WO2021172898A1 - Apparatus and method for manufacturing propylene glycol methyl ether acetate - Google Patents

Apparatus and method for manufacturing propylene glycol methyl ether acetate Download PDF

Info

Publication number
WO2021172898A1
WO2021172898A1 PCT/KR2021/002387 KR2021002387W WO2021172898A1 WO 2021172898 A1 WO2021172898 A1 WO 2021172898A1 KR 2021002387 W KR2021002387 W KR 2021002387W WO 2021172898 A1 WO2021172898 A1 WO 2021172898A1
Authority
WO
WIPO (PCT)
Prior art keywords
distillation column
pressure
propylene glycol
distillation
methyl ether
Prior art date
Application number
PCT/KR2021/002387
Other languages
French (fr)
Korean (ko)
Inventor
이문용
차니아고유스도널드
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Publication of WO2021172898A1 publication Critical patent/WO2021172898A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C67/54Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/31Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/34Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to an apparatus and method for preparing propylene glycol methyl ether acetate.
  • Propylene glycol methyl ether acetate is a solvent used in a wide range of industrial applications due to its high dissolution capacity, good thermal stability, low toxicity and corrosiveness.
  • propylene glycol methyl ether acetate contains both ether bonds and carbonyl groups in its molecular structure, it can be used as an ideal solvent for industrial semiconductors to dissolve polar and non-polar substances.
  • it is required to produce propylene glycol methyl ether acetate (PGMEA) having ultra-high purity and extremely low acidity.
  • the problem to be solved by the present invention is to produce propylene glycol methyl ether acetate with ultra-high purity and extremely low acidity, while at the same time, dramatically improving separation efficiency and energy efficiency through process integration (Process Intensification) To provide a manufacturing apparatus and method that can be performed.
  • an embodiment of the present invention provides a manufacturing apparatus for manufacturing propylene glycol methyl ether acetate (PGMEA; Propylene Glycol Methyl Ether Acetate).
  • PGMEA propylene glycol methyl ether acetate
  • 1 shows a configuration of a manufacturing apparatus according to an embodiment, which will be described below with reference to FIG. 1 .
  • the manufacturing apparatus introduces propylene glycol methyl ether (PGME, 1) and methyl acetate (MA, 2) to produce propylene glycol methyl ether acetate (PGMEA, 3) and methanol, and the catalyst is It may include an equipped reactive distiller (RD).
  • PGME propylene glycol methyl ether
  • MA methyl acetate
  • RD reactive distiller
  • the trans-esterification reaction of Chemical Formula 1 below may be performed in the reaction distiller (RD), and propylene glycol methyl ether acetate (PGMEA, 3) may be prepared.
  • RD reaction distiller
  • PGMEA propylene glycol methyl ether acetate
  • propylene glycol methyl ether acetate (PGMEA, 3) propylene glycol methyl ether (PGME, 1) and methyl acetate (MA, 2) as reactants are introduced into the reaction distiller (RD) from the outside.
  • PGME, 1 propylene glycol methyl ether (PGME, 1) may be introduced into the upper portion of the reactive distiller (RD)
  • methyl acetate (MA, 2) may be introduced into the lower portion of the reactive distiller (RD).
  • methyl acetate (MA, 2) may be introduced into the reaction distiller in excess of the number of moles of propylene glycol methyl ether (PGME, 1).
  • PGME propylene glycol methyl ether
  • methyl acetate (MA, 2) and propylene glycol methyl ether (PGME, 1) are introduced into the reactive distiller (RD) in a molar ratio of 2:1 to 5:1 or 2:1 to 4:1.
  • PGME, 1 propylene glycol methyl ether
  • the pressure of the reaction distiller (RD) may be 3 atm or less, 2 atm or less, or 1 atm or less, 0 atm or less, and as will be described below, lower than the pressure of the first distillation column (D1) can
  • the catalyst provided in the reactive distiller (RD) may be a basic catalyst. That is, the reaction of Formula 1 may be promoted by a basic catalyst, and specifically, the reaction of Formula 1 may exhibit high selectivity to propylene glycol methyl ether acetate (PGMEA, 3) by using a basic catalyst.
  • PGMEA propylene glycol methyl ether acetate
  • the basic catalyst provided in the reactive distiller (RD) may be a basic homogeneous catalyst. That is, the acid catalyst may not be provided in the reactive distiller (RD). That is, in the case of preparing propylene glycol methyl ether acetate (PGMEA) through the transesterification reaction as shown in Formula 1, propylene glycol methyl ether acetate (PGMEA, 3) obtained from the reactive distillation unit (RD) because an acidic catalyst is not involved. may indicate extremely low acidity. Accordingly, propylene glycol methyl ether acetate (PGMEA, 3) prepared according to the present invention may be particularly suitable for solvents used in semiconductor processing.
  • the present invention does not contain acidic substances in the catalyst or product, it does not contain acidic impurity components, so that the propylene glycol methyl ether acetate (PGMEA) obtained according to the present invention has a pH of 4 or more and pH 8 or less at 25°C.
  • the basic catalyst may include solid sodium methoxide (CH 3 ONa).
  • the hold-up in the reaction distillation stage in the reaction distiller R may be large enough to achieve an appropriate reaction conversion rate.
  • the reaction distillation unit (RD) may perform a reaction for preparing propylene glycol methyl ether acetate (PGMEA, 3) and at the same time perform separation and purification of the product. Accordingly, propylene glycol methyl ether acetate (PGMEA, 3) can be obtained from the reactive distiller (RD), and more specifically, it can be obtained from the lower portion of the reactive distillation unit (RD).
  • the yield of propylene glycol methyl ether acetate (PGMEA, 3) obtained from the reactive distillation unit (RD) may be 99% or more, specifically, 99.95% or more, 99.96% or more, 99.97% or more, 99.98% or more , 99.99% or more, or 99.999% or more.
  • Propylene glycol methyl ether acetate (PGMEA, 3) obtained according to the present invention may be particularly suitable as a solvent for semiconductors because it can be obtained in ultra-high purity.
  • methanol (7) as a by-product generated from Formula 1 is separated and obtained by the manufacturing apparatus of the present invention as described in detail in FIG. It can be used as a reactant in the propylene glycol methyl ether (PGME) preparation reaction. Therefore, according to the present invention, the amount of raw material required for the reaction can be reduced.
  • PGME propylene glycol methyl ether
  • methanol, the product of Formula 1, and unreacted methyl acetate (MA) introduced in excess as a reactant may form a mixture and exist above the reaction distiller (RD).
  • RD reaction distiller
  • the methanol and methyl acetate (MA) mixture may be an azeotrope.
  • the liquid mixture can be separated using a distillation process using a difference in volatility between the mixtures, but in the case of an azeotrope forming an azeotrope, it is impossible to separate each substance by a general distillation process.
  • unreacted methyl acetate (MA) and methanol may be separated by pressure swing distillation.
  • An azeotrope of methyl acetate (MA) and methanol can also be separated using extractive distillation.
  • an entrainer which is an additional solvent, is essentially required to change the relative volatility of the composition, there is a problem in that economical efficiency is lowered, and furthermore, there is a fatal disadvantage in that the product is contaminated.
  • the present invention can produce propylene glycol methyl ether acetate (PGMEA) in a more environmentally friendly, high yield and energy-efficient manner using pressure swing distillation that does not require a third component such as an additional solvent.
  • a third component such as an additional solvent.
  • pure methyl acetate (MA) finally separated and obtained is recycled to the reaction distiller (RD) to produce propylene glycol methyl ether acetate (PGMEA). It can be reused as a reactant, and pure methanol finally separated and obtained can be recycled to the reactor (R) and reused as a reactant of a propylene glycol methyl ether (PGME) production reaction.
  • the manufacturing apparatus of the present invention can reduce the amount of use of reactants and energy consumption through a sustainable process, and furthermore, as will be described later, energy exchange between the condenser and the reboiler is possible, so that energy is introduced from the outside can be minimized.
  • the manufacturing apparatus may include a distillation column (D) for separating unreacted methyl acetate and methanol introduced from the reaction distiller (RD) under pressure or reduced pressure.
  • the distillation column (D) is directly connected to the reaction distiller (RD), the methanol and methyl acetate (MA) mixture (4) can be introduced into the distillation column (D) from the top of the reaction distiller (RD).
  • the distillation column (D) may include a first distillation column (D1) directly connected to the reactive distiller (RD) and a second distillation column (D2) directly connected to the first distillation column (D1) (that is, the reactive distiller) (RD), the first distillation column (D1), the second distillation column (D2) are sequentially arranged), the pressure swing distillation is a second distillation column operated at a different pressure from the first distillation column (D1) and the first distillation column (D1) (D2) can be carried out.
  • the pressure swing distillation is a second distillation column operated at a different pressure from the first distillation column (D1) and the first distillation column (D1) (D2) can be carried out.
  • the pressure of the first distillation column (D1) may be higher than the pressure of the second distillation column (D2). That is, the first distillation column (D1) may be operated at a higher pressure than the second distillation column (D2).
  • the methanol and methyl acetate (MA) mixture (4) introduced from the reactive distiller (RD) may contain an excess of methyl acetate (MA) compared to methanol. That is, since the mixture (4) is introduced into the first distillation column (D1) including methyl acetate (MA) in a larger mole fraction compared to methanol, the first distillation column (D1) is at a lower pressure than the second distillation column (D2) The mixture (4) cannot be separated into its individual pure components.
  • the pressure of the first distillation column (D1) may be less than or equal to the pressure causing the ignition point of the compound present in the first distillation column (D1) or decomposition of the catalyst provided in the reaction distiller (RD) starts.
  • the pressure of the first distillation column (D1) may be 4 atm or more and 12 atm or less, and specifically, the lower limit of the pressure of the first distillation column (D1) is 5 atm or more, 6 atm or more, 7 atm or more , may be 8 atm or more, and the upper limit thereof may be 11 atm or less or 10 atm or less.
  • the pressure of the second distillation column (D2) may be greater than 0 atm and less than 4 atm, specifically, 3 atm or less, 2 atm or less, or 1.5 atm or less.
  • the present invention is a reaction Propylene glycol methyl ether acetate (PGMEA, 3) obtained from the still (RD) can exhibit a yield of 99% or more.
  • the pressure difference between the first distillation column D1 and the second distillation column D2 may be 5 atm or more, 6 atm or more, 7 atm or more, or 8 atm or more, and the upper limit may be 10 atm or less.
  • the first distillation column (D1) is operated in a specific pressure range, so that pure methyl acetate (MA, 5) can be separated from the bottom of the first distillation column (D1), and the obtained pure methyl acetate (MA, 5) is recycled to the lower part of the reaction distiller (RD) and can be used as a reactant of the propylene glycol methyl ether acetate (PGMEA) production reaction.
  • pure methyl acetate (MA, 5) can be separated from the bottom of the first distillation column (D1), and the obtained pure methyl acetate (MA, 5) is recycled to the lower part of the reaction distiller (RD) and can be used as a reactant of the propylene glycol methyl ether acetate (PGMEA) production reaction.
  • unreacted methyl acetate (MA) and methanol remaining after separation of methyl acetate (MA, 5) may be introduced into the second distillation column (D2) to form an azeotrope (6).
  • the methanol and methyl acetate (MA) azeotrope 6 introduced from the first distillation column D1 may contain an excess of methanol compared to methyl acetate (MA). That is, the azeotrope 6 may be introduced into the second distillation column D2 including methanol in a larger mole fraction compared to methyl acetate (MA).
  • the second distillation column (D2) is operated in a specific pressure range, and thus pure methanol (7) can be separated from the lower part of the second distillation column (D2), and the obtained pure methanol (7) is below As described in detail in FIG. 2, it is separated and obtained by the manufacturing apparatus of the present invention, and can be performed in a step prior to the propylene glycol methyl ether acetate (PGMEA) preparation reaction as a reactant of the propylene glycol methyl ether (PGME) preparation reaction.
  • PGMEA propylene glycol methyl ether acetate
  • methyl acetate (MA) and methanol which have not been separated, form an azeotropic mixture (8) and are present in the upper part of the second distillation column (D2), and a mixture of methyl acetate (MA) and methanol is obtained from the upper part of the second distillation column (D2).
  • the mixture of methyl acetate (MA) and methanol obtained from the top of the second distillation column (D2) may be recycled to the first distillation column (D1).
  • the azeotrope 8 may contain an excess of methyl acetate (MA) relative to methanol.
  • the first distillation column (D1) may be provided with a condenser at the upper portion
  • the second distillation column (D2) may be provided with a reboiler at the lower portion.
  • the reboiler provided in the lower part of the second distillation column (D2) may have a temperature difference of at least 10 K or more from the condenser provided in the upper part of the first distillation column (D1), in detail, the reboiler provided in the lower part of the second distillation column (D2)
  • the boiler may have a lower temperature of at least 10 K or more than the condenser provided on the first distillation column (D1).
  • the manufacturing apparatus of the present invention can more efficiently save energy. have. That is, the heat to be removed from the condenser provided in the upper part of the first distillation column D1 can be removed without a separate cooler as heat is transferred to the reboiler, and the reboiler provided in the lower part of the second distillation column D2 is Heat can be supplied without separate steam.
  • the manufacturing apparatus consists of a reactive distiller, a first distillation column, and a second distillation column, so that propylene glycol methyl ether acetate (PGMEA) can be produced in excellent yield with only three columns in total. and it can be efficiently recovered as each pure component from an azeotrope of methyl acetate and methanol formed in the process of preparing it,
  • PGMEA propylene glycol methyl ether acetate
  • FIG. 2 shows the configuration of a manufacturing apparatus according to another embodiment, which will be described below with reference to FIG. 2 .
  • the same reference numerals are used for the same components in the drawings, and duplicate descriptions of the same components are omitted.
  • a preparation reaction for preparing propylene glycol methyl ether (PGME) may be performed as follows.
  • the manufacturing apparatus may include a reactor (R) in which propylene oxide (PO, 9) and methanol (10) are introduced to produce propylene glycol methyl ether (PGME), which is a reactant of this reaction.
  • PGME propylene glycol methyl ether
  • methanol (10) and propylene oxide (PO, 9) may be introduced into the reactor (R) in a ratio of 7:1 to 12:1.
  • the reactor (R) may be carried out at a temperature of 300 K to 370 K and 0.5 atm to 2 atm.
  • the ring opening reaction of Formula 2 below may be performed inside the reactor (R).
  • a basic catalyst may be provided inside the reactor (R). That is, the reaction of Formula 2 can be minimized from the risk of ultimately producing acidic propylene glycol methyl ether acetate (PGMEA) by using a basic catalyst, and can be advantageous in terms of selectivity of propylene glycol methyl ether (PGME) production.
  • the propylene glycol methyl ether (PGME, 1) produced according to the reaction of Formula 2 is separated into a pure substance in the still (d) and then is directly connected to the still (d) from the lower part of the still (d) Reaction distiller (RD) can be introduced.
  • unreacted methanol 11 separated from the distiller (d) may be recycled back to the reactor (R) and reused as a reactant of the propylene glycol methyl ether (PGME) production reaction.
  • PGME propylene glycol methyl ether
  • FIGS. 3 and 4 show the configuration of a manufacturing apparatus according to another embodiment, which will be described below with reference to FIGS. 3 and 4 .
  • the same reference numerals are used for the same components in the drawings, and duplicate descriptions such as the same components and the same effects are omitted.
  • the pressure of the reaction distiller (RD) may be a high pressure compared to the pressure of the distillation column (D). That is, the reaction distiller (RD) may be operated at a higher pressure than the distillation column (D) described below.
  • the pressure of the reactive distiller (RD) may be less than or equal to the pressure causing the decomposition of the catalyst provided in the reactive distiller (RD) or the ignition point of the compound present in the distillation column (D).
  • the pressure of the reactive distiller (RD) may be 4 atm or more and 10 atm or less, and specifically, the lower limit of the reaction distiller (RD) pressure may be 5 atm or more, 6 atm or more, or 7 atm or more. and the upper limit may be 9 atm or less or 8 atm or less.
  • the pressure of the distillation column (D) may be more than 0 atm and less than 4 atm, specifically, 3 atm or less, 2 atm or less, or 1.5 atm or less.
  • the transesterification reaction of Chemical Formula 1 performed in the reactive distillation unit (RD) is a reversible endothermic reaction, and the endothermic reaction is a more forward reaction in terms of reaction rate because when the pressure is increased under equivalent conditions, the temperature rises and moves in the product direction. can be advantageous
  • the forward reaction proceeds more favorably as the reaction distiller (RD) is operated at high pressure, and a mixture of methanol and methyl acetate (MA) present in the upper portion of the reaction distiller (RD) (6) may include methanol in excess of methyl acetate (MA).
  • the distillation column (D) may consist of only one distillation column, and the pressure swing distillation may be performed through the distillation column (D) and the reactive distiller (RD) operated at different pressures.
  • the azeotrope 6 introduced from the reaction distiller RD is introduced into the distillation column D including methanol in a larger mole fraction compared to methyl acetate (MA), so the distillation column (D) It is possible to separate the azeotrope (6) at a lower pressure than the silver reaction distiller (RD), and specifically, it can be obtained by separating the pure methanol component in the lower part of the distillation column (D), and methyl acetate (MA) in the upper part of the distillation column (D) ) can be obtained in an excess of azeotrope.
  • the pressure difference between the reaction distiller (RD) and the distillation column (D) may be 3 atm or more, 4 atm or more, 5 atm or more, or 6 atm or more, and the upper limit may be 10 atm or less.
  • the yield of propylene glycol methyl ether acetate (PGMEA, 3) obtained from the reactive distillation unit (RD) may be 99% or more, specifically, 99.95% or more, 99.96% or more, 99.97% or more, 99.98% or more , 99.99% or more, or 99.999% or more. That is, according to the present invention, propylene glycol methyl ether acetate (PGMEA, 3) can be obtained in ultra-high purity, so it can be particularly suitable as a solvent for semiconductors.
  • the distillation column (D) is operated in a specific pressure range, and thus pure methanol (7) can be separated from the lower part of the distillation column (D), and the obtained pure methanol (7) is shown in FIG.
  • the production apparatus of the present invention it can be used as a reactant of the propylene glycol methyl ether (PGME) production reaction that can be carried out in the step before the propylene glycol methyl ether acetate (PGMEA) production reaction. .
  • PGME propylene glycol methyl ether
  • methyl acetate (MA) and methanol that has not been separated form an azeotropic mixture (8) and are present in the upper part of the distillation column (D), and a mixture of methyl acetate (MA) and methanol from the upper part of the distillation column (D) can be obtained, and the azeotrope (8) can contain an excess of methyl acetate (MA) relative to methanol.
  • the azeotrope (8) may be recycled from the upper part of the distillation column (D) to the reaction distiller (RD), and specifically, the methyl acetate (MA) and methanol azeotrope (8) obtained from the upper part of the distillation column (D) is a reaction distiller
  • the position at which the propylene glycol methyl ether (PGME, 1) is recycled to the reactive distiller (RD) and recycled to (RD) may be the same as the position at which the propylene glycol methyl ether (PGME, 1) is introduced into the reactive distiller (RD).
  • the manufacturing apparatus consists of a reactive distiller and a distillation column, so that only two columns in total can achieve the object of the present invention. That is, unlike in FIGS. 1 and 2, as long as the reactive distiller (RD) is operated at an appropriate high pressure, only one distillation column (D) can obtain high purity propylene glycol methyl ether acetate (PGMEA), and at the same time, Energy efficiency can be dramatically improved by efficiently recovering methanol as a pure component from an azeotrope of methyl acetate and methanol.
  • RD reactive distiller
  • D high purity propylene glycol methyl ether acetate
  • Another embodiment of the present invention provides a method for preparing propylene glycol methyl ether acetate (PGMEA; Propylene Glycol Methyl Ether Acetate).
  • PMEA propylene glycol methyl ether acetate
  • the preparation method according to the present invention prepares propylene glycol methyl ether acetate (PGMEA) and methanol from propylene glycol methyl ether (PGME; Propylene Glycol Methyl Ether) and methyl acetate (MA; Methyl Acetate), and propylene glycol Reactive distillation step to obtain methyl ether acetate (PGMEA); and a distillation step of separating the unreacted methyl acetate (MA) and methanol mixture obtained from the reactive distillation step under pressure or reduced pressure, wherein the unreacted methyl acetate (MA) and methanol are pressure swing distillation (Pressure Swing). can be separated by distillation).
  • the pressure swing distillation may be performed through the first distillation column and the second distillation column operated at a different pressure from the first distillation column.
  • the pressure of the first distillation column (D1) may be less than or equal to the pressure at which decomposition of the catalyst provided in the reaction distiller (RD) starts or causes the flash point of the compound present in the first distillation column (D1), in detail , the pressure of the first distillation column may be 4 atm or more and 12 atm or less, and the pressure of the second distillation column may be less than 4 atm.
  • the pressure swing distillation may be performed through a single distillation column and a distillation column and a reactive distiller operated at different pressures.
  • the pressure of the reactive distiller (RD) may be less than or equal to the pressure at which the decomposition of the catalyst provided in the reactive distiller (RD) starts or causes the ignition point of the compound present in the distillation column (D), and the pressure of the reactive distiller is 4 atm or more and 10 atm or less, and the pressure of the distillation column may be less than 4 atm.
  • the present invention can reduce energy consumption, carbon dioxide emission, waste production, and product consumption through process integration (process intensification).
  • process integration process intensification
  • FIG. 1 shows the configuration of a manufacturing apparatus according to an embodiment.
  • FIG. 2 shows the configuration of a manufacturing apparatus according to another embodiment.
  • FIG 3 shows the configuration of a manufacturing apparatus according to another embodiment.
  • FIG. 4 shows the configuration of a manufacturing apparatus according to another embodiment.
  • Propylene oxide (PO, 9) 10 kmol/h and methanol (10) were introduced into the reactor (R) in excess and passed through the still (d) to obtain pure propylene glycol methyl ether (PGME) from the bottom of the still (d).
  • the unreacted methanol (11) was recycled from the top of the still (d) and reintroduced into the reactor (R).
  • a methanol and methyl acetate (MA) mixture (4) was introduced from the reaction distiller (RD) into the first distillation column (D1), and pure methyl acetate (MA) was separated from the lower portion of the first distillation column (D1), and unseparated methyl
  • An azeotrope of acetate (MA) and methanol (6) was introduced into the second distillation column (D2), and pure methyl acetate (MA) was separated from the bottom of the second distillation column (D2).
  • the unseparated methyl acetate (MA) and methanol azeotrope (8) obtained from the upper part of the second distillation column (D2) was recycled and introduced into the upper part of the first distillation column (D1).
  • the operating pressure of the first distillation column (D1) was 10 atm
  • the operating pressure of the second distillation column (D2) was 1 atm.
  • Propylene glycol methyl ether (PGME, 1) 10 kmol/h and methyl acetate (MA, 2) 10 kmol/h produced according to the above preparation example were introduced into a reactive distiller (RD) equipped with solid sodium methoxide, and also As 13 kmol/h of methyl acetate (MA, 8) recycled from the distillation column (D) was introduced, propylene glycol methyl ether acetate (PGMEA, 3) was obtained in 99.999%. At this time, the operating pressure of the reaction distiller (RD) was 7 atm.
  • Methanol and methyl acetate (MA) azeotrope (6) was introduced from the reaction distiller (RD) into the distillation column (D), and pure methanol was separated from the lower part of the distillation column (D), and unseparated methanol and methyl acetate (MA) azeotrope The mixture (8) was recycled to the reaction distiller (RD). At this time, the operating pressure of the distillation column (D) was 1 atm.
  • Table 1 summarizes the data according to Examples 1 and 2, and the required amount of methyl acetate (MA) required in the transesterification reaction of the reactive distiller, the yield of glycol methyl ether acetate (PGMEA), the reboiler duty (energy consumption) and carbon dioxide emissions.
  • MA methyl acetate
  • PMEA glycol methyl ether acetate
  • Example 1 Example 2 MA demand (kmol/h) 28.44 22.99 PGMEA yield (%) 99.999 99.999 Reboiler Duty (MW) 2.107 0.782 Energy Saving (%) - 62.89 Total annual carbon dioxide emissions (t/year) 7092.7 4521.33 Carbon emission reduction (%) - 36.25

Abstract

The present invention relates to an apparatus for manufacturing propylene glycol methyl ether acetate (PGMEA). The present invention can provide a manufacturing apparatus comprising: a reaction distiller in which propylene glycol methyl ether (PGME) and methyl acetate (MA) are introduced to prepare propylene glycol methyl ether acetate (PGMEA) and methanol; and a distillation column in which unreacted methyl acetate (MA) and methanol which are introduced from the reaction distiller are separated in a pressurization or decompression condition, wherein propylene glycol methyl ether acetate (PGMEA) is generated and separated in the reaction distiller and unreacted methyl acetate (MA) and methanol are separated from each other by using pressure swing distillation.

Description

프로필렌 글리콜 메틸 에테르 아세테이트 제조 장치 및 제조 방법Propylene glycol methyl ether acetate manufacturing apparatus and manufacturing method
본 발명은 프로필렌 글리콜 메틸 에테르 아세테이트 제조 장치 및 제조방법에 관한 것이다.The present invention relates to an apparatus and method for preparing propylene glycol methyl ether acetate.
프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)는 높은 용해 용량, 우수한 열 안정성, 낮은 독성 및 부식성으로 인해 광범위한 산업 응용 분야에 이용되는 용매이다. 특히, 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)는 분자 구조 내에 에테르 결합과 카보닐 그룹을 모두 포함하기 때문에, 극성 및 비극성 물질을 용해시키는 데 이상적인 산업용 반도체용 용매로 사용될 수 있다. 특히, 4차 산업혁명 시대의 흐름에 따라 초미세 기술을 요구하는 반도체의 특성상, 초고순도이면서 극도로 낮은 산도를 갖는 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)를 제조하는 것이 요구되는 실정이다.Propylene glycol methyl ether acetate (PGMEA) is a solvent used in a wide range of industrial applications due to its high dissolution capacity, good thermal stability, low toxicity and corrosiveness. In particular, since propylene glycol methyl ether acetate (PGMEA) contains both ether bonds and carbonyl groups in its molecular structure, it can be used as an ideal solvent for industrial semiconductors to dissolve polar and non-polar substances. In particular, due to the characteristics of semiconductors that require ultra-fine technology according to the flow of the fourth industrial revolution, it is required to produce propylene glycol methyl ether acetate (PGMEA) having ultra-high purity and extremely low acidity.
따라서, 본 발명이 해결하고자 하는 과제는 초고순도이면서 극도로 낮은 산도를 갖는 프로필렌 글리콜 메틸 에테르 아세테이트를 제조하면서도, 이와 동시에 공정 집적화(공정 강화, Process Intensification)를 통해 분리 효율과 에너지 효율을 획기적으로 향상시킬 수 있는 제조 장치 및 방법을 제공함에 있다. Therefore, the problem to be solved by the present invention is to produce propylene glycol methyl ether acetate with ultra-high purity and extremely low acidity, while at the same time, dramatically improving separation efficiency and energy efficiency through process integration (Process Intensification) To provide a manufacturing apparatus and method that can be performed.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the present invention can have various changes and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail. However, this is not intended to limit the present invention to specific embodiments, and it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. When a component is referred to as being “connected” or “connected” to another component, it is understood that the other component may be directly connected or connected to the other component, but other components may exist in between. it should be
한편, 본 명세서에서, 반응증류기나 증류탑이 "직접 연결"되어 있다고 언급된 때에는, 이들 사이에 다른 반응증류기나 증류탑과 같은 별도의 컬럼(column)이 추가적으로 개재되지 않는 것으로 이해되어야 할 것이다. 즉, 반응증류기나 증류탑이 직접 연결되어 있다고 하더라도, 중간에 반응증류기나 증류탑이 존재하지 않는 것일 뿐, 이들 사이에 리보일러, 콘덴서 또는 컴프레서 등은 개재될 수 있다. On the other hand, in the present specification, when it is mentioned that a reactive distiller or a distillation column is "directly connected", it will be understood that a separate column such as another reactive distiller or a distillation column is not additionally interposed therebetween. That is, even if the reactive distiller or the distillation column is directly connected, the reactive distiller or the distillation column does not exist in the middle, and a reboiler, a condenser, or a compressor may be interposed therebetween.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It should be understood that this does not preclude the existence or addition of numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
상기 기술적 과제를 이루기 위하여 본 발명의 일 실시예는 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA;Propylene Glycol Methyl Ether Acetate)를 제조하는 제조 장치를 제공한다. 도 1은 일 실시예에 따른 제조 장치의 구성을 나타낸 것으로, 이하 도 1을 참조하여 설명한다.In order to achieve the above technical problem, an embodiment of the present invention provides a manufacturing apparatus for manufacturing propylene glycol methyl ether acetate (PGMEA; Propylene Glycol Methyl Ether Acetate). 1 shows a configuration of a manufacturing apparatus according to an embodiment, which will be described below with reference to FIG. 1 .
< 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA) 제조 : 본 반응 ><Preparation of propylene glycol methyl ether acetate (PGMEA): this reaction>
반응증류기 (RD)Reaction Distiller (RD)
일 구체예에서, 본 발명에 따른 제조 장치는 프로필렌 글리콜 메틸 에테르(PGME, 1)와 메틸 아세테이트(MA, 2)가 도입되어 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA, 3)와 메탄올을 제조하는 것으로 촉매가 구비된 반응증류기(RD)를 포함할 수 있다. In one embodiment, the manufacturing apparatus according to the present invention introduces propylene glycol methyl ether (PGME, 1) and methyl acetate (MA, 2) to produce propylene glycol methyl ether acetate (PGMEA, 3) and methanol, and the catalyst is It may include an equipped reactive distiller (RD).
자세하게는, 반응증류기(RD) 내부에서 아래 화학식 1의 에스테르 교환(trans-esterification) 반응이 수행될 수 있고, 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA, 3)가 제조될 수 있다.Specifically, the trans-esterification reaction of Chemical Formula 1 below may be performed in the reaction distiller (RD), and propylene glycol methyl ether acetate (PGMEA, 3) may be prepared.
[화학식 1][Formula 1]
Figure PCTKR2021002387-appb-img-000001
Figure PCTKR2021002387-appb-img-000001
하나의 예시에서, 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA, 3)를 제조하기 위하여, 반응물로 프로필렌 글리콜 메틸 에테르(PGME, 1)와 메틸 아세테이트(MA, 2)가 외부로부터 반응증류기(RD)에 도입될 수 있는데, 프로필렌 글리콜 메틸 에테르(PGME, 1)는 반응증류기(RD)의 상부로 도입될 수 있고, 메틸 아세테이트(MA, 2)는 반응증류기(RD)의 하부로 도입될 수 있다.In one example, in order to prepare propylene glycol methyl ether acetate (PGMEA, 3), propylene glycol methyl ether (PGME, 1) and methyl acetate (MA, 2) as reactants are introduced into the reaction distiller (RD) from the outside. , propylene glycol methyl ether (PGME, 1) may be introduced into the upper portion of the reactive distiller (RD), and methyl acetate (MA, 2) may be introduced into the lower portion of the reactive distiller (RD).
하나의 예시에서, 메틸 아세테이트(MA, 2)는 프로필렌 글리콜 메틸 에테르(PGME, 1)의 몰 수보다 과량으로 반응증류기에 도입될 수 있다. 화학식 1의 반응식을 고려해보면, 이론적으로는 반응물의 몰 비가 1:1이어야 생성물의 수득률이 높아질 것으로 예상할 수 있으나, 화학식 1의 반응은 평형 반응이므로 반응 시간, 전환율 등 공정 적용 가능성 측면을 고려하면, 메틸 아세테이트(MA, 2)를 프로필렌 글리콜 메틸 에테르(PGME, 1) 대비 과량으로 도입하는 것이 바람직할 수 있다. In one example, methyl acetate (MA, 2) may be introduced into the reaction distiller in excess of the number of moles of propylene glycol methyl ether (PGME, 1). Considering the reaction formula of Formula 1, theoretically, it can be expected that the yield of the product should be increased when the molar ratio of the reactants is 1:1. , it may be desirable to introduce methyl acetate (MA, 2) in excess relative to propylene glycol methyl ether (PGME, 1).
일 예로서, 메틸 아세테이트(MA, 2)와 프로필렌 글리콜 메틸 에테르(PGME, 1)는 2:1 내지 5:1의 몰 비 또는 2:1 내지 4:1의 몰 비로 반응증류기(RD)에 도입될 수 있다. 즉, 반응물의 몰 비가 상기 범위를 만족함으로써, 반응증류기(RD)로 도입된 프로필렌 글리콜 메틸 에테르(PGME, 1)의 전환율을 대략 100 %로 향상시켜 미반응된 프로필렌 글리콜 메틸 에테르(PGME, 1)이 존재하지 않도록 제어할 수 있다.As an example, methyl acetate (MA, 2) and propylene glycol methyl ether (PGME, 1) are introduced into the reactive distiller (RD) in a molar ratio of 2:1 to 5:1 or 2:1 to 4:1. can be That is, since the molar ratio of the reactants satisfies the above range, the conversion of propylene glycol methyl ether (PGME, 1) introduced into the reactive distiller (RD) is improved to approximately 100%, and unreacted propylene glycol methyl ether (PGME, 1) You can control that it doesn't exist.
하나의 예시에서, 반응증류기(RD)의 압력은 3 atm 이하, 2 atm 이하, 또는 1 atm 이하, 0 atm 초과일 수 있고, 아래 후술하는 바와 같이, 제 1 증류탑(D1)의 압력보다 저압일 수 있다.In one example, the pressure of the reaction distiller (RD) may be 3 atm or less, 2 atm or less, or 1 atm or less, 0 atm or less, and as will be described below, lower than the pressure of the first distillation column (D1) can
또한, 하나의 예시에서, 반응증류기(RD)에 구비된 촉매는 염기성 촉매일 수 있다. 즉, 화학식 1의 반응은 염기성 촉매에 의하여 촉진될 수 있고, 자세하게는, 화학식 1의 반응은 염기성 촉매를 이용함으로써, 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA, 3)에 대한 높은 선택성을 나타낼 수 있다. Also, in one example, the catalyst provided in the reactive distiller (RD) may be a basic catalyst. That is, the reaction of Formula 1 may be promoted by a basic catalyst, and specifically, the reaction of Formula 1 may exhibit high selectivity to propylene glycol methyl ether acetate (PGMEA, 3) by using a basic catalyst.
반응증류기(RD)에 구비된 염기성 촉매는 염기성 균일 촉매일 수 있다. 즉, 반응증류기(RD)에 산성 촉매가 구비되지 않을 수 있다. 즉, 상기 화학식 1과 같이 에스테르 교환 반응을 통해 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)를 제조하는 경우, 산성 촉매가 관여하지 않기 때문에 반응증류기(RD)로부터 수득되는 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA, 3)는 극도로 낮은 산도를 나타낼 수 있다. 이에, 본 발명에 따라 제조된 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA, 3)는 특히 반도체 공정에 사용되는 용매에 적합할 수 있다. 일 예로서, 본 발명은 촉매나 생성물에 산성 물질을 포함하지 않으므로 산성 불순물 성분을 포함하지 않아, 본 발명에 따라 수득된 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)는 25°C에서 pH 4 이상 pH 8 이하일 수 있고, 이에 제한되는 것은 아니나, 염기성 촉매는 고체 나트륨 메톡사이드(CH 3ONa)를 포함할 수 있다.The basic catalyst provided in the reactive distiller (RD) may be a basic homogeneous catalyst. That is, the acid catalyst may not be provided in the reactive distiller (RD). That is, in the case of preparing propylene glycol methyl ether acetate (PGMEA) through the transesterification reaction as shown in Formula 1, propylene glycol methyl ether acetate (PGMEA, 3) obtained from the reactive distillation unit (RD) because an acidic catalyst is not involved. may indicate extremely low acidity. Accordingly, propylene glycol methyl ether acetate (PGMEA, 3) prepared according to the present invention may be particularly suitable for solvents used in semiconductor processing. As an example, since the present invention does not contain acidic substances in the catalyst or product, it does not contain acidic impurity components, so that the propylene glycol methyl ether acetate (PGMEA) obtained according to the present invention has a pH of 4 or more and pH 8 or less at 25°C. may, but is not limited thereto, the basic catalyst may include solid sodium methoxide (CH 3 ONa).
일 예로서, 반응증류기(R) 내 반응증류단에서의 홀드업(hold-up)은 적절한 반응 전환율을 달성할 수 있도록 충분히 클 수 있다.As an example, the hold-up in the reaction distillation stage in the reaction distiller R may be large enough to achieve an appropriate reaction conversion rate.
또한, 하나의 예시에서, 반응증류기(RD)는 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA, 3)를 제조하는 반응을 수행함과 동시에 생성물의 분리 정제를 수행할 수 있다. 이에, 반응증류기(RD)로부터 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA, 3)가 수득될 수 있고, 보다 자세하게는, 반응증류기(RD) 하부로부터 수득될 수 있다. In addition, in one example, the reaction distillation unit (RD) may perform a reaction for preparing propylene glycol methyl ether acetate (PGMEA, 3) and at the same time perform separation and purification of the product. Accordingly, propylene glycol methyl ether acetate (PGMEA, 3) can be obtained from the reactive distiller (RD), and more specifically, it can be obtained from the lower portion of the reactive distillation unit (RD).
하나의 예시에서, 반응증류기(RD)로부터 수득된 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA, 3)의 수득률이 99 % 이상일 수 있고, 자세하게는, 99.95 % 초과, 99.96 % 이상, 99.97 % 이상, 99.98 % 이상, 99.99 % 이상, 또는 99.999 % 이상일 수 있다. 본 발명에 따라 수득된 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA, 3)는 초고순도로 얻어질 수 있기 때문에 특히 반도체용 용매로 적합할 수 있다.In one example, the yield of propylene glycol methyl ether acetate (PGMEA, 3) obtained from the reactive distillation unit (RD) may be 99% or more, specifically, 99.95% or more, 99.96% or more, 99.97% or more, 99.98% or more , 99.99% or more, or 99.999% or more. Propylene glycol methyl ether acetate (PGMEA, 3) obtained according to the present invention may be particularly suitable as a solvent for semiconductors because it can be obtained in ultra-high purity.
또한, 화학식 1로부터 생성되는 부산물로서 메탄올(7)은 아래 도 2에서 자세하게 설명하는 바와 같이, 본 발명의 제조 장치에 의해 분리 및 수득되어, 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA) 제조 반응 이전 단계에서 수행될 수 있는 프로필렌 글리콜 메틸 에테르(PGME) 제조 반응의 반응물로 사용될 수 있다. 따라서, 본 발명에 따르면 반응에 필요한 원료 요구량이 절감될 수 있다.In addition, methanol (7) as a by-product generated from Formula 1 is separated and obtained by the manufacturing apparatus of the present invention as described in detail in FIG. It can be used as a reactant in the propylene glycol methyl ether (PGME) preparation reaction. Therefore, according to the present invention, the amount of raw material required for the reaction can be reduced.
한편, 화학식 1의 생성물인 메탄올과 반응물로서 과량으로 도입된 미반응 메틸 아세테이트(MA)는 혼합물을 이루어 반응증류기(RD) 상부에 존재할 수 있다. 메탄올과 메틸 아세테이트(MA) 혼합물은 공비 혼합물일 수 있다. On the other hand, methanol, the product of Formula 1, and unreacted methyl acetate (MA) introduced in excess as a reactant may form a mixture and exist above the reaction distiller (RD). The methanol and methyl acetate (MA) mixture may be an azeotrope.
액상 혼합물은 일반적으로 혼합물 간의 휘발도 차이를 이용하는 증류 공정을 이용하여 분리할 수 있으나, 공비점을 형성하는 공비 혼합물의 경우 일반적인 증류 공정으로는 각각의 물질을 분리하는 것이 불가능하다.In general, the liquid mixture can be separated using a distillation process using a difference in volatility between the mixtures, but in the case of an azeotrope forming an azeotrope, it is impossible to separate each substance by a general distillation process.
한편, 반응증류기(RD)에서 형성된 메탄올과 메틸 아세테이트(MA) 혼합물은 압력 변화에 민감하게 공비점의 이동을 나타내므로, 이러한 거동을 이용하여 증류탑의 작동 압력을 제어하여 혼합물의 상대 휘발도와 공비점, 즉 공비 조성을 제어하여 각각의 성분을 순수한 성분으로 분리할 수 있다. 이하, 메탄올과 메틸 아세테이트(MA) 공비 혼합물을 순수한 성분으로 분리하기 위한 구성인 증류탑에 대하여 자세하게 설명한다.On the other hand, since the methanol and methyl acetate (MA) mixture formed in the reactive distiller (RD) shows the shift of the azeotrope sensitively to the pressure change, the operating pressure of the distillation column is controlled using this behavior to control the relative volatility and the azeotropic point of the mixture. , that is, each component can be separated into pure components by controlling the azeotropic composition. Hereinafter, a distillation column, which is a configuration for separating an azeotrope of methanol and methyl acetate (MA) into pure components, will be described in detail.
증류탑 (D1, D2)Distillation column (D1, D2)
일 구체예에서, 미반응 메틸 아세테이트(MA)와 메탄올은 압력 스윙 증류(Pressure Swing Distillation)에 의해 분리될 수 있다. In one embodiment, unreacted methyl acetate (MA) and methanol may be separated by pressure swing distillation.
메틸 아세테이트(MA)와 메탄올의 공비 혼합물은 추출 증류를 이용하여 분리할 수도 있다. 그러나, 이 경우 조성의 상대적 휘발성을 변경하기 위하여 추가 용매인 엔트레이너를 필수적으로 요구함에 따라, 경제성이 저하되는 문제점이 발생하고, 더욱이 제품이 오염되는 치명적인 단점이 존재한다. An azeotrope of methyl acetate (MA) and methanol can also be separated using extractive distillation. However, in this case, as an entrainer, which is an additional solvent, is essentially required to change the relative volatility of the composition, there is a problem in that economical efficiency is lowered, and furthermore, there is a fatal disadvantage in that the product is contaminated.
이에, 본 발명은 추가 용매와 같은 제 3 의 성분을 필요로 하지 않는 압력 스윙 증류를 이용하여 보다 친환경적이면서도 높은 수율 및 에너지 효율로 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)를 제조할 수 있다. 뿐만 아니라, 압력 스윙 증류을 이용한 경우, 아래에서 더욱 자세하게 설명하는 바와 같이, 최종적으로 분리되어 얻어진 순수한 메틸 아세테이트와(MA)는 반응증류기(RD)로 재순환되어 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA) 생성 반응의 반응물로 재사용될 수 있고, 또한 최종적으로 분리되어 얻어진 순수한 메탄올은 반응기(R)로 재순환되어 프로필렌 글리콜 메틸 에테르(PGME) 생성 반응의 반응물로 재사용될 수 있다. 따라서, 본 발명의 제조 장치는 지속 가능한 공정을 통해 반응물의 사용량을 절감하고 에너지 소비량 역시 절감할 수 있고, 나아가, 후술하는 바와 같이, 콘덴서와 리보일러 사이에 에너지 교환이 가능하여 외부로부터의 에너지 유입을 최소화할 수 있다.Accordingly, the present invention can produce propylene glycol methyl ether acetate (PGMEA) in a more environmentally friendly, high yield and energy-efficient manner using pressure swing distillation that does not require a third component such as an additional solvent. In addition, when pressure swing distillation is used, as will be described in more detail below, pure methyl acetate (MA) finally separated and obtained is recycled to the reaction distiller (RD) to produce propylene glycol methyl ether acetate (PGMEA). It can be reused as a reactant, and pure methanol finally separated and obtained can be recycled to the reactor (R) and reused as a reactant of a propylene glycol methyl ether (PGME) production reaction. Therefore, the manufacturing apparatus of the present invention can reduce the amount of use of reactants and energy consumption through a sustainable process, and furthermore, as will be described later, energy exchange between the condenser and the reboiler is possible, so that energy is introduced from the outside can be minimized.
하나의 예시에서, 제조 장치는 반응증류기(RD)로부터 도입된 미반응 메틸 아세테이트와 메탄올을 가압 또는 감압 조건 하에서 분리하는 증류탑(D)을 포함할 수 있다. 자세하게는, 증류탑(D)은 반응증류기(RD)와 직접 연결되어, 메탄올과 메틸 아세테이트(MA) 혼합물(4)이 반응증류기(RD) 상부로부터 증류탑(D)으로 도입될 수 있다. In one example, the manufacturing apparatus may include a distillation column (D) for separating unreacted methyl acetate and methanol introduced from the reaction distiller (RD) under pressure or reduced pressure. Specifically, the distillation column (D) is directly connected to the reaction distiller (RD), the methanol and methyl acetate (MA) mixture (4) can be introduced into the distillation column (D) from the top of the reaction distiller (RD).
하나의 예시에서, 증류탑(D)은 반응증류기(RD)와 직접 연결된 제 1 증류탑(D1) 및 제 1 증류탑(D1)과 직접 연결된 제 2 증류탑(D2)을 포함할 수 있고(즉, 반응증류기(RD), 제 1 증류탑(D1), 제 2 증류탑(D2)이 순차로 배치됨), 압력 스윙 증류는 제 1 증류탑(D1) 및 제 1 증류탑(D1)과 서로 다른 압력에서 작동되는 제 2 증류탑(D2)을 통해 수행될 수 있다. In one example, the distillation column (D) may include a first distillation column (D1) directly connected to the reactive distiller (RD) and a second distillation column (D2) directly connected to the first distillation column (D1) (that is, the reactive distiller) (RD), the first distillation column (D1), the second distillation column (D2) are sequentially arranged), the pressure swing distillation is a second distillation column operated at a different pressure from the first distillation column (D1) and the first distillation column (D1) (D2) can be carried out.
하나의 예시에서, 제 1 증류탑(D1)의 압력이 제 2 증류탑(D2)의 압력 대비 고압일 수 있다. 즉, 제 1 증류탑(D1)은 제 2 증류탑(D2)보다 높은 압력에서 작동될 수 있다. In one example, the pressure of the first distillation column (D1) may be higher than the pressure of the second distillation column (D2). That is, the first distillation column (D1) may be operated at a higher pressure than the second distillation column (D2).
반응증류기(RD)로부터 도입된 메탄올과 메틸 아세테이트(MA) 혼합물(4)은 메탄올 대비 메틸 아세테이트(MA)를 과량(excess)으로 포함할 수 있다. 즉, 혼합물(4)은 메탄올 대비 메틸 아세테이트(MA)를 더 큰 몰 분율로 포함하여 제 1 증류탑(D1)으로 도입되는 이상, 제 1 증류탑(D1)은 제 2 증류탑(D2)보다 낮은 압력에서 혼합물(4)을 각각의 순수한 성분으로 분리시킬 수 없다.The methanol and methyl acetate (MA) mixture (4) introduced from the reactive distiller (RD) may contain an excess of methyl acetate (MA) compared to methanol. That is, since the mixture (4) is introduced into the first distillation column (D1) including methyl acetate (MA) in a larger mole fraction compared to methanol, the first distillation column (D1) is at a lower pressure than the second distillation column (D2) The mixture (4) cannot be separated into its individual pure components.
하나의 예시에서, 제 1 증류탑(D1)의 압력은 반응증류기(RD)에 구비된 촉매의 분해가 시작되거나 제 1 증류탑(D1) 내에 존재하는 화합물의 발화점을 야기하는 압력 이하일 수 있다.In one example, the pressure of the first distillation column (D1) may be less than or equal to the pressure causing the ignition point of the compound present in the first distillation column (D1) or decomposition of the catalyst provided in the reaction distiller (RD) starts.
자세하게는, 하나의 예시에서, 제 1 증류탑(D1)의 압력은 4 atm 이상 12 atm 이하일 수 있고, 자세하게는, 제 1 증류탑(D1) 압력의 하한은 5 atm 이상, 6 atm 이상, 7 atm 이상, 8 atm 이상일 수 있고, 그 상한은 11 atm 이하 또는 10 atm 이하일 수 있다. 또한, 제 2 증류탑(D2)의 압력은 0 atm 초과 4 atm 미만일 수 있고, 자세하게는, 3 atm 이하, 2 atm 이하 또는 1.5 atm 이하일 수 있다. 제 1 증류탑(D1)의 압력을 제어함으로써 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA, 3)의 수득률이 결정되는 것으로, 즉, 제 1 증류탑(D1)의 작동 압력으로 상기 범위를 만족시킴으로써, 본 발명은 반응증류기(RD)로부터 수득된 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA, 3)는 99 % 이상의 수득률을 나타낼 수 있다. Specifically, in one example, the pressure of the first distillation column (D1) may be 4 atm or more and 12 atm or less, and specifically, the lower limit of the pressure of the first distillation column (D1) is 5 atm or more, 6 atm or more, 7 atm or more , may be 8 atm or more, and the upper limit thereof may be 11 atm or less or 10 atm or less. In addition, the pressure of the second distillation column (D2) may be greater than 0 atm and less than 4 atm, specifically, 3 atm or less, 2 atm or less, or 1.5 atm or less. By controlling the pressure of the first distillation column (D1), the yield of propylene glycol methyl ether acetate (PGMEA, 3) is determined, that is, by satisfying the above range with the operating pressure of the first distillation column (D1), the present invention is a reaction Propylene glycol methyl ether acetate (PGMEA, 3) obtained from the still (RD) can exhibit a yield of 99% or more.
일 예로서, 제 1 증류탑(D1)과 제 2 증류탑(D2)의 압력차가 5 atm 이상, 6 atm 이상, 7 atm 이상, 또는 8 atm 이상일 수 있고, 상한으로 10 atm 이하일 수 있다.As an example, the pressure difference between the first distillation column D1 and the second distillation column D2 may be 5 atm or more, 6 atm or more, 7 atm or more, or 8 atm or more, and the upper limit may be 10 atm or less.
하나의 예시에서, 제 1 증류탑(D1)은 특정 압력 범위로 작동됨으로써, 제 1 증류탑(D1)의 하부로부터 순수한 메틸 아세테이트(MA, 5)가 분리될 수 있고, 수득된 순수한 메틸 아세테이트(MA, 5)는 다시 반응증류기(RD)의 하부로 재순환되어 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA) 제조 반응의 반응물로 사용될 수 있다.In one example, the first distillation column (D1) is operated in a specific pressure range, so that pure methyl acetate (MA, 5) can be separated from the bottom of the first distillation column (D1), and the obtained pure methyl acetate (MA, 5) is recycled to the lower part of the reaction distiller (RD) and can be used as a reactant of the propylene glycol methyl ether acetate (PGMEA) production reaction.
하나의 예시에서, 메틸 아세테이트(MA, 5)가 분리된 이후 남은 미반응 메틸 아세테이트(MA)와 메탄올은 공비 혼합물(6)을 이루어 제 2 증류탑(D2)으로 도입될 수 있다. 제 1 증류탑(D1)으로부터 도입된 메탄올과 메틸 아세테이트(MA) 공비 혼합물(6)은 메틸 아세테이트(MA) 대비 메탄올을 과량(excess)으로 포함할 수 있다. 즉, 공비 혼합물(6)은 메틸 아세테이트(MA) 대비 메탄올을 더 큰 몰 분율로 포함하여 제 2 증류탑(D2)으로 도입될 수 있다.In one example, unreacted methyl acetate (MA) and methanol remaining after separation of methyl acetate (MA, 5) may be introduced into the second distillation column (D2) to form an azeotrope (6). The methanol and methyl acetate (MA) azeotrope 6 introduced from the first distillation column D1 may contain an excess of methanol compared to methyl acetate (MA). That is, the azeotrope 6 may be introduced into the second distillation column D2 including methanol in a larger mole fraction compared to methyl acetate (MA).
앞에서 설명한 바와 같이, 제 2 증류탑(D2)은 특정 압력 범위로 작동되고, 이에 따라 제 2 증류탑(D2)의 하부로부터 순수한 메탄올(7)이 분리될 수 있고, 수득된 순수한 메탄올(7)은 아래 도 2에서 자세하게 설명하는 바와 같이, 본 발명의 제조 장치에 의해 분리 및 수득되어, 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA) 제조 반응 이전 단계에서 수행될 수 있는 프로필렌 글리콜 메틸 에테르(PGME) 제조 반응의 반응물로 사용될 수 있다.As described above, the second distillation column (D2) is operated in a specific pressure range, and thus pure methanol (7) can be separated from the lower part of the second distillation column (D2), and the obtained pure methanol (7) is below As described in detail in FIG. 2, it is separated and obtained by the manufacturing apparatus of the present invention, and can be performed in a step prior to the propylene glycol methyl ether acetate (PGMEA) preparation reaction as a reactant of the propylene glycol methyl ether (PGME) preparation reaction. can be used
또한, 미처 분리되지 못한 메틸 아세테이트(MA)와 메탄올은 공비 혼합물(8)을 이루어 제 2 증류탑(D2)의 상부에 존재하여 제 2 증류탑(D2) 상부로부터 메틸 아세테이트(MA)와 메탄올 혼합물이 수득될 수 있고, 제 2 증류탑(D2)의 상부로부터 수득된 메틸 아세테이트(MA)와 메탄올 혼합물은 제 1 증류탑(D1)으로 재순환될 수 있다. 공비 혼합물(8)은 메탄올 대비 메틸 아세테이트(MA)를 과량(excess)으로 포함할 수 있다.In addition, methyl acetate (MA) and methanol, which have not been separated, form an azeotropic mixture (8) and are present in the upper part of the second distillation column (D2), and a mixture of methyl acetate (MA) and methanol is obtained from the upper part of the second distillation column (D2). The mixture of methyl acetate (MA) and methanol obtained from the top of the second distillation column (D2) may be recycled to the first distillation column (D1). The azeotrope 8 may contain an excess of methyl acetate (MA) relative to methanol.
나아가, 하나의 예시에서, 제 1 증류탑(D1)은 상부에 콘덴서를 구비할 수 있고, 제 2 증류탑(D2)은 하부에 리보일러를 구비할 수 있다. 제 2 증류탑(D2) 하부에 구비된 리보일러는 제 1 증류탑(D1) 상부에 구비된 콘덴서와 적어도 10 K 이상의 온도 차이를 가질 수 있고, 자세하게는, 제 2 증류탑(D2) 하부에 구비된 리보일러는 제 1 증류탑(D1) 상부에 구비된 콘덴서보다 적어도 10 K 이상의 더 낮은 온도를 가질 수 있다. Further, in one example, the first distillation column (D1) may be provided with a condenser at the upper portion, the second distillation column (D2) may be provided with a reboiler at the lower portion. The reboiler provided in the lower part of the second distillation column (D2) may have a temperature difference of at least 10 K or more from the condenser provided in the upper part of the first distillation column (D1), in detail, the reboiler provided in the lower part of the second distillation column (D2) The boiler may have a lower temperature of at least 10 K or more than the condenser provided on the first distillation column (D1).
이와 같이, 제 1 증류탑(D1)의 상부에 구비된 콘덴서와 제 2 증류탑(D2) 하부에 구비된 리보일러는 열 교환을 수행함에 따라, 본 발명의 제조 장치는 보다 효율적으로 에너지를 절감할 수 있다. 즉, 제 1 증류탑(D1)의 상부에 구비된 콘덴서에서 제거되어야 할 열은 리보일러로 열 전달됨에 따라 별도의 냉각기 없이 제거될 수 있고, 더불어 제 2 증류탑(D2) 하부에 구비된 리보일러는 별도의 스팀 없이 열을 공급받을 수 있다.As such, as the condenser provided in the upper portion of the first distillation column D1 and the reboiler provided in the lower portion of the second distillation column D2 perform heat exchange, the manufacturing apparatus of the present invention can more efficiently save energy. have. That is, the heat to be removed from the condenser provided in the upper part of the first distillation column D1 can be removed without a separate cooler as heat is transferred to the reboiler, and the reboiler provided in the lower part of the second distillation column D2 is Heat can be supplied without separate steam.
정리하면, 본 발명의 일 실시예에 따른 제조 장치는 반응증류기, 제 1 증류탑, 및 제 2 증류탑으로 이루어져, 총 3개의 컬럼(column)만으로도 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)를 우수한 수득률로 제조할 수 있고, 이를 제조하는 과정에서 형성되는 메틸 아세테이트와 메탄올 공비 혼합물로부터 각각의 순수한 성분으로 효율적으로 회수할 수 있다,In summary, the manufacturing apparatus according to an embodiment of the present invention consists of a reactive distiller, a first distillation column, and a second distillation column, so that propylene glycol methyl ether acetate (PGMEA) can be produced in excellent yield with only three columns in total. and it can be efficiently recovered as each pure component from an azeotrope of methyl acetate and methanol formed in the process of preparing it,
도 2는 다른 실시예에 따른 제조 장치의 구성을 나타낸 것으로, 이하 도 2를 참조하여 설명한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.FIG. 2 shows the configuration of a manufacturing apparatus according to another embodiment, which will be described below with reference to FIG. 2 . In describing the present invention, in order to facilitate the overall understanding, the same reference numerals are used for the same components in the drawings, and duplicate descriptions of the same components are omitted.
상기에서 설명한 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)를 제조하는 본 반응에 앞서, 아래와 같이 프로필렌 글리콜 메틸 에테르(PGME)를 제조하는 준비 반응이 수행될 수 있다.Prior to this reaction for preparing propylene glycol methyl ether acetate (PGMEA) described above, a preparation reaction for preparing propylene glycol methyl ether (PGME) may be performed as follows.
< 프로필렌 글리콜 메틸 에테르(PGME) 제조 : 준비 반응 >< Preparation of propylene glycol methyl ether (PGME): preparation reaction >
반응기 (R)Reactor (R)
하나의 예시에서, 본 발명에 따른 제조 장치는 프로필렌옥사이드(PO, 9)와 메탄올(10)이 도입되어 본 반응의 반응물인 프로필렌 글리콜 메틸 에테르(PGME)를 제조하는 반응기(R)를 포함할 수 있다. 일 예로서, 메탄올(10)과 프로필렌옥사이드(PO, 9)는 7:1 내지 12:1의 비율로 반응기(R)에 도입될 수 있다. 또한, 반응기(R)는 300 K 내지 370 K 온도 및 0.5 atm 내지 2 atm 에서 수행될 수 있다.In one example, the manufacturing apparatus according to the present invention may include a reactor (R) in which propylene oxide (PO, 9) and methanol (10) are introduced to produce propylene glycol methyl ether (PGME), which is a reactant of this reaction. have. As an example, methanol (10) and propylene oxide (PO, 9) may be introduced into the reactor (R) in a ratio of 7:1 to 12:1. In addition, the reactor (R) may be carried out at a temperature of 300 K to 370 K and 0.5 atm to 2 atm.
자세하게는, 반응기(R) 내부에서 아래 화학식 2의 고리 열림반응이 수행될 수 있다. 일 예로서, 반응기(R) 내부에 염기성 촉매가 구비될 수 있다. 즉, 화학식 2의 반응은 염기성 촉매를 사용함으로써, 최종적으로 산성 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA) 생성의 위험으로부터 최소화할 수 있고, 프로필렌 글리콜 메틸 에테르(PGME) 생성의 선택성 측면에서 유리할 수 있다.Specifically, the ring opening reaction of Formula 2 below may be performed inside the reactor (R). As an example, a basic catalyst may be provided inside the reactor (R). That is, the reaction of Formula 2 can be minimized from the risk of ultimately producing acidic propylene glycol methyl ether acetate (PGMEA) by using a basic catalyst, and can be advantageous in terms of selectivity of propylene glycol methyl ether (PGME) production.
[화학식 2][Formula 2]
Figure PCTKR2021002387-appb-img-000002
Figure PCTKR2021002387-appb-img-000002
하나의 예시에서, 화학식 2의 반응에 따라 생성된 프로필렌 글리콜 메틸 에테르(PGME, 1)는 증류기(d)에서 순수한 물질로 분리된 후 증류기(d)의 하부로부터 증류기(d)에 직접 연결된 반응증류기(RD)로 도입될 수 있다. In one example, the propylene glycol methyl ether (PGME, 1) produced according to the reaction of Formula 2 is separated into a pure substance in the still (d) and then is directly connected to the still (d) from the lower part of the still (d) Reaction distiller (RD) can be introduced.
또한, 증류기(d)로부터 분리된 미반응 메탄올(11)은 다시 반응기(R)로 재순환되어 프로필렌 글리콜 메틸 에테르(PGME) 제조 반응의 반응물로 재사용될 수 있다.In addition, unreacted methanol 11 separated from the distiller (d) may be recycled back to the reactor (R) and reused as a reactant of the propylene glycol methyl ether (PGME) production reaction.
나아가, 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA;Propylene Glycol Methyl Ether Acetate)를 제조하는 본 반응을 거쳐 부산물로 수득되는 순수한 메탄올(7)은 다시 반응기(R)로 재순환되어 화학식 2에 따른 프로필렌 글리콜 메틸 에테르(PGME) 제조 반응의 반응물로 재사용될 수 있다.Furthermore, pure methanol (7) obtained as a by-product through this reaction to prepare propylene glycol methyl ether acetate (PGMEA; Propylene Glycol Methyl Ether Acetate) is recycled back to the reactor (R) and propylene glycol methyl ether ( PGME) can be reused as a reactant in the production reaction.
도 3 및 도 4는 또 다른 실시예에 따른 제조 장치의 구성을 나타낸 것으로, 이하 도 3 및 도 4를 참조하여 설명한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소, 동일한 효과 등 중복된 설명은 생략한다.3 and 4 show the configuration of a manufacturing apparatus according to another embodiment, which will be described below with reference to FIGS. 3 and 4 . In describing the present invention, in order to facilitate the overall understanding, the same reference numerals are used for the same components in the drawings, and duplicate descriptions such as the same components and the same effects are omitted.
반응증류기(RD)Reaction Distiller (RD)
일 구체예에서, 반응증류기(RD)의 압력이 증류탑(D)의 압력 대비 고압일 수 있다. 즉, 반응증류기(RD)는 아래에서 설명하는 증류탑(D)보다 높은 압력에서 작동될 수 있다. In one embodiment, the pressure of the reaction distiller (RD) may be a high pressure compared to the pressure of the distillation column (D). That is, the reaction distiller (RD) may be operated at a higher pressure than the distillation column (D) described below.
하나의 예시에서, 반응증류기(RD)의 압력은 반응증류기(RD)에 구비된 촉매의 분해가 시작되거나 증류탑(D) 내에 존재하는 화합물의 발화점을 야기하는 압력 이하일 수 있다.In one example, the pressure of the reactive distiller (RD) may be less than or equal to the pressure causing the decomposition of the catalyst provided in the reactive distiller (RD) or the ignition point of the compound present in the distillation column (D).
자세하게는, 하나의 예시에서, 반응증류기(RD)의 압력은 4 atm 이상 10 atm 이하일 수 있고, 자세하게는, 반응증류기(RD) 압력의 하한은 5 atm 이상, 6 atm 이상, 또는 7 atm 이상일 수 있고, 그 상한은 9 atm 이하 또는 8 atm 이하일 수 있다. 또한, 증류탑(D)의 압력은 0 atm 초과 4 atm 미만일 수 있고, 자세하게는, 3 atm 이하, 2 atm 이하 또는 1.5 atm 이하일 수 있다.Specifically, in one example, the pressure of the reactive distiller (RD) may be 4 atm or more and 10 atm or less, and specifically, the lower limit of the reaction distiller (RD) pressure may be 5 atm or more, 6 atm or more, or 7 atm or more. and the upper limit may be 9 atm or less or 8 atm or less. In addition, the pressure of the distillation column (D) may be more than 0 atm and less than 4 atm, specifically, 3 atm or less, 2 atm or less, or 1.5 atm or less.
반응증류기(RD)에서 수행되는 상기 화학식 1의 에스테르 교환 반응은 가역성 흡열 반응으로, 흡열 반응은 동등한조건에서 압력을 증가시키는 경우, 온도가 상승하여 생성물 방향으로 이동되므로, 반응 속도 측면에서 정반응이 더욱 유리할 수 있다.The transesterification reaction of Chemical Formula 1 performed in the reactive distillation unit (RD) is a reversible endothermic reaction, and the endothermic reaction is a more forward reaction in terms of reaction rate because when the pressure is increased under equivalent conditions, the temperature rises and moves in the product direction. can be advantageous
즉, 위에서 서술한 도 1 및 도 2에서와 달리, 반응증류기(RD)는 고압에서 작동됨에 따라 정반응이 더욱 유리하게 진행되어, 반응증류기(RD) 상부에 존재하는 메탄올과 메틸 아세테이트(MA) 혼합물(6)은 메틸 아세테이트(MA) 대비 메탄올을 과량(excess)으로 포함할 수 있다.That is, unlike in FIGS. 1 and 2 described above, the forward reaction proceeds more favorably as the reaction distiller (RD) is operated at high pressure, and a mixture of methanol and methyl acetate (MA) present in the upper portion of the reaction distiller (RD) (6) may include methanol in excess of methyl acetate (MA).
증류탑(D)Distillation column (D)
일 구체예에서, 증류탑(D)은 하나의 증류탑만으로 구성될 수 있고, 압력 스윙 증류는 증류탑(D)과 서로 다른 압력에서 작동되는 반응증류기(RD)를 통해 수행될 수 있다. In one embodiment, the distillation column (D) may consist of only one distillation column, and the pressure swing distillation may be performed through the distillation column (D) and the reactive distiller (RD) operated at different pressures.
도 1 및 도 2에서와 달리, 반응증류기(RD)로부터 도입된 공비 혼합물(6)은 메틸 아세테이트(MA) 대비 메탄올을 더 큰 몰 분율로 포함하여 증류탑(D)으로 도입되므로, 증류탑(D)은 반응증류기(RD)보다 낮은 압력에서 공비 혼합물(6)을 분리시킬 수 있으며, 자세하게는, 증류탑(D) 하부에서는 순수한 메탄올 성분을 분리시켜 얻을 수 있고, 증류탑(D) 상부에서는 메틸 아세테이트(MA)가 과량인 공비 혼합물을 얻을 수 있다.Unlike in FIGS. 1 and 2 , the azeotrope 6 introduced from the reaction distiller RD is introduced into the distillation column D including methanol in a larger mole fraction compared to methyl acetate (MA), so the distillation column (D) It is possible to separate the azeotrope (6) at a lower pressure than the silver reaction distiller (RD), and specifically, it can be obtained by separating the pure methanol component in the lower part of the distillation column (D), and methyl acetate (MA) in the upper part of the distillation column (D) ) can be obtained in an excess of azeotrope.
일 예로서, 반응증류기(RD)와 증류탑(D)의 압력차가 3 atm 이상, 4 atm 이상, 5 atm 이상, 또는 6 atm 이상일 수 있고, 상한으로 10 atm 이하일 수 있다.As an example, the pressure difference between the reaction distiller (RD) and the distillation column (D) may be 3 atm or more, 4 atm or more, 5 atm or more, or 6 atm or more, and the upper limit may be 10 atm or less.
하나의 예시에서, 반응증류기(RD)로부터 수득된 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA, 3)의 수득률이 99 % 이상일 수 있고, 자세하게는, 99.95 % 초과, 99.96 % 이상, 99.97 % 이상, 99.98 % 이상, 99.99 % 이상, 또는 99.999 % 이상일 수 있다. 즉, 본 발명에 따르면 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA, 3)는 초고순도로 얻어질 수 있기 때문에 특히 반도체용 용매로 적합할 수 있다.In one example, the yield of propylene glycol methyl ether acetate (PGMEA, 3) obtained from the reactive distillation unit (RD) may be 99% or more, specifically, 99.95% or more, 99.96% or more, 99.97% or more, 99.98% or more , 99.99% or more, or 99.999% or more. That is, according to the present invention, propylene glycol methyl ether acetate (PGMEA, 3) can be obtained in ultra-high purity, so it can be particularly suitable as a solvent for semiconductors.
또한, 앞에서 설명한 바와 같이, 증류탑(D)은 특정 압력 범위로 작동되고, 이에 따라 증류탑(D)의 하부로부터 순수한 메탄올(7)이 분리될 수 있고, 수득된 순수한 메탄올(7)은 도 4에서 알 수 있는 바와 같이, 본 발명의 제조 장치에 의해 분리 및 수득되어, 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA) 제조 반응 이전 단계에서 수행될 수 있는 프로필렌 글리콜 메틸 에테르(PGME) 제조 반응의 반응물로 사용될 수 있다.In addition, as described above, the distillation column (D) is operated in a specific pressure range, and thus pure methanol (7) can be separated from the lower part of the distillation column (D), and the obtained pure methanol (7) is shown in FIG. As can be seen, separated and obtained by the production apparatus of the present invention, it can be used as a reactant of the propylene glycol methyl ether (PGME) production reaction that can be carried out in the step before the propylene glycol methyl ether acetate (PGMEA) production reaction. .
또한, 하나의 예시에서, 메틸 아세테이트(MA)와 미처 분리되지 못한 메탄올은 공비 혼합물(8)을 이루어 증류탑(D)의 상부에 존재하여, 증류탑(D) 상부로부터 메틸 아세테이트(MA)와 메탄올 혼합물이 수득될 수 있고, 공비 혼합물(8)은 메탄올 대비 메틸 아세테이트(MA)를 과량(excess)으로 포함할 수 있다. 상기 공비 혼합물(8)은 증류탑(D) 상부로부터 반응증류기(RD)로 재순환될 수 있고, 자세하게는, 증류탑(D) 상부로부터 수득된 메틸 아세테이트(MA)와 메탄올 공비 혼합물(8)이 반응증류기(RD)로 재순환되어 반응증류기(RD)에 재도입되는 위치는 프로필렌 글리콜 메틸 에테르(PGME, 1)가 반응증류기(RD)에 도입되는 위치와 동일할 수 있다.In addition, in one example, methyl acetate (MA) and methanol that has not been separated form an azeotropic mixture (8) and are present in the upper part of the distillation column (D), and a mixture of methyl acetate (MA) and methanol from the upper part of the distillation column (D) can be obtained, and the azeotrope (8) can contain an excess of methyl acetate (MA) relative to methanol. The azeotrope (8) may be recycled from the upper part of the distillation column (D) to the reaction distiller (RD), and specifically, the methyl acetate (MA) and methanol azeotrope (8) obtained from the upper part of the distillation column (D) is a reaction distiller The position at which the propylene glycol methyl ether (PGME, 1) is recycled to the reactive distiller (RD) and recycled to (RD) may be the same as the position at which the propylene glycol methyl ether (PGME, 1) is introduced into the reactive distiller (RD).
정리하면, 본 발명의 일 실시예에 따른 제조 장치는 반응증류기 및 증류탑으로 이루어져, 총 2개의 컬럼(column)만으로도 본 발명이 목적하는 바를 달성할 수 있다. 즉, 도 1 및 도 2에서와 달리, 반응증류기(RD)가 적절한 고압에서 작동되는 이상, 하나의 증류탑(D)만으로 고순도의 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)를 수득할 수 있고, 이와 동시에, 메틸 아세테이트와 메탄올 공비 혼합물로부터 메탄올을 순수한 성분으로 효율적으로 회수하여 에너지 효율을 획기적으로 향상시킬 수 있다. In summary, the manufacturing apparatus according to an embodiment of the present invention consists of a reactive distiller and a distillation column, so that only two columns in total can achieve the object of the present invention. That is, unlike in FIGS. 1 and 2, as long as the reactive distiller (RD) is operated at an appropriate high pressure, only one distillation column (D) can obtain high purity propylene glycol methyl ether acetate (PGMEA), and at the same time, Energy efficiency can be dramatically improved by efficiently recovering methanol as a pure component from an azeotrope of methyl acetate and methanol.
본 발명의 다른 실시예는 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA;Propylene Glycol Methyl Ether Acetate)를 제조하는 제조 방법을 제공한다. 본 발명을 설명함에 있어 상기 제조 장치와 중복된 설명은 생략한다.Another embodiment of the present invention provides a method for preparing propylene glycol methyl ether acetate (PGMEA; Propylene Glycol Methyl Ether Acetate). In describing the present invention, descriptions overlapping with the manufacturing apparatus will be omitted.
일 구체예에서, 본 발명에 따른 제조 방법은 프로필렌 글리콜 메틸 에테르(PGME;Propylene Glycol Methyl Ether)와 메틸 아세테이트(MA;Methyl Acetate)로부터 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)와 메탄올을 제조하고, 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)를 수득하는 반응증류 단계; 및 상기 반응증류 단계로부터 얻은 미반응 메틸 아세테이트(MA)와 메탄올 혼합물을 가압 또는 감압 조건 하에서 분리하는 증류 단계를 포함할 수 있고, 상기 미반응 메틸 아세테이트(MA)와 메탄올은 압력 스윙 증류(Pressure Swing Distillation)에 의해 분리될 수 있다.In one embodiment, the preparation method according to the present invention prepares propylene glycol methyl ether acetate (PGMEA) and methanol from propylene glycol methyl ether (PGME; Propylene Glycol Methyl Ether) and methyl acetate (MA; Methyl Acetate), and propylene glycol Reactive distillation step to obtain methyl ether acetate (PGMEA); and a distillation step of separating the unreacted methyl acetate (MA) and methanol mixture obtained from the reactive distillation step under pressure or reduced pressure, wherein the unreacted methyl acetate (MA) and methanol are pressure swing distillation (Pressure Swing). can be separated by distillation).
하나의 예시에서, 압력 스윙 증류는 제 1 증류탑 및 제 1 증류탑과 서로 다른 압력에서 작동되는 제 2 증류탑을 통해 수행될 수 있다. 하나의 예시에서, 제 1 증류탑(D1)의 압력은 반응증류기(RD)에 구비된 촉매의 분해가 시작되거나 제 1 증류탑(D1) 내에 존재하는 화합물의 발화점을 야기하는 압력 이하일 수 있고, 자세하게는, 제 1 증류탑의 압력은 4 atm 이상 12 atm 이하이고, 제 2 증류탑의 압력은 4 atm 미만일 수 있다.In one example, the pressure swing distillation may be performed through the first distillation column and the second distillation column operated at a different pressure from the first distillation column. In one example, the pressure of the first distillation column (D1) may be less than or equal to the pressure at which decomposition of the catalyst provided in the reaction distiller (RD) starts or causes the flash point of the compound present in the first distillation column (D1), in detail , the pressure of the first distillation column may be 4 atm or more and 12 atm or less, and the pressure of the second distillation column may be less than 4 atm.
다른 예시에서, 압력 스윙 증류는 하나의 증류탑 및 증류탑과 서로 다른 압력에서 작동되는 반응증류기를 통해 수행될 수 있다. 하나의 예시에서, 반응증류기(RD)의 압력은 반응증류기(RD)에 구비된 촉매의 분해가 시작되거나 증류탑(D) 내에 존재하는 화합물의 발화점을 야기하는 압력 이하일 수 있고, 반응증류기의 압력은 4 atm 이상 10 atm 이하이고,증류탑의 압력은 4 atm 미만일 수 있다.In another example, the pressure swing distillation may be performed through a single distillation column and a distillation column and a reactive distiller operated at different pressures. In one example, the pressure of the reactive distiller (RD) may be less than or equal to the pressure at which the decomposition of the catalyst provided in the reactive distiller (RD) starts or causes the ignition point of the compound present in the distillation column (D), and the pressure of the reactive distiller is 4 atm or more and 10 atm or less, and the pressure of the distillation column may be less than 4 atm.
상술한 바와 같이 본 발명은 공정 집적화(공정 강화, Process Intensification)를 통해 에너지 소비량, 이산화탄소 배출량, 폐기물 생산량, 및 생산물 소비량을 절감시킬 수 있다. 특히, 극도로 낮은 산도를 가지면서도 초고순도인 프로필렌 글리콜 메틸 에테르 아세테이트를 제조할 수 있고, 이를 제조하는 과정에서 형성되는 메틸 아세테이트와 메탄올 공비 혼합물로부터 순수한 성분으로 효율적으로 회수하는 장치를 제공할 수 있다. As described above, the present invention can reduce energy consumption, carbon dioxide emission, waste production, and product consumption through process integration (process intensification). In particular, it is possible to produce propylene glycol methyl ether acetate with extremely low acidity and to have ultra-high purity, and it is possible to provide an apparatus for efficiently recovering as a pure component from an azeotrope of methyl acetate and methanol formed in the process of preparing it. .
그러나, 본 발명의 효과들은 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 일 실시예에 따른 제조 장치의 구성을 나타낸 것이다.1 shows the configuration of a manufacturing apparatus according to an embodiment.
도 2는 다른 실시예에 따른 제조 장치의 구성을 나타낸 것이다.2 shows the configuration of a manufacturing apparatus according to another embodiment.
도 3은 또 다른 실시예에 따른 제조 장치의 구성을 나타낸 것이다.3 shows the configuration of a manufacturing apparatus according to another embodiment.
도 4는 또 다른 실시예에 따른 제조 장치의 구성을 나타낸 것이다.4 shows the configuration of a manufacturing apparatus according to another embodiment.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예(example)를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.Hereinafter, a preferred experimental example (example) is presented to help the understanding of the present invention. However, the following experimental examples are only for helping understanding of the present invention, and the present invention is not limited by the following experimental examples.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although it has been described with reference to the above embodiments, it will be understood by those skilled in the art that various modifications and changes can be made to the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. will be able
제조예manufacturing example
프로필렌 옥사이드(PO, 9) 10 kmol/h와 메탄올(10) 과량으로 반응기(R)에 도입시킨 후 증류기(d)를 거쳐 증류기(d) 하부로부터 순수한 프로필렌 글리콜 메틸 에테르(PGME)를 얻었다. 미반응된 메탄올(11)은 증류기(d) 상부로부터 재순환되어 반응기(R)로 재도입되었다.Propylene oxide (PO, 9) 10 kmol/h and methanol (10) were introduced into the reactor (R) in excess and passed through the still (d) to obtain pure propylene glycol methyl ether (PGME) from the bottom of the still (d). The unreacted methanol (11) was recycled from the top of the still (d) and reintroduced into the reactor (R).
실시예 1Example 1
고체 나트륨 메톡사이드가 구비된 반응증류기(RD)에 상기 제조예에 따라 생성된 프로필렌 글리콜 메틸 에테르(PGME, 1) 10 kmol/h와 메틸 아세테이트(MA, 2) 28 kmol/h 도입시켜, 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA, 3)을 99.999 % 로 수득하였다. 이 때, 반응증류기(RD)의 작동 압력은 1 atm 이었다. 반응증류기(RD)로부터 메탄올과 메틸 아세테이트(MA) 혼합물(4)이 제 1 증류탑(D1)으로 도입되어 제 1 증류탑(D1)의 하부로부터 순수한 메틸 아세테이트(MA)가 분리되었고, 미분리된 메틸 아세테이트(MA)와 메탄올 공비 혼합물(6)은 제 2 증류탑(D2)으로 도입되고 제 2 증류탑(D2)의 하부로부터 순수한 메틸 아세테이트(MA)가 분리되었다. 여기서, 제 2 증류탑(D2)의 상부로부터 얻어지는 미분리된 메틸 아세테이트(MA)와 메탄올 공비 혼합물(8)은 제 1 증류탑(D1) 상부로 재순환되어 도입되었다. 이 때, 제 1 증류탑(D1)의 작동 압력은 10 atm 이었고, 제 2 증류탑(D2)의 작동 압력은 1 atm 이었다.Propylene glycol methyl ether (PGME, 1) 10 kmol/h and methyl acetate (MA, 2) 28 kmol/h produced according to Preparation Example were introduced into a reactive distiller (RD) equipped with solid sodium methoxide, and propylene glycol Methyl ether acetate (PGMEA, 3) was obtained in 99.999%. At this time, the operating pressure of the reaction distiller (RD) was 1 atm. A methanol and methyl acetate (MA) mixture (4) was introduced from the reaction distiller (RD) into the first distillation column (D1), and pure methyl acetate (MA) was separated from the lower portion of the first distillation column (D1), and unseparated methyl An azeotrope of acetate (MA) and methanol (6) was introduced into the second distillation column (D2), and pure methyl acetate (MA) was separated from the bottom of the second distillation column (D2). Here, the unseparated methyl acetate (MA) and methanol azeotrope (8) obtained from the upper part of the second distillation column (D2) was recycled and introduced into the upper part of the first distillation column (D1). At this time, the operating pressure of the first distillation column (D1) was 10 atm, the operating pressure of the second distillation column (D2) was 1 atm.
실시예 2Example 2
고체 나트륨 메톡사이드가 구비된 반응증류기(RD)에 상기 제조예에 따라 생성된 프로필렌 글리콜 메틸 에테르(PGME, 1) 10 kmol/h 및 메틸 아세테이트(MA, 2) 10 kmol/h을 도입시켰고, 또한 증류탑(D)으로부터 재순환된 메틸 아세테이트(MA, 8) 13 kmol/h이 도입됨에 따라, 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA, 3)을 99.999 % 로 수득하였다. 이 때, 반응증류기(RD)의 작동 압력은 7 atm 이었다. 반응증류기(RD)로부터 메탄올과 메틸 아세테이트(MA) 공비 혼합물(6)이 증류탑(D)으로 도입되어 증류탑(D)의 하부로부터 순수한 메탄올이 분리되었고, 미분리된 메탄올과 메틸 아세테이트(MA) 공비 혼합물(8)은 반응증류기(RD)으로 재순환되었다. 이 때, 증류탑(D)의 작동 압력은 1 atm 이었다.Propylene glycol methyl ether (PGME, 1) 10 kmol/h and methyl acetate (MA, 2) 10 kmol/h produced according to the above preparation example were introduced into a reactive distiller (RD) equipped with solid sodium methoxide, and also As 13 kmol/h of methyl acetate (MA, 8) recycled from the distillation column (D) was introduced, propylene glycol methyl ether acetate (PGMEA, 3) was obtained in 99.999%. At this time, the operating pressure of the reaction distiller (RD) was 7 atm. Methanol and methyl acetate (MA) azeotrope (6) was introduced from the reaction distiller (RD) into the distillation column (D), and pure methanol was separated from the lower part of the distillation column (D), and unseparated methanol and methyl acetate (MA) azeotrope The mixture (8) was recycled to the reaction distiller (RD). At this time, the operating pressure of the distillation column (D) was 1 atm.
실험예Experimental example
아래 표 1은 상기 실시예 1 및 실시예 2에 따른 데이터를 정리한 것으로, 반응증류기의 에스테르 교환 반응에서 필요한 메틸 아세테이트(MA) 요구량, 글리콜 메틸 에테르 아세테이트(PGMEA)의 수득률, 리보일러 듀티(에너지 소비) 및 이산화탄소 배출량을 정리한 것이다.Table 1 below summarizes the data according to Examples 1 and 2, and the required amount of methyl acetate (MA) required in the transesterification reaction of the reactive distiller, the yield of glycol methyl ether acetate (PGMEA), the reboiler duty (energy consumption) and carbon dioxide emissions.
실시예 1Example 1 실시예 2Example 2
MA 요구량(kmol/h)MA demand (kmol/h) 28.4428.44 22.9922.99
PGMEA 수득률(%)PGMEA yield (%) 99.99999.999 99.99999.999
리보일러 듀티(MW)Reboiler Duty (MW) 2.1072.107 0.7820.782
에너지 절감(%)Energy Saving (%) -- 62.8962.89
연간 총 이산화탄소 배출량 (t/year)Total annual carbon dioxide emissions (t/year) 7092.77092.7 4521.334521.33
탄소 배출량 절감(%)Carbon emission reduction (%) -- 36.2536.25
부호의 설명Explanation of symbols
RD : 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA) 제조용 반응증류기RD: Reactive distiller for propylene glycol methyl ether acetate (PGMEA) production
D (D1, D2) : 증류기D (D1, D2) : still
R : 프로필렌 글리콜 메틸 에테르(PGME) 제조용 반응기R: Reactor for propylene glycol methyl ether (PGME) production
d : 증류기d: still
1 : 프로필렌 글리콜 메틸 에테르(PGME)1: Propylene glycol methyl ether (PGME)
2 : 메틸 아세테이트(MA)2: methyl acetate (MA)
3 : 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)3: Propylene glycol methyl ether acetate (PGMEA)
4 : 미반응된 메틸 아세테이트와 메탄올 혼합물 (메틸 아세테이트 몰 수 > 메탄올 몰 수)4: A mixture of unreacted methyl acetate and methanol (number of moles of methyl acetate > number of moles of methanol)
5 : 메틸 아세테이트(MA)5: methyl acetate (MA)
6 : 미반응된 메틸 아세테이트와 메탄올 공비 혼합물 (메탄올 몰 수 > 메틸 아세테이트 몰 수)6: unreacted methyl acetate and methanol azeotrope (number of moles of methanol > number of moles of methyl acetate)
7 : 메탄올7: methanol
8 : 미반응된 메틸 아세테이트와 메탄올 공비 혼합물 (메틸 아세테이트 몰 수 > 메탄올 몰 수)8: unreacted methyl acetate and methanol azeotrope (number of moles of methyl acetate > number of moles of methanol)
9 : 프로필렌 옥사이드(PO)9: Propylene oxide (PO)
10 : 메탄올10: methanol
11 : 메탄올11: methanol

Claims (21)

  1. 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA;Propylene Glycol Methyl Ether Acetate)를 제조하는 장치로서,As an apparatus for producing propylene glycol methyl ether acetate (PGMEA; Propylene Glycol Methyl Ether Acetate),
    프로필렌 글리콜 메틸 에테르(PGME;Propylene Glycol Methyl Ether)와 메틸 아세테이트(MA;Methyl Acetate)가 도입되어 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)와 메탄올을 제조하는 것으로 촉매가 구비된 반응증류기; 및Propylene glycol methyl ether (PGME; Propylene Glycol Methyl Ether) and methyl acetate (MA; Methyl Acetate) are introduced to produce propylene glycol methyl ether acetate (PGMEA) and methanol, a reaction distiller equipped with a catalyst; and
    상기 반응증류기로부터 도입된 미반응 메틸 아세테이트(MA)와 메탄올 혼합물을 가압 또는 감압 조건 하에서 분리하는 증류탑을 포함하고,A distillation column for separating the unreacted methyl acetate (MA) and methanol mixture introduced from the reaction distiller under pressure or reduced pressure,
    상기 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)는 상기 반응증류기로부터 수득되고,The propylene glycol methyl ether acetate (PGMEA) is obtained from the reactive distiller,
    상기 미반응 메틸 아세테이트(MA)와 메탄올은 압력 스윙 증류(Pressure Swing Distillation)에 의해 분리되는 제조 장치.The unreacted methyl acetate (MA) and methanol are separated by pressure swing distillation (Pressure Swing Distillation) manufacturing apparatus.
  2. 제 1 항에 있어서,The method of claim 1,
    메틸 아세테이트(MA)는 프로필렌 글리콜 메틸 에테르(PGME)의 몰 수보다 과량(excess)으로 반응증류기에 도입되는 제조 장치.Methyl acetate (MA) is introduced into the reaction distiller in excess (excess) than the number of moles of propylene glycol methyl ether (PGME).
  3. 제 1 항에 있어서,The method of claim 1,
    반응증류기에 구비된 촉매는 염기성 촉매인 제조 장치.The catalyst provided in the reactive distillation apparatus is a basic catalyst.
  4. 제 1 항에 있어서,The method of claim 1,
    반응증류기로부터 수득된 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)의 수득률이 99 % 이상인 제조 장치.A production apparatus in which the yield of propylene glycol methyl ether acetate (PGMEA) obtained from a reactive distiller is 99% or more.
  5. 제 1 항에 있어서,The method of claim 1,
    증류탑은 반응증류기와 연결된 제 1 증류탑과 제 1 증류탑과 연결된 제 2 증류탑을 포함하고,The distillation column includes a first distillation column connected to a reactive distillation unit and a second distillation column connected to the first distillation column,
    압력 스윙 증류는 제 1 증류탑 및 제 1 증류탑과 서로 다른 압력에서 작동되는 제 2 증류탑을 통해 수행되는 제조 장치.Pressure swing distillation is a manufacturing apparatus that is performed through a first distillation column and a second distillation column operated at a different pressure from the first distillation column.
  6. 제 5 항에 있어서,6. The method of claim 5,
    제 1 증류탑의 압력이 제 2 증류탑의 압력 대비 고압인 제조 장치.A manufacturing apparatus in which the pressure of the first distillation column is higher than that of the second distillation column.
  7. 제 5 항에 있어서,6. The method of claim 5,
    제 1 증류탑의 압력은 촉매의 분해가 시작되거나 증류탑 내 화합물의 발화점을 야기하는 압력 이하인 제조 장치.The pressure of the first distillation column is below the pressure at which the decomposition of the catalyst starts or causes the flash point of the compound in the distillation column.
  8. 제 5 항에 있어서,6. The method of claim 5,
    제 1 증류탑의 압력은 4 atm 이상 12 atm 이하이고,The pressure of the first distillation column is 4 atm or more and 12 atm or less,
    제 2 증류탑의 압력은 4 atm 미만인 제조 장치.The pressure of the second distillation column is less than 4 atm.
  9. 제 5 항에 있어서,6. The method of claim 5,
    제 2 증류탑(D2) 상부로부터 메틸 아세테이트(MA)와 메탄올 혼합물이 수득되고, A mixture of methyl acetate (MA) and methanol is obtained from the top of the second distillation column (D2),
    제 2 증류탑(D2) 상부로부터 수득된 메틸 아세테이트(MA)와 메탄올 혼합물은 제 1 증류탑(D1) 상부로 재순환되는 제조 장치.A production apparatus in which a mixture of methyl acetate (MA) and methanol obtained from the upper portion of the second distillation column (D2) is recycled to the upper portion of the first distillation column (D1).
  10. 제 5 항에 있어서,6. The method of claim 5,
    반응증류기, 제 1 증류탑, 및 제 2 증류탑으로 이루어지는 제조 장치.A manufacturing apparatus comprising a reactive distiller, a first distillation column, and a second distillation column.
  11. 제 1 항에 있어서,The method of claim 1,
    증류탑은 하나의 증류탑으로 구성되고,The distillation column consists of one distillation column,
    압력 스윙 증류는 증류탑 및 증류탑과 서로 다른 압력에서 작동되는 반응증류기를 통해 수행되는 제조 장치.Pressure swing distillation is a distillation column and a distillation column and a production device that is performed through a reactive distiller operating at different pressures.
  12. 제 11 항에 있어서,12. The method of claim 11,
    반응증류기의 압력이 증류탑의 압력 대비 고압인 제조 장치.A manufacturing device in which the pressure of the reaction distiller is higher than that of the distillation column.
  13. 제 11 항에 있어서,12. The method of claim 11,
    반응증류기의 압력은 촉매의 분해가 시작되거나 증류탑 내 화합물의 발화점을 야기하는 압력 이하인 제조 장치.The pressure of the reaction distiller is below the pressure at which the decomposition of the catalyst starts or causes the ignition point of the compound in the distillation column.
  14. 제 11 항에 있어서,12. The method of claim 11,
    반응증류기의 압력은 4 atm 이상 10 atm 이하이고,The pressure of the reaction distiller is 4 atm or more and 10 atm or less,
    증류탑의 압력은 4 atm 미만인 제조 장치.A production device in which the pressure of the distillation column is less than 4 atm.
  15. 제 11 항에 있어서,12. The method of claim 11,
    증류탑 상부로부터 메틸 아세테이트(MA)와 메탄올 혼합물이 수득되고,A mixture of methyl acetate (MA) and methanol is obtained from the top of the distillation column,
    증류탑 상부로부터 수득된 메틸 아세테이트(MA)와 메탄올 혼합물은 반응증류기로 재순환되는 제조 장치.A production device in which a mixture of methyl acetate (MA) and methanol obtained from the top of the distillation column is recycled to the reaction distillation unit.
  16. 제 11 항에 있어서,12. The method of claim 11,
    반응증류기 및 증류탑으로 이루어지는 제조 장치.A manufacturing apparatus comprising a reactive distiller and a distillation column.
  17. 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA;Propylene Glycol Methyl Ether Acetate)를 제조하는 방법으로서,A method for preparing propylene glycol methyl ether acetate (PGMEA; Propylene Glycol Methyl Ether Acetate), comprising:
    프로필렌 글리콜 메틸 에테르(PGME;Propylene Glycol Methyl Ether)와 메틸 아세테이트(MA;Methyl Acetate)로부터 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)와 메탄올을 제조하고, 프로필렌 글리콜 메틸 에테르 아세테이트(PGMEA)를 수득하는 반응증류 단계; 및Reaction distillation step to prepare propylene glycol methyl ether acetate (PGMEA) and methanol from propylene glycol methyl ether (PGME; Propylene Glycol Methyl Ether) and methyl acetate (MA; Methyl Acetate), and to obtain propylene glycol methyl ether acetate (PGMEA) ; and
    상기 반응증류 단계로부터 얻은 미반응 메틸 아세테이트(MA)와 메탄올 혼합물을 가압 또는 감압 조건 하에서 분리하는 증류 단계를 포함하고,A distillation step of separating the unreacted methyl acetate (MA) and methanol mixture obtained from the reaction distillation step under pressure or reduced pressure,
    상기 미반응 메틸 아세테이트(MA)와 메탄올은 압력 스윙 증류(Pressure Swing Distillation)에 의해 분리되는 제조 방법.The method for producing the unreacted methyl acetate (MA) and methanol is separated by pressure swing distillation (Pressure Swing Distillation).
  18. 제 17 항에 있어서,18. The method of claim 17,
    압력 스윙 증류는 제 1 증류탑 및 제 1 증류탑과 서로 다른 압력에서 작동되는 제 2 증류탑을 통해 수행되는 제조 방법.Pressure swing distillation is a manufacturing method performed through a first distillation column and a second distillation column operated at a different pressure from the first distillation column.
  19. 제 18 항에 있어서,19. The method of claim 18,
    제 1 증류탑의 압력은 4 atm 이상 12 atm 이하이고,The pressure of the first distillation column is 4 atm or more and 12 atm or less,
    제 2 증류탑의 압력은 4 atm 미만인 제조 방법.The pressure of the second distillation column is less than 4 atm.
  20. 제 17 항에 있어서,18. The method of claim 17,
    압력 스윙 증류는 하나의 증류탑 및 증류탑과 서로 다른 압력에서 작동되는 반응증류기를 통해 수행되는 제조 방법.Pressure swing distillation is a manufacturing method performed through one distillation column and a distillation column and a reactive distiller operating at different pressures.
  21. 제 20 항에 있어서,21. The method of claim 20,
    반응증류기의 압력은 4 atm 이상 10 atm 이하이고,The pressure of the reaction distiller is 4 atm or more and 10 atm or less,
    증류탑의 압력은 4 atm 미만인 제조 방법.A production method wherein the pressure of the distillation column is less than 4 atm.
PCT/KR2021/002387 2020-02-26 2021-02-25 Apparatus and method for manufacturing propylene glycol methyl ether acetate WO2021172898A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0023363 2020-02-26
KR20200023363 2020-02-26

Publications (1)

Publication Number Publication Date
WO2021172898A1 true WO2021172898A1 (en) 2021-09-02

Family

ID=77491701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002387 WO2021172898A1 (en) 2020-02-26 2021-02-25 Apparatus and method for manufacturing propylene glycol methyl ether acetate

Country Status (2)

Country Link
KR (1) KR102533952B1 (en)
WO (1) WO2021172898A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102498772B1 (en) * 2021-11-29 2023-02-10 주식회사 켐트로닉스 Manufacturing method of ultra-high purity PGMEA
KR20230111378A (en) 2022-01-18 2023-07-25 영남대학교 산학협력단 Apparatus and method of preparing propylene glycol methyl ether acetate
CN114773198B (en) * 2022-06-07 2023-03-03 中建安装集团有限公司 Method and device for preparing propylene glycol monomethyl ether acetate by suspension catalytic distillation
KR20230168781A (en) 2022-06-08 2023-12-15 영남대학교 산학협력단 Improving apparatus and method of preparing propylene glycol methyl ether acetate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109796335A (en) * 2019-01-08 2019-05-24 江门谦信化工发展有限公司 A kind of method of high efficiency joint production of propylene glycol methyl ether and propylene glycol methyl ether acetate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960029307A (en) * 1995-01-19 1996-08-17 얀-옌 순 Propylene Glycol Monoalkyl Ether Ester Compounds, and Methods for Making the Compounds
EP0992482A1 (en) * 1998-10-01 2000-04-12 Kvaerner Process Technology Limited Process
KR100286571B1 (en) * 1999-03-11 2001-03-15 남창우 Method for preparing glycol ester using reactive distillation
US9187392B2 (en) * 2008-01-17 2015-11-17 Lyondell Chemical Technology, L.P. Production of propylene glycol monoalkyl ether
KR101349106B1 (en) * 2013-08-20 2014-01-08 에스케이종합화학 주식회사 Method for preparing glycol ester using reactive distillation
CN104860819B (en) * 2015-05-21 2017-06-16 中建安装工程有限公司 Transformation and heat pump distillation integrated separation butyl acetate and the method and system of n-butanol
CN109534998B (en) * 2018-10-12 2021-05-14 青岛科技大学 Energy-saving process for separating ethyl acetate-ethanol by pressure swing distillation with side extraction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109796335A (en) * 2019-01-08 2019-05-24 江门谦信化工发展有限公司 A kind of method of high efficiency joint production of propylene glycol methyl ether and propylene glycol methyl ether acetate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANIAGO YUS DONALD, HUSSAIN ARIF, ANDIKA RIEZQA, LEE MOONYONG: "Reactive Pressure-Swing Distillation toward Sustainable Process of Novel Continuous Ultra-High-Purity Electronic-Grade Propylene Glycol Monomethyl Ether Acetate Manufacture", ACS SUSTAINABLE CHEMISTRY & ENGINEERING, AMERICAN CHEMICAL SOCIETY, US, vol. 7, no. 22, 18 November 2019 (2019-11-18), US, pages 18677 - 18689, XP055840558, ISSN: 2168-0485, DOI: 10.1021/acssuschemeng.9b05251 *

Also Published As

Publication number Publication date
KR20210108901A (en) 2021-09-03
KR102533952B1 (en) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2021172898A1 (en) Apparatus and method for manufacturing propylene glycol methyl ether acetate
WO2019050281A1 (en) System for producing ester composition, and method for producing ester composition, using same
WO2016159707A1 (en) Distillation apparatus
WO2011081385A2 (en) Method and apparatus for purification of trichlorosilane
WO2015026073A1 (en) Method for preparing glycol ester using reactive distillation
WO2014109463A1 (en) Method for producing high-purity germane and device therefor
WO2015152541A1 (en) Method for purifying 1,5-diaminopentane
WO2010058983A2 (en) Method for recovering (meth)acrylic acid ester
WO2010085018A1 (en) Method of regenerating heteropolyacid catalyst used in the direct process of preparing dichloropropanol by reacting glycerol and chlorinating agent, method of preparing dichloropropanol comprising the method of regenerating heteropolyacid catalyst and method of preparing epichlorohydrin comprising the method of preparing dichloropropanol
WO2012002650A2 (en) Method for preparing chlorohydrins composition and method for preparing epichlorohydrin using chlorohydrins composition prepared thereby
WO2014209068A1 (en) Method for producing allyl alcohol and allyl alcohol produced thereby
WO2021002708A1 (en) System and method for preparing diester-based composition
WO2022019507A1 (en) Method for recovering carboxylic acids and amide compounds by using pressure swing distillation
WO2018097690A1 (en) Removal unit for methanol and acetone and system comprising same for preparing phenol and bisphenol a
WO2013105708A1 (en) METHOD FOR PREPARING α-METYLENE LACTONE
WO2024053936A1 (en) Method for preparing neopentyl glycol
WO2024043443A1 (en) Method for preparing isopropyl alcohol
WO2016105156A1 (en) Method and apparatus for purification of dimethyl carbonate using pervaporation
WO2024049107A1 (en) Method for preparation of high purity (meth)acrylic acid
WO2015088178A1 (en) Process for high yield production of 1,3-butadiene
WO2022255575A1 (en) Method for preraring isopropyl alcohol
WO2022255576A1 (en) Method for preparing isopropyl alcohol
EP3941911A1 (en) Method for the synthesis of 2,5-furandicarboxylic acid
WO2023214694A1 (en) Method for recovering acetic acid and dimethylformamide using pressure swing distillation
WO2015009117A1 (en) Dividing wall-type distillation column

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761077

Country of ref document: EP

Kind code of ref document: A1