模块尺寸的小型化也提出了越来越高的要求。光纤连接器作为与光模块配合的连接产品,对于密度要求也越来越高。传统的LC连接器已经被慢慢被淘汰,取而代之的是CS,SN,MDC这些更小型的光纤连接器。
以陶瓷插芯为核心的多芯光纤连接器的大小,除了取决于外部结构合理利用空间的优化设计,最关键的因素是陶瓷插芯之间的间距。随着光纤连接器向小型化的演进,各连接器厂商不断推出新型连接器,陶瓷插芯之间的间距也从LC的6.25mm变为CS的3.8mm,以及SN的3.1mm。
然而,为了进一步的提高光纤连接器的密度,适应光模块尺寸的更加小型化的需求,现有的陶瓷插芯之间的间距仍有待进一步提高。
发明内容
根据各种实施例,提供了一种陶瓷插芯和光纤连接组件。
一种陶瓷插芯,包括插芯本体,所述插芯本体的中部设有防转结构,所述插芯本体的后部为弹簧支撑段,所述插芯本体具有内孔,所述内孔包括用于固定光纤纤丝的光纤通道,及用于固定光纤缓冲保护层的缓冲层保护通道,所述光纤通道与所述缓冲层保护通道通过锥形的光纤穿入导引段连通。
一种光纤连接组件,包括光纤连接器与所述光纤连接器配合的光纤适配器,所述光纤连接器包括依次连接的尾管、弹簧推件、弹簧、内壳和外壳,所述弹簧上安装有如上所述的陶瓷插芯。
一种陶瓷插芯,包括插芯部和金属件,所述金属件的中部开有通孔,所述插芯部设置于所述通孔中,所述插芯部包括前段和后段,所述前段的外径尺寸大于所述后段的外径尺寸,所述插芯部的中部开有用于光纤穿过的内孔,所述内孔包括用于光纤包层穿过的第一通孔段、第二通孔段,及用于光纤涂覆层及光纤缓冲层穿过的第三通孔段,所述第一通孔段和所述第三通孔段通过所述第二通孔段衔接,所述第一通孔段的孔径小于所述第三通孔段的孔径。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。图1为一实施例的陶瓷插芯的剖视图。
图2为一实施例的光纤连接组件的光纤连接器的立体分解图。
图3为图2中外壳的立体图。
图4为一实施例的光纤连接组件的的光纤适配器的立体分解图。
图5为与图4所示光纤适配器连接的出光结构的立体分解图。
图6为另一实施例的陶瓷插芯的剖视图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的首选实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
需要说明的是,当元件被称为“固设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1,根据一实施例的陶瓷插芯100,包括插芯本体10。插芯本体10大致呈圆柱形,其中部设有直径较大的多边形的防转结构12。插芯本体10的后部为弹簧支撑段14,用于支撑弹簧240(见图2)。
插芯本体10具有轴向延伸的内孔。内孔包括用于固定光纤纤丝(图未示)的光纤通道102,和用于固定光纤缓冲保护层(图未示)的缓冲层保护通道104。缓冲层保护通道104的直径大于光纤通道102的直径。缓冲层保护通道104的截面形状可以为圆形或多边形,具体可以根据光纤的形状决定。光纤通道102与缓冲层保护通道104通过锥形的光纤穿入导引段106连通。
缓冲层保护通道104的末端还设有尾胶预留区108,用于加强对光纤的保护。
上述的陶瓷插芯100具有以下优点:
1、通过将现有的金属尾柄内的缓冲保护层通道移至陶瓷插芯内,并在陶瓷插芯上直接设置防转结构和弹簧支撑段,使现有的陶瓷插芯与金属尾柄功能合并,从而省略了金属尾柄,减小了径向尺寸及定位面的宽度,省去了传统的将陶瓷插芯压入金属尾柄的工序,避免了陶瓷插芯的失效可能。
2、采用优化了内孔的插芯,使光纤缓冲保护层穿入陶瓷插芯内部,从而 使得剥纤点被保护在陶瓷插芯内,周围胶层均匀,温变应力明显降低,且剥纤点远离插芯尾端,作用于缓冲层的侧向外力不易穿入。
根据上述的陶瓷插芯,由于去除了金属尾柄,理论上在双芯连接器和多芯连接器的整列排布方向上的间距尺寸可以达到陶瓷套筒外径尺寸(陶瓷套筒外径尺寸一般为1.62mm),但各陶瓷套筒之间需要被隔离,并且连接器对接的核心部件在适配器需要一定的浮动间隙,以具备更好的防侧拉性能,所以使用上述陶瓷插芯100的连接器的最小间距尺寸可为2.1mm。
使用上述的陶瓷插芯后,配合合理的连接器壳体设计,双芯连接器尺寸降低了30%,并且在目前的双芯壳体尺寸下可以容纳4芯,将连接器密度提高一倍,为更小型化的模块设计,和数据中心布线系统提供了有力支持。
参见图2和图4,根据一个实施例的光纤连接组件包括相互配合的光纤连接器200和光纤适配器300。
参见图2,光纤连接器200包括依次连接的尾管210、弹簧推件230、弹簧240、内壳250和外壳260。弹簧240上安装有上述陶瓷插芯100。本实施例中,陶瓷插芯100的数量为4个。可以理解,陶瓷插芯100的数量也可为2个或更多。光纤连接器200的弹簧推件230与内壳250通过卡扣结构(232、256)连接,光纤连接器200的尾管210与外壳260通过卡扣结构(212、264)连接。
参见图3,外壳260的内侧设有导向内筋262。内壳250的表面设有导轨251。通过导向内筋262在导轨251中滑动,使得内壳250顺利地插入到外壳260中。
内壳250的内部设有导入陶瓷插芯100的导向槽252。内壳250表面设有壳体弹簧槽254。外壳260的内部还设有壳体弹簧(图未示),壳体弹簧由外壳260与壳体弹簧槽254限位,用于当外壳260回位时提供推力。尾管210的内径大于线缆的外径,可以推拉外壳260。
参见图4,光纤适配器300包括依次连接的壳体320、卡爪340、陶瓷套筒360和套筒固定件380。卡爪340通过卡扣结构(344、324)可拆卸地安装在壳体320内。陶瓷套筒360安装在卡爪340内。卡爪340和套筒固定件380通过卡扣结构(342、382)固定,以将陶瓷套筒360固定在二者之间。陶瓷套筒360套设在陶瓷插芯100的插芯本体10上,并与防转结构12相抵。壳体320的边缘设有定位槽322,光纤连接器200的外壳260上设有与定位槽322相配合的定位件266,用于防止光纤连接器200在壳体320内发生左右偏移。光纤连接器200的内壳250上还设有与卡爪340相配合的凹槽258。
通过壳体320上的定位槽322与外壳260的定位件266适配,保证光纤连接器200顺畅插入光纤适配器300,并在组配后抵抗左右方向的外力。光纤连接器200的外壳260插入光纤适配器300的壳体320的同时,外壳260的前段将被光纤适配器300的卡爪340限定,使得外力不会传递至陶瓷套筒360和陶瓷插芯100上。光纤连接器200的外壳260上设置的定位件266能够防止光纤连接器200插入时出现方向错误,同时也可以判断光纤连接器200是否已经插入到位。
当光纤连接器200需要与光纤适配器300连接时,卡爪340被内壳250抬起后顶住外壳260,使外壳260后退。外壳260后退后,卡爪340前端进入到内壳250的凹槽258内,同时外壳260在壳体弹簧的推动下回位,将卡 爪340与内壳250完全锁死。
当光纤连接器200需要与光纤适配器300分离时,尾管210通过卡扣结构(212、264)拖动外壳260向后运动,卡爪340向外变形并解除限位。当外壳260继续向后移动时,外壳260内的导向内筋262的端部与内壳250的导轨251相抵,从而带动内壳250后移,内壳250后移后脱离卡爪340,使得光纤连接器200从光纤适配器300中拔出。
上述光纤连接器200具有更合理,强度更高的内部结构,能提供更好的机械强度,更可靠的产品性能,降低制程中零件失效的可能。另外,光纤连接器200具有与光纤适配器300相配合的更合理的卡扣结构,推拉尾管即可实现与光纤适配器300的连接、分离,使用方便,同时解脱力更小。
请参照图5,根据另一个实施例,光纤适配器300的壳体320的另一端连接一出光结构400。出光结构400包括依次相连的第二卡爪420、第二套筒固定件440、第二陶瓷套管460。第二陶瓷插芯100’连同第二陶瓷套管460插入到第二套筒固定件440中。第一陶瓷插芯100和第二陶瓷插芯100’在第二陶瓷套管460内连接。出光结构400还包括用于固定第二陶瓷插芯100的固定插片480。
请参阅图6,根据一个实施例的陶瓷插芯500包括插芯部520和金属件540。金属件540的中部开有通孔,插芯部520设置于通孔中。
插芯部520包括前段522和后段524,前段522的外径尺寸大于后段524的外径尺寸。通孔包括相互连通的第一段542和第二段544,第一段542的孔径大于第二段544的孔径。第一段542与前段522配合,第二段544与后 段524配合。
插芯部520的中部开有用于光纤穿过的内孔。内孔包括用于光纤包层穿过的第一通孔段521、第二通孔段523,及用于光纤涂覆层及光纤缓冲层穿过的第三通孔段525。第一通孔段521和第三通孔段525通过第二通孔段523衔接。第一通孔段521的孔径小于第三通孔段525的孔径。
第二通孔段525的形状为锥形。第一通孔段521的孔径大小为125μm~130μm之间,用于光纤包层穿过(一般为125μm),二者之间基本没有间隙。第三通孔段525的孔径为450μm,用于光纤涂覆层和光纤缓冲层穿过,光纤涂覆层的尺寸为250μm,光纤缓冲层的尺寸为400μm,光纤涂覆层及光纤缓冲层与第三通孔段525之间的间隙通过点胶固定。
第三通孔段525的截面形状可以为圆形或多边形,具体可以根据光纤的形状决定。
根据本实施例,第三通孔段525与光纤缓冲层之间的间隙减小,因此避免了光纤发生偏移。另外,由于光纤包层和光纤涂覆层的交界处位于锥形的第二通孔段525中,而且本实施例的第二通孔段525的长度较长,避免交界点应力集中。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本 领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种陶瓷插芯,包括插芯本体,所述插芯本体的中部设有防转结构,所述插芯本体的后部为弹簧支撑段,所述插芯本体具有内孔,所述内孔包括用于固定光纤纤丝的光纤通道,及用于固定光纤缓冲保护层的缓冲层保护通道,所述光纤通道与所述缓冲层保护通道通过锥形的光纤穿入导引段连通。
  2. 根据权利要求1所述的陶瓷插芯,其特征在于,所述内孔还包括位于所述缓冲层保护通道末端的尾胶预留区。
  3. 一种光纤连接组件,包括光纤连接器与所述光纤连接器配合的光纤适配器,所述光纤连接器包括依次连接的尾管、弹簧推件、弹簧、内壳和外壳,所述弹簧上安装有如权利要求1所述的陶瓷插芯。
  4. 根据权利要求3所述的光纤连接组件,其特征在于,所述陶瓷插芯的数量为2个或4个。
  5. 根据权利要求3所述的光纤连接组件,其特征在于,所述弹簧推件与所述内壳通过卡扣结构连接,所述内壳的内部设有导入所述陶瓷插芯的导向槽,所述内壳的表面设有壳体弹簧槽,所述外壳内还设有壳体弹簧,所述壳体弹簧由所述外壳与所述壳体弹簧槽限位,用于当所述外壳回位时提供推力。
  6. 根据权利要求5所述的光纤连接组件,其特征在于,所述尾管与所述外壳通过卡扣结构连接,所述外壳内设有导向内筋,所述内壳的表面设有导轨,通过所述导向内筋在所述导轨中滑动,使得所述内壳插入所述外壳。
  7. 根据权利要求6所述的光纤连接组件,其特征在于,所述光纤适配器包括依次连接的壳体、卡爪、陶瓷套筒和套筒固定件,所述卡爪可拆卸地安装在所述壳体内,所述陶瓷套筒安装在所述卡爪内,所述卡爪和所述套筒固定件通过卡扣结构固定所述陶瓷套筒,所述陶瓷套筒与所述陶瓷插芯相配合。
  8. 根据权利要求7所述的光纤连接组件,其特征在于,所述壳体内设有定位槽,所述外壳上设有与所述定位槽相配合的定位件,以防止所述光纤连接器在所述壳体内左右偏移,所述内壳上设有与所述卡爪相配合的凹槽。
  9. 根据权利要求7所述的光纤连接组件,其特征在于,所述光纤适配器的一端连接出光结构,所述出光结构包括依次相连的第二卡爪、第二套筒固定件,及第二陶瓷套管。
  10. 根据权利要求9所述的光纤连接组件,其特征在于,所述出光结构还包括用于固定陶瓷插芯的固定插片。
  11. 一种陶瓷插芯,包括插芯部和金属件,所述金属件的中部开有通孔,所述插芯部设置于所述通孔中,所述插芯部包括前段和后段,所述前段的外径尺寸大于所述后段的外径尺寸,所述插芯部的中部开有用于光纤穿过的内孔,所述内孔包括用于光纤包层穿过的第一通孔段、第二通孔段,及用于光纤涂覆层及光纤缓冲层穿过的第三通孔段,所述第一通孔段和所述第三通孔段通过所述第二通孔段衔接,所述第一通孔段的孔径小于所述第三通孔段的孔径。
  12. 如权利要求1所述的陶瓷插芯,其特征在于,所述的第二通孔段的形状为锥形。
  13. 如权利要求1所述的陶瓷插芯,其特征在于,所述的插芯部第一通孔段尺寸大于125μm且小于130μm。
  14. 如权利要求1所述的陶瓷插芯,其特征在于,所述的插芯部第三通孔段尺寸为450μm。
  15. 如权利要求1所述的陶瓷插芯,其特征在于,所述插芯部第三通孔段的截面形状为圆形或多边形。
  16. 如权利要求1所述的陶瓷插芯,其特征在于,所述通孔包括相互连通的第 一段和第二段,所述第一段的孔径大于所述第二段的孔径,所述第一段与所述前段配合,所述第二段与所述后段配合。
PCT/CN2020/122775 2020-07-31 2020-10-22 陶瓷插芯和光纤连接组件 WO2022021627A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202021559180.4 2020-07-31
CN202021559180.4U CN212846044U (zh) 2020-07-31 2020-07-31 一种陶瓷插芯
CN202021724832.5U CN212483924U (zh) 2020-08-18 2020-08-18 一种一体式陶瓷插芯和光纤插口
CN202021724832.5 2020-08-18

Publications (1)

Publication Number Publication Date
WO2022021627A1 true WO2022021627A1 (zh) 2022-02-03

Family

ID=80037443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122775 WO2022021627A1 (zh) 2020-07-31 2020-10-22 陶瓷插芯和光纤连接组件

Country Status (1)

Country Link
WO (1) WO2022021627A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115097575A (zh) * 2022-07-15 2022-09-23 深圳邦企邦信息技术有限公司 一种用于降低互联网故障的光纤插头固定设备
CN116047671A (zh) * 2023-01-31 2023-05-02 北京瑞祺皓迪技术股份有限公司 一种薄型光纤连接器及自动配纤装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4120429A1 (de) * 1990-08-23 1992-02-27 Siemens Ag Verfahren zur herstellung einer diffusionsschweissverbindung, zur herstellung eines lichtwellenleiter-steckerstiftes mit einer diffusionsschweissverbindung und nach diesem verfahren hergestellter steckerstift
CN101156100A (zh) * 2005-03-30 2008-04-02 莫列斯公司 具有透镜的光纤连接器
CN205280983U (zh) * 2016-01-04 2016-06-01 河北四明升光通信设备有限公司 一种开槽陶瓷插芯
CN107797187A (zh) * 2017-11-10 2018-03-13 厉亚萍 一种陶瓷插芯
CN109254356A (zh) * 2017-07-14 2019-01-22 扇港元器件有限公司 可重新配置的光纤连接器及重新配置光缆的方法
CN110618497A (zh) * 2018-09-30 2019-12-27 中航光电科技股份有限公司 一种光纤连接器
CN111796369A (zh) * 2020-08-18 2020-10-20 上海光卓通信设备有限公司 一种一体式陶瓷插芯和光纤插口

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4120429A1 (de) * 1990-08-23 1992-02-27 Siemens Ag Verfahren zur herstellung einer diffusionsschweissverbindung, zur herstellung eines lichtwellenleiter-steckerstiftes mit einer diffusionsschweissverbindung und nach diesem verfahren hergestellter steckerstift
CN101156100A (zh) * 2005-03-30 2008-04-02 莫列斯公司 具有透镜的光纤连接器
CN205280983U (zh) * 2016-01-04 2016-06-01 河北四明升光通信设备有限公司 一种开槽陶瓷插芯
CN109254356A (zh) * 2017-07-14 2019-01-22 扇港元器件有限公司 可重新配置的光纤连接器及重新配置光缆的方法
CN107797187A (zh) * 2017-11-10 2018-03-13 厉亚萍 一种陶瓷插芯
CN110618497A (zh) * 2018-09-30 2019-12-27 中航光电科技股份有限公司 一种光纤连接器
CN111796369A (zh) * 2020-08-18 2020-10-20 上海光卓通信设备有限公司 一种一体式陶瓷插芯和光纤插口

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115097575A (zh) * 2022-07-15 2022-09-23 深圳邦企邦信息技术有限公司 一种用于降低互联网故障的光纤插头固定设备
CN116047671A (zh) * 2023-01-31 2023-05-02 北京瑞祺皓迪技术股份有限公司 一种薄型光纤连接器及自动配纤装置
CN116047671B (zh) * 2023-01-31 2023-08-25 北京瑞祺皓迪技术股份有限公司 一种薄型光纤连接器及自动配纤装置

Similar Documents

Publication Publication Date Title
KR102427148B1 (ko) 모듈형 래칭 아암을 갖는 좁은 폭 어댑터 및 커넥터
US11543605B2 (en) Ultra-small form factor optical connectors used as part of a reconfigurable outer housing
US10718911B2 (en) Ultra-small form factor optical connectors using a push-pull boot receptacle release
US10371899B2 (en) Fiber optic connector
JP5439319B2 (ja) 光コネクタおよび光コネクタの挿抜方法
US5159652A (en) Quick-action connector for optical fibers
WO2022021627A1 (zh) 陶瓷插芯和光纤连接组件
US4526438A (en) Alignment sleeve for fiber optic connectors
US11592626B2 (en) Fiber optic connector with boot-integrated release and related assemblies
US4208092A (en) Fiber optic multi-cable pair connector
US11774685B2 (en) Adapter for optical connectors
US10921530B2 (en) LC type connector with push/pull assembly for releasing connector from a receptacle using a cable boot
US10921531B2 (en) LC type connector with push/pull assembly for releasing connector from a receptacle using a cable boot
US7621674B2 (en) High optical fiber count connector
US20140178006A1 (en) Fiber optic connectors having a rotatable ferrule holder and methods for making the same
CN111796369A (zh) 一种一体式陶瓷插芯和光纤插口
CN114830002A (zh) 针对多纤式插头壳体的多端口单尾套型连接器
CN212483924U (zh) 一种一体式陶瓷插芯和光纤插口
JP4047104B2 (ja) 光コネクタハウジング
CN112415667A (zh) 一种mpo光纤连接器
US20220283383A1 (en) Pull proof fiber optic connector system
US7036996B1 (en) Optical fiber coupling assembly
CN110618496B (zh) 光纤连接器
CN112955797A (zh) 具有用于利用缆线护套将连接器从插座释放的夹式推/拉舌片的lc型连接器
WO2019038641A1 (en) ULTRA-SMALL FORM FACTOR OPTIC CONNECTORS USING TRACTION-PUSH TYPE BOOT RECEPTACLE RELEASE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20946837

Country of ref document: EP

Kind code of ref document: A1