WO2022017426A1 - 一种电芯组件以及电池 - Google Patents
一种电芯组件以及电池 Download PDFInfo
- Publication number
- WO2022017426A1 WO2022017426A1 PCT/CN2021/107692 CN2021107692W WO2022017426A1 WO 2022017426 A1 WO2022017426 A1 WO 2022017426A1 CN 2021107692 W CN2021107692 W CN 2021107692W WO 2022017426 A1 WO2022017426 A1 WO 2022017426A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pole core
- guard
- cell assembly
- buffer
- flexible
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/218—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
- H01M50/22—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
- H01M50/222—Inorganic material
- H01M50/224—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/233—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
- H01M50/242—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/244—Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/258—Modular batteries; Casings provided with means for assembling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/503—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application relates to the field of batteries, and more particularly, the present application relates to a cell assembly and a battery.
- multiple pole cores are connected in series and/or in parallel in the battery casing.
- the multiple pole cores are easy to move in the battery. There will be relative displacement between them, causing damage to the pole core. For example, the active material layer on the pole core falls off, etc., the battery has poor stability and is prone to safety problems.
- An object of the present application is to provide a cell assembly and a battery to improve the interaction force generated by two adjacent pole core groups in the thickness direction thereof.
- a cell assembly includes pole core groups arranged in sequence, and the pole core groups are electrically connected through one or more flexible connectors;
- the length of the pole core group extends along the first direction
- the thickness of the pole core group extends along the second direction
- the height of the pole core group extends along the third direction, the first direction, the second direction and the third direction.
- the directions are perpendicular to each other;
- the flexible connector includes a buffer portion bent and extended along the first direction and/or the third direction, and the buffer portion is used for buffering the interaction between two adjacent pole core groups in the second direction force.
- the flexible connecting member includes a buffer portion that is bent and extended along the first direction; along the third direction, the buffer portion includes an upwardly protruding convex portion and a downwardly concave portion The concave part, the convex part and the concave part are smoothly connected.
- the flexible connecting member includes a buffer portion that is bent and extended along the third direction; along the second direction, the buffer portion includes an inwardly concave concave portion and an outwardly convex portion the convex part, the convex part and the concave part are smoothly connected.
- two adjacent pole core groups are connected by two flexible connecting pieces, and the two flexible connecting pieces include a first flexible connecting piece and a second flexible connecting piece, which are adjacent to each other.
- the two pole core groups are connected by a first flexible connector and a second flexible connector;
- One end of the first flexible connecting piece is electrically connected to one pole core group
- one end of the second flexible connecting piece is electrically connected to another pole core group
- at least part of the first flexible connecting piece and the second flexible connecting piece overlap and are fixedly connected .
- the flexible connecting member is provided with a chain-like structure or a sheet-like structure.
- the flexible connector is a single-layer conductive material, or a multi-layer rolling composite conductive material.
- the battery core assembly further includes a protective member, the protective member is disposed between two adjacent pole core groups, and the protective member is used to cover the flexible connecting member;
- the guard has a first end face and a second end face opposite to the first end face, and the first end face and the second end face respectively abut with the opposite surfaces of the two adjacent pole core groups.
- the guard includes a first guard and a second guard
- the first guard and the second guard are oppositely arranged along the second direction, and the first guard and the second guard are connected by a fastener.
- the protective member is provided with two oppositely arranged blocking walls, and a connecting portion is formed between the blocking walls.
- a battery is provided.
- the battery includes a metal casing and the above-mentioned battery core assembly, and the battery core assembly is arranged in the metal casing.
- the present application provides a cell assembly, wherein the pole core group of the cell core assembly is electrically connected through a flexible connector; when the cell core assembly is assembled with a metal casing, a gap needs to be set in the thickness direction of the pole core group, so that the pole core group is in the
- the charging and discharging process can realize buffering, so the pole core group is more likely to generate relative displacement and relative force in the thickness direction of the metal shell pole core group.
- the buffer part is bent and extended in three directions. The buffer part can buffer and absorb the interaction force generated by the two adjacent pole core groups in the thickness direction, which can prevent the connection between the pole core groups from being affected and ensure the reliable connection of the pole core groups. Sex and safety of battery use.
- FIG. 1 is a schematic diagram of the structure of the battery of the present application.
- FIG. 2 shows one of the schematic structural diagrams of the cell assembly according to the embodiment of the present application.
- FIG. 3 is a second schematic view of the structure of the cell assembly according to the embodiment of the present application.
- FIG. 4 is an enlarged view of the structure at A in FIG. 3 .
- FIG. 5 is an enlarged view of the structure at B in FIG. 3 .
- FIG. 6 is a schematic diagram of a partial structure of a cell assembly according to an embodiment of the present application.
- FIG. 7 is a schematic structural diagram of a view in FIG. 6 .
- FIG. 8 shows the second schematic diagram of the partial structure of the cell assembly according to the embodiment of the present application.
- FIG. 9 is a schematic diagram showing the assembly structure of the cell assembly in FIG. 8 .
- 121-buffering part 122-connecting area, 131-first end face, 132-second end face, 133-first blocking wall, 134-second blocking wall, 135-connecting arm.
- a cell assembly is provided.
- the cell assembly includes pole core groups 11 arranged in sequence, and the pole core groups 11 are electrically connected through one or more flexible connectors 12 ;
- the pole core group 11 includes a first electrode and a second electrode for drawing current, and the pole core group 11 can be connected in series; as shown in FIG. 4 , when the pole core group is connected in series, for example, the pole core group 11c and The pole core group 11 d is two adjacent pole core groups, and the first electrode of the pole core group 11 c and the second electrode of the pole core group 11 d are electrically connected through the flexible connecting member 12 .
- the pole core groups 11 may be connected in a parallel manner; or the pole core groups 11 may be connected in a mixed (series and parallel) manner.
- the flexible connector 12 has conductivity, and the flexible connector 12 can realize the electrical connection between the pole core groups.
- the pole core group 11 includes at least one pole core.
- the present application does not limit the arrangement of the pole core groups and the connection method of the pole core groups, as long as the two pole core groups 11 connected to each other are electrically connected through the flexible connector 12 .
- the length of the pole core group 11 extends along the first direction X, the thickness of the pole core group 11 extends along the second direction Y, the height of the pole core group 11 extends along the third direction Z, the first direction X, the second direction Y and the third direction Z are perpendicular to each other;
- the flexible connector 12 includes a buffer portion 121 bent and extended along the first direction X and/or the third direction Z, and the buffer portion 121 is used to buffer two adjacent pole core groups in the second direction.
- the interaction force produced in direction Y is produced.
- the flexible connecting member 12 may include a connecting portion, which is used to realize the connection of two pole core groups, and the connecting portion may be a plane or a linear structure.
- the buffer portion 121 Connected to the connecting portion, the buffer portion 121 has bending deformation relative to the connecting portion, and the buffer portion 121 is bent and extended along the length direction and/or thickness direction of the pole core group 11 , that is, the extension direction of the buffer portion 121 is along the length direction and/or thickness direction of the pole core group 11 .
- the extending direction of the buffer portion 121 is along the length direction of the pole core group; referring to FIGS. 6-8 , in one embodiment, the buffer The extending direction of the portion 121 is along the height direction of the pole core group.
- the flexible connector 12 includes two buffer parts 121 , wherein the bending extension direction of one buffer part 121 is along the length direction of the pole core group 11 , and the bending extension direction of the other buffer part 121 is Along the height direction of the pole core group 11 .
- the pole core group of the battery core assembly of the present application is electrically connected by a flexible connector, and the flexible connector has good flexibility; when the battery core component is assembled with the metal shell, a gap needs to be set in the thickness direction of the pole core group, so that the pole core
- the group can realize buffering during the charging and discharging process, so the pole core group is more likely to generate relative displacement and relative force in the thickness direction of the metal shell pole core group.
- the buffer part bent and extended in the third direction can buffer and absorb the interaction force generated in the thickness direction of the two adjacent pole core groups, which can avoid the connection between the pole core groups from being affected and ensure the reliable connection of the pole core groups. Sex and safety of battery use.
- the flexible connector 12 includes a buffer portion 121 that is bent and extended along the first direction, and along the third direction, the buffer portion 121 includes The upwardly protruding convex portion and the downwardly concave concave portion are smoothly connected.
- the buffer portion 121 is used to buffer the interaction force generated by the two adjacent pole core groups in the first direction and the second direction.
- the flexible connector 12 includes a buffer portion 121 that is bent and extended along the length direction of the pole core group 11 , wherein the buffer portion 121 is bent in an "S" shape, and opposite ends of the "S" shape are along the pole core. Since the buffer portion 121 has bending extension characteristics and flexibility, the buffer portion 121 can buffer the pole core group 11c and the pole core group 11d generated in the length direction of the pole core group and the thickness direction of the pole core group. interaction force.
- the main reason for the formation of "the interaction force” is: the external force between the pole core group and the pole core group causes the relative displacement of the two adjacent pole core groups in the length direction and thickness direction of the pole core group, Furthermore, two adjacent pole core groups generate an interaction force in the length direction of the pole core group and the thickness direction of the pole core group.
- the flexible connector 12 can buffer the interaction force between the pole core groups in these two directions, so as to avoid poor connection performance between the pole core groups when the pole core groups are impacted by external force. This example improves the pole core group. Vibration and shock resistance.
- the flexible connector 12 includes a buffer portion 121 that is bent and extended along the third direction, and along the second direction, the buffer portion 121 includes An inwardly concave concave portion and an outwardly convex convex portion, the convex portion and the concave portion are smoothly connected.
- the buffer portion 121 is used to buffer the interaction force generated in the third direction and the second direction by two adjacent pole core groups.
- the flexible connector 12 includes a buffer portion 121 that is bent and extended along the length direction of the pole core group 11 , wherein the buffer portion 121 is bent in an “S” shape, and opposite ends of the “S” shape are along the pole
- the height direction of the core group is arranged; because the buffer portion 121 has bending extension characteristics and flexibility, the buffer portion 121 can buffer the pole core group 11c and the pole core group 11d in the height direction of the pole core group 11 and the pole core group 11.
- the interaction force formed in the thickness direction is arranged
- the flexible connector can buffer and absorb the relative displacement generated by the pole core group on both sides, so that the flexible connector will not be affected by The resulting relative displacement causes the flexible link to be stressed and fractured.
- two adjacent pole core groups are connected by two flexible connecting pieces, and the two flexible connecting pieces include a first flexible connecting piece 12a and a second flexible connecting piece 12a.
- Two flexible connectors 12b, two adjacent pole core groups are connected by a first flexible connector 12a and a second flexible connector 12b;
- the first flexible connector includes a first buffer part and a first connection part, one end of the first buffer part is connected with a pole core group, and the other end of the first buffer part is connected with the first connection part;
- the second flexible connector includes a second buffer part and a second connection part, one end of the second buffer part is connected to another pole core group, and the other end of the second buffer part is connected to the second connection part;
- the first connecting portion and the second connecting portion are overlapped and fixedly connected.
- the pole core group 11c and the pole core group 11d are connected in series using the first flexible connecting member 12a and the second flexible connecting member 12b.
- the first flexible connector 12a includes a first buffer part and a first connection part, wherein the first buffer part 121 and the first connection part are integrally formed; one end of the first buffer part is connected to the first electrode of the pole core group 11c, the other end of the first buffer part is connected with the first connection part;
- the second flexible connector 12b includes a second buffer part and a second connection part, wherein the second buffer part 121 and the second connection part are integrally formed; one end of the second buffer part is connected to the second electrode of the pole core group 11d, the other end of the second buffer part is connected with the second connecting part;
- Both the first connecting portion and the second connecting portion are in a plane structure, and the first connecting portion and the second connecting portion are overlapped and fixedly connected by welding or rolling.
- the first connection portion and the second connection portion overlap and are fixedly connected at the connection region 122 .
- This example improves the connection strength between two adjacent pole core groups, and also improves the connection strength of the first flexible connecting piece and the second flexible connecting piece.
- two adjacent pole core groups are connected by one of the flexible connecting pieces 12, one end of the flexible connecting piece 12 is connected with one pole core group, and the other end of the flexible connecting piece is connected with another pole core group connect.
- the flexible connecting member 12 is provided with a chain-like structure or a sheet-like structure.
- the flexible connecting member 12 is configured as a chain-like structure, for example, the flexible connecting member 12 may be configured as a chain.
- the flexible connector 12 is arranged in a sheet-like structure; when the flexible connector 12 is arranged in a sheet-like structure, the contact area between the flexible connector 12 and the pole core group is increased, and the The connection strength between the flexible connector and the pole core group avoids the occurrence of breakage between the flexible connector and the pole core group or the breakage of the flexible connector body.
- the flexible connector 12 is a single-layer conductive material, or a multi-layer rolling composite conductive material.
- the flexible connecting member is a single-layer or multi-measured composite conductive material, which not only ensures the electrical connection between the two adjacent core groups 11, but also reduces its own rigidity and improves the relative relationship between the two pole core groups on both sides. displacement absorbing capacity.
- the material of the flexible connector 12 is metal, such as copper foil, nickel foil, iron foil, aluminum foil, or an alloy. According to an embodiment of the present application, the flexible connector 12 is made of conductive properties. Good, flexible copper foil.
- one end of the flexible connector located at both ends of the cell assembly is connected to the pole core assembly, and the other end is connected to the terminal 14 of the cell assembly;
- the cell assembly includes two terminals 14 , and the two terminals 14 are located at two ends of the cell assembly, respectively.
- the cell assembly includes a plurality of pole core groups arranged in sequence, wherein the pole core group 11a is set as the pole core group located at the head end, the pole core group 11b is set as the pole core group located at the end, and the two terminals are respectively connected with the pole core group 11a and the pole core group.
- the pole core group 11b is electrically connected.
- the terminal 14 a is electrically connected to one electrode of the pole core group 11 a through the flexible connecting member 12
- the terminal 14 b is electrically connected to one electrode of the pole core group 11 b through the flexible connecting member 12 .
- the metal casing has an opening
- the cell assembly is disposed in the metal casing 10 through the opening
- the terminal 14 is disposed in the metal casing 10 . at the opening and sealing the opening.
- the battery is applied to an electronic device, and the terminal can realize electrical connection with an external circuit.
- the terminal is electrically connected to the pole core group through a flexible connector, on the one hand, the connection strength between the terminal and the pole core group is improved;
- the relative displacement generates an interaction force, and the flexible connector connected between the terminal and the pole core group can buffer and absorb the interaction force between the terminal and the pole core group.
- the cell assembly further includes a guard 13, and the guard 13 is disposed between two adjacent pole core groups,
- the protective member 13 is used to cover the flexible connecting member 12;
- the guard 13 has a first end face 131 and a second end face 132 opposite to the first end face 131 .
- the first end face 131 and the second end face 132 are respectively opposite to two adjacent pole core groups.
- the first surface 111 abuts.
- the guard 13 is disposed on the periphery of the flexible connector 12, and the guard 13 can provide a mechanical protection function and an insulation protection function for the flexible connector.
- the guard 13 is provided with a first end face 131 and a second end face 132 that are oppositely arranged, and the first end face 131 and the second end face 132 are respectively adjacent to two adjacent end faces 131 and 132 .
- the opposite first surfaces 111 of the pole core groups are in contact, that is, the width dimension Y1 of the guard is equal to the spacing Y2 of the adjacent pole core groups. (that is, in the first direction), a suitable pre-tightening force is applied, and due to the supporting effect of the guard in the first direction, there will be no relative displacement between the adjacent pole core groups, so that the flexible connector will not be in the first direction.
- the connection stress is generated due to the relative displacement to ensure the connection reliability of the flexible connector and the pole core group.
- the material of the protective member 13 is a rubber material.
- the guard 13 includes a first guard 13a and a second guard 13b,
- the first guard 13a and the second guard 13b are disposed opposite to each other along the second direction, and the first guard 13a and the second guard 13b are connected by a fastener.
- the first guard 13a and the second guard 13b are disposed opposite to each other along the thickness direction of the pole core group 11, and the first guard 13a and the second guard 13a are respectively U-shaped.
- the open ends are butted in pairs and connected by fasteners.
- the fixing method of the first guard 13a and the second guard 13b may include snap connection, adhesive connection, or screw connection.
- the guard 13 is provided with two blocking walls arranged opposite to each other, and a connecting arm 135 is provided between the blocking walls.
- the guard 13 is provided with a first blocking wall 133 and a second blocking wall 134 , wherein the first end surface 131 of the guard is formed on the first blocking wall 133 , and the second end face 132 of the guard is formed on the first blocking wall 133 . on the second barrier wall 134 .
- the first blocking wall 133 and the second blocking wall 134 are connected by a connecting arm 135, and the connecting arm 135 is provided on the outer surface of the guard to facilitate the installation and removal of the guard by the user.
- a battery is provided.
- the battery includes a metal casing 10 and the above-mentioned cell assembly, and the cell assembly is arranged in the metal casing 10 .
- This example has a good protection effect on the battery cell components, and can avoid the failure of the connection function between the pole core groups, thereby improving the safety performance of the battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
本申请涉及一种电芯组件以及电池。所述电芯组件包括依次排列的极芯组(11),相邻的两个所述极芯组(11)通过一个或多个柔性连接件(12)电连接;所述极芯组(11)的长度沿第一方向延伸,所述极芯组(11)的厚度沿第二方向延伸,所述极芯组(11)的高度沿第三方向延伸,所述第一方向、第二方向和第方向两两相互垂直;所述柔性连接件(12)包括沿所述第一方向和/或所述第三方向进行弯曲延伸的缓冲部(121),所述缓冲部(121)用于缓冲相邻两个极芯组(11)在所述第二方向产生的相互作用力。
Description
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2020年07月24日提交的、发明名称为“一种电芯组件以及电池”的、中国专利申请号“202021509434.1”的优先权。
本申请涉及电池领域,更具体地,本申请涉及一种电芯组件以及电池。
目前为了改变电池的容量或电压,在电池的壳体内串联和/或并联多个极芯,在外界振动或机械冲击的情况下,多个极芯容易在电池内窜动,极芯与极芯之间会发生相对位移,对极芯产生损伤。例如极芯上活性材料层脱落等,电池稳定性较差而且容易发生安全问题。
发明内容
本申请的一个目的是提供一种电芯组件以及电池,以改善相邻两个极芯组在其厚度方向产生的相互作用力。
根据本申请的一个方面,提供一种电芯组件。所述电芯组件包括依次排列的极芯组,所述极芯组通过一个或多个柔性连接件电连接;
所述极芯组的长度沿第一方向延伸,所述极芯组的厚度沿第二方向延伸,所述极芯组的高度沿第三方向延伸,所述第一方向、第二方向和第方向两两相互垂直;
所述柔性连接件包括沿所述第一方向和/或所述第三方向弯曲延伸的缓冲部,所述缓冲部用于缓冲相邻两个极芯组在所述第二方向产生的相互作用力。
根据本申请的一个实施例,所述柔性连接件包括沿所述第一方向进行弯曲延伸的缓冲部;沿所述第三方向,所述缓冲部包括向上凸起的凸起部和向下凹陷的凹陷部,所述凸起部和凹陷部平滑连接。
根据本申请的一个实施例,所述柔性连接件包括沿所述第三方向进行弯曲延伸的缓冲部;沿所述第二方向,所述缓冲部包括向内凹陷的凹陷部和向外凸起的凸起部,所述凸起部和凹陷部平滑连接。
根据本申请的一个实施例,相邻的两个所述极芯组通过两个所述柔性连接件连接,两个所述柔性连接件包括第一柔性连接件和第二柔性连接件,相邻的两个所述极芯组通过第一柔性连接件和第二柔性连接件连接;
第一柔性连接件的一端与一个极芯组电连接,第二柔性连接件的一端与另外一个极芯组电连接,至少部分所述第一柔性连接件与第二柔性连接件重叠且固定连接。
根据本申请的一个实施例,所述柔性连接件设置有链状结构或者片状结构。
根据本申请的一个实施例,所述柔性连接件为单层导电材料,或为多层轧制复合的导电材料。
根据本申请的一个实施例,所述电芯组件还包括防护件,所述防护件设置在相邻两个所述极芯组之间,所述防护件用于包覆所述柔性连接件;
所述防护件具有第一端面和与所述第一端面相对设置的第二端面,所述第一端面和第二端面分别与相邻两个所述极芯组相对的表面抵接。
根据本申请的一个实施例,所述防护件包括第一防护件和第二防护件,
所述第一防护件和第二防护件沿所述第二方向相对设置,所述第一防护件和第二防护件采用紧固件连接。
根据本申请的一个实施例,所述防护件设置有相对设置的两个挡壁,所述挡壁之间连接部。
根据本申请第二方面,提供一种电池。所述电池包括金属壳体和上述所述的电芯组件,所述电芯组件设置在所述金属壳体内。
本申请的一个技术效果在于:
本申请提供一种电芯组件,电芯组件的极芯组通过柔性连接件电连接;电芯组件在与金属壳体装配时,在极芯组的厚度方向需要设置间隙,使得极芯组在充放电过程能够实现缓冲,因此极芯组在金属壳体极芯组的厚度方向更容易产生相对位移和产生相对作用力,本申请柔性连接件包括沿所述第一方向和/或所述第三方向弯曲延伸的缓冲部,缓冲部能够缓冲和吸收相邻两个极芯组在其厚度方向产生的相互作用力,可以避免极芯组之间的连接受到影响,确保极芯组连接的可靠性和电池使用的安全性。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征及其优点将会变得清楚。
构成说明书的一部分的附图描述了本申请的实施例,并且连同说明书一起用于解释本申请的原理。
图1所示为本申请电池结构示意图。
图2所示为本申请实施例的电芯组件的结构示意图之一。
图3所示为本申请实施例的电芯组件的结构示意图之二。
图4所示为图3中A处结构放大图。
图5所示为图3中B处结构放大图。
图6所示为本申请实施例的电芯组件的局部结构示意图之一。
图7所示为图6中一个视图的结构示意图。
图8所示为本申请实施例的电芯组件的局部结构示意图之二。
图9所示为图8中电芯组件的装配结构示意图。
附图标记说明:
10-金属壳体,11极芯组,12-柔性连接件,13-防护件,14端子,
121-缓冲部,122-连接区域,131-第一端面,132-第二端面,133-第一挡壁,134-第二挡壁,135-连接臂。
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术和设备可能不作详细讨论,但在适当情况下,所述技术和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
根据本申请一个实施例,提供一种电芯组件。参照图2-图9所示,所述电芯组件包括依次排列的极芯组11,所述极芯组11通过一个或多个柔性连接件12电连接;
例如所述极芯组11包括引出电流的第一电极和第二电极,极芯组11可以采用串联方式连接;参照图4所示,当极芯组采用串联方式连接,例如极芯组11c和极芯组11d为相邻两个极芯组,11c的第一电极和极芯组11d的第二电极通过柔性连接件12电连接。通过使多个极芯组串联连接,可以实现电池电压和容量的改变,减少制作工艺和成本。或者极芯组11可以采用并联方式连接;或者极芯组11采用混联(串联和并联)方式实现连接。
所述柔性连接件12具有导电性,柔性连接件12能够实现极芯组之间的电连接。
所述极芯组11包括至少一个极芯。
本申请对极芯组排列方式和极芯组的连接方式不做限定,只要相互连接的两个极芯组11通过所述柔性连接件12电连接即可。
所述极芯组11的长度沿第一方向X延伸,所述极芯组11的厚度沿第二方向Y延伸,所述极芯组11的高度沿第三方向Z延伸,所述第一方向X、第二方向Y和第三方向Z两两相互垂直;
所述柔性连接件12包括沿所述第一方向X和/或所述第三方向Z弯曲延伸的缓冲部121,所述缓冲部121用于缓冲相邻两个极芯组在所述第二方向Y产生的相互作用力。
根据本申请的一个实施例,所述柔性连接件12可以包括连接部,所述连接部用于实现两个极芯组的连接,所述连接部可以呈平面或直线结构,所述缓冲部121与连接部连接,所述缓冲部121相对于所述连接部具有弯曲变形,且所述缓冲部121沿极芯组11的长度方向和/或厚度方向弯曲延伸,即缓冲部121的延伸方向为沿着极芯组11的长度方向和/或厚度方向。
参照图4-图5所示,在一个实施例中,所述缓冲部121的延伸方向为沿极芯组的长度方向;参照图6-图8所示,在一个实施例中,所述缓冲部121的延伸方向为沿极芯组的高度方向。根据本申请的一个实施例,所述柔性连接件12包括两个缓冲部121,其中一个缓冲部121的弯曲延伸方向为沿极芯组11的长度方向,另外一个缓冲部121的弯曲延伸方向为沿极芯组11的高度方向。
本申请电芯组件的极芯组通过柔性连接件电连接,柔性连接件具有良好的柔韧性;电芯组件在与金属壳体装配时,在极芯组的厚度方向需要设置间隙,使得极芯组在充放电过程能够实现缓冲,因此极芯组在金属壳体极芯组的厚度方向更容易产生相对位移和产生相对作用力,本申请柔性连接件包括沿所述第一方向和/或所述第三方向弯曲延伸的缓冲部,缓冲部能够缓冲和吸收相邻两个极芯组厚度方向产生的相互作用力,可以避免极芯组之间的连接受到影响,确保极芯组连接的可靠性和电池使用的安全性。
根据本申请的一个实施例,参照图2-图5所示,所述柔性连接件12包括沿所述第一方向弯曲延伸的缓冲部121,沿所述第三方向,所述缓冲部121包括向上凸起的凸起部和向下凹陷的凹陷部,所述凸起部和凹陷部平滑连接。
本例子所述缓冲部121用于缓冲相邻两个极芯组在所述第一方向和所述第二方向产生的相互作用力。
根据本申请的一个实施例,柔性连接件12包括沿极芯组11的长度方向弯曲延伸的缓冲部121,其中缓冲部121弯曲呈“S”型,“S”型相对的两端沿极芯组的长度方向设置;由于缓冲部121具有弯曲延伸特性和具有柔韧性,所述缓冲部121能够缓冲极芯组11c和极芯组11d在极芯组的长度方向和极芯组的厚度方向产生的相互作用力。
其中“所述相互作用力”形成的主要原因是:极芯组与极芯组之间受到外部作用力,使得相邻两个极芯组在极芯组的长度方向和厚度方向产生相对位移,进而相邻两个极芯组在极芯组的长度方向和极芯组的厚度方向产生相互作用力。
本例子柔性连接件12能够缓冲极芯组之间在这两个方向的相互作用力,避免极芯组在受到外力冲击时,极芯组之间的连接性能差,本例子提高了极芯组的抗振动和抗冲击性能。
根据本申请的一个实施例,参照图6-图9所示,所述柔性连接件12包括沿所述第三方向弯曲延伸的缓冲部121,沿所述第二方向,所述缓冲部121包括向内凹陷的凹陷部和向外凸起的凸起部,所述凸起部和凹陷部平滑连接。
本例子所述缓冲部121用于缓冲相邻两个极芯组在所述第三方向和所述第二方向产生的相互作用力。
根据本申请的一个实施例,柔性连接件12包括沿极芯组11的长度方向进行弯曲延伸的缓冲部121,其中缓冲部121弯曲呈“S”型,“S”型相对的两端沿极芯组的高度方向设置;由于缓冲部121具有弯曲延伸特性和具有柔韧性,所述缓冲部121能够缓冲极芯组11c和极芯组11d在极芯组11的高度方向和极芯组11的厚度方向形成的相互作用力。
例如本例子极芯组在极芯组的高度方向和厚度方向受到冲击和振动时,柔性连接件能够对其两侧的极芯组产生的相对位移实现缓冲和吸收,使柔性连接件不会因相对位移的产生导致柔性连接件受力而断裂。
根据本申请的一个实施例,参照图4所示,相邻的两个所述极芯组通过两个所述柔性连接件连接,两个所述柔性连接件包括第一柔性连接件12a和第二柔性连接件12b,相邻的两个所述极芯组通过第一柔性连接件12a和第二柔性连接件12b连接;
所述第一柔性连接件包括第一缓冲部和第一连接部,所述第一缓冲部的一端与一个极芯组连接,第一缓冲部的另一端与所述第一连接部连接;
所述第二柔性连接件包括第二缓冲部和第二连接部,所述第二缓冲部的一端与另一个极芯组连接,第二缓冲部的另一端与所述第二连接部连接;
所述第一连接部和第二连接部重叠设置且固定连接。
根据本申请的一个实施例,参照图4所示,极芯组11c和极芯组11d采用第一柔性连接件12a和第二柔性连接件12b串联。
第一柔性连接件12a包括第一缓冲部和第一连接部,其中第一缓冲部121和第一连接部一体成型;所述第一缓冲部的一端与极芯组11c的第一电极连接,所述第一缓冲部的另一端与第一连接部连接;
第二柔性连接件12b包括第二缓冲部和第二连接部,其中第二缓冲部121和第二连接部一体成型;所述第二缓冲部的一端与极芯组11d的第二电极连接,所述第二缓冲部的另 一端与第二连接部连接;
第一连接部和第二连接部均呈平面结构,第一连接部和第二连接部重叠设置且采用焊接方式或轧制工艺固定连接。例如第一连接部和第二连接部在连接区域122处重叠且固定连接。
本例子提高了相邻两个极芯组之间的连接强度,同时也提高了第一柔性连接件和第二柔性连接件的连接强度。
根据本申请的一个实施例,相邻两个极芯组采用一个所述柔性连接件12连接,柔性连接件12的一端与一个极芯组连接,柔性连接件的另一端与另外一个极芯组连接。
根据本申请的一个实施例,参照图4-图6所示,所述柔性连接件12设置有链状结构或者片状结构。
根据本申请的一个实施例,参照图4所示,所述柔性连接件12设置为链状结构,例如柔性连接件12可以设置为链条。或者参照图5-图6所示,柔性连接件12设置为片状结构;当柔性连接件12设置为片状结构,增大了柔性连接件12与极芯组之间的接触面积,提高了柔性连接件与极芯组之间的连接强度,避免柔性连接件与极芯组之间出现断裂或者柔性连接件本体断裂等情况。
根据本申请的一个实施例,所述柔性连接件12为单层导电材料,或为多层轧制复合的导电材料。本实施例中,柔性连接件为单层或多测复合导电材料,即保证了相邻两个机芯组11之间的电连接,又可以降低自身刚度,提高对其两侧极芯组相对位移的吸收能力。
根据本申请的一个实施例,柔性连接件12的材质采用金属,例如可以为铜箔、镍箔、铁箔、铝箔或者采用合金等,根据本申请的一个实施例,柔性连接件12选用传导性能好,柔韧性好的铜箔。
根据本申请的一个实施例,参照图2-图3所示,位于所述电芯组件两端的柔性连接件的一端与极芯组连接,另一端与电芯组件的端子14连接;
根据本申请的一个实施例,电芯组件包括两个端子14,两个端子14分别位于电芯组件两端。电芯组件包括依次排列的多个极芯组,其中极芯组11a设置为位于首端的极芯组,极芯组11b设置为位于末端的极芯组,两个端子分别与极芯组11a和极芯组11b电连接。
例如端子14a通过柔性连接件12与极芯组11a的一个电极电连接,端子14b通过柔性连接件12与极芯组11b的一个电极电连接。
参照图1所示,所述电芯组件设置在金属壳体10内构成电池时,金属壳体具有开口,电芯组件通过所述开口设置在金属壳体10内,所述端子14设置在所述开口处且密封所述开口。所述电池应用到电子设备中,所述端子能够实现与外部电路电连接。
本例子端子通过柔性连接件与极芯组电连接,一方面提高了端子与极芯组之间的连接 强度;另一方面,极芯组在受到外部冲击或振动,端子和极芯组由于产生相对位移而产生相互作用力,连接在端子和极芯组之间柔性连接件能够缓冲和吸收端子和极芯组之间的相互作用力。
根据本申请的一个实施例,参照图3,图8-图9所示,所述电芯组件还包括防护件13,所述防护件13设置在相邻两个所述极芯组之间,所述防护件13用于包覆所述柔性连接件12;
所述防护件13具有第一端面131和与所述第一端面131相对设置的第二端面132,所述第一端面131和第二端面132分别与相邻两个所述极芯组相对的第一表面111抵接。
根据本申请的一个实施例,防护件13设置在柔性连接件12的外围,防护件13能够提供对柔性连接件的机械防护功能和绝缘防护功能。
根据本申请的一个实施例,参照图8所示,所述防护件13设置有相对设置的第一端面131和第二端面132,第一端面131和第二端面132分别与相邻两个所述极芯组相对的第一表面111抵接,即防护件的宽度尺寸Y1等于相邻极芯组的间距Y2,当电芯组件装入金属壳体时,通过对极芯组的装入方向(即第一方向)施加合适的预紧力,因防护件在第一方向的支撑作用,使各相邻极芯组之间不会产生相对位移,进而使柔性连接件不会在第一方向因相对位移而产生连接应力,保证柔性连接件与极芯组的连接可靠性。根据本申请的一个实施例,所述防护件13的材质采用橡胶材质。
根据本申请的一个实施例,参照图3,图8-图9所示,所述防护件13包括第一防护件13a和第二防护件13b,
所述第一防护件13a和第二防护件13b沿所述第二方向相对设置,所述第一防护件13a和第二防护件13b采用紧固件连接。
根据本申请的一个实施例,第一防护件13a和第二防护件13b沿极芯组11厚度方向相对设置,第一防护件13a和第二防护件13a分别呈U型结构,U型结构的开口端两两对接且采用紧固件连接,例如第一防护件13a和第二防护件13b的固定方式可以包括卡扣连接、粘接剂连接、或螺钉等连接。
根据本申请的一个实施例,参照图8所示,所述防护件13设置有相对设置的两个挡壁,所述挡壁之间设置连接臂135。
根据本申请的一个实施例,防护件13设置有第一挡壁133和第二挡壁134,其中防护件的第一端面131形成在第一挡壁133上,防护件的第二端面132形成在第二挡壁134上。第一挡壁133和第二挡壁134通过连接臂135连接,所述连接臂135设置在防护件的外表面,便于用户对防护件的安装和拆卸等。
根据本申请另一方面,提供一种电池。参照图1所示,所述电池包括金属壳体10和上 述所述的电芯组件,所述电芯组件设置在所述金属壳体10内。本例子对电芯组件进行很好的保护作用,而且能够避免极芯组之间的连接作用失效等情况,提高了电池的安全性能。
虽然已经通过示例对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。
Claims (10)
- 一种电芯组件,其特征在于,所述电芯组件包括依次排列的极芯组(11),相邻的两个所述极芯组(11)通过一个或多个柔性连接件(12)电连接;所述极芯组(11)的长度沿第一方向延伸,所述极芯组(11)的厚度沿第二方向延伸,所述极芯组(11)的高度沿第三方向延伸,所述第一方向、第二方向和第三方向两两相互垂直;所述柔性连接件(12)包括沿所述第一方向和/或所述第三方向弯曲延伸的缓冲部(121),所述缓冲部(121)用于缓冲相邻两个极芯组在所述第二方向产生的相互作用力。
- 根据权利要求1所述的电芯组件,其特征在于,所述柔性连接件(12)包括沿所述第一方向弯曲延伸的缓冲部(121);沿所述第三方向,所述缓冲部(121)包括向上凸起的凸起部和向下凹陷的凹陷部,所述凸起部和凹陷部平滑连接。
- 根据权利要求1或2所述的电芯组件,其特征在于,所述柔性连接件(12)包括沿所述第三方向弯曲延伸的缓冲部(121);沿所述第二方向,所述缓冲部(121)包括向内凹陷的凹陷部和向外凸起的凸起部,所述凸起部和凹陷部平滑连接。
- 根据权利要求1-3中任意一项所述的电芯组件,其特征在于,相邻的两个所述极芯组通过两个所述柔性连接件连接,两个所述柔性连接件包括第一柔性连接件(12a)和第二柔性连接件(12b),相邻的两个所述极芯组通过第一柔性连接件(12a)和第二柔性连接件(12b)连接;所述第一柔性连接件(12a)包括第一缓冲部和第一连接部,所述第一缓冲部的一端与一个极芯组连接,第一缓冲部的另一端与所述第一连接部连接;所述第二柔性连接件(12b)包括第二缓冲部和第二连接部,所述第二缓冲部的一端与另一个极芯组连接,第二缓冲部的另一端与所述第二连接部连接;所述第一连接部和第二连接部重叠设置且固定连接。
- 根据权利要求1-4中任意一项所述的电芯组件,其特征在于,所述柔性连接件(12)为链状结构或者片状结构。
- 根据权利要求1-5中任意一项所述的电性组件,其特征在于,所述柔性连接件(12)为单层导电材料,或为多层轧制复合的导电材料。
- 根据权利要求1-6中任意一项所述的电芯组件,其特征在于,所述电芯组件还包括防护件(13),所述防护件(13)设置在相邻两个所述极芯组之间,所述防护件(13)用于包覆所述柔性连接件(12);所述防护件(13)具有第一端面(131)和与所述第一端面(131)相对设置的第二端面 (132),所述第一端面(131)和第二端面(132)分别与相邻两个所述极芯组相对的第一表面(111)抵接。
- 根据权利要求7所述的电芯组件,其特征在于,所述防护件(13)包括第一防护件(13a)和第二防护件(13b),所述第一防护件(13a)和第二防护件(13b)沿所述第二方向相对设置,所述第一防护件(13a)和第二防护件(13b)采用紧固件连接。
- 根据权利要求7或8所述的电芯组件,其特征在于,所述防护件(13)设置有相对设置的两个挡壁(133、134),所述挡壁之间设置有连接臂(135)。
- 一种电池,其特征在于,所述电池包括金属壳体(10)和权利要求1-9任一项所述的电芯组件,所述电芯组件设置在所述金属壳体(10)内。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202021509434.1U CN212587615U (zh) | 2020-07-24 | 2020-07-24 | 一种电芯组件以及电池 |
CN202021509434.1 | 2020-07-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022017426A1 true WO2022017426A1 (zh) | 2022-01-27 |
Family
ID=74658862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/107692 WO2022017426A1 (zh) | 2020-07-24 | 2021-07-21 | 一种电芯组件以及电池 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN212587615U (zh) |
WO (1) | WO2022017426A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN212587615U (zh) * | 2020-07-24 | 2021-02-23 | 比亚迪股份有限公司 | 一种电芯组件以及电池 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102903881A (zh) * | 2011-07-29 | 2013-01-30 | 比亚迪股份有限公司 | 一种用于电池模块之间的连接件及电池系统 |
CN204333293U (zh) * | 2014-12-23 | 2015-05-13 | 上海比亚迪有限公司 | 一种电池连接片、电池组、电池包和电动汽车 |
CN206313008U (zh) * | 2016-10-26 | 2017-07-07 | 深圳市科达利实业股份有限公司 | 一种电池组输出的软连接件 |
CN207967151U (zh) * | 2018-03-30 | 2018-10-12 | 宁德时代新能源科技股份有限公司 | 电连接组件及电池模组 |
EP3528312A1 (en) * | 2018-02-16 | 2019-08-21 | FERRARI S.p.A. | Vehicular battery pack |
CN111312964A (zh) * | 2020-04-24 | 2020-06-19 | 比亚迪股份有限公司 | 电池包及电动车 |
CN212587615U (zh) * | 2020-07-24 | 2021-02-23 | 比亚迪股份有限公司 | 一种电芯组件以及电池 |
-
2020
- 2020-07-24 CN CN202021509434.1U patent/CN212587615U/zh active Active
-
2021
- 2021-07-21 WO PCT/CN2021/107692 patent/WO2022017426A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102903881A (zh) * | 2011-07-29 | 2013-01-30 | 比亚迪股份有限公司 | 一种用于电池模块之间的连接件及电池系统 |
CN204333293U (zh) * | 2014-12-23 | 2015-05-13 | 上海比亚迪有限公司 | 一种电池连接片、电池组、电池包和电动汽车 |
CN206313008U (zh) * | 2016-10-26 | 2017-07-07 | 深圳市科达利实业股份有限公司 | 一种电池组输出的软连接件 |
EP3528312A1 (en) * | 2018-02-16 | 2019-08-21 | FERRARI S.p.A. | Vehicular battery pack |
CN207967151U (zh) * | 2018-03-30 | 2018-10-12 | 宁德时代新能源科技股份有限公司 | 电连接组件及电池模组 |
CN111312964A (zh) * | 2020-04-24 | 2020-06-19 | 比亚迪股份有限公司 | 电池包及电动车 |
CN212587615U (zh) * | 2020-07-24 | 2021-02-23 | 比亚迪股份有限公司 | 一种电芯组件以及电池 |
Also Published As
Publication number | Publication date |
---|---|
CN212587615U (zh) | 2021-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5301522B2 (ja) | エネルギー貯蔵モジュール | |
KR101297288B1 (ko) | 단일 전지 및 이를 포함하는 동력 배터리 팩 | |
US10629882B2 (en) | Battery module | |
KR101858482B1 (ko) | 집전 부재를 구비하는 축전 소자 및 집전 부재의 제조 방법 | |
US9178206B2 (en) | Battery module | |
JP5887776B2 (ja) | 蓄電素子 | |
WO2011158676A1 (ja) | 電池 | |
KR20060010482A (ko) | 이차 전지 | |
JP5741541B2 (ja) | 二次電池の集電端子及び二次電池 | |
JP5296105B2 (ja) | 電極端子接続部材及び絶縁性接合部材を有する中または大型バッテリーモジュール | |
WO2023185288A1 (zh) | 电池 | |
WO2022017426A1 (zh) | 一种电芯组件以及电池 | |
US20150171482A1 (en) | Battery module | |
JP4939643B1 (ja) | 電池モジュール | |
JPH1041190A (ja) | コンデンサ素子集合体 | |
CN104009257B (zh) | 可再充电电池 | |
US9466898B2 (en) | Connection terminal | |
CN217427022U (zh) | 支架及电池模组 | |
JP2023108022A (ja) | 二次電池 | |
JP5376475B2 (ja) | セルモジュールアセンブリーの電圧センシングのための接触パッド及びセルモジュールアセンブリー | |
CN112534610A (zh) | 电极组件和电池 | |
JP2010287318A (ja) | パック電池 | |
JP2016100045A (ja) | 蓄電装置 | |
WO2023085437A1 (ja) | 組電池 | |
JP7210519B2 (ja) | 電池セル及び電池モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21846884 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21846884 Country of ref document: EP Kind code of ref document: A1 |