WO2022019507A1 - Method for recovering carboxylic acids and amide compounds by using pressure swing distillation - Google Patents

Method for recovering carboxylic acids and amide compounds by using pressure swing distillation Download PDF

Info

Publication number
WO2022019507A1
WO2022019507A1 PCT/KR2021/008109 KR2021008109W WO2022019507A1 WO 2022019507 A1 WO2022019507 A1 WO 2022019507A1 KR 2021008109 W KR2021008109 W KR 2021008109W WO 2022019507 A1 WO2022019507 A1 WO 2022019507A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxylic acid
distillation column
amide compound
acetic acid
dmf
Prior art date
Application number
PCT/KR2021/008109
Other languages
French (fr)
Korean (ko)
Inventor
강신영
나유진
Original Assignee
한국석유공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국석유공업 주식회사 filed Critical 한국석유공업 주식회사
Publication of WO2022019507A1 publication Critical patent/WO2022019507A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/22Separation; Purification; Stabilisation; Use of additives
    • C07C231/24Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C237/06Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • C07C51/46Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation by azeotropic distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid

Definitions

  • the present invention relates to a method for recovering useful components from a waste solvent, and more particularly, to a method for recovering each component by using the difference in the azeotropic composition of a carboxylic acid and an amide compound under high vacuum conditions and atmospheric pressure conditions.
  • Acetic acid and DMF form an azeotropic mixture at maximum temperature, and according to literature, the azeotropic temperature is 159 °C and the azeotropic composition is 26% acetic acid and 74% DMF. 3MP can be removed, and a mixture of 17% acetic acid and 83% DMF can be obtained as the bottom of the tower.
  • Extractive distillation, azeotropic distillation, pressure swing distillation, etc. are suggested as a method for separating an azeotrope, and among these methods, an efficient method according to the characteristics of the azeotrope can be used to separate azeotropes. However, this choice is not possible in all these cases, and even if separation of the azeotrope is possible by the selected method, it may not be economical.
  • Japanese Patent Laid-Open No. 2002-363150 proposes a method for separating acetic acid and dimethylformamide by using toluene as an azeotrope with acetic acid but not with dimethylformamide.
  • Korean Patent Publication No. 10-2010-0130219 proposes a method of removing carboxylic acid from a solution containing tertiary amide by contacting a solution containing carboxylic acid and tertiary amide with an extraction medium containing trilaurylamine, and have.
  • the above-mentioned prior art requires a third component, economical efficiency is low, and the efficiency of the separation process is not sufficient, so a separation technology to supplement this is required.
  • the method for recovering the carboxylic acid and amide compound of the present invention has been devised to solve the above problems, and in consideration of the characteristics of the azeotrope of acetic acid and DMF, separation capable of effectively separating DMF from the azeotrope of acetic acid and DMF After selecting a method, based on the selected method, we intend to derive an efficient and economical process scheme that can recover acetic acid and DMF from waste solvents including acetic acid and DMF.
  • the present invention may also have the object of achieving these objects and other objects that can be easily derived by a person skilled in the art from the general description of the present specification in addition to the above clear objects.
  • a mixture containing a carboxylic acid and an amide compound is put into a high vacuum distillation column, the amide compound is recovered through the top of the high vacuum distillation column, and the bottom of the high vacuum distillation column obtaining a mixture comprising a carboxylic acid and an amide compound having a first azeotropic composition (S11);
  • the mixture containing the carboxylic acid and the amide compound having the first azeotropic composition is put into an atmospheric distillation column, the carboxylic acid is recovered at the top of the atmospheric distillation column, and the mixture containing the carboxylic acid and the amide compound having the second azeotropic composition at the bottom of the atmospheric distillation column obtaining (S12); and a step (S13) of recirculating all or part of the mixture including the carboxylic acid and the amide compound having the second azeotropic composition into the high vacuum distillation column (S13).
  • the bottom pressure of the high vacuum distillation column may be 200 torr or less, 150 torr or less, or 100 torr or less.
  • the DMF recovered to the top of the high vacuum distillation column may have a purity of 97% or more, 98% or more, or 99% or more.
  • the bottom pressure of the atmospheric distillation column may be 700 to 800 torr, 720 to 780 torr, or 750 to 770 torr.
  • the acetic acid recovered to the top of the atmospheric distillation column may have a purity of 95% or more, 97% or more, or 98% or more.
  • 1 to 100 parts by weight, 50 to 99.99 parts by weight, 80 to 99.9, or 90 to 99 parts by weight may be recycled based on 100 parts by weight of the mixture including the carboxylic acid having the second azeotropic composition and the amide compound.
  • step (S10) may include a step (S10) of adding a waste solvent containing water, carboxylic acid, and an amide compound to the distillation column, separating water from the top of the distillation column, and obtaining a mixture containing the carboxylic acid and the amide compound with the bottom of the distillation column (S10); have.
  • the waste solvent further includes a pyridine-based compound, and the pyridine-based compound may be separated together with water at the top of the distillation column.
  • the pyridine-based compound may include 3-methylpyridine.
  • carboxylic acid and the amide compound may form an azeotrope at maximum temperature when mixed.
  • carboxylic acid may be acetic acid.
  • the amide compound may be N,N-dimethylformamide.
  • the carboxylic acid and the amide compound having the first azeotrope composition based on a total of 100 parts by weight of the carboxylic acid and the amide compound having the first azeotropic composition, 30 to 40 parts by weight, 32 to 38 parts by weight, or 33 parts by weight of the carboxylic acid to 37 parts by weight.
  • the carboxylic acid and amide compound having the second azeotropic composition are used in an amount of 20 to 30 parts by weight, 22 to 29 parts by weight, or 24 parts by weight of the carboxylic acid based on 100 parts by weight of a total of 100 parts by weight of the carboxylic acid and amide compound having the second azeotropic composition. to 28 parts by weight.
  • the high vacuum distillation column may be a packing tower.
  • the atmospheric distillation column may be a packing tower.
  • the atmospheric distillation column may be provided with a forced circulation reboiler.
  • a mixture containing a carboxylic acid, an amide compound, and a quinoline-based compound is put into a high vacuum distillation column, the amide compound is recovered through the top of the high vacuum distillation column, and the bottom of the high vacuum distillation column is used obtaining a mixture including a carboxylic acid having a first azeotropic composition, an amide compound, and a quinoline-based compound (S21);
  • the mixture containing the carboxylic acid, the amide compound, and the quinoline compound having the first azeotropic composition is put into an atmospheric distillation column, the carboxylic acid is recovered at the top of the atmospheric distillation column, and the carboxylic acid and the amide having a second azeotropic composition at the bottom of the atmospheric distillation column obtaining a mixture comprising the compound, and a quinoline-based compound (S22); and a step (S23) of recirculating all
  • all or part of the mixture including the carboxylic acid and the amide compound having the second azeotropic composition, and the quinoline compound is added to a distillation column to remove the quinoline compound, and then added to the high vacuum distillation column (S24); may include more.
  • the quinoline-based compound may be recovered to the bottom of the distillation column.
  • a waste solvent containing water, carboxylic acid, an amide compound, and a quinoline-based compound is added to the distillation column, water is separated at the top of the distillation column, and carboxylic acid, an amide compound, and a bottom of the distillation column It may include; obtaining a mixture containing a quinoline-based compound (S20).
  • the quinoline-based compound may be quinoline, methylquinoline, or 3-methylquinoline (3-methylquinoline).
  • the high vacuum distillation column may be a packing tower.
  • the atmospheric distillation column may be a packing tower.
  • carboxylic acid may be acetic acid.
  • the amide compound may be N,N-dimethylformamide.
  • the present invention separates the azeotropic mixture of acetic acid and DMF by pressure swing distillation instead of the neutralization method of acetic acid using caustic soda. Severe dimethylamine is not generated.
  • 1 shows a conventional DMF recovery method of neutralizing and removing acetic acid with caustic soda.
  • FIG. 2 is a graph showing the composition according to the CLV of the overhead distillate in a batch distillation experiment (vacuum distillation) of a mixture of acetic acid and DMF.
  • FIG 3 is a graph showing the composition according to the CLV of the overhead distillate in a batch distillation experiment (atmospheric distillation) of a mixture of acetic acid and DMF.
  • FIG. 5 shows a pressure swing distillation scheme of a mixture of acetic acid and DMF according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a method for recovering acetic acid and DMF using pressure swing distillation according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method for recovering acetic acid and DMF using pressure swing distillation according to an embodiment of the present invention.
  • first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms.
  • the above terms are used only for the purpose of distinguishing one component from another.
  • a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
  • the present invention relates to a method for recovering a carboxylic acid and an amide compound for separating a carboxylic acid and an amide compound contained in a waste solvent generated during the manufacture of a polyimide film for semiconductors and displays, wherein the carboxylic acid and the amide compound forming an azeotrope are inputting the mixture containing the mixture into a high vacuum distillation column, recovering the amide compound to the top of the high vacuum distillation column, and obtaining a mixture of the carboxylic acid and the amide compound having a first azeotropic composition to the bottom of the high vacuum distillation column (S11); Putting a mixture of carboxylic acid and amide compound having the first azeotropic composition into an atmospheric distillation column, recovering carboxylic acid to the top of the atmospheric distillation column, and obtaining a mixture of carboxylic acid and amide compound having a second azeotropic composition to the bottom of the atmospheric distillation column ( S12); And it relates to a method for recovering a carboxylic acid and
  • the carboxylic acid and the amide compound form an azeotropic mixture at maximum temperature, and thus provide a useful method for separating each component constituting the mixture.
  • the carboxylic acid may be acetic acid, wherein the amide compound is an amide compound that forms an azeotropic mixture with acetic acid at maximum temperature.
  • the amide compound may be a tertiary amide compound, and may be formamide, N,N-dimethylformamide, N,N-diethylformamide, or N-methyl-N-ethylformamide.
  • the present invention separates and recovers a mixture of Acetic Acid (AA) and N,N-dimethylformamide (DMF) contained in waste solvents generated during the manufacture of polyimide films for semiconductors and displays.
  • AA Acetic Acid
  • DMF N,N-dimethylformamide
  • the composition of an azeotropic mixture of acetic acid and N,N-dimethylformamide (DMF) is acetic acid 26%, DMF 74%, and the azeotrope temperature is 159 ° C.
  • No literature on the composition could be found. Accordingly, the present inventor conducted an experiment to confirm the azeotropic composition of acetic acid and DMF under vacuum pressure conditions, and the azeotropic composition at 30 torr condition is 36% or more of acetic acid, compared to the azeotropic composition (26% of acetic acid) under atmospheric pressure conditions, It was confirmed that it was higher than 10%. Therefore, it was determined that separation of acetic acid and amide compound could be effectively achieved through pressure swing distillation using the difference in azeotrope between atmospheric pressure and vacuum.
  • FIG. 5 schematically shows a method for recovering a carboxylic acid and an amide compound according to the present invention, wherein the maximum temperature azeotropic mixture (A + B) such as acetic acid-DMF is through pressure swing distillation using the difference in azeotropic composition between vacuum and atmospheric pressure.
  • a + B the maximum temperature azeotropic mixture
  • acetic acid-DMF the maximum temperature azeotropic mixture
  • the third component is not required for the separation of the two components, the cost can be reduced, and the wastewater by the third component is not generated, so wastewater treatment is unnecessary and environment-friendly.
  • the recovery rate of the amide compound using the pressure swing distillation is very good.
  • a mixture containing a carboxylic acid and an amide compound is put into a high vacuum distillation column, the amide compound is recovered at the top of the high vacuum distillation column, and a mixture of a carboxylic acid and an amide compound having a first azeotropic composition is obtained at the bottom of the high vacuum distillation column.
  • the bottom pressure of the high vacuum distillation column may be 200 torr or less, 150 torr or less, or 100 torr or less.
  • the azeotropic composition ratio under the pressure in the above range shows a sufficient difference from the azeotrope composition ratio under normal pressure, thereby enabling component separation by pressure swing distillation.
  • the lower limit is not particularly limited, but the efficiency and economic feasibility of the process should be considered.
  • the high vacuum distillation column may be a packing tower capable of minimizing the differential pressure between the top and the bottom in order to maintain the bottom pressure as low as possible.
  • a high-purity amide compound is recovered from the top of the high-vacuum distillation column, and it may have a purity of 97% or more, 98% or more, or 99% or more.
  • a mixture containing a carboxylic acid having a first azeotropic composition and an amide compound is obtained at the bottom of the high vacuum distillation column.
  • the carboxylic acid and amide compound having the first azeotropic composition is an azeotropic mixture under high vacuum conditions, and based on 100 parts by weight of the carboxylic acid and the amide compound having the first azeotropic composition, 30 to 40 parts by weight, 32 to 38 parts by weight of the carboxylic acid , or 33 to 37 parts by weight, in this case, the carboxylic acid is acetic acid and the component other than this may be composed of DMF.
  • the mixture containing the carboxylic acid and the amide compound having the first azeotropic composition is put into an atmospheric distillation column, the carboxylic acid is recovered at the top of the atmospheric distillation column, and the carboxylic acid and the amide compound having a second azeotropic composition are obtained at the bottom of the atmospheric distillation column. to obtain a mixture containing
  • the bottom pressure of the atmospheric distillation column may be 700 to 800 torr, 720 to 780 torr, or 750 to 770 torr, and may be about 760 torr.
  • the atmospheric distillation column may be a packing tower capable of minimizing the differential pressure between the top and the bottom in order to minimize thermal decomposition of amide compounds such as DMF at the bottom.
  • Acetic acid of high purity is recovered to the top of the atmospheric distillation column, and it may have a purity of 95% or more, 97% or more, or 98% or more.
  • a mixture containing a carboxylic acid having a second azeotropic composition and an amide compound is obtained.
  • the carboxylic acid and the amide compound having the second azeotropic composition are an azeotropic mixture under atmospheric pressure.
  • the carboxylic acid Based on 100 parts by weight of the carboxylic acid and the amide compound having the second azeotropic composition, 20 to 30 parts by weight and 22 to 29 parts by weight of the carboxylic acid , or 24 to 28 parts by weight, in which case the carboxylic acid is acetic acid, and the component other than this may be composed of DMF.
  • dimethylamine generated by thermal decomposition of DMF is combined with acetic acid to produce DMAc (Dimethylacetamide) of about 10 % may be included in the residual liquid.
  • DMAc Dimethylacetamide
  • All or a part of the mixture of the carboxylic acid and the amide compound having the second azeotropic composition obtained by the bottom of the atmospheric distillation column is recycled into the high vacuum distillation column. Therefore, it may be mixed with the feed input to the high vacuum distillation column in step S11 and put into the high vacuum distillation column. At this time, 1 to 100 parts by weight, 50 to 99.99 parts by weight, 80 to 99.9, or 90 to 99 parts by weight may be recycled based on 100 parts by weight of the mixture including the acetic acid and the amide compound having the second azeotropic composition. Except for the mixture comprising the acetic acid and the amide compound having a second azeotropic composition that is recycled, it may be discharged to the outside.
  • the method for recovering the carboxylic acid and the amide compound according to the present invention may further include a step (S10) of pre-treatment before input to the high vacuum distillation column, which is a step of removing materials other than the carboxylic acid and the amide compound, which are the object of separation of the present invention,
  • a waste solvent containing water, carboxylic acid, and an amide compound is put into the distillation column, and compounds other than carboxylic acid and amide compound, especially water, are separated and removed by the top of the distillation column, and carboxylic acid and amide are transferred to the bottom of the distillation column. It may include a step (S10) of obtaining a mixture containing the compound.
  • the spent solvent may further include a pyridine-based compound, and the pyridine-based compound may be separated by the top of the distillation column together with water in step S10.
  • the pyridine-based compound may be 3-methylpyrinde (3MP).
  • each distillation column or step-by-step process of recovering acetic acid and DMF from the DMF waste liquid will be described with reference to the process scheme shown in FIG. 6 .
  • Waste solvent containing water, acetic acid, DMF (Dimethylformamide), and 3MP is put into the distillation column, water and 3MP are removed through the top of the distillation column, and water and 3MP are removed from the bottom of the distillation column to obtain a mixture of acetic acid and DMF Step S10.
  • step S10 The acetic acid and DMF mixture obtained in step S10 is put into a distillation column under high vacuum conditions, DMF is recovered at the top of the distillation column, and a mixture of acetic acid and DMF having an azeotropic composition under high vacuum conditions is obtained at the bottom of the distillation column (S11).
  • step S11 The acetic acid and DMF mixture having an azeotropic composition under high vacuum conditions obtained in step S11 is put into a distillation column under atmospheric conditions, acetic acid is recovered at the top of the distillation column, and a mixture of acetic acid and DMF having an azeotropic composition under atmospheric conditions is obtained at the bottom of the distillation column (S12) .
  • step S12 A part of the acetic acid and DMF mixture having an azeotropic composition under atmospheric conditions obtained in step S12, together with the acetic acid and DMF mixture obtained in step S10, is recycled to be introduced into the distillation column under high vacuum conditions in step S11 (S13).
  • a mixture containing a carboxylic acid, an amide compound, and a quinoline-based compound is put into a high vacuum distillation column, the amide compound is recovered through the high vacuum distillation column top, and the high vacuum distillation column bottom is prepared 1 obtaining a mixture comprising a carboxylic acid having an azeotropic composition, an amide compound, and a quinoline-based compound (S21);
  • the mixture containing the carboxylic acid, the amide compound, and the quinoline compound having the first azeotropic composition is put into an atmospheric distillation column, the carboxylic acid is recovered at the top of the atmospheric distillation column, and the carboxylic acid and the amide having a second azeotropic composition at the bottom of the atmospheric distillation column obtaining a mixture comprising the compound, and a quinoline-based compound (S22); and a step (S23) of recirculating all or part of the mixture
  • all or part of the recirculated mixture including the carboxylic acid and the amide compound having the second azeotropic composition and the quinoline compound is separated from the acetic acid and the amide compound at the top of the column and the quinoline compound is separated at the bottom through a distillation column. After removing the quinoline-based compound, it may be introduced into the high vacuum distillation column. In this case, the carboxylic acid and the amide compound as well as the quinoline compound may be separated and recovered.
  • a waste solvent including water, a carboxylic acid, an amide compound, and a quinoline compound is added to the distillation column, and water is transferred to the top of the distillation column Separation and obtaining a mixture containing a carboxylic acid, an amide compound, and a quinoline-based compound to the bottom of the distillation column (S20); further comprising; it is preferable to first remove water prior to input to the high vacuum distillation column.
  • water is separated from the top, other components may be mixed with water and removed.
  • the carboxylic acid and the amide compound having the first azeotropic composition are azeotropic mixtures under high vacuum conditions, and 30 to 40 parts by weight of the carboxylic acid based on 100 parts by weight of the total of the carboxylic acid and the amide compound having the first azeotropic composition. , 32 to 38 parts by weight, or 33 to 37 parts by weight, in this case, the carboxylic acid is acetic acid and the component other than this may be composed of DMF.
  • the carboxylic acid and the amide compound having the second azeotropic composition are an azeotropic mixture under atmospheric pressure, and based on 100 parts by weight of the carboxylic acid and the amide compound having the second azeotropic composition, 20 to 30 parts by weight of the carboxylic acid, 22 to It may contain 29 parts by weight, or 24 to 28 parts by weight, wherein the carboxylic acid is acetic acid, and components other than this may be composed of DMF.
  • a waste solvent including water, a carboxylic acid, an amide compound, and a quinoline-based compound is added to the first distillation column 100, and water flows to the top of the first distillation column 100 to obtain a mixture containing a carboxylic acid, an amide compound, and a quinoline compound to the bottom of the first distillation column 100 (S20), and a carboxylic acid and an amide compound obtained to the bottom of the first distillation column 100, and a quinoline-based compound
  • the mixture containing the compound is put into the high vacuum distillation column 200, the amide compound is recovered to the top of the high vacuum distillation column 200, and the carboxylic acid and the amide compound having a first azeotropic composition and the quinoline-based compound are collected at the bottom of the high vacuum distillation column 200 A mixture containing the mixture is obtained (S21).
  • the mixture containing the carboxylic acid and the amide compound having the first azeotropic composition obtained at the bottom of the high vacuum distillation column 200 is put into the atmospheric distillation column 300, the carboxylic acid is recovered to the top of the atmospheric distillation column 300, and the atmospheric distillation column (300)
  • a mixture including a carboxylic acid having a second azeotropic composition, an amide compound, and a quinoline compound is obtained as the bottom of the column (S22).
  • a part of the mixture containing the carboxylic acid and the amide compound having the second azeotropic composition, and the quinoline compound is put into the high vacuum distillation column 200 and recycled (S23), and the other part is sent to the second distillation column 400 to the bottom of the column.
  • the carboxylic acid and the amide compound recovered over the top may be combined with a stream fed into the high vacuum distillation column.
  • the quinoline-based compound may be quinoline, methylquinoline, or 3-methylquinoline.
  • the high vacuum distillation column may be a packing tower capable of minimizing the pressure difference between the top and the bottom in order to maintain the bottom pressure as low as possible.
  • the atmospheric distillation column may be a packing tower capable of minimizing the differential pressure between the top and the bottom in order to minimize the thermal decomposition of DMF at the bottom.
  • Example 1 Analysis of azeotropic composition according to the degree of vacuum (1)
  • a batch distillation experiment was conducted under vacuum conditions (100 torr) by placing 2,000 cc of a mixture having an azeotropic composition at atmospheric pressure (acetic acid 26%, DMF 74%) into a heating flask, and acetic acid and DMF according to Cumulative Liquid Volume (CLV).
  • CLV Cumulative Liquid Volume
  • high-purity DMF was obtained from the top, and a mixture having an azeotropic composition (34.0% acetic acid) of 100 torr was obtained as a residual liquid.
  • Example 2 Azeotropic composition analysis according to the degree of vacuum (2)
  • Example 3 Azeotropic composition analysis according to the degree of vacuum (3)
  • Example 4 Separation of acetic acid by atmospheric distillation
  • Example 1 2,000cc of a mixture having an azeotropic composition (acetic acid, 34%, DMF, 66%) of 100 torr obtained in Example 1 was put into a heating flask and a batch distillation experiment was performed under atmospheric conditions, and acetic acid according to Cumulative Liquid Volume (CLV) and DMF composition ratios for each sample are shown in FIG. 3 . As shown in FIG. 3 , 98.5% acetic acid was obtained from the top, and a mixture having an azeotropic composition (acetic acid 25.5%) under atmospheric conditions was obtained as a residual liquid.
  • CLV Cumulative Liquid Volume

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

The present invention relates to a method for recovering carboxylic acids and amide compounds through separation and, especially, to a method for recovering a mixture of acetic acid and dimethyl formamide (DMF) contained in a waste solvent through separation, wherein pressure swing distillation using a difference in azeotropic composition of DMF and acetic acid between a high-vacuum condition and a normal pressure condition is employed. The maximum-temperature azeotropic mixture of acetic acid and DMF cannot be separated by simple distillation, and thus after confirming a sufficient difference in acetic acid proportion between a vacuum azeotropic composition and a normal-pressure azeotropic composition of acetic acid-DMF, a process scheme capable of separating and recovering DMF and acetic acid from the waste solvent by applying pressure swing distillation was derived. Compared with a method of recovering DMF after the neutralization of acetic acid with caustic soda, the present invention has advantages in that no caustic soda is used, no salt wastewater is generated, and no odor is caused by DMF-derived dimethyl amine produced during the use of caustic soda. Furthermore, compared with the method using caustic soda neutralization, the recovery rate of DMF is high and acetic acid recovered as a byproduct can also be utilized as a raw material for preparing other ester compounds.

Description

압력 스윙 증류를 이용한 카르복실산과 아미드 화합물의 회수 방법Method for Recovery of Carboxylic Acid and Amide Compounds Using Pressure Swing Distillation
본 발명은 폐용제로부터 유용한 성분의 회수방법에 관한 것으로, 보다 구체적으로는 고진공 조건과 상압 조건에서의 카르복실산과 아미드 화합물의 공비 조성 차이를 이용하여, 각 성분을 회수하는 방법에 관한 것이다.The present invention relates to a method for recovering useful components from a waste solvent, and more particularly, to a method for recovering each component by using the difference in the azeotropic composition of a carboxylic acid and an amide compound under high vacuum conditions and atmospheric pressure conditions.
반도체와 디스플레이용 폴리이미드 필름 제조 시 발생하는 폐용제에 포함된 성분들의 전형적인 구성 성분과 성분별 조성은 하기 표 1과 같다. Typical components of the components included in the waste solvent generated during the manufacture of polyimide films for semiconductors and displays and the composition of each component are shown in Table 1 below.
water 초산
(Acetic Acid)
acetic acid
(Acetic Acid)
3MP
(3-methylpyridine)
3MP
(3-methylpyridine)
DMF
(Dimethylformamide)
DMF
(Dimethylformamide)
끓는점, ℃boiling point, °C 100100 118118 143-144143-144 153153
조성비, %composition ratio, % 1010 1515 22 7373
초산과 DMF는 최대 온도 공비 혼합물을 형성하며, 문헌에 따르면 공비 온도는 159 ℃이고 공비 조성은 초산 26%, DMF 74%이다.상기 폐용제를 높은 단수를 가진 증류탑에 투입하면, 탑정으로 물과 3MP를 제거할 수 있으며, 이때 탑저로는 초산 17%, DMF 83%의 혼합물이 얻어질 수 있다.Acetic acid and DMF form an azeotropic mixture at maximum temperature, and according to literature, the azeotropic temperature is 159 °C and the azeotropic composition is 26% acetic acid and 74% DMF. 3MP can be removed, and a mixture of 17% acetic acid and 83% DMF can be obtained as the bottom of the tower.
이를 다시 일반적인(Conventional) 증류탑에 투입할 경우, 탑정으로 DMF의 일부가 회수되지만, 탑저로 초산 26%, DMF 74%의 공비 혼합물이 얻어진다. 이렇게 얻어진 공비 혼합물은 일반적인 증류탑에 다시 투입하더라도 탑정과 탑저로 동일한 조성의 공비 혼합물이 얻어질 뿐이며, 분리는 불가능하다.When this is put back into a conventional distillation column, a portion of DMF is recovered to the top, but an azeotropic mixture of 26% acetic acid and 74% DMF is obtained at the bottom of the column. Even if the azeotrope obtained in this way is put back into a general distillation column, an azeotrope having the same composition is obtained at the top and bottom of the column, and separation is impossible.
공비 혼합물을 분리할 수 있는 방법으로는 추출 증류(Extractive Distillation), 공비제 첨가 증류(Azeotropic Distillation), 압력 스윙 증류(Pressure Swing Distillation) 등이 제시되고 있으며, 공비 혼합물의 특성에 따라 이들 중 효율적인 방법을 선택하여 공비 혼합물 분리에 사용할 수 있다. 다만, 이러한 선택이 이 모든 경우에 가능한 것은 아니며, 선택된 방법으로 공비 혼합물의 분리가 가능하더라도 경제적이지 않을 수 있다.Extractive distillation, azeotropic distillation, pressure swing distillation, etc. are suggested as a method for separating an azeotrope, and among these methods, an efficient method according to the characteristics of the azeotrope can be used to separate azeotropes. However, this choice is not possible in all these cases, and even if separation of the azeotrope is possible by the selected method, it may not be economical.
특히 초산과 DMF의 분리를 위한 기술로서, 일본공개특허 제 2002-363150 호는 아세트산과 공비하지만 디메틸포름아미드와는 공비하지 않는 톨루엔을 공비제로 이용하여 아세트산과 디메틸포름아미드를 분리하는 방법을 제시하고 있고, 한국공개특허 제 10-2010-0130219 호는 트리라우릴아민을 함유하는 추출용 매질에 카르복시산과 3급 아미드를 포함하는 용액을 접촉시켜 3급 아미드 포함 용액으로부터 카르복시산을 제거하는 방법을 제시하고 있다. 그러나, 상기와 같은 종래 기술은 제 3의 성분이 필요하여 경제성이 낮고 분리 공정의 효율성이 충분치 않아 이를 보완하는 분리 기술이 필요한 실정이다.In particular, as a technique for separating acetic acid and DMF, Japanese Patent Laid-Open No. 2002-363150 proposes a method for separating acetic acid and dimethylformamide by using toluene as an azeotrope with acetic acid but not with dimethylformamide. In addition, Korean Patent Publication No. 10-2010-0130219 proposes a method of removing carboxylic acid from a solution containing tertiary amide by contacting a solution containing carboxylic acid and tertiary amide with an extraction medium containing trilaurylamine, and have. However, since the above-mentioned prior art requires a third component, economical efficiency is low, and the efficiency of the separation process is not sufficient, so a separation technology to supplement this is required.
본 발명의 카르복실산과 아미드 화합물의 회수 방법은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 초산과 DMF의 공비 혼합물의 특성을 고려하여, 초산과 DMF 공비 혼합물로부터 DMF를 효과적으로 분리할 수 있는 분리 방법을 선택한 후, 선택된 방법을 토대로, 초산과 DMF를 포함한 폐용제로부터의 초산과 DMF를 회수할 수 있는 효율적이면서 경제적인 공정 스킴을 도출하고자 한다.The method for recovering the carboxylic acid and amide compound of the present invention has been devised to solve the above problems, and in consideration of the characteristics of the azeotrope of acetic acid and DMF, separation capable of effectively separating DMF from the azeotrope of acetic acid and DMF After selecting a method, based on the selected method, we intend to derive an efficient and economical process scheme that can recover acetic acid and DMF from waste solvents including acetic acid and DMF.
본 발명은 또한 상기한 명확한 목적 이외에 이러한 목적 및 본 명세서의 전반적인 기술로부터 이 분야의 통상인에 의해 용이하게 도출될 수 있는 다른 목적을 달성함을 그 목적으로 할 수 있다.The present invention may also have the object of achieving these objects and other objects that can be easily derived by a person skilled in the art from the general description of the present specification in addition to the above clear objects.
본 발명의 카르복실산과 아미드 화합물의 회수 방법은 상술한 바와 같은 목적을 달성하기 위하여, 카르복실산과 아미드 화합물을 포함하는 혼합물을 고진공 증류탑에 투입하여, 고진공 증류탑 탑정으로 아미드 화합물을 회수하고 고진공 증류탑 탑저로 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물을 포함하는 혼합물을 얻는 단계(S11); 상기 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물을 포함하는 혼합물을 상압 증류탑에 투입하여, 상압 증류탑 탑정으로 카르복실산을 회수하고 상압 증류탑 탑저로 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물을 포함하는 혼합물을 얻는 단계(S12); 및 상기 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물을 포함하는 혼합물의 전부 또는 일부를 상기 고진공 증류탑에 투입하여 재순환하는 단계(S13);를 포함하는 것을 특징으로 한다.In the method for recovering a carboxylic acid and an amide compound of the present invention, in order to achieve the above object, a mixture containing a carboxylic acid and an amide compound is put into a high vacuum distillation column, the amide compound is recovered through the top of the high vacuum distillation column, and the bottom of the high vacuum distillation column obtaining a mixture comprising a carboxylic acid and an amide compound having a first azeotropic composition (S11); The mixture containing the carboxylic acid and the amide compound having the first azeotropic composition is put into an atmospheric distillation column, the carboxylic acid is recovered at the top of the atmospheric distillation column, and the mixture containing the carboxylic acid and the amide compound having the second azeotropic composition at the bottom of the atmospheric distillation column obtaining (S12); and a step (S13) of recirculating all or part of the mixture including the carboxylic acid and the amide compound having the second azeotropic composition into the high vacuum distillation column (S13).
그리고, 상기 고진공 증류탑의 탑저 압력은 200 torr 이하, 150 torr 이하, 또는 100 torr 이하일 수 있다.And, the bottom pressure of the high vacuum distillation column may be 200 torr or less, 150 torr or less, or 100 torr or less.
그리고, 상기 고진공 증류탑 탑정으로 회수되는 DMF는 순도 97 % 이상, 98 % 이상, 또는 99 % 이상일 수 있다.And, the DMF recovered to the top of the high vacuum distillation column may have a purity of 97% or more, 98% or more, or 99% or more.
그리고, 상기 상압 증류탑의 탑저 압력은 700 내지 800 torr, 720 내지 780 torr, 또는 750 내지 770 torr일 수 있다.And, the bottom pressure of the atmospheric distillation column may be 700 to 800 torr, 720 to 780 torr, or 750 to 770 torr.
그리고, 상기 상압 증류탑 탑정으로 회수되는 초산은 순도 95 % 이상, 97 % 이상, 또는 98 % 이상일 수 있다.And, the acetic acid recovered to the top of the atmospheric distillation column may have a purity of 95% or more, 97% or more, or 98% or more.
그리고, 상기 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물을 포함하는 혼합물 100 중량부에 대하여 1 내지 100 중량부, 50 내지 99.99 중량부, 80 내지 99.9, 또는 90 내지 99 중량부를 재순환할 수 있다.In addition, 1 to 100 parts by weight, 50 to 99.99 parts by weight, 80 to 99.9, or 90 to 99 parts by weight may be recycled based on 100 parts by weight of the mixture including the carboxylic acid having the second azeotropic composition and the amide compound.
또한, 상기 단계 S11 이전에, In addition, before the step S11,
물, 카르복실산, 및 아미드 화합물을 포함하는 폐용제를 증류탑에 투입하여, 증류탑 탑정으로 물을 분리하고 증류탑 탑저로 카르복실산과 아미드 화합물을 포함하는 혼합물을 얻는 단계(S10);를 포함할 수 있다.may include a step (S10) of adding a waste solvent containing water, carboxylic acid, and an amide compound to the distillation column, separating water from the top of the distillation column, and obtaining a mixture containing the carboxylic acid and the amide compound with the bottom of the distillation column (S10); have.
또한, 상기 폐용제는 피리딘계 화합물을 더 포함하고, 상기 피리딘계 화합물은 물과 함께 증류탑 탑정으로 분리될 수 있다.In addition, the waste solvent further includes a pyridine-based compound, and the pyridine-based compound may be separated together with water at the top of the distillation column.
그리고, 상기 피리딘계 화합물은 3-메틸피리딘(3-methylpyridine)을 포함할 수 있다.In addition, the pyridine-based compound may include 3-methylpyridine.
또한, 상기 카르복실산과 상기 아미드 화합물은 혼합 시 최대 온도 공비 혼합물을 형성할 수 있다.In addition, the carboxylic acid and the amide compound may form an azeotrope at maximum temperature when mixed.
또한, 상기 카르복실산은 초산일 수 있다.In addition, the carboxylic acid may be acetic acid.
그리고, 상기 아미드 화합물은 N,N-디메틸포름아미드일 수 있다.In addition, the amide compound may be N,N-dimethylformamide.
그리고, 상기 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물은, 상기 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물 총 100 중량부에 대하여, 카르복실산 30 내지 40 중량부, 32 내지 38 중량부, 또는 33 내지 37 중량부을 포함할 수 있다.And, the carboxylic acid and the amide compound having the first azeotrope composition, based on a total of 100 parts by weight of the carboxylic acid and the amide compound having the first azeotropic composition, 30 to 40 parts by weight, 32 to 38 parts by weight, or 33 parts by weight of the carboxylic acid to 37 parts by weight.
그리고, 상기 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물은, 상기 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물 총 100 중량부에 대하여, 카르복실산 20 내지 30 중량부, 22 내지 29 중량부, 또는 24 내지 28 중량부를 포함할 수 있다.In addition, the carboxylic acid and amide compound having the second azeotropic composition are used in an amount of 20 to 30 parts by weight, 22 to 29 parts by weight, or 24 parts by weight of the carboxylic acid based on 100 parts by weight of a total of 100 parts by weight of the carboxylic acid and amide compound having the second azeotropic composition. to 28 parts by weight.
또한, 상기 고진공 증류탑은 패킹 타워(Packing Tower)일 수 있다.In addition, the high vacuum distillation column may be a packing tower.
또한, 상기 상압 증류탑은 패킹 타워(Packing Tower)일 수 있다.In addition, the atmospheric distillation column may be a packing tower.
그리고, 상기 상압 증류탑은 강제순환형 리보일러를 구비할 수 있다.And, the atmospheric distillation column may be provided with a forced circulation reboiler.
한편, 본 발명에 따른 카르복실산과 아미드 화합물의 회수 방법은, 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 고진공 증류탑에 투입하여, 고진공 증류탑 탑정으로 아미드 화합물을 회수하고 고진공 증류탑 탑저로 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 얻는 단계(S21); 상기 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 상압 증류탑에 투입하여, 상압 증류탑 탑정으로 카르복실산을 회수하고 상압 증류탑 탑저로 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 얻는 단계(S22); 및 상기 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물의 전부 또는 일부를 상기 고진공 증류탑에 투입하여 재순환하는 단계(S23);를 포함하는 것을 특징으로 한다.On the other hand, in the method for recovering a carboxylic acid and an amide compound according to the present invention, a mixture containing a carboxylic acid, an amide compound, and a quinoline-based compound is put into a high vacuum distillation column, the amide compound is recovered through the top of the high vacuum distillation column, and the bottom of the high vacuum distillation column is used obtaining a mixture including a carboxylic acid having a first azeotropic composition, an amide compound, and a quinoline-based compound (S21); The mixture containing the carboxylic acid, the amide compound, and the quinoline compound having the first azeotropic composition is put into an atmospheric distillation column, the carboxylic acid is recovered at the top of the atmospheric distillation column, and the carboxylic acid and the amide having a second azeotropic composition at the bottom of the atmospheric distillation column obtaining a mixture comprising the compound, and a quinoline-based compound (S22); and a step (S23) of recirculating all or part of the mixture including the carboxylic acid having the second azeotropic composition, the amide compound, and the quinoline-based compound into the high vacuum distillation column (S23).
또한, 상기 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물 중 전부 또는 일부를, 증류탑에 투입하여 퀴놀린계 화합물을 제거한 후 상기 고진공 증류탑으로 투입하는 단계(S24);를 더 포함할 수 있다.In addition, all or part of the mixture including the carboxylic acid and the amide compound having the second azeotropic composition, and the quinoline compound is added to a distillation column to remove the quinoline compound, and then added to the high vacuum distillation column (S24); may include more.
그리고, 상기 퀴놀린계 화합물은 증류탑 탑저로 회수될 수 있다.And, the quinoline-based compound may be recovered to the bottom of the distillation column.
또한, 상기 단계 S21 이전에, 물, 카르복실산, 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 폐용제를 증류탑에 투입하여, 증류탑 탑정으로 물을 분리하고 증류탑 탑저로 카르복실산, 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 얻는 단계(S20);를 포함할 수 있다.In addition, before step S21, a waste solvent containing water, carboxylic acid, an amide compound, and a quinoline-based compound is added to the distillation column, water is separated at the top of the distillation column, and carboxylic acid, an amide compound, and a bottom of the distillation column It may include; obtaining a mixture containing a quinoline-based compound (S20).
그리고, 상기 퀴놀린계 화합물은 퀴놀린, 메틸퀴놀린, 또는 3-메틸퀴놀린(3-methylquinoline)일 수 있다.And, the quinoline-based compound may be quinoline, methylquinoline, or 3-methylquinoline (3-methylquinoline).
또한, 상기 고진공 증류탑은 패킹 타워(Packing Tower)일 수 있다.In addition, the high vacuum distillation column may be a packing tower.
또한, 상기 상압 증류탑은 패킹 타워(Packing Tower)일 수 있다.In addition, the atmospheric distillation column may be a packing tower.
그리고, 상기 카르복실산은 초산일 수 있다.And, the carboxylic acid may be acetic acid.
그리고, 상기 아미드 화합물은 N,N-디메틸포름아미드일 수 있다.In addition, the amide compound may be N,N-dimethylformamide.
초산과 DMF 공비 혼합물로부터 DMF를 회수하기 위한 방안으로서, 도 1과 같이 초산을 NaOH(가성소다)로 중화한 후, 건조기를 이용하여 생성된 Salt(Sodium Acetate)로부터 물, 3MP, DMF를 증류하여 회수하는 방식이 도입되어 사용되고 있다. 이는 가성소다 비용이 필요하고 건조기에서 잔류된 Salt안의 함유되는 DMF로 인한 DMF 회수율이 낮아지는 단점이 있다.As a method for recovering DMF from an azeotropic mixture of acetic acid and DMF, as shown in FIG. 1, after neutralizing acetic acid with NaOH (caustic soda), water, 3MP, and DMF are distilled from the salt (Sodium Acetate) produced using a dryer. A recovery method has been introduced and used. This requires caustic soda cost and has disadvantages in that the DMF recovery rate due to the DMF contained in the salt remaining in the dryer is low.
또한, Sodium Acetate를 포함하는 폐수가 DMF 회수량만큼 발생하는 것으로 알려져 있는데, 이러한 Salt 폐수는 톤당 처리 비용이 높기 때문에 가장 큰 비용 부담이 되고 있다. 또한, 가성소다를 이용한 초산의 중화과정에서 DMF가 NaOH에 의하여 가수분해 되면서 발생하는 Dimethylamine으로 인한 악취가 문제가 될 수 있다.In addition, it is known that wastewater containing sodium acetate is generated as much as the amount of DMF recovered, and since such salt wastewater has a high treatment cost per ton, it becomes the biggest cost burden. In addition, during the neutralization process of acetic acid using caustic soda, the odor caused by dimethylamine generated when DMF is hydrolyzed by NaOH may be a problem.
반면, 본 발명은 가성소다를 이용한 초산의 중화 방식 대신에 초산과 DMF 공비 혼합물을 압력 스윙 증류로 분리하므로 NaOH 사용하지 않아 NaOH 비용이 들지 않고 처리 비용이 높은 Sodium Salt 폐수가 발생하지 않으면서, 악취가 심한 디메틸아민이 발생하지 않게 된다. On the other hand, the present invention separates the azeotropic mixture of acetic acid and DMF by pressure swing distillation instead of the neutralization method of acetic acid using caustic soda. Severe dimethylamine is not generated.
또한, 압력 스윙 증류로 DMF를 회수할 경우, 상대적으로 높은 DMF 회수율을 기대할 수 있으며, 부산물로서 얻어지는 초산도 활용 가능하게 된다.In addition, when DMF is recovered by pressure swing distillation, a relatively high DMF recovery rate can be expected, and acetic acid obtained as a by-product can be utilized.
따라서, 압력 스윙 증류를 적용할 경우, 제조 원가가 낮아지는 효과는 물론이고 공정이 간단하기 때문에 상대적으로 적은 수의 인력으로 공정 운전이 가능할 것으로 기대된다.Therefore, when the pressure swing distillation is applied, it is expected that the process can be operated with a relatively small number of manpower because the process is simple as well as the effect of lowering the manufacturing cost.
도 1은 종래 가성소다로 초산을 중화 제거하는 방식의 DMF 회수 방법을 나타낸 것이다.1 shows a conventional DMF recovery method of neutralizing and removing acetic acid with caustic soda.
도 2는 초산과 DMF 혼합물의 배치 증류 실험(진공 증류)에서 탑정 증류물의 CLV에 따른 조성을 도시한 그래프이다.2 is a graph showing the composition according to the CLV of the overhead distillate in a batch distillation experiment (vacuum distillation) of a mixture of acetic acid and DMF.
도 3은 초산과 DMF 혼합물의 배치 증류 실험(상압 증류)에서 탑정 증류물의 CLV에 따른 조성을 도시한 그래프이다.3 is a graph showing the composition according to the CLV of the overhead distillate in a batch distillation experiment (atmospheric distillation) of a mixture of acetic acid and DMF.
도 4는 진공 압력별 초산과 DMF의 공비 조성 측정 값을 나타낸 그래프이다.4 is a graph showing the measured values of the azeotrope composition of acetic acid and DMF for each vacuum pressure.
도 5는 본 발명의 일 실시예에 따른 초산과 DMF 혼합물의 압력 스윙 증류 스킴을 나타낸 것이다.5 shows a pressure swing distillation scheme of a mixture of acetic acid and DMF according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 압력 스윙 증류를 이용한 초산과 DMF의 회수 방법을 나타낸 흐름도이다.6 is a flowchart illustrating a method for recovering acetic acid and DMF using pressure swing distillation according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 압력 스윙 증류를 이용한 초산과 DMF의 회수 방법을 나타낸 흐름도이다.7 is a flowchart illustrating a method for recovering acetic acid and DMF using pressure swing distillation according to an embodiment of the present invention.
이하, 본 발명의 바람직한 실시예에 대하여 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail.
다만, 아래는 특정 실시예들을 예시하여 상세히 설명하는 것일 뿐, 본 발명은 다양하게 변경될 수 있고 여러 가지 형태를 가질 수 있기 때문에, 예시된 특정 실시예들에 본 발명이 한정되는 것은 아니다. 본 발명은 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.However, the present invention is not limited to the specific exemplary embodiments, since the following is merely a detailed description by exemplifying specific embodiments, and since the present invention may be variously changed and may have various forms. It should be understood that the present invention includes all modifications, equivalents and substitutes included in the spirit and scope of the present invention.
또한, 하기의 설명에서는 구체적인 구성요소 등과 같은 많은 특정사항들이 설명되어 있는데, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들 없이도 본 발명이 실시될 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다. 그리고, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In addition, in the following description, many specific details such as specific components are described, which are provided to help a more general understanding of the present invention, and it is common in the art that the present invention can be practiced without these specific details. It will be self-evident to those who have the knowledge of And, in describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
그리고, 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.And, the terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. Unless defined otherwise, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not
본 출원에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In this application, the singular expression includes the plural expression unless the context clearly dictates otherwise.
본 출원에서, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.In the present application, terms such as first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
본 출원에서, '포함하다', '함유하다' 또는 '가지다' 등의 용어는 명세서 상에 기재된 특징, 구성요소(또는 구성성분) 등이 존재함을 지칭하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 구성요소 등이 존재하지 않거나 부가될 수 없음을 의미하는 것은 아니다.In the present application, terms such as 'comprise', 'contain' or 'have' are intended to refer to the presence of a feature, component (or component), etc. described in the specification, but one or more other features or It does not mean that the component or the like is not present or cannot be added.
본 발명은 반도체와 디스플레이용 폴리이미드 필름 제조 시 발생하는 폐용제에 포함된 카르복실산과 아미드 화합물을 분리하는 카르복실산과 아미드 화합물의 회수 방법에 관한 것으로, 공비 혼합물을 형성하는 카르복실산과 아미드 화합물을 포함하는 혼합물을 고진공 증류탑에 투입하여, 고진공 증류탑 탑정으로 아미드 화합물을 회수하고 고진공 증류탑 탑저로 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물의 혼합물을 얻는 단계(S11); 상기 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물의 혼합물을 상압 증류탑에 투입하여, 상압 증류탑 탑정으로 카르복실산을 회수하고 상압 증류탑 탑저로 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물의 혼합물을 얻는 단계(S12); 및 상기 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물의 혼합물의 전부 또는 일부를 상기 고진공 증류탑에 투입하여 재순환하는 단계(S13);를 포함하는 카르복실산과 아미드 화합물의 회수 방법에 관한 것이다.The present invention relates to a method for recovering a carboxylic acid and an amide compound for separating a carboxylic acid and an amide compound contained in a waste solvent generated during the manufacture of a polyimide film for semiconductors and displays, wherein the carboxylic acid and the amide compound forming an azeotrope are inputting the mixture containing the mixture into a high vacuum distillation column, recovering the amide compound to the top of the high vacuum distillation column, and obtaining a mixture of the carboxylic acid and the amide compound having a first azeotropic composition to the bottom of the high vacuum distillation column (S11); Putting a mixture of carboxylic acid and amide compound having the first azeotropic composition into an atmospheric distillation column, recovering carboxylic acid to the top of the atmospheric distillation column, and obtaining a mixture of carboxylic acid and amide compound having a second azeotropic composition to the bottom of the atmospheric distillation column ( S12); And it relates to a method for recovering a carboxylic acid and an amide compound, comprising a step (S13) of recycling all or a part of the mixture of the carboxylic acid and the amide compound having the second azeotropic composition into the high vacuum distillation column.
본 발명에 따른 카르복실산과 아미드 화합물의 회수 방법에 있어서, 상기 카르복실산과 아미드 화합물은 최대 온도 공비 혼합물을 형성하는 것으로서, 이러한 혼합물을 구성하는 각 성분을 분리하는 데 유용한 방법을 제공한다. 특히, 상기 카르복실산은 초산일 수 있고, 상기 아미드 화합물은 초산과 최대 온도 공비 혼합물을 형성하는 아미드 화합물이다. 이러한 아미드 화합물로서 3급 아미드 화합물일 수 있고, 포름아미드, N,N-디메틸포름아미드, N,N-디에틸포름아미드, N-메틸-N-에틸포름아미드일 수 있다.In the method for recovering the carboxylic acid and the amide compound according to the present invention, the carboxylic acid and the amide compound form an azeotropic mixture at maximum temperature, and thus provide a useful method for separating each component constituting the mixture. In particular, the carboxylic acid may be acetic acid, wherein the amide compound is an amide compound that forms an azeotropic mixture with acetic acid at maximum temperature. The amide compound may be a tertiary amide compound, and may be formamide, N,N-dimethylformamide, N,N-diethylformamide, or N-methyl-N-ethylformamide.
특히 본 발명은 반도체와 디스플레이용 폴리이미드 필름 제조 시 발생하는 폐용제에 포함된 초산(Acetic Acid; AA)과 N,N-디메틸포름아미드(N,N-Dimethylformamide; DMF) 혼합물을 분리하여 회수하는 방법으로서, 고진공 조건과 상압 조건에서의 DMF와 초산의 공비 조성 차이를 이용하는 압력 스윙 증류를 사용하는 것을 특징으로 한다.In particular, the present invention separates and recovers a mixture of Acetic Acid (AA) and N,N-dimethylformamide (DMF) contained in waste solvents generated during the manufacture of polyimide films for semiconductors and displays. As a method, it is characterized by using a pressure swing distillation using the difference in the azeotropic composition of DMF and acetic acid under high vacuum conditions and atmospheric pressure conditions.
초산과 N,N-디메틸포름아미드(DMF) 공비 혼합물의 조성은 초산 26%, DMF 74%, 공비온도는 159℃로 문헌에 나와 있는데, 이는 상압 조건의 공비 조성이며, 진공 조건에서의 공비 혼합물의 조성이 나온 문헌은 찾을 수 없었다. 이에, 본 발명자는 진공 압력 조건에서의 초산과 DMF의 공비 조성을 확인하기 위한 실험을 실시하였으며, 30 torr 조건에서의 공비 조성은 초산 36% 이상이며 상압 조건에서의 공비 조성(초산 26%) 대비, 10% 이상 높은 것을 확인하였다. 따라서, 상압과 진공에서의 공비 조성 차이를 이용하는 압력 스윙 증류를 통해 초산과 아미드 화합물의 분리를 효과적으로 달성할 수 있을 것으로 판단되었다. The composition of an azeotropic mixture of acetic acid and N,N-dimethylformamide (DMF) is acetic acid 26%, DMF 74%, and the azeotrope temperature is 159 ° C. No literature on the composition could be found. Accordingly, the present inventor conducted an experiment to confirm the azeotropic composition of acetic acid and DMF under vacuum pressure conditions, and the azeotropic composition at 30 torr condition is 36% or more of acetic acid, compared to the azeotropic composition (26% of acetic acid) under atmospheric pressure conditions, It was confirmed that it was higher than 10%. Therefore, it was determined that separation of acetic acid and amide compound could be effectively achieved through pressure swing distillation using the difference in azeotrope between atmospheric pressure and vacuum.
도 5는 본 발명에 따른 카르복실산과 아미드 화합물의 회수 방법을 개략적으로 나타낸 것으로서, 초산-DMF와 같은 최대 온도 공비 혼합물(A+B)은 진공과 상압 간 공비 조성 차이를 이용하는 압력 스윙 증류를 통해, 고진공 증류탑(10) 탑정으로는 DMF(A), 상압 증류탑(20) 탑정으로는 초산(B)을 회수할 수 있다. 고진공 증류탑(10)의 탑저로는 진공 조건의 공비 혼합물(A1+B1)이, 상압 증류탑(20)의 탑저로는 상압 조건의 공비 혼합물(A2+B2)을 얻을 수 있다. 따라서 본 발명에 의하면 2 성분 분리에 제 3의 성분이 필요하지 않아 비용을 저감할 수 있고 제 3 성분에 의한 폐수가 발생하지 않아 폐수 처리가 불요하며 친환경적이다. 또한, 압력 스윙 증류를 이용하여 아미드 화합물의 회수율이 매우 우수하다. 5 schematically shows a method for recovering a carboxylic acid and an amide compound according to the present invention, wherein the maximum temperature azeotropic mixture (A + B) such as acetic acid-DMF is through pressure swing distillation using the difference in azeotropic composition between vacuum and atmospheric pressure. , DMF (A) from the top of the high vacuum distillation column 10, and acetic acid (B) from the top of the atmospheric distillation column 20 can be recovered. An azeotrope under vacuum conditions (A 1 +B 1 ) can be obtained as the bottom of the high vacuum distillation column 10 , and an azeotrope under atmospheric pressure (A 2 +B 2 ) can be obtained as the bottom of the atmospheric distillation column 20 . Therefore, according to the present invention, since the third component is not required for the separation of the two components, the cost can be reduced, and the wastewater by the third component is not generated, so wastewater treatment is unnecessary and environment-friendly. In addition, the recovery rate of the amide compound using the pressure swing distillation is very good.
이하, 각 단계별 구체적인 내용은 다음과 같다.Hereinafter, the detailed contents of each step are as follows.
먼저, 카르복실산과 아미드 화합물을 포함하는 혼합물을 고진공 증류탑에 투입하여, 고진공 증류탑 탑정으로 아미드 화합물을 회수하고 고진공 증류탑 탑저로 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물의 혼합물을 얻는다. First, a mixture containing a carboxylic acid and an amide compound is put into a high vacuum distillation column, the amide compound is recovered at the top of the high vacuum distillation column, and a mixture of a carboxylic acid and an amide compound having a first azeotropic composition is obtained at the bottom of the high vacuum distillation column.
이 때 상기 고진공 증류탑의 탑저 압력은 200 torr 이하, 150 torr 이하, 또는 100 torr 이하일 수 있다. 상기 범위의 압력 하의 공비 조성비가 상압 하에서의 공비 조성비와 충분한 차이를 나타내어 압력 스윙 증류에 의한 성분 분리를 가능케 한다. 하한은 특별히 한정되지 않으나, 공정의 효율성 및 경제성을 고려하여야 한다. 또한, 상기 고진공 증류탑은 탑저 압력을 가능한 낮게 유지하기 위하여 탑정과 탑저의 차압을 최소화할 수 있는 충진탑(Packing Tower)일 수 있다.At this time, the bottom pressure of the high vacuum distillation column may be 200 torr or less, 150 torr or less, or 100 torr or less. The azeotropic composition ratio under the pressure in the above range shows a sufficient difference from the azeotrope composition ratio under normal pressure, thereby enabling component separation by pressure swing distillation. The lower limit is not particularly limited, but the efficiency and economic feasibility of the process should be considered. In addition, the high vacuum distillation column may be a packing tower capable of minimizing the differential pressure between the top and the bottom in order to maintain the bottom pressure as low as possible.
상기 고진공 증류탑 탑정으로는 고순도의 아미드 화합물이 회수되며 이는 순도 97 % 이상, 98 % 이상, 또는 99 % 이상인 것일 수 있다. 상기 고진공 증류탑 탑저로는 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물을 포함하는 혼합물을 얻는다. 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물은 고진공 조건의 공비 혼합물로서, 상기 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물 총 100 중량부에 대하여, 카르복실산 30 내지 40 중량부, 32 내지 38 중량부, 또는 33 내지 37 중량부을 포함할 수 있고, 이 때 상기 카르복실산은 초산이고 이를 제외한 성분은 DMF로 구성될 수 있다.A high-purity amide compound is recovered from the top of the high-vacuum distillation column, and it may have a purity of 97% or more, 98% or more, or 99% or more. A mixture containing a carboxylic acid having a first azeotropic composition and an amide compound is obtained at the bottom of the high vacuum distillation column. The carboxylic acid and amide compound having the first azeotropic composition is an azeotropic mixture under high vacuum conditions, and based on 100 parts by weight of the carboxylic acid and the amide compound having the first azeotropic composition, 30 to 40 parts by weight, 32 to 38 parts by weight of the carboxylic acid , or 33 to 37 parts by weight, in this case, the carboxylic acid is acetic acid and the component other than this may be composed of DMF.
다음으로, 상기 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물을 포함하는 혼합물을 상압 증류탑에 투입하여, 상압 증류탑 탑정으로 카르복실산을 회수하고 상압 증류탑 탑저로 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물을 포함하는 혼합물을 얻는다. Next, the mixture containing the carboxylic acid and the amide compound having the first azeotropic composition is put into an atmospheric distillation column, the carboxylic acid is recovered at the top of the atmospheric distillation column, and the carboxylic acid and the amide compound having a second azeotropic composition are obtained at the bottom of the atmospheric distillation column. to obtain a mixture containing
이 때 상기 상압 증류탑의 탑저 압력은 700 내지 800 torr, 720 내지 780 torr, 또는 750 내지 770 torr일 수 있고, 약 760 torr일 수 있다. 또한, 상기 상압 증류탑은 탑저에서의 DMF와 같은 아미드 화합물의 열분해를 최소화하기 위하여 탑정과 탑저의 차압을 최소화할 수 있는 충진탑(Packing Tower)일 수 있다.At this time, the bottom pressure of the atmospheric distillation column may be 700 to 800 torr, 720 to 780 torr, or 750 to 770 torr, and may be about 760 torr. In addition, the atmospheric distillation column may be a packing tower capable of minimizing the differential pressure between the top and the bottom in order to minimize thermal decomposition of amide compounds such as DMF at the bottom.
상기 상압 증류탑 탑정으로는 고순도의 초산이 회수되며 이는 순도 95 % 이상, 97 % 이상, 또는 98 % 이상인 것일 수 있다. 상기 상압 증류탑 탑저로는 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물을 포함하는 혼합물을 얻는다. 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물은 상압 조건의 공비 혼합물로서, 상기 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물 총 100 중량부에 대하여, 카르복실산 20 내지 30 중량부, 22 내지 29 중량부, 또는 24 내지 28 중량부를 포함할 수 있고, 이 때 상기 카르복실산은 초산이고 이를 제외한 성분은 DMF로 구성될 수 있다.Acetic acid of high purity is recovered to the top of the atmospheric distillation column, and it may have a purity of 95% or more, 97% or more, or 98% or more. At the bottom of the atmospheric distillation column, a mixture containing a carboxylic acid having a second azeotropic composition and an amide compound is obtained. The carboxylic acid and the amide compound having the second azeotropic composition are an azeotropic mixture under atmospheric pressure. Based on 100 parts by weight of the carboxylic acid and the amide compound having the second azeotropic composition, 20 to 30 parts by weight and 22 to 29 parts by weight of the carboxylic acid , or 24 to 28 parts by weight, in which case the carboxylic acid is acetic acid, and the component other than this may be composed of DMF.
다만, 상압 조건의 Batch 증류의 경우, 높은 온도의 가열 플라스크 내에서 약 10 시간 체류하는 과정에서, DMF가 열분해되면서 생성되는 디메틸아민(Dimethylamine)이 초산과 결합하여 만들어 지는 DMAc(Dimethylacetamide)가 약 10% 정도 잔류액에 포함될 수 있는데, 이러한 분해 현상을 고려할 때, 탑정으로 초산을 회수하는 상압 증류탑의 경우 DMF와 같은 열민감 물질에 적합한 강제순환형 리보일러(Reboiler)를 구비하는 것을 특징으로 할 수 있다. However, in the case of batch distillation under atmospheric pressure, in the process of staying for about 10 hours in a heating flask at a high temperature, dimethylamine (Dimethylamine) generated by thermal decomposition of DMF is combined with acetic acid to produce DMAc (Dimethylacetamide) of about 10 % may be included in the residual liquid. Considering this decomposition, in the case of an atmospheric distillation column that recovers acetic acid to the top, it can be characterized by having a forced circulation reboiler suitable for heat-sensitive substances such as DMF. have.
상압 증류탑 탑저로 얻은 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물의 혼합물의 전부 또는 일부는 상기 고진공 증류탑에 투입하여 재순환시킨다. 따라서, 단계 S11에서 고진공 증류탑에 투입되는 피드와 함께 혼합되어 고진공 증류탑에 투입될 수 있다. 이 때, 상기 제 2 공비 조성을 가지는 초산과 아미드 화합물을 포함하는 혼합물 100 중량부에 대하여 1 내지 100 중량부, 50 내지 99.99 중량부, 80 내지 99.9, 또는 90 내지 99 중량부를 재순환할 수 있다. 재순환하는 제 2 공비 조성을 가지는 초산과 아미드 화합물을 포함하는 혼합물 외에는 외부로 배출될 수 있다. All or a part of the mixture of the carboxylic acid and the amide compound having the second azeotropic composition obtained by the bottom of the atmospheric distillation column is recycled into the high vacuum distillation column. Therefore, it may be mixed with the feed input to the high vacuum distillation column in step S11 and put into the high vacuum distillation column. At this time, 1 to 100 parts by weight, 50 to 99.99 parts by weight, 80 to 99.9, or 90 to 99 parts by weight may be recycled based on 100 parts by weight of the mixture including the acetic acid and the amide compound having the second azeotropic composition. Except for the mixture comprising the acetic acid and the amide compound having a second azeotropic composition that is recycled, it may be discharged to the outside.
상압 증류탑 탑저 스트림이 진공 증류탑으로 리사이클될 때, 진공 공비 혼합물과 상압 공비 혼합물간 조성 차이가 클수록 리사이클 양은 줄어 들게 되면서, 운전 비용도 감소된다. 진공 증류탑의 차압이 커지게 되면, 진공 증류탑 탑저의 공비 조성이 상압 증류탑 탑저의 공비 조성과의 차이가 줄게 되면서, 리사이클 양이 증가하므로, 진공 증류탑의 차압이 최소화 되도록 설계하는 것이 매우 중요하다. When the bottoms stream of the atmospheric distillation column is recycled to the vacuum column, as the composition difference between the vacuum azeotrope and the atmospheric azeotrope increases, the amount of recycling is reduced, and the operating cost is also reduced. When the differential pressure of the vacuum distillation column increases, the difference between the azeotropic composition of the bottom of the vacuum distillation column and the azeotropic composition of the bottom of the atmospheric distillation column decreases, and the amount of recycling increases.
본 발명에 의한 카르복실산과 아미드 화합물의 회수 방법은, 고진공 증류탑 투입 전 전처리하는 단계(S10)를 더 포함할 수 있으며, 이는 본 발명의 분리 대상인 카르복실산과 아미드 화합물 외 물질을 제거하는 단계로서, 상기 단계 S11 이전에 물, 카르복실산, 및 아미드 화합물을 포함하는 폐용제를 증류탑에 투입하여, 증류탑 탑정으로 카르복실산 및 아미드 화합물 외의 화합물, 특히 물을 분리 제거하고 증류탑 탑저로 카르복실산과 아미드 화합물을 포함하는 혼합물을 얻는 단계(S10)를 포함할 수 있다.The method for recovering the carboxylic acid and the amide compound according to the present invention may further include a step (S10) of pre-treatment before input to the high vacuum distillation column, which is a step of removing materials other than the carboxylic acid and the amide compound, which are the object of separation of the present invention, Before step S11, a waste solvent containing water, carboxylic acid, and an amide compound is put into the distillation column, and compounds other than carboxylic acid and amide compound, especially water, are separated and removed by the top of the distillation column, and carboxylic acid and amide are transferred to the bottom of the distillation column. It may include a step (S10) of obtaining a mixture containing the compound.
상기 폐용제는 피리딘계 화합물을 더 포함할 수 있는데, 상기 피리딘계 화합물은 상기 단계 S10에서 물과 함께 증류탑 탑정으로 분리될 수 있다. 상기 피리딘계 화합물은 3-메틸피리딘(3-methylpyrinde; 3MP)일 수 있다.The spent solvent may further include a pyridine-based compound, and the pyridine-based compound may be separated by the top of the distillation column together with water in step S10. The pyridine-based compound may be 3-methylpyrinde (3MP).
배치 증류 실험을 통하여 상기 전처리 단계에 의해 물과 3MP를 충분히 제거 가능한 것으로 확인되었으며, Aspen Plus를 사용한 시뮬레이션 결과, 물과 3MP는 탑정으로 제거 가능하였다. 이 경우 3MP 제거를 위해서 실제 단수로 60 단 이상, 70 단 이상, 또는 80 단 이상의 증류탑이 바람직하다. Through the batch distillation experiment, it was confirmed that water and 3MP were sufficiently removable by the pretreatment step, and as a result of simulation using Aspen Plus, water and 3MP were removable by the top. In this case, in order to remove 3MP, a distillation column of 60 or more, 70 or more, or 80 or more stages is preferable as the actual number of stages.
또한, 본 발명의 일 실시예로서, 전술한 바를 종합하여 하기 표 2와 같은 조성을 가지는 폐용제를 처리하기 위하여, 물과 3MP 등을 제거하기 위한 증류탑 1 기와, 물과 3MP 제거 후 초산-DMF을 분리하기 위한 압력 스윙 증류용 증류탑 2 기로 구성된 도 6과 같은 공정 스킴을 도출하였다.In addition, as an embodiment of the present invention, in order to treat the waste solvent having the composition as shown in Table 2 below by combining the above-mentioned bars, one distillation column for removing water and 3MP, etc., and acetic acid-DMF after removing water and 3MP A process scheme as shown in FIG. 6 consisting of two distillation columns for pressure swing distillation for separation was derived.
water 초산
(Acetic Acid)
acetic acid
(Acetic Acid)
3MP
(3-methylpyridine)
3MP
(3-methylpyridine)
DMF
(Dimethylformamide)
DMF
(Dimethylformamide)
끓는점, ℃boiling point, °C 100100 118118 143-144143-144 153153
조성비, %composition ratio, % 1010 1515 22 7373
본 발명의 일 실시예로서, 도 6에 도시된 공정 스킴을 참조하여 DMF 폐액으로부터 초산과 DMF를 회수하는 방식의 증류탑별 또는 단계별 과정을 설명하면 다음과 같다.As an embodiment of the present invention, each distillation column or step-by-step process of recovering acetic acid and DMF from the DMF waste liquid will be described with reference to the process scheme shown in FIG. 6 .
1. 증류탑의 탑정으로 물과 3MP를 제거하는 단계(S10)1. Step of removing water and 3MP to the top of the distillation column (S10)
물, 초산(Acetic Acid), DMF(Dimethylformamide), 그리고 3MP를 포함하는 폐용제를 증류탑에 투입하여, 증류탑 탑정으로 물과 3MP를 제거하고 증류탑 탑저로 물과 3MP가 제거된 초산과 DMF 혼합물을 얻는 단계(S10)이다.Waste solvent containing water, acetic acid, DMF (Dimethylformamide), and 3MP is put into the distillation column, water and 3MP are removed through the top of the distillation column, and water and 3MP are removed from the bottom of the distillation column to obtain a mixture of acetic acid and DMF Step S10.
2. 고진공 조건의 증류탑 탑정으로 DMF를 회수하는 단계(S11)2. Recovering DMF to the top of the distillation column under high vacuum conditions (S11)
단계 S10에서 얻어진 초산과 DMF 혼합물을 고진공 조건의 증류탑에 투입하여, 증류탑 탑정으로 DMF를 회수하고 증류탑 탑저로 고진공 조건의 공비조성을 가지는 초산과 DMF 혼합물을 얻는 단계(S11)이다.The acetic acid and DMF mixture obtained in step S10 is put into a distillation column under high vacuum conditions, DMF is recovered at the top of the distillation column, and a mixture of acetic acid and DMF having an azeotropic composition under high vacuum conditions is obtained at the bottom of the distillation column (S11).
3. 상압 조건의 증류탑 탑정으로 초산을 회수하는 단계(S12)3. Recovering acetic acid to the top of the distillation column under atmospheric conditions (S12)
단계 S11에서 얻어진 고진공 조건의 공비 조성을 가지는 초산과 DMF 혼합물을 상압 조건의 증류탑에 투입하여, 증류탑 탑정으로 초산을 회수하고 증류탑 탑저로 상압 조건의 공비 조성을 가지는 초산과 DMF 혼합물을 얻는 단계(S12)이다.The acetic acid and DMF mixture having an azeotropic composition under high vacuum conditions obtained in step S11 is put into a distillation column under atmospheric conditions, acetic acid is recovered at the top of the distillation column, and a mixture of acetic acid and DMF having an azeotropic composition under atmospheric conditions is obtained at the bottom of the distillation column (S12) .
4. 상압 조건의 증류탑 탑저 스트림의 일부를 고진공 증류탑으로 재순환시키는 단계(S13)4. Recirculating a portion of the distillation column bottoms stream under atmospheric conditions to the high vacuum distillation column (S13)
단계 S12에서 얻어진 상압 조건의 공비 조성을 가지는 초산과 DMF 혼합물의 일부를, 단계 S10에서 얻어진 초산과 DMF 혼합물과 함께, 단계 S11의 고진공 조건의 증류탑에 투입되도록 재순환시키는 단계(S13)이다.A part of the acetic acid and DMF mixture having an azeotropic composition under atmospheric conditions obtained in step S12, together with the acetic acid and DMF mixture obtained in step S10, is recycled to be introduced into the distillation column under high vacuum conditions in step S11 (S13).
한편, 본 발명의 카르복실산과 아미드 화합물의 회수 방법은, 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 고진공 증류탑에 투입하여, 고진공 증류탑 탑정으로 아미드 화합물을 회수하고 고진공 증류탑 탑저로 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 얻는 단계(S21); 상기 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 상압 증류탑에 투입하여, 상압 증류탑 탑정으로 카르복실산을 회수하고 상압 증류탑 탑저로 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 얻는 단계(S22); 및 상기 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물의 전부 또는 일부를 상기 고진공 증류탑에 투입하여 재순환하는 단계(S23);를 포함하는 것을 특징으로 한다.On the other hand, in the method for recovering a carboxylic acid and an amide compound of the present invention, a mixture containing a carboxylic acid, an amide compound, and a quinoline-based compound is put into a high vacuum distillation column, the amide compound is recovered through the high vacuum distillation column top, and the high vacuum distillation column bottom is prepared 1 obtaining a mixture comprising a carboxylic acid having an azeotropic composition, an amide compound, and a quinoline-based compound (S21); The mixture containing the carboxylic acid, the amide compound, and the quinoline compound having the first azeotropic composition is put into an atmospheric distillation column, the carboxylic acid is recovered at the top of the atmospheric distillation column, and the carboxylic acid and the amide having a second azeotropic composition at the bottom of the atmospheric distillation column obtaining a mixture comprising the compound, and a quinoline-based compound (S22); and a step (S23) of recirculating all or part of the mixture including the carboxylic acid having the second azeotropic composition, the amide compound, and the quinoline-based compound into the high vacuum distillation column (S23).
이는 앞서 설명한 본 발명의 카르복실산과 아미드 화합물의 회수 방법과 같으며 중복되는 설명은 생략한다. This is the same as the method for recovering the carboxylic acid and amide compound of the present invention described above, and overlapping description will be omitted.
또한, 상기 재순환하는 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물 중 전부 또는 일부는, 탑정으로 초산과 아미드 화합물을 분리하고 탑저로 퀴놀린계 화합물을 분리하는 증류탑을 통해 퀴놀린계 화합물을 제거한 후 상기 고진공 증류탑으로 투입될 수 있다. 이 경우 카르복실산과 아미드 화합물은 물론 퀴놀린계 화합물도 분리 회수할 수 있다.In addition, all or part of the recirculated mixture including the carboxylic acid and the amide compound having the second azeotropic composition and the quinoline compound is separated from the acetic acid and the amide compound at the top of the column and the quinoline compound is separated at the bottom through a distillation column. After removing the quinoline-based compound, it may be introduced into the high vacuum distillation column. In this case, the carboxylic acid and the amide compound as well as the quinoline compound may be separated and recovered.
그리고, 본 발명의 카르복실산과 아미드 화합물의 회수 방법은, 상기 단계 S21 이전에, 물, 카르복실산, 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 폐용제를 증류탑에 투입하여, 증류탑 탑정으로 물을 분리하고 증류탑 탑저로 카르복실산, 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 얻는 단계(S20);를 더 포함하여, 고진공 증류탑에 투입하기 앞서 물을 먼저 제거하는 것이 바람직하다. 상기 탑정으로 물이 분리될 시, 물과 함께 다른 성분이 혼합되어 제거될 수 있음은 물론이다.And, in the method for recovering the carboxylic acid and the amide compound of the present invention, before step S21, a waste solvent including water, a carboxylic acid, an amide compound, and a quinoline compound is added to the distillation column, and water is transferred to the top of the distillation column Separation and obtaining a mixture containing a carboxylic acid, an amide compound, and a quinoline-based compound to the bottom of the distillation column (S20); further comprising; it is preferable to first remove water prior to input to the high vacuum distillation column. Of course, when water is separated from the top, other components may be mixed with water and removed.
전술한 바와 같이, 상기 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물은 고진공 조건의 공비 혼합물로서, 상기 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물 총 100 중량부에 대하여, 카르복실산 30 내지 40 중량부, 32 내지 38 중량부, 또는 33 내지 37 중량부을 포함할 수 있고, 이 때 상기 카르복실산은 초산이고 이를 제외한 성분은 DMF로 구성될 수 있다.As described above, the carboxylic acid and the amide compound having the first azeotropic composition are azeotropic mixtures under high vacuum conditions, and 30 to 40 parts by weight of the carboxylic acid based on 100 parts by weight of the total of the carboxylic acid and the amide compound having the first azeotropic composition. , 32 to 38 parts by weight, or 33 to 37 parts by weight, in this case, the carboxylic acid is acetic acid and the component other than this may be composed of DMF.
또한, 상기 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물은 상압 조건의 공비 혼합물로서, 상기 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물 총 100 중량부에 대하여, 카르복실산 20 내지 30 중량부, 22 내지 29 중량부, 또는 24 내지 28 중량부를 포함할 수 있고, 이 때 상기 카르복실산은 초산이고 이를 제외한 성분은 DMF로 구성될 수 있다.In addition, the carboxylic acid and the amide compound having the second azeotropic composition are an azeotropic mixture under atmospheric pressure, and based on 100 parts by weight of the carboxylic acid and the amide compound having the second azeotropic composition, 20 to 30 parts by weight of the carboxylic acid, 22 to It may contain 29 parts by weight, or 24 to 28 parts by weight, wherein the carboxylic acid is acetic acid, and components other than this may be composed of DMF.
본 발명의 일 실시예인 도 7을 참조하면, 물, 카르복실산, 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 폐용제를 제 1 증류탑(100)에 투입하여, 제 1 증류탑(100) 탑정으로 물을 분리하고 제 1 증류탑(100) 탑저로 카르복실산, 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 얻고(S20), 제 1 증류탑(100) 탑저로 얻은 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 고진공 증류탑(200)에 투입하여, 고진공 증류탑(200) 탑정으로 아미드 화합물을 회수하고 고진공 증류탑(200) 탑저로 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 얻는다(S21). 그 후, 고진공 증류탑(200) 탑저로 얻은 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물을 포함하는 혼합물을 상압 증류탑(300)에 투입하여, 상압 증류탑(300) 탑정으로 카르복실산을 회수하고 상압 증류탑(300) 탑저로 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 얻는다(S22). 상기 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물의 일부는 상기 고진공 증류탑(200)에 투입하여 재순환하고(S23), 다른 일부는 제 2 증류탑(400)으로 보내 탑저로 퀴놀린계 화합물을 분리하고 탑정으로 회수되는 카르복실산과 아미드 화합물을 상기 고진공 증류탑으로 투입되는 스트림과 합류될 수 있다. Referring to FIG. 7 which is an embodiment of the present invention, a waste solvent including water, a carboxylic acid, an amide compound, and a quinoline-based compound is added to the first distillation column 100, and water flows to the top of the first distillation column 100 to obtain a mixture containing a carboxylic acid, an amide compound, and a quinoline compound to the bottom of the first distillation column 100 (S20), and a carboxylic acid and an amide compound obtained to the bottom of the first distillation column 100, and a quinoline-based compound The mixture containing the compound is put into the high vacuum distillation column 200, the amide compound is recovered to the top of the high vacuum distillation column 200, and the carboxylic acid and the amide compound having a first azeotropic composition and the quinoline-based compound are collected at the bottom of the high vacuum distillation column 200 A mixture containing the mixture is obtained (S21). Then, the mixture containing the carboxylic acid and the amide compound having the first azeotropic composition obtained at the bottom of the high vacuum distillation column 200 is put into the atmospheric distillation column 300, the carboxylic acid is recovered to the top of the atmospheric distillation column 300, and the atmospheric distillation column (300) A mixture including a carboxylic acid having a second azeotropic composition, an amide compound, and a quinoline compound is obtained as the bottom of the column (S22). A part of the mixture containing the carboxylic acid and the amide compound having the second azeotropic composition, and the quinoline compound is put into the high vacuum distillation column 200 and recycled (S23), and the other part is sent to the second distillation column 400 to the bottom of the column. By separating the quinoline-based compound, the carboxylic acid and the amide compound recovered over the top may be combined with a stream fed into the high vacuum distillation column.
상기 퀴놀린계 화합물은 퀴놀린, 메틸퀴놀린(methylquinoline)일 수 있고, 3-메틸퀴놀린일 수 있다.The quinoline-based compound may be quinoline, methylquinoline, or 3-methylquinoline.
상기 고진공 증류탑은 탑저 압력을 가능한 낮게 유지하기 위하여 탑정과 탑저의 차압을 최소화할 수 있는 패킹 타워(Packing Tower)일 수 있다.The high vacuum distillation column may be a packing tower capable of minimizing the pressure difference between the top and the bottom in order to maintain the bottom pressure as low as possible.
상기 상압 증류탑은 탑저에서의 DMF의 열분해를 최소화하기 위하여 탑정과 탑저의 차압을 최소화할 수 있는 패킹 타워(Packing Tower)일 수 있다.The atmospheric distillation column may be a packing tower capable of minimizing the differential pressure between the top and the bottom in order to minimize the thermal decomposition of DMF at the bottom.
이상 본 발명에서 도출된 공정 스킴을 단계 별로 설명하였으나, 본 발명은 상기 설명에 한정되는 것은 아니며, 이하, 실시예를 통하여 본 발명의 구체적 확인 사항을 설명하겠으나, 본 발명의 범주가 이에 한정되는 것은 아니다.Although the process scheme derived from the present invention has been described step by step, the present invention is not limited to the above description. no.
[실시예][Example]
제조예: 진공 조건에서의 공비 조성 분석Preparation Example: Azeotropic composition analysis under vacuum conditions
진공 압력 조건에서의 초산과 DMF의 공비 조성을 확인하기 위한 예비 실험으로서, 회전 증발기용 둥근 플라스크에 초산 30g 과 DMF 70g을 넣은 후, 이를 Bath 온도 90℃, 진공 압력 30 torr 조건에서 단계 별로 증류액을 회수하면서, 하기 표 3과 같이 증류액과 잔류액의 초산의 함량을 측정하였다. 표 3의 측정 결과를 고려할 때, 30 torr 조건에서의 공비 조성은 초산 36% 이상으로, 상압 조건에서의 공비 조성(초산 26%) 대비, 10% 이상 높음을 알 수 있었다.As a preliminary experiment to confirm the azeotropic composition of acetic acid and DMF under vacuum pressure, 30 g of acetic acid and 70 g of DMF were put into a round flask for a rotary evaporator, and the distillate was added step by step at a bath temperature of 90°C and a vacuum pressure of 30 torr. While recovering, the content of acetic acid in the distillate and the residue was measured as shown in Table 3 below. Considering the measurement results in Table 3, it can be seen that the azeotropic composition at 30 torr is 36% or more of acetic acid, which is 10% or more higher than the azeotropic composition (26% of acetic acid) at atmospheric pressure.
증류 전before distillation 1단계 증류1st stage distillation 2단계 증류two-stage distillation 3단계 증류3 stage distillation
회수된 증류액recovered distillate 14g(초산17.4%)14g (acetic acid 17.4%) 22g(초산24.4%)22g (acetic acid 24.4%) 27g(초산33.2%)27g (33.2% acetic acid)
플라스크 잔류액flask residue 100g(초산30.2%)100g (acetic acid 30.2%) 84g(초산31.2%)84g (31.2% acetic acid) 59g(초산34.4%)59g (acetic acid 34.4%) 30g(초산36.2%)30g (36.2% acetic acid)
따라서, 초산과 DMF 공비 혼합물의 분리를 위한 수단으로서 상압과 진공에서의 공비 조성 차이를 이용하는 압력 스윙 증류가 가능성이 있을 것으로 판단되었다.Therefore, as a means for separating acetic acid and DMF azeotrope, it was determined that pressure swing distillation using the difference in azeotropic composition at atmospheric pressure and vacuum would be possible.
실시예 1: 진공도에 따른 공비 조성 분석 (1)Example 1: Analysis of azeotropic composition according to the degree of vacuum (1)
컬럼 내경 25mm, 이론단수 45단, 5리터 가열 플라스크를 가진 B/R 9600 Packed Column을 사용하였다. A B/R 9600 Packed Column with a column inner diameter of 25 mm, the number of theoretical plates 45, and a 5-liter heating flask was used.
상압 조건의 공비 조성(초산 26%, DMF 74%)을 가지는 혼합물 2,000cc를 가열 플라스크를 넣고 진공 조건(100 torr)에서의 배치 증류 실험을 실시하였으며, Cumulative Liquid Volume(CLV)에 따른 초산과 DMF의 샘플 별 조성비율은 도 2와 같다.A batch distillation experiment was conducted under vacuum conditions (100 torr) by placing 2,000 cc of a mixture having an azeotropic composition at atmospheric pressure (acetic acid 26%, DMF 74%) into a heating flask, and acetic acid and DMF according to Cumulative Liquid Volume (CLV). The composition ratio of each sample is shown in FIG. 2 .
도 2에서 보는 바와 같이, 탑정으로 고순도 DMF를 얻을 수 있었으며, 잔류액으로 100 torr 조건의 공비 조성(초산 34.0%)을 가지는 혼합물을 얻었다. As shown in FIG. 2, high-purity DMF was obtained from the top, and a mixture having an azeotropic composition (34.0% acetic acid) of 100 torr was obtained as a residual liquid.
실시예 2: 진공도에 따른 공비 조성 분석 (2)Example 2: Azeotropic composition analysis according to the degree of vacuum (2)
컬럼 내경 25mm, 이론단수 45단, 5리터 가열 플라스크를 가진 B/R 9600 Packed Column을 사용하였다.A B/R 9600 Packed Column with a column inner diameter of 25 mm, the number of theoretical plates 45, and a 5-liter heating flask was used.
상압 조건의 공비 조성(초산 26%, DMF 74%)을 가지는 혼합물 2,000cc를 가열 플라스크를 넣고 진공 조건(50 torr)에서의 배치 증류 실험을 실시하였으며, 탑정으로 고순도 DMF를 얻을 수 있었으며, 잔류액으로 50 torr 조건의 공비 조성(초산 35.5%)을 가지는 혼합물을 얻었다. 2,000cc of a mixture having an azeotropic composition under atmospheric pressure (26% acetic acid, 74% DMF) was placed in a heating flask, and a batch distillation experiment was performed under vacuum conditions (50 torr). to obtain a mixture having an azeotropic composition (35.5% acetic acid) under 50 torr conditions.
실시예 3: 진공도에 따른 공비 조성 분석 (3)Example 3: Azeotropic composition analysis according to the degree of vacuum (3)
컬럼 내경 25mm, 이론단수 45단, 5리터 가열 플라스크를 가진 B/R 9600 Packed Column을 사용하였다.A B/R 9600 Packed Column with a column inner diameter of 25 mm, the number of theoretical plates 45, and a 5-liter heating flask was used.
상압 조건의 공비 조성(초산 26%, DMF 74%)을 가지는 혼합물 2,000cc를 가열 플라스크를 넣고 200 torr에서의 배치 증류 실험을 실시하였으며, 탑정으로 고순도 DMF를 얻을 수 있었으며, 잔류액으로 200 torr 조건의 공비 조성(초산 31%)을 가지는 혼합물을 얻었다. 2,000cc of a mixture having an azeotropic composition (26% acetic acid, 74% DMF) under atmospheric pressure was placed in a heating flask and a batch distillation experiment was performed at 200 torr, high-purity DMF was obtained from the top of the column, and 200 torr condition as the residual solution A mixture having an azeotropic composition of (31% acetic acid) was obtained.
실시예 4: 상압 증류에 의한 초산 분리Example 4: Separation of acetic acid by atmospheric distillation
컬럼 내경 25mm, 이론단수 45단, 5리터 가열 플라스크를 가진 B/R 9600 Packed Column을 사용하였다.A B/R 9600 Packed Column with a column inner diameter of 25 mm, the number of theoretical plates 45, and a 5-liter heating flask was used.
상기 실시예 1에서 얻은 100 torr 조건의 공비 조성(초산 34% DMF 66%)을 가지는 혼합물 2,000cc를 가열 플라스크에 넣고 상압 조건에서의 배치 증류 실험을 실시하였으며, Cumulative Liquid Volume(CLV)에 따른 초산과 DMF의 샘플별 조성비율은 도 3과 같다. 도 3에서 보는 바와 같이, 탑정으로 98.5%의 초산을 얻을 수 있었으며, 잔류액으로 상압 조건의 공비 조성(초산 25.5%)을 가지는 혼합물을 얻을 수 있었다. 2,000cc of a mixture having an azeotropic composition (acetic acid, 34%, DMF, 66%) of 100 torr obtained in Example 1 was put into a heating flask and a batch distillation experiment was performed under atmospheric conditions, and acetic acid according to Cumulative Liquid Volume (CLV) and DMF composition ratios for each sample are shown in FIG. 3 . As shown in FIG. 3 , 98.5% acetic acid was obtained from the top, and a mixture having an azeotropic composition (acetic acid 25.5%) under atmospheric conditions was obtained as a residual liquid.
도 4는 압력에 따른 공비 조성을 나타낸 것으로서, 실시예 1 및 2에 따른 고진공(100 torr, 50 torr) 조건에서의 초산과 DMF의 공비 조성은 상압의 공비 조성과 큰 차이가 있는 것이 확인되었으며, 진공도가 높아짐에 따라서 공비 조성 중, 초산의 비율이 증가하는 것을 확인할 수 있었다. 따라서 본 발명의 폐용제 처리방법에 의하면 초산과 같은 카르복실산과 DMF와 같은 아미드 화합물의 분리가 효과적으로 수행될 수 있음을 알 수 있다.4 shows the azeotrope composition according to pressure, and it was confirmed that the azeotropic composition of acetic acid and DMF in high vacuum (100 torr, 50 torr) conditions according to Examples 1 and 2 is significantly different from the azeotropic composition of atmospheric pressure, and the degree of vacuum It was confirmed that the ratio of acetic acid in the azeotrope composition increased with increasing . Therefore, it can be seen that the separation of a carboxylic acid such as acetic acid and an amide compound such as DMF can be effectively performed according to the waste solvent treatment method of the present invention.
현재는, 가성소다 중화방식의 경제적 환경적 문제점들 때문에, 초산과 DMF를 포함한 폐액으로부터의 DMF회수가 충분히 이루어 지지 못하고 있는데, 본 발명으로 도출된 스킴을 토대로, 초산과 DMF를 포함한 폐액으로부터 DMF와 초산을 효율적이면서 경제적으로 회수하는 폐용제 처리 공정을 설계할 수 있을 것으로 기대된다.At present, due to the economic and environmental problems of the caustic soda neutralization method, the recovery of DMF from the waste liquid including acetic acid and DMF is not sufficiently achieved. Based on the scheme derived from the present invention, DMF and It is expected that it will be possible to design a waste solvent treatment process that efficiently and economically recovers acetic acid.
이상에서는 본 발명의 바람직한 실시예에 대해서 설명하였으나, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 당해 기술분야에서 통상의 지식을 가진 자라면 본원 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능함은 물론이다. 따라서, 본 발명의 범위는 위의 실시예에 국한해서 해석되어서는 안되며, 후술하는 청구범위뿐만 아니라 이 청구범위와 균등한 것들에 의해 정해져야 할 것이다.Although preferred embodiments of the present invention have been described above, the present invention is not limited to the specific embodiments described above, and those skilled in the art can implement various modifications without departing from the gist of the present invention. Of course it is possible. Accordingly, the scope of the present invention should not be construed as limited to the above embodiments, and should be defined by the claims described below as well as the claims and equivalents.

Claims (13)

  1. 카르복실산과 아미드 화합물을 포함하는 혼합물을 고진공 증류탑에 투입하여, 고진공 증류탑 탑정으로 아미드 화합물을 회수하고 고진공 증류탑 탑저로 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물을 포함하는 혼합물을 얻는 단계(S11);Putting a mixture containing a carboxylic acid and an amide compound into a high vacuum distillation column, recovering the amide compound to the top of the high vacuum distillation column, and obtaining a mixture containing a carboxylic acid having a first azeotropic composition and an amide compound to the bottom of the high vacuum distillation column (S11);
    상기 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물을 포함하는 혼합물을 상압 증류탑에 투입하여, 상압 증류탑 탑정으로 카르복실산을 회수하고 상압 증류탑 탑저로 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물을 포함하는 혼합물을 얻는 단계(S12); 및The mixture containing the carboxylic acid and the amide compound having the first azeotropic composition is put into an atmospheric distillation column, the carboxylic acid is recovered through the top of the atmospheric distillation column, and the mixture containing the carboxylic acid and the amide compound having the second azeotropic composition to the bottom of the atmospheric distillation column obtaining (S12); and
    상기 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물을 포함하는 혼합물의 전부 또는 일부를 상기 고진공 증류탑에 투입하여 재순환하는 단계(S13);를 포함하는, 카르복실산과 아미드 화합물의 회수 방법.A method of recovering a carboxylic acid and an amide compound, including a step (S13) of recycling all or a part of a mixture containing the carboxylic acid and the amide compound having the second azeotropic composition into the high vacuum distillation column.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 단계 S11 이전에, Before step S11,
    물, 카르복실산, 및 아미드 화합물을 포함하는 폐용제를 증류탑에 투입하여, 증류탑 탑정으로 물을 분리하고 증류탑 탑저로 카르복실산과 아미드 화합물을 포함하는 혼합물을 얻는 단계(S10);를 포함하는 것을 특징으로 하는, 카르복실산과 아미드 화합물의 회수 방법.Putting a waste solvent including water, carboxylic acid, and an amide compound into a distillation column, separating water from the top of the distillation column, and obtaining a mixture containing a carboxylic acid and an amide compound with the bottom of the distillation column (S10); A method for recovering a carboxylic acid and an amide compound.
  3. 청구항 2에 있어서,3. The method according to claim 2,
    상기 폐용제는 피리딘계 화합물을 더 포함하고, 상기 피리딘계 화합물은 상기 물과 함께 증류탑 탑정으로 분리되는 것을 특징으로 하는, 카르복실산과 아미드 화합물의 회수 방법.The waste solvent further includes a pyridine-based compound, and the pyridine-based compound is separated together with the water at the top of a distillation column.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 카르복실산과 상기 아미드 화합물은 혼합 시 최대 온도 공비 혼합물을 형성하는 것을 특징으로 하는, 카르복실산과 아미드 화합물의 회수 방법.The method for recovering a carboxylic acid and an amide compound, characterized in that the carboxylic acid and the amide compound form an azeotropic mixture at a maximum temperature when mixed.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 카르복실산은 초산이고 상기 아미드 화합물은 디메틸포름아미드인 것을 특징으로 하는, 카르복실산과 아미드 화합물의 회수 방법.The method for recovering a carboxylic acid and an amide compound, characterized in that the carboxylic acid is acetic acid and the amide compound is dimethylformamide.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 고진공 증류탑은 패킹 타워(Packing Tower)인 것을 특징으로 하는, 카르복실산과 아미드 화합물의 회수 방법.The high vacuum distillation column is a packing tower (Packing Tower), characterized in that, carboxylic acid and amide compound recovery method.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 상압 증류탑은 패킹 타워(Packing Tower)인 것을 특징으로 하는, 카르복실산과 아미드 화합물의 회수 방법.The atmospheric distillation column is a packing tower (Packing Tower), characterized in that, carboxylic acid and amide compound recovery method.
  8. 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 고진공 증류탑에 투입하여, 고진공 증류탑 탑정으로 아미드 화합물을 회수하고 고진공 증류탑 탑저로 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 얻는 단계(S21);A mixture containing a carboxylic acid, an amide compound, and a quinoline compound is put into a high vacuum distillation column, the amide compound is recovered at the top of the high vacuum distillation column, and a carboxylic acid and an amide compound having a first azeotropic composition, and a quinoline compound are obtained at the bottom of the high vacuum distillation column obtaining a mixture containing (S21);
    상기 제 1 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 상압 증류탑에 투입하여, 상압 증류탑 탑정으로 카르복실산을 회수하고 상압 증류탑 탑저로 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 얻는 단계(S22); 및The mixture containing the carboxylic acid, the amide compound, and the quinoline compound having the first azeotropic composition is put into an atmospheric distillation column, the carboxylic acid is recovered at the top of the atmospheric distillation column, and the carboxylic acid and the amide having a second azeotropic composition at the bottom of the atmospheric distillation column obtaining a mixture comprising a compound, and a quinoline-based compound (S22); and
    상기 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물의 전부 또는 일부를 상기 고진공 증류탑에 투입하여 재순환하는 단계(S23);를 포함하는, 카르복실산과 아미드 화합물의 회수 방법.A method of recovering a carboxylic acid and an amide compound, including a step (S23) of recycling all or a part of a mixture including the carboxylic acid and the amide compound having the second azeotropic composition and the quinoline-based compound into the high vacuum distillation column (S23); .
  9. 청구항 8에 있어서, 9. The method of claim 8,
    상기 제 2 공비 조성을 가지는 카르복실산과 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물 중 전부 또는 일부를, 증류탑에 투입하여 퀴놀린계 화합물을 제거한 후 상기 고진공 증류탑으로 투입하는 단계(S24);를 더 포함하는 것을 특징으로 하는, 카르복실산과 아미드 화합물의 회수 방법.The step (S24) of adding all or a part of the mixture including the carboxylic acid having the second azeotropic composition, the amide compound, and the quinoline compound to the distillation column to remove the quinoline compound and then to the high vacuum distillation column (S24); further comprising A method for recovering a carboxylic acid and an amide compound, characterized in that
  10. 청구항 8에 있어서,9. The method of claim 8,
    상기 단계 S21 이전에, Before step S21,
    물, 카르복실산, 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 폐용제를 증류탑에 투입하여, 증류탑 탑정으로 물을 분리하고 증류탑 탑저로 카르복실산, 아미드 화합물, 및 퀴놀린계 화합물을 포함하는 혼합물을 얻는 단계(S20);를 포함하는 것을 특징으로 하는, 카르복실산과 아미드 화합물의 회수 방법.A waste solvent containing water, a carboxylic acid, an amide compound, and a quinoline compound is put into a distillation column, water is separated at the top of the distillation column, and a mixture containing a carboxylic acid, an amide compound, and a quinoline compound is obtained at the bottom of the distillation column. A method for recovering a carboxylic acid and an amide compound, comprising: obtaining (S20).
  11. 청구항 8에 있어서,9. The method of claim 8,
    상기 카르복실산은 초산이고 상기 아미드 화합물은 디메틸포름아미드인 것을 특징으로 하는, 카르복실산과 아미드 화합물의 회수 방법.The method for recovering a carboxylic acid and an amide compound, characterized in that the carboxylic acid is acetic acid and the amide compound is dimethylformamide.
  12. 청구항 8에 있어서,9. The method of claim 8,
    상기 고진공 증류탑은 패킹 타워(Packing Tower)인 것을 특징으로 하는, 카르복실산과 아미드 화합물의 회수 방법.The high vacuum distillation column is a packing tower (Packing Tower), characterized in that, carboxylic acid and amide compound recovery method.
  13. 청구항 8에 있어서,9. The method of claim 8,
    상기 상압 증류탑은 패킹 타워(Packing Tower)인 것을 특징으로 하는, 카르복실산과 아미드 화합물의 회수 방법.The atmospheric distillation column is a packing tower (Packing Tower), characterized in that, carboxylic acid and amide compound recovery method.
PCT/KR2021/008109 2020-07-24 2021-06-28 Method for recovering carboxylic acids and amide compounds by using pressure swing distillation WO2022019507A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0092319 2020-07-24
KR20200092319 2020-07-24

Publications (1)

Publication Number Publication Date
WO2022019507A1 true WO2022019507A1 (en) 2022-01-27

Family

ID=79729265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008109 WO2022019507A1 (en) 2020-07-24 2021-06-28 Method for recovering carboxylic acids and amide compounds by using pressure swing distillation

Country Status (1)

Country Link
WO (1) WO2022019507A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023214694A1 (en) * 2022-05-02 2023-11-09 한국석유공업 주식회사 Method for recovering acetic acid and dimethylformamide using pressure swing distillation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947402A (en) * 1972-02-01 1976-03-30 Dynamit Nobel Aktiengesellschaft Process for the manufacture of polyimide products
JP2002348270A (en) * 2001-05-28 2002-12-04 Kanegafuchi Chem Ind Co Ltd Method for separating carboxylic acid and dimethyl amide by distillation and apparatus therefor
JP2002363150A (en) * 2001-06-01 2002-12-18 Kanegafuchi Chem Ind Co Ltd Method and apparatus for separating acetic acid and dimethylformamide by distillation
JP2004149421A (en) * 2002-10-29 2004-05-27 Kanegafuchi Chem Ind Co Ltd Method for separating dimethylamide compound and carboxylic acid by distillation and apparatus therefor
KR20050016671A (en) * 2002-07-01 2005-02-21 말린크로트, 인코포레이티드 Purification of n,n-dimethylacetamide
JP2005060241A (en) * 2003-08-12 2005-03-10 Kaneka Corp Method for purifying solvent and apparatus used therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947402A (en) * 1972-02-01 1976-03-30 Dynamit Nobel Aktiengesellschaft Process for the manufacture of polyimide products
JP2002348270A (en) * 2001-05-28 2002-12-04 Kanegafuchi Chem Ind Co Ltd Method for separating carboxylic acid and dimethyl amide by distillation and apparatus therefor
JP2002363150A (en) * 2001-06-01 2002-12-18 Kanegafuchi Chem Ind Co Ltd Method and apparatus for separating acetic acid and dimethylformamide by distillation
KR20050016671A (en) * 2002-07-01 2005-02-21 말린크로트, 인코포레이티드 Purification of n,n-dimethylacetamide
JP2004149421A (en) * 2002-10-29 2004-05-27 Kanegafuchi Chem Ind Co Ltd Method for separating dimethylamide compound and carboxylic acid by distillation and apparatus therefor
JP2005060241A (en) * 2003-08-12 2005-03-10 Kaneka Corp Method for purifying solvent and apparatus used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023214694A1 (en) * 2022-05-02 2023-11-09 한국석유공업 주식회사 Method for recovering acetic acid and dimethylformamide using pressure swing distillation

Similar Documents

Publication Publication Date Title
WO2019050281A1 (en) System for producing ester composition, and method for producing ester composition, using same
WO2022019507A1 (en) Method for recovering carboxylic acids and amide compounds by using pressure swing distillation
WO2021172898A1 (en) Apparatus and method for manufacturing propylene glycol methyl ether acetate
WO2016159707A1 (en) Distillation apparatus
WO2014038791A1 (en) Method for recovering organic light emitting material
WO2010030132A2 (en) Purification method for adefovir dipivoxil
WO2015152541A1 (en) Method for purifying 1,5-diaminopentane
WO2011081385A2 (en) Method and apparatus for purification of trichlorosilane
WO2020017779A1 (en) Method for purifying waste solution of thinner and thinner composition obtained therefrom
WO2019098502A1 (en) Method for decomposing byproduct of phenol production process
WO2020130313A1 (en) Method for decomposing phenolic by-product
WO2020130255A1 (en) Method and apparatus for producing aromatic vinyl compound-vinyl cyan compound copolymer
WO2015190801A1 (en) Method for preparing butadiene through oxidative dehydrogenation reaction
WO2014065553A1 (en) Method for purifying 1,4-diaminobutane, 1,4-diaminobutane purified by said method, and polyamide prepared therefrom
WO2020130367A1 (en) Method of recovering amide-based compounds
WO2023214694A1 (en) Method for recovering acetic acid and dimethylformamide using pressure swing distillation
WO2023243827A1 (en) Method for producing aqueous solution containing nickel or cobalt
WO2020130264A1 (en) Manufacturing method and device for aromatic vinyl compound-vinyl cyanide compound polymer
WO2022055104A1 (en) Nitrile-based monomer recovery method and recovery apparatus
WO2020017780A1 (en) Thinner composition for cleaning photoresist
WO2023219334A1 (en) Method for purifying 1, 4-cyclohexanedimethanol composition
WO2021054607A1 (en) Method for decomposing phenolic by-product
WO2021002708A1 (en) System and method for preparing diester-based composition
WO2019054671A1 (en) Separation method and separation apparatus for solvent
WO2019124674A1 (en) N-substituted maleimide purification method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE