WO2022018865A1 - 光ファイバケーブル - Google Patents
光ファイバケーブル Download PDFInfo
- Publication number
- WO2022018865A1 WO2022018865A1 PCT/JP2020/028478 JP2020028478W WO2022018865A1 WO 2022018865 A1 WO2022018865 A1 WO 2022018865A1 JP 2020028478 W JP2020028478 W JP 2020028478W WO 2022018865 A1 WO2022018865 A1 WO 2022018865A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- cable
- drop
- optical
- drop optical
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/46—Processes or apparatus adapted for installing or repairing optical fibres or optical cables
- G02B6/47—Installation in buildings
- G02B6/475—Mechanical aspects of installing cables in ducts or the like for buildings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/441—Optical cables built up from sub-bundles
- G02B6/4411—Matrix structure
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/441—Optical cables built up from sub-bundles
- G02B6/4413—Helical structure
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/443—Protective covering
- G02B6/4432—Protective covering with fibre reinforcements
- G02B6/4433—Double reinforcement laying in straight line with optical transmission element
Definitions
- This disclosure relates to optical fiber cables.
- Optical fiber cables and drop optical cables are used as transmission media for information communication.
- FTTH data communication service
- an optical fiber cable and a drop optical cable are laid using overhead wiring technology or underground wiring technology, and the cables are dropped to the subscriber's house or the like.
- Non-Patent Document 1 a technique for economically wiring an optical cable without civil engineering work as much as possible has been proposed.
- the cable is laid in a groove dug in the road surface.
- the work of taking out the optical fiber from the optical fiber cable and the work of connecting the optical fiber are required, and the housing for accommodating the connecting device, the connecting article, and the connecting portion. Is required.
- this storage item When this storage item is installed, for example, in a ditch dug on the road surface, connection work on the road is required, and the time when the worker is endangered increases.
- the optical fiber can be provided to the nearest traffic light, utility pole, etc. without the need for connection work at the branch portion.
- the drop optical cables are twisted and stepped on, lateral pressure is locally applied, which may affect the communication service due to the occurrence of optical loss.
- a collective drop cable for example, Patent Document 3
- the direction in which the branched drop optical cable is bent is determined, and the drop optical cable is bent in order to lay it on a road that is expected to be bent in the vertical and horizontal directions, such as slopes, curves, and pull-up points. It is necessary to twist and lay the drop optical cable just before the location. At that time, it is necessary to fix the twisted drop optical cable to the ground with a staple or the like so as not to return to the original state, and there is a problem that the opening work time increases and the number of fixed parts such as the staple increases.
- the purpose of this disclosure is to enable laying by bending in multiple directions without twisting in both the cable state and the single core separated state.
- the optical fiber cable of the present disclosure is An optical fiber cable in which multiple drop optical cables are bundled together. Each drop optical cable has two or more neutral planes in which the moment of inertia of area is minimized in the cross section perpendicular to the longitudinal direction of the drop optical cable.
- optical fiber cable of the present disclosure it is possible to bend and lay in a plurality of directions without twisting in both the cable state and the single core separated state.
- FIG. 1A shows a cross-sectional structure perpendicular to the longitudinal direction of the drop optical cable.
- the optical fiber cable of the present disclosure is a bundle of a plurality of drop optical cables 10.
- the drop optical cable 10 has a structure in which at least one or more optical fiber core wires 11 and a plurality of tensile strength bodies 12 are embedded in the outer cover 13.
- the cross-sectional shape of the drop optical cable 10 is square, and the tensile strength bodies 12 are embedded at equal intervals at each corner on the concentric circle centered on the optical fiber core wire 11. In this way, the even number of tensile strength bodies 12 are embedded in the jacket 13 symmetrically with respect to AA'in the x-axis direction and symmetrically with respect to BB'in the y-axis direction.
- the moment of inertia of area is the smallest when AA'and BB'are neutral planes.
- it is a structure having the minimum value of the moment of inertia of area with respect to an arbitrary neutral plane on two or more axes.
- the BB'cross section there is a minimum value in the BB'cross section
- the y-axis direction there is a minimum value in AA'.
- the moment of inertia of area at AA'and the moment of inertia of area at the BB'plane may be the same, but may be different.
- the tensile strength body 12 is arranged one by one at each of the four corners, but the present disclosure is not limited to this.
- the optical fiber core wire 11 is arranged at the center, the periphery of the optical fiber core wire 11 is covered with the outer cover 13, and the tensile strength body 12 is arranged symmetrically on the neutral surface, whereby the neutral surface is formed. Any configuration in which two or more are formed can be adopted.
- the structure may be as shown in FIG. 1B.
- the tensile strength body 12 may be arranged at each corner of the triangle, and the neutral plane may be 3.
- the cross-sectional shape of such a drop optical cable can be exemplified by a regular polygon such as an equilateral triangle, a square, or a regular hexagon, in addition to a circle.
- Examples of the material of the tensile strength fiber and the tensile strength body 12 include aramid and the like.
- Examples of the material of the outer cover include polyethylene, flame-retardant polyethylene, polyvinyl chloride and the like.
- the tensile strength body 12 may be a fibrous tensile strength fiber.
- 2A-2C show an example in which the neutral plane of the drop optical cable 10 is parallel to the x-axis or y-axis as shown in FIG. 1A.
- the optical fiber cable of the present disclosure includes the case where the plurality of drop optical cables 10 are arranged so that the orientations of the neutral planes at which the moment of inertia of area is minimal are aligned with each other.
- each neutral plane of the plurality of drop optical cables 10 is arranged parallel to the sides of the square.
- the optical fiber cable in which the drop optical cables 10 are assembled also has a structure having a minimum value of the moment of inertia of area with respect to an arbitrary neutral surface on two or more axes, and the smaller the moment of inertia of area, the more the bending. It is easy, and when the minimum value has two or more axes, the bending direction of the optical cable that can be bent by the same force has two or more directions.
- Figure 3 shows an example of laying an optical fiber cable.
- the optical fiber cable can be bent freely in the vertical and horizontal directions.
- the drop optical cable 10-1 separated from the optical fiber cable does not depend on the laying direction and can be bent freely in the vertical and horizontal directions.
- the optical fiber cable of the present disclosure is required for the work of twisting the drop optical cable immediately before the bending point of the drop optical cable, which is necessary for the conventional collective drop optical cable, and the stepping to prevent the twisted drop optical cable from returning to its original state. It is possible to lay it without the need for fixing parts such as staples, and the work of fixing it to the ground is not required.
- 4A-4C show an example in which the neutral plane of the drop optical cable 10 is parallel to the x-axis or y-axis as shown in FIG.
- rhombic diagonal lines are arranged in the x-axis direction and the y-axis direction.
- the optical fiber cable in which the drop optical cables 10 are assembled also has a structure having a minimum value of the moment of inertia of area with respect to an arbitrary neutral surface on two or more axes.
- the optical fiber cable does not depend on the laying direction, and the optical fiber cable can be bent freely in the vertical and horizontal directions, and the optical fiber can be provided without performing connection work.
- the drop optical cable 10 separated from the optical fiber cable does not depend on the laying direction and can be freely bent vertically and horizontally. Therefore, the optical fiber cable of the present embodiment is required for the conventional collective drop cable, such as twisting the drop immediately before the bending point of the drop, or using a staple to prevent the twisted drop from returning to the original state.
- the optical fiber cable of the present embodiment is easier to cut the drop optical cable than the optical cable stacked in a square when cutting the drop optical cable at an appropriate position.
- Figure 5 shows the structure of the drop optical cable.
- the cross-sectional shape of the drop optical cable 20 may be, for example, a circular shape or a regular polygon such as an equilateral triangle, a square, or a regular hexagon.
- the optical fiber cable of this embodiment is formed by assembling a plurality of drop optical cables 20.
- each drop optical cable 20 has at least one optical fiber core wire and a range in which the tensile strength fiber 22 has a minimum value in the moment of inertia of area with respect to an arbitrary neutral surface on two or more axes.
- the structure is embedded in the outer cover 23. In this vertically and horizontally symmetrical cross-sectional structure, the moment of inertia of area is the smallest when AA'and BB'are neutral planes.
- the optical cable that can be bent by the same force has two or more directions.
- the moment of inertia of area on the AA'plane and the moment of inertia of area on the BB'plane may be the same, but may be different.
- Examples of the material of the tensile strength fiber 22 include aramid and the like.
- Examples of the material of the outer cover 23 include polyethylene, flame-retardant polyethylene, polyvinyl chloride and the like. These structures are the same in the following embodiments.
- the shape in which N (N ⁇ 3) drop optical cables are assembled has the minimum value at the moment of inertia of area with respect to an arbitrary neutral surface. It is a structure having two or more axes.
- the drop optical cables 20 have a structure in which the tensile strength body 24 is provided inside the aggregated drop optical cables that are stacked in one layer. Since the drop optical cable 20 is a single layer, the drop optical cable 10 is evenly arranged on the outer periphery centering on the tensile strength body 24. Further, since the number of drop optical cables 20 is an even number such as 10, the load of each drop optical cable 20 when the tensile strength body 24 is bent can be reduced. As shown in FIG. 6, the outer cover 23 may be arranged between the tensile strength body 24 and each drop optical cable 20.
- the cross-sectional shape of the drop optical cable 20 is circular
- it may be a regular polygon such as an equilateral triangle, a square, or a regular hexagon.
- the neutral surface of the N drop optical cables 20 is arranged so as to be orthogonal to the straight line connecting the center of the drop optical cable 20 and the center of the tensile strength body 24. This makes it easier to bend each drop optical cable 20 in a direction away from the tensile strength body 24.
- the optical fiber cable does not depend on the laying direction, it is possible to bend the optical cable freely in the vertical and horizontal directions, and it is possible to provide the optical fiber without performing connection work.
- the drop optical cable 20 separated from the optical fiber cable does not depend on the laying direction and can be freely bent vertically and horizontally. Therefore, the optical fiber cable of the present embodiment is required for the conventional collective drop optical cable, such as twisting the drop immediately before the bending point of the drop, or using a staple to prevent the twisted drop from returning to the original state. There is no need to fix it to the ground, and it is possible to lay it without the need for fixing parts such as staples. Further, since the optical fiber cable of the present embodiment has 24 tensile strength bodies inside the drop optical cable, it has a structure that can withstand the tension at the time of laying the optical cable.
- the optical fiber cable according to the present embodiment is an optical fiber cable characterized in that the method of assembling the drop optical cable 20 shown in FIG. 6 is the S twist shown in FIG. 7A or the SZ twist shown in FIG. 7B.
- the optical fiber cable does not depend on the laying direction, it is possible to bend the optical cable freely in the vertical and horizontal directions, and it is possible to provide the optical fiber without performing connection work.
- the drop optical cable 20 separated from the optical fiber cable does not depend on the laying direction and can be freely bent vertically and horizontally. Therefore, the optical fiber cable of the present embodiment is required for the conventional collective drop optical cable to twist the drop immediately before the bending point of the drop optical cable and to prevent the twisted drop optical cable from returning to its original state. It is possible to lay it without the need for fixing parts such as staples, and it is not necessary to fix it to the ground. Further, the optical fiber cable of the present embodiment has a structure capable of suppressing the occurrence of distortion due to the difference in line length between the inside and the outside of the drum when the optical fiber cable is wound around the drum.
- each drop optical cable 20 has a structure in which a tensile strength body 24 is provided inside the aggregated drop optical cables 20 that are stacked in one layer.
- the number of drop optical cables in the first layer is 3 or more, and it is desirable that the method of collecting the collected drop optical cables is a method in which twists such as S twist and SZ twist are added. Further, the outer cover 23 may be arranged between the tensile strength body 24 and each drop optical cable 20.
- this optical fiber cable also has a structure that has the minimum value of the moment of inertia of area with respect to an arbitrary neutral surface on two or more axes, there is no dependence on the laying direction, and the optical cable can be bent freely in the vertical and horizontal directions. It is possible to provide an optical fiber without performing connection work, and it is possible to suppress the occurrence of distortion due to the difference in line length between the inside and outside of the drum when the optical cable is wound around the drum. It has a structure. In addition, when the number of drop optical cables is the same, this optical fiber cable can have a smaller cable diameter than an optical cable in which drop optical cables are assembled only in one layer.
- This disclosure can be applied to the information and communication industry.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Light Guides In General And Applications Therefor (AREA)
Abstract
本開示の光ファイバケーブルは、複数のドロップ光ケーブルを集合して形成され、ドロップ光ケーブルは、少なくとも1心以上の光ファイバ心線と、抗張力繊維または抗張力体が任意の中立面に対する断面二次モーメントにおいて、その最小値を、2つ以上の軸で有する範囲で、ケーブル外被に埋め込まれる構造であって、ドロップ光ケーブルを集合させて光ケーブルにおいても、任意の中立面に対する断面二次モーメントにおいて、その最小値を、2つ以上の軸で有する構造である。
Description
本開示は、光ファイバケーブルに関する。
情報通信の伝送媒体として光ファイバケーブルやドロップ光ケーブルが用いられている。光ファイバによる家庭向けのデータ通信サービス(FTTH)では、架空配線技術か地下配線技術を用いて、光ファイバケーブルとドロップ光ケーブルを敷設し、加入者宅等に引き落としている。
これまでは、新たに光ファイバケーブルやドロップ光ケーブルを敷設する場合、既に通信用のメタリックケーブルが敷設されている地域に、追加で光ファイバケーブルやドロップ光ケーブルを敷設することが大半であった。この場合は、既に電柱や管路などの基盤設備が整備されているため、新たな土木工事を伴わずに、経済的に光ファイバケーブルを敷設することが可能であった。これは、通信需要の発生する場所が、従前のメタリックケーブルが配線されていた場所と同様であったため、基盤設備を新たに構築することなく追加敷設が可能であったからである。
また、加入者宅やビルに光ファイバを提供する場合、複数本の光ファイバを集合した光ファイバケーブルと、1本から数本の光ファイバを集合したドロップ光ケーブルを接続する必要がある。この接続箇所は、露出した光ファイバを保護するための収納用品を用いている(例えば、特許文献1参照)。
近年では、携帯電話用のアンテナなどを広く展開する為に、これまで基盤設備が整備されていなかったエリアにも、光ファイバを敷設する必要が生じている。また、既に基盤設備はあるものの、家屋やビルへの配線でなく、路上の街灯などの構造物に新たに配線する必要が生じる。このような場合において、可能な限り土木工事を伴わず、経済的に光ケーブルを配線する技術が提案されている(例えば、非特許文献1参照)。この方法の例では、路面に掘った溝の中にケーブルを敷設する。
しかしながら、光ファイバケーブルとドロップ光ケーブルを接続するためには、光ファイバケーブルから光ファイバを取り出す作業や光ファイバの接続作業が発生するうえ、接続用機器や、接続物品、接続部を収納する筐体が必要となる。この収納用品を、例えば路面上に掘った溝に設置する場合、道路上での接続作業が必要となり作業者が危険に晒される時間が多くなる。
ドロップ光ケーブル(例えば特許文献2)を複数本敷設すれば、分岐部における接続作業を要することなく、光ファイバを最寄りの信号機や電柱などに提供することができる。しかし、ドロップ光ケーブル同士が捻じれて、踏まれたときに局所的に側圧がかかり、光損失の発生による通信サービスへの影響が出る可能性ある。また、開通時にどのドロップ光ケーブルを切断するか確認する作業が必要となり、道路上での作業時間の削減ができないという問題がある。
また、集合ドロップケーブル(例えば特許文献3)を用いることで、分岐部における接続作業を要することなく、光ファイバを提供することができる。しかし、分岐されたドロップ光ケーブル単体には曲げられる方向が決まっており、坂道、カーブ、引き上げ箇所など、上下左右方向に曲げられることが想定される道路上で敷設するためには、ドロップ光ケーブルを曲げる箇所の直前でドロップ光ケーブルを捻って敷設する必要がある。その際、捻ったドロップ光ケーブルが元の状態に戻らないようにステップルなどで地面と固定する必要があり、開通作業時間の増加とステップルなどの固定部品が増加する問題がある。
Strain Sensing of an In-Road FTTH Field Trial and Implications for Network Reliability, Proc. of IWCS (2019)
本開示は、ケーブル状態および単心分離状態のいずれにおいても、捻じることなく、複数の方向に曲げて敷設可能にすることを目的とする。
本開示の光ファイバケーブルは、
複数のドロップ光ケーブルが束ねられている光ファイバケーブルであって、
各ドロップ光ケーブルは、ドロップ光ケーブルの長手方向に垂直な断面における断面二次モーメントが極小となる中立面を2以上有する。
複数のドロップ光ケーブルが束ねられている光ファイバケーブルであって、
各ドロップ光ケーブルは、ドロップ光ケーブルの長手方向に垂直な断面における断面二次モーメントが極小となる中立面を2以上有する。
本開示の光ファイバケーブルによれば、ケーブル状態および単心分離状態のいずれにおいても、捻じることなく、複数の方向に曲げて敷設することが可能である。
以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施形態1)
本開示の光ファイバケーブルの構造例を図1から図3で説明する。
本開示の光ファイバケーブルの構造例を図1から図3で説明する。
ドロップ光ケーブルの長手方向に垂直な断面構造を図1Aに示す。本開示の光ファイバケーブルは、複数のドロップ光ケーブル10を集合して束ねられている。ドロップ光ケーブル10は、少なくとも1心以上の光ファイバ心線11と、複数の抗張力体12と、が外被13に埋め込まれる構造である。
図1Aに示す例では、ドロップ光ケーブル10の断面形状が正方形であり、光ファイバ心線11を中心とする同心円上の各角に、等間隔で、抗張力体12が埋め込まれている。このように、偶数本の抗張力体12が、x軸方向のA-A’に対して対称、かつy軸方向のB-B’に対して対称に、外被13に埋め込まれている。
この上下左右対称の断面構造では、A-A’およびB-B’を中立面とした時の断面二次モーメントが最も小さくなる。言い換えると、任意の中立面に対する断面二次モーメントにおいて、その最小値を、2つ以上の軸で有する構造である。例えば、x軸方向ではB-B’断面に極小値が存在し、y軸方向ではA-A’に極小値が存在する。断面二次モーメントが小さいほど曲げやすく、その最小値が2つ以上の軸で有する場合、同じ力で曲げられる光ケーブルの方向は2方向以上有することとなる。例えば図1の例ではx軸方向とy軸方向に曲げやすい。ただし、A-A’での断面二次モーメントとB-B’面での断面二次モーメントとは同じであってもよいが、異なっていてもよい。
図1Aの例では4つの角に1つずつ抗張力体12を配置する例を示したが、本開示はこれに限定されない。本開示は、中心に光ファイバ心線11が配置され、光ファイバ心線11の周囲が外被13で覆われ、中立面に対称に抗張力体12が配置されることによって、中立面が2以上形成されている、任意の構成を採用することができる。例えば、図1Bに示すような構造であってもよい。三角形の各角に抗張力体12を配置し、中立面を3としてもよい。このようなドロップ光ケーブルの断面形状は、円形のほか、正三角形、正方形、正六角形などの正多角形が例示できる。
抗張力繊維や抗張力体12の材料としては、アラミド等が例示できる。外被の材料としては、ポリエチレン、難燃性ポリエチレン、ポリ塩化ビニール等が例示できる。抗張力体12は、繊維状の抗張力繊維であってもよい。これらの構造は、以下の実施形態でも同様である。
本実施形態に係る光ファイバケーブルでは、図2A~図2Cに示すように、N2本(N=1,2,3…)のドロップ光ケーブル10を、集合形状が正方形になるように積み上げた構造である。図2AはN=1の場合を示し、図2BはN=2の場合を示し、図2CはN=3の場合を示す。図2A~図2Cは、ドロップ光ケーブル10の中立面が図1Aに示すようなx軸又はy軸に平行である例を示す。このように、本開示の光ファイバケーブルは、複数のドロップ光ケーブル10の断面二次モーメントが極小となる中立面の向きが互いに一致するように配置されている場合を含む。
図1に示すようなドロップ光ケーブル10の中立面がx軸又はy軸に平行である場合、x軸方向にN個のドロップ光ケーブル10を配置し、y軸方向にN個のドロップ光ケーブル10を配置する。このように、複数のドロップ光ケーブル10の各中立面は、正方形の辺に平行に配置されている。
このドロップ光ケーブル10を集合させた光ファイバケーブルについても、任意の中立面に対する断面二次モーメントにおいて、その最小値を、2つ以上の軸で有する構造であり、断面二次モーメントが小さいほど曲げやすく、その最小値が2つ以上の軸で有する場合、同じ力で曲げられる光ケーブルの曲げ方向は2方向以上有することとなる。
光ファイバケーブルの敷設例を図3に示す。この際、光ファイバケーブルの敷設方向に依存性はなく、縦横自由に光ファイバケーブルを曲げることが可能である。また、適当な箇所のドロップ光ケーブル10を切断し、ドロップ光ケーブル10-1のように必要長裂くことによって、接続作業を実施することなく光ファイバを提供することが可能となる。光ファイバケーブルから分離したドロップ光ケーブル10-1についても敷設方向の依存性はなく、縦横自由に曲げることが可能である。このため、本開示の光ファイバケーブルは、従来の集合ドロップ光ケーブルでは必要になる、ドロップ光ケーブルを曲げる箇所の直前でドロップ光ケーブルを捻る作業や、捻ったドロップ光ケーブルが元の状態に戻らないようにステップルなどで地面と固定する作業が不要となり、かつ、ステップルなどの固定部品も不要で敷設することが可能である。
(実施形態2)
本開示の光ファイバケーブルの構造を図4A~図4Cで説明する。
本開示の光ファイバケーブルの構造を図4A~図4Cで説明する。
本実施形態に係る光ファイバケーブルでは、図4A~図4Cに示すように、2N2-2N+1本(N=1,2,3…)のドロップ光ケーブル10を、集合形状が菱形になるように積み上げた構造を有する。図4AはN=1の場合を示し、図4BはN=2の場合を示し、図4CはN=3の場合を示す。図4A~図4Cは、ドロップ光ケーブル10の中立面が図1に示すようなx軸又はy軸に平行である例を示す。
N=2の場合、図4Bに示すように、x軸方向及びy軸方向に3個のドロップ光ケーブル10を配置する。N=3の場合、図4Cに示すように、x軸方向及びy軸方向に5個のドロップ光ケーブル10を配置する。このように、本実施形態では、ドロップ光ケーブル10の中立面がx軸又はy軸に平行である場合、x軸方向及びy軸方向に菱形の対角線が配置される。
このドロップ光ケーブル10を集合させた光ファイバケーブルについても、任意の中立面に対する断面二次モーメントにおいて、その最小値を、2つ以上の軸で有する構造である。本光ファイバケーブルについても敷設方向に依存性はなく、縦横自由に光ファイバケーブルを曲げることが可能で、接続作業を実施することなく光ファイバを提供することが可能である。また、光ファイバケーブルから分離したドロップ光ケーブル10についても敷設方向の依存性はなく、縦横自由に曲げることが可能である。このため、本実施形態の光ファイバケーブルは、従来の集合ドロップケーブルでは必要になる、ドロップを曲げる箇所の直前でドロップを捻る作業や、捻ったドロップが元の状態に戻らないようにステップルなどで地面と固定する作業が不要となり、かつ、ステップルなどの固定部品も不要で敷設することが可能である。更に、本実施形態の光ファイバケーブルは、適当な箇所のドロップ光ケーブルを切断する際、正方形に積み上げた光ケーブルよりもドロップ光ケーブルを切断しやすい。
(実施形態3)
本開示の光ケーブルの構造を図5から図6で説明する。
本開示の光ケーブルの構造を図5から図6で説明する。
ドロップ光ケーブルの構造を図5に示す。本ドロップ光ケーブル20の断面形状は、例えば、円形のほか、正三角形、正方形、正六角形などの正多角形が例示できる。本実施形態の光ファイバケーブルは複数のドロップ光ケーブル20を集合して形成されている。
図5に示す例では、光ファイバ心線11の周囲が抗張力繊維22で覆われ、抗張力繊維22の周囲が外被23で覆われている。このように、各ドロップ光ケーブル20は、少なくとも1心以上の光ファイバ心線と、抗張力繊維22が任意の中立面に対する断面二次モーメントにおいて、その最小値を、2つ以上の軸で有する範囲で、外被23に埋め込まれる構造である。この上下左右対称の断面構造では、A-A’およびB-B’を中立面とした時の断面二次モーメントが最も小さくなる。言い換えると、任意の中立面に対する断面二次モーメントにおいて、その最小値を、2つ以上の軸で有する構造である。断面二次モーメントが小さいほど曲げやすく、その最小値が2つ以上の軸で有する場合、同じ力で曲げられる光ケーブルの方向は2方向以上有することとなる。ただし、A-A’面での断面二次モーメントとB-B’面での断面二次モーメントとは同じであってもよいが、異なっていてもよい。
抗張力繊維22の材料としては、アラミド等が例示できる。外被23の材料としては、ポリエチレン、難燃性ポリエチレン、ポリ塩化ビニール等が例示できる。これらの構造は、以下の実施形態でも同様である。
本実施形態に係る光ファイバケーブルでは、図6に示すように、N本(N≧3)のドロップ光ケーブルを集合させた形状が、任意の中立面に対する断面二次モーメントにおいて、その最小値を、2つ以上の軸で有する構造である。また、ドロップ光ケーブル20は一層に積み上げられ、集合したドロップ光ケーブルの内側に抗張力体24を有する構造である。ドロップ光ケーブル20が一層であることで、ドロップ光ケーブル10が抗張力体24を中心とした外周に均等に配置されている。またドロップ光ケーブル20が10本などの偶数本であることで、抗張力体24を曲げた場合の各ドロップ光ケーブル20の負荷を減らすことができる。抗張力体24と各ドロップ光ケーブル20の間には、図6に示すように、外被23が配置されていてもよい。
本ドロップ光ケーブル20の断面形状が円形である例を示したが、正三角形、正方形、正六角形などの正多角形であってもよい。この場合、N本のドロップ光ケーブル20の中立面は、ドロップ光ケーブル20の中心と抗張力体24の中心とを結ぶ直線に直交するように配置する。これにより、各ドロップ光ケーブル20を抗張力体24から遠ざかる方向に曲げやすくなる。
本光ファイバケーブルについても敷設方向に依存性はなく、縦横自由に光ケーブルを曲げることが可能で、接続作業を実施することなく光ファイバを提供することが可能である。光ファイバケーブルから分離したドロップ光ケーブル20についても敷設方向の依存性はなく、縦横自由に曲げることが可能である。このため、本実施形態の光ファイバケーブルは、従来の集合ドロップ光ケーブルでは必要になる、ドロップを曲げる箇所の直前でドロップを捻る作業や、捻ったドロップが元の状態に戻らないようにステップルなどで地面と固定する作業が不要となり、かつ、ステップルなどの固定部品も不要で敷設することが可能である。更に、本実施形態の光ファイバケーブルは、ドロップ光ケーブルの内側に抗張力24体を有するため、光ケーブル敷設時の張力にも耐えうる構造となっている。
(実施形態4)
本開示の光ケーブルの構造を図7A及び図7Bで説明する。
本開示の光ケーブルの構造を図7A及び図7Bで説明する。
本実施形態に係る光ファイバケーブルでは、図6に示すドロップ光ケーブル20の集合方法が、図7Aに示すS撚りあるいは、図7Bに示すSZ撚りであることを特徴とする光ファイバケーブルである。
本光ファイバケーブルについても敷設方向に依存性はなく、縦横自由に光ケーブルを曲げることが可能で、接続作業を実施することなく光ファイバを提供することが可能である。光ファイバケーブルから分離したドロップ光ケーブル20についても敷設方向の依存性はなく、縦横自由に曲げることが可能である。このため、本実施形態の光ファイバケーブルは、従来の集合ドロップ光ケーブルでは必要になる、ドロップ光ケーブルを曲げる箇所の直前でドロップを捻る作業や、捻ったドロップ光ケーブルが元の状態に戻らないようにステップルなどで地面と固定する作業が不要となり、かつ、ステップルなどの固定部品も不要で敷設することが可能である。更に、本実施形態の光ファイバケーブルは、光ファイバケーブルをドラムに巻いた際に、ドラムの内側と外側で生じる線長差による歪の発生を抑えることができる構造となっている。
(実施形態5)
本開示の光ファイバケーブルの構造を図8で説明する。
本開示の光ファイバケーブルの構造を図8で説明する。
本実施形態に係る光ファイバケーブルでは、図8に示すように、複数の層にわたってドロップ光ケーブル20を集合させた形状が、任意の中立面に対する断面二次モーメントにおいて、その最小値を、2つ以上の軸で有する。各ドロップ光ケーブル20は一層に積み上げられ、集合したドロップ光ケーブル20の内側に抗張力体24を有する構造である。
なお、一層目のドロップ光ケーブルの本数は3本以上であり、集合したドロップ光ケーブルの集合方法はS撚りやSZ撚り等の撚りを加えた方法が望ましい。また抗張力体24と各ドロップ光ケーブル20の間には、外被23が配置されていてもよい。
本光ファイバケーブルについても任意の中立面に対する断面二次モーメントにおいて、その最小値を、2つ以上の軸で有する構造であるため、敷設方向に依存性はなく、縦横自由に光ケーブルを曲げることが可能で、接続作業を実施することなく光ファイバを提供することが可能であり、光ケーブルをドラムに巻いた際に、ドラムの内側と外側で生じる線長差による歪の発生を抑えることができる構造となっている。加えて、本光ファイバケーブルは、ドロップ光ケーブルの本数が同じ場合には、一層のみにドロップ光ケーブルを集合させる光ケーブルより、ケーブル径を細径化することが可能である。
本開示は情報通信産業に適用することができる。
1、10-1、10-2、10-3、10-4、10-6、10-7、10-9、20:ドロップ光ケーブル
11:光ファイバ心線
12、24:抗張力体
13、23:外被
22:抗張力繊維
11:光ファイバ心線
12、24:抗張力体
13、23:外被
22:抗張力繊維
Claims (7)
- 複数のドロップ光ケーブルが束ねられている光ファイバケーブルであって、
各ドロップ光ケーブルは、ドロップ光ケーブルの長手方向に垂直な断面における断面二次モーメントが極小となる中立面を2以上有する、
光ファイバケーブル。 - 前記ドロップ光ケーブルは、
中心に光ファイバ心線が配置され、
前記光ファイバ心線の周囲が外被で覆われ、
前記外被内に、前記中立面に対称に、抗張力体又は抗張力繊維が埋め込まれている、
請求項1に記載の光ファイバケーブル。 - 前記光ファイバケーブルの断面に、N2本(N=1,2,3…)のドロップ光ケーブルが正方形に配置されており、
前記複数のドロップ光ケーブルの前記中立面は、前記正方形の辺に平行である、
請求項1又は2に記載の光ファイバケーブル。 - 前記光ファイバケーブルの断面に、2N2-2N+1本(N=1,2,3…)のドロップ光ケーブルが菱形に配置されており、
前記複数のドロップ光ケーブルの前記中立面は、前記菱形の対角線に平行である、
請求項1又は2に記載の光ファイバケーブル。 - N本(N≧3)の前記ドロップ光ケーブルが、抗張力体を中心とした外周に均等に配置され、
前記N本のドロップ光ケーブルの前記中立面は、前記ドロップ光ケーブルの中心と前記抗張力体の中心とを結ぶ直線に直交する、
請求項1又は2に記載の光ファイバケーブル。 - 前記N本のドロップ光ケーブルは、前記抗張力体の周囲にS撚り、あるいはSZ撚りで配置されている、
請求項5に記載の光ファイバケーブル。 - 前記複数のドロップ光ケーブルは、
正多角形の断面形状を有し、
各角に抗張力体が配置されている、
請求項1から6のいずれかに記載の光ファイバケーブル。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/016,890 US20230314744A1 (en) | 2020-07-22 | 2020-07-22 | Optical fiber cable |
PCT/JP2020/028478 WO2022018865A1 (ja) | 2020-07-22 | 2020-07-22 | 光ファイバケーブル |
JP2022538559A JPWO2022018865A1 (ja) | 2020-07-22 | 2020-07-22 | |
CN202080102768.3A CN115867842A (zh) | 2020-07-22 | 2020-07-22 | 光缆 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/028478 WO2022018865A1 (ja) | 2020-07-22 | 2020-07-22 | 光ファイバケーブル |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022018865A1 true WO2022018865A1 (ja) | 2022-01-27 |
Family
ID=79729363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/028478 WO2022018865A1 (ja) | 2020-07-22 | 2020-07-22 | 光ファイバケーブル |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230314744A1 (ja) |
JP (1) | JPWO2022018865A1 (ja) |
CN (1) | CN115867842A (ja) |
WO (1) | WO2022018865A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005107256A (ja) * | 2003-09-30 | 2005-04-21 | Sumitomo Electric Ind Ltd | 光ファイバケーブル |
JP2006078815A (ja) * | 2004-09-10 | 2006-03-23 | Yazaki Corp | 屋内用光ケーブル |
JP2010170007A (ja) * | 2009-01-26 | 2010-08-05 | Furukawa Electric Co Ltd:The | 集合ドロップケーブル |
JP2010204368A (ja) * | 2009-03-03 | 2010-09-16 | Fujikura Ltd | 単一チューブ型光ファイバケーブル |
CN102411181A (zh) * | 2011-12-06 | 2012-04-11 | 深圳市华为安捷信电气有限公司 | 一种复合型光缆及系统 |
US20150021799A1 (en) * | 2012-07-27 | 2015-01-22 | Corning Optical Communications LLC | Method of manufacturing a fiber optic drop cable |
JP2015045727A (ja) * | 2013-08-28 | 2015-03-12 | 株式会社フジクラ | 光ファイバケーブル及びその製造方法 |
US20160018612A1 (en) * | 2014-07-15 | 2016-01-21 | Ofs Fitel, Llc | Systems and methods for cable distribution |
CN207601374U (zh) * | 2017-10-27 | 2018-07-10 | 长飞光纤光缆(上海)有限公司 | 一种分支型双蝶形混合光电缆 |
-
2020
- 2020-07-22 JP JP2022538559A patent/JPWO2022018865A1/ja active Pending
- 2020-07-22 WO PCT/JP2020/028478 patent/WO2022018865A1/ja active Application Filing
- 2020-07-22 CN CN202080102768.3A patent/CN115867842A/zh active Pending
- 2020-07-22 US US18/016,890 patent/US20230314744A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005107256A (ja) * | 2003-09-30 | 2005-04-21 | Sumitomo Electric Ind Ltd | 光ファイバケーブル |
JP2006078815A (ja) * | 2004-09-10 | 2006-03-23 | Yazaki Corp | 屋内用光ケーブル |
JP2010170007A (ja) * | 2009-01-26 | 2010-08-05 | Furukawa Electric Co Ltd:The | 集合ドロップケーブル |
JP2010204368A (ja) * | 2009-03-03 | 2010-09-16 | Fujikura Ltd | 単一チューブ型光ファイバケーブル |
CN102411181A (zh) * | 2011-12-06 | 2012-04-11 | 深圳市华为安捷信电气有限公司 | 一种复合型光缆及系统 |
US20150021799A1 (en) * | 2012-07-27 | 2015-01-22 | Corning Optical Communications LLC | Method of manufacturing a fiber optic drop cable |
JP2015045727A (ja) * | 2013-08-28 | 2015-03-12 | 株式会社フジクラ | 光ファイバケーブル及びその製造方法 |
US20160018612A1 (en) * | 2014-07-15 | 2016-01-21 | Ofs Fitel, Llc | Systems and methods for cable distribution |
CN207601374U (zh) * | 2017-10-27 | 2018-07-10 | 长飞光纤光缆(上海)有限公司 | 一种分支型双蝶形混合光电缆 |
Also Published As
Publication number | Publication date |
---|---|
US20230314744A1 (en) | 2023-10-05 |
CN115867842A (zh) | 2023-03-28 |
JPWO2022018865A1 (ja) | 2022-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020203524B2 (en) | Round and small diameter optical cables with a ribbon-like optical fiber structure | |
EP1223448B1 (en) | Optical fibre cable with support member for indoor and outdoor use | |
JP2007041568A (ja) | 多心光ファイバケーブル | |
WO2022018865A1 (ja) | 光ファイバケーブル | |
EP4067961A1 (en) | Pre-connectorized cable for a rapid optical fiber link restoration | |
US20230314743A1 (en) | Optical fiber cable | |
JP2007025233A (ja) | 多心光ファイバケーブル | |
CN205564378U (zh) | 一种轻型室内分布系统用光电复合缆 | |
CN215575822U (zh) | 铠装光缆和铠装光缆组件 | |
KR20000047131A (ko) | 타이트 버퍼형 광섬유 및 그것을 구비한 초다심 광케이블 | |
JPH05113510A (ja) | 光ケーブル | |
JP2005128270A (ja) | 構内用光ファイバケ−ブル | |
JP2005070483A (ja) | 光ドロップケーブル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20946059 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022538559 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20946059 Country of ref document: EP Kind code of ref document: A1 |