WO2022016430A1 - 波束确定方法及装置、存储介质 - Google Patents

波束确定方法及装置、存储介质 Download PDF

Info

Publication number
WO2022016430A1
WO2022016430A1 PCT/CN2020/103615 CN2020103615W WO2022016430A1 WO 2022016430 A1 WO2022016430 A1 WO 2022016430A1 CN 2020103615 W CN2020103615 W CN 2020103615W WO 2022016430 A1 WO2022016430 A1 WO 2022016430A1
Authority
WO
WIPO (PCT)
Prior art keywords
candidate
repeated
configuration information
transmission
repeated transmissions
Prior art date
Application number
PCT/CN2020/103615
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US18/005,729 priority Critical patent/US20230283352A1/en
Priority to CN202080001698.2A priority patent/CN114342521A/zh
Priority to PCT/CN2020/103615 priority patent/WO2022016430A1/zh
Publication of WO2022016430A1 publication Critical patent/WO2022016430A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/0696Determining beam pairs
    • H04B7/06962Simultaneous selection of transmit [Tx] and receive [Rx] beams at both sides of a link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a beam determination method and device, and a storage medium.
  • MTC Machine Type Communication
  • NB-IoT Narrow Band Internet of Thing, Narrow Band Internet of Things
  • IoT services are mainly aimed at low-rate, high-latency scenarios, such as meter reading, environmental monitoring and other scenarios.
  • NB-IoT can only support a maximum rate of several hundred k
  • MTC can only support a maximum rate of several M.
  • IoT services such as the popularization of video surveillance, smart home, wearable devices, and industrial sensor monitoring, these services usually require a speed of tens to 100M, and there is also a need for latency. relatively high requirements.
  • the MTC and NB-IoT technologies in LTE are difficult to meet the requirements.
  • many companies have proposed to design a new user equipment in the 5G New Radio (NR) to cover this mid-range IoT device.
  • the New Radio Lite (NR lite) system introduces a new type of terminal whose transmission delay, rate requirements, and terminal cost are all between narrowband terminals and NR terminals. This new type of terminal is called RedCap UE (Reduced Capability User Equipment, lightweight user equipment).
  • 5G NR-lite-based devices usually need to meet the following requirements: low cost, low complexity; a certain degree of coverage enhancement; power saving. Since the current NR new air interface is designed for high-end terminals such as high-speed and low-latency, the current design cannot meet the above requirements of NR-lite. Therefore, it is necessary to modify the current NR system to meet the requirements of NR-lite. For example, in order to meet the requirements of low cost and low complexity, the radio frequency (RF) bandwidth of NR-IoT can be limited, for example, to 5MHz or 10MHz, or the size of the buffer (Buffer) of NR-lite can be limited, and then Limit the size of each received transport block, etc. For power saving, a possible optimization direction is to simplify the communication process and reduce the number of downlink control channels detected by NR-lite users.
  • RF radio frequency
  • the number of receiving antennas is limited due to restrictions on terminal capabilities, such as limited bandwidth. Therefore, the coverage of the terminal will be negatively affected, so a coverage enhancement scheme is required.
  • the commonly used coverage enhancement scheme is repeated transmission, for example, the same information is repeatedly sent in the time domain, and then combined and received at the terminal.
  • the network can support multi-beam transmission.
  • the terminal In downlink transmission, the terminal needs to know the beam used by the base station to send information, so that the terminal uses the corresponding receive beam to receive.
  • the terminal In the current 5G NR system, the terminal usually measures and reports N beams that meet the conditions for the base station to select. The base station will select an appropriate beam for information transmission according to the channel conditions of the terminal.
  • RedCap UE needs coverage enhancement due to limited capabilities. When repeated transmissions are used to compensate for coverage loss to enhance coverage, the same control or data will occupy a relatively long period of time.
  • the channel state of the terminal may change during the period of repeated transmission, and the use of the same beam during this period may not match the dynamically changing channel.
  • embodiments of the present disclosure provide a beam determination method and apparatus, and a storage medium.
  • a beam determination method is provided, applied to a network device, including:
  • the beam configuration information includes at least a parameter used to indicate a receiving beam corresponding to at least one repeated transmission in the N repeated transmissions of the downlink channel, where N is a natural number;
  • the sending beam corresponding to at least one repeated transmission in the N repeated transmissions of the downlink channel is determined according to the beam parameters corresponding to the at least one repeated transmission in the N repeated transmissions.
  • the receiving beam and the transmitting beam corresponding to each repeated transmission in the N repeated transmissions of the downlink channel are not exactly the same; The receive beam and the transmit beam are completely different.
  • the beam determination method further includes: the parameters of the receiving beam corresponding to at least one repeated transmission of the N repeated transmissions of the downlink channel, including: at least one of the N repeated transmissions of the downlink channel A beam pattern of the corresponding receiving beam is repeatedly transmitted, the beam pattern corresponding to at least two candidate beams; wherein the candidate beam is a candidate beam in the candidate beam set.
  • the method further includes: sending the beam configuration information.
  • the sending the beam configuration information includes: sending the beam configuration information through DCI or MAC CE.
  • the parameters of the receiving beam corresponding to at least one repeated transmission in the N repeated transmissions of the downlink channel include: a parameter used to identify the receiving beam corresponding to at least one repeated transmission in the N repeated transmissions of the downlink channel.
  • the method further includes: sending the beam configuration information.
  • the sending the beam configuration information includes: sending the beam configuration information through DCI.
  • the beam configuration information further includes: a parameter for indicating the duration of at least one candidate beam; or a time granularity for indicating beam transformation between the candidate beams.
  • the duration of each candidate beam is indicated by the absolute time of transmission of each candidate beam, or by the number of repeated transmissions of each candidate beam.
  • the time granularity of the duration or beam transform is determined according to at least one of the following parameters: granularity of frequency hopping, granularity of precoding matrix variation in time domain, redundancy version RV transform granularity, and the number of repeated transmissions by the terminal.
  • At least one of the N repeated transmissions of the downlink channel, the parameters of the corresponding receive beams include: parameters of at least two control channel resource sets CORESET; wherein the same physical downlink control channel PDCCH The two repeated transmissions are carried in the at least two CORESETs.
  • the at least two candidate beams correspond to the same CORESET; wherein at least two repeated transmissions of the same PDCCH are carried in the same CORESET, and the two repeated transmissions correspond to different candidate beam.
  • the beam determination method further includes: sending first information, where the first information is used to instruct to activate the beam configuration information, or to instruct to deactivate the beam configuration information.
  • the beam transformation information further includes Quasi Co-Location (Quasi Co-Location, also known as Quasi Co-Location) assumption or multiple transmission configuration indications TCI (Transmission Configuration Indication).
  • Quasi Co-Location also known as Quasi Co-Location
  • TCI Transmission Configuration Indication
  • a beam determination method applied to a terminal, including: acquiring beam configuration information, wherein the beam configuration information at least includes at least one of N repeated transmissions used to indicate a downlink channel A parameter of a receiving beam corresponding to one repeated transmission, where N is a natural number; according to the beam configuration information, determine a receiving beam corresponding to at least one repeated transmission in the N repeated transmissions.
  • the receiving beams corresponding to each of the N repeated transmissions of the downlink channel are not completely the same; or the receiving beams corresponding to each repeated transmission of the N repeated transmissions of the downlink channel are completely different. Are not the same.
  • the parameters of the receiving beam corresponding to at least one repeated transmission in the N repeated transmissions of the downlink channel include: at least one repeated transmission of the N repeated transmissions of the downlink channel corresponding to the beam of the receiving beam
  • the beam pattern corresponds to at least two candidate beams; wherein the candidate beams are candidate beams in the candidate beam set.
  • the method further includes: sending the beam configuration information.
  • the sending the beam configuration information includes: sending the beam configuration information through DCI or MAC CE.
  • the parameters of the receiving beam corresponding to at least one repeated transmission in the N repeated transmissions of the downlink channel include: a parameter used to identify the receiving beam corresponding to at least one repeated transmission in the N repeated transmissions of the downlink channel.
  • the method further includes: sending the beam configuration information.
  • the sending the beam configuration information includes: sending the beam configuration information through DCI.
  • the beam configuration information further includes: a parameter for indicating the duration of at least one candidate beam; or a time granularity for indicating beam transformation between the candidate beams.
  • the duration of each candidate beam is indicated by the absolute time of transmission of each candidate beam, or by the number of repeated transmissions of each candidate beam.
  • the time granularity of the duration or beam transform is determined according to at least one of the following parameters: granularity of frequency hopping, granularity of precoding matrix variation in time domain, redundancy version RV transform granularity, and the number of repeated transmissions by the terminal.
  • At least one of the N repeated transmissions of the downlink channel, the parameters of the corresponding receive beams include: parameters of at least two control channel resource sets CORESET; wherein the same physical downlink control channel PDCCH The two repeated transmissions are carried in the at least two CORESETs.
  • the at least two candidate beams correspond to the same CORESET; wherein at least two repeated transmissions of the same PDCCH are carried in the same CORESET, and the two repeated transmissions correspond to different candidate beam.
  • the beam switching information further includes a quasi-co-located QCL assumption or multiple transmission configuration indications TCI.
  • an apparatus for determining a beam which is applied to a network device and includes: a parameter determining unit configured to determine beam configuration information, wherein the beam configuration information at least includes a signal for indicating a downlink channel The parameters of the receiving beam corresponding to at least one repeated transmission in the N repeated transmissions of the The beam parameters are determined, and a transmit beam corresponding to at least one repeated transmission in the N repeated transmissions is sent.
  • a beam determination apparatus which is applied to a terminal, the beam determination apparatus includes: a parameter acquisition unit configured to acquire and determine beam configuration information, wherein the beam configuration information at least includes Used to indicate the parameters of the receiving beam corresponding to at least one repeated transmission in the N repeated transmissions of the downlink channel, where N is a natural number; The beam parameters corresponding to the at least one repeated transmission are determined to be sent, and the receiving beam corresponding to the at least one repeated transmission in the N repeated transmissions is sent.
  • an apparatus for beam determination which is applied to a network device, the apparatus for beam determination includes: a processor; and a memory for storing instructions executable by the processor, wherein the processor is It is configured to: execute the beam determination method provided by any technical solution of the foregoing first aspect.
  • a non-transitory computer-readable storage medium when the instructions in the storage medium are executed by a processor of a network device, the network device can execute any technique of the foregoing first aspect The beam determination method provided by the scheme.
  • an apparatus for beam determination which is applied to a terminal, the apparatus for beam determination includes: a processor; and a memory storing instructions executable by the processor, wherein the processor is configured to : Execute the beam determination method provided by any technical solution of the foregoing second aspect.
  • a non-transitory computer-readable storage medium is provided.
  • the terminal can execute any technical solution of the second aspect. beam determination method.
  • the technical solutions provided by the embodiments of the present disclosure may include the following beneficial effects: by performing dynamic beam switching in the process of repeated transmission of the downlink channel, even when repeated transmission and repeated reception are used to enhance coverage, the In the time period of repeated transmission and repeated reception, the transmission beam and the reception beam matched with the channel are used, thereby reducing the delay and improving the transmission efficiency.
  • FIG. 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment.
  • Fig. 2 is a flow chart of a beam determination method according to an exemplary embodiment.
  • Fig. 3 is a flow chart of a beam determination method according to an exemplary embodiment.
  • Fig. 4 is a flow chart of a beam determination method according to an exemplary embodiment.
  • Fig. 5 is a flow chart of a beam determination method according to an exemplary embodiment.
  • Fig. 6 is a flow chart of a beam determination method according to an exemplary embodiment.
  • Fig. 7 is a block diagram of an apparatus for determining a beam according to an exemplary embodiment.
  • Fig. 8 is a block diagram of an apparatus for determining a beam according to an exemplary embodiment.
  • Fig. 9 is a block diagram of an apparatus for determining a beam according to an exemplary embodiment.
  • Fig. 10 is a block diagram of an apparatus for determining a beam according to an exemplary embodiment.
  • the wireless communication system includes a network device and a terminal.
  • the terminal is connected to the network device through wireless resources, and performs data transmission.
  • the wireless communication system shown in FIG. 1 is only a schematic illustration.
  • the wireless communication system may further include other network devices, such as core network devices, wireless relay devices, and wireless backhaul devices, etc., which are not shown in FIG. 1 .
  • the embodiments of the present disclosure do not limit the number of network devices and the number of terminals included in the wireless communication system.
  • the wireless communication system is a network providing a wireless communication function.
  • Wireless communication systems can use different communication technologies, such as Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Time Division Multiple Access (TDMA) , Frequency Division Multiple Access (Frequency Division Multiple Access, FDMA), Orthogonal Frequency Division Multiple Access (Orthogonal Frequency-Division Multiple Access, OFDMA), Single Carrier Frequency Division Multiple Access (Single Carrier FDMA, SC-FDMA), carrier sense Multiple access/collision avoidance (Carrier Sense Multiple Access with Collision Avoidance, CSMA/CA).
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • Single Carrier Frequency Division Multiple Access Single Carrier Frequency Division Multiple Access
  • SC-FDMA SC-FDMA
  • carrier sense Multiple access/collision avoidance Car
  • the network can be divided into 2G (Generation) network, 3G network, 4G network or future evolution network, such as 5G network, 5G network can also be called 5G new air interface.
  • 2G Generation
  • 3G network 3G network
  • 4G network 4G network
  • future evolution network such as 5G network
  • 5G network can also be called 5G new air interface.
  • 5G new air interface 5G new air interface
  • the wireless access network equipment may be: a base station, an evolved NodeB (eNodeB or eNB), a home base station, an Access Point (AP) in a Wireless Fidelity (WIFI) system, a wireless medium
  • the relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (Transmission and Reception Point, TRP), etc. can also be a base station (gNodeB or gNB) in the NR system, or can also be composed of A component or part of equipment of a base station, etc.
  • gNodeB or gNB base station
  • the specific technology and specific device form adopted by the network device are not limited.
  • a network device may provide communication coverage for a specific geographic area, and may communicate with terminals located within the coverage area (cell).
  • the network device may also be an in-vehicle device.
  • V2X vehicle-to-everything
  • the terminal involved in the present disclosure may also be referred to as terminal equipment, user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), etc.
  • a device that provides voice and/or data connectivity may be a handheld device with a wireless connection function, a vehicle-mounted device, or the like.
  • some examples of terminals are: Smart Phone (Mobile Phone), Pocket Personal Computer (PPC), PDA, Personal Digital Assistant (PDA), notebook computer, tablet computer, wearable device, or Vehicle equipment, etc.
  • V2X vehicle-to-everything
  • the terminal device may also be an in-vehicle device. It should be understood that the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal.
  • the network can support multi-beam transmission.
  • the terminal In downlink transmission, the terminal needs to know the beam used by the base station to send information, so that the terminal uses the corresponding receive beam to receive.
  • the terminal In the current 5G NR system, the terminal usually measures and reports N beams that meet the conditions for the base station to select. The base station will select an appropriate beam for information transmission according to the channel conditions of the terminal.
  • beam management takes the following points.
  • CORESET Control Resource Set
  • RRC Radio Resource Control
  • the network activates one of the beams using a Media Access Control Element (MAC CE).
  • MAC CE Media Access Control Element
  • the user will receive the information of the CORESET according to the corresponding activated beam. Since the channel state of the user is constantly changing, the beams used are also changing, so dynamic switching is required.
  • the way to realize the dynamic switching of beams is to configure multiple CORESETs for the user, each CORESET is configured with different beams, and the base station can place the PDCCH in different CORESETs according to the channel conditions to realize the switching of different beams .
  • the beam management process is: high-level signaling configures multiple candidate beams for the user; DCI (Downlink Control Information, downlink control information) candidate beam subsets in the PDCCH indicate a specific beam.
  • DCI Downlink Control Information, downlink control information
  • the channel state of the terminal may change during the period of repeated transmission. This results in that using the same beam during this time may not be able to match the dynamically changing channel.
  • the embodiments of the present disclosure design a new downlink beam determination method, so that good beam management can be provided even under the condition of enhanced coverage. Specifically, in the embodiments of the present disclosure, by performing dynamic beam switching in the process of repeated transmission of the downlink channel, even when repeated transmission and repeated reception are used to enhance coverage, the repeated transmission and repetition of the downlink channel can be achieved.
  • the transmit beam and receive beam matched with the channel are used in the receiving time period, thereby reducing the delay and improving the transmission efficiency.
  • FIG. 2 is a flow chart of a beam determination method according to an exemplary embodiment. Referring to FIG. 2 , the beam determination method is applied to a network device, and includes the following steps S210 and S220.
  • the beam configuration information is determined, wherein the beam configuration information at least includes a parameter for indicating the corresponding receiving beam of at least one repeated transmission in the N repeated transmissions of the downlink channel, wherein N is a natural number.
  • a transmit beam corresponding to at least one repeated transmission in the N repeated transmissions of the downlink channel is determined by using beam parameters corresponding to at least one repeated transmission in the N repeated transmissions.
  • beam configuration information is determined, and the beam configuration information includes at least a parameter for indicating that the beam configuration information includes at least a parameter for indicating a receive beam corresponding to at least one repeated transmission of N repeated transmissions of a downlink channel.
  • the transmit beams and/or receive beams used for the N repeated transmissions are not identical.
  • the network device determines, according to the beam configuration information, at least two different transmission beams used in the Nth repeated transmission, where N is a natural number.
  • the terminal determines, according to the beam configuration information, a receive beam used in receiving the Nth repeated transmission. That is to say, the transmission beam of the network device and/or the reception beam of the terminal is changed at least once in N repeated transmissions.
  • the corresponding beam or the transformed beam is used according to the rules or instructions determined by the beam configuration information.
  • the network device takes the transmit beam determined in the beam configuration information as the transmit beam used in the nth repeated transmission, n ⁇ N; and the terminal uses the receive beam determined in the beam configuration information As the receive beam used in receiving the nth repeated transmission.
  • the network device determines one or more transmit beams in the N repeated transmissions according to the beam configuration information, and the terminal determines one or more receiving beams in the N repeated transmissions according to the beam configuration information.
  • the network device adapts the corresponding transmit beams for transmission in turn according to the beam transform sequence determined in the beam transform information, and the terminal adjusts according to the rules or notifications and uses the corresponding receive beams for reception.
  • the network device adapts the corresponding transmit beams for transmission in turn according to the beam transform sequence determined in the beam transform information, and the terminal adjusts according to the rules or notifications and uses the corresponding receive beams for reception.
  • the transmit beam and receive beam used in a certain repeated transmission of the downlink channel or by changing the transmit beam and the receive beam in the process of multiple repeated transmissions of the downlink channel, it can be used in the repeated transmission time period of the downlink channel. Transmit and receive beams matched to the channel. This is beneficial to reduce delay and improve transmission efficiency.
  • the beam configuration information as described above can be specified in rules such as protocols, and can also be indicated in signaling through high-layer signaling and physical-layer signaling, signaling overhead can be saved.
  • the beam determination method according to the embodiment of the present disclosure is applicable to the repeated transmission process of the downlink channel.
  • the beam determination method described above is not only applicable to the repeated transmission process of PDSCH (Physical Downlink Shared Channel, physical downlink shared channel), but also applicable to the repeated transmission process of PDCCH (Physical Downlink Control Channel, physical downlink control channel). .
  • Fig. 3 is a flow chart of a beam determination method according to an exemplary embodiment.
  • the beam determination method is applied to a network device, and includes the following steps S310 and S320.
  • step S310 determine beam configuration information, wherein the beam configuration information includes at least a parameter used to indicate a receiving beam corresponding to at least one repeated transmission in N repeated transmissions of the downlink channel, where N is a natural number.
  • step S320 it is determined to transmit a transmit beam corresponding to at least one repeated transmission in the N repeated transmissions.
  • a transmission beam used for at least one repeated transmission in the Nth repeated transmission is determined; Transmission beams used for at least two repeated transmissions in the transmission, wherein the transmission beams used for the at least two repeated transmissions are different. .
  • the transmission beam used in the Nth repeated transmission is determined based on the beam transformation information, and the Nth repeated transmission is completed by using the transmission beam , or determine the parameters of the transmission beam change in multiple repeated transmissions of the downlink channel (ie, the Nth repeated transmission) based on the beam switching information.
  • the beam is determined to be used according to the communication protocol or the received control signaling in a certain repeated transmission of the downlink channel, and the beam is changed according to the communication protocol or signaling during the repeated transmission of the downlink channel .
  • the network device uses the predetermined beam as the transmission beam in the Nth repeated transmission, and/or changes the transmission beam in multiple repeated transmissions.
  • the corresponding transmit beam is determined.
  • the receiving end is instructed to receive the receiving beam used by the one or more repeated transmissions.
  • the transmission beams corresponding to each of the N repeated transmissions are not completely the same, or the transmission beams corresponding to each of the N repeated transmissions are completely different.
  • the fact that the transmission beams corresponding to each repeated transmission in the N repeated transmissions are not exactly the same means that the N repeated transmissions correspond to at least two types of transmission beams, that is, some repeated transmissions in the N repeated transmissions correspond to the first type of transmission beams. transmission beams, and some of the N repeated transmissions correspond to the second type of transmission beams.
  • the completely different transmission beams corresponding to each of the N repeated transmissions means that the N repeated transmissions correspond to N types of transmission beams, and the transmission beams are changed for each repeated transmission.
  • the transmission beams refer to: transmit beams and receive beams. Of course, in the same repeated transmission, the transmitting beam used by the transmitting end and the receiving beam used by the receiving end must be corresponding.
  • the transmitting beam and the receiving beam used in the Nth repeated transmission are determined by the candidate beams and the candidate beam transformation patterns in multiple repeated transmissions.
  • the beam configuration information may include first beam parameters.
  • the first beam parameter is used to indicate two or more candidate beams used in N repeated transmissions.
  • the candidate beams are determined from a set of candidate beams.
  • the beam configuration information may be indicated by DCI or MAC CE.
  • the first beam parameter in the beam configuration information is used to indicate two or more candidate beams, so that switching between the two candidate beams can be performed during N repeated transmissions; of course, the receiving end knows that each transmission The parameters of the receive beam corresponding to the transmit beam used by the terminal.
  • the first beam parameter in the beam configuration information is used to indicate two or more groups of candidate beams, wherein one group of candidate beams is the candidate beam used by the transmitting end when sending and the one used by the receiving end when receiving.
  • candidate beams another group of candidate beams are the candidate beams used by the transmitting end when the transmitting end performs another repeated transmission and the candidate beams used by the receiving end when receiving.
  • multiple candidate beams are configured for the receiving end through high-layer signaling, for example, a candidate beam set of 32 candidate beams labeled #1 to #32.
  • a candidate beam set may be determined based on a protocol, for example, a candidate beam set of 32 candidate beams numbered #1 to #32. Then two or more candidate beams used in N repeated transmissions are indicated by the first beam parameter.
  • the beam transformation information may include a second beam parameter, and the second beam parameter is used to indicate at least two candidate beam patterns; wherein each candidate beam pattern is included in at least one repetition During transmission, the first candidate beam used by the transmitting end for sending and the second candidate beam used by the receiving end when receiving; wherein the first candidate beam and the second candidate beam are determined from a set of candidate beams.
  • one candidate beam pattern may be configured for each of the N repeated transmissions, that is, a total of N candidate beam patterns may be configured.
  • the first candidate beam may be a transmit beam used by the network device in the nth repeated transmission
  • the second candidate beam may be a receive beam used by the terminal in receiving the nth repeated transmission, where n ⁇ N.
  • the second beam parameter includes four candidate beam patterns, which are ⁇ (#1, #2), (#2 , #3), (#1, #4), (#4, #5) ⁇ . That is, a total of four repeated transmissions are performed, and the four repeated transmissions correspond to the above-mentioned four candidate beam patterns.
  • the first candidate beam pattern (#1, #2) in the above candidate beam patterns is candidate beam #1, which may be the transmission beam used by the network device in the first repeated transmission
  • the second candidate beam is candidate beam #2, which may be the receiving beam used by the terminal in receiving the first repeated transmission.
  • the network device switches the transmit beam in four repeated transmissions according to the above-mentioned four candidate beam patterns, and the terminal switches the receive beam in four repeated transmissions according to the above-mentioned candidate beam patterns.
  • the network device repeats the transmission for the first time candidate beam #1 is used as the transmit beam, and the terminal uses candidate beam #2 as the receive beam in the first repeated transmission;
  • the network device uses the candidate beam #2 as the transmit beam in the second repeated transmission, and the terminal Use candidate beam #3 as the receive beam in the 2nd retransmission;
  • the network device uses the candidate beam #1 as the transmit beam in the 3rd retransmission, and the terminal uses the candidate beam in the 3rd retransmission #4 is used as the receive beam;
  • the network device uses the candidate beam #4 as the transmit beam in the 4th repeated transmission, and the terminal uses the candidate beam #5 as the receive beam in the 4th repeated transmission.
  • the first beam parameter and the second beam parameter may exist independently, or may coexist.
  • the beam configuration information is used to indicate one candidate beam pattern determined from the plurality of candidate beam patterns and used in one repeated transmission of the downlink channel.
  • the candidate beam pattern used in one repeated transmission can be further indicated by DCI or MAC CE.
  • the beam configuration information is used to indicate a beam pattern composed of a third candidate beam and a fourth candidate beam determined from the plurality of candidate beams.
  • candidate transform beams may be directly indicated by DCI.
  • 2 candidate transform beams, ie, the third candidate beam and the fourth candidate beam may be directly indicated by DCI.
  • the two candidate transform beams directly indicated by the DCI may be any two candidate beams in the above-mentioned multiple candidate beams. That is to say, the third candidate beam and the fourth candidate beam may refer to the foregoing description of the first candidate beam and/or the second candidate beam.
  • the number of candidate changing beams and the number and combination of beam changing patterns as described above are merely illustrative.
  • the number of candidate changing beams and the number and combination of changing beam patterns may be pre-configured according to factors such as network devices, terminals, and application scenarios, and the embodiments of the present disclosure are not limited thereto.
  • the beam configuration information may include the duration of each candidate beam or the time granularity of beam transformation.
  • the duration of the candidate beam or the time granularity of the beam transformation may be used to determine the timing of changing the transmit beam.
  • the duration of each candidate beam can be determined by the absolute time sent by each candidate beam, or determined by the relative time (that is, the time offset) relative to the reference point, or determined by the repeated transmission corresponding to the candidate beam
  • the number of times (that is, the time granularity of beam switching) is determined.
  • the duration of each candidate beam in the beam pattern or the time granularity of beam transformation (eg, the number of repetitions of using a certain candidate beam to transmit information) can be configured by signaling, or determined according to a communication protocol.
  • the time granularity of the duration or beam transform is determined according to at least one of the following parameters: granularity of frequency hopping, granularity of precoding matrix variation in time domain, redundancy version The granularity of RV (Redundant Version) transformation and the number of repeated transmissions of the terminal.
  • the duration or the time granularity of beam transformation may be determined by the network device and sent to the terminal, or may be determined by the network device and the terminal in the same manner.
  • the determination of the time granularity of beam transformation according to the number of repeated transmissions of the network device or the terminal is exemplarily described.
  • the time granularity of beam transformation is set to 4, that is, the candidate beam pattern is transformed every 4 repeated transmissions.
  • the time granularity of beam transformation is set to 2, that is, the candidate beam pattern is transformed every 2 repeated transmissions.
  • the temporal granularity of beam switching has been described above in connection with the example of determining the temporal granularity of beam switching according to the number of repeated transmissions. It should be noted that the temporal granularity of beam transformation can also be determined according to the granularity of frequency hopping, the granularity of precoding matrix changes in the time domain, or the granularity of redundancy version RV transformation.
  • the embodiment of the present disclosure also proposes a technical solution for beam switching for physical downlink control channel PDCCH transmission.
  • PDCCH Physical downlink control channel
  • beam switching under the same CORESET is not supported in the related art.
  • the embodiment of the present disclosure proposes a technical solution for beam transformation in repeated transmission for CORESET.
  • the solution for beam switching in repeated transmission for CORESET includes:
  • the beam configuration information at least includes parameters (also referred to as third beam parameters in this embodiment of the present disclosure) for indicating at least two control channel resource sets CORESET for repeated PDCCH transmission.
  • different CORESETs use different candidate beams.
  • the repeated transmission of the same physical downlink control channel PDCCH is scattered in the at least two CORESETs. For example, when multiple CORESETs are configured, different CORESETs use different candidate beams, and multiple repeated transmissions of the same PDCCH are performed in multiple CORESETs. For example, CORESET #1 corresponds to candidate beam #1, and CORESET #2 corresponds to candidate beam #2.
  • the embodiment of the present disclosure also proposes a technical solution for beam transformation for physical downlink control channel PDCCH transmission, including:
  • the beam configuration information at least includes parameters for indicating two or more candidate beams corresponding to one control channel resource set CORESET for repeated PDCCH transmission (also referred to as is the fourth beam parameter), wherein different candidate beams are used for transmission in the one CORESET.
  • the fourth beam parameter is used to indicate two or more candidate beams in the plurality of candidate beams; and at least two candidate beams correspond to the same CORESET, and at least two repeated transmissions of the same PDCCH are transmitted in the Different candidate beams are used in the same CORESET. For example, re-modify the beam determination method of the existing CORESET.
  • multiple candidate beams are activated in the MAC CE.
  • the PDCCH is then transmitted using the same CORESET, and the candidate beams used are transformed when the same CORESET is transmitted.
  • the timing of transforming the candidate beam used may be determined according to a time parameter.
  • the beam determination method further includes: sending first information, where the first information is used to indicate activation of the beam configuration information. In some embodiments of the present disclosure, the beam determination method further includes: sending first information, where the first information is used to instruct to deactivate the beam configuration information. For example, whether to use the beam switching method as described above in repeated transmission may be configured through signaling.
  • the network device can be configured through the first information whether the corresponding terminal activates the beam configuration information as described above.
  • the beam configuration information can be sent to the terminals in a broadcast manner, and whether each terminal activates the beam configuration information is individually indicated through the first information. This can save signaling overhead.
  • the beam configuration information can be sent to each terminal in a broadcast manner, and each terminal is individually instructed whether to activate the beam configuration information through the first information or any other appropriate information. This can save signaling overhead.
  • a plurality of beam configuration information can be sent to the terminal in a broadcast manner, and each terminal can be individually instructed through first information or any other appropriate information whether to activate the beam configuration information, and whether to activate the multiple beam configuration information.
  • beam transformation information in the beam configuration information can save signaling overhead.
  • Fig. 4 is a flow chart of a beam determination method according to an exemplary embodiment.
  • the beam determination method applied to a network device includes the following steps S410 and S420.
  • step S410 determine beam configuration information, wherein the beam configuration information at least includes a parameter used to indicate a receiving beam corresponding to at least one repeated transmission of the N repeated transmissions of the downlink channel, where N is a natural number;
  • the network device determines a transmit beam used in the nth repeated transmission, where n ⁇ N.
  • the transmission beams corresponding to each of the N repeated transmissions are not completely the same, or the transmission beams corresponding to each of the N repeated transmissions are completely different.
  • step S420 first information is sent, where the first information is used to instruct to activate the beam configuration information, or to instruct to deactivate the beam configuration information.
  • the order of steps S410 and S420 as described above can be adjusted arbitrarily. That is, the step S420 of sending the first information for indicating activation or deactivation of the beam configuration information may be performed in any time slot of the method, which is not limited in this embodiment of the present disclosure.
  • the beam configuration mechanism described above can be activated or deactivated through high-layer signaling or physical-layer signaling. For example, whether to activate or deactivate the beam configuration mechanism described above is indicated in a certain fixed information field of high-layer signaling or physical-layer signaling. In an embodiment of the present disclosure, for example, "0" represents activation, and "1" represents deactivation.
  • the information in the physical layer signaling for detecting activation or deactivation may be pre-configured.
  • whether to use the beam switching method as described above in the repeated transmission is configured according to the mobility of the user. For example, this method is deactivated (ie, not used) when the user's mobility is relatively low, and activated when the user's mobility is relatively high. In other examples, the decision is based on the type of user. For example, for devices such as video monitors or industrial sensors, traditional beam management methods are used, while for wearable devices, the beam switching methods described above are used for configuration.
  • the beam switching information further includes a quasi-co-located QCL assumption or a multiple transmission configuration indication TCI. That is to say, in some embodiments of the present disclosure, the beam configuration information as described above may be expressed as configuring quasi-co-located QCL assumptions or configuring multiple transmission configurations TCI in high-layer signaling, etc., that is, the beams described above Configuration information can be embodied in a protocol.
  • the QCL of an antenna port is defined as: if the UE is allowed to derive the "large-scale channel properties" of a port (Port A) from measurements on another port (Port B) (e.g. based on port A's channel estimate/time- required for frequency synchronization), then port A is considered quasi-co-located with port B.
  • these large-scale channel properties may include one or more of the following: delay spread, Doppler spread, frequency shift, average received power (which may only be required between ports of the same type), and receive timing.
  • the UE can assume that the large-scale properties of the channel conveying the symbols of one antenna port can be inferred from the channel conveying the symbols of the other antenna port .
  • the large scale properties in the above definition may include one or more of the following: delay spread, Doppler spread, Doppler shift, average gain, and average delay.
  • using QCL assumptions for antenna ports can reduce signaling overhead and time for channel estimation, time/frequency synchronization.
  • an embodiment of the present disclosure further provides a beam determination method, which is applied to a terminal.
  • Fig. 5 is a flow chart of a beam determination method according to an exemplary embodiment. Referring to FIG. 5 , the beam determination method applied to the terminal includes the following steps S510 and S520.
  • step S510 beam configuration information is determined, wherein the beam configuration information at least includes a parameter for indicating a receiving beam corresponding to at least one repeated transmission in N repeated transmissions of the downlink channel, where N is a natural number.
  • step S520 according to the beam configuration information, a receive beam corresponding to at least one repeated transmission among the N repeated transmissions is determined.
  • the corresponding transmit beam is determined.
  • the receiving end is instructed to receive the receiving beam used by the one or more repeated transmissions.
  • the transmission beams corresponding to each of the N repeated transmissions are not completely the same, or the transmission beams corresponding to each of the N repeated transmissions are completely different.
  • the transmission beams corresponding to each repeated transmission in the N repeated transmissions are not exactly the same, which means that the N repeated transmissions correspond to at least two kinds of transmission beams, that is, some repeated transmissions in the N repeated transmissions correspond to the first type of transmission beams. transmission beams, and some of the N repeated transmissions correspond to the second type of transmission beams.
  • the completely different transmission beams corresponding to each of the N repeated transmissions means that the N repeated transmissions correspond to N types of transmission beams, and the transmission beams are changed for each repeated transmission.
  • the transmission beams refer to: transmit beams and receive beams.
  • the correspondence between the transmitting beam used by the transmitting end and the receiving beam used by the receiving end can be determined based on any method, for example, based on a communication protocol, or determined by a network device and then configured to the terminal. .
  • step S520 shown in FIG. 5 based on the beam configuration information, the transmission beam used in the Nth repeated transmission is determined or the transmission beam is transformed in multiple repeated transmissions. Specifically, for the terminal, it is determined to receive the receiving beam used in the Nth repeated transmission based on the beam conversion information, and the receiving beam is used to complete the reception of the Nth repeated transmission, or based on the beam conversion The information determines that the receive beam is switched in multiple repeat transmissions (ie, receiving multiple repeat transmissions) of the downlink channel.
  • the beam configuration information may include first beam parameters.
  • the first beam parameter is used to indicate two or more candidate beams used in N repeated transmissions.
  • the candidate beams are determined from a set of candidate beams.
  • the beam configuration information may be indicated by DCI or MAC CE.
  • the first beam parameter in the beam configuration information is used to indicate two or more candidate beams, so that switching between the two candidate beams can be performed during N repeated transmissions; of course, the receiving end knows that each transmission The parameters of the receive beam corresponding to the transmit beam used by the terminal.
  • the first beam parameter in the beam configuration information is used to indicate two or more groups of candidate beams, wherein one group of candidate beams is the candidate beam used by the transmitting end when sending and the one used by the receiving end when receiving.
  • candidate beams another group of candidate beams are the candidate beams used by the transmitting end when the transmitting end performs another repeated transmission and the candidate beams used by the receiving end when receiving.
  • the beam transformation information may include a second beam parameter, and the second beam parameter is used to indicate at least two candidate beam patterns; wherein each candidate beam pattern is included in at least one repetition During transmission, the first candidate beam used by the transmitting end for sending and the second candidate beam used by the receiving end when receiving; wherein the first candidate beam and the second candidate beam are determined from a set of candidate beams.
  • one candidate beam pattern may be configured for each of the N repeated transmissions, that is, a total of N candidate beam patterns may be configured.
  • the first candidate beam may be a transmit beam used by the network device in the nth repeated transmission
  • the second candidate beam may be a receive beam used by the terminal in receiving the nth repeated transmission, where n ⁇ N.
  • the second beam parameter includes four candidate beam patterns, which are ⁇ (#1, #2), (#2 , #3), (#1, #4), (#4, #5) ⁇ . That is, a total of four repeated transmissions are performed, and the four repeated transmissions correspond to the above-mentioned four candidate beam patterns.
  • the first candidate beam pattern (#1, #2) in the above candidate beam patterns is candidate beam #1, which may be the transmission beam used by the network device in the first repeated transmission
  • the second candidate beam is candidate beam #2, which may be the receiving beam used by the terminal in receiving the first repeated transmission.
  • the network device switches the transmit beam in four repeated transmissions according to the above-mentioned four candidate beam patterns, and the terminal switches the receive beam in four repeated transmissions according to the above-mentioned candidate beam patterns.
  • the network device repeats the transmission for the first time candidate beam #1 is used as the transmit beam in , and the terminal uses candidate beam #2 as the receive beam in the first repeated transmission;
  • the network device uses the candidate beam #2 as the transmit beam in the second repeated transmission, and the terminal Use candidate beam #3 as the receive beam in the 2nd retransmission;
  • the network device uses the candidate beam #1 as the transmit beam in the 3rd retransmission, and the terminal uses the candidate beam in the 3rd retransmission #4 is used as the receive beam;
  • the network device uses candidate beam #4 as the transmit beam in the 4th repeated transmission, and the terminal uses the candidate beam #5 as the receive beam in the 4th repeated transmission.
  • the first beam parameter and the second beam parameter may exist independently, or may coexist.
  • the beam configuration information is used to indicate one candidate beam pattern determined from the plurality of candidate beam patterns and used in one repeated transmission of the downlink channel.
  • the candidate beam pattern used in one repeated transmission can be further indicated by DCI or MAC CE.
  • the beam configuration information is used to indicate a beam pattern composed of a third candidate beam and a fourth candidate beam determined from the plurality of candidate beams.
  • candidate transform beams may be directly indicated by DCI.
  • 2 candidate transform beams, ie, the third candidate beam and the fourth candidate beam may be directly indicated by DCI.
  • the two candidate transform beams directly indicated by the DCI may be any two candidate beams in the above-mentioned multiple candidate beams. That is to say, the third candidate beam and the fourth candidate beam may refer to the foregoing description of the first candidate beam and/or the second candidate beam.
  • the number of candidate changing beams and the number and combination of beam changing patterns as described above are merely illustrative.
  • the number of candidate changing beams and the number and combination of changing beam patterns may be pre-configured according to factors such as network devices, terminals, and application scenarios, and the embodiments of the present disclosure are not limited thereto.
  • the beam configuration information may include the duration of each candidate beam or the time granularity of beam transformation.
  • the duration of the candidate beam or the time granularity of the beam transformation may be used to determine the timing of changing the transmit beam.
  • the duration of each candidate beam can be determined by the absolute time sent by each candidate beam, or determined by the relative time (that is, the time offset) relative to the reference point, or determined by the repeated transmission corresponding to the candidate beam
  • the number of times (that is, the time granularity of beam switching) is determined.
  • the duration of each candidate beam in the beam pattern or the time granularity of beam transformation (eg, the number of repetitions of using a certain candidate beam to transmit information) can be configured by signaling, or determined according to a communication protocol.
  • the time granularity of the duration or beam transform is determined according to at least one of the following parameters: granularity of frequency hopping, granularity of precoding matrix variation in time domain, redundancy version The granularity of the RV transformation and the number of repeated transmissions by the terminal.
  • the duration or the time granularity of beam transformation may be determined by the network device and sent to the terminal, or may be determined by the network device and the terminal in the same manner.
  • the embodiment of the present disclosure also proposes a technical solution for beam switching for physical downlink control channel PDCCH transmission.
  • PDCCH Physical downlink control channel
  • beam switching under the same CORESET is not supported in the related art.
  • the embodiment of the present disclosure proposes a technical solution for beam transformation in repeated transmission for CORESET.
  • the solution for beam switching in repeated transmission for CORESET includes:
  • the beam configuration information at least includes parameters (also referred to as third beam parameters in some embodiments of the present disclosure) for indicating at least two control channel resource sets CORESET for repeated PDCCH transmission.
  • different CORESETs use different candidate beams.
  • the repeated transmission of the same physical downlink control channel PDCCH is scattered in the at least two CORESETs. For example, when multiple CORESETs are configured, different CORESETs use different candidate beams, and multiple repeated transmissions of the same PDCCH are performed in multiple CORESETs. For example, CORESET #1 corresponds to candidate beam #1, and CORESET #2 corresponds to candidate beam #2.
  • the embodiment of the present disclosure also proposes a technical solution for beam transformation for physical downlink control channel PDCCH transmission, including:
  • the beam configuration information includes at least parameters used to indicate two or more candidate beams corresponding to one control channel resource set CORESET for repeated PDCCH transmission (also referred to as is the fourth beam parameter), wherein different candidate beams are used for transmission in the one CORESET.
  • the fourth beam parameter is used to indicate two or more candidate beams in the plurality of candidate beams; and at least two candidate beams correspond to the same CORESET, and at least two repeated transmissions of the same PDCCH are transmitted in the Different candidate beams are used in the same CORESET. For example, re-modify the beam determination method of the existing CORESET.
  • multiple candidate beams are activated in the MAC CE.
  • the same CORESET is then used for PDCCH transmission, and the candidate beam used is transformed when the same CORESET is transmitted.
  • the timing of transforming the candidate beam used may be determined according to a time parameter.
  • the beam determination method further includes: acquiring first information, where the first information is used to instruct to activate the beam configuration information, or to instruct to deactivate the beam configuration information.
  • Fig. 6 is a flow chart of a beam determination method according to an exemplary embodiment.
  • the beam determination method applied to the terminal includes the following steps S610 and S620.
  • step S610 determine beam configuration information, wherein the beam configuration information includes at least a parameter used to indicate a receiving beam corresponding to at least one repeated transmission in N repeated transmissions of the downlink channel, where N is a natural number.
  • step S620 first information is acquired, where the first information is used to instruct to activate the beam configuration information, or to instruct to deactivate the beam configuration information.
  • the order of the above steps S610 and S620 can be adjusted arbitrarily. That is, the step S620 of sending the first information for indicating activation or deactivation of the beam configuration information may be performed in any time slot of the method, which is not limited in this embodiment of the present disclosure.
  • the beam switching information further includes a quasi-co-located QCL assumption or a multiple transmission configuration indication TCI.
  • an embodiment of the present disclosure also provides an apparatus for determining a beam, which is applied to a network device.
  • Fig. 7 is a block diagram of an apparatus for determining a beam according to an exemplary embodiment.
  • the beam determination apparatus 700 is applied to a network device, and includes a determination unit 710 and a transmission beam determination unit 720 .
  • the parameter determination unit 710 is configured to determine beam configuration information, wherein the beam configuration information at least includes a parameter used to indicate a receiving beam corresponding to at least one repeated transmission of the N repeated transmissions of the downlink channel.
  • the transmission beam determining unit 720 is configured to determine, by using beam parameters corresponding to at least one repeated transmission in the N repeated transmissions of the downlink channel, a transmission beam corresponding to at least one repeated transmission in the N repeated transmissions.
  • an embodiment of the present disclosure also provides an apparatus for determining a beam, which is applied to a terminal.
  • Fig. 8 is a block diagram of an apparatus for determining a beam according to an exemplary embodiment.
  • the beam determination apparatus 800 is applied to a terminal, and includes a parameter acquisition unit 810 and a reception beam determination unit 820 .
  • the parameter obtaining unit 810 is configured to obtain and determine beam configuration information, wherein the beam configuration information includes at least a parameter used to indicate a receiving beam corresponding to at least one repeated transmission in the N repeated transmissions of the downlink channel, where N is a natural number .
  • the receiving beam determining unit 820 is configured to determine to send a receiving beam corresponding to at least one repeated transmission in the N repeated transmissions of the downlink channel by using beam parameters corresponding to at least one repeated transmission in the N repeated transmissions.
  • FIG. 9 is a block diagram of an apparatus 900 for determining a beam according to an exemplary embodiment.
  • the apparatus 900 may be a terminal.
  • the terminal may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • apparatus 900 may include one or more of the following components: processing component 902, memory 904, power component 906, multimedia component 908, audio component 910, input/output (I/O) interface 912, sensor component 914, And the communication component 916 .
  • the processing component 902 generally controls the overall operation of the device 900, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 902 may include one or more processors 920 to execute instructions to perform all or some of the steps of the methods described above. Additionally, processing component 902 may include one or more modules to facilitate interaction between processing component 902 and other components. For example, processing component 902 may include a multimedia module to facilitate interaction between multimedia component 908 and processing component 902.
  • Memory 904 is configured to store various types of data to support operations at device 900 . Examples of such data include instructions for any application or method operating on device 900, contact data, phonebook data, messages, pictures, videos, and the like. Memory 904 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power component 906 provides power to various components of device 900 .
  • Power components 906 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power to device 900 .
  • Multimedia component 908 includes a screen that provides an output interface between the device 900 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 908 includes a front-facing camera and/or a rear-facing camera. When the apparatus 900 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 910 is configured to output and/or input audio signals.
  • audio component 910 includes a microphone (MIC) that is configured to receive external audio signals when device 900 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signal may be further stored in memory 904 or transmitted via communication component 916 .
  • audio component 910 also includes a speaker for outputting audio signals.
  • the I/O interface 912 provides an interface between the processing component 902 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 914 includes one or more sensors for providing status assessment of various aspects of device 900 .
  • the sensor assembly 914 can detect the open/closed state of the device 900, the relative positioning of components, such as the display and keypad of the device 900, and the sensor assembly 914 can also detect the position of the device 900 or a component of the device 900 Changes, the presence or absence of user contact with the device 900, the orientation or acceleration/deceleration of the device 900 and the temperature change of the device 900.
  • Sensor assembly 914 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 914 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 914 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 916 is configured to facilitate wired or wireless communication between apparatus 900 and other devices.
  • Device 900 may access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 916 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 916 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 900 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 904 including instructions, executable by the processor 920 of the apparatus 900 to perform the method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • FIG. 10 is a block diagram of an apparatus 1000 for determining a beam according to an exemplary embodiment.
  • the apparatus 1000 may be a network device.
  • apparatus 1000 includes a processing component 1022, which further includes one or more processors, and a memory resource, represented by memory 1032, for storing instructions, such as applications, executable by the processing component 1022.
  • An application program stored in memory 1032 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 1022 is configured to execute instructions to perform the above-described methods.
  • Device 1000 may also include: a power supply assembly 1026 configured to perform power management of device 1000; a wired or wireless network interface 1050 configured to connect device 1000 to a network; and an input and output (I/O ) interface 1058.
  • Device 1000 may operate based on an operating system stored in memory 1032, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • a non-transitory computer-readable storage medium including instructions such as a memory 1032 including instructions, executable by the processing component 1022 of the apparatus 1000 to accomplish the method described above is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • first, second, etc. are used to describe various information, but the information should not be limited to these terms. These terms are only used to distinguish the same type of information from one another, and do not imply a particular order or level of importance. In fact, the expressions “first”, “second” etc. are used completely interchangeably.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种波束确定方法及装置、存储介质。波束确定方法应用于网络设备,包括:确定波束配置信息,其中,所述波束配置信息至少包括用于指示下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,其中,N是自然数;通过与所述下行信道的N次重复传输中的至少一次重复传输对应的波束参数,确定发送所述N次重复传输中的至少一次重复传输对应的发送波束。即使在采用重复发送和重复接收以增强覆盖时,也能在下行信道的重复发送和重复接收的时间段内使用与信道匹配的发送波束和接收波束,由此降低时延,提高传输效率。

Description

波束确定方法及装置、存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种波束确定方法及装置、存储介质。
背景技术
在LTE 4G系统中,为了支持物联网业务提出了MTC(Machine Type Communication,机器类通信)、NB-IoT(Narrow Band Internet of Thing,窄带物联网)两大技术。这两大技术主要针对的是低速率,高时延等场景,比如抄表,环境监测等场景。NB-IoT目前最大只能支持几百k的速率,MTC目前最大只能支持几M的速率。但同时另外一方面,随着物联网业务的不断发展,比如视频监控、智能家居、可穿戴设备和工业传感监测等业务的普及,这些业务通常要求几十到100M的速率,同时对时延也有相对较高的要求。因此LTE中的MTC、NB-IoT技术很难满足要求。基于这种情况,很多公司提出了在5G新空口(New Radio,NR)中再设计一种新的用户设备用以来覆盖这种中端物联网设备的要求。在目前的3GPP标准化中,新空口简化(New Radio Lite,NR lite)系统引入了一种传输时延、速率要求、终端成本均介于窄带终端和NR终端之间的新型终端。这种新型终端称为RedCap UE(Reduced Capability User Equipment,轻量用户设备)。
另一方面,同LTE中的物联网设备类似,基于5G NR-lite中的通常需要满足如下要求:低造价,低复杂度;一定程度的覆盖增强;功率节省。由于目前的NR新空口是针对高速率低时延等高端终端设计的,因此当前的设计无法满足NR-lite的上述要求。因此需要对目前的NR系统进行改造用以满足NR-lite的要求。比如,为了满足低造价,低复杂度等要求,可以限制NR-IoT的射频(Radio Frequency,RF)带宽,比如限制到5MHz或者10MHz,或者限制NR-lite的缓冲区(Buffer)的大小,进而限制每次接收传输块的大小等等。针对功率节省,可能的优化方向是简化通信流程,减少NR-lite用户检测下行控制信道的次数等。
对于NR-lite用户,由于对终端能力进行了限制,比如限制了带宽,限制了接收天线的数量。因此会对终端的覆盖带来负面影响,因此需要覆盖增强方案。为了增强覆盖,通常使用的覆盖增强方案是重复传输,比如在时域上重复发送相同的信息,然后在终端进行合并接收。
在目前的5G NR系统中,网络可以支持多波束传输。在下行传输中,终端需要知道基站发送信息所使用的波束,以便终端使用对应的接收波束进行接收。在目前的5G NR系统中,通常终端会测量并上报N个满足条件的波束供基站选择。基站会根据终端的信道条件选择合适的波束用于信息发送。
RedCap UE由于能力受限导致需要覆盖增强。当采用重复传输弥补覆盖损失以增强覆盖时,相同的控制或者数据会占据比较长一段时间。对于可穿戴设备这类移动性比较强的终端来说,在重复传输的这段时间内,终端的信道状态可能会发生变化,在这段时间内使用相同的波束可能无法匹配动态变化的信道。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种波束确定方法及装置、存储介质。
根据本公开实施例的第一方面,提供一种波束确定方法,应用于网络设备,包括:
确定波束配置信息,其中,所述波束配置信息至少包括用于指示下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,其中,N是自然数;
通过与所述下行信道的N次重复传输中的至少一次重复传输对应的波束参数,确定发送所述N次重复传输中的至少一次重复传输对应的发送波束。
一种实施方式中,所述下行信道的N次重复传输中的每一次重复传输对应的接收波束和发送波束不完全相同;或所述下行信道的N次重复传输中的每一次重复传输对应的接收波束和发送波束完全不相同。
另一种实施方式中,所述波束确定方法还包括:所述下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,包括:下行信道的N次重复传输中的至少一次重复传输对应的接收波束的波束图样,所述波束图样对应于至少两个候选波束;其中所述候选波束为候选波束集合中的候选波束。
又一种实施方式中,所述方法还包括:发送所述波束配置信息。
又一种实施方式中,所述发送所述波束配置信息,包括:通过DCI或是MAC CE发送所述波束配置信息。
又一种实施方式中,所述下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,包括:用于标识接收下行信道的N次重复传输中的至少一次重复传输对应的候选波束的标识符;其中所述候选波束为候选波束集合中的至少两个候选波束。
又一种实施方式中,所述方法还包括:发送所述波束配置信息。
又一种实施方式中,所述发送所述波束配置信息,包括:通过DCI发送所述波束配置信息。
又一种实施方式中,所述波束配置信息还包括:用于指示至少一个候选波束的持续时间的参数;或用于指示在候选波束之间进行波束变换的时间粒度。
又一种实施方式中,所述每个候选波束的持续时间由每个候选波束发送的绝对时间指 示,或者由每个候选波束的重复发送的次数指示。
又一种实施方式中,所述持续时间或波束变换的时间粒度是根据下述参数中的至少一个确定的:跳频的粒度、预编码矩阵在时域上变化的粒度、冗余版本RV变换的粒度、以及终端的重复传输次数。
又一种实施方式中,所述下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,包括:至少两个控制信道资源集合CORESET的参数;其中同一个物理下行控制信道PDCCH的两个重复传输,承载在所述至少两个CORESET中。
又一种实施方式中,所述至少两个候选波束对应于同一个CORESET;其中同一个PDCCH的至少两次重复传输承载在所述同一个CORESET中,且所述两次重复传输对应于不同的候选波束。
又一种实施方式中,所述波束确定方法还包括:发送第一信息,所述第一信息用于指示激活所述波束配置信息,或者用于指示去激活所述波束配置信息。
又一种实施方式中,所述波束变换信息还包括准共址QCL(Quasi Co-Location,也称为准协同定位)假设或者多个传输配置指示TCI(Transmission Configuration Indication)。
根据本公开实施例的第二方面,提供一种波束确定方法,应用于终端,包括:获取波束配置信息,其中,所述波束配置信息至少包括用于指示下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,其中,N是自然数;根据所述波束配置信息,确定用于接收所述N次重复传输中的至少一次重复传输对应的接收波束。
一种实施方式中,所述下行信道的N次重复传输中的每一次重复传输对应的接收波束不完全相同;或所述下行信道的N次重复传输中的每一次重复传输对应的接收波束完全不相同。
另一种实施方式中,所述下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,包括:下行信道的N次重复传输中的至少一次重复传输对应的接收波束的波束图样,所述波束图样对应于至少两个候选波束;其中所述候选波束为候选波束集合中的候选波束。
又一种实施方式中,所述方法还包括:发送所述波束配置信息。
又一种实施方式中,所述发送所述波束配置信息,包括:通过DCI或是MAC CE发送所述波束配置信息。
又一种实施方式中,所述下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,包括:用于标识接收下行信道的N次重复传输中的至少一次重复传输对应的候选波束的标识符;其中所述候选波束为候选波束集合中的至少两个候选波束。
又一种实施方式中,所述方法还包括:发送所述波束配置信息。
又一种实施方式中,所述发送所述波束配置信息,包括:通过DCI发送所述波束配置信息。
又一种实施方式中,所述波束配置信息还包括:用于指示至少一个候选波束的持续时间的参数;或用于指示在候选波束之间进行波束变换的时间粒度。
又一种实施方式中,所述每个候选波束的持续时间由每个候选波束发送的绝对时间指示,或者由每个候选波束的重复发送的次数指示。
又一种实施方式中,所述持续时间或波束变换的时间粒度是根据下述参数中的至少一个确定的:跳频的粒度、预编码矩阵在时域上变化的粒度、冗余版本RV变换的粒度、以及终端的重复传输次数。
又一种实施方式中,所述下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,包括:至少两个控制信道资源集合CORESET的参数;其中同一个物理下行控制信道PDCCH的两个重复传输,承载在所述至少两个CORESET中。
又一种实施方式中,所述至少两个候选波束对应于同一个CORESET;其中同一个PDCCH的至少两次重复传输承载在所述同一个CORESET中,且所述两次重复传输对应于不同的候选波束。
又一种实施方式中,所述波束变换信息还包括准共址QCL假设或者多个传输配置指示TCI。
根据本公开实施例的第三方面,提供一种波束确定装置,应用于网络设备,包括:参数确定单元,被配置为确定波束配置信息,其中,所述波束配置信息至少包括用于指示下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,其中,N是自然数;发送波束确定单元,被配置为通过与所述下行信道的N次重复传输中的至少一次重复传输对应的波束参数,确定发送所述N次重复传输中的至少一次重复传输对应的发送波束。
根据本公开实施例的第四方面,提供一种波束确定装置,应用于终端,所述波束确定装置包括:参数获取单元,被配置为获取确定波束配置信息,其中,所述波束配置信息至少包括用于指示下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,其中,N是自然数;接收波束确定单元,被配置为通过与所述下行信道的N次重复传输中的至少一次重复传输对应的波束参数,确定发送所述N次重复传输中的至少一次重复传输对应的接收波束。
根据本公开实施例的第五方面,提供一种波束确定装置,应用于网络设备,所述波束确定装置包括:处理器;用于存储处理器可执行指令的存储器,其中,所述处理器被配置 为:执行前述第一方面任意技术方案提供的波束确定方法。
根据本公开实施例的第六方面,提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行前述第一方面任意技术方案提供的波束确定方法。
根据本公开实施例的第七方面,提供一种波束确定装置,应用于终端,所述波束确定装置包括:处理器;于存储处理器可执行指令的存储器,其中,所述处理器被配置为:执行前述第二方面任意技术方案提供的波束确定方法。
根据本公开实施例的第八方面,提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行前述第二方面任意技术方案提供的波束确定方法。
本公开实施例提供的技术方案可以包括下述有益效果:通过在下行信道的重复传输过程中进行动态的波束变换,使得即使在采用重复发送和重复接收以增强覆盖时,也能在下行信道的重复发送和重复接收的时间段内使用与信道匹配的发送波束和接收波束,由此降低时延,提高传输效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信系统的示意图。
图2是根据一示例性实施例示出的一种波束确定方法的流程图。
图3是根据一示例性实施例示出的一种波束确定方法的流程图。
图4是根据一示例性实施例示出的一种波束确定方法的流程图。
图5是根据一示例性实施例示出的一种波束确定方法的流程图。
图6是根据一示例性实施例示出的一种波束确定方法的流程图。
图7是根据一示例性实施例示出的一种波束确定装置的框图。
图8是根据一示例性实施例示出的一种波束确定装置的框图。
图9是根据一示例性实施例示出的一种确定波束的装置的框图。
图10是根据一示例性实施例示出的一种用于确定波束的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图 时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。下述示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开实施例提供的波束确定方法可应用于图1所示的无线通信系统中。参照图1所示,该无线通信系统包括网络设备和终端。终端通过无线资源与网络设备相连接,并进行数据传输。
可以理解的是,图1所示的无线通信系统仅是进行示意性说明。无线通信系统中还可包括其它网络设备,例如还可以包括核心网设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信系统包括的网络设备数量和终端数量不做限定。
进一步可以理解的是,本公开实施例无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)、单载波频分多址(Single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance,CSMA/CA)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(Generation)网络、3G网络、4G网络或者未来演进网络,如5G网络,5G网络也可称为是5G新空口。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备也可以称为无线接入网设备。该无线接入网设备可以是:基站、演进型基站(evolved NodeB,eNodeB或者eNB)、家庭基站、无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(Transmission Point,TP)或者发送接收点(Transmission and Reception Point,TRP)等,还可以为NR系统中的基站(gNodeB或者gNB),或者,还可以是构成基站的组件或一部分设备等。应理解,本公开实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。在本公开中,网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端进行通信。此外,当为车联网(V2X)通信系统时,网络设备还可以是车载设备。
进一步的,本公开中涉及的终端,也可以称为终端设备、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的示例为:智能手机(Mobile Phone)、口袋计算机(Pocket Personal  Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信系统时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
在目前的5G NR系统中,网络可以支持多波束传输。在下行传输中,终端需要知道基站发送信息所使用的波束,以便终端使用对应的接收波束进行接收。在目前的5G NR系统中,通常终端会测量并上报N个满足条件的波束供基站选择。基站会根据终端的信道条件选择合适的波束用于信息发送。
特别地,对于PDCCH,波束管理采取下述要点。对于某个控制信道资源集合(Control Resource Set,CORESET),网络会通过无线资源控制(Radio Resource Control,RRC)层信令为CORESET配置N个候选波束。针对某个CORESET,网络会使用介质访问控制单元(Media Access Control Element,MAC CE)激活其中的一个波束。针对某个CORESET,用户会根据对应的激活波束对CORESET的信息进行接收。由于用户的信道状态是不断变化的,使用的波束也是不断变化的,因此需要动态切换。对于控制信道来说,实现波束的动态切换可以采取的方法是给用户配置多个CORESET,每个CORESET配置不同的波束,基站可以根据信道条件将PDCCH放在不同的CORESET中以实现不同波束的切换。
对于下行数据信道,波束管理的流程是:高层信令为用户配置多个候选波束;PDCCH中的DCI(Downlink Control Information,下行控制信息)候选波束子集中指示某个特定波束。
然而,由于RedCap UE能力受限导致需要覆盖增强,而当采用重复传输弥补覆盖损失以增强覆盖时,相同的控制或者数据会占据比较长一段时间。对于可穿戴设备这类移动性比较强的终端来说,在重复传输的这段时间内,终端的信道状态可能会发生变化。这导致在这段时间内使用相同的波束可能无法匹配动态变化的信道。
本公开实施例设计一种新的下行波束确定方法,使得能够在覆盖增强的情况下也能提供良好的波束管理。具体而言,在本公开实施例中,通过在下行信道的重复传输过程中进行动态的波束变换,使得即使在采用重复发送和重复接收以增强覆盖时,也能在下行信道的重复发送和重复接收的时间段内使用与信道匹配的发送波束和接收波束,由此降低时延,提高传输效率。
本公开实施例提供一种波束确定方法,其应用于网络设备。图2是根据一示例性实施例示出的一种波束确定方法的流程图。参照图2所示,波束确定方法应用于网络设备,包括下述步骤S210和步骤S220。
在步骤S210中,确定波束配置信息,其中,所述波束配置信息至少包括用于指示下 行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,其中,N是自然数。
在步骤S220中,通过与所述下行信道的N次重复传输中的至少一次重复传输对应的波束参数,确定发送所述N次重复传输中的至少一次重复传输对应的发送波束。
根据本公开实施例,波束配置信息被确定,波束配置信息至少包括用于指示所述波束配置信息至少包括用于指示下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数。在一些实施例中,这N次重复传输所使用的发送波束和/或接收波束,不完全相同。具体而言,网络设备根据波束配置信息确定在第N次重复传输中使用的至少两种不同的发送波束,其中N是自然数。另外,终端根据波束配置信息确定在接收第N次重复传输中使用的接收波束。也就是说,网络设备的发送波束和/或终端的接收波束,在N次重复传输中至少进行了一次改变。
在本公开实施例中,基于包括在波束配置信息中的参数,在下行信道的重复传输过程中,按照由波束配置信息确定的规则或者指示而使用相应的波束或者变换波束。对于第N次重复传输而言,网络设备按照波束配置信息中确定的发送波束作为在所述第n次重复传输中使用的发送波束,n∈N;并且终端按照波束配置信息中确定的接收波束作为在接收第n次重复传输中使用的接收波束。对于多次重复传输而言,网络设备根据波束配置信息确定N次重复传输中的一种或多种发送波束,并且终端根据波束配置信息确定N次重复传输中的一种或多种接收波束。还可以为,网络设备按照波束变换信息中确定的波束变换顺序依次适应对应的发送波束进行传输,并且终端根据规则或者通知调整,采用对应的接收波束进行接收。藉此,通过指定在下行信道的某次重复传输中使用的发送波束和接收波束,或下行信道的多次重复传输过程中变换发送波束和接收波束,从而在下行信道的重复传输时间段内使用与信道匹配的发送波束和接收波束。这有利于降低时延,并且提高传输效率。另外,由于如上所述的波束配置信息既可以在诸如协议之类的规则中规定,也可以通过高层信令、物理层信令的信令中指示,这样能够节省信令开销。
根据本公开实施例的波束确定方法适用于下行信道的重复传输过程。具体而言,如上所述的波束确定方法不仅适用于PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的重复传输过程,而且适用于PDCCH(Physical Downlink Control Channel,物理下行控制信道)的重复传输过程。
图3是根据一示例性实施例示出的一种波束确定方法的流程图。参照图3所示,波束确定方法应用于网络设备,包括下述步骤S310和步骤S320。
在步骤S310中,确定波束配置信息,其中,所述波束配置信息至少包括用于指示下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,其中,N是自然数。
在步骤S320中,确定发送所述N次重复传输中的至少一次重复传输对应的发送波束。
在本公开的一些实施例中,在图3中所示的步骤S320中,基于所述波束配置信息,确定在第N次重复传输中的至少一次重复传输使用的传输波束;或者在多次重复传输中的至少两次重复传输使用的传输波束,其中所述至少两次重复传输使用的传输波束不相同。。具体而言,对于网络设备,基于所述波束变换信息确定在第N次重复传输(即,第N次重复发送)中使用的发送波束,并且利用所述发送波束完成所述第N次重复传输,或者基于所述波束变换信息确定在下行信道的多次重复传输(即,第N次重复发送)中发送波束改变的参数。
在本公开的一些实施例中,在下行信道的某次重复传输中按照通信协议或者指示接收到的控制信令确定使用波束,并且在下行信道的重复传输过程中按照通信协议或者信令改变波束。网络设备按照所述通知或者规则,在第N次重复传输中使用所述预定波束作为发送波束,和/或,在多次重复传输中改变发送波束。
本公开的一些实施例中,针对多次重复传输中的一次或一次以上的重复传输,确定其所对应的发送波束。通过波束配置信息,指示接收端用于接收所述一次或一次以上的重复传输所使用的接收波束。
本公开的一些实施例中,N次重复传输中的每一次重复传输所对应的传输波束不完全相同,或所述N次重复传输中的每一次重复传输所对应的传输波束完全不相同。其中,N次重复传输中的每一次重复传输所对应的传输波束不完全相同是指,N次重复传输对应于至少两种传输波束,即N次重复传输中的部分重复传输对应于第一种传输波束,而N次重复传输中的部分重复传输对应于第二种传输波束。其中,N次重复传输中的每一次重复传输所对应的传输波束完全不相同是指,N次重复传输对应于N种传输波束,每一次重复传输都改变传输波束。其中传输波束是指:发送波束和接收波束。当然,在同一次重复传输中,发送端所使用的发送波束与接收端所使用的接收波束,必须是相对应的。
在下文中详细描述,对于网络设备和终端而言,在第N次重复传输所使用的发送波束和接受波束,是通过候选波束以及在多次重复传输中的候选波束变换图样(pattern)确定。
在本公开的一些实施例中,波束配置信息可以包括第一波束参数。第一波束参数用于指示N次重复传输中所使用的两个或两个以上候选波束。在本公开的一些实施例中,候选波束是候选波束集合中确定的。在本公开的一些实施例中,波束配置信息可以通过DCI或者MAC CE指示。例如,波束配置信息中的第一波束参数用于指示两个或两个以上候选波束,这样在N次重复传输时可以在这两个候选波束之间进行切换;当然,接收端知道每一个发送端所使用的发送波束所对应的接收波束的参数。又例如,波束配置信息中的第一波 束参数用于指示两组或两组以上候选波束,其中的一组候选波束为发送端在发送时所使用的候选波束和接收端在接收时所使用的候选波束,另一组候选波束为发送端在另一个重复传输时的发送端所使用的候选波束和接收端在接收时所使用的候选波束。
在本公开的一些实施例中,通过高层信令为接收端配置多个候选波束,例如标号为#1~#32的32个候选波束的候选波束集合。在另一些实施例中,可以基于协议确定候选波束集合,例如标号为#1~#32的32个候选波束的候选波束集合。然后通过第一波束参数指示在N次重复传输时所使用的两个或两个以上候选波束。
在本公开的一些实施例中,所述波束变换信息可以包括第二波束参数,所述第二波束参数用于指示至少两个候选波束图样;其中,每一候选波束图样中至少包括在一次重复传输时发送端发送时使用的第一候选波束和接收端在接收时使用的第二候选波束;其中所述第一候选波束和第二候选波束是从候选波束集合中确定的。在本公开的一些实施例中,可以针对N次重复传输中的每一次重复传输,都配置一个候选波束图样,即一共配置N个候选波束图样。
在本公开的一些实施例中,以所述一个候选波束图样包括第一候选波束和第二候选波束为例,第一候选波束可以是网络设备在第n次重复传输中使用的发送波束,并且第二候选波束可以是终端在接收第n次重复传输中使用的接收波束,其中n∈N。
例如,在上述候选波束#1~#32的基础上,通过RRC信令或者MAC CE进一步确定第二波束参数中包括四个候选波束图样,分别为{(#1,#2),(#2,#3),(#1,#4),(#4,#5)}。即,一共进行四次重复传输,且四次重复传输对应于上述的四个候选波束图样。以上述候选波束图样中的第一候选波束图样(#1,#2)为例,第一候选波束为候选波束#1,其可以是网络设备在第1次重复传输中使用的发送波束,并且第二候选波束为候选波束#2,其可以是终端在接收第1次重复传输中使用的接收波束。
例如,网络设备根据上述四个候选波束图样在四次重复传输中变换发送波束,并且终端根据上述候选波束图样在四次重复传输中变换接收波束。以上述候选波束图样为{(#1,#2),(#2,#3),(#1,#4),(#4,#5)}为例,网络设备在第1次重复传输中使用候选波束#1作为发送波束,并且终端在接收在第1次重复传输时使用候选波束#2作为接收波束;网络设备在第2次重复传输中使用候选波束#2作为发送波束,并且终端在接收在第2次重复传输时使用候选波束#3作为接收波束;网络设备在第3次重复传输中使用候选波束#1作为发送波束,并且终端在接收在第3次重复传输时使用候选波束#4作为接收波束;网络设备在第4次重复传输中使用候选波束#4作为发送波束,并且终端在接收在第4次重复传输时使用候选波束#5作为接收波束。
需要指出,在本公开的所有实施例中,第一波束参数和第二波束参数可以各自独立存在,也可以共存。
在本公开的一些实施例中,所述波束配置信息用于指示从所述多个候选波束图样中确定的、在下行信道的一次重复传输中使用的一个候选波束图样。例如,可以通过DCI或者MAC CE进一步指示,在一次重复传输中使用的候选波束图样。
在本公开的一些实施例中,所述波束配置信息用于指示由从所述多个候选波束确定的第三候选波束和第四候选波束组成的波束图样。在示例性实施例中,可以通过DCI直接指示候选变换波束。例如,可以通过DCI直接指示2个候选变换波束,即,第三候选波束和第四候选波束。此处应指出,DCI直接指示的2个候选变换波束可以是上述多个候选波束中的任意两个候选波束。也就是说,第三候选波束和第四候选波束可以参考前述的第一候选波束和/或第二候选波束的描述。
应指出,如上所述的候选变化波束的数目以及波束变化图样的数目和组合仅仅是示例性说明。候选变化波束的数目以及波束变化图样的数目和组合可以根据网络设备、终端、应用场景等因素预配置,并且本公开实施例不受此限制。
在本公开的一些实施例中,波束配置信息可以包括每个候选波束的持续时间或者波束变换的时间粒度。示例性地,当两个或两个以上重复传输对应于相同的发送波束时,可以利用候选波束的持续时间或者波束变换的时间粒度来确定改变发送波束的时机。
每个候选波束的持续时间,可以是每个候选波束发送的绝对时间确定,或是有相对于参考点的相对时间(也就是时间偏移量)确定,或者由候选波束所对应的重复发送的次数(也就是波束变换的时间粒度)确定。例如,对于波束图样中每个候选波束的持续时间或者波束变换的时间粒度(例如使用某个候选波束传输信息的重复次数)可以由信令进行配置,或者根据通信协议决定。
在本公开的一些实施例中,所述持续时间或波束变换的时间粒度是根据下述参数中的至少一个确定的:跳频的粒度、预编码矩阵在时域上变化的粒度、冗余版本RV(Redundant Version)变换的粒度、以及终端的重复传输次数。
在本公开的一些实施例中,所述持续时间或波束变换的时间粒度可以是由网络设备确定并发送给终端的,也可以是由网络设备和终端分别各自基于相同的方式确定的。
结合下表,示例性地描述根据网络设备或终端的重复传输次数确定波束变换的时间粒度。例如,当网络设备或终端的重复传输次数大于8时,比如当重复传输次数为10或16时,波束变换的时间粒度设置为4,即,每隔4次重复传输就变换一次候选波束图样。例如当网络设备或终端的重复传输次数小于9时,比如当重复传输次数为4时,波束变换的 时间粒度设置为2,即,每隔2次重复传输就变换一次候选波束图样。
重复传输次数 波束变换的时间粒度
>8 4
<9 2
在上文中已经结合根据重复传输次数确定波束变换的时间粒度的示例,描述了波束变换的时间粒度。应指出,波束变换的时间粒度还可以根据跳频的粒度、预编码矩阵在时域上变化的粒度或冗余版本RV变换的粒度确定。
本公开实施例还提出了一种针对物理下行控制信道PDCCH传输进行波束变换的技术方案。对于PDCCH,在相关技术中并不支持在相同的CORESET下进行波束变换。本公开实施例提出了一种针对CORESET进行重复传输中的波束变换的技术方案。
在本公开的一些实施例中,该针对CORESET进行重复传输中的波束变换的方案,包括:
确定波束配置信息,其中,所述波束配置信息至少包括用于指示进行PDCCH重复传输的至少两个控制信道资源集合CORESET的参数(本公开实施例中也称为第三波束参数)。在本公开的一些实施例中,不同的CORESET使用不同的候选波束。在上述技术方案中,同一个物理下行控制信道PDCCH的重复传输分散在所述至少两个CORESET中进行。例如,配置多个CORESET,不同的CORESET使用不同的候选波束,同一个PDCCH的多次重复传输在多个CORESET中进行。例如,CORESET#1对应的是候选波束#1,CORESET#2对应的是候选波束#2。如果传输需要在候选波束#1和候选波束#2中变换时,并且每次变换的粒度是2个时间单元,那么PDCCH会在CORESET#1中使用候选波束#1传输两次,在CORESET#2中使用候选波束#2传输两次。如此往复。在本实施例中,对于候选波束、候选波束集合的限定可以参考本公开的其他任何一个实施例,在此不再赘述。
本公开实施例还提出了一种针对物理下行控制信道PDCCH传输进行波束变换的技术方案,包括:
确定波束配置信息,其中,所述波束配置信息至少包括用于指示进行PDCCH重复传输的一个控制信道资源集合CORESET对应的两个或两个以上候选波束的参数(本公开的一些实施例中也称为第四波束参数),其中所述一个CORESET中使用不同的候选波束进行传输。所述第四波束参数用于指示所述多个候选波束中的两个或更多个候选波束;且至少两个候选波束对应于同一个CORESET,同一个PDCCH的至少两次重复传输在所述同一个CORESET中使用不同的候选波束进行。例如,重新修改已有的CORESET的波束确定方法。对于相同的CORESET,在MAC CE中激活多个候选波束。然后PDCCH传输时使 用相同的CORESET,并在传输相同的CORESET时变换所使用的候选波束。例如,可以根据时间参数来确定变换所使用的候选波束的时机。
在本公开的一些实施例中,所述波束确定方法还包括:发送第一信息,所述第一信息用于指示激活所述波束配置信息。在本公开的一些实施例中,所述波束确定方法还包括:发送第一信息,所述第一信息用于指示去激活所述波束配置信息。例如,可以通过信令来配置在重复传输中是否使用如上所述的波束变换方法。
即,在本公开实施例中,网络设备能够通过第一信息来配置,对应的终端是否激活如上所述的波束配置信息。在一些可能的实施方式中,能够通过广播的方式将波束配置信息发送到终端,并通过第一信息来单独指示每一终端是否激活该波束配置信息。这样能够节省信令开销。在一些可能的实施方式中,能够通过广播的方式将波束配置信息发送到每一终端,并通过第一信息或其他任何恰当的信息来单独指示每一终端是否激活该波束配置信息。这样能够节省信令开销。在一些可能的实施方式中,能够通过广播的方式将多个波束配置信息发送到终端,并通过第一信息或其他任何恰当的信息来单独指示每一终端是否激活该波束配置信息,以及激活多个波束配置信息中的波束变换信息。这样能够节省信令开销。
图4是根据一示例性实施例示出的一种波束确定方法的流程图。参照图4所示,波束确定方法应用于网络设备,包括下述步骤S410和步骤S420。
在步骤S410中,确定波束配置信息,其中,所述波束配置信息至少包括用于指示下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,其中,N是自然数;
其中,基于所述波束变换信息,所述网络设备确定在第n次重复传输中使用的发送波束,其中n∈N。本公开的一些实施例中,N次重复传输中的每一次重复传输所对应的传输波束不完全相同,或所述N次重复传输中的每一次重复传输所对应的传输波束完全不相同。
在步骤S420中,发送第一信息,所述第一信息用于指示激活所述波束配置信息,或者用于指示去激活所述波束配置信息。
在本公开所有实施例中,如上所述的步骤S410、步骤S420的顺序可以随意调整。即:发送用于指示激活或去激活波束配置信息的第一信息的步骤S420可以在方法的任何时隙执行,本公开实施例中并不对此做出限定。
在本公开一种实施方式中,可以通过高层信令或是物理层信令激活或是去激活上文所述的波束配置机制。例如,在高层信令或是物理层信令的某个固定的信息域上指示是否激活或是去激活上文所述的波束配置机制。在本公开一种实施方式中,比如“0”代表激活,“1”代表去激活。物理层信令中的用于检测激活或去激活的信息可以是预先配置的。
在一些示例中,根据用户的移动性来配置在重复传输中是否使用如上所述的波束变换方法。例如,当用户的移动性比较低的时候就去激活(即,不采用)这种方法,而当用户移动性比较高的时候激活这种方法。在另一些示例中,根据用户的类型来决定。例如,针对视频监控器或者工业传感器这类的设备,采用传统的波束管理的办法,而对于可穿戴设备,采用如上所述的波束变换方法来配置。
在本公开的一些实施例中,所述波束变换信息还包括准共址QCL假设或者多个传输配置指示TCI。也就是说,在本公开的一些实施方式中,如上所述的波束配置信息可以表现为配置准共址QCL假设或者在高层信令中配置多个传输配置TCI等,即,如上所述的波束配置信息可以具体化到协议中。
天线端口的QCL被定义为:如果UE被允许从关于另一个端口(端口B)的测量中得出端口(端口A)的“大规模信道属性”(例如,基于端口A的信道估计/时间-频率同步所需要的),则端口A被认为与端口B准协同定位。例如,这些大规模信道属性可以包括下述各项中的一个或多个:延迟扩展、多普勒扩展、频移、平均接收功率(可以仅仅在同一类型的端口之间被需要)、和接收定时。天线端口的QCL的另一个定义如下:如果两个天线端口是准协同定位的,则UE可以假设传递一个天线端口的符号的信道的大规模属性能够从传递另一个天线端口的符号的信道推断出。例如,以上定义中的大规模属性可以包括下述各项中的一个或多个:延迟扩展、多普勒扩展、多普勒频移、平均增益、和平均延迟。
在本公开的一些实施例中,使用天线端口的QCL假设能够减少用于信道估计、时间/频率同步的信令开销和时间。
基于相同的构思,本公开实施例还提供一种波束确定方法,应用于终端。图5是根据一示例性实施例示出的一种波束确定方法的流程图。参照图5所示,波束确定方法应用于终端,包括下述步骤S510和步骤S520。
在步骤S510中,确定波束配置信息,其中,所述波束配置信息至少包括用于指示下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,其中,N是自然数。
在步骤S520中,根据所述波束配置信息,确定用于接收所述N次重复传输中的至少一次重复传输对应的接收波束。
本公开的一些实施例中,针对多次重复传输中的一次或一次以上的重复传输,确定其所对应的发送波束。通过波束配置信息,指示接收端用于接收所述一次或一次以上的重复传输所使用的接收波束。
本公开的一些实施例中,N次重复传输中的每一次重复传输所对应的传输波束不完全相同,或所述N次重复传输中的每一次重复传输所对应的传输波束完全不相同。其中,N 次重复传输中的每一次重复传输所对应的传输波束不完全相同是指,N次重复传输对应于至少两种传输波束,即N次重复传输中的部分重复传输对应于第一种传输波束,而N次重复传输中的部分重复传输对应于第二种传输波束。其中,N次重复传输中的每一次重复传输所对应的传输波束完全不相同是指,N次重复传输对应于N种传输波束,每一次重复传输都改变传输波束。其中传输波束是指:发送波束和接收波束。当然,在同一次重复传输中,发送端所使用的发送波束与接收端所使用的接收波束的对应关系,可以基于任何方式确定,例如基于通信协议确定,或是通过网络设备确定后配置给终端。
在本公开的一些实施例中,在图5中所示的步骤S520中,基于所述波束配置信息,确定在第N次重复传输中使用的传输波束或者在多次重复传输中变换传输波束。具体而言,对于终端,基于所述波束变换信息确定接收在第N次重复传输中使用的接收波束,并且利用所述接收波束完成所述第N次重复传输的接收,或者基于所述波束变换信息确定在下行信道的多次重复传输(即,接收多次重复传输)中变换接收波束。
在本公开的一些实施例中,波束配置信息可以包括第一波束参数。第一波束参数用于指示N次重复传输中所使用的两个或两个以上候选波束。在本公开的一些实施例中,候选波束是候选波束集合中确定的。在本公开的一些实施例中,波束配置信息可以通过DCI或者MAC CE指示。例如,波束配置信息中的第一波束参数用于指示两个或两个以上候选波束,这样在N次重复传输时可以在这两个候选波束之间进行切换;当然,接收端知道每一个发送端所使用的发送波束所对应的接收波束的参数。又例如,波束配置信息中的第一波束参数用于指示两组或两组以上候选波束,其中的一组候选波束为发送端在发送时所使用的候选波束和接收端在接收时所使用的候选波束,另一组候选波束为发送端在另一个重复传输时的发送端所使用的候选波束和接收端在接收时所使用的候选波束。
在本公开的一些实施例中,所述波束变换信息可以包括第二波束参数,所述第二波束参数用于指示至少两个候选波束图样;其中,每一候选波束图样中至少包括在一次重复传输时发送端发送时使用的第一候选波束和接收端在接收时使用的第二候选波束;其中所述第一候选波束和第二候选波束是从候选波束集合中确定的。在本公开的一些实施例中,可以针对N次重复传输中的每一次重复传输,都配置一个候选波束图样,即一共配置N个候选波束图样。
在本公开的一些实施例中,以所述一个候选波束图样包括第一候选波束和第二候选波束为例,第一候选波束可以是网络设备在第n次重复传输中使用的发送波束,并且第二候选波束可以是终端在接收第n次重复传输中使用的接收波束,其中n∈N。
例如,在上述候选波束#1~#32的基础上,通过RRC信令或者MAC CE进一步确定第 二波束参数中包括四个候选波束图样,分别为{(#1,#2),(#2,#3),(#1,#4),(#4,#5)}。即,一共进行四次重复传输,且四次重复传输对应于上述的四个候选波束图样。以上述候选波束图样中的第一候选波束图样(#1,#2)为例,第一候选波束为候选波束#1,其可以是网络设备在第1次重复传输中使用的发送波束,并且第二候选波束为候选波束#2,其可以是终端在接收第1次重复传输中使用的接收波束。
例如,网络设备根据上述四个候选波束图样在四次重复传输中变换发送波束,并且终端根据上述候选波束图样在四次重复传输中变换接收波束。以上述候选波束图样为{(#1,#2),(#2,#3),(#1,#4),(#4,#5)}为例,网络设备在第1次重复传输中使用候选波束#1作为发送波束,并且终端在接收在第1次重复传输时使用候选波束#2作为接收波束;网络设备在第2次重复传输中使用候选波束#2作为发送波束,并且终端在接收在第2次重复传输时使用候选波束#3作为接收波束;网络设备在第3次重复传输中使用候选波束#1作为发送波束,并且终端在接收在第3次重复传输时使用候选波束#4作为接收波束;网络设备在第4次重复传输中使用候选波束#4作为发送波束,并且终端在接收在第4次重复传输时使用候选波束#5作为接收波束。
需要指出,在本公开的所有实施例中,第一波束参数和第二波束参数可以各自独立存在,也可以共存。
在本公开的一些实施例中,所述波束配置信息用于指示从所述多个候选波束图样中确定的、在下行信道的一次重复传输中使用的一个候选波束图样。例如,可以通过DCI或者MAC CE进一步指示,在一次重复传输中使用的候选波束图样。
在本公开的一些实施例中,所述波束配置信息用于指示由从所述多个候选波束确定的第三候选波束和第四候选波束组成的波束图样。在示例性实施例中,可以通过DCI直接指示候选变换波束。例如,可以通过DCI直接指示2个候选变换波束,即,第三候选波束和第四候选波束。此处应指出,DCI直接指示的2个候选变换波束可以是上述多个候选波束中的任意两个候选波束。也就是说,第三候选波束和第四候选波束可以参考前述的第一候选波束和/或第二候选波束的描述。
应指出,如上所述的候选变化波束的数目以及波束变化图样的数目和组合仅仅是示例性说明。候选变化波束的数目以及波束变化图样的数目和组合可以根据网络设备、终端、应用场景等因素预配置,并且本公开实施例不受此限制。
在本公开的一些实施例中,波束配置信息可以包括每个候选波束的持续时间或者波束变换的时间粒度。示例性地,当两个或两个以上重复传输对应于相同的发送波束时,可以利用候选波束的持续时间或者波束变换的时间粒度来确定改变发送波束的时机。
每个候选波束的持续时间,可以是每个候选波束发送的绝对时间确定,或是有相对于参考点的相对时间(也就是时间偏移量)确定,或者由候选波束所对应的重复发送的次数(也就是波束变换的时间粒度)确定。例如,对于波束图样中每个候选波束的持续时间或者波束变换的时间粒度(例如使用某个候选波束传输信息的重复次数)可以由信令进行配置,或者根据通信协议决定。
在本公开的一些实施例中,所述持续时间或波束变换的时间粒度是根据下述参数中的至少一个确定的:跳频的粒度、预编码矩阵在时域上变化的粒度、冗余版本RV变换的粒度、以及终端的重复传输次数。
在本公开的一些实施例中,所述持续时间或波束变换的时间粒度可以是由网络设备确定并发送给终端的,也可以是由网络设备和终端分别各自基于相同的方式确定的。
本公开实施例还提出了一种针对物理下行控制信道PDCCH传输进行波束变换的技术方案。对于PDCCH,在相关技术中并不支持在相同的CORESET下进行波束变换。本公开实施例提出了一种针对CORESET进行重复传输中的波束变换的技术方案。
在本公开的一些实施例中,该针对CORESET进行重复传输中的波束变换的方案,包括:
确定波束配置信息,其中,所述波束配置信息至少包括用于指示进行PDCCH重复传输的至少两个控制信道资源集合CORESET的参数(本公开的一些实施例中也称为第三波束参数)。在本公开的一些实施例中,不同的CORESET使用不同的候选波束。在上述技术方案中,同一个物理下行控制信道PDCCH的重复传输分散在所述至少两个CORESET中进行。例如,配置多个CORESET,不同的CORESET使用不同的候选波束,同一个PDCCH的多次重复传输在多个CORESET中进行。例如,CORESET#1对应的是候选波束#1,CORESET#2对应的是候选波束#2。如果传输需要在候选波束#1和候选波束#2中变换时,并且每次变换的粒度是2个时间单元,那么PDCCH会在CORESET#1中使用候选波束#1传输两次,在CORESET#2中使用候选波束#2传输两次。如此往复。在本实施例中,对于候选波束、候选波束集合的限定可以参考本公开的其他任何一个实施例,在此不再赘述。
本公开实施例还提出了一种针对物理下行控制信道PDCCH传输进行波束变换的技术方案,包括:
确定波束配置信息,其中,所述波束配置信息至少包括用于指示进行PDCCH重复传输的一个控制信道资源集合CORESET对应的两个或两个以上候选波束的参数(本公开的一些实施例中也称为第四波束参数),其中所述一个CORESET中使用不同的候选波束进行传输。所述第四波束参数用于指示所述多个候选波束中的两个或更多个候选波束;且至少 两个候选波束对应于同一个CORESET,同一个PDCCH的至少两次重复传输在所述同一个CORESET中使用不同的候选波束进行。例如,重新修改已有的CORESET的波束确定方法。对于相同的CORESET,在MAC CE中激活多个候选波束。然后PDCCH传输时使用相同的CORESET,并在传输相同的CORESET时变换所使用的候选波束。例如,可以根据时间参数来确定变换所使用的候选波束的时机。
在本公开的一些实施例中,所述波束确定方法还包括:获取第一信息,所述第一信息用于指示激活所述波束配置信息,或者用于指示去激活所述波束配置信息。
图6是根据一示例性实施例示出的一种波束确定方法的流程图。参照图6所示,波束确定方法应用于终端,包括下述步骤S610和步骤S620。
在步骤S610中,确定波束配置信息,其中,所述波束配置信息至少包括用于指示下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,其中,N是自然数。
在步骤S620中,获取第一信息,所述第一信息用于指示激活所述波束配置信息,或者用于指示去激活所述波束配置信息。
在本公开所有实施例中,如上所述的步骤S610、步骤S620的顺序可以随意调整。即:发送用于指示激活或去激活波束配置信息的第一信息的步骤S620可以在方法的任何时隙执行,本公开实施例中并不对此做出限定。
在本公开的一些实施例中,所述波束变换信息还包括准共址QCL假设或者多个传输配置指示TCI。
基于相同的构思,本公开实施例还提供一种波束确定装置,应用于网络设备。图7是根据一示例性实施例示出的一种波束确定装置的框图。参照图7所示,波束确定装置700应用于网络设备,包括确定单元710和发送波束确定单元720。
参数确定单元710被配置为确定波束配置信息,其中,所述波束配置信息至少包括用于指示下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数。
发送波束确定单元720被配置为通过与所述下行信道的N次重复传输中的至少一次重复传输对应的波束参数,确定发送所述N次重复传输中的至少一次重复传输对应的发送波束。
基于相同的构思,本公开实施例还提供一种波束确定装置,应用于终端。图8是根据一示例性实施例示出的一种波束确定装置的框图。参照图8所示,波束确定装置800应用于终端,包括参数获取单元810和接收波束确定单元820。
参数获取单元810被配置为获取确定波束配置信息,其中,所述波束配置信息至少包括用于指示下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,其中, N是自然数。
接收波束确定单元820被配置为通过与所述下行信道的N次重复传输中的至少一次重复传输对应的波束参数,确定发送所述N次重复传输中的至少一次重复传输对应的接收波束。
图9是根据一示例性实施例示出的一种用于确定波束的装置900的框图。例如,装置900可以是终端。终端可以是移动电话、计算机、数字广播终端、消息收发设备、游戏控制台、平板设备、医疗设备、健身设备、个人数字助理等。
参照图9,装置900可以包括下述一个或多个组件:处理组件902、存储器904、电力组件906、多媒体组件908、音频组件910、输入/输出(I/O)接口912、传感器组件914、以及通信组件916。
处理组件902通常控制装置900的整体操作,诸如与显示、电话呼叫、数据通信、相机操作和记录操作相关联的操作。处理组件902可以包括一个或多个处理器920来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件902可以包括一个或多个模块,便于处理组件902和其它组件之间的交互。例如,处理组件902可以包括多媒体模块,以方便多媒体组件908和处理组件902之间的交互。
存储器904被配置为存储各种类型的数据以支持在装置900的操作。这些数据的示例包括用于在装置900上操作的任何应用程序或方法的指令、联系人数据、电话簿数据、消息、图片、视频等。存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM)、电可擦除可编程只读存储器(EEPROM)、可擦除可编程只读存储器(EPROM)、可编程只读存储器(PROM)、只读存储器(ROM)、磁存储器、快闪存储器、磁盘或光盘。
电力组件906为装置900的各种组件提供电力。电力组件906可以包括电源管理系统,一个或多个电源,及其它与为装置900生成、管理和分配电力相关联的组件。
多媒体组件908包括在所述装置900和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件908包括一个前置摄像头和/或后置摄像头。当装置900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件910被配置为输出和/或输入音频信号。例如,音频组件910包括一个麦克风(MIC),当装置900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器904或经由通信组件916发送。在一些实施例中,音频组件910还包括一个扬声器,用于输出音频信号。
I/O接口912为处理组件902和外围接口模块之间提供接口,上述外围接口模块可以是键盘、点击轮、按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件914包括一个或多个传感器,用于为装置900提供各个方面的状态评估。例如,传感器组件914可以检测到装置900的打开/关闭状态,组件的相对定位,例如所述组件为装置900的显示器和小键盘,传感器组件914还可以检测装置900或装置900的一个组件的位置改变,用户与装置900接触的存在或不存在,装置900方位或加速/减速和装置900的温度变化。传感器组件914可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件914还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件914还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件916被配置为便于装置900和其它设备之间有线或无线方式的通信。装置900可以接入基于通信标准的无线网络,如WiFi、2G或3G,或它们的组合。在一个示例性实施例中,通信组件916经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件916还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其它技术来实现。
在示例性实施例中,装置900可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其它电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器904,上述指令可由装置900的处理器920执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图10是根据一示例性实施例示出的一种用于确定波束的装置1000的框图。装置1000可以是网络设备。参照图10,装置1000包括处理组件1022,其进一步包括一个或多个处理器,以及由存储器1032所代表的存储器资源,用于存储可由处理组件1022的执行的指 令,例如应用程序。存储器1032中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1022被配置为执行指令,以执行上述方法。
装置1000还可以包括:一个电源组件1026,其被配置为执行装置1000的电源管理;一个有线或无线的网络接口1050,其被配置为将装置1000连接到网络;和一个输入输出(I/O)接口1058。装置1000可以操作基于存储在存储器1032的操作系统,例如Windows ServerTM、Mac OS XTM、UnixTM、LinuxTM、FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1032,上述指令可由装置1000的处理组件1022执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其它含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定场景中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (34)

  1. 一种波束确定方法,其特征在于,应用于网络设备,包括:
    确定波束配置信息,其中,所述波束配置信息至少包括用于指示下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,其中,N是自然数;
    通过与所述下行信道的N次重复传输中的至少一次重复传输对应的波束参数,确定发送所述N次重复传输中的至少一次重复传输对应的发送波束。
  2. 根据权利要求1所述的方法,其特征在于,所述下行信道的N次重复传输中的每一次重复传输对应的接收波束和发送波束不完全相同;
    所述下行信道的N次重复传输中的每一次重复传输对应的接收波束和发送波束完全不相同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,包括:
    下行信道的N次重复传输中的至少一次重复传输对应的接收波束的波束图样,所述波束图样对应于至少两个候选波束;其中所述候选波束为候选波束集合中的候选波束。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    发送所述波束配置信息。
  5. 根据权利要求4所述的方法,其特征在于,所述发送所述波束配置信息,包括:
    通过DCI或是MAC CE发送所述波束配置信息。
  6. 根据权利要求1或2所述的方法,其特征在于,所述下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,包括:
    用于标识接收下行信道的N次重复传输中的至少一次重复传输对应的候选波束的标识符;其中所述候选波束为候选波束集合中的至少两个候选波束。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    发送所述波束配置信息。
  8. 根据权利要求7所述的方法,其特征在于,所述发送所述波束配置信息,包括:
    通过DCI发送所述波束配置信息。
  9. 根据权利要求3或6所述的方法,其特征在于,所述波束配置信息还包括:
    用于指示至少一个候选波束的持续时间的参数;
    用于指示在候选波束之间进行波束变换的时间粒度。
  10. 根据权利要求9所述的方法,其特征在于,所述每个候选波束的持续时间由每个候选波束发送的绝对时间指示,或者由每个候选波束的重复发送的次数指示。
  11. 根据权利要求9所述的方法,其特征在于,所述持续时间或波束变换的时间粒度是根据下述参数中的至少一个确定的:
    跳频的粒度、
    预编码矩阵在时域上变化的粒度、
    冗余版本RV变换的粒度、以及
    终端的重复传输次数。
  12. 根据权利要求1所述的方法,其特征在于,所述下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,包括:
    至少两个控制信道资源集合CORESET的参数;其中同一个物理下行控制信道PDCCH的两个重复传输,承载在所述至少两个CORESET中。
  13. 根据权利要求3或6所述的方法,其特征在于,所述至少两个候选波束对应于同一个CORESET;其中同一个PDCCH的至少两次重复传输承载在所述同一个CORESET中,且所述两次重复传输对应于不同的候选波束。
  14. 根据权利要求1-13中任意一项所述的方法,其特征在于,所述波束配置信息还包括:准共址QCL假设或者多个传输配置指示TCI。
  15. 一种波束确定方法,其特征在于,应用于终端,包括:
    获取波束配置信息,其中,所述波束配置信息至少包括用于指示下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,其中,N是自然数;
    根据所述波束配置信息,确定用于接收所述N次重复传输中的至少一次重复传输对应的接收波束。
  16. 根据权利要求15所述的方法,其特征在于,所述下行信道的N次重复传输中的每一次重复传输对应的接收波束不完全相同;
    所述下行信道的N次重复传输中的每一次重复传输对应的接收波束完全不相同。
  17. 根据权利要求15或16所述的方法,其特征在于,所述下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,包括:
    下行信道的N次重复传输中的至少一次重复传输对应的接收波束的波束图样,所述波束图样对应于至少两个候选波束;其中所述候选波束为候选波束集合中的候选波束。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    发送所述波束配置信息。
  19. 根据权利要求18所述的方法,其特征在于,所述发送所述波束配置信息,包括:
    通过DCI或是MAC CE发送所述波束配置信息。
  20. 根据权利要求15或16所述的方法,其特征在于,所述下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,包括:
    用于标识接收下行信道的N次重复传输中的至少一次重复传输对应的候选波束的标识符;其中所述候选波束为候选波束集合中的至少两个候选波束。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    发送所述波束配置信息。
  22. 根据权利要求21所述的方法,其特征在于,所述发送所述波束配置信息,包括:
    通过DCI发送所述波束配置信息。
  23. 根据权利要求17或20所述的方法,其特征在于,所述波束配置信息还包括:
    用于指示至少一个候选波束的持续时间的参数;
    用于指示在候选波束之间进行波束变换的时间粒度。
  24. 根据权利要求23所述的方法,其特征在于,所述每个候选波束的持续时间由每个候选波束发送的绝对时间指示,或者由每个候选波束的重复发送的次数指示。
  25. 根据权利要求23所述的方法,其特征在于,所述持续时间或波束变换的时间粒度是根据下述参数中的至少一个确定的:
    跳频的粒度、
    预编码矩阵在时域上变化的粒度、
    冗余版本RV变换的粒度、以及
    终端的重复传输次数。
  26. 根据权利要求15所述的方法,其特征在于,所述下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,包括:
    至少两个控制信道资源集合CORESET的参数;其中同一个物理下行控制信道PDCCH的两个重复传输,承载在所述至少两个CORESET中。
  27. 根据权利要求17或20所述的方法,其特征在于,所述至少两个候选波束对应于同一个CORESET;其中同一个PDCCH的至少两次重复传输承载在所述同一个CORESET中,且所述两次重复传输对应于不同的候选波束。
  28. 根据权利要求15-27中任意一项所述的方法,其特征在于,所述波束配置信息还 包括:准共址QCL假设或者多个传输配置指示TCI。
  29. 一种波束确定装置,其特征在于,应用于网络设备,包括:
    参数确定单元,被配置为确定波束配置信息,其中,所述波束配置信息至少包括用于指示下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,其中,N是自然数;
    发送波束确定单元,被配置为通过与所述下行信道的N次重复传输中的至少一次重复传输对应的波束参数,确定发送所述N次重复传输中的至少一次重复传输对应的发送波束。
  30. 一种波束确定装置,其特征在于,应用于终端,所述波束确定装置包括:
    参数获取单元,被配置为获取确定波束配置信息,其中,所述波束配置信息至少包括用于指示下行信道的N次重复传输中的至少一次重复传输对应的接收波束的参数,其中,N是自然数;
    接收波束确定单元,被配置为通过与所述下行信道的N次重复传输中的至少一次重复传输对应的波束参数,确定发送所述N次重复传输中的至少一次重复传输对应的接收波束。
  31. 一种波束确定装置,其特征在于,应用于网络设备,所述波束确定装置包括:
    处理器;
    用于存储处理器可执行指令的存储器,
    其中,所述处理器被配置为:执行如权利要求1-14中任意一项所述的波束确定方法。
  32. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行如权利要求1-14中任意一项所述的波束确定方法。
  33. 一种波束确定装置,其特征在于,应用于终端,所述波束确定装置包括:
    处理器;
    用于存储处理器可执行指令的存储器,
    其中,所述处理器被配置为:执行如权利要求15-28中任意一项所述的波束确定方法。
  34. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行如权利要求15-28中任意一项所述的波束确定方法。
PCT/CN2020/103615 2020-07-22 2020-07-22 波束确定方法及装置、存储介质 WO2022016430A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/005,729 US20230283352A1 (en) 2020-07-22 2020-07-22 Beam determining method and apparatus, and storage medium
CN202080001698.2A CN114342521A (zh) 2020-07-22 2020-07-22 波束确定方法及装置、存储介质
PCT/CN2020/103615 WO2022016430A1 (zh) 2020-07-22 2020-07-22 波束确定方法及装置、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/103615 WO2022016430A1 (zh) 2020-07-22 2020-07-22 波束确定方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2022016430A1 true WO2022016430A1 (zh) 2022-01-27

Family

ID=79728458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103615 WO2022016430A1 (zh) 2020-07-22 2020-07-22 波束确定方法及装置、存储介质

Country Status (3)

Country Link
US (1) US20230283352A1 (zh)
CN (1) CN114342521A (zh)
WO (1) WO2022016430A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000193A1 (zh) * 2022-06-28 2024-01-04 北京小米移动软件有限公司 一种中继通信方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016065838A1 (zh) * 2014-10-27 2016-05-06 中兴通讯股份有限公司 测量导频发送、检测方法、装置、基站及终端
CN110612693A (zh) * 2017-05-08 2019-12-24 三星电子株式会社 用于在无线通信系统中传输下行链路控制信道的方法和装置
CN111149417A (zh) * 2017-09-29 2020-05-12 高通股份有限公司 用于失聪避免的保留重复
CN111543020A (zh) * 2017-08-11 2020-08-14 索尼公司 随机接入消息的重传
CN111585729A (zh) * 2019-02-15 2020-08-25 电信科学技术研究院有限公司 一种信号的发送、接收方法、网络设备及终端

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021517758A (ja) * 2018-02-14 2021-07-26 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 信号伝送方法および機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016065838A1 (zh) * 2014-10-27 2016-05-06 中兴通讯股份有限公司 测量导频发送、检测方法、装置、基站及终端
CN110612693A (zh) * 2017-05-08 2019-12-24 三星电子株式会社 用于在无线通信系统中传输下行链路控制信道的方法和装置
CN111543020A (zh) * 2017-08-11 2020-08-14 索尼公司 随机接入消息的重传
CN111149417A (zh) * 2017-09-29 2020-05-12 高通股份有限公司 用于失聪避免的保留重复
CN111585729A (zh) * 2019-02-15 2020-08-25 电信科学技术研究院有限公司 一种信号的发送、接收方法、网络设备及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUANGDONG OPPO MOBILE TELECOM: "Discussion on power ramping and power control during RA procedure", 3GPP DRAFT; R1-1710137, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao, P.R. China; 20170627 - 20170630, 26 June 2017 (2017-06-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051299361 *

Also Published As

Publication number Publication date
CN114342521A (zh) 2022-04-12
US20230283352A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
WO2022193195A1 (zh) 一种带宽部分配置方法、带宽部分配置装置及存储介质
WO2021051408A1 (zh) 通信方法、装置及存储介质
WO2022151488A1 (zh) 一种带宽部分确定方法、带宽部分确定装置及存储介质
WO2022027496A1 (zh) 资源配置方法、装置、通信设备和存储介质
US20240129955A1 (en) Information reporting method, information reporting device and storage medium
CN116647924B (zh) 带宽部分切换方法、装置及通信设备
WO2022236626A1 (zh) 系统消息的传输方法、装置及通信设备
WO2023050354A1 (zh) 一种sdt传输方法、装置及存储介质
WO2022016430A1 (zh) 波束确定方法及装置、存储介质
EP4093110A1 (en) Communication processing methods and apparatuses, and computer storage medium
CN113517963A (zh) 上行信号/信道处理方法、装置及可读存储介质
CN114731510A (zh) 一种传输终端能力的方法、装置及可读存储介质
WO2022067768A1 (zh) 一种资源配置方法、资源配置装置及存储介质
WO2023245503A1 (zh) 一种监听方法、发送方法、装置、设备以及可读存储介质
US20230337031A1 (en) Method for reporting channel state information and communication device
WO2022032595A1 (zh) 一种频率切换方法、频率切换装置及存储介质
WO2022032593A1 (zh) 一种跳频配置方法、跳频配置装置及存储介质
WO2023178489A1 (zh) 一种传输能力信息的方法、装置及存储介质
WO2024000196A1 (zh) 一种传输辅助信息的方法、装置以及可读存储介质
WO2023178696A1 (zh) 一种传输寻呼搜索空间配置信息的方法、装置及存储介质
WO2022032571A1 (zh) 资源配置方法、装置、通信设备和存储介质
WO2022116098A1 (zh) Ssb位置的确定方法、装置及通信设备
WO2023197188A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2024026633A1 (zh) 一种传输能力信息的方法、装置以及可读存储介质
WO2023236116A1 (zh) 一种传输唤醒信号的方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946294

Country of ref document: EP

Kind code of ref document: A1