WO2022020930A1 - Plataforma de amostra para uso em espectroscopia de infravermelho, sistema, kit, método e uso da mesma - Google Patents

Plataforma de amostra para uso em espectroscopia de infravermelho, sistema, kit, método e uso da mesma Download PDF

Info

Publication number
WO2022020930A1
WO2022020930A1 PCT/BR2021/050322 BR2021050322W WO2022020930A1 WO 2022020930 A1 WO2022020930 A1 WO 2022020930A1 BR 2021050322 W BR2021050322 W BR 2021050322W WO 2022020930 A1 WO2022020930 A1 WO 2022020930A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
platform
platforms
infrared spectroscopy
sample platform
Prior art date
Application number
PCT/BR2021/050322
Other languages
English (en)
French (fr)
Inventor
Thulio Marquez CUNHA
Mário Machado MARTINS
Léia Cardoso De SOUSA
Paula De Souza SANTOS
Thays Crosara Abrahao CUNHA
Emília Rezende VAZ
Tatiane Martins De Lima Crosara BASTOS
Arlene Bispo Dos Santos NOSSOL
Anderson Rodrigues Dos SANTOS
Luciana Machado BASTOS
Robinson Sabino SILVA
Fernanda Van Petten de Vasconcelos AZEVEDO
Luiz Ricardo Goulart Filho
Original Assignee
Universidade Federal de Uberlândia
Imunoscan Engenharia Molecular Ltda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Federal de Uberlândia, Imunoscan Engenharia Molecular Ltda filed Critical Universidade Federal de Uberlândia
Publication of WO2022020930A1 publication Critical patent/WO2022020930A1/pt

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Definitions

  • the present patent application refers to an individual, sustainable and customizable sample platform for use in an infrared spectroscopy system, which can be used with biological samples for disease diagnosis or in forensic techniques, detection of organic compounds and inorganic with industrial, agricultural and toxicological applications.
  • the present patent application further relates to a system of sample platforms that comprises more than one of said individual sample platform and may further comprise a support structure for the sample platforms.
  • the present patent application also deals with a method that reduces the preparation time and increases the analytical capacity of samples in an infrared spectroscopy system, as well as the use of said sample platform, or system comprising said platforms sample, in an infrared spectroscopy system, more particularly Fourier transform infrared spectroscopy (FTIR).
  • FTIR Fourier transform infrared spectroscopy
  • the purpose of this patent application is to provide a sustainable individual sample platform for use in an infrared spectroscopy system, particularly FTIR, more particularly ATR-FTIR that allows rapid drying for biofilm formation and allows the identification and storage of samples directly on said platform, without noise relevant or that interferes with the created spectrum, and that reduces sample preparation time and increases the scale of analysis.
  • FTIR infrared spectroscopy system
  • ATR-FTIR ATR-FTIR
  • the present application provides a method for using said sample platform, or sample platform system, in an infrared spectroscopy system. More particularly, a method that comprises a step of rapid drying of the sample to form a biofilm, which may also comprise a step of identifying the sample and storing it directly on said platform, without presenting relevant noise or interfering with the created spectrum, and, which reduces sample preparation time and increases the scale in their analysis.
  • the present invention provides the use of said sample platform, or system of sample platforms, in an infrared spectroscopy system. More particularly the use of said sample platform with biological fluids to disease diagnosis using infrared spectra.
  • Infrared spectroscopy is based on the absorption of energy that lies in the infrared region of the electromagnetic spectrum. It is widely used both in industry and academia because it is a fast, reproducible and reliable technique, enabling quality control, dynamic analysis and disease diagnosis.
  • FTIR Fourier transform infrared spectroscopy
  • the configuration of the device for the acquisition of FTIR spectra can be done in different ways, among these the most used are transmission, transflection and attenuated total reflection (ATR).
  • the spectral analysis by reflection in general, are more used in relation to the transmission ones, since the spectra obtained by this acquisition must be computationally corrected due to the occurrence of physical interferences (CHAN, KL, et al., 2013).
  • measurements in ATR do not require special substrates and no sample preparation, only requiring the sample to be in direct contact with the internal reflection element, making the analysis process faster and simpler, being more suitable for disease diagnosis processes (Tatulian, 2003; DORLING, KM, et al. 2013).
  • the mid-infrared region absorbed by FTIR spectroscopy is in the range of 400-4000 cnr 1 , comprising the vibrational modes associated with important biochemical components. This indicates that in the same analysis, several functional groups of proteins, carbohydrates, lipids and nucleic acids are analyzed in an integrated way, and each of them can be used as a unique biomarker, through an integrated analysis based on a panel of biomarkers or by artificial intelligence finding specific patterns for various diseases.
  • ATR-FTIR ATR-FTIR
  • Saliva was used to discriminate chronic kidney disease (RODRIGUES, RP , etc. al., 2019) and breast cancer (FERREIRA, ICC, et al., 2020) in humans and diabetes (CAIXETA, DC, et al., 2020) in animal models.
  • Urine has been used as diagnostic fluid for cysteinuria (OLIVER, KV, et al., 2016) and endometrial cancer (PARASKEVAIDl, M., et al., 2018) in humans.
  • Blood was used to diagnose malaria (ROYS, S., et al., 2017), kidney disease (KHANMOHAMMADI, M. et al., 2015); breast cancer (SITNIKOVA, VE, et al. 2020); brain cancer (BUTLER, HJ, et al. 2019) in humans and for lymphomas and melanomas (GHIMIRE, H., et al., 2017) in animal models.
  • ROYS S., et al., 2017
  • KHANMOHAMMADI kidney disease
  • breast cancer SITNIKOVA, VE, et al. 2020
  • brain cancer BUTLER, HJ, et al. 2019
  • GHIMIRE lymphomas and melanomas
  • US patent 7255835 demonstrated a system with an internal reflection element (IRE) with a reflection face located at the IRE and the sample, followed by an evanescent wave directed from the outside of the IRE to the inside of it, in order to cause the incidence of infrared radiation in the sample.
  • IRE internal reflection element
  • the system is associated with a functionalized tip comprising a probe immobilized on the surface that fills the volume exposed to the evanescent wave, which is detected by a detector.
  • the disadvantage of this method is the drying and cleaning time of the sample in the ATR crystal, due to the time required for the formation of a biofilm before obtaining the spectrum of the sample.
  • the time required for drying the sample depends on the specific volume for each biofluid, thus making its use on a large scale difficult.
  • the second system related to patent WO 2018/178669 is a large-scale system that replaced the IRE of the spectrophotometer, for drying the sample directly on the IRE inserted in the developed device. This device is inserted into an automated apparatus that allows the movement of samples after the interaction of the infrared light source. The analyzes showed that the spectrum pattern by this system is equivalent to the diamond IRE considered as the gold standard. Additionally, a drying protocol with temperature between 25°C and 35°C is demonstrated.
  • Another prior art document demonstrates the potential use of aluminum as a substrate in blood tests for the diagnosis of endometrial cancer, with this the reflective part of an aluminum foil covers a glass slide in a preparation that takes 30 to 45 seconds.
  • substrates that allow the use of recyclable materials that can be reused after cleaning and asepsis could be of great value for applications of green technologies with sustainable protocols.
  • the invention is intended to overcome current limitations in the state of the art, providing a sustainable and reusable sample platform, allowing use in a quick-drying method for biofilm formation and the storage of samples directly on said platform for measurement in photonic analysis systems , more particularly infrared spectroscopy systems, even more particularly Fourier transform infrared spectroscopy (FTIR), without having relevant noise or interfering with the created spectrum, reducing the preparation time and increasing the analysis capacity of the same with cost reduced.
  • FTIR Fourier transform infrared spectroscopy
  • the present patent application refers to a sustainable and customizable individual sample platform for use in an infrared spectroscopy system, which can be used with biological samples for the diagnosis of diseases or in forensic techniques, as well as in the detection of organic and inorganic compounds with industrial, agricultural and toxicological applications.
  • sample platform allows the use of different methods of rapid drying of the sample to form a biofilm, in addition to allowing the storage of samples directly in it for later measurement in an infrared spectroscopy system, without noise relevant or that interferes with the created spectrum.
  • the present application also refers to a Kit for customizing and optimizing said sample platforms for use in an infrared spectroscopy system.
  • FIGURE 1 illustrates the basic principles of FTIR in the context of a conventional platform.
  • FIGURE 2 illustrates the basic principles of FTIR in the context of creating an aluminum sample platform.
  • FIGURE 3 illustrates examples of modalities of an individual sample platform or a system of sample platforms organized in conjunction with two or more platforms of individual samples.
  • FIGURE 4 illustrates one of the modalities of the sample platform in the form of a system of sample platforms with four sample platforms in the form of individual pellets being heated for drying the sample.
  • FIGURE 5 illustrates one of the modalities of the sample platform in the form of aluminum pellets, which may or may not comprise different sample identification systems.
  • FIGURE 6 shows a workflow of an FTIR analysis system using an embodiment of the aluminum sample platform of the present invention.
  • FIGURE 7 shows a comparison of the interference in the ATR-FTIR spectrum of an aluminum sample platform modality, a paper sample platform and a plastic sample platform.
  • FIGURE 8 shows the comparison of the ATR-FTIR spectrum of the saliva sample directly on the ATR-FTIR diamond, the saliva sample on the aluminum sample platform and the sample-free aluminum sample platform.
  • FIGURE 9 shows the comparison of the ATR-FTIR spectrum of a saliva sample on the paper sample platform and the sample-free paper sample platform.
  • FIGURE 10 shows the comparison of the ATR- FTIR of different nasopharyngeal swab lavatory sample applications on aluminum sample platform.
  • FIGURE 11 shows the comparison of the ATR-
  • FTIR of saliva sample measured immediately after collection and after storage of the sample at low temperature for 6h, 24h, 48h and 72h.
  • FIGURE 12 shows the comparison of the ATR-
  • FTIR of saliva sample measured immediately after collection and after storage of the sample at room temperature for 6h, 24h, 48h and 72h.
  • FIGURE 13 shows the comparison of the ATR-
  • FIGURE 14 shows the comparison of the ATR-
  • FTIR of saliva supernatant sample measured immediately after collection and after storage of the sample at room temperature for 6h, 24h, 48h and 72h.
  • FIGURE 15 demonstrates the comparison of the spectrum of
  • FIGURE 16 compares the ATR-FTIR spectrum of gargling samples on the aluminum sample platform heated at different temperatures.
  • FIGURE 17 shows the comparison of the ATR-
  • Nasal swab lavage FTIR applied directly to the diamond of ATR-FTIR, nasal swab lavage applied to aluminum sample platform heated to different temperatures.
  • FIGURE 18 shows the comparison of the ATR-FTIR spectrum of samples with 1:1 volume addition of saliva and 100% alcohol to pure saliva supernatant, saliva supernatant with 100% alcohol, pure total saliva and total saliva with 100% alcohol.
  • the purpose of the present patent application is to provide a sustainable single sample platform for use in an infrared spectroscopy system, particularly ATR-FTIR, that enables rapid drying for biofilm formation and allows for the identification and storage of samples directly on that platform, without relevant noise or interfering with the created spectrum, and, reducing the sample preparation time and increasing the scale in their analysis.
  • ATR-FTIR infrared spectroscopy system
  • the present patent application also aims to provide a method for using said sample platform, or sample platform system, in an infrared spectroscopy system, as well as the use itself, in addition to a Kit for customizing and optimizing said sample platforms.
  • a method that comprises a step of rapid drying of the sample to form a biofilm, which may also comprise a step of sample identification and storage directly on said platform, without presenting relevant noise or interfering with the spectrum created, and that reduces sample preparation time and increases the scale in their analysis
  • the purpose of the present application is to provide the use of said sample platform, or system of sample platforms, in an infrared spectroscopy system.
  • the present application also refers to a Kit for customizing and optimizing said sample platforms for use in an infrared spectroscopy system.
  • the invention relates to an individual sample platform to be used in a photonic analysis system, particularly FTIR, more particularly ATR-FTIR, but can also be used in other analytical techniques, univariate analysis of vibrational modes, analysis of Monday derivative, multivariate analyzes such as PCA (Main
  • HCA Hierarchical Cluster Analysis
  • Said platform can be used with biological samples, particularly biological fluids such as saliva, gargle, nasopharyngeal or nasal swab wash, urine, blood, among others, for the detection of biomarkers or spectral profiles resulting from various diseases.
  • biological samples particularly biological fluids such as saliva, gargle, nasopharyngeal or nasal swab wash, urine, blood, among others, for the detection of biomarkers or spectral profiles resulting from various diseases.
  • said platform being made of aluminum for drying and storing the samples, replacing the glass slices, in view of the advantageous properties of aluminum in relation to glass, such as its good thermal conductivity, ease of work and production cost, as well as low noise interference in the formed spectrum.
  • said platform can be made of another material coated with aluminum, that is, have the core made of another material, this other material being of good thermal conductivity and low production cost.
  • sample platform In addition to aluminum, other materials that have similar physicochemical characteristics can be used to replace the same or together with aluminum to manufacture the sample platform, such as, for example, example, stainless steel, composites or aluminum alloys. More particularly, materials that are inert, do not interfere with the reading of the sample, or that present an acceptable level of noise after reading the sample, can be used.
  • said sample platform can be of different shapes and different sizes, as long as it is suitable for use in an FTIR system. More particularly said sample platform is in the form of aluminum wafers or coated with aluminum. [051] In one of the embodiments of the invention, the sample platform may have on its underside means for sample identification. Such means for identification include, for example, numbers printed on the insert, alphanumeric codes, bar codes, QR codes, labels, among others.
  • Figure 1 illustrates the basic principles in the context of a conventional sampling platform for an FTIR infrared spectroscopy system.
  • the sample for example a biological fluid, organic and/or inorganic compositions/compounds, needs to wait the necessary time, depending on the volume and composition of the sample, until a film/biofilm is formed, so that the analysis can start. by infrared.
  • the sample can also be a biological tissue or other type of material.
  • Figure 2 illustrates the basic principles of FTIR in the context of creating the sample platform of the present patent application, which can be for example individual or a set of individual platforms, and can be in the shape of a circular, oval, square, rectangular or any other shape that is suitable for use in an infrared spectroscopy system, made of or coated with aluminum or a material with similar physicochemical properties and characteristics to aluminum.
  • the aforementioned sample platform enables the preparation, drying, identification and previous storage of samples to be later analyzed in an FTIR system.
  • the platforms can receive samples, for example, biological fluids, organic and/or inorganic compositions/compounds, for drying under different circumstances with controlled temperature and wind flow, or at room temperature, allowing the preparation of samples on individual platforms.
  • Figure 3 shows examples of some of the preferred embodiments of the present invention.
  • the first illustration shows a sustainable and reusable individual sample platform (isolated model) with a numeral identification system to facilitate sample recognition.
  • the individual platforms can be configured to receive an identification system that is appropriate to the need.
  • Said individual platforms are sustainable since after analysis, they can be properly washed, sterilized and dried, and would be ready to be reused.
  • sample platform modalities are shown in which they are in an individual, unitary model (with a single sample platform) or in a multiple model system comprising more from an individual sample platform.
  • system comprising two or three unitary sample platforms (double composite model or triple composite model).
  • These examples of modalities can provide a single system, support, structure or platform that comprises multiple platforms. sample units/individuals.
  • This system comprising the structure capable of housing multiple individual sample platforms, which allows the preparation, identification and storage of several different samples at the same time, thus saving time and scale of analysis.
  • the number of individual sample platforms in said system for example 4, 5, 6...10, 20 or more, can vary depending on the need for cost benefit, efficiency and speed.
  • the aforementioned system of multiple sample platforms is sustainable, since after analyzing the samples, the entire system can be properly washed, sterilized and dried, and would be ready for reuse.
  • Figure 4 shows an illustration of multiple sample platforms, comprising individual platforms in the form of wafers, more particularly aluminum wafers, being subjected to a drying method on a hot plate with a temperature ranging from 37°C to 80°C. °C, and may or may not be placed on a heat-conducting material for rapid biofilm formation.
  • Figure 5 shows examples of some of the preferred embodiments of the present invention in which the sample platform can still have different identification systems on the back face to which the sample will be received, such as: numerical sequences, bar code or
  • Figure 6 shows a workflow of a data analysis system that comprises sample preparation using the sample platform of the present invention and subsequent obtaining the spectra.
  • Figure 7 shows the spectrum difference between sample platforms produced with different materials.
  • the sample platform of the present patent application being in the form of aluminum wafers (black), paper platforms (red) and plastic platforms (in blue). It is evident the presence of vibrational modes at 3000-2750 cm-1, 1500-1250 cm-1 and 700-750 cm-1 for the plastic platform and several regions of vibrational modes for the paper platform (3700 -2500 cm-1 and 1750-750 cm-1), which can modify the analysis signal of several biological components.
  • the infrared spectrum produced by the aluminum platform shows practically no variations in the spectrum, which indicates an excellent support and drying matrix for the analysis of biological samples in a sustainable way.
  • Figure 8 demonstrates that the spectral signature of a biological saliva sample inserted directly into the ATR-FTIR crystal (black) is equivalent to the spectral signature of saliva inserted into the aluminum sample platform (blue). Together, these data prove the possibility of using the sample platform of the present patent application for ATR-FTIR measurements without compromising the quality of the analyzed sample.
  • the spectral profile of the sample platform in the aluminum pellet configuration (red) demonstrates that the spectral signal from aluminum does not overlap with the saliva spectrum.
  • Figure 9 shows the comparison of the infrared spectrum between a biological sample, more particularly saliva, inserted into a paper platform and only the paper platform without sample.
  • Figure 9 demonstrates that paper is not a good matrix to be used as a platform for biological samples for analysis. of the spectral profile. Its use can occur in analyzes of samples focused on the amide I and amide II region in the spectral region between 1750-1500 cm-1.
  • Figure 10 demonstrates the comparison of the FTIR spectrum of nasopharyngeal swab wash with an application of the sample on the aluminum tablet platform of the present invention, or with two, three or four applications interleaved with 5 min drying hot plate at 80°C.
  • Figure 10 demonstrates the potential of the aluminum wafer platforms of the present invention for procedures where a larger set of pipetting for concentration of nasopharyngeal swab wash sample. It is noticed that it is possible to make a sequence of several pipetting with intermittent drying and there is a preservation of the spectral signal for one application (black), two applications (red), three applications (blue) or four applications (green) interspersed with drying periods. 5 min on a hot plate at 80°C.
  • Figure 11 demonstrates the ATR-FTIR spectrum for total saliva samples measured immediately after collection (black), after 6 hours (red), 24 hours (blue), 48 hours (green) and 72 hours (violet ) stored on ice.
  • Figure 12 demonstrates the ATR-FTIR spectrum for total saliva samples measured immediately after collection (black) and after 6 hours (red), 24 hours (blue), 48 hours (green) and 72 hours (violet ) stored at room temperature.
  • a maintenance of the infrared spectrum can be seen in the different vibrational modes.
  • there is a tendency of instability in some vibrational modes highlighting: 1000-1100 cm-1, 1250-1300 cm-1, 1420-1460 cm-1 and 3100-3000 cm-1 indicating the need for similar storage parameters when this vibrational mode is the focus of the study. Additionally, a greater variation of the samples is noticed in comparison to the samples stored on ice.
  • Figure 13 demonstrates the spectrum comparison between Oh saliva supernatant and the effect of storage on ice for 6h, 24h, 48h and 72h. Considering that whole saliva may contain food and cellular debris, the analysis was repeated with the salivary supernatant after centrifugation at 2600 G, 4°C for 15 minutes.
  • the ATR-FTIR spectrum for saliva supernatant samples measured immediately after collection (black) and after 6 hours (red), 24 hours (blue), 48 hours (green) and 72 hours (violet) stored on ice.
  • a maintenance of the infrared spectrum can be seen in the different vibrational modes. However, there is a tendency for instability in the vibrational mode between 1000-1100 cm-1, indicating the need for similar storage parameters when this vibrational mode is the focus of the study.
  • the data were similar to the maintenance of whole saliva on ice for the same periods.
  • Figure 14 demonstrates the spectrum comparison between Oh saliva supernatant and the effect of room temperature storage for 6h, 24h, 48h and 72h. Considering that whole saliva may contain food and cellular debris, the analysis was repeated with the salivary supernatant after centrifugation at 2600 G, 4°C for 15 minutes.
  • the ATR-FTIR spectrum for saliva supernatant samples measured immediately after collection (black) and after 6 hours (red), 24 hours (blue), 48 hours (green) and 72 hours (violet) stored at room temperature. In general, there is a maintenance of the spectrum in infrared in the different vibrational modes.
  • Figure 15 demonstrates the comparison of the spectrum between saliva applied directly to the crystal (black), or inserted into the sample platform in the form of an aluminum pellet at 23°C (red), inserted into the sample platform in the format of 37°C aluminum pellet (blue), inserted into the sample platform in the 50°C aluminum pellet format (green) or inserted into the sample platform in the 80°C aluminum pellet format (violet).
  • Figure 16 demonstrates the comparison of the spectrum between a gargle sample inserted into the sample platform in the form of an aluminum tablet at 23°C (black), at 37°C (red), at 50°C (blue) or at 80°C (green).
  • Figure 17 demonstrates the comparison of the spectrum between nasal swab wash applied directly to the crystal (black), or inserted into the sample platform in the shape of an aluminum pellet at 23°C (red), at 37°C (blue ), a
  • the drying time was respectively 204 minutes, 88 minutes, 73 minutes, 48 minutes and 20 minutes for 4 applications per sample, in this way the sample drying process can accelerate up to 10 times the process using the sample platform of the present invention, without affecting the quality of the infrared spectrum produced.
  • Figure 18 demonstrates the comparison of the spectrum between samples that had a drying process at room temperature, directly on the sample platform in the form of an aluminum tablet, or with drying associated with the addition of 100% alcohol in the proportion 1:1 with the sample on the aluminum wafer-shaped sample platform.
  • the central aspect of the present invention is to provide a very low cost, recyclable, and reusable sample platform for receiving samples with respective drying in order to quickly form biofilms and allowing samples to be stored directly on the tablet for measurement in photonic platforms (conventionally FTIR), without interfering with the quality of the formed spectrum and with a very low noise level [073]
  • the system does not work as an internal reflective element (IRE) but allows drying and storage of the sample biofilm that adheres to the tablet.
  • the individual sample platform in the form of an aluminum wafer is used to replace the glass slices because aluminum is a good conductor of heat and the glass sheets have more similar characteristics as a heat insulator. Additionally, an advantage of using a sample platform that is an aluminum insert or with an aluminum cover is a reduction in the production costs of the inserts and the flexibility of being able to use them individually, with small volumes of material and the possibility of storage. samples without using support.
  • the aluminum sample platform can be as small as the size of the internal reflective element of the instrument itself (generally 2.5 to 3 mm 2 ) and can be larger sizes up to 8 mm 2 . Considering that aluminum is a good conductor of heat, inserts can be from 0.1 mm to 2 mm thick.
  • the sample platforms can also comprise an identification system by numbers printed directly on the aluminum wafer, bars, QR code, labels or any other system.
  • This system can be adapted to a benchtop or portable ATR-FTIR equipment, in which the ATR accessory (usually diamond) is smaller in size than the aluminum sample platform, without the need for any change in the configuration of ATR-FTIR platform infrared beam mirrors or angle.
  • the present patent application relates to an individual sample platform for use in an infrared spectroscopy (FTIR) system, even more particularly ATR-FTIR, wherein the individual sample platform is manufactured from material comprising good thermal conductivity and low noise interference in the formed spectrum, more particularly made or coated with aluminum, or by material with properties and physicochemical characteristics similar to aluminum.
  • Said material may be: aluminum; aluminum alloys; and combining another material having good thermal conductivity with aluminium, more particularly wherein said material comprises the core and this is coated with aluminium.
  • Said sample platform comprises a circular, oval, square, rectangular or other wafer shape suitable for use in an infrared spectroscopy system.
  • the sample platform further comprises a minimum size equivalent to the minimum size of the dimension of the internal reflective element of the infrared spectroscopy apparatus, more particularly a size that can vary between about 2.5 mm 2 to 8 mm 2 , with a thickness of insert that can vary from about 0.1 mm to 2 mm.
  • Said sample platform may also comprise means for identifying the sample to be analyzed, which can be printed directly on the platform or fixed on the platform on the opposite side to that which receives the sample or on the sides of the platform; the means of identification may include: numbers, alphanumeric codes, bar codes, QR codes, other identification markings or labels.
  • the present patent application also relates to a system of sample platforms for use in infrared spectroscopy where the system may comprise two or more of said individual sample platforms and may further comprise a support structure for the platforms.
  • the support structure may comprise specific regions to house or secure each of the individual sample platforms so that it can be configured as required; or wherein the support structure may comprise a plurality of individual platforms pre-defined and already integrated into its structure.
  • the present patent application also refers to a method to reduce the time and increase the scale of analysis of samples in an infrared spectroscopy system in which the method comprises the steps of preparing the individual sample platforms, or the sample platform system, with the samples of interest to be evaluated and analyze the samples on the platforms in the infrared spectroscopy system.
  • the step of preparing the platforms or system with said samples comprises the following steps:
  • sample application step can be repeated, more preferably 2 to 4 times, each additional application interspersed with a drying step.
  • the sample drying step may comprise different methods or a combination of these, such as exposure to room temperature; or heating within a controlled temperature range and/or controlled airflow and/or addition of volatile substance to the sample.
  • the step of drying the sample with controlled temperature comprises heating the sample platform through a controlled source of heat at a temperature that can vary from 37°C to 80°C, the drying time being reduced the longer it is the temperature used.
  • the addition of volatile substance comprises the addition of 100% alcohol in a proportion by volume of 1:1 with the sample, preferably the alcohol is selected from the group that includes ethanol, methanol and acetonitrile.
  • Said method can also comprise the steps of: sample identification (by means of directly printed or fixed on the platform opposite to the one receiving the sample); the means of identification can be through: numbers, alphanumeric codes, bar codes, QR codes, other identification markings or labels; and
  • the present application further relates to the use of the individual sample platform or the platform system sample, where it is in a method of analyzing samples in an infrared spectroscopy system.
  • Kit for customizing and optimizing sample platforms for use in an infrared spectroscopy system comprising:
  • sample platform can be used with biological samples for the diagnosis of various diseases or in forensic techniques, detection of organic and inorganic compounds with industrial applications, in agriculture and in areas of toxicology.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

O presente pedido de patente refere-se à uma plataforma de amostra individual sustentável e personalizável para uso em um sistema de espectroscopia no infravermelho, podendo ser usada com amostras biológicas para diagnóstico de doenças ou em técnicas forenses, detecção de compostos orgânicos e inorgânicos com aplicações industriais, na agropecuária e em áreas de toxicologia. Ainda o presente pedido de patente refere-se a sistema de plataformas de amostra compreendendo mais de uma plataforma individual, um método para reduzir o tempo de preparo e aumentar a escala na análise de amostras, bem como um Kit para personalização e otimização da plataforma e o uso da plataforma em um sistema de espectroscopia de infravermelho, mais particularmente espectroscopia no infravermelho por transformada de Fourier (FTIR).

Description

Relatório Descritivo da Patente de Invenção: "PLATAFORMA DE
AMOSTRA PARA USO EM ESPECTROSCOPIA DE INFRAVERMELHO, SISTEMA, KIT, MÉTODO E USO DA MESMA".
Campo da Invenção
[001] O presente pedido de patente refere-se à uma plataforma de amostra individual, sustentável e personalizável para uso em um sistema de espectroscopia de infravermelho, podendo ser usada com amostras biológicas para diagnóstico de doenças ou em técnicas forenses, detecção de compostos orgânicos e inorgânicos com aplicações industriais, na agropecuária e em áreas de toxicologia.
[002] Ainda o presente pedido de patente se refere a um sistema de plataformas de amostra que compreende mais de uma da referida plataforma de amostra individual e ainda pode compreender uma estrutura de suporte para as plataformas de amostra .
[003] O presente pedido de patente também trata de um método que reduz o tempo de preparo e aumenta a capacidade analítica de amostras em um sistema de espectroscopia de infravermelho, assim como o uso da referida plataforma de amostra, ou sistema compreendendo as referidas plataformas de amostra, em um sistema de espectroscopia de infravermelho, mais particularmente espectroscopia de infravermelho por transformada de Fourier (FTIR).
[004] O objetivo do presente pedido de patente é fornecer uma plataforma de amostra individual sustentável para uso em um sistema de espectroscopia de infravermelho, particularmente FTIR, mais particularmente ATR-FTIR que possibilite a secagem rápida para formação de biofilme e permita a identificação e armazenamento de amostras diretamente na referida plataforma, sem que apresente ruido relevante ou que interfira no espectro criado, e, que reduza o tempo de preparo das amostras e aumente a escala de análise das mesmas.
[005] Em uma outra modalidade o presente pedido fornece um método para uso da referida plataforma de amostra, ou do sistema de plataformas de amostra, em um sistema de espectroscopia de infravermelho. Mais particularmente um método que compreende uma etapa de secagem rápida da amostra para formação de um biofilme, que ainda pode compreender uma etapa de identificação da amostra e armazenamento da mesma diretamente na referida plataforma, sem que apresente ruido relevante ou que interferia no espectro criado, e, que reduza o tempo de preparo das amostras e aumente a escala na análise das mesmas.
[006] Em outra modalidade a presente invenção fornece o uso da referida plataforma de amostra, ou sistema de plataformas de amostra, em um sistema de espectroscopia de infravermelho. Mais particularmente o uso da referida plataforma de amostra com fluidos biológicos para diagnóstico de doenças usando espectros de infravermelho.
Fundamentos da Invenção
[007] A espectroscopia no infravermelho baseia-se na absorção de energia que encontra-se na região do infravermelho do espectro eletromagnético. Ela é largamente usada tanto na indústria quanto na academia por se tratar de uma técnica rápida, reprodutível e confiável, possibilitando controle de qualidade, análises dinâmicas e diagnóstico de doenças.
[008] A espectroscopia de infravermelho por transformada de Fourier (FTIR) é uma plataforma analítica que avalia a interação da radiação eletromagnética no espectro infravermelho com a matéria, no intuito de obter informações moleculares de determinado material ou amostra biológica (BARTH, A., 2007). Desta forma, a absorção de um espectro específico de cada amostra, proporciona modos vibracionais únicos de cada estrutura molecular avaliada, considerando que cada grupo químico funcional apresenta uma assinatura específica no espectro (BUNACIU, A. A., et ai., 2017).
[009] A configuração do aparelho para aquisição dos espectros FTIR pode ser feita de diferentes maneiras, dentre estas as mais utilizadas são a de transmissão, transflexão e reflexão total atenuada (ATR). As análises espectrais por reflexão, em geral, são mais utilizadas em relação às de transmissão, uma vez que os espectros obtidos por essa aquisição devem ser corrigidos computacionalmente devido a ocorrência de interferências físicas (CHAN, K. L., et al., 2013). Ao contrário da transmissão e transflexão, medidas no ATR não requerem substratos especiais e nenhuma preparação da amostra, necessitando apenas que a amostra esteja em contato direto com o elemento de reflexão interna, tornando o processo de análise mais rápido e simples, sendo mais indicado para processos de diagnósticos de doenças (Tatulian, 2003; DORLING, K. M., et al. 2013).
[010] A região do infravermelho médio absorvida pela espectroscopia FTIR, encontra-se na faixa de 400-4000 cnr1, compreendendo os modos vibracionais associados a importantes componentes bioquímicos. Isto indica que em uma mesma análise, diversos grupos funcionais de proteínas, carboidratos, lipídeos e ácidos nucleicos são analisados de forma integrada, e cada um deles pode ser utilizado como um biomarcador único, por meio de uma análise integrada com base em um painel de biomarcadores ou por inteligência artificial encontrando padrões específicos para diversas doenças .
[011] Nosso grupo e outros já demonstraram a capacidade de utilização do ATR-FTIR como plataforma para diagnóstico de doenças sistémicas baseados em análises de fluidos biológicos com saliva, urina e sangue.A saliva foi utilizada para discriminar doença renal crónica (RODRIGUES, R. P., et al., 2019) e câncer de mama (FERREIRA, I. C. C., et al., 2020) em humanos e diabetes (CAIXETA, D. C., et al., 2020) em modelos animais. A urina foi utilizada como fluido diagnóstico de cisteinúria (OLIVER, K. V., et al., 2016) e câncer de endométrio (PARASKEVAIDl, M., et al., 2018) em humanos. O sangue foi utilizado para diagnóstico de malária (ROYS, S., et al., 2017), doença renal (KHANMOHAMMADI, M. et al., 2015); câncer de mama (SITNIKOVA, V. E., et al. 2020); câncer de cérebro (BUTLER, H. J., et al. 2019) em humanos e para linfomas e melanomas (GHIMIRE, H., et al., 2017) em modelos animais. Tecidos humanos foram utilizados para discriminar câncer de ovário (THEOPHILOU, G., et al., 2016) [012] A patente US 7255835 demonstrou um sistema com um elemento de reflexão interna (IRE) com uma face de reflexão localizada no IRE e na amostra, seguida de uma onda evanescente direcionada do exterior do IRE para o interior do mesmo, de modo a provocar a incidência de radiação infravermelha na amostra. O sistema é associado a uma ponta funcionalizada compreendendo uma sonda imobilizada na superfície que preenche o volume exposto à onda evanescente, o que é detectado por um detector.
[013] Nos últimos anos foram descritos dois métodos de diagnóstico de câncer de cérebro por análises sanguíneas de ATR-FTIR. No primeiro deles, o pedido de patente WO 2014/076480, demonstrou a capacidade de um método de diagnóstico inserindo a amostra diretamente no cristal de
ATR do sistema de espectrometria FTIR por meio de um teste que não promove danos moleculares na amostra. A desvantagem deste método é o tempo de secagem e limpeza da amostra no cristal ATR, devido ao tempo necessário para formação de um biofilme antes da obtenção do espectro da amostra. O tempo necessário para secagem da amostra depende do volume especifico para cada biofluido, dificultando assim seu uso em larga escala. O segundo sistema relacionado a patente WO 2018/178669 é um sistema de larga escala que substituiu o IRE do espectrofotômetro, para a secagem da amostra diretamente sobre o IRE inserido no dispositivo desenvolvido. Este dispositivo é inserido em um aparato automatizado que permite a movimentação das amostras após a interação da fonte de luz infravermelha. As análises demonstraram que o padrão de espectro por este sistema é equivalente ao IRE de diamante considerado como padrão-ouro. Adicionalmente, é demonstrado um protocolo de secagem com temperatura entre 25°C e 35°C.
[014] Outro documento do estado da técnica demonstra o potencial uso do alumínio como substrato em análises de sangue para o diagnóstico de câncer endometrial, com isso a parte refletora de uma folha de alumínio encobre uma lâmina de vidro em uma preparação que leva de 30 a 45 segundos.
Para realização deste procedimento de forma manual é fundamental que a folha de alumínio fique perfeitamente em contato com vidro (PARASKEVAIDl, M., et al., 2018), pois eventuais rugosidades ou dobramentos na folha de alumínio poderão alterar o perfil do espectro da amostra e consequentemente seu resultado. Devido a fina espessura da folha de alumínio, a sua reutilização parece ser inadequada após procedimento de lavagem, limpeza e/ou assepsia.
[015] Apesar de capacidade de aplicação do sistema de larga escala com substituição de IRE no dispositivo em processo automatizado e de reduzida instrumentação (WO 2018/178669), ainda existe uma carência de processos com baixo custo que permitam um processo de secagem rápida da amostra e inativação de microrganismos (virus, fungos, bactérias) para que a análise no IRE ocorra sem a presença desses interferentes, como exemplo, os microrganismos. A presença do aquecimento e da associação de compostos de rápida volatilidade pode ter papel central em análises de alta escala em testes diagnósticos de doenças infecto- contagiosas e de doenças sistémicas nas quais o paciente pode estar infectado com patógenos não relacionados (exemplo: HIV, virus da Hepatite A e etc). Adicionalmente, substratos que permitam a utilização de materiais recicláveis que possam ser reutilizados após limpeza e assepsia poderão ser de grande valia para aplicações de tecnologias verdes com protocolos sustentáveis. A presente invenção tem intenção de superar as limitações atuais no estado da técnica, proporcionando uma plataforma de amostra sustentável e reutilizável, permitindo a utilização em um método de secagem rápida para formação de biofilme e o armazenamento de amostras diretamente na referida plataforma para mensuração em sistemas análise fotônicos, mais particularmente sistemas de espectroscopia de infravermelho, ainda mais particularmente espectroscopia de infravermelho por transformada de Fourier (FTIR), sem que apresente ruido relevante ou que interfira no espectro criado, reduzindo o tempo de preparo e aumentando a capacidade de análise das mesmas com custo reduzido.
Breve descrição da invenção
[016] O presente pedido de patente refere-se à uma plataforma sustentável de amostra individual e personalizável para uso em um sistema de espectroscopia de infravermelho, podendo ser usada com amostras biológicas para o diagnóstico de doenças ou em técnicas forenses, bem como na detecção de compostos orgânicos e inorgânicos com aplicações industriais, na agropecuária e em áreas de toxicologia .
[017] Trata-se de um método que reduz o tempo de preparo e aumenta a capacidade analítica de amostras em um sistema de espectroscopia de infravermelho, assim como o uso da referida plataforma de amostra, ou sistema compreendendo as referidas plataformas de amostra, em um sistema de espectroscopia de infravermelho por transformada de Fourier. [018] Mais particularmente a referida plataforma de amostra possibilita o uso de diferentes métodos de secagem rápida da amostra para formação de um biofilme, além de possibilitar o armazenamento de amostras diretamente nela para posterior mensuração em sistema de espectroscopia de infravermelho, sem que apresente ruido relevante ou que interfira no espectro criado.
[019] O presente pedido ainda se refere a um Kit para personalização e otimização das referidas plataformas de amostra para uso em sistema de espectroscopia de infravermelho .
Breve descrição das figuras
[020] A presente invenção será mais bem compreendida com base na descrição, a seguir, tomada em conjunto com as figuras anexas, nas quais:
[021] A FIGURA 1 ilustra os princípios básicos do FTIR no contexto de uma plataforma convencional.
[022] A FIGURA 2 ilustra os princípios básicos do FTIR no contexto da criação de uma plataforma de amostra de alumínio.
[023] A FIGURA 3 ilustra exemplos de modalidades de uma plataforma de amostra individual ou um sistema de plataformas de amostra organizada em conjunto de duas ou mais plataformas de amostra individuais.
[024] A FIGURA 4 ilustra uma das modalidades da plataforma de amostra em forma de um sistema de plataformas de amostra com quatro plataformas de amostra em formato de pastilhas individuais sendo aquecida para secagem da amostra.
[025] A FIGURA 5 ilustra uma das modalidades da plataforma de amostra na forma de pastilhas de alumínio, podendo compreender ou não diferentes sistemas de identificação das amostras.
[026] A FIGURA 6 mostra um workflow de um sistema de análise FTIR usando uma modalidade da plataforma de amostra de alumínio da presente invenção.
[027] A FIGURA 7 mostra um comparativo da interferência no espectro de ATR-FTIR de uma modalidade da plataforma de amostra de alumínio, de uma plataforma de amostra de papel e de uma plataforma de amostra de plástico.
[028] A FIGURA 8 mostra a comparação do espectro de ATR- FTIR da amostra de saliva diretamente no diamante do ATR- FTIR, da amostra de saliva na plataforma de amostra de alumínio e da plataforma de amostra de alumínio sem amostra. [029] A FIGURA 9 mostra a comparação do espectro de ATR- FTIR de uma amostra de saliva na plataforma de amostra de papel e da plataforma de amostra de papel sem amostra.
[030] A FIGURA 10 mostra a comparação do espectro de ATR- FTIR de diferentes aplicações de amostra de lavabo de swab de nasofaringe na plataforma de amostra de alumínio.
[031] A FIGURA 11 mostra a comparação do espectro de ATR-
FTIR de amostra de saliva mensurada imediatamente após a coleta e após o armazenamento da amostra em baixa temperatura durante 6h, 24h, 48h e 72h.
[032] A FIGURA 12 mostra a comparação do espectro de ATR-
FTIR de amostra de saliva mensurada imediatamente após a coleta e após o armazenamento da amostra em temperatura ambiente durante 6h, 24h, 48h e 72h.
[033] A FIGURA 13 mostra a comparação do espectro de ATR-
FTIR de amostra de sobrenadante de saliva mensurada imediatamente após a coleta e após o armazenamento da amostra em baixa temperatura durante 6h, 24h, 48h e 72h [034] A FIGURA 14 mostra a comparação do espectro de ATR-
FTIR de amostra de sobrenadante de saliva mensurada imediatamente após a coleta e após o armazenamento da amostra em temperatura ambiente durante 6h, 24h, 48h e 72h.
[035] A FIGURA 15 demonstra a comparação do espectro de
ATR-FTIR de amostra de saliva diretamente no diamante do
ART-FTIR, de amostras de saliva na plataforma de amostra de alumínio aquecidas a diferentes temperaturas.
[036] A FIGURA 16 compara o espectro de ATR-FTIR de amostra de gargarejo na plataforma de amostra de alumínio aquecidas em diferentes temperaturas. [037] A FIGURA 17 mostra a comparação do espectro de ATR-
FTIR de amostra de lavado de swab nasal aplicado diretamente no diamante do ATR-FTIR, de lavado de swab nasal aplicado plataforma de amostra de alumínio aquecidas a diferentes temperaturas .
[038] A FIGURA 18 mostra a comparação do espectro de ATR- FTIR de amostras com adição de volume 1:1 de saliva e álcool 100% para sobrenadante de saliva pura, de sobrenadante de saliva com álcool 100%, de saliva total pura e saliva total com álcool 100%.
Objetivo da invenção
[039] O objetivo do presente pedido de patente é fornecer uma plataforma de amostra individual sustentável para uso em um sistema de espectroscopia de infravermelho, particularmente ATR-FTIR, que possibilite uma secagem rápida para a formação de biofilme e permita a identificação e armazenamento de amostras diretamente na referida plataforma, sem que apresente ruído relevante ou que interfira no espectro criado, e, que reduza o tempo de preparo das amostras e aumente a escala na análise das mesmas.
[040] Ainda o presente pedido de patente tem como objetivo fornecer ainda um método para uso da referida plataforma de amostra, ou do sistema de plataformas de amostra, em um sistema de espectroscopia de infravermelho, bem como o uso em si, além de um Kit para personalização e otimização das referidas plataformas de amostra.
[041]
[042] Mais particularmente um método que compreende uma etapa de secagem rápida da amostra para formação de um biofilme, que ainda pode compreender uma etapa de identificação da amostra e armazenamento da mesma diretamente na referida plataforma, sem que apresente ruido relevante ou que interfira no espectro criado, e, que reduza o tempo de preparo das amostras e aumente a escala na análise das mesmas
[043] Em outra modalidade o objetivo do presente pedido é fornecer o uso da referida plataforma de amostra, ou sistema de plataformas de amostra, em um sistema de espectroscopia de infravermelho.
[044] O presente pedido ainda se refere a um Kit para personalização e otimização das referidas plataformas de amostra para uso em sistema de espectroscopia de infravermelho .
Descrição detalhada da invenção
[045] A invenção se refere a uma plataforma de amostra individual para ser usada em um sistema de análise fotônico, particularmente FTIR, mais particularmente ATR-FTIR, mas também pode ser usada em outras técnicas analíticas, análises univariadas de modos vibracionais, análises de segunda derivada, análises multivariadas como PCA (Principal
Component Analysis) e HCA (Hierarquical Cluster Analysis) e análises de aprendizado de máquina e Inteligência Artificial .
[046] A referida plataforma pode ser usada com amostras biológicas, particularmente fluidos biológicos como saliva, gargarejo, lavado de swab de nasofaringe ou nasal, urina, sangue, dentre outros, para detecção de biomarcadores ou perfis espectrais decorrentes de várias doenças.
[047] Em uma modalidade da invenção a referida plataforma sendo de alumínio para secagem e armazenamento das amostras, em substituição aos slices de vidro, tendo em vista as propriedades vantajosas do alumínio com relação ao vidro, como por exemplo a sua boa condutividade térmica, facilidade de trabalho e custo de produção, bem como a baixa interferência de ruído no espectro formado.
[048] Em outra modalidade a referida plataforma pode ser de outro material revestido de alumínio, ou seja, ter o núcleo constituído de outro material, sendo esse outro material de boa condutividade térmica e baixo custo de produção .
[049] Além do alumínio, outros materiais que apresentem características físico-químicas similares podem ser utilizados em substituição ao mesmo ou em conjunto com o alumínio para fabricação da plataforma de amostra, como, por exemplo, aço-inox, compósitos ou ligas metálicas de alumínio. Mais particularmente, materiais que se mostrem inertes, não interferindo na leitura da amostra, ou que apresentem um nível de ruído aceitável após leitura da amostra podem ser utilizados.
[050] Em outra modalidade a referida plataforma de amostra pode ser de formas distintas e tamanhos variados, desde que seja adequada para uso em um sistema de FTIR. Mais particularmente a referida plataforma de amostra está no formato de pastilhas de alumínio ou revestidas de alumínio. [051] Em uma das modalidades da invenção, a plataforma de amostra pode ter em seu lado inferior meios para identificação de amostras. Tais meios para identificação incluem, por exemplo, números impressos na pastilha, códigos alfanuméricos, códigos de barras, códigos QR, etiquetas, dentre outros.
[052] A Figura 1 ilustra os princípios básicos no contexto de uma plataforma convencional de amostra para um sistema de espectroscopia de infravermelho FTIR. Neste caso a amostra, por exemplo um fluido biológico, composições/compostos orgânicos e/ou inorgânicos, necessita esperar o tempo necessário, dependendo do volume e composição da amostra, até que se forme uma película/biofilme, para que seja possível iniciar a análise por infravermelho. A amostra também pode ser um tecido biológico ou outro tipo de material.
[053] A Figura 2 ilustra os princípios básicos do FTIR no contexto da criação da plataforma de amostra do presente pedido de patente, que pode ser por exemplo individual ou um conjunto de plataformas individuais, e pode ser em formato de pastilha circular, ovalado, quadrado, retangular ou qualquer outro formato que seja adequado a ser usado em um sistema de espectroscopia de infravermelho, feita ou revestida de alumínio ou por material com propriedades e características físico-químicas similares ao do alumínio. A referida plataforma de amostra possibilita o preparo, secagem, identificação e armazenamento prévio de amostras para posteriormente serem analisadas em sistema FTIR. Neste caso, as plataformas podem receber amostras, por exemplo, fluidos biológicos, composições/compostos orgânicos e/ou inorgânicos, para secagem em diferentes circunstâncias com temperatura e fluxo de vento controlados, ou em temperatura ambiente, permitindo o preparo das amostras em plataformas individuais ou em um sistema que compreenda um conjunto de duas ou mais das referidas plataformas individuais. A utilização de um conjunto de plataformas de amostra individuais ou do sistema proporciona o preparo de várias amostras de interesse ao mesmo tempo, bem como a sua identificação e armazenamento em lotes. Estando, portanto, as diversas amostras prontas para análise no sistema ATR- FTIR em sequência, o que otimiza o sistema tornando-o de alta-escala, reutilizável, sustentável e proporcionando velocidade e baixo custo na análise.
[054] A Figura 3 mostra exemplos de algumas das modalidades preferenciais da presente invenção. A primeira ilustração mostra uma plataforma de amostra individual sustentável e reutilizável (modelo isolado), com sistema de identificação numeral, para facilitar o reconhecimento da amostra. Nessa modalidade as plataformas individuais podem ser configuradas para receber um sistema de identificação que seja adequado a necessidade. As referidas plataformas individuais são sustentáveis uma vez que após a análise, elas podem ser devidamente lavadas, esterilizados e secas, e estariam prontas para serem reutilizadas.
[055] Na segunda e terceira ilustrações da Figura 3 são mostrados exemplos de modalidades da plataforma de amostra em que as mesmas se encontram em um modelo individual, unitário, (com uma única plataforma de amostra) ou em um sistema de modelo múltiplo compreendendo mais de uma plataforma de amostra individual. No exemplo da Figura 3, demonstramos o sistema compreendendo duas ou três plataformas unitárias de amostra (modelo composto duplo ou modelo composto triplo). Nesses exemplos de modalidades pode-se proporcionar um único sistema, suporte, estrutura ou plataforma que compreenda múltiplas plataformas unitárias/individuais de amostra. Esse sistema compreendendo a estrutura capaz de abrigar múltiplas plataformas de amostra individuais, que permita o preparo, identificação e armazenamento de várias amostras diferentes ao mesmo tempo, ganhando assim em tempo e escala de análise. O número de plataformas individuais de amostra no referido sistema, por exemplo 4, 5, 6...10, 20 ou mais, pode variar dependendo da necessidade de custo beneficio, eficiência e velocidade. O referido sistema de plataformas de amostra múltiplo sustentável, uma vez que após a análise das amostras, todo o sistema pode ser devidamente lavado, esterilizado e seco, e estaria pronto para reutilização.
[056] A Figura 4 mostra uma ilustração das plataformas de amostra múltipla, compreendendo plataformas individuais no formato de pastilhas, mais particularmente pastilhas de alumínio, sendo submetidas a um método de secagem em uma chapa quente com temperatura variando de entre 37°C a 80°C, podendo, ou não, serem colocadas sobre um material condutor de calor para formação rápida de biofilme.
[057] A Figura 5 mostra exemplos de algumas das modalidades preferenciais da presente invenção em que a plataforma de amostra pode ainda possuir diferentes sistemas de identificação na face posterior a que receberá a amostra, como por exemplo: sequências numéricas, código de barras ou
QR code. [058] A Figura 6 mostra um workflow de um sistema de análise de dados que compreende o preparo da amostra usando a plataforma de amostra da presente invenção e posterior obtenção dos espectros.
[059] A Figura 7 demostra a diferença de espectro entre plataformas de amostra produzidas com diferentes materiais. Sendo a plataforma de amostra do presente pedido de patente no formato de pastilhas de alumínio (preto), plataformas de papel (vermelho) e plataformas de plástico (em azul). Percebe-se de forma evidente a presença de modos vibracionais em 3000-2750 cm-1, 1500-1250 cm-1 e 700-750 cm-1 para a plataforma de plástico e diversas regiões de modos vibracionais para a plataforma de papel (3700-2500 cm-1 e 1750-750 cm-1), o que pode modificar o sinal de análise de diversos componentes biológicos. Por outro lado, o espectro de infravermelho produzido pela plataforma de alumínio praticamente não apresenta variações no espectro, o que indica uma excelente matriz de suporte e secagem para análise de amostras biológicas de forma sustentável.
[060] A Figura 8 demonstra que a assinatura espectral de uma amostra biológica de saliva inserida diretamente no cristal de ATR-FTIR (preto) é equivalente a assinatura espectral de saliva inserida na plataforma de amostra de alumínio (azul). Em conjunto esses dados comprovam a possibilidade de utilização da plataforma de amostra do presente pedido de patente para medidas de ATR-FTIR sem comprometer a qualidade da amostra analisada. O perfil espectral da plataforma de amostra na configuração de pastilhas de alumínio (vermelho) demonstra que o sinal espectral do alumínio não se sobrepõe ao espectro de saliva. [061] A Figura 9 mostra a comparação do espectro de infravermelho entre uma amostra biológica, mais particularmente saliva, inserida em uma plataforma de papel e apenas a plataforma de papel sem amostra. Considerando que em diversos modos vibracionais o componente do papel (preto) se sobrepõe ao perfil com saliva na plataforma de papel (vermelho), a Figura 9 demonstra que o papel não é uma matriz boa para ser usada como uma plataforma para amostras biológicas para análise do perfil espectral. Sua utilização pode ocorrer em análises de amostras focadas na região de amida I e amida II na região espectral entre 1750-1500 cm- 1.
[062] A Figura 10 demonstra a comparação do espectro de FTIR de lavado de swab de nasofaringe com uma aplicação da amostra na plataforma em forma de pastilha de alumínio da presente invenção, ou com duas, três ou quatro aplicações intercaladas com secagem de 5 min em chapa quente 80°C.
[063] A Figura 10 demonstra o potencial das plataformas de pastilhas de alumínio do presente invento para procedimentos em que é necessário um conjunto maior de pipetagens para concentração da amostra de lavado de swab de nasofaringe. Percebe-se que é possível fazer uma sequência diversas pipetagens com secagem intermitente e ocorre uma preservação do sinal espectral para uma aplicação (preto), duas aplicações (vermelho), três aplicações (azul) ou quatro aplicações (verde) intercaladas com períodos de secagem de 5 min em chapa quente 80°C.
[064] A Figura 11 demonstra o espectro de ATR-FTIR para amostras de saliva total mensuradas imediatamente após a coleta (preto), após 6 horas (vermelho), 24 horas (azul), 48 horas (verde) e 72 horas (violeta) armazenadas em gelo. De forma geral percebe-se uma manutenção do espectro em infravermelho nos diferentes modos vibracionais. No entanto, percebe-se uma tendência de instabilidade no modo vibracional entre 1000-1100 cm-1, indicando necessidade de parâmetros de armazenamento similares quando este modo vibracional for foco do estudo.
[065] A Figura 12 demonstra o espectro de ATR-FTIR para amostras de saliva total mensuradas imediatamente após a coleta (preto) e após 6 horas (vermelho), 24 horas (azul), 48 horas (verde) e 72 horas (violeta) armazenadas em temperatura ambiente. De forma geral percebe-se uma manutenção do espectro em infravermelho nos diferentes modos vibracionais. No entanto, percebe-se uma tendência de instabilidade em alguns modos vibracionais, destacando: 1000-1100 cm-1, 1250-1300 cm-1, 1420-1460 cm-1 e 3100-3000 cm-1 indicando necessidade de parâmetros de armazenamento similares quando este modo vibracional for foco do estudo. Adicionalmente, percebe-se uma maior variação das amostras em comparação as amostras armazenadas em gelo.
[066] A Figura 13 demonstra a comparação do espectro entre o sobrenadante da saliva Oh e o efeito de armazenamento em gelo durante 6h, 24h, 48h e 72h. Considerando que na saliva total pode conter restos alimentares e debris celulares, a análise foi repetida com o sobrenadante salivar após centrifugação em 2600 G, 4°C durante 15 minutos. O espectro de ATR-FTIR para amostras de sobrenadante da saliva mensurado imediatamente após a coleta (preto) e após 6 horas (vermelho), 24 horas (azul), 48 horas (verde) e 72 horas (violeta) armazenadas em gelo. De forma geral percebe-se uma manutenção do espectro em infravermelho nos diferentes modos vibracionais . No entanto, percebe-se uma tendência de instabilidade no modo vibracional entre 1000-1100 cm-1, indicando necessidade de parâmetros de armazenamento similares quando este modo vibracional for foco do estudo. Os dados foram similares a manutenção de saliva total em gelo nos mesmos períodos.
[067] A Figura 14 demonstra a comparação do espectro entre o sobrenadante da saliva Oh e o efeito de armazenamento de temperatura ambiente durante 6h, 24h, 48h e 72h. Considerando que na saliva total pode conter restos alimentares e debris celulares, a análise foi repetida com o sobrenadante salivar após centrifugação em 2600 G, 4°C durante 15 minutos. O espectro de ATR-FTIR para amostras de sobrenadante da saliva mensurado imediatamente após a coleta (preto) e após 6 horas (vermelho), 24 horas (azul), 48 horas (verde) e 72 horas (violeta) armazenadas em temperatura ambiente. De forma geral percebe-se uma manutenção do espectro em infravermelho nos diferentes modos vibracionais. No entanto, percebe-se uma tendência de instabilidade em alguns modos vibracionais, destacando: 1000-1100 cm-1, 1250- 1300 cm-1, 1420-1460 cm-1 e 3100-3000 cm-1 indicando necessidade de parâmetros de armazenamento similares quando este modo vibracional for foco do estudo. Adicionalmente, percebe-se uma maior variação das amostras em comparação as mesmas amostras armazenadas em gelo.
[068] A Figura 15 demonstra a comparação do espectro entre a saliva aplicada diretamente no cristal (preto), ou inserida na plataforma de amostra no formato de pastilha de alumínio a 23°C (vermelho), inserida na plataforma de amostra no formato de pastilha de alumínio a 37°C (azul), inserida na plataforma de amostra no formato de pastilha de alumínio a 50°C (verde) ou inserida na plataforma de amostra no formato de pastilha de alumínio a 80°C (violeta).
Considerando que o processo de secagem com temperaturas aumentadas permite uma aceleração do procedimento de secagem da amostra, fato que tem uma grande aplicabilidade industrial devido a possibilidade de utilização do sistema em alta escala, foi realizada análise das amostras que foram preparadas utilizando diferentes temperaturas de secagem da amostra na plataforma de alumínio. Apesar de diferenças no perfil espectral percebe-se que a saliva inserida diretamente no cristal ATR (preto), saliva em 23°C (vermelho), saliva em 37°C (azul), saliva em 50°C (verde) e saliva em 80°C (violeta) mantém a presença de todos os modos vibracionais, o que indica que podem ser utilizadas como método de alta-escala desde que todas as amostras do estudo sejam secadas na mesma temperatura. Em caso de alteração no padrão de temperatura percebe-se uma tendência de instabilidade em alguns modos vibracionais, destacando: 900- 1200 cm-1, 1250-1200 cm-1 e 3300-2800 cm-1. O tempo de secagem foi respectivamente de 37 minutos, 47 minutos, 19 minutos, 12 minutos e 5.35 minutos, desta forma podendo o processo de secagem acelerar em até 7 vezes o preparo da amostra usando a plataforma de amostra da presente invenção, sem afetar na qualidade do espectro de infravermelho produzido.
[069] A Figura 16 demonstra a comparação do espectro entre uma amostra de gargarejo inserido na plataforma de amostra no formato de pastilha de alumínio a 23°C (preto), a 37°C (vermelho), a 50°C (azul) ou a 80°C (verde).
Considerando que o processo de secagem com temperaturas elevadas permite uma aceleração do procedimento de secagem da amostra, fato que tem uma grande aplicabilidade industrial devido a possibilidade de utilização do sistema em alta escala, foi realizada análise de outra amostra biológica em diferentes temperaturas da placa de aquecimento. Apesar de diferenças no perfil espectral percebe-se que o gargarejo de 3 mL de solução salina e água por 10 segundos, gargarejo em 23°C (preto), em 37°C (vermelho), em 50°C (azul) e saliva em 80°C (verde) mantém a presença de todos os modos vibracionais, o que indica que podem ser utilizadas como método de larga escala desde que todas as amostras do estudo sejam secadas na mesma temperatura. O tempo de secagem foi respectivamente de 48 minutos, 19 minutos, 12 minutos, e 4.4 minutos até a formação do filme, desta forma podendo o processo de secagem acelerar em até 11 vezes utilizando a plataforma de amostra da presente invenção, sem afetar na qualidade do espectro de infravermelho produzido.
[070] A Figura 17 demonstra a comparação do espectro entre lavado de swab nasal aplicado diretamente no cristal (preto), ou inserida na plataforma de amostra no formato de pastilha de alumínio a 23°C (vermelho), a 37 °C (azul), a
50 C (verde) ou a 80 C (violeta). Como mencionado previamente, devido a interferência do processo de secagem com temperaturas aumentadas para grande aplicabilidade industrial devido a possibilidade de utilização do sistema em larga escala, foi realizada uma análise das amostras em diferentes temperaturas de secagem para lavado de swab nasal. Apesar de diferenças no perfil espectral percebe-se que o lavado de swab nasal inserido diretamente no cristal ATR (preto), em 23°C (vermelho), em 37°C (azul), em 50°C (verde) e em 80°C (violeta) mantém a presença de todos os modos vibracionais, o que indica que podem ser utilizadas como método de alta-escala desde que todas as amostras do estudo sejam secadas na mesma temperatura. O tempo de secagem foi respectivamente de 204 minutos, 88 minutos, 73 minutos, 48 minutos e 20 minutos para 4 aplicações por amostra, desta forma podendo o processo de secagem da amostra acelerar em até 10 vezes o processo usando a plataforma de amostra da presente invenção, sem afetar na qualidade do espectro de infravermelho produzido.
[071] A Figura 18 demonstra a comparação do espectro entre amostras que tiveram um processo de secagem a temperatura ambiente, diretamente na plataforma de amostra em formato de pastilha de alumínio, ou com secagem associada a adição de álcool 100% na proporção 1:1 com a amostra na plataforma de amostra em formato de pastilha de alumínio. O perfil espectral infravermelho com a adição de volume 1:1 de amostras de saliva e álcool 100% para sobrenadante de saliva pura (preto), sobrenadante de saliva com álcool 100%
(vermelho), saliva total pura (azul) e saliva total com álcool 100% (verde). Percebe-se a manutenção da expressão de todos os modos vibracionais e também a ausência de mudança de perfil com o álcool 100%, o que pode ser utilizado como estratégia microbicida para amostras contaminadoas com fungos, vírus e bactérias.
[072] O aspecto central da presente invenção é proporcionar uma plataforma de amostra de baixíssimo custo, reciclável, e reutilizável para recebimento de amostras com respectiva secagem com intuito de formação de biofilme de forma rápida e permitindo armazenamento de amostras diretamente na pastilha para mensuração em plataformas fotônicas (convencionalmente FTIR), sem interferir na qualidade do espectro formado e com nível baixíssimo de ruído [073] Na plataforma de amostra aqui descrita o sistema não funciona como elemento reflexivo interno (IRE) mas permite a secagem e armazenamento do biofilme da amostra que se adere a pastilha.
[074] Para o protocolo de secagem até a formação de biofilme foram testados os seguintes protocolos: temperatura ambiente e usando uma fonte de calor para aquecer a plataforma de amostra, onde a fonte de calor pode ser por exemplo uma placa de aquecimento com temperatura entre 37°C a 80°C: (1) secagem de biofluido puro (Imΐ =~4minutos); (2) secagem de biofluido homogeneizado (1:1) em etanol para rápida evaporação e redução de viabilidade de microrganismos; (3) secagem de biofluido homogeinizado (1:1) em metanol para rápida evaporação e redução de viabilidade de microrganismos; (4) secagem de biofluido homogeneizado (1:1) em acetonitrila para rápida evaporação e redução de viabilidade de microrganismos.
[075] A plataforma de amostra individual no formato de pastilha de alumínio é utilizada em substituição aos slices de vidro pois o alumínio é um bom condutor de calor e as lâminas de vidro tem características mais similares com isolante de calor. Adicionalmente, uma vantagem do uso de uma plataforma de amostra que é uma pastilha de alumínio ou com cobertura de alumínio é uma redução de custos da produção das pastilhas e da flexibilidade de poder usá-las individualmente, com pequenos volumes de material e possibilidade de armazenamento das amostras sem utilização de suporte. A plataforma de amostra de alumínio pode ter um tamanho mínimo da dimensão do elemento reflexivo interno do próprio aparelho (geralmente 2,5 a 3 mm2) e podem ter tamanhos maiores até 8 mm2. Considerando que o alumínio é um bom condutor de calor as pastilhas podem ter de 0,1 mm até 2 mm de espessura. As plataformas de amostra podem ainda compreender um sistema de identificação por números impressos diretamente na pastilha de alumínio, código de barras, código QR, etiquetas ou qualquer outro sistema.
[076] Este sistema pode ser adaptado em um equipamento de ATR-FTIR de bancada ou portátil, em que o acessório de ATR (costumeiramente de diamante) tenha tamanho inferior ao da plataforma de amostra de alumínio, sem necessidade de qualquer alteração na configuração de espelhos ou ângulo do feixe infravermelho da plataforma de ATR-FTIR.
[077] A análise por técnicas fotônicas, frequentemente o ATR-FTIR mas também podem ser expandida para outras técnicas analíticas, com as amostras sob as plataformas de alumínio da presente invenção permitem análises univariadas de modos vibracionais, análises de segunda derivada, análises multivariadas como PCA (Principal Component Analysis) e HCA (Hierarquical Cluster Analysis) e análises de aprendizado de máquina e Inteligência Artificial.
[078] O presente pedido de patente refere-se a uma plataforma de amostra individual para uso em sistema de espectroscopia no infravermelho (FTIR), ainda mais particularmente ATR-FTIR, em que a plataforma de amostra individual é fabricada com material que compreenda boa condutividade térmica e baixa interferência de ruído no espectro formado, mais particularmente feito ou revestido de alumínio, ou por material com propriedades e características físico-químicas similares ao do alumínio. O referido material poderá ser: alumínio; ligas-metálicas de alumínio; e combinação de um outro material que possua boa condutividade térmica com o alumínio, mais particularmente em que o referido material compreende o núcleo e este é revestido por alumínio.
[079] A referida plataforma de amostra compreende um formato de pastilha circular, ovalado, quadrado, retangular ou outro adequado para uso em um sistema de espectroscopia de infravermelho. A plataforma de amostra compreende ainda um tamanho mínimo equivalente ao tamanho mínimo da dimensão do elemento reflexivo interno do aparelho de espectroscopia de infravermelho, mais particularmente um tamanho que pode variar entre cerca de 2,5 mm2 até 8 mm2, com uma espessura de pastilha que pode variar de cerca de 0,1 mm até 2 mm. [080] A referida plataforma de amostra pode compreender ainda meios para identificação da amostra a ser analisada, podendo ser impressos diretamente na plataforma ou fixado na plataforma no lado oposto ao que recebe a amostra ou nas laterais da plataforma; os meios de identificação podem abranger: números, códigos alfanuméricos, códigos de barras, códigos QR, marcações outras de identificação ou etiquetas. [081] O presente pedido de patente refere-se também a um sistema de plataformas de amostra para uso em espectroscopia de infravermelho onde o sistema pode compreender duas ou mais das referidas plataformas de amostra individuais e ainda pode compreender uma estrutura de suporte para as plataformas. A estrutura de suporte pode compreender regiões especificas para abrigar ou fixar cada uma das plataformas de amostra individuais, de modo que possa ser configurada de acordo com a necessidade; ou em que a estrutura de suporte pode compreender uma pluralidade de plataformas individuais pré-definida e já integradas a sua estrutura.
[082] O presente pedido de patente refere-se ainda a um método para reduzir o tempo e aumentar a escala de análise de amostras em um sistema de espectroscopia no infravermelho em que o método compreende as etapa de preparo das plataformas de amostra individuais, ou o sistema de plataformas de amostra, com as amostras de interesse a serem avaliadas e analisar as amostras nas plataformas no sistema de espectroscopia de infravermelho.
[083] A etapa de preparar as plataformas ou sistema com as referidas amostras compreende as seguintes etapas:
- aplicação da amostra na plataforma de amostra; e
- secagem da amostra para formação de biofilme.
[084] A etapa de aplicação da amostra pode ser repetida, mais preferencialmente de 2 a 4 vezes, cada aplicação adicional intercalada com uma etapa de secagem.
[085] A etapa de secagem da amostra pode compreender diferentes métodos ou combinação destes, como a exposição à temperatura ambiente; ou aquecimento dentro de uma faixa de temperatura controlada e/ou fluxo de ar controlado e/ou adição de substância volátil na amostra.
[086] A etapa de secagem da amostra com temperatura controlada compreende o aquecimento da plataforma de amostra através de uma fonte controlada de calor a uma temperatura que pode variar de 37°C a 80°C, sendo o tempo de secagem reduzido quanto maior for a temperatura utilizada.
[087] A adição de substância volátil compreende a adição de álcool 100% na proporção em volume de 1:1 com a amostra, preferencialmente o álcool é selecionado do grupo que engloba etanol, metanol e acetonitrila.
[088] O referido método ainda pode compreender as etapas de: identificação da amostra (por meio impresso diretamente ou fixados na plataforma do lado oposto ao que recebe a amostra); os meios de identificação podem ser através de: números, códigos alfanuméricos, códigos de barras, códigos QR, marcações outras de identificação ou etiquetas; e
- armazenamento da plataforma de amostra ou sistema de plataformas de amostra já com as amostras secas, em que o referido armazenamento ocorre em ambiente refrigerado com gelo ou de baixa temperatura.
[089] O presente pedido refere-se ainda ao uso da plataforma de amostra individual ou do sistema de plataformas de amostra, em que é em um método de análise de amostras em um sistema de espectroscopia de infravermelho.
[090] O presente pedido de patente refere-se também a um
Kit para personalização e otimização de plataformas de amostra para uso em sistema de espectroscopia de infravermelho em que compreende:
- uma pluralidade das referidas plataformas de amostra individuais; e
- ao menos uma estrutura de suporte compreendendo uma pluralidade de regiões especificas para abrigar ou fixar cada uma das plataformas de amostra individuais, de modo que possa ser configurada de acordo com a necessidade de uso. [091] A referida plataforma de amostra, sistema ou kit aqui descritos, podem ser usados com amostras biológicas para o diagnóstico de diversas doenças ou em técnicas forenses, detecção de compostos orgânicos e inorgânicos com aplicações industriais, na agropecuária e em áreas de toxicologia.
[092] Embora o presente pedido de patente tenha descrito a matéria objeto da presente invenção com um certo grau de detalhamento a titulo de ilustração e exemplificação para fins de clareza e compreensão, evidentemente certas alterações e modificações podem ser praticadas no escopo das reivindicações em anexo.
[093] Os exemplos descritos neste relatório não são limitativos, permitindo que um técnico no assunto altere alguns aspectos ou componentes da presente invenção como aqui descritos, sem se distanciar do escopo da presente invenção.

Claims

REIVINDICAÇÕES
1. Plataforma de amostra individual para uso em sistema de espectroscopia no infravermelho caracterizada a plataforma de amostra individual é fabricada com material que compreenda boa condutividade térmica e baixa interferência de ruido no espectro formado.
2. Plataforma de amostra de acordo com a reivindicação 1, caracterizada pelo fato de que o referido material é selecionado do grupo que consiste de: alumínio; ligas-metálicas de alumínio; e combinação de um outro material que possua boa condutividade térmica com o alumínio, mais particularmente em que o referido outro material compreende o núcleo e este é revestido por alumínio.
3. Plataforma de amostra de acordo com a reivindicação 1 ou 2, caracterizada pelo fato de que a referida plataforma de amostra compreende um formato de pastilha circular, ovalado, quadrado, retangular ou outro adequado para uso em um sistema de espectroscopia no infravermelho .
4. Plataforma de amostra de acordo com qualquer uma das reivindicações 1 a 3, caracterizada pelo fato de que a plataforma de amostra compreende um tamanho mínimo equivalente ao tamanho mínimo da dimensão do elemento reflexivo interno do aparelho de espectroscopia de infravermelho .
5. Plataforma de amostra de acordo com a reivindicação 4, caracterizada pelo fato de que a plataforma individual de amostra compreende um tamanho que pode variar entre cerca de 2,5 mm2 até 8 mm2, com uma espessura de pastilha que pode variar de cerca de 0,1 mm até 2 mm.
6. Plataforma de amostra de acordo com qualquer uma das reivindicações 1 a 5, caracterizada pelo fato de a plataforma compreender ainda meios para identificação da amostra a ser analisada, em que os referidos meios de identificação podem ser impressos diretamente na plataforma ou fixadas na plataforma no lado oposto ao que recebe a amostra ou nas laterais da plataforma; em que os meios de identificação são selecionados do grupo que consiste de: números, códigos alfanuméricos, códigos de barras, códigos QR, marcações outras de identificação ou etiquetas.
7. Sistema de plataformas de amostra para uso em sistema de espectroscopia no infravermelho caracterizado pelo fato de que compreende duas ou mais plataformas de amostra individuais tal como descritas nas reivindicações 1 a 6, e ainda pode compreender uma estrutura de suporte para as plataformas.
8. Sistema de acordo com a reivindicação 7, caracterizado pelo fato de que a estrutura de suporte pode compreender regiões especificas para abrigar ou fixar cada uma das plataformas de amostra individuais, de modo que possa ser configurada de acordo com a necessidade; ou em que a estrutura de suporte pode compreender uma pluralidade de plataformas individuais pré-definida e já integradas a sua estrutura.
9. Método para reduzir o tempo e aumentar a escala de análise de amostras em um sistema de espectroscopia de infravermelho caracterizado pelo fato de que compreende as etapa de preparar as plataformas de amostra, ou o sistema de plataformas de amostra, com as amostras de interesse a serem analisadas e analisar as amostras nas plataformas de amostra em um sistema de espectroscopia de infravermelho.
10. Método de acordo com a reivindicação 9, caracterizado pelo fato de que a etapa de preparar as plataformas ou sistema com as referidas amostras compreende as etapas de:
- aplicação da amostra na plataforma de amostra; e
- secagem da amostra para formação de biofilme.
11. Método de acordo com a reivindicação 10, caracterizado pelo fato de que a etapa de aplicação da amostra pode ser repetida, mais preferencialmente de 2 a 4 vezes, cada aplicação adicional intercalada com uma etapa de secagem.
12. Método de acordo com a reivindicação 10 ou 11, caracterizado pelo fato de que a etapa de secagem da amostra pode compreender diferentes métodos de secagem ou combinação destes, como a exposição à temperatura ambiente; ou aquecimento dentro de uma faixa de temperatura controlada e/ou fluxo de ar controlado e/ou adição de substância volátil na amostra.
13. Método de acordo com a reivindicação 12, caracterizado pelo fato de que a etapa de secagem da amostra com temperatura controlada compreende o aquecimento da plataforma de amostra através de uma fonte controlada de calor a uma temperatura que pode variar de 37°C a 80°C, sendo o tempo de secagem reduzido quanto maior for a temperatura utilizada.
14. Método de acordo com a reivindicação 12, caracterizado pelo fato de que a adição de substância volátil compreende a adição de álcool 100% na proporção em volume de 1:1 com a amostra, preferencialmente em que o álcool é selecionado do grupo que consiste de: etanol, metanol e acetonitrila .
15. Método de acordo com qualquer uma das reivindicações 9 a 14, caracterizado pelo fato de que o método ainda compreende as etapas de:
- identificação da amostra em que os referidos meios de identificação podem ser impressos diretamente ou fixadas na plataforma de amostra no lado oposto ao que recebe a amostra ou nas laterais da plataforma; em que os meios de identificação são selecionados do grupo que consiste de: números, códigos alfanuméricos, códigos de barras, códigos
QR, marcações outras de identificação ou etiquetas; e
- armazenamento da plataforma de amostra ou sistema de plataformas de amostra já com as amostras secas, em que o referido armazenamento ocorre em ambiente refrigerado com gelo ou de baixa temperatura.
16. Uso da plataforma de amostra individual tal como descrita em qualquer uma das reivindicações 1 a 6, ou do sistema de plataformas de amostra tal como descrito em qualquer uma das reivindicações 7 ou 8, caracterizado pelo fato de que é em um método de análise de amostras em um sistema de espectroscopia de infravermelho.
17. Kit para personalização de plataformas de amostra para uso em sistema de espectroscopia de infravermelho caracterizado pelo fato de que compreende:
- uma pluralidade de plataformas de amostra individuais tal como descrita em qualquer uma das reivindicações 1 a 6; e
- ao menos uma estrutura de suporte compreendendo uma pluralidade de regiões especificas para abrigar ou fixar cada uma das plataformas de amostra individuais, de modo que possa ser configurada de acordo com a necessidade de uso.
PCT/BR2021/050322 2020-07-30 2021-07-30 Plataforma de amostra para uso em espectroscopia de infravermelho, sistema, kit, método e uso da mesma WO2022020930A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020200156004 2020-07-30
BR102020015600-4A BR102020015600A2 (pt) 2020-07-30 2020-07-30 Plataforma de amostra reutilizável para uso em espectroscopia de infravermelho, sistema, kit, método e uso da mesma

Publications (1)

Publication Number Publication Date
WO2022020930A1 true WO2022020930A1 (pt) 2022-02-03

Family

ID=80038044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2021/050322 WO2022020930A1 (pt) 2020-07-30 2021-07-30 Plataforma de amostra para uso em espectroscopia de infravermelho, sistema, kit, método e uso da mesma

Country Status (2)

Country Link
BR (1) BR102020015600A2 (pt)
WO (1) WO2022020930A1 (pt)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243594A (ja) * 2001-02-14 2002-08-28 Mitsubishi Electric Corp サンプリング用治具及びそれを用いた赤外分光測定法
CN107741407A (zh) * 2017-11-13 2018-02-27 华南理工大学 一种基于小尺寸薄膜材料红外光谱测试的夹具及测试方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243594A (ja) * 2001-02-14 2002-08-28 Mitsubishi Electric Corp サンプリング用治具及びそれを用いた赤外分光測定法
CN107741407A (zh) * 2017-11-13 2018-02-27 华南理工大学 一种基于小尺寸薄膜材料红外光谱测试的夹具及测试方法

Also Published As

Publication number Publication date
BR102020015600A2 (pt) 2022-02-08

Similar Documents

Publication Publication Date Title
US6479019B1 (en) Sensor and sensor assembly for detecting a target gas in a breath sample
CA2942536C (en) Sample collection unit
CN1934444A (zh) 用于确定生理液体中的分析物浓度的分析物测试系统
JP2008545125A (ja) 非揮発性アナライト濃度の測定方法
JPH02163637A (ja) 液体化学分析装置
BR112019020255A2 (pt) lâmina de amostra para uso em um espectrômetro, dispositivo para uso com um espectrômetro, e, métodos para medir uma amostra e para preparar uma amostra para análise espectral ir.
US20140011289A1 (en) Arrangement for preservation of biological samples
Thaler et al. Medical applications of electronic nose technology: review of current status
WO2022020930A1 (pt) Plataforma de amostra para uso em espectroscopia de infravermelho, sistema, kit, método e uso da mesma
Jiang et al. Sub‐second heat inactivation of coronavirus using a betacoronavirus model
Liu et al. Citrate functionalized zirconium-based metal organic framework for the fluorescent detection of ciprofloxacin in aqueous media
Naddaf et al. Application of carbon nanotubes modified with a Keggin polyoxometalate as a new sorbent for the hollow‐fiber micro‐solid‐phase extraction of trace naproxen in hair samples with fluorescence spectrophotometry using factorial experimental design
CN103900864A (zh) 脱落细胞芯片
CN106442516B (zh) 一种利用纸芯片比色分析装置检测核酸浓度的方法
CN114854403B (zh) 一种橙色荧光碳点及其制备方法和应用
CN208532801U (zh) 癌症相关的eb病毒检测试剂盒
CN103278663B (zh) 一种基于玻璃微针的单分子力谱方法
CN110903234A (zh) 一类可用于检测塔崩毒气模拟物dcnp的花半菁荧光探针及合成方法和应用
JP2024504297A (ja) 病原性標的のためのループ媒介等温増幅(lamp)分析
CN209028056U (zh) 一种材料吸附性能和光催化性能实验装置
PT103159B (pt) Microlaboratório para análise de fluídos biológicos usando luz branca como fonte de emissão
FI57665C (fi) Kuvettenhet
CN215179025U (zh) 靶板干燥装置及包括其的微生物质谱鉴定样本制备系统
CN101424650B (zh) 检测氯霉素的电导型传感电极及其分子印迹膜的制备方法
CN109239278A (zh) 一种材料吸附性能和光催化性能实验装置及实验方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21848628

Country of ref document: EP

Kind code of ref document: A1