WO2022016676A1 - 一种远红外干燥设备 - Google Patents

一种远红外干燥设备 Download PDF

Info

Publication number
WO2022016676A1
WO2022016676A1 PCT/CN2020/113254 CN2020113254W WO2022016676A1 WO 2022016676 A1 WO2022016676 A1 WO 2022016676A1 CN 2020113254 W CN2020113254 W CN 2020113254W WO 2022016676 A1 WO2022016676 A1 WO 2022016676A1
Authority
WO
WIPO (PCT)
Prior art keywords
far
drying
infrared
infrared radiation
layer
Prior art date
Application number
PCT/CN2020/113254
Other languages
English (en)
French (fr)
Inventor
黄盛杰
李建稳
曾培源
沈健民
Original Assignee
南京源昌新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京源昌新材料有限公司 filed Critical 南京源昌新材料有限公司
Publication of WO2022016676A1 publication Critical patent/WO2022016676A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/12Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft
    • F26B17/16Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft the materials passing down a heated surface, e.g. fluid-heated closed ducts or other heating elements in contact with the moving stack of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/004Nozzle assemblies; Air knives; Air distributors; Blow boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/08Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/10Temperature; Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/04Heating arrangements using electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/06Chambers, containers, or receptacles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements

Definitions

  • the invention relates to the technical field of drying equipment, in particular to a far-infrared drying equipment.
  • the wavelength of far-infrared rays is 4-400 microns, which can be directly heated from the inside of the material, which is conducive to the rapid evaporation of internal moisture.
  • far-infrared drying does not need to directly heat the air around the material, and has the advantages of high efficiency and energy saving, so it has been widely used in many fields.
  • the large-scale far-infrared drying equipments are mainly silicon carbide infrared radiant electric heaters, opal white quartz infrared radiant electric heaters, ceramic infrared radiant electric heaters, resistance band infrared radiant electric heaters and coal and flue gas infrared radiant electric heaters. device, etc.
  • Patent CN105135851A discloses a belt-type infrared radiation drying system and its installation and drying method.
  • the infrared radiation light wave plates prepared from carbon materials are placed above and below the conveyor belt respectively, and the materials are in the process of conveying with the conveyor belt.
  • the infrared radiation light wave plate below radiates infrared light waves under the condition of electrification to dry the material.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art and provide a far-infrared drying device.
  • a far-infrared drying device comprising a drying box, a drying chamber is arranged in the drying box, and a plurality of far-infrared radiation panels are arranged staggered in sequence on two opposite inner side walls of the drying chamber along a vertical direction, and the The free ends of the far-infrared radiation panels are inclined downward, and each of the far-infrared radiation panels sequentially includes a support layer, a reflection layer, an infrared radiation layer and a wear-resistant layer from bottom to top.
  • the wear-resistant layer is made of polyethylene, high-density polyethylene, polytetrafluoroethylene, methyl methacrylate, polyisoprene plastic or tempered steel Made of glass.
  • the infrared radiation layer is made by mixing one or more carbon materials among graphite, expanded graphite, activated carbon, carbon nanotubes, graphene or carbon fibers .
  • the reflective layer is a metal salt or ceramic coated on the upper surface of the support layer.
  • the support layer is a stainless steel plate.
  • the upper surface of the wear-resistant layer is evenly provided with diversion grooves, and the diversion grooves are arranged along the diagonal direction of the far-infrared radiation plate , and the diversion grooves on any two adjacent far-infrared radiation plates intersect.
  • one end of the far-infrared radiation plate is hinged on the inner side wall of the drying box, so that the far-infrared radiation plate is connected to the inner side of the drying chamber.
  • the included angle between the walls is adjustable, the lower end of the far-infrared radiation panel is fixedly provided with a support for supporting the far-infrared radiation panel, the support is installed on the side wall of the drying chamber, and can be installed in at different heights on the side walls of the drying chamber.
  • the drying box is provided with a screw feeder, and the feeding end of the screw feeder is located at the bottom of the drying box, and is connected with the drying box.
  • the feeding port of the drying box is connected, and the discharging end of the screw feeder is located at the top of the drying box and communicates with the inlet of the drying chamber, and the bottom of the drying chamber is provided with a discharging end
  • the discharge pipe is communicated with the feeding end of the screw feeder, the discharge pipe is provided with a valve, and the discharge pipe is located between the valve and the drying chamber. Feed mouth.
  • the other two inner side walls of the drying chamber are respectively provided with an air inlet and an air outlet
  • the outside of the drying box is provided with a dry air duct, a humid Air duct, blower, induced draft fan and controller
  • one end of the dry air duct is communicated with the blower
  • the other end of the dry air duct is communicated with the air inlet
  • one end of the wet air duct It is communicated with the induced draft fan
  • the other end of the humid air duct is communicated with the air outlet
  • both the blower and the induced draft fan are electrically connected to the controller.
  • a temperature/humidity detector is provided in the drying chamber, and the temperature/humidity detector is electrically connected to the controller.
  • the mid-to-far-infrared radiation plate of the present invention includes a support layer, a reflection layer, an infrared radiation layer and a wear-resistant layer in order from bottom to top, wherein the support layer can support the self-weight of the far-infrared radiation plate and the impact force of the material, and the reflection layer can support the The far-infrared radiation emitted by the infrared radiation layer is reflected to the upper surface of the far-infrared radiation plate to improve the drying efficiency.
  • the wear-resistant layer can protect the infrared radiation layer to avoid the wear of the infrared radiation layer after long-term use, which will lead to the reduction of drying efficiency and the loss of materials. Pollution;
  • the upper surface of the wear-resistant layer is evenly provided with diversion grooves, and the diversion grooves are arranged along the diagonal direction of the far-infrared radiation plate, which can extend the moving distance of the material on the far-infrared radiation plate, thereby improving the The drying efficiency of the material;
  • the angle between the far-infrared radiation plate and the side wall of the drying chamber of the present invention can be adjusted, and the inclination of the far-infrared radiation plate can be adjusted according to the needs of use, so as to be suitable for materials with different stacking angles;
  • the present invention is provided with a screw feeder in the drying box, and the screw feeder can transport the materials to be dried to the top of the drying box, and then enter the drying chamber, and rely on gravity at one time between the far-infrared laying plates Sliding and falling to realize the drying of the material.
  • a discharge pipe is set at the bottom of the drying chamber. Before the material to be dried does not meet the drying requirements, the discharge port on the discharge pipe can be closed and the valve can be opened. After the action of gravity reaches the bottom of the screw feeder, it is transported by the screw feeder to the top of the drying box, and then enters the drying chamber again to achieve multiple dryings. After the material reaches the drying requirements, close the valve and open the discharge. The material can leave the drying box from the discharge port to complete the drying;
  • an air inlet and an air outlet are also provided on the side wall of the drying chamber.
  • the dry air enters the drying chamber through the dry air duct and the air inlet, and the moist air in the box is driven by the induced draft fan. It is discharged to the outside of the drying box through the air outlet and the humid air duct under the traction of the air, so as to avoid the humidity in the drying room from affecting the drying efficiency;
  • a temperature/humidity detector is also installed in the drying room, and the controller adjusts the operation of the far-infrared radiant panel, the intake fan and the induced draft fan in real time according to the data fed back by the temperature/humidity detector to avoid material damage.
  • Fig. 1 is the cross-sectional schematic diagram of far-infrared drying equipment provided by the present invention
  • Fig. 2 is the side view of far-infrared drying equipment provided by the present invention.
  • Fig. 3 is the top sectional schematic diagram of the far-infrared drying equipment provided by the present invention.
  • FIG. 4 is a schematic cross-sectional view of a far-infrared radiation plate
  • This embodiment provides a far-infrared drying device, including a drying box 1, and a drying chamber 2 for drying materials is provided in the drying box 1.
  • the upper part of the drying chamber 2 is provided with an inlet.
  • a number of far-infrared radiating panels 3 are staggered from top to bottom on the left and right side walls of the drying chamber 2.
  • the free ends of these far-infrared radiating panels 3 are all inclined downward, and each The free ends of the panels 3 all extend above the far-infrared radiation panels 3 located below them.
  • the material to be dried automatically falls to the next far-infrared radiation plate 3 after sliding along the far-infrared radiation plate 3 .
  • a screw feeder 10 is also installed in the drying box 1.
  • the feeding end of the screw feeder 10 is located at the bottom of the drying box 1 and communicates with the feeding port 11 of the drying box 1.
  • the screw feeder The discharge end of 10 is located at the top of the drying box 1, and communicates with the inlet of the drying chamber 2.
  • the bottom of the drying chamber 2 is provided with a discharge pipe 12, and the discharge pipe 12 communicates with the feed end of the screw feeder 10.
  • the discharge pipe 12 is provided with a valve 13
  • the discharge pipe 12 is provided with a discharge port 14 between the valve 13 and the drying chamber 2 .
  • the screw feeder 10 can transport the material to be dried to the top of the drying box 1, and then enter the drying chamber 2, and slide down between the far-infrared laying boards by gravity at one time to realize the drying of the material.
  • the discharge port 14 on the discharge pipe 12 can be closed, and the valve 13 can be opened. After the material reaches the bottom of the screw feeder 10 by gravity, it passes through the screw feeder 10. After the material reaches the drying requirements, close the valve 13 and open the discharge port 14, and the material can leave the dryer from the discharge port 14. Box 1, complete drying.
  • each far-infrared radiation panel 3 is hinged on the inner side wall of the drying chamber 2 through hinges, so that the angle between the far-infrared radiation panel 3 and the inner side wall of the drying chamber 2 can be adjusted.
  • a support member 9 is welded on the lower surface of the far-infrared radiation plate 3, and one end of the support member 9 can be fixedly connected to the inner side wall of the drying chamber 2, so that the support member 9 can support the far-infrared radiation plate 3.
  • the support member 9 can be fixedly connected to the different heights of the inner side wall of the drying chamber 2, so as to adjust the angle between the far-infrared radiation plate 3 and the horizontal direction, so that the far-infrared drying equipment can be adapted to different stacking angles. materials.
  • the connection between the support member 9 and the inner side wall of the drying chamber 2 is not fixed, as long as the detachable connection between the support member 9 and the inner side wall of the drying chamber 2 can be realized.
  • a plurality of installation holes can be opened on the inner side wall of the drying chamber 2 along the vertical direction, and the angle between the far-infrared radiation plate 3 and the horizontal direction can be adjusted by adjusting the height of the installation holes installed by the support member 9 .
  • each far-infrared radiation plate 3 sequentially includes a support layer 4 , a reflection layer 5 , an infrared radiation layer 6 and a wear-resistant layer 7 from bottom to top.
  • the support layer 4 is made of stainless steel plate, which can support the self-weight of the far-infrared radiation plate 3 and the impact force of the material.
  • the reflective layer 5 is a metal salt or ceramic coated on the upper surface of the support layer 4 to reflect far infrared rays, so that all far infrared rays are emitted to the upper surface of the far infrared radiation plate 3 to improve drying efficiency.
  • the infrared radiation layer 6 is made of a mixture of one or more carbon materials in graphite, expanded graphite, activated carbon, carbon nanotubes, graphene or carbon fibers.
  • the infrared radiation layer 6 can convert electrical energy into far infrared rays. Under the density, the far infrared rays required for drying materials can be radiated.
  • the wear-resistant layer 7 is made of polyethylene, high-density polyethylene, polytetrafluoroethylene, methyl methacrylate, polyisoprene plastic or tempered glass, which is anti-abrasion and does not absorb or reflect far red lines.
  • the infrared radiation layer 6 is effectively protected under the premise of normal use of the radiant panel 3, so as to avoid the wear of the infrared radiation layer 6 after long-term use, which will lead to lower drying efficiency and material pollution.
  • guide grooves 8 are evenly opened on the upper surface of the wear-resistant layer 7, and these guide grooves 8 are arranged along the diagonal direction of the far-infrared radiation plate 3, and any two adjacent far-infrared The guide grooves 8 on the radiation plate 3 intersect.
  • the moving distance of the material on the far-infrared radiation plate 3 can be extended, thereby improving the drying efficiency of the material.
  • an air inlet 15 and an air outlet 16 are respectively opened on the front and rear side walls of the drying chamber 2, and the air inlet 15 passes through the dry air duct 17 installed on the outer front wall of the drying box 1 and the blower. 19 is connected, and the blower 19 can transport the dry air outside the drying box 1 into the dry air duct 17 and send it into the drying chamber 2 through the air inlet 15 .
  • the air outlet 16 communicates with the induced draft fan 20 through the moist air duct 18 installed on the outer rear side wall of the drying box 1, and the moist air in the drying chamber 2 is pulled by the air outlet 16 and the moist air duct under the traction of the induced draft fan 20. 18 is discharged to the outside of the drying box 1, so that the moisture evaporated from the material is discharged from the drying box 1.
  • a temperature/humidity detector 21 is also installed in the drying chamber 2.
  • the temperature/humidity detector 21, the blower 19 and the induced draft fan 20 are all electrically connected to the controller outside the drying box 1.
  • the humidity detector 21 monitors the temperature and humidity in the drying box 1 in real time and feeds it back to the controller. run to avoid material damage.
  • the present invention may also have other embodiments; all technical solutions formed by equivalent replacement or equivalent transformation fall within the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Microbiology (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

一种远红外干燥设备,包括干燥箱体(1),其内设置有干燥室(2),干燥室(2)相对的两个内侧壁上沿竖直方向依次交错设置有多块远红外辐射板(3),远红外辐射板(3)的自由端均向下倾斜,每块远红外辐射板(3)由下往上依次包括支撑层(4)、反射层(5)、红外辐射层(6)以及耐磨层(7),其中,支撑层(4)可支撑远红外辐射板(3)的自重以及物料的冲击力,反射层(5)可将红外辐射层(6)发出的远红外线反射至远红外辐射板(3)的上表面,提高干燥效率,耐磨层(7)可对红外辐射层(6)进行保护,避免长时间使用后红外辐射层(6)被磨损而导致干燥效率降低和物料污染。

Description

一种远红外干燥设备 技术领域
本发明涉及干燥设备技术领域,特别是涉及一种远红外干燥设备。
背景技术
远红外线的波长在4~400微米,可以从物料的内部直接进行加热,有利于内部水分快速蒸发。相对于传统的热风干燥,远红外干燥无需对物料周围空气直接加热,具有高效节能的优势,因此在很多领域得到了广泛的应用。目前大规模使用的远红外线干燥设备主要是碳化硅红外辐射电加热器、乳白石英红外辐射电加热器、陶瓷红外辐射电加热器、电阻带式红外辐射电加热器和煤与烟气红外辐射加热器等。这些传统的红外辐射器件具有以下缺点:第一、能耗高,必须在一定的高温下才能发射远红外线;第二、通过燃烧煤、石油和天然气等来加热远红外辐射加热器的能量利用率低,而且由于燃料的燃烧不充分,还会对环境造成一定的污染;第三、使用燃料供能的红外辐射加热器,干燥过程中不但温度难以控制,而且使用明火容易引发火灾,所以安全性差。
近年来,人们发现碳材料通电后在较低的功率密度下可以发射远红外线,并且能量转换效率高达99%,是一种非常理想的红外发射材料。专利CN105135851A公开了一种带式红外辐射干燥系统及其安装和干燥方法,将碳材料制备的红外辐射光波板分别安置于传送带的上方和下方,物料在随传送带输送的过程中,位于传送带上方和下方的红外辐射光波板在通电的情况下辐射出红外光波,对物料进行干燥。但是,由于红外辐射光波板上的红外涂层外部没有保护层,红外涂层材料在长期使用过程中不可避免地会脱落,导致干燥效率 降低和物料污染。而且,此设计提高了设备的结构复杂性和成本,同时降低了安全性并增加了设备的故障率。
发明内容
本发明所要解决的技术问题是,克服现有技术的缺点,提供一种远红外干燥设备。
为了解决以上技术问题,本发明的技术方案如下:
一种远红外干燥设备,包括干燥箱体,所述干燥箱体内设置有干燥室,所述干燥室相对的两个内侧壁上沿竖直方向依次交错设置有多块远红外辐射板,所述远红外辐射板的自由端均向下倾斜,每块所述远红外辐射板由下往上依次包括支撑层、反射层、红外辐射层以及耐磨层。
作为本发明所述远红外干燥设备的一种优选方案,其中:所述耐磨层由聚乙烯、高密度聚乙烯、聚四氟乙烯、甲基丙烯酸甲酯、聚异戊二烯塑料或钢化玻璃制成。
作为本发明所述远红外干燥设备的一种优选方案,其中:所述红外辐射层由石墨、膨胀石墨、活性炭、碳纳米管、石墨烯或碳纤维中的一种或多种碳材料混合制成。
作为本发明所述远红外干燥设备的一种优选方案,其中:所述反射层为涂覆在所述支撑层上表面的金属盐或陶瓷。
作为本发明所述远红外干燥设备的一种优选方案,其中:所述支撑层为不锈钢钢板。
作为本发明所述远红外干燥设备的一种优选方案,其中:所述耐磨层的上表面均匀开设有导流槽,所述导流槽沿所述远红外辐射板的对角线方向设置,且任意相邻的两块所述远红外辐射板上的导流槽相交。
作为本发明所述远红外干燥设备的一种优选方案,其中:所述远红外辐射板的一端铰接于所述干燥箱体的内侧壁上,使所述远红外辐射板与所述干燥室内侧壁之间的夹角可调,所述远红外辐射板的下端固定设置有用于支撑所述远红外辐射板的支撑件,所述支撑件安装于所述干燥室内侧壁上,且可安装于所述干燥室内侧壁上的不同高度处。
作为本发明所述远红外干燥设备的一种优选方案,其中:所述干燥箱体内设置有螺旋进料器,所述螺旋进料器的进料端位于所述干燥箱体的底部,且与所述干燥箱体的进料口连通,所述螺旋进料器的出料端位于所述干燥箱体的顶部,且与所述干燥室的进口连通,所述干燥室的底部设置有出料管,所述出料管与所述螺旋进料器的进料端连通,所述出料管上设置有阀门,所述出料管上位于所述阀门与所述干燥室之间开设有出料口。
作为本发明所述远红外干燥设备的一种优选方案,其中:所述干燥室其余两个内侧壁上分别开设有进风口和出风口,所述干燥箱体外设置有干空气风道、湿空气风道、送风机、引风机以及控制器,所述干空气风道的一端与所述送风机连通,所述干空气风道的另一端与所述进风口连通,所述湿空气风道的一端与引风机连通,所述湿空气风道的另一端与所述出风口连通,所述送风机和引风机均与所述控制器电连接。
作为本发明所述远红外干燥设备的一种优选方案,其中:所述干燥室内设 置有温/湿度检测器,所述温/湿度检测器与所述控制器电连接。
本发明的有益效果是:
(1)本发明中远红外辐射板由下往上依次包括支撑层、反射层、红外辐射层以及耐磨层,其中,支撑层可支撑远红外辐射板的自重以及物料的冲击力,反射层可将红外辐射层发出的远红外线反射至远红外辐射板的上表面,提高干燥效率,耐磨层可对红外辐射层进行保护,避免长时间使用后红外辐射层被磨损而导致干燥效率降低和物料污染;
(2)本发明在耐磨层的上表面均匀开设有导流槽,且导流槽沿远红外辐射板的对角线方向设置,可延长物料在远红外辐射板上的移动距离,从而提高对物料的干燥效率;
(3)本发明中远红外辐射板与干燥室内侧壁之间的夹角可调,可根据使用需要调节远红外辐射板的倾斜度,以适用于不同堆积角度的物料;
(4)本发明在干燥箱体内设置有螺旋进料器,螺旋进料器可将待干燥的物料输送至干燥箱体的顶部,随后进入干燥室内,在各远红外敷设板之间一次靠重力滑动下落,实现对物料的干燥,另外,在干燥室底部设置有出料管,在待干燥的物料没有达到干燥要求之前,可将出料管上的出料口关闭,并打开阀门,物料受重力作用达到螺旋进料器的底部后,再经过螺旋进料器的传输达到干燥箱体的顶部,随后再次进入干燥室内,实现多次干燥,在物料达到干燥要求后,关闭阀门,打开出料口,物料便可从出料口离开干燥箱体,完成干燥;
(5)本发明在干燥室的侧壁上还开设有进风口和出风口,在送风机的推动下,干空气经干空气风道以及进风口进入干燥室内,而箱体内的湿空气在引风 机的牵引下经出风口和湿空气风道排出至干燥箱体外,避免干燥室内的湿度影响干燥效率;
(6)本发明在干燥室内还安装有温/湿度检测器,控制器根据温/湿度检测器反馈的数据实时调整远红外辐射板、进风机和引风机的运行,避免物料受损。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明提供的远红外干燥设备的剖面示意图;
图2为本发明提供的远红外干燥设备的侧视图;
图3为本发明提供的远红外干燥设备的俯视剖面示意图;
图4为远红外辐射板的截面示意图;
其中:1、干燥箱体;2、干燥室;3、远红外辐射板;4、支撑层;5、反射层;6、红外辐射层;7、耐磨层;8、导流槽;9、支撑件;10、螺旋进料器;11、进料口;12、出料管;13、阀门;14、出料口;15、进风口;16、出风口;17、干空气风道;18、湿空气风道;19、送风机;20、引风机;21、温/湿度检测器。
具体实施方式
为使本发明的内容更容易被清楚地理解,下面根据具体实施方式并结合附 图,对本发明作出进一步详细的说明。
本实施例提供了一种远红外干燥设备,包括干燥箱体1,该干燥箱体1内设置有用于对物料进行干燥的干燥室2。该干燥室2的上部开设有进口。在干燥室2内的左侧壁和右侧壁上由上向下依次交错设置有若干块远红外辐射板3,这些远红外辐射板3的自由端均向下倾斜,且每块远红外辐射板3的自由端均伸至位于其下方的远红外辐射板3的上方。待干燥的物料由沿远红外辐射板3滑动后自动掉落至下一块远红外辐射板3。
在干燥箱体1内还安装有螺旋进料器10,该螺旋进料器10的进料端位于干燥箱体1的底部,且与干燥箱体1的进料口11连通,螺旋进料器10的出料端位于干燥箱体1的顶部,且与干燥室2的进口连通,干燥室2的底部设置有出料管12,出料管12与螺旋进料器10的进料端连通,出料管12上设置有阀门13,出料管12上位于所述阀门13与干燥室2之间开设有出料口14。
螺旋进料器10可将待干燥的物料输送至干燥箱体1的顶部,随后进入干燥室2内,在各远红外敷设板之间一次靠重力滑动下落,实现对物料的干燥,另外,在待干燥的物料没有达到干燥要求之前,可将出料管12上的出料口14关闭,并打开阀门13,物料受重力作用达到螺旋进料器10的底部后,再经过螺旋进料器10的传输达到干燥箱体1的顶部,随后再次进入干燥室2内,实现多次干燥,在物料达到干燥要求后,关闭阀门13,打开出料口14,物料便可从出料口14离开干燥箱体1,完成干燥。
较佳的,每块远红外辐射板3均通过铰链铰接在干燥室2的内侧壁上,使远红外辐射板3与干燥室2内侧壁之间的夹角可调。在远红外辐射板3的下表面 焊接有支撑件9,该支撑件9的一端可固定连接在干燥室2的内侧壁上,使支撑件9可对远红外辐射板3进行支撑。需要说明的是,支撑件9可固定连接在干燥室2内侧壁的不同高度,从而对远红外辐射板3与水平方向的夹角进行调节,进而使远红外干燥设备可适应于不同堆积角度的物料。支撑件9与干燥室2内侧壁之间的连接方式并不固定,只需可实现支撑件9与干燥室2内侧壁之间的可拆卸连接即可。如干燥室2内侧壁上可沿竖直方向开设多个安装孔,通过调节支撑件9安装的安装孔的高度即可调节远红外辐射板3与水平方向的夹角。
其中,每块远红外辐射板3由下往上均依次包括支撑层4、反射层5、红外辐射层6以及耐磨层7。支撑层4为不锈钢钢板,可支撑远红外辐射板3的自重以及物料的冲击力。反射层5为涂覆在支撑层4上表面的金属盐或陶瓷,用来反射远红外线,使远红外线都向远红外辐射板3的上表面发射,提高干燥效率。红外辐射层6由石墨、膨胀石墨、活性炭、碳纳米管、石墨烯或碳纤维中的一种或多种碳材料混合制成,红外辐射层6可将电能转化成远红外线,在较的低功率密度下就可以辐射出干燥物料所需要的远红外线。耐磨层7由聚乙烯、高密度聚乙烯、聚四氟乙烯、甲基丙烯酸甲酯、聚异戊二烯塑料或钢化玻璃制成,抗磨损且不吸收或反射远红线,在保证远红外辐射板3正常使用的前提下对红外辐射层6进行有效保护,避免长时间使用后红外辐射层6被磨损而导致干燥效率降低和物料污染。
较佳的,在耐磨层7的上表面均匀开设有若干条导流槽8,这些导流槽8均沿远红外辐射板3的对角线方向设置,且任意相邻的两块远红外辐射板3上的导流槽8相交。可延长物料在远红外辐射板3上的移动距离,从而提高对物料的干燥效率。
另外,在干燥室2内的前侧壁和后侧壁上分别开设有进风口15和出风口16,进风口15通过安装在干燥箱体1外前侧壁上的干空气风道17与送风机19连通,送风机19可将干燥箱体1外的干空气输送至干空气风道17内,并通过进风口15送入干燥室2内。出风口16通过安装在干燥箱体1外后侧壁上的湿空气风道18与引风机20连通,干燥室2内的湿空气在引风机20的牵引下由出风口16和湿空气风道18排出至干燥箱体1外,从而将物料蒸发出的水分排出干燥箱体1。
在干燥室2内还安装有温/湿度检测器21,该温/湿度检测器21、送风机19和引风机20均与干燥箱体1外的控制器电连接,在物料干燥的过程中,温/湿度检测器21实时监测干燥箱体1内的温度、湿度并反馈给控制器,中央控制器根据温/湿度检测器21反馈的数据实时调整远红外辐射板3和送风机19、引风机20的运行,以避免物料受损。
除上述实施例外,本发明还可以有其他实施方式;凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (10)

  1. 一种远红外干燥设备,包括干燥箱体(1),所述干燥箱体(1)内设置有干燥室(2),其特征在于:所述干燥室(2)相对的两个内侧壁上沿竖直方向依次交错设置有多块远红外辐射板(3),所述远红外辐射板(3)的自由端均向下倾斜,每块所述远红外辐射板(3)由下往上依次包括支撑层(4)、反射层(5)、红外辐射层(6)以及耐磨层(7)。
  2. 根据权利要求1所述的一种远红外干燥设备,其特征在于:所述耐磨层(7)由聚乙烯、高密度聚乙烯、聚四氟乙烯、甲基丙烯酸甲酯、聚异戊二烯塑料或钢化玻璃制成。
  3. 根据权利要求1所述的一种远红外干燥设备,其特征在于:所述红外辐射层(6)由石墨、膨胀石墨、活性炭、碳纳米管、石墨烯或碳纤维中的一种或多种碳材料混合制成。
  4. 根据权利要求1所述的一种远红外干燥设备,其特征在于:所述反射层(5)为涂覆在所述支撑层(4)上表面的金属盐或陶瓷。
  5. 根据权利要求1所述的一种远红外干燥设备,其特征在于:所述支撑层(4)为不锈钢钢板。
  6. 根据权利要求1-5任一项所述的一种远红外干燥设备,其特征在于:所述耐磨层(7)的上表面均匀开设有导流槽(8),所述导流槽(8)沿所述远红外辐射板(3)的对角线方向设置,且任意相邻的两块所述远红外辐射板(3)上的导流槽(8)相交。
  7. 根据权利要求1-5所述的一种远红外干燥设备,其特征在于:所述远红外辐射板(3)的一端铰接于所述干燥室(2)的内侧壁上,使所述远红外辐射板(3)与所述干燥箱体(1)内侧壁之间的夹角可调,
    所述远红外辐射板(3)的下端固定设置有用于支撑所述远红外辐射板(3)的支撑件(9),所述支撑件(9)安装于所述干燥室(2)内侧壁上,且可安装于所述干燥室(2)内侧壁上的不同高度处。
  8. 根据权利要求1-5所述的一种远红外干燥设备,其特征在于:所述干燥箱体(1)内设置有螺旋进料器(10),所述螺旋进料器(10)的进料端位于所述干燥箱体(1)的底部,且与所述干燥箱体(1)的进料口(11)连通,所述螺旋进料器(10)的出料端位于所述干燥箱体(1)的顶部,且与所述干燥室(2)的进口连通,所述干燥室(2)的底部设置有出料管(12),所述出料管(12)与所述螺旋进料器(10)的进料端连通,所述出料管(12)上设置有阀门(13),所述出料管(12)上位于所述阀门(13)与所述干燥室(2)之间开设有出料口(14)。
  9. 根据权利要求1-5任一项所述的一种远红外干燥设备,其特征在于:所述干燥室(2)其余两个内侧壁上分别开设有进风口(15)和出风口(16),所述干燥箱体(1)外设置有干空气风道(17)、湿空气风道(18)、送风机(19)、引风机(20)以及控制器,
    所述干空气风道(17)的一端与所述送风机(19)连通,所述干空气风道(17)的另一端与所述进风口(15)连通,所述湿空气风道(18)的一端与引风机(20)连通,所述湿空气风道(18)的另一端与所述出风口(16)连通,所述送风机(19)和引风机(20)均与所述控制器电连接。
  10. 根据权利要求9所述的一种远红外干燥设备,其特征在于:所述干燥室(2)内设置有温/湿度检测器(21),所述温/湿度检测器(21)与所述控制器电连接。
PCT/CN2020/113254 2020-07-20 2020-09-03 一种远红外干燥设备 WO2022016676A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010699121.5 2020-07-20
CN202010699121.5A CN111928631A (zh) 2020-07-20 2020-07-20 一种远红外干燥设备

Publications (1)

Publication Number Publication Date
WO2022016676A1 true WO2022016676A1 (zh) 2022-01-27

Family

ID=73312693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113254 WO2022016676A1 (zh) 2020-07-20 2020-09-03 一种远红外干燥设备

Country Status (2)

Country Link
CN (1) CN111928631A (zh)
WO (1) WO2022016676A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118224852A (zh) * 2024-05-23 2024-06-21 佛山赛元自动化设备有限公司 一种石英石生产用干燥设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115031507A (zh) * 2022-07-01 2022-09-09 南京源昌新材料有限公司 一种滚筒式远红外干燥设备
CN115574545A (zh) * 2022-09-21 2023-01-06 安徽麦稻之星机械科技有限公司 一种远红外线烘干机结构及其烘干方法
CN115814700A (zh) * 2022-12-16 2023-03-21 南京泽朗生物科技有限公司 一种果蔬粉喷雾造粒装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465870A (en) * 1977-11-05 1979-05-26 Shinko Electric Co Ltd Heating drying device
JPH0989453A (ja) * 1995-09-27 1997-04-04 Kaneko Agricult Mach Co Ltd 遠赤外線利用穀物乾燥機
CN101846445A (zh) * 2009-03-27 2010-09-29 比亚迪股份有限公司 一种钛白粉烘干机及钛白粉连续生产设备
CN205613471U (zh) * 2016-04-07 2016-10-05 安徽赛诺制药有限公司 一种新型制药粉碎机
CN106524732A (zh) * 2016-12-27 2017-03-22 郑州艾莫弗信息技术有限公司 一种梯度式茶叶烘干设备
CN207574095U (zh) * 2017-05-31 2018-07-06 北京绿能嘉业新能源有限公司 用于农业大棚石墨烯远红外加热负离子光波板
CN108332268A (zh) * 2018-01-30 2018-07-27 四川省安德盖姆石墨烯科技有限公司 一种石墨烯远红外电暖器
CN110243153A (zh) * 2019-06-20 2019-09-17 河海大学 一种水砂分离装置
CN210141774U (zh) * 2019-06-13 2020-03-13 曹威劲 一种基于搅拌风干方式的循环烘干装置
CN210868184U (zh) * 2019-08-13 2020-06-26 湖州凯金新能源科技有限公司 一种石墨烯加热板

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465870A (en) * 1977-11-05 1979-05-26 Shinko Electric Co Ltd Heating drying device
JPH0989453A (ja) * 1995-09-27 1997-04-04 Kaneko Agricult Mach Co Ltd 遠赤外線利用穀物乾燥機
CN101846445A (zh) * 2009-03-27 2010-09-29 比亚迪股份有限公司 一种钛白粉烘干机及钛白粉连续生产设备
CN205613471U (zh) * 2016-04-07 2016-10-05 安徽赛诺制药有限公司 一种新型制药粉碎机
CN106524732A (zh) * 2016-12-27 2017-03-22 郑州艾莫弗信息技术有限公司 一种梯度式茶叶烘干设备
CN207574095U (zh) * 2017-05-31 2018-07-06 北京绿能嘉业新能源有限公司 用于农业大棚石墨烯远红外加热负离子光波板
CN108332268A (zh) * 2018-01-30 2018-07-27 四川省安德盖姆石墨烯科技有限公司 一种石墨烯远红外电暖器
CN210141774U (zh) * 2019-06-13 2020-03-13 曹威劲 一种基于搅拌风干方式的循环烘干装置
CN110243153A (zh) * 2019-06-20 2019-09-17 河海大学 一种水砂分离装置
CN210868184U (zh) * 2019-08-13 2020-06-26 湖州凯金新能源科技有限公司 一种石墨烯加热板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118224852A (zh) * 2024-05-23 2024-06-21 佛山赛元自动化设备有限公司 一种石英石生产用干燥设备

Also Published As

Publication number Publication date
CN111928631A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2022016676A1 (zh) 一种远红外干燥设备
WO2022041304A1 (zh) 一种可调节栅板式远红外干燥装置
CN205373370U (zh) 一种煤球烘干机风热快速烘干系统
WO2014071800A1 (zh) 利用生物质锅炉烟气干燥生物质原料的方法及其装置
CN106066120B (zh) 超大型环保高效节能烘干箱
CN105131992B (zh) 油页岩快速热解的系统和方法
CN104567307B (zh) 一种单板木材烘干设备
WO2013029404A1 (zh) 一种燃烧器
CN212457825U (zh) 一种远红外干燥设备
CN216898162U (zh) 一种回转窑式昆虫干燥机
CN204429627U (zh) 一种涂布机的烘干装置
CN212619971U (zh) 一种栅板式远红外干燥装置
CN207180278U (zh) 一种中药材烘干机
CN212339890U (zh) 一种振动筛式远红外干燥装置
CN209512429U (zh) 一种有机肥烘干滚筒
CN104585850B (zh) 全自动数控脱水处理系统
CN204922945U (zh) 一种崖式多级生物质燃烧装置
CN210399880U (zh) 一种烘干装置
CN111928632A (zh) 一种高效率低能耗振动筛式远红外干燥装置
CN106017022A (zh) 干式印刷复合机的高效节能干燥系统
CN208282577U (zh) 燃气式物料干燥系统
CN220135501U (zh) 一种用于蒸汽锅炉的燃料输送装置
CN209310437U (zh) 阶梯式生物质发电燃料颗粒烘干装置
CN203116477U (zh) 工业微波设备排湿装置
CN102183023A (zh) 一种垃圾焚烧发电前的烘干机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945882

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205ADATED 10.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20945882

Country of ref document: EP

Kind code of ref document: A1