WO2022014364A1 - 受光素子およびその製造方法、並びに、電子機器 - Google Patents

受光素子およびその製造方法、並びに、電子機器 Download PDF

Info

Publication number
WO2022014364A1
WO2022014364A1 PCT/JP2021/025083 JP2021025083W WO2022014364A1 WO 2022014364 A1 WO2022014364 A1 WO 2022014364A1 JP 2021025083 W JP2021025083 W JP 2021025083W WO 2022014364 A1 WO2022014364 A1 WO 2022014364A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
pixel
receiving element
light receiving
semiconductor substrate
Prior art date
Application number
PCT/JP2021/025083
Other languages
English (en)
French (fr)
Inventor
正隆 佐藤
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN202180049528.6A priority Critical patent/CN115803887A/zh
Priority to JP2022536256A priority patent/JPWO2022014364A1/ja
Priority to US18/004,773 priority patent/US20230307473A1/en
Publication of WO2022014364A1 publication Critical patent/WO2022014364A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • G01S7/4914Circuits for detection, sampling, integration or read-out of detector arrays, e.g. charge-transfer gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • H01L27/1465Infrared imagers of the hybrid type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone

Definitions

  • the present technology relates to a light receiving element and its manufacturing method, and an electronic device, and particularly to a light receiving element and its manufacturing method capable of increasing quantum efficiency and sensitivity to infrared light, and an electronic device. ..
  • a ranging module using an indirect ToF (Time of Flight) method is known.
  • the indirect ToF distance measuring module the irradiation light is emitted toward the object, and the light receiving element receives the reflected light that is reflected by the surface of the object and returned.
  • the light receiving element distributes the signal charge obtained by photoelectrically converting the reflected light into, for example, two charge storage regions, and calculates the distance from the distribution ratio of the signal charges. It has been proposed that such a light-receiving element has improved light-receiving characteristics by adopting a back-illuminated type (see, for example, Patent Document 1).
  • the irradiation light of the ranging module As the irradiation light of the ranging module, light in the near infrared region is generally used.
  • the light in the near infrared region has low quantum efficiency (QE) and low sensor sensitivity.
  • This technology was made in view of such a situation, and is intended to increase the quantum efficiency with respect to infrared light and improve the sensitivity.
  • the light receiving element on the first side surface of the present technology has a pixel array region in which pixels including a photoelectric conversion region are arranged in a matrix, and the pixel of each pixel of the first semiconductor substrate on which the pixel array region is formed.
  • the photoelectric conversion region is formed by a SiGe region or a Ge region.
  • At least a photoelectric conversion region of each pixel in the pixel array region of the semiconductor substrate is formed in a SiGe region or a Ge region.
  • the electronic device on the third aspect of the present technology has a pixel array region in which pixels including a photoelectric conversion region are arranged in a matrix, and the pixel of each pixel of the first semiconductor substrate on which the pixel array region is formed.
  • a light receiving element in which the photoelectric conversion region is formed in the SiGe region or the Ge region is provided.
  • At least the photoelectric conversion region of each pixel in the pixel array region of the semiconductor substrate is formed by the SiGe region or the Ge region.
  • the light receiving element and the electronic device may be an independent device or a module incorporated in another device.
  • the definition of the vertical direction in the following description is merely a definition for convenience of explanation, and does not limit the technical idea of the present disclosure. For example, if the object is rotated 90 ° and observed, the top and bottom are converted to left and right and read, and if the object is rotated 180 ° and observed, the top and bottom are reversed and read.
  • FIG. 1 is a block diagram showing a schematic configuration example of a light receiving element to which the present technology is applied.
  • the light receiving element 1 shown in FIG. 1 is a distance measuring sensor that outputs distance measuring information by an indirect ToF method.
  • the light receiving element 1 receives the light (reflected light) that the light emitted from a predetermined light source hits the object and is reflected, and outputs a depth image in which the distance information to the object is stored as a depth value.
  • the irradiation light emitted from the light source is, for example, infrared light having a wavelength of 780 nm or more, and pulsed light whose on / off is repeated in a predetermined cycle.
  • the light receiving element 1 has a pixel array unit 21 formed on a semiconductor substrate (not shown) and a peripheral circuit unit.
  • the peripheral circuit unit is composed of, for example, a vertical drive unit 22, a column processing unit 23, a horizontal drive unit 24, a system control unit 25, and the like.
  • the light receiving element 1 is also provided with a signal processing unit 26 and a data storage unit 27.
  • the signal processing unit 26 and the data storage unit 27 may be mounted on the same substrate as the light receiving element 1, or may be arranged on a substrate in a module different from the light receiving element 1.
  • the pixel array unit 21 has a configuration in which pixels 10 that generate an electric charge according to the amount of received light and output a signal corresponding to the electric charge are arranged in a matrix in the row direction and the column direction. That is, the pixel array unit 21 has a plurality of pixels 10 that photoelectrically convert the incident light and output a signal corresponding to the resulting charge. The details of the pixel 10 will be described later in FIGS. 2 and 2.
  • the row direction means the arrangement direction of the pixels 10 in the horizontal direction
  • the column direction means the arrangement direction of the pixels 10 in the vertical direction.
  • the row direction is the horizontal direction in the figure
  • the column direction is the vertical direction in the figure.
  • the pixel drive lines 28 are wired along the row direction for each pixel row with respect to the matrix-shaped pixel array, and two vertical signal lines 29 are arranged along the column direction in each pixel row. Is wired.
  • the pixel drive line 28 transmits a drive signal for driving when reading a signal from the pixel 10.
  • the pixel drive line 28 is shown as one wiring, but the wiring is not limited to one.
  • One end of the pixel drive line 28 is connected to the output end corresponding to each line of the vertical drive unit 22.
  • the vertical drive unit 22 is composed of a shift register, an address decoder, and the like, and drives each pixel 10 of the pixel array unit 21 simultaneously for all pixels or in line units. That is, the vertical drive unit 22 constitutes a control circuit that controls the operation of each pixel 10 of the pixel array unit 21 together with the system control unit 25 that controls the vertical drive unit 22.
  • the pixel signal output from each pixel 10 in the pixel row according to the drive control by the vertical drive unit 22 is input to the column processing unit 23 through the vertical signal line 29.
  • the column processing unit 23 performs predetermined signal processing on the pixel signal output from each pixel 10 through the vertical signal line 29, and temporarily holds the pixel signal after the signal processing. Specifically, the column processing unit 23 performs noise removal processing, AD (Analog to Digital) conversion processing, and the like as signal processing.
  • the horizontal drive unit 24 is composed of a shift register, an address decoder, etc., and sequentially selects unit circuits corresponding to the pixel strings of the column processing unit 23. By the selective scanning by the horizontal drive unit 24, the pixel signals processed by the column processing unit 23 for each unit circuit are sequentially output.
  • the system control unit 25 is configured by a timing generator or the like that generates various timing signals, and the vertical drive unit 22, the column processing unit 23, and the horizontal drive unit 24 are based on the various timing signals generated by the timing generator.
  • Drive control such as.
  • the signal processing unit 26 has at least an arithmetic processing function, and performs various signal processing such as arithmetic processing based on the pixel signal output from the column processing unit 23.
  • the data storage unit 27 temporarily stores the data necessary for the signal processing in the signal processing unit 26.
  • the light receiving element 1 configured as described above has a circuit configuration called a column ADC type in which an AD conversion circuit that performs AD conversion processing in the column processing unit 23 is arranged for each pixel string.
  • the light receiving element 1 outputs a depth image in which the distance information to the object is stored in the pixel value as the depth value.
  • the light receiving element 1 is mounted on a vehicle, for example, an in-vehicle system that measures the distance to an object outside the vehicle, a smartphone, or the like, and measures the distance to an object such as a user's hand. It is used for gesture recognition processing that recognizes the user's gesture based on the measurement result.
  • FIG. 2 is a cross-sectional view showing a first configuration example of the pixels 10 arranged in the pixel array unit 21.
  • the light receiving element 1 includes a semiconductor substrate 41 and a multilayer wiring layer 42 formed on the front surface side (lower side in the figure) thereof.
  • the semiconductor substrate 41 is made of, for example, silicon (hereinafter referred to as Si), and is formed with a thickness of, for example, 1 to 10 ⁇ m.
  • the photodiode PD is formed in pixel units by forming the N-type (second conductive type) semiconductor region 52 in pixel units in the P-type (first conductive type) semiconductor region 51. It is formed.
  • the P-type semiconductor region 51 is composed of a Si region which is a substrate material
  • the N-type semiconductor region 52 is SiGe in which germanium (hereinafter referred to as Ge) is added to Si. It is composed of areas.
  • the SiGe region as the N-type semiconductor region 52 can be formed by injecting Ge into the Si region or by epitaxial growth, as will be described later.
  • the N-type semiconductor region 52 may be composed of only Ge instead of the SiGe region.
  • the upper surface of the semiconductor substrate 41 on the upper side in FIG. 2 is the back surface of the semiconductor substrate 41, which is the light incident surface on which light is incident.
  • An antireflection film 43 is formed on the upper surface of the semiconductor substrate 41 on the back surface side.
  • the antireflection film 43 has, for example, a laminated structure in which a fixed charge film and an oxide film are laminated, and for example, an insulating thin film having a high dielectric constant (High-k) by an ALD (Atomic Layer Deposition) method can be used. Specifically, hafnium oxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), titanium oxide (TIO 2 ), STO (Strontium Titan Oxide) and the like can be used.
  • the antireflection film 43 is configured by laminating a hafnium oxide film 53, an aluminum oxide film 54, and a silicon oxide film 55.
  • the boundary portion 44 of the adjacent pixels 10 of the semiconductor substrate 41 (hereinafter, also referred to as the pixel boundary portion 44) is shielded from interpixelation to prevent incident light from being incident on the adjacent pixels.
  • a film 45 is formed.
  • the material of the inter-pixel light-shielding film 45 may be any material that blocks light, and for example, a metal material such as tungsten (W), aluminum (Al), or copper (Cu) can be used.
  • the flattening film 46 is an insulating film such as silicon oxide (SiO 2 ), silicon nitride (SiN), silicon oxynitride (SiON), etc. Alternatively, it is formed of an organic material such as resin.
  • An on-chip lens 47 is formed for each pixel on the upper surface of the flattening film 46.
  • the on-chip lens 47 is formed of, for example, a resin-based material such as a styrene-based resin, an acrylic-based resin, a styrene-acrylic copolymer resin, or a siloxane-based resin.
  • the light collected by the on-chip lens 47 is efficiently incident on the photodiode PD.
  • a moth eye structure portion 71 in which fine irregularities are periodically formed is formed on the back surface of the semiconductor substrate 41, above the region where the photodiode PD is formed. Further, the antireflection film 43 formed on the upper surface of the semiconductor substrate 41 corresponding to the moth-eye structure portion 71 is also formed with the moth-eye structure.
  • the moth-eye structure 71 of the semiconductor substrate 41 has, for example, a configuration in which regions of a plurality of quadrangular pyramids having substantially the same shape and substantially the same size are regularly provided (in a grid pattern).
  • the moth-eye structure 71 is formed, for example, in an inverted pyramid structure in which a plurality of quadrangular pyramid-shaped regions having vertices on the photodiode PD side are regularly arranged.
  • the moth-eye structure 71 may have a forward pyramid structure in which regions of a plurality of quadrangular pyramids having vertices on the on-chip lens 47 side are regularly arranged. The sizes and arrangements of the plurality of quadrangular pyramids may be randomly formed without being regularly arranged. Further, each concave portion or each convex portion of each quadrangular pyramid of the moth-eye structure portion 71 may have a certain degree of curvature and may have a rounded shape.
  • the moth-eye structure portion 71 may have a structure in which the concave-convex structure is repeated periodically or randomly, and the shape of the concave portion or the convex portion is arbitrary.
  • the moth-eye structure 71 as a diffraction structure that diffracts the incident light on the light incident surface of the semiconductor substrate 41, the sudden change in the refractive index at the substrate interface is mitigated and the influence of the reflected light is reduced. Can be made to.
  • adjacent pixels are provided from the back surface side (on-chip lens 47 side) of the semiconductor substrate 41 to a predetermined depth in the substrate depth direction and adjacent pixels in the depth direction of the semiconductor substrate 41.
  • An inter-pixel separation portion 61 for separation is formed.
  • the depth in the thickness direction of the substrate on which the inter-pixel separation portion 61 is formed can be any depth, and penetrates from the back surface side to the front surface side of the semiconductor substrate 41 and is completely separated in pixel units. You may.
  • the bottom surface of the inter-pixel separation portion 61 and the outer peripheral portion including the side wall are covered with the hafnium oxide film 53 which is a part of the antireflection film 43.
  • the inter-pixel separation unit 61 prevents the incident light from penetrating into the adjacent pixel 10, confine it in the own pixel, and prevents the incident light from leaking from the adjacent pixel 10.
  • the silicon oxide film 55 and the inter-pixel separation portion 61 are simultaneously formed by embedding the silicon oxide film 55, which is the material of the uppermost layer of the antireflection film 43, in a trench (groove) dug from the back surface side. Therefore, the silicon oxide film 55, which is a part of the laminated film as the antireflection film 43, and the inter-pixel separation portion 61 are made of the same material, but they do not necessarily have to be the same.
  • the material to be embedded in the trench (groove) dug from the back surface side as the inter-pixel separation portion 61 may be, for example, a metal material such as tungsten (W), aluminum (Al), titanium (Ti), titanium nitride (TiN) or the like.
  • the stray diffusion regions FD1 and FD2 as charge holding portions for temporarily holding the charges transferred from the photodiode PD are formed by a high-concentration N-type semiconductor region (N-type diffusion region). It is formed.
  • the multilayer wiring layer 42 is composed of a plurality of metal films M and an interlayer insulating film 62 between them.
  • FIG. 2 shows an example in which the first metal film M1 to the third metal film M3 are composed of three layers, but the number of layers of the metal film M is not limited to three.
  • the region of the first metal film M1 closest to the semiconductor substrate 41 located below the region where the photodiode PD is formed in other words, the photodiode PD in a plan view.
  • a metal wiring such as copper or aluminum is formed as a light-shielding member 63 in a region that at least partially overlaps with the formation region of the light-shielding member 63.
  • the light-shielding member 63 transmits infrared light that has entered the semiconductor substrate 41 from the light incident surface via the on-chip lens 47 and has passed through the semiconductor substrate 41 without being photoelectrically converted in the semiconductor substrate 41.
  • the light is shielded by the first metal film M1 closest to 41, and the light is prevented from penetrating into the second metal film M2 and the third metal film M3 below it. Due to this light-shielding function, infrared light that has passed through the semiconductor substrate 41 without being photoelectrically converted in the semiconductor substrate 41 is scattered by the metal film M below the first metal film M1 and is incident on neighboring pixels. It can be suppressed from being stored. This makes it possible to prevent erroneous detection of light by nearby pixels.
  • the light-shielding member 63 receives infrared light that has entered the semiconductor substrate 41 from the light incident surface via the on-chip lens 47 and has passed through the semiconductor substrate 41 without being photoelectrically converted in the semiconductor substrate 41. It also has a function of being reflected by the light-shielding member 63 and re-entering the semiconductor substrate 41. Therefore, it can be said that the light-shielding member 63 is also a reflective member. With this reflection function, the amount of infrared light photoelectrically converted in the semiconductor substrate 41 can be increased, and the quantum efficiency (QE), that is, the sensitivity of the pixel 10 to the infrared light can be improved.
  • QE quantum efficiency
  • the light-shielding member 63 may be formed with a structure that reflects or shields light from polysilicon, an oxide film, or the like.
  • the light-shielding member 63 is not composed of the one-layer metal film M, but is composed of a plurality of metal films M, for example, by forming the first metal film M1 and the second metal film M2 in a lattice pattern. You may.
  • the wiring capacity 64 is formed on the second metal film M2, which is a predetermined metal film M, for example, by forming a pattern in a comb-teeth shape in a plan view. It is formed.
  • the light-shielding member 63 and the wiring capacity 64 may be formed in the same layer (metal film M), but when they are formed in different layers, the wiring capacity 64 is formed in a layer farther from the semiconductor substrate 41 than the light-shielding member 63. It is formed. In other words, the light-shielding member 63 is formed closer to the semiconductor substrate 41 than the wiring capacity 64.
  • the light receiving element 1 arranges the semiconductor substrate 41, which is a semiconductor layer, between the on-chip lens 47 and the multilayer wiring layer 42, and emits incident light from the back surface side on which the on-chip lens 47 is formed. It has a back-illuminated structure that is incident on the PD.
  • the pixel 10 includes two transfer transistors TRG1 and TRG2 for the photodiode PD provided in each pixel, and charges (electrons) generated by photoelectric conversion by the photodiode PD are transferred to the floating diffusion region FD1.
  • the pixel 10 is configured so that it can be distributed to FD2.
  • the pixel 10 is prevented from penetrating the incident light to the adjacent pixel 10 by forming the inter-pixel separation portion 61 at the pixel boundary portion 44, is confined in the own pixel, and is incident from the adjacent pixel 10. Prevents light from leaking. Then, by providing the light-shielding member 63 on the metal film M below the formation region of the photodiode PD, the light-shielding member 63 can transmit the infrared light transmitted through the semiconductor substrate 41 without being photoelectrically converted in the semiconductor substrate 41. It is reflected by and re-entered into the semiconductor substrate 41.
  • the N-type semiconductor region 52 which is a photoelectric conversion region, is formed in the SiGe region or the Ge region. Since SiGe and Ge have a narrow bandgap as compared with Si, the quantum efficiency of near-infrared light can be increased.
  • the amount of infrared light photoelectrically converted in the semiconductor substrate 41 is increased, and the quantum efficiency (QE), that is, the infrared ray is increased.
  • QE quantum efficiency
  • FIG. 3 shows a circuit configuration of each pixel 10 two-dimensionally arranged in the pixel array unit 21.
  • Pixel 10 includes a photodiode PD as a photoelectric conversion element. Further, the pixel 10 has two transfer transistors TRG, two stray diffusion region FDs, an additional capacitance FDL, a switching transistor FDG, an amplification transistor AMP, a reset transistor RST, and two selection transistors SEL. Further, the pixel 10 has a charge discharge transistor OFG.
  • FIG. when distinguishing each of the transfer transistor TRG, the stray diffusion region FD, the additional capacitance FDL, the switching transistor FDG, the amplification transistor AMP, the reset transistor RST, and the selection transistor SEL provided in the pixel 10 two by two, FIG.
  • the transfer transistor TRG, switching transistor FDG, amplification transistor AMP, selection transistor SEL, reset transistor RST, and charge emission transistor OFG are composed of, for example, an N-type MOS transistor.
  • the transfer transistor TRG1 When the transfer drive signal TRG1g supplied to the gate electrode becomes active, the transfer transistor TRG1 becomes conductive in response to the transfer drive signal TRG1g, thereby transferring the charge stored in the photodiode PD to the floating diffusion region FD1.
  • the transfer drive signal TRG2g supplied to the gate electrode becomes active, the transfer transistor TRG2 becomes conductive in response to the transfer drive signal TRG2g, thereby transferring the charge stored in the photodiode PD to the floating diffusion region FD2.
  • the floating diffusion regions FD1 and FD2 are charge holding units that temporarily hold the charge transferred from the photodiode PD.
  • the switching transistor FDG1 When the FD drive signal FDG1g supplied to the gate electrode becomes active, the switching transistor FDG1 becomes conductive in response to this, thereby connecting the additional capacitance FDL1 to the floating diffusion region FD1.
  • the switching transistor FDG2 When the FD drive signal FDG2g supplied to the gate electrode becomes active, the switching transistor FDG2 becomes conductive in response to the FD drive signal FDG2g, thereby connecting the additional capacitance FDL2 to the floating diffusion region FD2.
  • the additional capacitance FDL1 and FDL2 are formed by the wiring capacitance 64 of FIG.
  • the reset transistor RST1 becomes conductive in response to the reset drive signal RSTg, thereby resetting the potential of the floating diffusion region FD1.
  • the reset transistor RST2 becomes conductive in response to the reset drive signal RSTg, thereby resetting the potential of the floating diffusion region FD2.
  • the reset transistors RST1 and RST2 are activated, the switching transistors FDG1 and FDG2 are also activated at the same time, and the additional capacitances FDL1 and FDL2 are also reset.
  • the vertical drive unit 22 connects the floating diffusion region FD1 and the additional capacitance FDL1 with the switching transistors FDG1 and FDG2 in the active state, and also connects the floating diffusion region FD2 and the additional capacitance FDL2. To connect. This allows more charge to be stored at high illuminance.
  • the vertical drive unit 22 sets the switching transistors FDG1 and FDG2 in an inactive state, and separates the additional capacitances FDL1 and FDL2 from the stray diffusion regions FD1 and FD2, respectively. This makes it possible to increase the conversion efficiency.
  • the charge discharge transistor OFG becomes conductive in response to the discharge drive signal OFG, thereby discharging the charge accumulated in the photodiode PD.
  • the amplification transistor AMP1 is connected to a constant current source (not shown) by connecting the source electrode to the vertical signal line 29A via the selection transistor SEL1 to form a source follower circuit.
  • the amplification transistor AMP2 is connected to a constant current source (not shown) by connecting the source electrode to the vertical signal line 29B via the selection transistor SEL2, and constitutes a source follower circuit.
  • the selection transistor SEL1 is connected between the source electrode of the amplification transistor AMP1 and the vertical signal line 29A.
  • the selection transistor SEL1 becomes conductive in response to the selection signal SEL1g, and outputs the pixel signal VSL1 output from the amplification transistor AMP1 to the vertical signal line 29A.
  • the selection transistor SEL2 is connected between the source electrode of the amplification transistor AMP2 and the vertical signal line 29B.
  • the selection transistor SEL2 becomes conductive in response to the selection signal SEL2g, and outputs the pixel signal VSL2 output from the amplification transistor AMP2 to the vertical signal line 29B.
  • the transfer transistors TRG1 and TRG2 of the pixel 10, the switching transistors FDG1 and FDG2, the amplification transistors AMP1 and AMP2, the selection transistors SEL1 and SEL2, and the charge discharge transistor OFG are controlled by the vertical drive unit 22.
  • the additional capacitance FDL1 and FDL2 and the switching transistors FDG1 and FDG2 that control the connection thereof may be omitted, but by providing the additional capacitance FDL and using them properly according to the amount of incident light, high dynamics are achieved.
  • the range can be secured.
  • a reset operation for resetting the charge of the pixel 10 is performed on all the pixels. That is, the charge discharge transistors OFG, the reset transistors RST1 and RST2, and the switching transistors FDG1 and FDG2 are turned on, and the stored charges of the photodiode PD, the stray diffusion regions FD1 and FD2, and the additional capacitances FDL1 and FDL2 are discharged. ..
  • the transfer transistors TRG1 and TRG2 are driven alternately. That is, in the first period, the transfer transistor TRG1 is controlled to be on and the transfer transistor TRG2 is controlled to be off. In this first period, the electric charge generated by the photodiode PD is transferred to the stray diffusion region FD1. In the second period following the first period, the transfer transistor TRG1 is controlled to be off and the transfer transistor TRG2 is controlled to be on. In this second period, the electric charge generated by the photodiode PD is transferred to the stray diffusion region FD2. As a result, the electric charge generated by the photodiode PD is alternately distributed and accumulated in the floating diffusion regions FD1 and FD2.
  • each pixel 10 of the pixel array unit 21 is selected line-sequentially.
  • the selection transistors SEL1 and SEL2 are turned on.
  • the electric charge accumulated in the floating diffusion region FD1 is output to the column processing unit 23 as the pixel signal VSL1 via the vertical signal line 29A.
  • the electric charge accumulated in the floating diffusion region FD2 is output to the column processing unit 23 as a pixel signal VSL2 via the vertical signal line 29B.
  • the reflected light received by the pixel 10 is delayed from the timing of irradiation by the light source according to the distance to the object. Since the distribution ratio of the electric charge accumulated in the two floating diffusion regions FD1 and FD2 changes depending on the delay time according to the distance to the object, the distribution ratio of the electric charge accumulated in the two floating diffusion regions FD1 and FD2 is used. , The distance to the object can be calculated.
  • FIG. 4 is a plan view showing an arrangement example of the pixel circuit shown in FIG.
  • the horizontal direction in FIG. 4 corresponds to the row direction (horizontal direction) of FIG. 1, and the vertical direction corresponds to the column direction (vertical direction) of FIG.
  • a photodiode PD is formed in an N-type semiconductor region 52 in a region in the center of a rectangular pixel 10, and this region is a SiGe region.
  • a transfer transistor TRG1, a switching transistor FDG1, a reset transistor RST1, an amplification transistor AMP1, and a selection transistor SEL1 are linearly arranged along a predetermined side of four sides of a rectangular pixel 10 outside the photodiode PD.
  • the transfer transistor TRG2, the switching transistor FDG2, the reset transistor RST2, the amplification transistor AMP2, and the selection transistor SEL2 are arranged linearly along the other side of the four sides of the rectangular pixel 10.
  • the charge discharge transistor OFG is arranged on a side different from the two sides of the pixel 10 on which the transfer transistor TRG, the switching transistor FDG, the reset transistor RST, the amplification transistor AMP, and the selection transistor SEL are formed.
  • the arrangement of the pixel circuits shown in FIG. 3 is not limited to this example, and may be other arrangements.
  • FIG. 5 shows another circuit configuration example of the pixel 10.
  • FIG. 5 the parts corresponding to those in FIG. 3 are designated by the same reference numerals, and the description of the parts will be omitted as appropriate.
  • Pixel 10 includes a photodiode PD as a photoelectric conversion element. Further, the pixel 10 has two each of a first transfer transistor TRGa, a second transfer transistor TRGb, a memory MEM, a stray diffusion region FD, a reset transistor RST, an amplification transistor AMP, and a selection transistor SEL.
  • the selection transistor SEL when distinguishing each of the first transfer transistor TRGa, the second transfer transistor TRGb, the memory MEM, the stray diffusion region FD, the reset transistor RST, the amplification transistor AMP, and the selection transistor SEL provided in the pixel 10 two by two. , 1st transfer transistors TRGa1 and TRGa2, 2nd transfer transistors TRGb1 and TRGb2, transfer transistors TRG1 and TRG2, memory MEM1 and MEM2, stray diffusion region FD1 and FD2, amplification transistors AMP1 and AMP2, and as shown in FIG. , Like the selection transistors SEL1 and SEL2.
  • the transfer transistor TRG is changed to two types of first transfer transistor TRGa and second transfer transistor TRGb, and a memory MEM is added.
  • the additional capacitance FDL and the switching transistor FDG are omitted.
  • the first transfer transistor TRGa, the second transfer transistor TRGb, the reset transistor RST, the amplification transistor AMP, and the selection transistor SEL are composed of, for example, an N-type MOS transistor.
  • the charge generated by the photodiode PD is transferred to and held in the floating diffusion regions FD1 and FD2, but in the pixel circuit of FIG. 5, it is newly provided as a charge holding portion. It is transferred to the stored memories MEM1 and MEM2 and held.
  • the first transfer transistor TRGa1 becomes conductive in response to the active state, so that the charge stored in the photodiode PD is stored in the memory MEM1. Transfer to.
  • the first transfer drive signal TRGa2g supplied to the gate electrode becomes active, the first transfer transistor TRGa2 becomes conductive in response to the active state, thereby transferring the charge stored in the photodiode PD to the memory MEM2. do.
  • the second transfer transistor TRGb1 becomes conductive in response to the second transfer drive signal TRGb1g supplied to the gate electrode when it becomes active, so that the charge held in the memory MEM1 is suspended and diffused. Transfer to area FD1.
  • the second transfer drive signal TRGb2g supplied to the gate electrode becomes active, the second transfer transistor TRGb2 becomes conductive in response to the active state, so that the electric charge held in the memory MEM2 is transferred to the floating diffusion region FD2. Transfer to.
  • the reset transistor RST1 becomes conductive in response to the reset drive signal RST1g, thereby resetting the potential of the floating diffusion region FD1.
  • the reset drive signal RST2g supplied to the gate electrode becomes active, the reset transistor RST2 becomes conductive in response to the reset drive signal RST2g, thereby resetting the potential of the floating diffusion region FD2.
  • the reset transistors RST1 and RST2 are activated, the second transfer transistors TRGb1 and TRGb2 are also activated at the same time, and the memories MEM1 and MEM2 are also reset.
  • the electric charge generated by the photodiode PD is distributed to and stored in the memories MEM1 and MEM2. Then, at the timing of reading, the charges held in the memories MEM1 and MEM2 are transferred to the floating diffusion regions FD1 and FD2, respectively, and are output from the pixel 10.
  • FIG. 6 is a plan view showing an arrangement example of the pixel circuit shown in FIG.
  • the horizontal direction in FIG. 6 corresponds to the row direction (horizontal direction) of FIG. 1, and the vertical direction corresponds to the column direction (vertical direction) of FIG.
  • the N-type semiconductor region 52 as the photodiode PD in the rectangular pixel 10 is formed in the SiGe region.
  • the first transfer transistor TRGa1, the second transfer transistor TRGb1, the reset transistor RST1, the amplification transistor AMP1, and the selection transistor SEL1 are linear along predetermined sides of the four sides of the rectangular pixel 10 outside the photodiode PD.
  • the first transfer transistor TRGa2, the second transfer transistor TRGb2, the reset transistor RST2, the reset transistor RST2, the amplification transistor AMP2, and the selection transistor SEL2 are arranged side by side along the other side of the four sides of the rectangular pixel 10. Are arranged side by side in a straight line.
  • the memories MEM1 and MEM2 are formed by, for example, an embedded N-type diffusion region.
  • the arrangement of the pixel circuits shown in FIG. 5 is not limited to this example, and may be other arrangements.
  • FIG. 7 is a plan view showing an arrangement example of 3x3 pixels 10 among the plurality of pixels 10 of the pixel array unit 21.
  • the SiGe region is separated into pixel units as shown in FIG. 7 when looking at the entire region of the pixel array unit 21. It becomes.
  • FIG. 8 is a cross-sectional view of a semiconductor substrate 41 illustrating a first forming method for forming an N-type semiconductor region 52 in a SiGe region.
  • Ge is selectively ion-implanted into the N-type semiconductor region 52 of the semiconductor substrate 41, which is the Si region, by using a mask to implant N.
  • the semiconductor region 52 of the mold can be formed as a SiGe region.
  • the region other than the N-type semiconductor region 52 of the semiconductor substrate 41 is the P-type semiconductor region 51 due to the Si region.
  • FIG. 9 is a cross-sectional view of the semiconductor substrate 41 illustrating a second forming method for forming the N-type semiconductor region 52 in the SiGe region.
  • the second forming method first, as shown in A of FIG. 9, the portion of the Si region that becomes the N-type semiconductor region 52 of the semiconductor substrate 41 is removed. Then, as shown in B of FIG. 9, an N-type semiconductor region 52 is formed in the SiGe region by forming a SiGe layer on the removed region by epitaxial growth.
  • the arrangement of the pixel transistors is different from the arrangement shown in FIG. 4, and an example in which the amplification transistor AMP1 is arranged in the vicinity of the N-type semiconductor region 52 formed in the SiGe region is an example. Shows.
  • the N-type semiconductor region 52 which is the SiGe region, is formed by either the first forming method of ion-implanting Ge into the Si region or the second forming method of epitaxially growing the SiGe layer. can do.
  • the N-type semiconductor region 52 is formed in the Ge region, it can be formed by the same method.
  • FIG. 10 is a diagram showing the planar arrangement of the pixel circuit of FIG. 3 shown in FIG. 4 again, and the P-shaped region 81 under the gate of the transfer transistors TRG1 and TRG2 shown by the broken line in FIG. 10 is a SiGe region. Or it is formed in the Ge region.
  • the channel region of the transfer transistors TRG1 and TRG2 in the SiGe region or the Ge region, the channel mobility can be increased in the transfer transistors TRG1 and TRG2 driven at high speed.
  • the channel region of the transfer transistors TRG1 and TRG2 is set to the SiGe region by using epitaxial growth, first, as shown in FIG. 11A, the portion formed with the N-type semiconductor region 52 of the semiconductor substrate 41 is formed. , The portion of the transfer transistors TRG1 and TRG2 under the gate is removed. Then, as shown in B of FIG. 11, by forming a SiGe layer on the removed region by epitaxial growth, the N-type semiconductor region 52 and the region under the gate of the transfer transistors TRG1 and TRG2 are formed in the SiGe region. It is formed.
  • the floating diffusion regions FD1 and FD2 are formed in the formed SiGe region, there is a problem that the dark current generated from the floating diffusion region FD becomes large. Therefore, when the transfer transistor TRG forming region is set to the SiGe region, as shown in FIG. 11B, a Si layer is further formed by epitaxial growth on the formed SiGe layer, and a high-concentration N-type semiconductor region is formed. A structure is adopted in which (N-type diffusion region) is formed to form a floating diffusion region FD. As a result, the dark current from the floating diffusion region FD can be suppressed.
  • the P-type semiconductor region 51 under the gate of the transfer transistor TRG may be used as a SiGe region by selective ion implantation using a mask instead of epitaxial growth.
  • the SiGe layer formed may be further subjected to epitaxial growth.
  • a Si layer can be formed to form the floating diffusion regions FD1 and FD2.
  • FIG. 12 is a schematic perspective view showing a substrate configuration example of the light receiving element 1.
  • the light receiving element 1 may be formed on one semiconductor substrate or may be formed on a plurality of semiconductor substrates.
  • FIG. 12A shows a schematic configuration example in which the light receiving element 1 is formed on one semiconductor substrate.
  • the control circuits such as the unit 22 and the horizontal drive unit 24, and the logic circuit area 112 corresponding to the arithmetic circuit of the column processing unit 23 and the signal processing unit 26 are arranged in a plane direction and formed on one semiconductor substrate 41. Will be done.
  • the cross-sectional structure shown in FIG. 2 is the structure of this single substrate.
  • FIG. 12B shows a schematic configuration example in which the light receiving element 1 is formed on a plurality of semiconductor substrates.
  • the pixel array region 111 is formed on the semiconductor substrate 41, while the logic circuit region 112 is the other semiconductor substrate 141.
  • the semiconductor substrate 41 and the semiconductor substrate 141 are laminated and configured.
  • the semiconductor substrate 41 in the case of the laminated structure will be referred to as a first substrate 41, and the semiconductor substrate 141 will be referred to as a second substrate 141.
  • FIG. 13 shows a cross-sectional view of the pixel 10 when the light receiving element 1 is composed of a laminated structure of two substrates.
  • FIG. 13 the parts corresponding to the first configuration example shown in FIG. 2 are designated by the same reference numerals, and the description of the parts will be omitted as appropriate.
  • FIG. 13 the point that the interpixel light-shielding film 45, the flattening film 46, the on-chip lens 47, and the moth-eye structure portion 71 are formed on the light incident surface side of the first substrate 41 is shown in FIG. It is the same as the first configuration example of.
  • the photodiode PD is formed on the first substrate 41 in pixel units, the two transfer transistors TRG1 and TRG2 on the front surface side of the first substrate 41, and the floating diffusion region FD1 as a charge holding portion.
  • FD2 is formed.
  • the difference from the first configuration example of FIG. 2 is that the insulating layer 153, which is a part of the wiring layer 151 on the front surface side of the first substrate 41, is bonded to the insulating layer 152 of the second substrate 141. ing.
  • the wiring layer 151 of the first substrate 41 includes at least one metal film M, and the metal film M is used to form a light-shielding member 63 in a region located below the region where the photodiode PD is formed. There is.
  • Pixel transistors Tr1 and Tr2 are formed at the interface opposite to the insulating layer 152 side, which is the bonding surface side of the second substrate 141.
  • the pixel transistors Tr1 and Tr2 are, for example, an amplification transistor AMP and a selection transistor SEL.
  • the pixel transistors other than the transfer transistor TRG that is, the switching transistor FDG, the amplification transistor AMP, and the selection transistor SEL are It is formed on the second substrate 141.
  • a wiring layer 161 having at least two layers of metal film M is formed on the surface of the second substrate 141 opposite to the first substrate 41 side.
  • the wiring layer 161 includes a first metal film M11, a second metal film M12, and an insulating layer 173.
  • the transfer drive signal TRG1g that controls the transfer transistor TRG1 is transferred from the first metal film M11 of the second substrate 141 to the transfer transistor TRG1 of the first substrate 41 by the TSV (Through Silicon Via) 171-1 penetrating the second substrate 141. It is supplied to the gate electrode of.
  • the transfer drive signal TRG2g that controls the transfer transistor TRG2 is supplied from the first metal film M11 of the second substrate 141 to the gate electrode of the transfer transistor TRG2 of the first substrate 41 by TSV171-2 penetrating the second substrate 141. Ru.
  • the electric charge accumulated in the floating diffusion region FD1 is transmitted from the first substrate 41 side to the first metal film M11 of the second substrate 141 by the TSV172-1 penetrating the second substrate 141.
  • the electric charge accumulated in the floating diffusion region FD2 is also transmitted from the first substrate 41 side to the first metal film M11 of the second substrate 141 by the TSV172-2 penetrating the second substrate 141.
  • the wiring capacity 64 is formed in the first metal film M11 or in a region (not shown) of the second metal film M12.
  • the metal film M on which the wiring capacitance 64 is formed has a high wiring density due to the capacitance formation, and the metal film M connected to the gate electrode such as the transfer transistor TRG or the switching transistor FDG is wired to reduce the induced current. The density is low.
  • the wiring layer (metal film M) connected to the gate electrode may be different for each pixel transistor.
  • the pixel 10 can be configured by laminating two semiconductor substrates of the first substrate 41 and the second substrate 141, and the pixel transistor other than the transfer transistor TRG is the first having a photoelectric conversion unit. It is formed on a second substrate 141 different from the substrate 41. Further, a vertical drive unit 22 for controlling the drive of the pixel 10, a pixel drive line 28, a vertical signal line 29 for transmitting a pixel signal, and the like are also formed on the second substrate 141. As a result, the pixels can be miniaturized, and the degree of freedom in BEOL (BackEndOfLine) design is increased.
  • BEOL BackEndOfLine
  • the semiconductor substrate 41 is not photoelectrically converted in the semiconductor substrate 41.
  • the transmitted infrared light can be reflected by the light-shielding member 63 and re-entered into the semiconductor substrate 41. Further, it is possible to prevent infrared light that has passed through the semiconductor substrate 41 without being photoelectrically converted in the semiconductor substrate 41 from being incident on the second substrate 141 side.
  • the N-type semiconductor region 52 constituting the photodiode PD is formed in the SiGe region or the Ge region, the quantum efficiency of near-infrared light can be improved.
  • the amount of infrared light photoelectrically converted in the semiconductor substrate 41 can be increased, the quantum efficiency (QE) can be increased, and the sensitivity of the sensor can be improved.
  • FIG. 13 shows an example in which the light receiving element 1 is composed of two semiconductor substrates, but it may be composed of three semiconductor substrates.
  • FIG. 14 shows a schematic cross-sectional view of a light receiving element 1 formed by laminating three semiconductor substrates.
  • FIG. 14 the parts corresponding to those in FIG. 12 are designated by the same reference numerals, and the description of the parts will be omitted as appropriate.
  • the pixel 10 in FIG. 14 is configured by laminating another semiconductor substrate 181 (hereinafter, referred to as a third substrate 181) on the first substrate 41 and the second substrate 141.
  • a third substrate 181 another semiconductor substrate 181
  • At least a photodiode PD and a transfer transistor TRG are formed on the first substrate 41.
  • the N-type semiconductor region 52 constituting the photodiode PD is formed of a SiGe region or a Ge region.
  • Pixel transistors other than the transfer transistor TRG such as the amplification transistor AMP, the reset transistor RST, and the selection transistor SEL, are formed on the second substrate 141.
  • the first substrate 41 is a back-illuminated type in which an on-chip lens 47 is formed on the back surface side opposite to the front surface side on which the wiring layer 151 is formed, and light is incident from the back surface side of the first substrate 41. It has become.
  • the wiring layer 151 of the first substrate 41 is bonded to the wiring layer 161 on the front surface side of the second substrate 141 by Cu-Cu bonding.
  • the second substrate 141 and the third substrate 181 are Cu of a Cu film formed on the wiring layer 182 on the front surface side of the third substrate 181 and a Cu film formed on the insulating layer 152 of the second substrate 141. -Attached by Cu bonding.
  • the wiring layer 161 of the second substrate 141 and the wiring layer 182 of the third substrate 181 are electrically connected via the through electrode 163.
  • the wiring layer 161 on the front surface side of the second substrate 141 is joined so as to face the wiring layer 151 of the first substrate 41, but the second substrate 141 is turned upside down.
  • the wiring layer 161 of the second substrate 141B may be joined so as to face the wiring layer 182 of the third substrate 181.
  • the pixel 10 described above has two transfer transistors TRG1 and TRG2 as transfer gates and two stray diffusion regions FD1 and FD2 as charge holding portions for one photodiode PD, and is a photodiode PD. It was a pixel structure called 2 taps that distributed the generated charge to two floating diffusion regions FD1 and FD2.
  • the pixel 10 has four transfer transistors TRG1 to TRG4 and a stray diffusion region FD1 to FD4 for one photodiode PD, and charges four charged by the photodiode PD. It is also possible to have a 4-tap pixel structure that is distributed to the floating diffusion regions FD1 to FD4.
  • FIG. 15 is a plan view when the memory MEM holding type pixel 10 shown in FIGS. 5 and 6 has a 4-tap pixel structure.
  • Pixel 10 has four first transfer transistors TRGa, second transfer transistor TRGb, reset transistor RST, amplification transistor AMP, and selection transistor SEL.
  • a set of a first transfer transistor TRGa, a second transfer transistor TRGb, a reset transistor RST, an amplification transistor AMP, and a selection transistor SEL is located outside the photodiode PD and along each side of each of the four sides of the rectangular pixel 10. They are arranged in a straight line.
  • the generated charge is distributed to the two floating diffusion region FDs by shifting the phase (light receiving timing) by 180 degrees between the first tap and the second tap. ..
  • the generated charge is transferred to the four floating diffusion regions FD by shifting the phase (light receiving timing) by 90 degrees from the first to fourth taps. It is possible to drive the distribution. Then, the distance to the object can be obtained based on the distribution ratio of the charges accumulated in the four floating diffusion regions FD.
  • the pixel 10 can have a structure in which the electric charge generated by the photodiode PD is distributed by 2 taps or 4 taps, and is not limited to 2 taps but can be 3 taps or more. It is possible. Even when the pixel 10 has a one-tap structure, the distance to the object can be obtained by shifting the phase in frame units.
  • FIG. 16 shows a configuration example in which the entire pixel array region 111 is a SiGe region when the light receiving element 1 is formed on one semiconductor substrate shown in FIG. 12A.
  • FIG. 16A is a plan view of the semiconductor substrate 41 in which the pixel array region 111 and the logic circuit region 112 are formed on the same substrate.
  • FIG. 16B is a cross-sectional view of the semiconductor substrate 41.
  • the entire pixel array region 111 can be a SiGe region, and other regions such as the logic circuit region 112 can be a Si region.
  • the pixel array region 111 formed in the SiGe region is a pixel array region by ion-implanting Ge into a portion of the semiconductor substrate 41 which is a Si region and becomes a pixel array region 111.
  • the entire 111 can be formed in the SiGe region.
  • FIG. 17 shows a configuration example in which the entire pixel array region 111 is a SiGe region when the light receiving element 1 has a laminated structure of the two semiconductor substrates shown in FIG. 12B.
  • FIG. 17 A in FIG. 17 is a plan view of the first substrate 41 (semiconductor substrate 41) of the two semiconductor substrates.
  • FIG. 17B is a cross-sectional view of the first substrate 41.
  • the entire pixel array region 111 formed on the first substrate 41 is regarded as a SiGe region.
  • the pixel array region 111 formed in the SiGe region is a pixel array region by ion-implanting Ge into a portion of the semiconductor substrate 41 which is a Si region and becomes a pixel array region 111.
  • the entire 111 can be formed in the SiGe region.
  • the SiGe region may be formed so that the Ge concentration differs in the depth direction of the first substrate 41. Specifically, as shown in FIG. 18, the depth of the substrate is increased so that the Ge concentration on the light incident surface side on which the on-chip lens 47 is formed is increased, and the Ge concentration is decreased toward the pixel transistor forming surface. By doing so, the Ge concentration can be graded to form a SiGe region.
  • the concentration can be in the range of / cm3.
  • the concentration can be controlled, for example, by selecting the implantation depth by controlling the implantation energy at the time of ion implantation, or by selecting the implantation region (region in the plane direction) using a mask.
  • pixel area ADC> As shown in FIGS. 16 to 18, when not only the photodiode PD (N-type semiconductor region 52) but also the entire pixel array region 111 is a SiGe region, the dark current of the stray diffusion region FD deteriorates. I am concerned. As one of the measures against the deterioration of the dark current of the floating diffusion region FD, for example, as shown in FIG. 11, there is a method of forming a Si layer on the SiGe region to form the floating diffusion region FD.
  • AD conversion is not performed for each column of the pixel 10 as shown in FIG. 1, but for each pixel or nxn pixel unit in the vicinity (n is 1 or more). It is possible to adopt the configuration of the pixel area ADC in which the AD conversion unit is provided in (integer). By adopting the configuration of the pixel area ADC, the time for holding the charge in the stray diffusion region FD can be shortened as compared with the column ADC type in FIG. 1, so that the deterioration of the dark current in the stray diffusion region FD is suppressed. can do.
  • 19 to 20 show the configuration of the light receiving element 1 in which the AD conversion unit is provided for each pixel.
  • FIG. 19 is a block diagram showing a detailed configuration example of the pixel 10 provided with an AD conversion unit for each pixel.
  • the pixel 10 is composed of a pixel circuit 201 and an ADC (AD conversion unit) 202.
  • ADC AD conversion unit
  • the AD conversion unit is provided not in pixel units but in nxn pixel units, one ADC 202 is provided for nxn pixel circuits 201.
  • the pixel circuit 201 outputs a charge signal corresponding to the amount of received light to the ADC 202 as an analog pixel signal SIG.
  • the ADC 202 converts the analog pixel signal SIG supplied from the pixel circuit 201 into a digital signal.
  • the ADC 202 is composed of a comparison circuit 211 and a data storage unit 212.
  • the comparison circuit 211 compares the reference signal REF supplied from the DAC 241 provided as the peripheral circuit unit with the pixel signal SIG from the pixel circuit 201, and outputs an output signal VCO as a comparison result signal representing the comparison result.
  • the comparison circuit 211 inverts the output signal VCO when the reference signal REF and the pixel signal SIG become the same (voltage).
  • the comparison circuit 211 is composed of a differential input circuit 221, a voltage conversion circuit 222, and a positive feedback circuit (PFB: positive feedback) 223, the details of which will be described later with reference to FIG. 20.
  • PFB positive feedback circuit
  • the vertical drive unit 22 In addition to inputting the output signal VCO from the comparison circuit 211 to the data storage unit 212, the vertical drive unit 22 indicates that it is a pixel signal writing operation and RD indicating that it is a pixel signal reading operation. A signal and a WORD signal that controls the read timing of the pixel 10 during the read operation of the pixel signal are supplied. Further, the time code generated by the time code generation unit (not shown) of the peripheral circuit unit is supplied via the time code transfer unit 242 provided as the peripheral circuit unit.
  • the data storage unit 212 includes a latch control circuit 231 that controls a time code writing operation and a reading operation based on a WR signal and an RD signal, and a latch storage unit 232 that stores the time code.
  • the latch control circuit 231 is updated every unit time supplied from the time code transfer unit 242 while the Hi (High) output signal VCO is input from the comparison circuit 211.
  • the time code is stored in the latch storage unit 232.
  • the reference signal REF and the pixel signal SIG become the same (voltage) and the output signal VCO supplied from the comparison circuit 211 is inverted to Lo (Low)
  • the time code supplied is written (updated). It is stopped, and the time code finally stored in the latch storage unit 232 is held in the latch storage unit 232.
  • the time code stored in the latch storage unit 232 represents the time when the pixel signal SIG and the reference signal REF become equal, and represents the digitized light quantity value.
  • the operation of the pixel 10 is changed from the writing operation to the reading operation.
  • the latch control circuit 231 is based on the WORD signal that controls the reading timing, and when the pixel 10 reaches its own reading timing, the time code stored in the latch storage unit 232 ( The digital pixel signal SIG) is output to the time code transfer unit 242.
  • the time code transfer unit 242 sequentially transfers the supplied time code in the column direction (vertical direction) and supplies it to the signal processing unit 26.
  • FIG. 20 is a circuit diagram showing a detailed configuration of a differential input circuit 221 constituting the comparison circuit 211, a voltage conversion circuit 222, a positive feedback circuit 223, and a pixel circuit 201.
  • FIG. 20 shows a circuit corresponding to one tap of the pixel 10 composed of two taps due to space limitations.
  • the differential input circuit 221 compares the pixel signal SIG of one tap output from the pixel circuit 201 in the pixel 10 with the reference signal REF output from the DAC 241 and has a pixel signal SIG higher than the reference signal REF. Sometimes it outputs a predetermined signal (current).
  • the differential input circuit 221 includes transistors 281 and 282 as a differential pair, transistors 283 and 284 constituting the current mirror, transistors 285 as a constant current source for supplying the current IB according to the input bias current Vb, and a difference. It is composed of a transistor 286 that outputs an output signal HVO of the dynamic input circuit 221.
  • Transistors 281, 282, and 285 are composed of MOSFETs (Negative Channel MOS) transistors, and transistors 283, 284, and 286 are composed of MOSFETs (Positive Channel MOS) transistors.
  • the reference signal REF output from the DAC 241 is input to the gate of the transistor 281, and the pixel output from the pixel circuit 201 in the pixel 10 is input to the gate of the transistor 282.
  • the signal SIG is input.
  • the sources of the transistors 281 and 282 are connected to the drain of the transistor 285, and the source of the transistor 285 is connected to a predetermined voltage VSS (VSS ⁇ VDD2 ⁇ VDD1).
  • the drain of the transistor 281 is connected to the gate of the transistors 283 and 284 and the drain of the transistor 283 constituting the current mirror circuit, and the drain of the transistor 282 is connected to the drain of the transistor 284 and the gate of the transistor 286.
  • the sources of the transistors 283, 284, and 286 are connected to the first supply voltage VDD1.
  • the voltage conversion circuit 222 is composed of, for example, an MIMO-type transistor 291.
  • the drain of the transistor 291 is connected to the drain of the transistor 286 of the differential input circuit 221 and the source of the transistor 291 is connected to a predetermined connection point in the positive feedback circuit 223 and the gate of the transistor 286 is at the bias voltage VBIAS. It is connected.
  • the transistors 281 to 286 constituting the differential input circuit 221 are circuits that operate at a high voltage up to the first power supply voltage VDD1, and the positive feedback circuit 223 has a second power supply voltage VDD2 lower than the first power supply voltage VDD1. It is a working circuit.
  • the voltage conversion circuit 222 converts the output signal HVO input from the differential input circuit 221 into a low voltage signal (conversion signal) LVI in which the positive feedback circuit 223 can operate, and supplies the output signal HVO to the positive feedback circuit 223.
  • the bias voltage VBIAS may be any voltage that converts the transistors 301 to 307 of the positive feedback circuit 223 that operate at a low voltage into a voltage that does not destroy them.
  • the positive feedback circuit 223 is inverted when the pixel signal SIG is higher than the reference signal REF based on the conversion signal LVI in which the output signal HVO from the differential input circuit 221 is converted into the signal corresponding to the second power supply voltage VDD2. Outputs the comparison result signal. Further, the positive feedback circuit 223 speeds up the transition speed when the output signal VCO output as the comparison result signal is inverted.
  • the positive feedback circuit 223 is composed of seven transistors 301 to 307.
  • Transistors 301, 302, 304, and 306 are composed of MIMO transistors, and transistors 303, 305, and 307 are composed of MIMO transistors.
  • the source of the transistor 291 which is the output end of the voltage conversion circuit 222 is connected to the drain of the transistors 302 and 303 and the gate of the transistors 304 and 305.
  • the source of the transistor 301 is connected to the second power supply voltage VDD2
  • the drain of the transistor 301 is connected to the source of the transistor 302
  • the gate of the transistor 302 is the drain of the transistors 304 and 305 which are also the output ends of the positive feedback circuit 223.
  • the sources of transistors 303 and 305 are connected to a predetermined voltage VSS.
  • the initialization signal INI is supplied to the gates of the transistors 301 and 303.
  • Transistors 304 to 307 form a two-input NOR circuit, and the connection point between the drains of the transistors 304 and 305 is the output end where the comparison circuit 211 outputs the output signal VCO.
  • a control signal TERM which is a second input, which is not a conversion signal LVI, which is the first input, is supplied to the gate of the transistor 306, which is composed of a polymerase transistor, and the gate of the transistor 307, which is composed of an MIMO transistor. ..
  • the source of the transistor 306 is connected to the second power supply voltage VDD2, and the drain of the transistor 306 is connected to the source of the transistor 304.
  • the drain of the transistor 307 is connected to the output end of the comparison circuit 211, and the source of the transistor 307 is connected to a predetermined voltage VSS.
  • the reference signal REF is set to a voltage higher than the pixel signal SIG of all the pixels 10, the initialization signal INI is set to Hi, and the comparison circuit 211 is initialized.
  • the reference signal REF is applied to the gate of the transistor 281 and the pixel signal SIG is applied to the gate of the transistor 282.
  • the voltage of the reference signal REF is higher than the voltage of the pixel signal SIG, most of the current output by the transistor 285 as a current source flows to the transistor 283 connected to the diode via the transistor 281.
  • the channel resistance of the transistor 284 having a common gate with the transistor 283 becomes sufficiently low to keep the gate of the transistor 286 at substantially the first power supply voltage VDD1 level, and the transistor 286 is cut off. Therefore, even if the transistor 291 of the voltage conversion circuit 222 is conducting, the positive feedback circuit 223 as the charging circuit does not charge the conversion signal LVI.
  • the transistor 303 since the Hi signal is supplied as the initialization signal INI, the transistor 303 conducts and the positive feedback circuit 223 discharges the conversion signal LVI. Further, since the transistor 301 is cut off, the positive feedback circuit 223 does not charge the conversion signal LVI via the transistor 302. As a result, the conversion signal LVI is discharged to a predetermined voltage VSS level, the positive feedback circuit 223 outputs a Hi output signal VCO by the transistors 304 and 305 constituting the NOR circuit, and the comparison circuit 211 is initialized. ..
  • the initialization signal INI is set to Lo, and the sweep of the reference signal REF is started.
  • the transistor 286 is turned off and is cut off, and the output signal VCO is a Hi signal, so the transistor 302 is also turned off and cut off.
  • the transistor 303 is also cut off because the initialization signal INI is Lo.
  • the conversion signal LVI maintains a predetermined voltage VSS in a high impedance state, and a Hi output signal VCO is output.
  • the output current of the transistor 285 of the current source does not flow through the transistor 281, the gate potentials of the transistors 283 and 284 increase, and the channel resistance of the transistor 284 increases.
  • the current flowing through the transistor 282 causes a voltage drop to lower the gate potential of the transistor 286, and the transistor 291 becomes conductive.
  • the output signal HVO output from the transistor 286 is converted into a conversion signal LVI by the transistor 291 of the voltage conversion circuit 222 and supplied to the positive feedback circuit 223.
  • the positive feedback circuit 223 as a charging circuit charges the conversion signal LVI and brings the potential closer from the low voltage VSS to the second power supply voltage VDD2.
  • the output signal VCO becomes Lo and the transistor 302 conducts.
  • the transistor 301 is also conducting because the Lo initialization signal INI is applied, and the positive feedback circuit 223 rapidly charges the conversion signal LVI via the transistors 301 and 302 to set the potential to the second power supply voltage. Lift up to VDD2 at once.
  • the transistor 291 of the voltage conversion circuit 222 Since the transistor 291 of the voltage conversion circuit 222 has a bias voltage VBIAS applied to the gate, it is cut off when the voltage of the conversion signal LVI reaches a voltage value lower than the bias voltage VBIAS by the transistor threshold value. Even if the transistor 286 remains conductive, the conversion signal LVI is not charged any more, and the voltage conversion circuit 222 also functions as a voltage clamp circuit.
  • Charging the conversion signal LVI by the continuity of the transistor 302 is a positive feedback operation that accelerates the movement of the conversion signal LVI, starting from the fact that the conversion signal LVI has risen to the inverter threshold value. Since the transistor 285, which is the current source of the differential input circuit 221, has a huge number of circuits operating in parallel and simultaneously with the light receiving element 1, the current per circuit is set to a very small current. Further, the reference signal REF is swept very slowly because the voltage changing in the unit time when the time code is switched becomes the LSB step of the AD conversion. Therefore, the change in the gate potential of the transistor 286 is also slow, and the change in the output current of the transistor 286 driven by the change is also slow.
  • the output signal VCO can transition sufficiently rapidly.
  • the transition time of the output signal VCO is a fraction of the unit time of the time code, and is typically 1 ns or less.
  • the comparison circuit 211 can achieve this output transition time only by setting a small current of, for example, 0.1 uA, to the transistor 285 of the current source.
  • the output signal VCO can be set to Lo regardless of the state of the differential input circuit 221.
  • the output signal VCO of the comparison circuit 211 ends the comparison period with Hi, and is controlled by the output signal VCO.
  • the data storage unit 212 cannot fix the value, and the AD conversion function is lost.
  • the output signal VCO that has not yet been inverted to Lo can be forcibly inverted by inputting the Hi pulse control signal TERM at the end of sweeping the reference signal REF. can. Since the data storage unit 212 stores (latches) the time code immediately before the forced inversion, when the configuration of FIG. 20 is adopted, the ADC 202 eventually clamps the output value for the luminance input above a certain level. Functions as a vessel.
  • the output signal VCO becomes Hi regardless of the state of the differential input circuit 221. Therefore, by combining the forced Hi output of this output signal VCO and the forced Lo output by the control signal TERM described above, it is related to the state of the differential input circuit 221 and the pixel circuits 201 and DAC 241 which are the preceding stages thereof.
  • the output signal VCO can be set to any value. With this function, for example, the circuit after the pixel 10 can be tested only by the electric signal input without relying on the optical input to the light receiving element 1.
  • FIG. 21 is a circuit diagram showing a connection between the output of each tap of the pixel circuit 201 and the differential input circuit 221 of the comparison circuit 211.
  • the differential input circuit 221 of the comparison circuit 211 shown in FIG. 20 is connected to the output destination of each tap of the pixel circuit 201.
  • the pixel circuit 201 of FIG. 20 is equivalent to the pixel circuit 201 of FIG. 21, and has the same circuit configuration as the pixel 10 shown in FIG.
  • the number of circuits in pixel units or nxn pixel units increases, so that the light receiving element 1 is configured with the laminated structure shown in FIG. 12B. Will be done.
  • the transistor 281, 282, and 285 of the pixel circuit 201 and the differential input circuit 221 are arranged on the first substrate 41, and the other circuits are arranged on the second substrate 141.
  • the first substrate 41 and the second substrate 141 are electrically connected by a Cu-Cu junction.
  • the circuit arrangement of the first substrate 41 and the second substrate 141 is not limited to this example.
  • FIG. 22 is a cross-sectional view showing a second configuration example of the pixels 10 arranged in the pixel array unit 21.
  • FIG. 22 the parts corresponding to the first configuration example shown in FIG. 2 are designated by the same reference numerals, and the description of the parts will be omitted as appropriate.
  • FIG. 22 is a cross-sectional view of the pixel structure of the memory MEM holding type pixel 10 shown in FIG. 5, and is a cross-sectional view in the case of being composed of a laminated structure of two substrates shown in FIG. 12B. Shows.
  • the metal film M of the wiring layer 151 on the first substrate 41 side and the metal film M of the wiring layer 161 of the second substrate 141 are electrically connected by TSV171 or TSV172. In FIG. 22, it is electrically connected by a Cu-Cu junction.
  • the wiring layer 151 of the first substrate 41 includes the first metal film M21, the second metal film M22, and the insulating layer 153
  • the wiring layer 161 of the second substrate 141 is the first metal film. Includes M31, a second metal film M32, and an insulating layer 173.
  • the wiring layer 151 of the first substrate 41 and the wiring layer 161 of the second substrate 141 are electrically connected to each other by a Cu film formed on a part of the joint surface shown by the broken line.
  • the entire pixel array region 111 of the first substrate 41 described with reference to FIG. 17 is regarded as a SiGe region.
  • the P-type semiconductor region 51 and the N-type semiconductor region 52 are formed by the SiGe region. This improves the quantum efficiency for infrared light.
  • the pixel transistor forming surface of the first substrate 41 will be described with reference to FIG. 23.
  • FIG. 23 is an enlarged cross-sectional view of the vicinity of the pixel transistor of the first substrate 41 of FIG. 22.
  • first transfer transistors TRGa1 and TRGa2 are formed for each pixel 10.
  • second transfer transistors TRGb1 and TRGb2 are formed for each pixel 10.
  • An oxide film 351 is formed on the interface of the first substrate 41 on the wiring layer 151 side with a film thickness of, for example, about 10 to 100 nm.
  • the oxide film 351 is formed by forming a silicon film on the surface of the first substrate 41 by epitaxial growth and heat-treating it.
  • the oxide film 351 also functions as a gate insulating film for each of the first transfer transistor TRGa and the second transfer transistor TRGb.
  • the dark current generated from the transfer transistor TRG and memory MEM becomes large.
  • the dark current caused by the gate generated when the transfer transistor TRG is turned on cannot be ignored.
  • the dark current caused by the interface state can be reduced by the oxide film 351 having a film thickness of about 10 to 100 nm. Therefore, according to the second configuration example, the dark current can be suppressed while increasing the quantum efficiency. The same effect can be obtained when a Ge region is formed instead of the SiGe region.
  • the oxide film 351 is formed. Therefore, the reset noise from the amplification transistor AMP can also be reduced.
  • FIG. 24 is a cross-sectional view showing a third configuration example of the pixels 10 arranged in the pixel array unit 21.
  • FIG. 24 is a cross-sectional view of the pixel 10 when the light receiving element 1 is composed of a laminated structure of two substrates, and is connected by Cu-Cu bonding as in the second configuration example shown in FIG. 22. It is a cross-sectional view of. Further, similarly to the second configuration example shown in FIG. 22, the entire pixel array region 111 of the first substrate 41 is formed by the SiGe region.
  • the floating diffusion region FD1 and FD2 are formed in the SiGe region, there is a problem that the dark current generated from the floating diffusion region FD becomes large as described above. Therefore, in order to minimize the influence of the dark current, the volumes of the stray diffusion regions FD1 and FD2 formed in the first substrate 41 are formed to be small.
  • the capacity of the floating diffusion region FD is formed by forming the MIM (Metal Insulator Metal) capacitive element 371 on the wiring layer 151 of the first substrate 41 and always connecting to the floating diffusion region FD. Is increasing. Specifically, the MIM capacitance element 371-1 is connected to the stray diffusion region FD1, and the MIM capacitance element 371-2 is connected to the stray diffusion region FD2.
  • the MIM capacitive element 371 has a U-shaped three-dimensional structure and is realized with a small mounting area.
  • the capacity shortage of the floating diffusion region FD formed to have a small volume in order to suppress the generation of dark current can be compensated by the MIM capacity element 371.
  • the dark current can be suppressed while increasing the quantum efficiency for infrared light.
  • an example of the MIM capacitive element has been described as an additional capacitive element connected to the floating diffusion region FD, but the present invention is not limited to the MIM capacitive element.
  • it may be an additional capacitance including a MOM (Metal Oxide Metal) capacitive element, a Poly-Poly capacitive element (a capacitive element in which both counter electrodes are formed of polysilicon), or a parasitic capacitance formed by wiring. ..
  • MOM Metal Oxide Metal
  • an additional capacitance element is connected not only to the floating diffusion region FD but also to the memory MEM. It can be configured.
  • the additional capacitive element connected to the stray diffusion region FD or the memory MEM was formed in the wiring layer 151 of the first substrate 41 in the example of FIG. 24, but may be formed in the wiring layer 161 of the second substrate 14. ..
  • the light-shielding member 63 and the wiring capacity 64 in the first configuration example of FIG. 2 are omitted, but the light-shielding member 63 and the wiring capacity 64 may be formed.
  • IR image sensor The structure of the light receiving element 1 in which the quantum efficiency of near-infrared light is improved by setting the photodiode PD or pixel array region 111 as the SiGe region or Ge region described above outputs distance measurement information by the indirect ToF method. It can be used not only for distance measuring sensors but also for other sensors that receive infrared light.
  • an IR image sensor that receives infrared light and generates an IR image
  • an RGBIR that receives infrared light and RGB light.
  • a distance measuring sensor that receives infrared light and outputs distance measuring information
  • an example of a direct ToF type distance measuring sensor using SPAD pixels and a CAPD (Current Assisted Photonic Demodulator) type ToF sensor Will be explained.
  • FIG. 25 shows the circuit configuration of the pixel 10 when the light receiving element 1 is configured as an IR image pickup sensor that generates and outputs an IR image.
  • the electric charge generated by the photodiode PD is distributed and accumulated in the two floating diffusion regions FD1 and FD2, so that the pixel 10 has the transfer transistor TRG, the floating diffusion region FD, and the additional capacitance. It had two FDLs, two switching transistors FDG, two amplification transistors AMP, two reset transistors RST, and two selection transistors SEL.
  • the light receiving element 1 is an IR image pickup sensor
  • only one charge holding unit is required to temporarily hold the charge generated by the photodiode PD, so that the transfer transistor TRG, the stray diffusion region FD, the additional capacitance FDL, and the switching transistor FDG , Amplification transistor AMP, reset transistor RST, and selection transistor SEL are also one each.
  • the pixel 10 has the transfer transistor TRG2, the switching transistor FDG2, and the reset transistor RST2 from the circuit configuration shown in FIG. It is equivalent to the configuration in which the amplification transistor AMP2 and the selection transistor SEL2 are omitted.
  • the floating diffusion region FD2 and the vertical signal line 29B are also omitted.
  • FIG. 26 is a cross-sectional view showing a configuration example of the pixel 10 when the light receiving element 1 is configured as an IR image pickup sensor.
  • the difference between the case where the light receiving element 1 is configured as an IR image sensor and the case where the light receiving element 1 is configured as a ToF sensor is a floating diffusion region formed on the front surface side of the semiconductor substrate 41 as described with reference to FIG. The presence or absence of FD2 and a pixel transistor. Therefore, the configuration of the multilayer wiring layer 42 formed on the front surface side of the semiconductor substrate 41 is different from that in FIG. Further, the floating diffusion region FD2 is omitted.
  • Other configurations in FIG. 26 are similar to those in FIG.
  • the quantum efficiency of near-infrared light can be increased by setting the photodiode PD in the SiGe region or the Ge region.
  • the configuration of the pixel area ADC, the second configuration example of FIG. 22, and the third configuration example of FIG. 24 can be similarly applied to the IR image pickup sensor. ..
  • not only the photodiode PD but also the entire pixel array region 111 can be a SiGe region or a Ge region.
  • the light receiving element 1 having the pixel structure of FIG. 26 is a sensor in which all the pixels 10 receive infrared light, but it can also be applied to an RGBIR image pickup sensor that receives infrared light and RGB light.
  • the light receiving element 1 is configured as an RGBIR image pickup sensor that receives infrared light and RGB light
  • the 2x2 pixel arrangement shown in FIG. 27 is repeatedly arranged in the row direction and the column direction.
  • FIG. 27 shows an example of pixel arrangement when the light receiving element 1 is configured as an RGBIR image pickup sensor that receives infrared light and RGB light.
  • pixels of 2x2 include an R pixel that receives R (red) light and a B pixel that receives B (blue) light.
  • R pixels that receive G (green) light, and IR pixels that receive IR (infrared) light are assigned.
  • each pixel 10 is an R pixel, a B pixel, a G pixel, or an IR pixel is determined by a color filter inserted between the flattening film 46 and the on-chip lens 47 in FIG. 26 in the RGBIR image pickup sensor. Determined by the layer.
  • FIG. 28 is a cross-sectional view showing an example of a color filter layer inserted between the flattening film 46 and the on-chip lens 47 when the light receiving element 1 is configured as an RGBIR image pickup sensor.
  • B pixels, G pixels, R pixels, and IR pixels are arranged in order from left to right.
  • a first color filter layer 381 and a second color filter layer 382 are inserted between the flattening film 46 (not shown in FIG. 28) and the on-chip lens 47.
  • a B filter that transmits B light is arranged in the first color filter layer 381, and an IR cut filter that blocks IR light is arranged in the second color filter layer 382.
  • an IR cut filter that blocks IR light is arranged in the second color filter layer 382.
  • a G filter that transmits G light is arranged in the first color filter layer 381, and an IR cut filter that blocks IR light is arranged in the second color filter layer 382.
  • an IR cut filter that blocks IR light is arranged in the second color filter layer 382.
  • an R filter that transmits R light is arranged in the first color filter layer 381, and an IR cut filter that blocks IR light is arranged in the second color filter layer 382.
  • an R filter that transmits R light is arranged in the first color filter layer 381
  • an IR cut filter that blocks IR light is arranged in the second color filter layer 382.
  • an R filter that transmits R light is arranged in the first color filter layer 381, and a B filter that transmits B light is arranged in the second color filter layer 382.
  • a B filter that transmits B light is arranged in the second color filter layer 382.
  • the photodiode PD of the IR pixel is formed in the SiGe region or the Ge region described above, and the R pixel, the G pixel, and the photodiode PD of the R pixel are in the Si region. It is formed.
  • the quantum efficiency of near-infrared light can be improved by setting the photodiode PD of the IR pixel to the SiGe region or the Ge region.
  • the configuration of the pixel area ADC, the second configuration example of FIG. 22, and the third configuration example of FIG. 24 can also be similarly adopted for the RGBIR image pickup sensor. ..
  • not only the photodiode PD but also the entire pixel array region 111 can be a SiGe region or a Ge region.
  • ToF sensors There are two types of ToF sensors: indirect ToF sensors and direct ToF sensors.
  • the indirect ToF sensor detects the flight time from the emission of the irradiation light to the reception of the reflected light as the phase difference, and calculates the distance to the object, whereas the direct ToF sensor irradiates. This method directly measures the flight time from when light is emitted until when reflected light is received, and calculates the distance to an object.
  • SPAD Single Photon Avalanche Diode
  • FIG. 29 shows an example of a circuit configuration of a SPAD pixel using SPAD as a photoelectric conversion element of the pixel 10.
  • Pixel 10 in FIG. 29 includes a SPAD 401 and a readout circuit 402 composed of a transistor 411 and an inverter 412.
  • the pixel 10 also includes a switch 413.
  • the transistor 411 is composed of a P-type MOS transistor.
  • the cathode of the SPAD 401 is connected to the drain of the transistor 411, and is also connected to the input terminal of the inverter 412 and one end of the switch 413.
  • the anode of the SPAD401 is connected to a power supply voltage VA (hereinafter, also referred to as an anode voltage VA).
  • SPAD401 is a photodiode (single photon avalanche photodiode) that avalanche amplifies the generated electrons and outputs a cathode voltage VS signal when incident light is incident.
  • the power supply voltage VA supplied to the anode of the SPAD401 is, for example, a negative bias (negative potential) of about ⁇ 20 V.
  • Transistor 411 is a constant current source that operates in the saturation region, and passive quenching is performed by acting as a quenching resistance.
  • the source of the transistor 411 is connected to the power supply voltage VE, and the drain is connected to the cathode of the SPAD 401, the input terminal of the inverter 412, and one end of the switch 413.
  • the power supply voltage VE is also supplied to the cathode of the SPAD 401.
  • a pull-up resistor can also be used instead of the transistor 411 connected in series with the SPAD401.
  • a voltage larger than the yield voltage VBD of SPAD401 is applied to SPAD401.
  • the breakdown voltage VBD of the SPAD 401 is 20V and a voltage 3V larger than that is applied, the power supply voltage VE supplied to the source of the transistor 411 is 3V.
  • the yield voltage VBD of SPAD401 changes greatly depending on the temperature and so on. Therefore, the applied voltage applied to the SPAD 401 is controlled (adjusted) according to the change in the yield voltage VBD. For example, if the power supply voltage VE is a fixed voltage, the anode voltage VA is controlled (adjusted).
  • the switch 413 is connected to the cathode of the SPAD 401, the input terminal of the inverter 412, and the drain of the transistor 411, and the other end is connected to the ground (GND).
  • the switch 413 can be composed of, for example, an N-type MOS transistor, and is turned on and off according to the gating control signal VG supplied from the vertical drive unit 22.
  • the vertical drive unit 22 supplies a high or low gating control signal VG to the switch 413 of each pixel 10, and turns the switch 413 on and off to turn each pixel 10 of the pixel array unit 21 into an active pixel or an inactive pixel.
  • An active pixel is a pixel that detects the incident of a photon
  • an inactive pixel is a pixel that does not detect the incident of a photon.
  • FIG. 30 is a graph showing the change in the cathode voltage VS of the SPAD401 and the pixel signal PFout according to the incident of photons.
  • the switch 413 is set to off as described above.
  • the power supply voltage VE for example, 3V
  • the power supply voltage VA for example, -20V
  • a reverse voltage larger than the breakdown voltage VBD 20V
  • SPAD401 is set to Geiger mode.
  • the cathode voltage VS of the SPAD 401 is the same as the power supply voltage VE, for example, at time t0 in FIG.
  • the cathode voltage VS of the SPAD401 becomes lower than 0V
  • the anode-cathode voltage of the SPAD401 becomes lower than the breakdown voltage VBD
  • the avalanche amplification stops.
  • a voltage drop is generated by the current generated by the avalanche amplification flowing through the transistor 411, and the cathode voltage VS becomes lower than the breakdown voltage VBD due to the generated voltage drop, so that the avalanche amplification is stopped.
  • the action of causing is a quenching action.
  • the inverter 412 outputs a Lo pixel signal PFout when the cathode voltage VS, which is an input voltage, is equal to or higher than a predetermined threshold voltage Vth, and outputs a Hi pixel signal PFout when the cathode voltage VS is less than the predetermined threshold voltage Vth. do. Therefore, when a photon is incident on the SPAD401, an avalanche multiplication occurs, the cathode voltage VS drops, and the threshold voltage Vth is lowered, the pixel signal PFout is inverted from the low level to the high level. On the other hand, when the avalanche multiplication of SPAD401 converges, the cathode voltage VS rises, and becomes the threshold voltage Vth or more, the pixel signal PFout is inverted from the high level to the low level.
  • the switch 413 is turned on.
  • the cathode voltage VS of the SPAD 401 becomes 0V.
  • the voltage between the anode and the cathode of the SPAD401 becomes equal to or lower than the breakdown voltage VBD, so that even if a photon enters the SPAD401, it does not react.
  • FIG. 31 is a cross-sectional view showing a configuration example when the pixel 10 is a SPAD pixel.
  • the inter-pixel separation portion 61 formed from the back surface side (on-chip lens 47 side) of the semiconductor substrate 41 to a predetermined depth in the substrate depth direction at the pixel boundary portion 44 of FIG. 2 forms the semiconductor substrate 41. It has been changed to the inter-pixel separation portion 61'that penetrates.
  • an N-well region 441, a P-type diffusion layer 442, an N-type diffusion layer 443, a hole storage layer 444, and a high-concentration P-type diffusion layer 445 are provided.
  • the depletion layer formed in the region where the P-type diffusion layer 442 and the N-type diffusion layer 443 are connected forms the avalanche multiplication region 446.
  • the N-well region 441 is formed by controlling the impurity concentration of the semiconductor substrate 41 to be N-type, and forms an electric field that transfers electrons generated by photoelectric conversion in the pixel 10 to the avalanche multiplying region 446.
  • This N-well region 441 is formed by a SiGe region or a Ge region.
  • the P-type diffusion layer 442 is a dense P-type diffusion layer (P +) formed so as to cover almost the entire pixel region in the plane direction.
  • the N-type diffusion layer 443 is a dense N-type diffusion layer (N +) formed in the vicinity of the surface of the semiconductor substrate 41 so as to cover almost the entire surface of the pixel region, similar to the P-type diffusion layer 442.
  • the N-type diffusion layer 443 is a contact layer connected to a contact electrode 451 as a cathode electrode for supplying a negative voltage for forming an avalanche multiplication region 446, and a part thereof is a contact on the surface of the semiconductor substrate 41. It has a convex shape so that the electrode 451 is formed.
  • a power supply voltage VE is applied to the N-type diffusion layer 443 from the contact electrode 451.
  • the hole storage layer 444 is a P-type diffusion layer (P) formed so as to surround the side surface and the bottom surface of the N-well region 441, and stores holes. Further, the hole storage layer 444 is connected to a high-concentration P-type diffusion layer 445 electrically connected to the contact electrode 452 as the anode electrode of the SPAD 401.
  • P P-type diffusion layer
  • the high-concentration P-type diffusion layer 445 is a dense P-type diffusion layer (P ++) formed so as to surround the outer periphery of the N-well region 441 in the plane direction near the surface of the semiconductor substrate 41, and is a hole storage layer 444 and SPAD 401.
  • a contact layer for electrically connecting to the contact electrode 452 of the above is configured.
  • a power supply voltage VA is applied to the high-concentration P-type diffusion layer 445 from the contact electrode 452.
  • a P-well region in which the impurity concentration of the semiconductor substrate 41 is controlled to be P-type may be formed.
  • the voltage applied to the N-type diffusion layer 443 becomes the power supply voltage VA
  • the voltage applied to the high-concentration P-type diffusion layer 445 becomes the power supply voltage VE. ..
  • the multilayer wiring layer 42 is formed with contact electrodes 451 and 452, metal wirings 453 and 454, contact electrodes 455 and 456, and metal pads 457 and 458.
  • the multilayer wiring layer 42 is bonded to the wiring layer 450 (hereinafter, referred to as the logic wiring layer 450) of the logic circuit board on which the logic circuit is formed.
  • the read circuit 402 described above, a MOS transistor as a switch 413, and the like are formed on the logic circuit board.
  • the contact electrode 451 connects the N-type diffusion layer 443 and the metal wiring 453, and the contact electrode 452 connects the high-concentration P-type diffusion layer 445 and the metal wiring 454.
  • the metal wiring 453 is formed wider than the avalanche multiplying region 446 so as to cover at least the avalanche multiplying region 446 in a plan view. Then, the metal wiring 453 reflects the light transmitted through the semiconductor substrate 41 to the semiconductor substrate 41.
  • the metal wiring 454 is formed so as to be on the outer periphery of the metal wiring 453 and overlap with the high-concentration P-type diffusion layer 445 in a plan view.
  • the contact electrode 455 connects the metal wiring 453 and the metal pad 457, and the contact electrode 456 connects the metal wiring 454 and the metal pad 458.
  • the metal pads 457 and 458 are electrically and mechanically connected to the metal pads 471 and 472 formed in the logic wiring layer 450 by metal bonding between the metals (Cu) forming the respective metal pads 471 and 472.
  • the logic wiring layer 450 is formed with electrode pads 461 and 462, contact electrodes 463 to 466, an insulating layer 469, and metal pads 471 and 472.
  • the electrode pads 461 and 462 are used for connection with a logic circuit board (not shown), respectively, and the insulating layer 469 insulates the electrode pads 461 and 462 from each other.
  • the contact electrodes 463 and 464 connect the electrode pad 461 and the metal pad 471, and the contact electrodes 465 and 466 connect the electrode pad 462 and the metal pad 472.
  • the metal pad 471 is joined to the metal pad 457, and the metal pad 472 is joined to the metal pad 458.
  • the electrode pad 461 is provided with the N-type diffusion layer 443 via the contact electrodes 463 and 464, the metal pad 471, the metal pad 457, the contact electrode 455, the metal wiring 453, and the contact electrode 451. It is connected to the. Therefore, in the pixel 10 of FIG. 31, the power supply voltage VE applied to the N-type diffusion layer 443 can be supplied from the electrode pad 461 of the logic circuit board.
  • the electrode pad 462 is connected to the high concentration P-type diffusion layer 445 via the contact electrodes 465 and 466, the metal pad 472, the metal pad 458, the contact electrode 456, the metal wiring 454, and the contact electrode 452. Therefore, in the pixel 10 of FIG. 31, the anode voltage VA applied to the hole storage layer 444 can be supplied from the electrode pad 462 of the logic circuit board.
  • the pixel 10 as the SPAD pixel configured as described above by forming at least the N-well region 441 in the SiGe region or the Ge region, the quantum efficiency of infrared light can be increased and the sensor sensitivity is improved. be able to. Not only the N-well region 441 but also the hole storage layer 444 may be formed in the SiGe region or the Ge region.
  • the pixel 10 described with reference to FIGS. 2 and 3 is a configuration of a ToF sensor called a gate method in which the electric charge generated by the photodiode PD is distributed by two gates (transfer transistor TRG).
  • CAPD distributes the photoelectrically converted charges by applying a voltage directly to the semiconductor substrate 41 of the ToF sensor to generate a current in the substrate and modulating a wide range of photoelectric conversion regions in the substrate at high speed.
  • a ToF sensor called a method.
  • FIG. 32 shows an example of a circuit configuration when the pixel 10 is a CAPD pixel adopting the CAPD method.
  • Pixel 10 in FIG. 32 has signal extraction units 765-1 and 765-2 in the semiconductor substrate 41.
  • the signal extraction unit 765-1 includes at least an N + semiconductor region 771-1 which is an N-type semiconductor region and a P + semiconductor region 773-1 which is a P-type semiconductor region.
  • the signal extraction unit 765-2 includes at least an N + semiconductor region 771-2 which is an N-type semiconductor region and a P + semiconductor region 773-2 which is a P-type semiconductor region.
  • the pixel 10 has a transfer transistor 721A, an FD722A, a reset transistor 723A, an amplification transistor 724A, and a selection transistor 725A with respect to the signal extraction unit 765-1.
  • the pixel 10 has a transfer transistor 721B, an FD722B, a reset transistor 723B, an amplification transistor 724B, and a selection transistor 725B with respect to the signal extraction unit 765-2.
  • the vertical drive unit 22 applies a predetermined voltage MIX0 (first voltage) to the P + semiconductor region 773-1 and applies a predetermined voltage MIX1 (second voltage) to the P + semiconductor region 773-2.
  • MIX0 first voltage
  • MIX1 second voltage
  • one of the voltages MIX0 and MIX1 is 1.5V, and the other is 0V.
  • the P + semiconductor regions 773-1 and 773-2 are voltage application portions to which a first voltage or a second voltage is applied.
  • the N + semiconductor regions 771-1 and 771-2 are charge detection units that detect and accumulate charges generated by photoelectric conversion of light incident on the semiconductor substrate 41.
  • the transfer transistor 721A becomes conductive in response to the transfer drive signal TRG, thereby transferring the charge stored in the N + semiconductor region 771-1 to the FD722A.
  • the transfer transistor 721B becomes conductive in response to the transfer drive signal TRG, thereby transferring the charge stored in the N + semiconductor region 771-2 to the FD722B.
  • the FD722A temporarily holds the electric charge supplied from the N + semiconductor region 771-1.
  • the FD722B temporarily retains the charge supplied from the N + semiconductor region 771-2.
  • the reset transistor 723A becomes conductive in response to the reset drive signal RST, thereby resetting the potential of the FD722A to a predetermined level (reset voltage VDD).
  • the reset transistor 723B becomes conductive in response to the reset drive signal RST, thereby resetting the potential of the FD722B to a predetermined level (reset voltage VDD).
  • the transfer transistors 721A and 721B are also activated at the same time.
  • the amplification transistor 724A has a load MOS and a source follower circuit of the constant current source circuit unit 726A connected to one end of the vertical signal line 29A by connecting the source electrode to the vertical signal line 29A via the selection transistor 725A.
  • the amplification transistor 724B provides a load MOS and a source follower circuit of the constant current source circuit unit 726B connected to one end of the vertical signal line 29B by connecting the source electrode to the vertical signal line 29B via the selection transistor 725B.
  • the selection transistor 725A is connected between the source electrode of the amplification transistor 724A and the vertical signal line 29A.
  • the selection drive signal SEL supplied to the gate electrode becomes active, the selection transistor 725A becomes conductive in response to the selection drive signal SEL, and outputs the pixel signal output from the amplification transistor 724A to the vertical signal line 29A.
  • the selection transistor 725B is connected between the source electrode of the amplification transistor 724B and the vertical signal line 29B.
  • the selection drive signal SEL supplied to the gate electrode becomes active, the selection transistor 725B becomes conductive in response to the selection drive signal SEL, and outputs the pixel signal output from the amplification transistor 724B to the vertical signal line 29B.
  • the transfer transistors 721A and 721B of the pixel 10, the reset transistors 723A and 723B, the amplification transistors 724A and 724B, and the selection transistors 725A and 725B are controlled by, for example, the vertical drive unit 22.
  • FIG. 33 is a cross-sectional view when the pixel 10 is a CAPD pixel.
  • the entire semiconductor substrate 41 formed in a P shape is a photoelectric conversion region, and is formed in the SiGe region or the Ge region described above.
  • the surface of the semiconductor substrate 41 on which the on-chip lens 47 is formed is the light incident surface, and the surface opposite to the light incident surface is the circuit forming surface.
  • An oxide film 764 is formed in the central portion of the pixel 10 near the surface of the circuit forming surface of the semiconductor substrate 41, and a signal extraction unit 765-1 and a signal extraction unit 7652 are formed at both ends of the oxide film 764, respectively. Has been done.
  • the signal extraction unit 765-1 is an N-semiconductor region 772-1 having a lower concentration of donor impurities than the N + semiconductor region 771-1 and the N + semiconductor region 771-1, which are N-type semiconductor regions, and a P-type semiconductor region. It has a P-semiconductor region 773-1 and a P-semiconductor region 774-1 having a lower acceptor impurity concentration than the P + semiconductor region 773-1.
  • donor impurities include elements belonging to Group 5 in the periodic table of elements such as phosphorus (P) and arsenic (As) for Si, and acceptor impurities are, for example, boron (B) for Si. ) And other elements in the periodic table of elements that belong to Group 3.
  • An element that becomes a donor impurity is referred to as a donor element, and an element that becomes an acceptor impurity is referred to as an acceptor element.
  • N + is centered on the P + semiconductor region 773-1 and the P-semiconductor region 774-1 and surrounds the P + semiconductor region 773-1 and the P-semiconductor region 774-1.
  • the semiconductor region 771-1 and the N-semiconductor region 772-1 are formed in a ring shape.
  • the P + semiconductor region 773-1 and the N + semiconductor region 771-1 are in contact with the multilayer wiring layer 42.
  • the P-semiconductor region 774-1 is arranged above the P + semiconductor region 773-1 (on-chip lens 47 side) so as to cover the P + semiconductor region 773-1, and the N-semiconductor region 772-1 is an N + semiconductor.
  • the N + semiconductor region 771-1 (on the on-chip lens 47 side) so as to cover the region 771-1.
  • the P + semiconductor region 773-1 and the N + semiconductor region 771-1 are arranged on the multilayer wiring layer 42 side in the semiconductor substrate 41, and the N-semiconductor region 772-1 and the P-semiconductor region 774-1 are semiconductors. It is arranged on the on-chip lens 47 side in the substrate 41. Further, between the N + semiconductor region 771-1 and the P + semiconductor region 773-1, a separation portion 775-1 for separating those regions is formed by an oxide film or the like.
  • the signal extraction unit 765-2 includes an N-semiconductor region 772-2 having a lower concentration of donor impurities than the N + semiconductor region 771-2 and the N + semiconductor region 771-2, which are N-type semiconductor regions, and a P-type semiconductor region. It has a P-semiconductor region 773-2 and a P-semiconductor region 774-2 having a lower acceptor impurity concentration than the P + semiconductor region 773-2.
  • N + is centered on the P + semiconductor region 773-2 and the P-semiconductor region 774-2 and surrounds the P + semiconductor region 773-2 and the P-semiconductor region 774-2.
  • the semiconductor region 771-2 and the N-semiconductor region 772-2 are formed in a ring shape.
  • the P + semiconductor region 773-2 and the N + semiconductor region 771-2 are in contact with the multilayer wiring layer 42.
  • the P-semiconductor region 774-2 is arranged above the P + semiconductor region 773-2 (on-chip lens 47 side) so as to cover the P + semiconductor region 773-2, and the N-semiconductor region 772-2 is an N + semiconductor.
  • the N + semiconductor region 771-2 (on-chip lens 47 side) so as to cover the region 771-2.
  • the P + semiconductor region 773-2 and the N + semiconductor region 771-2 are arranged on the multilayer wiring layer 42 side in the semiconductor substrate 41, and the N-semiconductor region 772-2 and the P-semiconductor region 774-2 are semiconductors. It is arranged on the on-chip lens 47 side in the substrate 41. Further, a separation portion 775-2 for separating these regions is also formed between the N + semiconductor region 771-2 and the P + semiconductor region 773-2 by an oxide film or the like.
  • An oxide film 764 is also formed between the two.
  • a P + semiconductor region 701 is formed on the interface of the semiconductor substrate 41 on the light incident surface side by laminating a film having a positive fixed charge to cover the entire light incident surface.
  • the signal extraction unit 765 will be simply referred to as the signal extraction unit 765.
  • N + semiconductor region 771-1 and the N + semiconductor region 771-2 are also simply referred to as the N + semiconductor region 771, and the N-semiconductor region 772-1 and the N-semiconductor region 772-2 are referred to.
  • N-semiconductor region 772 When it is not necessary to distinguish between them, it is simply referred to as N-semiconductor region 772.
  • P + semiconductor region 773-1 and P + semiconductor region 773-2 they are also simply referred to as P + semiconductor region 773
  • P-semiconductor region 774-1 and P-semiconductor region 774-2 are referred to as P-semiconductor region 773-1 and P-semiconductor region 774-2.
  • P-semiconductor region 774 it is also simply referred to as a P-semiconductor region 774.
  • the separation unit 775 when it is not necessary to distinguish between the separation unit 775-1 and the separation unit 775-2, it is also simply referred to as the separation unit 775.
  • the N + semiconductor region 771 provided on the semiconductor substrate 41 functions as a charge detection unit for detecting the amount of light incident on the pixel 10 from the outside, that is, the amount of signal charge generated by the photoelectric conversion by the semiconductor substrate 41. ..
  • the N-semiconductor region 772 having a low donor impurity concentration can also be regarded as a charge detection unit.
  • the P + semiconductor region 773 functions as a voltage application unit for injecting a large number of carrier currents into the semiconductor substrate 41, that is, for directly applying a voltage to the semiconductor substrate 41 to generate an electric field in the semiconductor substrate 41.
  • the P-semiconductor region 774 having a low acceptor impurity concentration can also be regarded as a voltage application unit.
  • diffusion films 811 regularly arranged at predetermined intervals are formed at the interface on the front surface side of the semiconductor substrate 41 on which the multilayer wiring layer 42 is formed.
  • an insulating film (gate insulating film) is formed between the diffusion film 811 and the interface of the semiconductor substrate 41.
  • the diffusion film 811 is regularly arranged at the interface on the front surface side of the semiconductor substrate 41 on which the multilayer wiring layer 42 is formed, for example, at predetermined intervals, and is regularly arranged from the semiconductor substrate 41 to the multilayer wiring layer 42.
  • the light that passes through and the light that is reflected by the reflection member 815, which will be described later, are diffused by the diffusion film 811 to prevent the light from penetrating the outside of the semiconductor substrate 41 (on-chip lens 47 side).
  • the material of the diffusion film 811 may be any material containing polycrystalline silicon such as polysilicon as a main component.
  • the diffusion film 811 is formed so as to avoid the positions of the N + semiconductor region 771-1 and the P + semiconductor region 773-1 so as not to overlap the positions of the N + semiconductor region 771-1 and the P + semiconductor region 773-1. ..
  • the voltage application wiring 814 is connected to the P + semiconductor region 773-1 or 773-2 via the contact electrode 812, a predetermined voltage MIX0 is applied to the P + semiconductor region 773-1, and a predetermined voltage MIX0 is applied to the P + semiconductor region 773-2. Apply the specified voltage MIX1.
  • the wiring other than the power supply line 813 and the voltage application wiring 814 is the reflection member 815, but some reference numerals are omitted in order to prevent the figure from becoming complicated.
  • the reflection member 815 is a dummy wiring provided for the purpose of reflecting incident light.
  • the reflection member 815 is arranged below the N + semiconductor regions 771-1 and 771-2 so as to overlap the N + semiconductor regions 771-1 and 771-2, which are charge detection units in a plan view.
  • a contact electrode (not shown) connecting the N + semiconductor region 771 and the transfer transistor 721 is also formed.
  • the reflective member 815 is arranged in the same layer of the first metal film M1, but is not necessarily limited to the one arranged in the same layer.
  • the voltage application wiring 816 connected to the voltage application wiring 814 of the first metal film M1, the transfer drive signal TRG, the reset drive signal RST, and the selective drive.
  • a control line 817, a ground line, and the like for transmitting a signal SEL, an FD drive signal FDG, and the like are formed. Further, FD722 or the like is also formed on the second metal film M2.
  • the third metal film M3 which is the third layer from the semiconductor substrate 41 side, for example, a vertical signal line 29, wiring for shielding, and the like are formed.
  • the fourth metal film M4 which is the fourth layer from the semiconductor substrate 41 side, for example, in order to apply a predetermined voltage MIX0 or MIX1 to the P + semiconductor regions 773-1 and 773-2 which are the voltage application portions of the signal extraction unit 65.
  • Voltage supply line (not shown) is formed.
  • the vertical drive unit 22 drives the pixel 10 and distributes a signal corresponding to the electric charge obtained by photoelectric conversion to FD722A and FD722B (FIG. 32).
  • the vertical drive unit 22 applies a voltage to the two P + semiconductor regions 773 via the contact electrode 812 and the like.
  • the vertical drive unit 22 applies a voltage of 1.5 V to the P + semiconductor region 773-1 and a voltage of 0 V to the P + semiconductor region 773-2.
  • infrared light reflected light
  • the infrared light is photoelectrically converted in the semiconductor substrate 41 to be positive with electrons.
  • the resulting electrons are guided in the direction of the P + semiconductor region 773-1 by the electric field between the P + semiconductor region 773 and move into the N + semiconductor region 771-1.
  • the electrons generated by the photoelectric conversion are used as a signal charge for detecting a signal corresponding to the amount of infrared light incident on the pixel 10, that is, the amount of infrared light received.
  • the stored charge in the N + semiconductor region 771-1 is transferred to the FD722A directly connected to the N + semiconductor region 771-1, and the signal corresponding to the charge transferred to the FD722A transmits the amplification transistor 724A and the vertical signal line 29A. It is read out by the column processing unit 23 via the column processing unit 23. Then, the read signal is subjected to processing such as AD conversion processing in the column processing unit 23, and the pixel signal obtained as a result is supplied to the signal processing unit 26.
  • This pixel signal is a signal indicating the amount of charge corresponding to the electrons detected by the N + semiconductor region 771-1, that is, the amount of charge stored in the FD722A. In other words, it can be said that the pixel signal is a signal indicating the amount of infrared light received by the pixel 10.
  • the pixel signal corresponding to the electrons detected in the N + semiconductor region 771-2 may be appropriately used for distance measurement in the same manner as in the case of the N + semiconductor region 771-1.
  • a voltage is applied to the two P + semiconductor regions 73 by the vertical drive unit 22 via contacts or the like so that an electric field in the direction opposite to the electric field previously generated in the semiconductor substrate 41 is generated.
  • a voltage of 1.5 V is applied to the P + semiconductor region 773-2, and a voltage of 0 V is applied to the P + semiconductor region 773-1.
  • infrared light reflected light
  • the infrared light is photoelectrically converted in the semiconductor substrate 41 to generate electrons and holes.
  • the obtained electrons are guided in the direction of the P + semiconductor region 773-2 by the electric field between the P + semiconductor region 773 and move into the N + semiconductor region 771-2.
  • the stored charge in the N + semiconductor region 771-2 is transferred to the FD722B directly connected to the N + semiconductor region 771-2, and the signal corresponding to the charge transferred to the FD722B passes through the amplification transistor 724B and the vertical signal line 29B. It is read out by the column processing unit 23 via the column processing unit 23. Then, the read signal is subjected to processing such as AD conversion processing in the column processing unit 23, and the pixel signal obtained as a result is supplied to the signal processing unit 26.
  • the pixel signal corresponding to the electrons detected in the N + semiconductor region 771-1 may be appropriately used for distance measurement in the same manner as in the case of the N + semiconductor region 771-2.
  • the signal processing unit 26 can calculate the distance to the object based on those pixel signals. ..
  • the semiconductor substrate 41 in the SiGe region or the Ge region, the quantum efficiency of near-infrared light can be increased and the sensor sensitivity can be improved. Can be done.
  • FIG. 34 is a block diagram showing a configuration example of a distance measuring module that outputs distance measurement information using the above-mentioned light receiving element 1.
  • the ranging module 500 includes a light emitting unit 511, a light emitting control unit 512, and a light receiving unit 513.
  • the light emitting unit 511 has a light source that emits light having a predetermined wavelength, and emits irradiation light whose brightness fluctuates periodically to irradiate an object.
  • the light emitting unit 511 has a light emitting diode that emits infrared light having a wavelength of 780 nm or more as a light source, and generates irradiation light in synchronization with the light emission control signal CLKp of a square wave supplied from the light emission control unit 512. do.
  • the emission control signal CLKp is not limited to a rectangular wave as long as it is a periodic signal.
  • the light emission control signal CLKp may be a sine wave.
  • the light emission control unit 512 supplies the light emission control signal CLKp to the light emission unit 511 and the light receiving unit 513, and controls the irradiation timing of the irradiation light.
  • the frequency of this emission control signal CLKp is, for example, 20 megahertz (MHz).
  • the frequency of the light emission control signal CLKp is not limited to 20 MHz, and may be 5 MHz, 100 MHz, or the like.
  • the light receiving unit 513 receives the reflected light reflected from the object, calculates the distance information for each pixel according to the light receiving result, and stores the depth value corresponding to the distance to the object (subject) as the pixel value. Generate and output.
  • the light receiving element 1 having the pixel structure of the indirect ToF method (gate method or CAPD method) described above and the light receiving element 1 having the pixel structure of the SPDAD pixel are used.
  • the light receiving element 1 as the light receiving unit 513 obtains distance information from the pixel signal corresponding to the charge distributed to the floating diffusion region FD1 or FD2 of each pixel 10 of the pixel array unit 21 based on the light emission control signal CLKp. Calculated for each pixel.
  • the light receiving unit 513 of the distance measuring module 500 that obtains and outputs the distance information to the subject
  • the light receiving element 1 having the above-mentioned indirect ToF method pixel structure or the direct ToF method pixel structure is incorporated. Can be done. As a result, the sensor sensitivity can be improved and the distance measuring characteristics of the distance measuring module 500 can be improved.
  • the light receiving element 1 can be applied to a distance measuring module, and for example, various electronic devices such as an image pickup device such as a digital still camera or a digital video camera having a distance measuring function, and a smartphone having a distance measuring function. Can be applied to.
  • a distance measuring module for example, various electronic devices such as an image pickup device such as a digital still camera or a digital video camera having a distance measuring function, and a smartphone having a distance measuring function. Can be applied to.
  • FIG. 35 is a block diagram showing a configuration example of a smartphone as an electronic device to which the present technology is applied.
  • the smartphone 601 has a distance measuring module 602, an image pickup device 603, a display 604, a speaker 605, a microphone 606, a communication module 607, a sensor unit 608, a touch panel 609, and a control unit 610. It is configured to be connected via. Further, the control unit 610 has functions as an application processing unit 621 and an operation system processing unit 622 by executing a program by the CPU.
  • the distance measuring module 500 of FIG. 34 is applied to the distance measuring module 602.
  • the distance measurement module 602 is arranged in front of the smartphone 601 and performs distance measurement for the user of the smartphone 601 to measure the depth value of the surface shape of the user's face, hand, finger, etc. as the distance measurement result. Can be output as.
  • the image pickup device 603 is arranged in front of the smartphone 601 and takes an image of the user of the smartphone 601 as a subject to acquire an image of the user. Although not shown, the image pickup device 603 may be arranged on the back surface of the smartphone 601.
  • the display 604 displays an operation screen for processing by the application processing unit 621 and the operation system processing unit 622, an image captured by the image pickup device 603, and the like.
  • the communication module 607 is a network via a communication network such as the Internet, a public telephone network, a wide area communication network for wireless mobiles such as so-called 4G lines and 5G lines, and a WAN (Wide Area Network) and LAN (Local Area Network). Performs short-range wireless communication such as communication, Bluetooth (registered trademark), and NFC (Near Field Communication).
  • the sensor unit 608 senses speed, acceleration, proximity, etc., and the touch panel 609 acquires a touch operation by the user on the operation screen displayed on the display 604.
  • the application processing unit 621 performs processing for providing various services by the smartphone 601.
  • the application processing unit 621 can create a face by computer graphics that virtually reproduces the user's facial expression based on the depth value supplied from the distance measuring module 602, and can perform a process of displaying the face on the display 604. .
  • the application processing unit 621 can perform a process of creating, for example, three-dimensional shape data of an arbitrary three-dimensional object based on the depth value supplied from the distance measuring module 602.
  • the operation system processing unit 622 performs processing for realizing the basic functions and operations of the smartphone 601. For example, the operation system processing unit 622 can perform a process of authenticating the user's face and unlocking the smartphone 601 based on the depth value supplied from the distance measuring module 602. Further, the operation system processing unit 622 performs a process of recognizing a user's gesture based on the depth value supplied from the distance measuring module 602, and performs a process of inputting various operations according to the gesture. Can be done.
  • the smartphone 601 configured in this way, by applying the above-mentioned distance measuring module 500 as the distance measuring module 602, for example, the distance to a predetermined object can be measured and displayed, or the tertiary of the predetermined object can be measured and displayed. It is possible to perform processing such as creating and displaying original shape data.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
  • FIG. 36 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 has a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, turn signals or fog lamps.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image pickup unit 12031 is connected to the vehicle outside information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the out-of-vehicle information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
  • the image pickup unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the image pickup unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver has fallen asleep.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generating device, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
  • the audio image output unit 12052 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a head-up display.
  • FIG. 37 is a diagram showing an example of the installation position of the image pickup unit 12031.
  • the vehicle 12100 has image pickup units 12101, 12102, 12103, 12104, 12105 as image pickup units 12031.
  • the image pickup units 12101, 12102, 12103, 12104, 12105 are provided, for example, at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100.
  • the image pickup unit 12101 provided in the front nose and the image pickup section 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the image pickup units 12102 and 12103 provided in the side mirror mainly acquire images of the side of the vehicle 12100.
  • the image pickup unit 12104 provided in the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the images in front acquired by the image pickup units 12101 and 12105 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 37 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging range of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates the imaging range.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the image pickup units 12101 to 12104, a bird's-eye view image of the vehicle 12100 can be obtained.
  • At least one of the image pickup units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera including a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the image pickup range 12111 to 12114 based on the distance information obtained from the image pickup unit 12101 to 12104, and a temporal change of this distance (relative speed with respect to the vehicle 12100). By obtaining can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
  • automatic braking control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, electric poles, and other three-dimensional objects based on the distance information obtained from the image pickup units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the image pickup units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging unit 12101 to 12104.
  • pedestrian recognition is, for example, a procedure for extracting feature points in an image captured by an image pickup unit 12101 to 12104 as an infrared camera, and pattern matching processing is performed on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
  • the audio image output unit 12052 determines the square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the above is an example of a vehicle control system to which the technology according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to the vehicle exterior information detection unit 12030 and the image pickup unit 12031 among the configurations described above.
  • the light receiving element 1 or the distance measuring module 500 can be applied to the distance detection processing block of the vehicle exterior information detection unit 12030 or the image pickup unit 12031.
  • the present technology can have the following configurations. (1) It has a pixel array area in which pixels including a photoelectric conversion area are arranged in a matrix. A light receiving element in which the photoelectric conversion region of each pixel of the first semiconductor substrate on which the pixel array region is formed is formed of a SiGe region or a Ge region. (2) The photoelectric conversion region of each pixel of the first semiconductor substrate is formed of a SiGe region or a Ge region, and the region other than the photoelectric conversion region of each pixel of the first semiconductor substrate is formed of a Si region. The light receiving element according to (1). (3) The pixel has at least a photodiode as the photoelectric conversion region and a transfer transistor for transferring the charge generated by the photodiode.
  • the pixel has at least a photodiode as the photoelectric conversion region, a transfer transistor for transferring the charge generated by the photodiode, and a charge holding portion for temporarily holding the charge.
  • the light receiving element according to any one of (1) to (9) above, wherein the light receiving element is an IR image pickup sensor in which all the pixels receive infrared light.
  • the light receiving element according to any one of (1) to (9) above, which is an RGBIR image pickup sensor having a pixel that receives infrared light and a pixel that receives RGB light.
  • the SiGe region or the Ge region is formed by ion-implanting Ge into the Si region.
  • 1 light receiving element 10 pixels, PD photodiode, TRG transfer transistor, 21 pixel array section, 41 semiconductor board (first board), 42 multi-layer wiring layer, 50 P-type semiconductor area, 52 N-type semiconductor area, 111 pixels Array area, 141 semiconductor substrate (second substrate), 201 pixel circuit, 202 ADC (AD converter), 351 oxide film, 371 MIM capacitive element, 381 first color filter layer, 382 second color filter layer, 441 N-well area, 442 P-type diffusion layer, 500 ranging module, 511 light emitting unit, 512 light emitting control unit, 513 light receiving unit, 601 smartphone, 602 distance measuring module

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本技術は、赤外光に対する量子効率を高め、感度を向上させることができるようにする受光素子およびその製造方法、並びに、電子機器に関する。 受光素子は、光電変換領域を含む画素が行列状に配列された画素アレイ領域を有し、画素アレイ領域が形成された第1の半導体基板の各画素の光電変換領域がSiGe領域またはGe領域で形成される。本技術は、例えば、被写体までの距離を測定する測距モジュール等に適用できる。

Description

受光素子およびその製造方法、並びに、電子機器
 本技術は、受光素子およびその製造方法、並びに、電子機器に関し、特に、赤外光に対する量子効率を高め、感度を向上させることができるようにした受光素子およびその製造方法、並びに、電子機器に関する。
 間接ToF(Time of Flight)方式を利用した測距モジュールが知られている。間接ToF方式の測距モジュールでは、物体に向かって照射光が発光され、物体の表面で照射光が反射されて返ってくる反射光を受光素子が受光する。受光素子は、反射光を光電変換した信号電荷を、例えば2つの電荷蓄積領域に振り分け、それらの信号電荷の配分比から距離を算出する。このような受光素子において、裏面照射型とすることで、受光特性を向上させたものが提案されている(例えば、特許文献1参照)。
国際公開第2018/135320号
 測距モジュールの照射光としては、一般的に近赤外領域の光が用いられる。近赤外領域の光は、受光素子の半導体基板としてシリコン基板を用いた場合に、量子効率(QE)が低く、センサ感度が低くなってしまう。
 本技術は、このような状況に鑑みてなされたものであり、赤外光に対する量子効率を高め、感度を向上させることができるようにするものである。
 本技術の第1の側面の受光素子は、光電変換領域を含む画素が行列状に配列された画素アレイ領域を有し、前記画素アレイ領域が形成された第1の半導体基板の各画素の前記光電変換領域がSiGe領域またはGe領域で形成される。
 本技術の第2の側面の受光素子の製造方法は、半導体基板の画素アレイ領域の各画素の少なくとも光電変換領域を、SiGe領域またはGe領域で形成する。
 本技術の第3の側面の電子機器は、光電変換領域を含む画素が行列状に配列された画素アレイ領域を有し、前記画素アレイ領域が形成された第1の半導体基板の各画素の前記光電変換領域がSiGe領域またはGe領域で形成される受光素子を備える。
 本技術の第1乃至第3の側面においては、半導体基板の画素アレイ領域の各画素の少なくとも光電変換領域が、SiGe領域またはGe領域で形成される。
 受光素子及び電子機器は、独立した装置であっても良いし、他の装置に組み込まれるモジュールであっても良い。
本技術を適用した受光素子の概略構成例を示すブロック図である。 画素の第1構成例を示す断面図である。 画素の回路構成を示す図である。 図3の画素回路の配置例を示す平面図である。 画素のその他の回路構成例を示す図である。 図5の画素回路の配置例を示す平面図である。 画素アレイ部における画素の配置を示す平面図である。 SiGe領域の第1の形成方法を説明する図である。 SiGe領域の第2の形成方法を説明する図である。 画素におけるSiGe領域のその他の形成例を示す平面図である。 図10の画素の形成方法を説明する図である。 受光素子の基板構成例を示す概略斜視図である。 2枚基板の積層構造で構成される場合の画素の断面図である。 3枚の半導体基板を積層して形成した受光素子の概略断面図である。 4タップの画素構造とした場合の画素の平面図である。 SiGe領域のその他の形成例を示す図である。 SiGe領域のその他の形成例を示す図である。 Ge濃度の例を示す断面図である。 画素毎にAD変換部を備える画素の詳細構成例を示すブロック図である。 比較回路と画素回路の詳細構成を示す回路図である。 画素回路の各タップの出力と比較回路との接続を示す回路図である。 画素の第2構成例を示す断面図である。 図22の画素トランジスタ近傍を拡大した断面図である。 画素の第3構成例を示す断面図である。 IR撮像センサの場合の画素の回路構成を示す図である。 IR撮像センサの場合の画素の断面図である。 RGBIR撮像センサの場合の画素配置例を示す図である。 RGBIR撮像センサの場合のカラーフィルタ層の例を示す断面図である。 SPAD画素の回路構成例を示す図である。 図29のSPAD画素の動作を説明する図である。 SPAD画素の場合の構成例を示す断面図である。 CAPD画素である場合の回路構成例を示す図である。 CAPD画素の場合の構成例を示す断面図である。 本技術を適用した測距モジュールの構成例を示すブロック図である。 本技術を適用した電子機器としてのスマートフォンの構成例を示すブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
 以下、添付図面を参照しながら、本技術を実施するための形態(以下、実施の形態という)について説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。説明は以下の順序で行う。
1.受光素子の構成例
2.画素の第1構成例に係る断面図
3.画素の回路構成例
4.画素の平面図
5.画素のその他の回路構成例
6.画素の平面図
7.GeSi領域の形成方法
8.第1構成例の変形例
9.受光素子の基板構成例
10.積層構造の場合の画素断面図
11.3枚の積層構造
12.4タップの画素構成例
13.SiGe領域のその他の形成例
14.画素エリアADCの詳細構成例
15.画素の第2構成例に係る断面図
16.画素の第3構成例に係る断面図
17.IR撮像センサの構成例
18.RGBIR撮像センサの構成例
19.SPAD画素の構成例
20.CAPD画素の構成例
21.測距モジュールの構成例
22.電子機器の構成例
23.移動体への応用例
 なお、以下の説明で参照する図面において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は実際のものとは異なる。また、図面相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
 また、以下の説明における上下等の方向の定義は、単に説明の便宜上の定義であって、本開示の技術的思想を限定するものではない。例えば、対象を90°回転して観察すれば上下は左右に変換して読まれ、180°回転して観察すれば上下は反転して読まれる。
<1.受光素子の構成例>
 図1は、本技術を適用した受光素子の概略構成例を示すブロック図である。
 図1に示される受光素子1は、間接ToF方式による測距情報を出力する測距センサである。
 受光素子1は、所定の光源から照射された光(照射光)が物体にあたって反射されてきた光(反射光)を受光し、物体までの距離情報をデプス値として格納したデプス画像を出力する。なお、光源から照射される照射光は、例えば波長が780nm以上の赤外光であり、オンオフが所定の周期で繰り返されるパルス光である。
 受光素子1は、図示せぬ半導体基板上に形成された画素アレイ部21と、周辺回路部とを有する。周辺回路部は、例えば垂直駆動部22、カラム処理部23、水平駆動部24、およびシステム制御部25等から構成されている。
 受光素子1には、さらに信号処理部26およびデータ格納部27も設けられている。なお、信号処理部26およびデータ格納部27は、受光素子1と同じ基板上に搭載してもよいし、受光素子1とは別のモジュール内の基板上に配置してもよい。
 画素アレイ部21は、受光した光量に応じた電荷を生成し、その電荷に応じた信号を出力する画素10が行方向および列方向の行列状に配列された構成となっている。すなわち、画素アレイ部21は、入射した光を光電変換し、その結果得られた電荷に応じた信号を出力する画素10を複数有する。画素10の詳細については、図2以降で後述する。
 ここで、行方向とは、水平方向の画素10の配列方向をいい、列方向とは、垂直方向の画素10の配列方向をいう。行方向は、図中、横方向であり、列方向は図中、縦方向である。
 画素アレイ部21においては、行列状の画素配列に対して、画素行ごとに画素駆動線28が行方向に沿って配線されるとともに、各画素列に2つの垂直信号線29が列方向に沿って配線されている。例えば画素駆動線28は、画素10から信号を読み出す際の駆動を行うための駆動信号を伝送する。なお、図1では、画素駆動線28について1本の配線として示しているが、1本に限られるものではない。画素駆動線28の一端は、垂直駆動部22の各行に対応した出力端に接続されている。
 垂直駆動部22は、シフトレジスタやアドレスデコーダなどによって構成され、画素アレイ部21の各画素10を全画素同時あるいは行単位等で駆動する。すなわち、垂直駆動部22は、垂直駆動部22を制御するシステム制御部25とともに、画素アレイ部21の各画素10の動作を制御する制御回路を構成している。
 垂直駆動部22による駆動制御に応じて画素行の各画素10から出力される画素信号は、垂直信号線29を通してカラム処理部23に入力される。カラム処理部23は、各画素10から垂直信号線29を通して出力される画素信号に対して所定の信号処理を行うとともに、信号処理後の画素信号を一時的に保持する。具体的には、カラム処理部23は、信号処理としてノイズ除去処理やAD(Analog to Digital)変換処理などを行う。
 水平駆動部24は、シフトレジスタやアドレスデコーダなどによって構成され、カラム処理部23の画素列に対応する単位回路を順番に選択する。この水平駆動部24による選択走査により、カラム処理部23において単位回路ごとに信号処理された画素信号が順番に出力される。
 システム制御部25は、各種のタイミング信号を生成するタイミングジェネレータなどによって構成され、そのタイミングジェネレータで生成された各種のタイミング信号を基に、垂直駆動部22、カラム処理部23、および水平駆動部24などの駆動制御を行う。
 信号処理部26は、少なくとも演算処理機能を有し、カラム処理部23から出力される画素信号に基づいて演算処理等の種々の信号処理を行う。データ格納部27は、信号処理部26での信号処理にあたって、その処理に必要なデータを一時的に格納する。
 以上のように構成される受光素子1は、カラム処理部23においてAD変換処理を行うAD変換回路を画素列ごとに配置したカラムADC型と呼ばれる回路構成である。
 受光素子1は、物体までの距離情報をデプス値として画素値に格納したデプス画像を出力する。受光素子1は、例えば、車両に搭載され、車外にある対象物までの距離を測定する車載用のシステムや、スマートフォン等に搭載され、ユーザの手等の対象物までの距離を測定し、その測定結果に基づいてユーザのジェスチャを認識するジェスチャ認識処理などに利用される。
<2.画素の第1構成例に係る断面図>
 図2は、画素アレイ部21に配置される画素10の第1構成例を示す断面図である。
 受光素子1は、半導体基板41と、そのおもて面側(図中下側)に形成された多層配線層42とを備える。
 半導体基板41は、例えばシリコン(以下、Siと称する。)で構成され、例えば1乃至10μmの厚みを有して形成されている。半導体基板41では、例えば、P型(第1導電型)の半導体領域51に、N型(第2導電型)の半導体領域52が画素単位に形成されることにより、フォトダイオードPDが画素単位に形成されている。ここで、P型の半導体領域51が基板材料であるSi領域で構成されているのに対して、N型の半導体領域52は、Siにゲルマニウム(以下、Geと称する。)が添加されたSiGe領域で構成されている。N型の半導体領域52としてのSiGe領域は、後述するように、Si領域にGeを注入したり、エピタキシャル成長で形成することができる。なお、N型の半導体領域52を、SiGe領域ではなく、Geのみで構成してもよい。
 図2において上側となる半導体基板41の上面が、半導体基板41の裏面であり、光が入射される光入射面となる。半導体基板41の裏面側上面には、反射防止膜43が形成されている。
 反射防止膜43は、例えば、固定電荷膜および酸化膜が積層された積層構造とされ、例えば、ALD(Atomic Layer Deposition)法による高誘電率(High-k)の絶縁薄膜を用いることができる。具体的には、酸化ハフニウム(HfO2)や、酸化アルミニウム(Al23)、酸化チタン(TiO2)、STO(Strontium Titan Oxide)などを用いることができる。図2の例では、反射防止膜43は、酸化ハフニウム膜53、酸化アルミニウム膜54、および酸化シリコン膜55が積層されて構成されている。
 反射防止膜43の上面であって、半導体基板41の隣接する画素10の境界部44(以下、画素境界部44とも称する。)には、入射光の隣接画素への入射を防止する画素間遮光膜45が形成されている。画素間遮光膜45の材料は、光を遮光する材料であればよく、例えば、タングステン(W)、アルミニウム(Al)又は銅(Cu)などの金属材料を用いることができる。
 反射防止膜43の上面と、画素間遮光膜45の上面には、平坦化膜46が、例えば、酸化シリコン(SiO2)、窒化シリコン(SiN)、酸窒化シリコン(SiON)等の絶縁膜、または、樹脂などの有機材料により形成されている。
 そして、平坦化膜46の上面には、オンチップレンズ47が画素ごとに形成されている。オンチップレンズ47は、例えば、スチレン系樹脂、アクリル系樹脂、スチレン-アクリル共重合系樹脂、またはシロキサン系樹脂等の樹脂系材料で形成される。オンチップレンズ47によって集光された光は、フォトダイオードPDに効率良く入射される。
 半導体基板41の裏面であって、フォトダイオードPDの形成領域の上方に、微細な凹凸が周期的に形成されたモスアイ(Moth Eye)構造部71が形成されている。また、半導体基板41のモスアイ構造部71に対応して、その上面に形成された反射防止膜43もモスアイ構造で形成されている。
 半導体基板41のモスアイ構造部71は、例えば、略同形状かつ略同じ大きさの複数の四角錐の領域が規則的に(格子状に)設けられた構成とされる。
 モスアイ構造部71は、例えば、フォトダイオードPD側に頂点を有する四角錐形状の複数の領域が規則的に並ぶように配列された逆ピラミッド構造に形成される。
 あるいはまた、モスアイ構造部71は、オンチップレンズ47側に頂点を有する複数の四角錐の領域が、規則的に並ぶように配列された順ピラミッド構造でもよい。複数の四角錐の大きさおよび配置は、規則的に並ぶことなく、ランダムに形成されてもよい。また、モスアイ構造部71の各四角錐の各凹部または各凸部は、ある程度曲率を有し、丸みのある形状となっていてもよい。モスアイ構造部71は、凹凸構造が周期的にまたはランダムに繰り返される構造であればよく、凹部または凸部の形状は任意である。
 このように、半導体基板41の光入射面に、入射光を回折する回折構造としてモスアイ構造部71を形成することで、基板界面における急激な屈折率の変化を緩和し、反射光による影響を低減させることができる。
 半導体基板41の裏面側の画素境界部44には、半導体基板41の裏面側(オンチップレンズ47側)から基板深さ方向に所定の深さまで、半導体基板41の深さ方向に隣接画素どうしを分離する画素間分離部61が形成されている。なお、画素間分離部61が形成される基板厚み方向の深さは、任意の深さとすることができ、半導体基板41の裏面側からおもて面側まで貫通して画素単位に完全に分離してもよい。画素間分離部61の底面および側壁を含む外周部は、反射防止膜43の一部である酸化ハフニウム膜53で覆われている。画素間分離部61は、入射光が隣の画素10へ突き抜けることを防止し、自画素内に閉じ込めるとともに、隣接する画素10からの入射光の漏れ込みを防止する。
 図2の例では、反射防止膜43の最上層の材料である酸化シリコン膜55を、裏面側から掘り込んだトレンチ(溝)に埋め込むことにより酸化シリコン膜55と画素間分離部61を同時形成するため、反射防止膜43としての積層膜の一部である酸化シリコン膜55と、画素間分離部61とが同一の材料で構成されているが、必ずしも同一である必要はない。画素間分離部61として裏面側から掘り込んだトレンチ(溝)に埋め込む材料は、例えば、タングステン(W)、アルミニウム(Al)、チタン(Ti)、窒化チタン(TiN)等の金属材料でもよい。
 一方、多層配線層42が形成された半導体基板41の表面側には、各画素10に形成された1つのフォトダイオードPDに対して、2つの転送トランジスタTRG1およびTRG2が形成されている。また、半導体基板41の表面側には、フォトダイオードPDから転送された電荷を一時保持する電荷保持部としての浮遊拡散領域FD1およびFD2が、高濃度のN型半導体領域(N型拡散領域)により形成されている。
 多層配線層42は、複数の金属膜Mと、その間の層間絶縁膜62とで構成される。図2では、第1金属膜M1乃至第3金属膜M3の3層で構成される例が示されているが、金属膜Mの層数は3層に限られない。
 多層配線層42の複数の金属膜Mのうち、半導体基板41に最も近い第1金属膜M1の、フォトダイオードPDの形成領域の下方に位置する領域、換言すれば、平面視において、フォトダイオードPDの形成領域と少なくとも一部が重なる領域には、銅やアルミニウムなどのメタル(金属)配線が遮光部材63として形成されている。
 遮光部材63は、オンチップレンズ47を介して光入射面から半導体基板41内に入射し、半導体基板41内で光電変換されずに半導体基板41を透過してしまった赤外光を、半導体基板41に最も近い第1金属膜M1で遮光し、それより下方の第2金属膜M2や第3金属膜M3へ透過させないようにする。この遮光機能により、半導体基板41内で光電変換されずに半導体基板41を透過してしまった赤外光が、第1金属膜M1より下の金属膜Mで散乱し、近傍画素へ入射してしまうことを抑制できる。これにより、近傍画素で誤って光を検知してしまうことを防ぐことができる。
 また、遮光部材63は、オンチップレンズ47を介して光入射面から半導体基板41内に入射し、半導体基板41内で光電変換されずに半導体基板41を透過してしまった赤外光を、遮光部材63で反射させて半導体基板41内へと再度入射させる機能も有する。したがって、遮光部材63は、反射部材でもあるとも言える。この反射機能により、半導体基板41内で光電変換される赤外光の量をより多くし、量子効率(QE)、つまり赤外光に対する画素10の感度を向上させることができる。
 なお、遮光部材63は、金属材料の他、ポリシリコンや酸化膜などで反射または遮光する構造を形成してもよい。
 また、遮光部材63は、1層の金属膜Mで構成せずに、例えば第1金属膜M1と第2金属膜M2とで格子状に形成するなどして、複数の金属膜Mで構成してもよい。
 多層配線層42の複数の金属膜Mのうち、所定の金属膜Mである、例えば、第2金属膜M2には、例えば、平面視で櫛歯形状にパターン形成することにより、配線容量64が形成されている。遮光部材63と配線容量64とは同じ層(金属膜M)に形成してもよいが、異なる層に形成する場合には、配線容量64が、遮光部材63よりも半導体基板41から遠い層に形成される。換言すれば、遮光部材63が、配線容量64よりも半導体基板41の近くに形成される。
 以上のように、受光素子1は、オンチップレンズ47と多層配線層42との間に半導体層である半導体基板41を配置し、オンチップレンズ47が形成された裏面側から入射光をフォトダイオードPDに入射させる裏面照射型の構造を有する。
 また、画素10は、各画素に設けられたフォトダイオードPDに対して、2つの転送トランジスタTRG1およびTRG2を備え、フォトダイオードPDで光電変換されて生成された電荷(電子)を、浮遊拡散領域FD1またはFD2に振り分け可能に構成されている。
 さらに、画素10は、画素境界部44に画素間分離部61を形成することにより、入射光が隣の画素10へ突き抜けることを防止し、自画素内に閉じ込めるとともに、隣接する画素10からの入射光の漏れ込みを防止する。そして、フォトダイオードPDの形成領域の下方の金属膜Mに遮光部材63を設けることにより、半導体基板41内で光電変換されずに半導体基板41を透過してしまった赤外光を、遮光部材63で反射させて半導体基板41内へと再度入射させる。
 また、画素10では、光電変換領域であるN型の半導体領域52が、SiGe領域またはGe領域で形成される。SiGeおよびGeは、Siと比較してバンドギャップが狭いため、近赤外光の量子効率を高めることができる。
 以上の構成により、第1構成例に係る画素10を備える受光素子1によれば、半導体基板41内で光電変換される赤外光の量をより多くし、量子効率(QE)、つまり赤外光に対する感度を向上させることができる。
<3.画素の回路構成例>
 図3は、画素アレイ部21に2次元配置された各画素10の回路構成を示している。
 画素10は、光電変換素子としてフォトダイオードPDを備える。また、画素10は、転送トランジスタTRG、浮遊拡散領域FD、付加容量FDL、切替トランジスタFDG、増幅トランジスタAMP、リセットトランジスタRST、及び、選択トランジスタSELをそれぞれ2個ずつ有する。さらに、画素10は、電荷排出トランジスタOFGを有している。
 ここで、画素10において2個ずつ設けられる転送トランジスタTRG、浮遊拡散領域FD、付加容量FDL、切替トランジスタFDG、増幅トランジスタAMP、リセットトランジスタRST、及び、選択トランジスタSELのそれぞれを区別する場合、図3に示されるように、転送トランジスタTRG1およびTRG2、浮遊拡散領域FD1およびFD2、付加容量FDL1およびFDL2、切替トランジスタFDG1およびFDG2、増幅トランジスタAMP1およびAMP2、リセットトランジスタRST1およびRST2、並びに、選択トランジスタSEL1およびSEL2のように称する。
 転送トランジスタTRG、切替トランジスタFDG、増幅トランジスタAMP、選択トランジスタSEL、リセットトランジスタRST、及び、電荷排出トランジスタOFGは、例えば、N型のMOSトランジスタで構成される。
 転送トランジスタTRG1は、ゲート電極に供給される転送駆動信号TRG1gがアクティブ状態になるとこれに応答して導通状態になることで、フォトダイオードPDに蓄積されている電荷を浮遊拡散領域FD1に転送する。転送トランジスタTRG2は、ゲート電極に供給される転送駆動信号TRG2gがアクティブ状態になるとこれに応答して導通状態になることで、フォトダイオードPDに蓄積されている電荷を浮遊拡散領域FD2に転送する。
 浮遊拡散領域FD1およびFD2は、フォトダイオードPDから転送された電荷を一時的に保持する電荷保持部である。
 切替トランジスタFDG1は、ゲート電極に供給されるFD駆動信号FDG1gがアクティブ状態になるとこれに応答して導通状態になることで、付加容量FDL1を、浮遊拡散領域FD1に接続させる。切替トランジスタFDG2は、ゲート電極に供給されるFD駆動信号FDG2gがアクティブ状態になるとこれに応答して導通状態になることで、付加容量FDL2を、浮遊拡散領域FD2に接続させる。付加容量FDL1およびFDL2は、図2の配線容量64によって形成されている。
 リセットトランジスタRST1は、ゲート電極に供給されるリセット駆動信号RSTgがアクティブ状態になるとこれに応答して導通状態になることで、浮遊拡散領域FD1の電位をリセットする。リセットトランジスタRST2は、ゲート電極に供給されるリセット駆動信号RSTgがアクティブ状態になるとこれに応答して導通状態になることで、浮遊拡散領域FD2の電位をリセットする。なお、リセットトランジスタRST1およびRST2がアクティブ状態とされるとき、切替トランジスタFDG1およびFDG2も同時にアクティブ状態とされ、付加容量FDL1およびFDL2もリセットされる。
 垂直駆動部22は、例えば、入射光の光量が多い高照度のとき、切替トランジスタFDG1およびFDG2をアクティブ状態として、浮遊拡散領域FD1と付加容量FDL1を接続するとともに、浮遊拡散領域FD2と付加容量FDL2を接続する。これにより、高照度時に、より多くの電荷を蓄積することができる。
 一方、入射光の光量が少ない低照度のときには、垂直駆動部22は、切替トランジスタFDG1およびFDG2を非アクティブ状態として、付加容量FDL1およびFDL2を、それぞれ、浮遊拡散領域FD1およびFD2から切り離す。これにより、変換効率を上げることができる。
 電荷排出トランジスタOFGは、ゲート電極に供給される排出駆動信号OFG1gがアクティブ状態になるとこれに応答して導通状態になることで、フォトダイオードPDに蓄積された電荷を排出する。
 増幅トランジスタAMP1は、ソース電極が選択トランジスタSEL1を介して垂直信号線29Aに接続されることにより、不図示の定電流源と接続し、ソースフォロワ回路を構成する。増幅トランジスタAMP2は、ソース電極が選択トランジスタSEL2を介して垂直信号線29Bに接続されることにより、不図示の定電流源と接続し、ソースフォロワ回路を構成する。
 選択トランジスタSEL1は、増幅トランジスタAMP1のソース電極と垂直信号線29Aとの間に接続されている。選択トランジスタSEL1は、ゲート電極に供給される選択信号SEL1gがアクティブ状態になるとこれに応答して導通状態となり、増幅トランジスタAMP1から出力される画素信号VSL1を垂直信号線29Aに出力する。
 選択トランジスタSEL2は、増幅トランジスタAMP2のソース電極と垂直信号線29Bとの間に接続されている。選択トランジスタSEL2は、ゲート電極に供給される選択信号SEL2gがアクティブ状態になるとこれに応答して導通状態となり、増幅トランジスタAMP2から出力される画素信号VSL2を垂直信号線29Bに出力する。
 画素10の転送トランジスタTRG1およびTRG2、切替トランジスタFDG1およびFDG2、増幅トランジスタAMP1およびAMP2、選択トランジスタSEL1およびSEL2、並びに、電荷排出トランジスタOFGは、垂直駆動部22によって制御される。
 図3の画素回路において、付加容量FDL1およびFDL2と、その接続を制御する、切替トランジスタFDG1およびFDG2は省略してもよいが、付加容量FDLを設け、入射光量に応じて使い分けることにより、高ダイナミックレンジを確保することができる。
 図3の画素10の動作について簡単に説明する。
 まず、受光を開始する前に、画素10の電荷をリセットするリセット動作が全画素で行われる。すなわち、電荷排出トランジスタOFGと、リセットトランジスタRST1およびRST2、並びに、切替トランジスタFDG1およびFDG2がオンされ、フォトダイオードPD、浮遊拡散領域FD1およびFD2、並びに、付加容量FDL1およびFDL2の蓄積電荷が排出される。
 蓄積電荷の排出後、全画素で受光が開始される。受光期間では、転送トランジスタTRG1とTRG2とが交互に駆動される。すなわち、第1の期間において、転送トランジスタTRG1がオン、転送トランジスタTRG2がオフに制御される。この第1の期間では、フォトダイオードPDで発生した電荷が、浮遊拡散領域FD1に転送される。第1の期間の次の第2の期間では、転送トランジスタTRG1がオフ、転送トランジスタTRG2がオンに制御される。この第2の期間では、フォトダイオードPDで発生した電荷が、浮遊拡散領域FD2に転送される。これにより、フォトダイオードPDで発生した電荷が、浮遊拡散領域FD1とFD2とに交互に振り分けられて、蓄積される。
 そして、受光期間が終了すると、画素アレイ部21の各画素10が、線順次に選択される。選択された画素10では、選択トランジスタSEL1およびSEL2がオンされる。これにより、浮遊拡散領域FD1に蓄積された電荷が、画素信号VSL1として、垂直信号線29Aを介してカラム処理部23に出力される。浮遊拡散領域FD2に蓄積された電荷は、画素信号VSL2として、垂直信号線29Bを介してカラム処理部23に出力される。
 以上で1回の受光動作が終了し、リセット動作から始まる次の受光動作が実行される。
 画素10が受光する反射光は、光源が照射したタイミングから、対象物までの距離に応じて遅延されている。対象物までの距離に応じた遅延時間によって、2つの浮遊拡散領域FD1とFD2に蓄積される電荷の配分比が変化するため、2つの浮遊拡散領域FD1とFD2に蓄積される電荷の配分比から、物体までの距離を求めることができる。
<4.画素の平面図>
 図4は、図3に示した画素回路の配置例を示した平面図である。
 図4における横方向は、図1の行方向(水平方向)に対応し、縦方向は図1の列方向(垂直方向)に対応する。
 図4に示されるように、矩形の画素10の中央部の領域にフォトダイオードPDがN型の半導体領域52で形成されており、この領域がSiGe領域となっている。
 フォトダイオードPDの外側であって、矩形の画素10の四辺の所定の一辺に沿って、転送トランジスタTRG1、切替トランジスタFDG1、リセットトランジスタRST1、増幅トランジスタAMP1、及び、選択トランジスタSEL1が直線的に並んで配置され、矩形の画素10の四辺の他の一辺に沿って、転送トランジスタTRG2、切替トランジスタFDG2、リセットトランジスタRST2、増幅トランジスタAMP2、及び、選択トランジスタSEL2が直線的に並んで配置されている。
 さらに、転送トランジスタTRG、切替トランジスタFDG、リセットトランジスタRST、増幅トランジスタAMP、及び、選択トランジスタSELが形成されている画素10の二辺とは別の辺に、電荷排出トランジスタOFGが配置されている。
 なお、図3に示した画素回路の配置は、この例に限られず、その他の配置としてもよい。
<5.画素のその他の回路構成例>
 図5は、画素10のその他の回路構成例を示している。
 図5において、図3と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 画素10は、光電変換素子としてフォトダイオードPDを備える。また、画素10は、第1転送トランジスタTRGa、第2転送トランジスタTRGb、メモリMEM、浮遊拡散領域FD、リセットトランジスタRST、増幅トランジスタAMP、及び、選択トランジスタSELをそれぞれ2個ずつ有する。
 ここで、画素10において2個ずつ設けられる第1転送トランジスタTRGa、第2転送トランジスタTRGb、メモリMEM、浮遊拡散領域FD、リセットトランジスタRST、増幅トランジスタAMP、及び、選択トランジスタSELのそれぞれを区別する場合、図5に示されるように、第1転送トランジスタTRGa1およびTRGa2、第2転送トランジスタTRGb1およびTRGb2、転送トランジスタTRG1およびTRG2、メモリMEM1およびMEM2、浮遊拡散領域FD1およびFD2、増幅トランジスタAMP1およびAMP2、並びに、選択トランジスタSEL1およびSEL2のように称する。
 従って、図3の画素回路と、図5の画素回路を比較すると、転送トランジスタTRGが、2種類の第1転送トランジスタTRGaおよび第2転送トランジスタTRGbに変更され、メモリMEMが追加されている。また、付加容量FDLと切替トランジスタFDGが省略されている。
 第1転送トランジスタTRGa、第2転送トランジスタTRGb、リセットトランジスタRST、増幅トランジスタAMP、及び、選択トランジスタSELは、例えば、N型のMOSトランジスタで構成される。
 図3に示した画素回路では、フォトダイオードPDで生成された電荷を、浮遊拡散領域FD1およびFD2に転送して保持するようにしたが、図5の画素回路では、電荷保持部として新たに設けられたメモリMEM1およびMEM2に転送されて、保持される。
 即ち、第1転送トランジスタTRGa1は、ゲート電極に供給される第1転送駆動信号TRGa1gがアクティブ状態になるとこれに応答して導通状態になることで、フォトダイオードPDに蓄積されている電荷をメモリMEM1に転送する。第1転送トランジスタTRGa2は、ゲート電極に供給される第1転送駆動信号TRGa2gがアクティブ状態になるとこれに応答して導通状態になることで、フォトダイオードPDに蓄積されている電荷をメモリMEM2に転送する。
 また、第2転送トランジスタTRGb1は、ゲート電極に供給される第2転送駆動信号TRGb1gがアクティブ状態になるとこれに応答して導通状態になることで、メモリMEM1に保持されている電荷を、浮遊拡散領域FD1に転送する。第2転送トランジスタTRGb2は、ゲート電極に供給される第2転送駆動信号TRGb2gがアクティブ状態になるとこれに応答して導通状態になることで、メモリMEM2に保持されている電荷を、浮遊拡散領域FD2に転送する。
 リセットトランジスタRST1は、ゲート電極に供給されるリセット駆動信号RST1gがアクティブ状態になるとこれに応答して導通状態になることで、浮遊拡散領域FD1の電位をリセットする。リセットトランジスタRST2は、ゲート電極に供給されるリセット駆動信号RST2gがアクティブ状態になるとこれに応答して導通状態になることで、浮遊拡散領域FD2の電位をリセットする。なお、リセットトランジスタRST1およびRST2がアクティブ状態とされるとき、第2転送トランジスタTRGb1およびTRGb2も同時にアクティブ状態とされ、メモリMEM1およびMEM2もリセットされる。
 図5の画素回路では、フォトダイオードPDで発生した電荷が、メモリMEM1とMEM2とに振り分けられて、蓄積される。そして、読み出されるタイミングで、メモリMEM1とMEM2に保持されている電荷が、それぞれ、浮遊拡散領域FD1とFD2に転送され、画素10から出力される。
<6.画素の平面図>
 図6は、図5に示した画素回路の配置例を示した平面図である。
 図6における横方向は、図1の行方向(水平方向)に対応し、縦方向は図1の列方向(垂直方向)に対応する。
 図6に示されるように、矩形の画素10内のフォトダイオードPDとしてのN型の半導体領域52が、SiGe領域で形成されている。
 フォトダイオードPDの外側であって、矩形の画素10の四辺の所定の一辺に沿って、第1転送トランジスタTRGa1、第2転送トランジスタTRGb1、リセットトランジスタRST1、増幅トランジスタAMP1、及び、選択トランジスタSEL1が直線的に並んで配置され、矩形の画素10の四辺の他の一辺に沿って、第1転送トランジスタTRGa2、第2転送トランジスタTRGb2、リセットトランジスタRST2、リセットトランジスタRST2、増幅トランジスタAMP2、及び、選択トランジスタSEL2が直線的に並んで配置されている。メモリMEM1およびMEM2は、例えば、埋め込み型のN型拡散領域により形成される。
 なお、図5に示した画素回路の配置は、この例に限られず、その他の配置としてもよい。
<7.GeSi領域の形成方法>
 図7は、画素アレイ部21の複数の画素10のうち、3x3の画素10の配置例を示す平面図である。
 各画素10のN型の半導体領域52のみがSiGe領域で形成されている場合、画素アレイ部21の領域全体でみると、図7に示されるように、SiGe領域が画素単位に分離された配置となる。
 図8は、N型の半導体領域52をSiGe領域で形成する第1の形成方法を説明する半導体基板41の断面図である。
 第1の形成方法では、図8に示されるように、Si領域である半導体基板41のN型の半導体領域52となる部分に、マスクを用いて選択的にGeをイオン注入することにより、N型の半導体領域52をSiGe領域として形成することができる。半導体基板41のN型の半導体領域52以外の領域は、Si領域によるP型の半導体領域51となる。
 図9は、N型の半導体領域52をSiGe領域で形成する第2の形成方法を説明する半導体基板41の断面図である。
 第2の形成方法では、初めに、図9のAに示されるように、半導体基板41のN型の半導体領域52となるSi領域の部分が除去される。そして、図9のBに示されるように、除去された領域にSiGe層をエピタキシャル成長により成膜することにより、N型の半導体領域52がSiGe領域で形成される。
 なお、図9では、画素トランジスタの配置が図4に示した配置とは異なる配置となっており、SiGe領域で形成されたN型の半導体領域52の近傍に増幅トランジスタAMP1が配置される例を示している。
 以上のように、SiGe領域とされるN型の半導体領域52は、Si領域にGeをイオン注入する第1の形成方法か、または、SiGe層をエピタキシャル成長させる第2の形成方法のいずれかで形成することができる。N型の半導体領域52をGe領域で形成する場合も同様の方法で形成可能である。
<8.第1構成例の変形例>
 上述した第1構成例に係る画素10では、半導体基板41内の光電変換領域であるN型の半導体領域52のみを、SiGe領域またはGe領域で形成する構成としたが、転送トランジスタTRGのゲート下のP型の半導体領域51についても、P型のSiGe領域またはGe領域で形成してもよい。
 図10は、図4で示した図3の画素回路の平面配置を再び示した図であり、図10において破線で示される、転送トランジスタTRG1およびTRG2のゲート下のP型領域81が、SiGe領域またはGe領域で形成される。転送トランジスタTRG1およびTRG2のチャネル領域をSiGe領域またはGe領域で形成することにより、高速駆動される転送トランジスタTRG1およびTRG2において、チャネル移動度を高めることができる。
 エピタキシャル成長を用いて、転送トランジスタTRG1およびTRG2のチャネル領域をSiGe領域とする場合には、初めに、図11のAに示されるように、半導体基板41のN型の半導体領域52と形成する部分と、転送トランジスタTRG1およびTRG2のゲート下の部分が除去される。そして、図11のBに示されるように、除去された領域にSiGe層をエピタキシャル成長により成膜することにより、N型の半導体領域52と転送トランジスタTRG1およびTRG2のゲート下の領域が、SiGe領域で形成される。
 ここで、形成したSiGe領域に、浮遊拡散領域FD1およびFD2を形成すると、浮遊拡散領域FDから発生する暗電流が大きくなるという問題がある。そのため、転送トランジスタTRG形成領域をSiGe領域とした場合には、図11のBに示されるように、成膜したSiGe層の上にエピタキシャル成長によりさらにSi層を形成し、高濃度のN型半導体領域(N型拡散領域)を形成して浮遊拡散領域FDとする構造が採用される。これにより、浮遊拡散領域FDからの暗電流を抑制することができる。
 エピタキシャル成長ではなく、マスクを用いた選択的イオン注入により転送トランジスタTRGのゲート下のP型の半導体領域51をSiGe領域としてもよく、この場合も同様に、形成したSiGe層の上に、エピタキシャル成長によりさらにSi層を形成し、浮遊拡散領域FD1およびFD2とすることができる。
<9.受光素子の基板構成例>
 図12は、受光素子1の基板構成例を示す概略の斜視図である。
 受光素子1は、1枚の半導体基板に形成される場合と、複数の半導体基板に形成される場合とがあり得る。
 図12のAは、受光素子1を1枚の半導体基板に形成する場合の概略構成例を示している。
 受光素子1が1枚の半導体基板に形成される場合、図12のAに示されるように、画素アレイ部21に対応する画素アレイ領域111と、画素アレイ部21以外の回路、例えば、垂直駆動部22や水平駆動部24等の制御回路や、カラム処理部23や信号処理部26の演算回路等に対応するロジック回路領域112とが平面方向に並んで、1枚の半導体基板41上に形成される。図2に示した断面構成は、この1枚基板の構成である。
 一方、図12のBは、受光素子1を複数の半導体基板に形成する場合の概略構成例を示している。
 受光素子1が複数の半導体基板に形成される場合、図12のBに示されるように、画素アレイ領域111は半導体基板41に形成されるが、ロジック回路領域112は、もう1つの半導体基板141に形成され、半導体基板41と半導体基板141とが積層されて構成される。
 以下では、説明を分かり易くするため、積層構造の場合の半導体基板41を第1基板41と称し、半導体基板141を第2基板141と称して説明する。
<10.積層構造の場合の画素断面図>
 図13は、受光素子1が2枚の基板の積層構造で構成される場合の、画素10の断面図を示している。
 図13において、図2に示した第1構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 図13の積層構造では、図12で説明したように、第1基板41と第2基板141の2枚の半導体基板を用いて構成されている。
 図13の積層構造において、第1基板41の光入射面側に、画素間遮光膜45、平坦化膜46、オンチップレンズ47、および、モスアイ構造部71が形成されている点は、図2の第1構成例と同様である。第1基板41の裏面側の画素境界部44には、画素間分離部61が形成されている点も、図2の第1構成例と同様である。
 また、第1基板41にフォトダイオードPDが画素単位に形成されている点、第1基板41のおもて面側に、2つの転送トランジスタTRG1およびTRG2や、電荷保持部としての浮遊拡散領域FD1およびFD2が形成されている点も同様である。
 一方、図2の第1構成例と異なる点として、第1基板41のおもて面側である配線層151の一部である絶縁層153が、第2基板141の絶縁層152と貼り合わされている。
 第1基板41の配線層151には、少なくとも1層の金属膜Mを含み、その金属膜Mを用いて、フォトダイオードPDの形成領域の下方に位置する領域に、遮光部材63が形成されている。
 第2基板141の貼り合わせ面側である絶縁層152側と反対側の界面には、画素トランジスタTr1、Tr2が形成されている。画素トランジスタTr1、Tr2は、例えば、増幅トランジスタAMPや選択トランジスタSELなどである。
 すなわち、1枚の半導体基板41(第1基板41)のみを用いて構成される第1構成例では、転送トランジスタTRG、切替トランジスタFDG、増幅トランジスタAMP、及び、選択トランジスタSELの全ての画素トランジスタが、半導体基板41に形成されていたが、2枚の半導体基板の積層構造の受光素子1では、転送トランジスタTRG以外の画素トランジスタ、即ち、切替トランジスタFDG、増幅トランジスタAMP、及び、選択トランジスタSELは、第2基板141に形成される。
 第2基板141の第1基板41側と反対側の面には、少なくとも2層の金属膜Mを有する配線層161が形成されている。配線層161は、第1金属膜M11と、第2金属膜M12、および、絶縁層173を含む。
 転送トランジスタTRG1を制御する転送駆動信号TRG1gは、第2基板141を貫通するTSV(Through Silicon Via)171-1により、第2基板141の第1金属膜M11から、第1基板41の転送トランジスタTRG1のゲート電極に供給される。転送トランジスタTRG2を制御する転送駆動信号TRG2gは、第2基板141を貫通するTSV171-2により、第2基板141の第1金属膜M11から、第1基板41の転送トランジスタTRG2のゲート電極に供給される。
 同様に、浮遊拡散領域FD1に蓄積された電荷は、第2基板141を貫通するTSV172-1により、第1基板41側から第2基板141の第1金属膜M11へ伝送される。浮遊拡散領域FD2に蓄積された電荷も、第2基板141を貫通するTSV172-2により、第1基板41側から第2基板141の第1金属膜M11へ伝送される。
 配線容量64は、第1金属膜M11か、または、第2金属膜M12の不図示の領域に形成されている。配線容量64が形成される金属膜Mは、容量形成のため配線密度が高く形成され、転送トランジスタTRGや切替トランジスタFDGなどのゲート電極に接続される金属膜Mは、誘導電流低減のため、配線密度は低く形成される。画素トランジスタごとに、ゲート電極と接続される配線層(金属膜M)が異なるように構成してもよい。
 以上のように、画素10は、第1基板41と第2基板141の2枚の半導体基板を積層して構成することができ、転送トランジスタTRG以外の画素トランジスタが、光電変換部を有する第1基板41とは異なる第2基板141に形成される。また、画素10の駆動を制御する垂直駆動部22や画素駆動線28、画素信号を伝送する垂直信号線29なども第2基板141に形成される。これにより、画素を微細化することができ、BEOL(Back End Of Line)設計の自由度も高まる。
 図13の画素10においても、裏面照射型の画素構造とすることで、表面照射型における場合と比較して十分な開口率を確保することができ、量子効率(QE)×開口率(FF)を最大化することができる。
 また、第1基板41に最も近い配線層151のフォトダイオードPDの形成領域と重なる領域に、遮光部材(反射部材)63を備えることにより、半導体基板41内で光電変換されずに半導体基板41を透過してしまった赤外光を、遮光部材63で反射させて半導体基板41内へと再度入射させることができる。また、半導体基板41内で光電変換されずに半導体基板41を透過してしまった赤外光が、第2基板141側へ入射してしまうことを抑制できる。
 図13の画素10においても、フォトダイオードPDを構成するN型の半導体領域52が、SiGe領域またはGe領域で形成されるので、近赤外光の量子効率を高めることができる。
 以上の画素構造によれば、半導体基板41内で光電変換される赤外光の量をより多くし、量子効率(QE)を高め、センサの感度を向上させることができる。
<11.3枚の積層構造>
 図13は、受光素子1を2枚の半導体基板で構成した例であるが、3枚の半導体基板で構成してもよい。
 図14は、3枚の半導体基板を積層して形成した受光素子1の概略断面図を示している。
 図14において、図12と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 図14の画素10は、第1基板41および第2基板141に、さらにもう1つの半導体基板181(以下、第3基板181と称する。)を積層して構成されている。
 第1基板41には、フォトダイオードPDと、転送トランジスタTRGが少なくとも形成されている。フォトダイオードPDを構成するN型の半導体領域52は、SiGe領域またはGe領域で形成される。
 第2基板141には、増幅トランジスタAMP、リセットトランジスタRST、及び、選択トランジスタSELなどの、転送トランジスタTRG以外の画素トランジスタが形成されている。
 第3基板181には、カラム処理部23や信号処理部26などの、画素10から出力された画素信号を処理する信号回路が形成されている。
 第1基板41は、配線層151が形成されたおもて面側とは反対の裏面側にオンチップレンズ47が形成され、第1基板41の裏面側から光が入射される裏面照射型となっている。
 第1基板41の配線層151は、第2基板141のおもて面側である配線層161とCu-Cu接合により貼り合わされている。
 第2基板141と第3基板181は、第3基板181のおもて面側の配線層182に形成されたCu膜と、第2基板141の絶縁層152に形成されたCu膜とのCu-Cu接合により貼り合わされている。第2基板141の配線層161と第3基板181の配線層182は、貫通電極163を介して電気的に接続されている。
 図14の例では、第2基板141のおもて面側である配線層161が第1基板41の配線層151と向き合うように接合されているが、第2基板141の上下を反転して、第2基板141Bの配線層161が第3基板181の配線層182と向き合うように接合されてもよい。
<12.4タップの画素構成例>
 上述した画素10は、1つのフォトダイオードPDに対して、転送ゲートとして2つの転送トランジスタTRG1およびTRG2を有し、電荷保持部として2つの浮遊拡散領域FD1およびFD2とを有し、フォトダイオードPDで生成された電荷を、2つの浮遊拡散領域FD1およびFD2に振り分ける、2タップと呼ばれる画素構造であった。
 これに対して、画素10は、1つのフォトダイオードPDに対して、4つの転送トランジスタTRG1乃至TRG4と、浮遊拡散領域FD1乃至FD4とを有し、フォトダイオードPDで生成された電荷を、4つの浮遊拡散領域FD1乃至FD4に振り分ける、4タップの画素構造とすることも可能である。
 図15は、図5および図6に示したメモリMEM保持型の画素10を、4タップの画素構造とした場合の平面図である。
 画素10は、第1転送トランジスタTRGa、第2転送トランジスタTRGb、リセットトランジスタRST、増幅トランジスタAMP、及び、選択トランジスタSELをそれぞれ4個ずつ有する。
 フォトダイオードPDの外側であって、矩形の画素10の四辺の各辺に沿って、第1転送トランジスタTRGa、第2転送トランジスタTRGb、リセットトランジスタRST、増幅トランジスタAMP、及び、選択トランジスタSELのセットが直線的に並んで配置されている。
 図15においては、矩形の画素10の四辺の各辺に沿って配置された、第1転送トランジスタTRGa、第2転送トランジスタTRGb、リセットトランジスタRST、増幅トランジスタAMP、及び、選択トランジスタSELの各セットに、1乃至4のいずれかの数字を付して区別されている。
 画素10が2タップ構造である場合には、第1のタップと第2のタップとで位相(受光タイミング)を180度ずらすことにより、生成電荷を2つの浮遊拡散領域FDに振り分ける駆動が行われる。これに対して、画素10が4タップ構造である場合には、第1乃至第4のタップとで位相(受光タイミング)を90度ずつ、ずらすことにより、生成電荷を4つの浮遊拡散領域FDに振り分ける駆動を行うことができる。そして、4つの浮遊拡散領域FDに蓄積された電荷の配分比に基づいて、物体までの距離を求めることができる。
 以上のように、画素10は、フォトダイオードPDで生成された電荷を、2タップで振り分ける構造の他、4タップで振り分ける構造も可能であり、2タップに限らず、3タップ以上とすることが可能である。なお、画素10を1タップの構造とした場合でも、フレーム単位で位相をずらすことにより、物体までの距離を求めることはできる。
<13.SiGe領域のその他の形成例>
 上述した受光素子1の構成例では、各画素10の一部の領域、具体的には、光電変換領域であるフォトダイオードPDのN型の半導体領域52のみか、または、N型の半導体領域52と転送トランジスタTRGのゲート下のチャネル領域を、SiGe領域とする構成について説明した。この場合、SiGe領域は、図7に示したように、画素単位に分離して設けられる。
 次の図16および図17では、画素アレイ領域111(画素アレイ部21)全体を、SiGe領域とする構成について説明する。
 図16は、受光素子1が図12のAに示した1枚の半導体基板上に形成される場合において、画素アレイ領域111全体をSiGe領域とした構成例を示している。
 図16のAは、画素アレイ領域111とロジック回路領域112が同一の基板上に形成された半導体基板41の平面図である。図16のBは、半導体基板41の断面図である。
 図16のAに示されるように、画素アレイ領域111全体を、SiGe領域とすることができ、ロジック回路領域112などの他の領域は、Si領域とされる。
 SiGe領域で形成される画素アレイ領域111は、図16のBに示されるように、Si領域である半導体基板41の画素アレイ領域111となる部分に、Geをイオン注入することにより、画素アレイ領域111全体をSiGe領域で形成することができる。
 図17は、受光素子1が図12のBに示した2枚の半導体基板の積層構造とされる場合において、画素アレイ領域111全体をSiGe領域とした構成例を示している。
 図17のAは、2枚の半導体基板のうちの第1基板41(半導体基板41)の平面図である。図17のBは、第1基板41の断面図である。
 図17のAに示されるように、第1基板41に形成された画素アレイ領域111全体が、SiGe領域とされる。
 SiGe領域で形成される画素アレイ領域111は、図17のBに示されるように、Si領域である半導体基板41の画素アレイ領域111となる部分に、Geをイオン注入することにより、画素アレイ領域111全体をSiGe領域で形成することができる。
 なお、画素アレイ領域111全体をSiGe領域とする場合において、第1基板41の深さ方向でGe濃度が異なるようにSiGe領域を形成してもよい。具体的には、図18に示されるように、オンチップレンズ47が形成される光入射面側のGe濃度を濃くし、画素トランジスタ形成面に行くほど、Ge濃度が薄くなるように、基板深さによってGe濃度に勾配を付けて、SiGe領域を形成することができる。
 例えば、光入射面側の濃度が濃い部分は、SiとGeの割合が2:8(Si:Ge=2:8)で、基板濃度4E+22/cm3、画素トランジスタ形成面近傍の濃度が薄い部分は、SiとGeの割合が8:2(Si:Ge=8: 2)で、基板濃度1E+22/cm3とすることができ、画素アレイ領域111全体では、1E+22から4E+22/cm3の範囲の濃度とすることができる。
 濃度の制御は、例えば、イオン注入時の注入エネルギーをコントロールすることで注入深さを選択したり、マスクを用いて注入領域(平面方向の領域)を選択することで行うことができる。Geの濃度が高い方が、当然、赤外光の量子効率を高めることができる。
<14.画素エリアADCの詳細構成例>
 図16乃至図18に示したように、フォトダイオードPD(N型の半導体領域52)だけでなく、画素アレイ領域111の全体をSiGe領域とした場合には、浮遊拡散領域FDの暗電流悪化が懸念される。浮遊拡散領域FDの暗電流悪化の対策の1つとしては、例えば、図11に示したように、SiGe領域の上にSi層を形成し、浮遊拡散領域FDとする方法がある。
 その他の浮遊拡散領域FDの暗電流悪化の対策として、図1で示したような、画素10のカラム単位にAD変換を行うのではなく、画素単位または近傍のnxn画素単位(nは1以上の整数)にAD変換部を設ける画素エリアADCの構成を採用することができる。画素エリアADCの構成を採用することで、図1のカラムADC型と比較して、浮遊拡散領域FDで電荷を保持する時間を短くすることができるので、浮遊拡散領域FDの暗電流悪化を抑制することができる。
 図19乃至図20に、AD変換部を画素単位に設けた受光素子1の構成について説明する。
 図19は、画素毎にAD変換部を備える画素10の詳細構成例を示すブロック図である。
 画素10は、画素回路201とADC(AD変換部)202で構成されている。AD変換部が画素単位ではなく、nxn画素単位に設けられる場合には、nxn個の画素回路201に対して、1つのADC202が設けられる。
 画素回路201は、受光した光量に応じた電荷信号をアナログの画素信号SIGとしてADC202に出力する。ADC202は、画素回路201から供給されたアナログの画素信号SIGをデジタル信号に変換する。
 ADC202は、比較回路211とデータ記憶部212で構成される。
 比較回路211は、周辺回路部として設けられるDAC241から供給される参照信号REFと、画素回路201からの画素信号SIGとを比較し、比較結果を表す比較結果信号として、出力信号VCOを出力する。比較回路211は、参照信号REFと画素信号SIGが同一(の電圧)になったとき、出力信号VCOを反転させる。
 比較回路211は、差動入力回路221、電圧変換回路222、及び正帰還回路(PFB:positive feedback)223により構成されるが、詳細は図20を参照して後述する。
 データ記憶部212には、比較回路211から出力信号VCOが入力される他、垂直駆動部22から、画素信号の書き込み動作であることを表すWR信号、画素信号の読み出し動作であることを表すRD信号、及び、画素信号の読み出し動作中における画素10の読み出しタイミングを制御するWORD信号が供給される。また、周辺回路部の時刻コード発生部(不図示)で生成された時刻コードが、周辺回路部として設けられる時刻コード転送部242を介して供給される。
 データ記憶部212は、WR信号及びRD信号に基づいて、時刻コードの書き込み動作と読み出し動作を制御するラッチ制御回路231と、時刻コードを記憶するラッチ記憶部232で構成される。
 ラッチ制御回路231は、時刻コードの書き込み動作においては、比較回路211からHi(High)の出力信号VCOが入力されている間、時刻コード転送部242から供給される、単位時間ごとに更新される時刻コードをラッチ記憶部232に記憶させる。そして、参照信号REFと画素信号SIGが同一(の電圧)になり、比較回路211から供給される出力信号VCOがLo(Low)に反転されたとき、供給される時刻コードの書き込み(更新)を中止し、最後にラッチ記憶部232に記憶された時刻コードをラッチ記憶部232に保持させる。ラッチ記憶部232に記憶された時刻コードは、画素信号SIGと参照信号REFが等しくなった時刻を表しており、デジタル化された光量値を表す。
 参照信号REFの掃引が終了し、画素アレイ部21内の全ての画素10のラッチ記憶部232に時刻コードが記憶された後、画素10の動作が、書き込み動作から読み出し動作に変更される。
 ラッチ制御回路231は、時刻コードの読み出し動作においては、読み出しタイミングを制御するWORD信号に基づいて、画素10が自分の読み出しタイミングとなったときに、ラッチ記憶部232に記憶されている時刻コード(デジタルの画素信号SIG)を、時刻コード転送部242に出力する。時刻コード転送部242は、供給された時刻コードを、列方向(垂直方向)に順次転送し、信号処理部26に供給する。
<比較回路の詳細構成例>
 図20は、比較回路211を構成する差動入力回路221、電圧変換回路222、及び正帰還回路223と画素回路201の詳細構成を示す回路図である。
 なお、図20は、紙面の制約上、2タップで構成される画素10のうち、1つのタップに相当する回路を示している。
 差動入力回路221は、画素10内の画素回路201から出力された一方のタップの画素信号SIGと、DAC241から出力された参照信号REFとを比較し、画素信号SIGが参照信号REFよりも高いときに所定の信号(電流)を出力する。
 差動入力回路221は、差動対となるトランジスタ281及び282、カレントミラーを構成するトランジスタ283及び284、入力バイアス電流Vbに応じた電流IBを供給する定電流源としてのトランジスタ285、並びに、差動入力回路221の出力信号HVOを出力するトランジスタ286により構成されている。
 トランジスタ281、282、及び285は、NMOS(Negative Channel MOS)トランジスタで構成され、トランジスタ283、284、及び286は、PMOS(Positive Channel MOS)トランジスタで構成される。
 差動対となるトランジスタ281及び282のうち、トランジスタ281のゲートには、DAC241から出力された参照信号REFが入力され、トランジスタ282のゲートには、画素10内の画素回路201から出力された画素信号SIGが入力される。トランジスタ281と282のソースは、トランジスタ285のドレインと接続され、トランジスタ285のソースは、所定の電圧VSS(VSS<VDD2<VDD1)に接続されている。
 トランジスタ281のドレインは、カレントミラー回路を構成するトランジスタ283及び284のゲート及びトランジスタ283のドレインと接続され、トランジスタ282のドレインは、トランジスタ284のドレイン及びトランジスタ286のゲートと接続されている。トランジスタ283、284、及び286のソースは、第1電源電圧VDD1に接続されている。
 電圧変換回路222は、例えば、NMOS型のトランジスタ291で構成される。トランジスタ291のドレインは、差動入力回路221のトランジスタ286のドレインと接続され、トランジスタ291のソースは、正帰還回路223内の所定の接続点に接続され、トランジスタ286のゲートは、バイアス電圧VBIASに接続されている。
 差動入力回路221を構成するトランジスタ281乃至286は、第1電源電圧VDD1までの高電圧で動作する回路であり、正帰還回路223は、第1電源電圧VDD1よりも低い第2電源電圧VDD2で動作する回路である。電圧変換回路222は、差動入力回路221から入力される出力信号HVOを、正帰還回路223が動作可能な低電圧の信号(変換信号)LVIに変換して、正帰還回路223に供給する。
 バイアス電圧VBIASは、低電圧で動作する正帰還回路223の各トランジスタ301乃至307を破壊しない電圧に変換する電圧であれば良い。例えば、バイアス電圧VBIASは、正帰還回路223の第2電源電圧VDD2と同じ電圧(VBIAS=VDD2)とすることができる。
 正帰還回路223は、差動入力回路221からの出力信号HVOが第2電源電圧VDD2に対応する信号に変換された変換信号LVIに基づいて、画素信号SIGが参照信号REFよりも高いときに反転する比較結果信号を出力する。また、正帰還回路223は、比較結果信号として出力する出力信号VCOが反転するときの遷移速度を高速化する。
 正帰還回路223は、7つのトランジスタ301乃至307で構成される。トランジスタ301、302、304、及び306は、PMOSトランジスタで構成され、トランジスタ303、305、及び307は、NMOSトランジスタで構成される。
 電圧変換回路222の出力端であるトランジスタ291のソースは、トランジスタ302及び303のドレインと、トランジスタ304及び305のゲートに接続されている。トランジスタ301のソースは、第2電源電圧VDD2に接続され、トランジスタ301のドレインは、トランジスタ302のソースと接続され、トランジスタ302のゲートは、正帰還回路223の出力端でもあるトランジスタ304及び305のドレインと接続されている。トランジスタ303及び305のソースは、所定の電圧VSSに接続されている。トランジスタ301と303のゲートには、初期化信号INIが供給される。
 トランジスタ304乃至307は2入力のNOR回路を構成し、トランジスタ304と305のドレインどうしの接続点は、比較回路211が出力信号VCOを出力する出力端となっている。
 PMOSトランジスタで構成されるトランジスタ306のゲートと、NMOSトランジスタで構成されるトランジスタ307のゲートには、第1の入力である変換信号LVIではない、第2の入力である制御信号TERMが供給される。
 トランジスタ306のソースは第2電源電圧VDD2に接続され、トランジスタ306のドレインはトランジスタ304のソースに接続されている。トランジスタ307のドレインは、比較回路211の出力端と接続され、トランジスタ307のソースは、所定の電圧VSSに接続されている。
 以上のように構成される比較回路211の動作について説明する。
 まず、参照信号REFが、全ての画素10の画素信号SIGよりも高い電圧に設定されるとともに、初期化信号INIがHiにされて、比較回路211が初期化される。
 より具体的には、トランジスタ281のゲートには参照信号REFが、トランジスタ282のゲートには画素信号SIGが印加される。参照信号REFの電圧が、画素信号SIGの電圧よりも高い電圧の時は電流源となるトランジスタ285が出力した電流のほとんどがトランジスタ281を経由してダイオード接続されたトランジスタ283に流れる。トランジスタ283と共通のゲートを持つトランジスタ284のチャネル抵抗は十分低くなりトランジスタ286のゲートをほぼ第1電源電圧VDD1レベルに保ち、トランジスタ286は遮断される。したがって、電圧変換回路222のトランジスタ291が導通していたとしても、充電回路としての正帰還回路223が変換信号LVIを充電することは無い。一方、初期化信号INIとしてHiの信号が供給されていることから、トランジスタ303は導通し、正帰還回路223は変換信号LVIを放電する。また、トランジスタ301は遮断するので、正帰還回路223がトランジスタ302を介して変換信号LVIを充電することもない。その結果、変換信号LVIは、所定の電圧VSSレベルまで放電され、正帰還回路223は、NOR回路を構成するトランジスタ304と305によってHiの出力信号VCOを出力し、比較回路211が初期化される。
 初期化の後、初期化信号INIがLoにされて、参照信号REFの掃引が開始される。
 参照信号REFが画素信号SIGよりも高い電圧の期間では、トランジスタ286はオフとなるため遮断され、出力信号VCOはHiの信号となるので、トランジスタ302もオフとなり遮断される。トランジスタ303も、初期化信号INIはLoとなっているため遮断される。変換信号LVIは、高インピーダンス状態のまま所定の電圧VSSを保ち、Hiの出力信号VCOが出力される。
 参照信号REFが画素信号SIGよりも低くなると、電流源のトランジスタ285の出力電流はトランジスタ281を流れなくなり、トランジスタ283と284のゲート電位は上昇して、トランジスタ284のチャネル抵抗は高くなる。そこに、トランジスタ282を介して流れ込む電流が、電圧降下を起こしてトランジスタ286のゲート電位を下げ、トランジスタ291が導通する。トランジスタ286から出力された出力信号HVOは、電圧変換回路222のトランジスタ291によって変換信号LVIに変換され、正帰還回路223に供給される。充電回路としての正帰還回路223は、変換信号LVIを充電し、電位を低電圧VSSから第2電源電圧VDD2へ近づけてゆく。
 そして、変換信号LVIの電圧が、トランジスタ304と305で構成されるインバータの閾値電圧を超えると、出力信号VCOはLoとなり、トランジスタ302が導通する。トランジスタ301も、Loの初期化信号INIが印加されているため導通しており、正帰還回路223は、トランジスタ301と302を介して、変換信号LVIを急速に充電し、電位を第2電源電圧VDD2まで一気に持ち上げる。
 電圧変換回路222のトランジスタ291は、ゲートにバイアス電圧VBIASが印加されているので、変換信号LVIの電圧が、バイアス電圧VBIASからトランジスタ閾値下がった電圧値に到達すれば遮断する。トランジスタ286が導通したままだとしても、それ以上に変換信号LVIを充電することは無く、電圧変換回路222は、電圧クランプ回路としても機能する。
 トランジスタ302の導通による変換信号LVIの充電は、そもそもが変換信号LVIがインバータ閾値まで上昇してきたことを発端とし、その動きを加速する正帰還動作である。差動入力回路221の電流源であるトランジスタ285は、受光素子1で並列同時に動作する回路数が膨大であることから1回路あたりの電流がきわめて僅かな電流に設定される。さらに、参照信号REFは、時刻コードが切り替わる単位時間に変化する電圧がAD変換のLSBステップとなるために極めて緩慢に掃引される。従って、トランジスタ286のゲート電位の変化も緩慢であり、それによって駆動されるトランジスタ286の出力電流の変化も緩慢である。しかし、その出力電流で充電される変換信号LVIに、後段から正帰還をかけることで、出力信号VCOは十分急速に遷移することができる。望ましくは、出力信号VCOの遷移時間は、時刻コードの単位時間の数分の1であり、典型例としては1ns以下である。比較回路211は、電流源のトランジスタ285に、例えば0.1uAの僅かな電流を設定しただけで、この出力遷移時間を達成することができる。
 NOR回路の第2の入力である制御信号TERMをHiにすると、差動入力回路221の状態に関係なく、出力信号VCOをLoにすることができる。
 例えば、画素信号SIGの電圧が、想定を超える高い輝度によって参照信号REFの最終電圧を下回ると、比較回路211の出力信号VCOがHiのまま比較期間を終えることになり、出力信号VCOによって制御されるデータ記憶部212は、値を固定することが出来ずAD変換機能が失われる。このような状態の発生を防止するため、参照信号REFの掃引の最後に、Hiパルスの制御信号TERMを入力することにより、未だにLoに反転していない出力信号VCOを強制的に反転することができる。データ記憶部212は強制反転直前の時刻コードを記憶(ラッチ)するので、図20の構成を採用した場合には、ADC202は、結果的に、一定以上の輝度入力に対する出力値をクランプしたAD変換器として機能する。
 バイアス電圧VBIASをLoレベルに制御して、トランジスタ291を遮断させ、初期化信号INIをHiにすると、差動入力回路221の状態に関係なく出力信号VCOはHiになる。したがって、この出力信号VCOの強制的なHi出力と、上述した制御信号TERMによる強制的なLo出力を組み合わせることにより、差動入力回路221及び、その前段である画素回路201とDAC241の状態に関係なく、出力信号VCOを任意の値に設定することができる。この機能により、例えば、画素10から後段の回路を、受光素子1への光学的入力に頼らず、電気信号入力だけで試験することが可能となる。
 図21は、画素回路201の各タップの出力と比較回路211の差動入力回路221との接続を示す回路図である。
 図21に示されるように、画素回路201の各タップの出力先に、図20に示した比較回路211の差動入力回路221が接続されている。
 図20の画素回路201は、図21の画素回路201と等価であり、図3に示した画素10の回路構成と同様である。
 画素エリアADCの構成を採用した場合には、画素単位またはnxn画素単位(nは1以上の整数)の回路数が多くなるため、受光素子1は、図12のBに示した積層構造で構成される。この場合、例えば、図21に示されるように、画素回路201と差動入力回路221のトランジスタ281、282、および285までを、第1基板41に配置し、その他の回路を、第2基板141に配置することができる。第1基板41と第2基板141は、Cu-Cu接合により、電気的に接続される。なお、第1基板41と第2基板141の回路配置は、この例に限定されない。
 以上のように、画素アレイ領域111の全体をSiGe領域とした場合の浮遊拡散領域FDの暗電流悪化の対策として画素エリアADCの構成を採用することで、図1のカラムADCと比較して、浮遊拡散領域FDに電荷を蓄積する時間を小さくすることができるので、浮遊拡散領域FDの暗電流悪化を抑制することができる。
<15.画素の第2構成例に係る断面図>
 図22は、画素アレイ部21に配置される画素10の第2構成例を示す断面図である。
 図22において図2に示した第1構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 図22は、図5に示したメモリMEM保持型の画素10の画素構造の断面図であり、また、図12のBに示した2枚の基板の積層構造で構成される場合の断面図を示している。
 ただし、図13に示した積層構造の断面図では、第1基板41側の配線層151の金属膜Mと、第2基板141の配線層161の金属膜Mとが、TSV171やTSV172により電気的に接続されていたのに対して、図22では、Cu-Cu接合により電気的に接続されている。
 具体的には、第1基板41の配線層151は、第1金属膜M21と、第2金属膜M22、および、絶縁層153を含み、第2基板141の配線層161は、第1金属膜M31と、第2金属膜M32、および、絶縁層173を含む。第1基板41の配線層151と、第2基板141の配線層161が、破線で示される接合面の一部に形成されたCu膜どうしで電気的に接続されている。
 図22の第2構成例では、図17を参照して説明した、第1基板41の画素アレイ領域111全体がSiGe領域とされている。換言すれば、P型の半導体領域51とN型の半導体領域52が、SiGe領域で形成されている。これにより、赤外光に対する量子効率を向上させている。
 図23を参照して、第1基板41の画素トランジスタ形成面について説明する。
 図23は、図22の第1基板41の画素トランジスタ近傍を拡大した断面図である。
 第1基板41の配線層151側の界面には、第1転送トランジスタTRGa1およびTRGa2、第2転送トランジスタTRGb1およびTRGb2、並びに、メモリMEM1およびMEM2が、画素10ごとに形成されている。
 第1基板41の配線層151側の界面には、酸化膜351が、例えば10乃至100nm程度の膜厚で形成されている。この酸化膜351は、第1基板41の面上にシリコン膜をエピタキシャル成長により形成し、熱処理することにより形成される。この酸化膜351は、第1転送トランジスタTRGa、および、第2転送トランジスタTRGbそれぞれのゲート絶縁膜としても機能する。
 SiGe領域は、Siと比較して良質な酸化膜を形成することが困難であるため、転送トランジスタTRGやメモリMEMから発生する暗電流が大きくなる。特に、間接ToF方式の受光素子1では、2つ以上のタップ間で転送トランジスタTRGを交互にオンオフする動作を繰り返すため、転送トランジスタTRGをオンしたときに発生するゲート起因の暗電流が無視できない。
 10乃至100nm程度の膜厚の酸化膜351により、界面準位に起因する暗電流を低減することができる。したがって、第2構成例によれば、量子効率を高めつつ、暗電流を抑制することができる。SiGe領域の代わりにGe領域を形成した場合でも同様の効果がある。
 画素10が、2枚の基板の積層構造ではなく、図2のように1枚の半導体基板41の片側の面に全ての画素トランジスタが形成されている場合には、酸化膜351を形成することにより、増幅トランジスタAMPからのリセットノイズも低減することができる。
<16.画素の第3構成例に係る断面図>
 図24は、画素アレイ部21に配置される画素10の第3構成例を示す断面図である。
 図2の第1構成例および図22の第2構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 図24は、受光素子1が2枚の基板の積層構造で構成される場合の画素10の断面図であり、図22に示した第2構成例と同様、Cu-Cu接合により接続される場合の断面図である。また、図22に示した第2構成例と同様に、第1基板41の画素アレイ領域111全体がSiGe領域で形成されている。
 浮遊拡散領域FD1およびFD2がSiGe領域で形成された場合、上述したように浮遊拡散領域FDから発生する暗電流が大きくなるという問題がある。そのため、暗電流の影響をできるだけ小さくするため、第1基板41内に形成される浮遊拡散領域FD1およびFD2の体積が小さく形成される。
 しかしながら、浮遊拡散領域FD1およびFD2の体積を小さくしただけでは、浮遊拡散領域FD1およびFD2の容量が小さくなり、十分な電荷を蓄積することができない。
 そこで、図24の第3構成例では、第1基板41の配線層151にMIM(Metal Insulator Metal)容量素子371を形成し、浮遊拡散領域FDに常時接続することで、浮遊拡散領域FDの容量を増大させている。具体的には、浮遊拡散領域FD1にMIM容量素子371-1が接続されており、浮遊拡散領域FD2にMIM容量素子371-2が接続されている。MIM容量素子371は、U字形状の3次元構造を有することで小さい搭載面積で実現している。
 図24の第3構成例に係る画素10によれば、暗電流の発生を抑制するため体積を小さく形成した浮遊拡散領域FDの容量不足を、MIM容量素子371で補うことができる。これにより、SiGe領域を用いた場合の暗電流の抑制と容量の確保を同時に実現できる。すなわち、第3構成例によれば、赤外光に対する量子効率を高めつつ、暗電流を抑制することができる。
 なお、図24の例では、浮遊拡散領域FDに接続される追加の容量素子として、MIM容量素子の例を説明したが、MIM容量素子に限られない。例えば、MOM(Metal Oxide Metal)容量素子、Poly-Poly間容量素子(対向電極を共にポリシリコンで形成する容量素子)、または、配線により形成される寄生容量等を含む付加容量であってもよい。
 また、画素10が、図22に示した第2構成例のようなメモリMEM1およびMEM2を備える画素構造の場合には、浮遊拡散領域FDだけではなく、メモリMEMにも追加の容量素子を接続した構成とすることができる。
 浮遊拡散領域FDまたはメモリMEMに接続される追加の容量素子は、図24の例では、第1基板41の配線層151に形成したが、第2基板14の配線層161に形成してもよい。
 図24の例では、図2の第1構成例における遮光部材63および配線容量64が省略されているが、遮光部材63および配線容量64は形成されてもよい。
<17.IR撮像センサの構成例>
 上述した、フォトダイオードPDまたは画素アレイ領域111を、SiGe領域またはGe領域とすることで、近赤外光の量子効率を向上させた受光素子1の構造は、間接ToF方式による測距情報を出力する測距センサに限らず、赤外光を受光する他のセンサにも採用することができる。
 以下では、半導体基板の一部をSiGe領域またはGe領域とする他のセンサの例として、赤外光を受光し、IR画像を生成するIR撮像センサ、赤外光とRGBの光を受光するRGBIR撮像センサの例について説明する。
 また、赤外光を受光して測距情報を出力する測距センサの他の例として、SPAD画素を用いた直接ToF方式の測距センサ、CAPD(Current Assisted Photonic Demodulator)方式のToFセンサの例について説明する。
 図25は、受光素子1が、IR画像を生成して出力するIR撮像センサとして構成される場合の画素10の回路構成を示している。
 受光素子1がToFセンサである場合、フォトダイオードPDで発生した電荷を、2つの浮遊拡散領域FD1とFD2とに振り分けて蓄積するため、画素10は、転送トランジスタTRG、浮遊拡散領域FD、付加容量FDL、切替トランジスタFDG、増幅トランジスタAMP、リセットトランジスタRST、及び、選択トランジスタSELをそれぞれ2個ずつ有していた。
 受光素子1がIR撮像センサである場合には、フォトダイオードPDで発生した電荷を一時保持する電荷保持部は1つでよいため、転送トランジスタTRG、浮遊拡散領域FD、付加容量FDL、切替トランジスタFDG、増幅トランジスタAMP、リセットトランジスタRST、及び、選択トランジスタSELも、それぞれ1個ずつとされる。
 換言すれば、受光素子1がIR撮像センサである場合には、画素10は、図25に示されるように、図3に示した回路構成から、転送トランジスタTRG2、切替トランジスタFDG2、リセットトランジスタRST2、増幅トランジスタAMP2、及び、選択トランジスタSEL2を省略した構成に等しい。浮遊拡散領域FD2と垂直信号線29Bも省略される。
 図26は、受光素子1がIR撮像センサとして構成される場合の画素10の構成例を示す断面図である。
 受光素子1がIR撮像センサとして構成される場合と、ToFセンサとして構成される場合との違いは、図25で説明したように、半導体基板41のおもて面側に形成される浮遊拡散領域FD2と、画素トランジスタの有無である。そのため、半導体基板41のおもて面側に形成された多層配線層42の構成が図2と異なる。また、浮遊拡散領域FD2が省略されている。図26におけるその他の構成は図2と同様である。
 図26においても、フォトダイオードPDをSiGe領域またはGe領域とすることで、近赤外光の量子効率を高めることができる。上述した図2の第1構成例に限らず、画素エリアADCの構成、図22の第2構成例、および、図24の第3構成例についても同様に、IR撮像センサに適用することができる。また、図16乃至図18で説明したように、フォトダイオードPDだけでなく画素アレイ領域111全体をSiGe領域またはGe領域とすることも可能である。
<18.RGBIR撮像センサの構成例>
 図26の画素構造を有する受光素子1は、全画素10が赤外光を受光するセンサであるが、赤外光とRGBの光を受光するRGBIR撮像センサにも適用することができる。
 受光素子1が、赤外光とRGBの光を受光するRGBIR撮像センサとして構成される場合、例えば図27に示される2x2の画素配置が行方向および列方向に繰り返し配列される。
 図27は、受光素子1が、赤外光とRGBの光を受光するRGBIR撮像センサとして構成される場合の画素配置例を示している。
 受光素子1がRGBIR撮像センサとして構成される場合、図27に示されるように、2x2の4画素に、R(赤)の光を受光するR画素、B(青)の光を受光するB画素、G(緑)の光を受光するG画素、および、IR(赤外)の光を受光するIR画素が、割り当てられる。
 各画素10が、R画素、B画素、G画素、またはIR画素のいずれになるかは、RGBIR撮像センサにおいては図26の平坦化膜46とオンチップレンズ47との間に挿入されるカラーフィルタ層によって決定される。
 図28は、受光素子1がRGBIR撮像センサとして構成される場合に、平坦化膜46とオンチップレンズ47との間に挿入されるカラーフィルタ層の例を示す断面図である。
 図28では、左から右の順に、B画素、G画素、R画素、および、IR画素が並んでいる。
 平坦化膜46(図28では不図示)とオンチップレンズ47との間には、第1のカラーフィルタ層381と、第2のカラーフィルタ層382とが挿入されている。
 B画素では、第1のカラーフィルタ層381に、Bの光を透過させるBフィルタが配置され、第2のカラーフィルタ層382に、IRの光を遮断するIRカットフィルタが配置されている。これにより、Bの光のみが、第1のカラーフィルタ層381と第2のカラーフィルタ層382を透過して、フォトダイオードPDへ入射される。
 G画素では、第1のカラーフィルタ層381に、Gの光を透過させるGフィルタが配置され、第2のカラーフィルタ層382に、IRの光を遮断するIRカットフィルタが配置されている。これにより、Gの光のみが、第1のカラーフィルタ層381と第2のカラーフィルタ層382を透過して、フォトダイオードPDへ入射される。
 R画素では、第1のカラーフィルタ層381に、Rの光を透過させるRフィルタが配置され、第2のカラーフィルタ層382に、IRの光を遮断するIRカットフィルタが配置されている。これにより、Rの光のみが、第1のカラーフィルタ層381と第2のカラーフィルタ層382を透過して、フォトダイオードPDへ入射される。
 IR画素では、第1のカラーフィルタ層381に、Rの光を透過させるRフィルタが配置され、第2のカラーフィルタ層382に、Bの光を透過させるBフィルタが配置されている。これにより、BからRまでの波長以外の光が透過するので、IRの光が、第1のカラーフィルタ層381と第2のカラーフィルタ層382を透過して、フォトダイオードPDへ入射される。
 受光素子1がRGBIR撮像センサとして構成される場合、IR画素のフォトダイオードPDが、上述したSiGe領域またはGe領域で形成され、R画素、G画素、およびR画素のフォトダイオードPDは、Si領域で形成される。
 受光素子1がRGBIR撮像センサとして構成される場合においても、IR画素のフォトダイオードPDをSiGe領域またはGe領域とすることで、近赤外光の量子効率を高めることができる。上述した図2の第1構成例に限らず、画素エリアADCの構成、図22の第2構成例、および、図24の第3構成例についても同様に、RGBIR撮像センサに採用することができる。また、図16乃至図18で説明したように、フォトダイオードPDだけでなく画素アレイ領域111全体をSiGe領域またはGe領域とすることも可能である。
<19.SPAD画素の構成例>
 次に、SPAD画素を用いた直接ToF方式の測距センサに、上述した画素10の構造を適用した例について説明する。
 ToFセンサには、間接ToFセンサと直接ToFセンサとがある。間接ToFセンサは、照射光が発光されてから反射光が受光されるまでの飛行時間を位相差として検出し、物体までの距離を算出する方式であるのに対して、直接ToFセンサは、照射光が発光されてから反射光が受光されるまでの飛行時間を直接計測し、物体までの距離を算出する方式である。
 飛行時間を直接計測する受光素子1では、各画素10の光電変換素子として、例えば、SPAD(Single Photon Avalanche Diode)などが用いられる。
 図29は、画素10の光電変換素子としてSPADを用いたSPAD画素の回路構成例を示している。
 図29の画素10は、SPAD401と、トランジスタ411およびインバータ412で構成される読み出し回路402とを備える。また、画素10は、スイッチ413も備える。トランジスタ411は、P型のMOSトランジスタで構成される。
 SPAD401のカソードは、トランジスタ411のドレインに接続されるとともに、インバータ412の入力端子、及び、スイッチ413の一端に接続されている。SPAD401のアノードは、電源電圧VA(以下では、アノード電圧VAとも称する。)に接続されている。
 SPAD401は、入射光が入射されたとき、発生する電子をアバランシェ増幅させてカソード電圧VSの信号を出力するフォトダイオード(単一光子アバランシェフォトダイオード)である。SPAD401のアノードに供給される電源電圧VAは、例えば、-20V程度の負バイアス(負の電位)とされる。
 トランジスタ411は、飽和領域で動作する定電流源であり、クエンチング抵抗として働くことにより、パッシブクエンチを行う。トランジスタ411のソースは電源電圧VEに接続され、ドレインがSPAD401のカソード、インバータ412の入力端子、及び、スイッチ413の一端に接続されている。これにより、SPAD401のカソードにも、電源電圧VEが供給される。SPAD401と直列に接続されたトランジスタ411の代わりに、プルアップ抵抗を用いることもできる。
 SPAD401には、十分な効率で光(フォトン)を検出するため、SPAD401の降伏電圧VBDよりも大きな電圧(過剰バイアス(ExcessBias))が印加される。例えば、SPAD401の降伏電圧VBDが20Vであり、それよりも3V大きい電圧を印加することとすると、トランジスタ411のソースに供給される電源電圧VEは、3Vとされる。
 なお、SPAD401の降伏電圧VBDは、温度等によって大きく変化する。そのため、降伏電圧VBDの変化に応じて、SPAD401に印加する印加電圧が制御(調整)される。例えば、電源電圧VEを固定電圧とすると、アノード電圧VAが制御(調整)される。
 スイッチ413は、両端の一端がSPAD401のカソード、インバータ412の入力端子、および、トランジスタ411のドレインに接続され、他端が、グランド(GND)に接続されている。スイッチ413は、例えば、N型のMOSトランジスタで構成することができ、垂直駆動部22から供給されるゲーティング制御信号VGに応じてオンオフさせる。
 垂直駆動部22は、各画素10のスイッチ413にHighまたはLowのゲーティング制御信号VGを供給し、スイッチ413をオンオフさせることにより、画素アレイ部21の各画素10をアクティブ画素または非アクティブ画素に設定する。アクティブ画素は、光子の入射を検出する画素であり、非アクティブ画素は、光子の入射を検出しない画素である。ゲーティング制御信号VGにしたがいスイッチ413がオンされ、SPAD401のカソードがグランドに制御されると、画素10は、非アクティブ画素になる。
 図30を参照して、図29の画素10がアクティブ画素に設定された場合の動作について説明する。
 図30は、光子の入射に応じたSPAD401のカソード電圧VSの変化と画素信号PFoutを示すグラフである。
 まず、画素10がアクティブ画素である場合、上述したように、スイッチ413はオフに設定される。
 SPAD401のカソードには電源電圧VE(例えば、3V)が供給され、アノードには電源電圧VA(例えば、-20V)が供給されることから、SPAD401に降伏電圧VBD(=20V)より大きい逆電圧が印加されることにより、SPAD401がガイガーモードに設定される。この状態では、SPAD401のカソード電圧VSは、例えば図30の時刻t0のように、電源電圧VEと同じである。
 ガイガーモードに設定されたSPAD401に光子が入射すると、アバランシェ増倍が発生し、SPAD401に電流が流れる。
 図30の時刻t1において、アバランシェ増倍が発生し、SPAD401に電流が流れたとすると、時刻t1以降、SPAD401に電流が流れることにより、トランジスタ411にも電流が流れ、トランジスタ411の抵抗成分により電圧降下が発生する。
 時刻t2において、SPAD401のカソード電圧VSが0Vよりも低くなると、SPAD401のアノード・カソード間電圧が降伏電圧VBDよりも低い状態となるので、アバランシェ増幅が停止する。ここで、アバランシェ増幅により発生する電流がトランジスタ411に流れることで電圧降下を発生させ、発生した電圧降下に伴って、カソード電圧VSが降伏電圧VBDよりも低い状態となることで、アバランシェ増幅を停止させる動作がクエンチ動作である。
 アバランシェ増幅が停止するとトランジスタ411の抵抗に流れる電流が徐々に減少して、時刻t4において、再びカソード電圧VSが元の電源電圧VEまで戻り、次の新たなフォトンを検出できる状態となる(リチャージ動作)。
 インバータ412は、入力電圧であるカソード電圧VSが所定の閾値電圧Vth以上のとき、Loの画素信号PFoutを出力し、カソード電圧VSが所定の閾値電圧Vth未満のとき、Hiの画素信号PFoutを出力する。従って、SPAD401に光子が入射し、アバランシェ増倍が発生してカソード電圧VSが低下し、閾値電圧Vthを下回ると、画素信号PFoutは、ローレベルからハイレベルに反転する。一方、SPAD401のアバランシェ増倍が収束し、カソード電圧VSが上昇し、閾値電圧Vth以上になると、画素信号PFoutは、ハイレベルからローレベルに反転する。
 なお、画素10が非アクティブ画素とされる場合には、スイッチ413がオンされる。スイッチ413がオンされると、SPAD401のカソード電圧VSが0Vとなる。その結果、SPAD401のアノード・カソード間電圧が降伏電圧VBD以下となるので、SPAD401に光子が入ってきても反応しない状態となる。
 図31は、画素10がSPAD画素である場合の構成例を示す断面図である。
 図31において、上述した他の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 図31では、図2の画素境界部44において半導体基板41の裏面側(オンチップレンズ47側)から基板深さ方向に所定の深さまで形成されていた画素間分離部61が、半導体基板41を貫通する画素間分離部61’に変更されている。
 半導体基板41の画素間分離部61’の内側の画素領域には、Nウェル領域441、P型拡散層442、N型拡散層443、ホール蓄積層444、および、高濃度P型拡散層445を含む。そして、P型拡散層442とN型拡散層443とが接続する領域に形成される空乏層によって、アバランシェ増倍領域446が形成される。
 Nウェル領域441は、半導体基板41の不純物濃度がN型に制御されることにより形成され、画素10における光電変換により発生する電子をアバランシェ増倍領域446へ転送する電界を形成する。このNウェル領域441がSiGe領域またはGe領域により形成されている。
 P型拡散層442は、平面方向において、画素領域のほぼ全面に亘るように形成される濃いP型の拡散層(P+)である。N型拡散層443は、半導体基板41の表面近傍であってP型拡散層442と同様に、画素領域のほぼ全面に亘るように形成される濃いN型の拡散層(N+)である。N型拡散層443は、アバランシェ増倍領域446を形成するための負電圧を供給するためのカソード電極としてのコンタクト電極451と接続するコンタクト層であり、その一部が半導体基板41の表面のコンタクト電極451まで形成されるような凸形状となっている。N型拡散層443には、コンタクト電極451から電源電圧VEが印加される。
 ホール蓄積層444は、Nウェル領域441の側面および底面を囲うように形成されるP型の拡散層(P)であり、ホールを蓄積する。また、ホール蓄積層444は、SPAD401のアノード電極としてのコンタクト電極452と電気的に接続される高濃度P型拡散層445と接続されている。
 高濃度P型拡散層445は、半導体基板41の表面近傍においてNウェル領域441の平面方向における外周を囲うように形成される濃いP型の拡散層(P++)であり、ホール蓄積層444とSPAD401のコンタクト電極452とを電気的に接続するためのコンタクト層を構成する。高濃度P型拡散層445には、コンタクト電極452から電源電圧VAが印加される。
 なお、Nウェル領域441に代えて、半導体基板41の不純物濃度をP型に制御したPウェル領域を形成してもよい。Nウェル領域441に代えてPウェル領域を形成した場合、N型拡散層443に印加される電圧は電源電圧VAになり、高濃度P型拡散層445に印加される電圧は電源電圧VEになる。
 多層配線層42には、コンタクト電極451および452、メタル配線453および454、コンタクト電極455および456、並びに、メタルパッド457および458が形成されている。
 そして、多層配線層42は、ロジック回路が形成されたロジック回路基板の配線層450(以下、ロジック配線層450と称する。)と貼り合わされている。ロジック回路基板には、上述した読み出し回路402や、スイッチ413としてのMOSトランジスタなどが形成される。
 コンタクト電極451は、N型拡散層443とメタル配線453とを接続し、コンタクト電極452は、高濃度P型拡散層445とメタル配線454とを接続する。
 メタル配線453は、図31に示されるように、平面視において、少なくともアバランシェ増倍領域446を覆うように、アバランシェ増倍領域446よりも広く形成される。そして、メタル配線453は、半導体基板41を透過してきた光を、半導体基板41に反射させる。
 メタル配線454は、図31に示されるように、平面視において、メタル配線453の外周で、かつ、高濃度P型拡散層445と重なるように形成される。
 コンタクト電極455は、メタル配線453とメタルパッド457とを接続し、コンタクト電極456は、メタル配線454とメタルパッド458とを接続する。
 メタルパッド457および458は、ロジック配線層450に形成されているメタルパッド471および472と、それぞれを形成する金属(Cu)どうし金属接合により電気的および機械的に接続されている。
 ロジック配線層450には、電極パッド461および462、コンタクト電極463乃至466、絶縁層469、並びに、メタルパッド471および472が形成されている。
 電極パッド461および462それぞれは、ロジック回路基板(不図示)との接続に用いられ、絶縁層469は、電極パッド461および462どうしを絶縁する。
 コンタクト電極463および464は、電極パッド461とメタルパッド471とを接続し、コンタクト電極465および466は、電極パッド462とメタルパッド472とを接続する。
 メタルパッド471は、メタルパッド457と接合され、メタルパッド472は、メタルパッド458と接合されている。
 このような配線構造により、例えば、電極パッド461は、コンタクト電極463および464、メタルパッド471、メタルパッド457、コンタクト電極455、メタル配線453、並びに、コンタクト電極451を介して、N型拡散層443に接続されている。従って、図31の画素10では、N型拡散層443に印加される電源電圧VEを、ロジック回路基板の電極パッド461から供給することができる。
 また、電極パッド462は、コンタクト電極465および466、メタルパッド472、メタルパッド458、コンタクト電極456、メタル配線454、並びに、コンタクト電極452を介して高濃度P型拡散層445に接続されている。従って、図31の画素10では、ホール蓄積層444に印加されるアノード電圧VAを、ロジック回路基板の電極パッド462から供給することができる。
 以上のように構成されるSPAD画素としての画素10においても、少なくともNウェル領域441をSiGe領域またはGe領域で形成することにより、赤外光の量子効率を高めることができ、センサ感度を向上させることができる。Nウェル領域441だけでなく、ホール蓄積層444についてもSiGe領域またはGe領域で形成してもよい。
<20.CAPD画素の構成例>
 次に、CAPD方式のToFセンサに、上述した受光素子1の構造を適用した例について説明する。
 図2および図3等で説明した画素10は、フォトダイオードPDで生成された電荷を2つのゲート(転送トランジスタTRG)で振り分けるゲート方式と呼ばれるToFセンサの構成である。
 これに対して、ToFセンサの半導体基板41に直接電圧を印加して基板内に電流を発生させ、基板内の広範囲の光電変換領域を高速に変調することで、光電変換された電荷を振り分けるCAPD方式と呼ばれるToFセンサがある。
 図32は、画素10がCAPD方式を採用したCAPD画素である場合の回路構成例を示している。
 図32の画素10は、半導体基板41内に、信号取り出し部765-1および765-2を有している。信号取り出し部765-1は、N型半導体領域であるN+半導体領域771-1とP型半導体領域であるP+半導体領域773-1を少なくとも含む。信号取り出し部765-2は、N型半導体領域であるN+半導体領域771-2とP型半導体領域であるP+半導体領域773-2を少なくとも含む。
 画素10は、信号取り出し部765-1に対して、転送トランジスタ721A、FD722A、リセットトランジスタ723A、増幅トランジスタ724A、及び、選択トランジスタ725Aを有する。
 また、画素10は、信号取り出し部765-2に対して、転送トランジスタ721B、FD722B、リセットトランジスタ723B、増幅トランジスタ724B、及び、選択トランジスタ725Bを有する。
 垂直駆動部22は、P+半導体領域773-1に所定の電圧MIX0(第1の電圧)を印加し、P+半導体領域773-2に所定の電圧MIX1(第2の電圧)を印加する。例えば、電圧MIX0およびMIX1の一方が1.5Vで、他方が0Vとされる。P+半導体領域773-1および773-2は、第1の電圧または第2の電圧が印加される電圧印加部である。
 N+半導体領域771-1および771-2は、半導体基板41に入射された光が光電変換されて生成された電荷を検出して、蓄積する電荷検出部である。
 転送トランジスタ721Aは、ゲート電極に供給される転送駆動信号TRGがアクティブ状態になるとこれに応答して導通状態になることで、N+半導体領域771-1に蓄積されている電荷をFD722Aに転送する。転送トランジスタ721Bは、ゲート電極に供給される転送駆動信号TRGがアクティブ状態になるとこれに応答して導通状態になることで、N+半導体領域771-2に蓄積されている電荷をFD722Bに転送する。
 FD722Aは、N+半導体領域771-1から供給された電荷を一時保持する。FD722Bは、N+半導体領域771-2から供給された電荷を一時保持する。
 リセットトランジスタ723Aは、ゲート電極に供給されるリセット駆動信号RSTがアクティブ状態になるとこれに応答して導通状態になることで、FD722Aの電位を所定のレベル(リセット電圧VDD)にリセットする。リセットトランジスタ723Bは、ゲート電極に供給されるリセット駆動信号RSTがアクティブ状態になるとこれに応答して導通状態になることで、FD722Bの電位を所定のレベル(リセット電圧VDD)にリセットする。なお、リセットトランジスタ723Aおよび723Bがアクティブ状態とされるとき、転送トランジスタ721Aおよび721Bも同時にアクティブ状態とされる。
 増幅トランジスタ724Aは、ソース電極が選択トランジスタ725Aを介して垂直信号線29Aに接続されることにより、垂直信号線29Aの一端に接続されている定電流源回路部726Aの負荷MOSとソースフォロワ回路を構成する。増幅トランジスタ724Bは、ソース電極が選択トランジスタ725Bを介して垂直信号線29Bに接続されることにより、垂直信号線29Bの一端に接続されている定電流源回路部726Bの負荷MOSとソースフォロワ回路を構成する。
 選択トランジスタ725Aは、増幅トランジスタ724Aのソース電極と垂直信号線29Aとの間に接続されている。選択トランジスタ725Aは、ゲート電極に供給される選択駆動信号SELがアクティブ状態になるとこれに応答して導通状態となり、増幅トランジスタ724Aから出力される画素信号を垂直信号線29Aに出力する。
 選択トランジスタ725Bは、増幅トランジスタ724Bのソース電極と垂直信号線29Bとの間に接続されている。選択トランジスタ725Bは、ゲート電極に供給される選択駆動信号SELがアクティブ状態になるとこれに応答して導通状態となり、増幅トランジスタ724Bから出力される画素信号を垂直信号線29Bに出力する。
 画素10の転送トランジスタ721Aおよび721B、リセットトランジスタ723Aおよび723B、増幅トランジスタ724Aおよび724B、並びに、選択トランジスタ725Aおよび725Bは、例えば、垂直駆動部22によって制御される。
 図33は、画素10がCAPD画素である場合の断面図である。
 図33において、上述した他の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
 CAPD画素である場合の画素10では、例えばP型で形成される半導体基板41全体が光電変換領域であり、上述のSiGe領域またはGe領域で形成される。半導体基板41のオンチップレンズ47が形成されている面が光入射面であり、光入射面とは反対側の面が回路形成面である。
 半導体基板41の回路形成面の面近傍における画素10の中心部分に、酸化膜764が形成されており、その酸化膜764の両端にそれぞれ信号取り出し部765-1および信号取り出し部765-2が形成されている。
 信号取り出し部765-1は、N型半導体領域であるN+半導体領域771-1およびN+半導体領域771-1よりもドナー不純物の濃度が低いN-半導体領域772-1と、P型半導体領域であるP+半導体領域773-1およびP+半導体領域773-1よりもアクセプター不純物濃度が低いP-半導体領域774-1とを有している。ドナー不純物とは、例えばSiに対してのリン(P)やヒ素(As)等の元素の周期表で5族に属する元素が挙げられ、アクセプター不純物とは、例えばSiに対してのホウ素(B)等の元素の周期表で3族に属する元素が挙げられる。ドナー不純物となる元素をドナー元素、アクセプター不純物となる元素をアクセプター元素と称する。
 信号取り出し部765-1においては、P+半導体領域773-1およびP-半導体領域774-1を中心として、それらP+半導体領域773-1およびP-半導体領域774-1の周囲を囲むように、N+半導体領域771-1およびN-半導体領域772-1が環状に形成されている。P+半導体領域773-1およびN+半導体領域771-1は、多層配線層42と接触している。P-半導体領域774-1は、P+半導体領域773-1を覆うように、P+半導体領域773-1の上方(オンチップレンズ47側)に配置され、N-半導体領域772-1は、N+半導体領域771-1を覆うように、N+半導体領域771-1の上方(オンチップレンズ47側)に配置されている。言い換えれば、P+半導体領域773-1およびN+半導体領域771-1は、半導体基板41内の多層配線層42側に配置され、N-半導体領域772-1とP-半導体領域774-1は、半導体基板41内のオンチップレンズ47側に配置されている。また、N+半導体領域771-1とP+半導体領域773-1との間には、それらの領域を分離するための分離部775-1が酸化膜等により形成されている。
 同様に信号取り出し部765-2は、N型半導体領域であるN+半導体領域771-2およびN+半導体領域771-2よりもドナー不純物の濃度が低いN-半導体領域772-2と、P型半導体領域であるP+半導体領域773-2およびP+半導体領域773-2よりもアクセプター不純物濃度が低いP-半導体領域774-2とを有している。
 信号取り出し部765-2においては、P+半導体領域773-2およびP-半導体領域774-2を中心として、それらP+半導体領域773-2およびP-半導体領域774-2の周囲を囲むように、N+半導体領域771-2およびN-半導体領域772-2が環状に形成されている。P+半導体領域773-2およびN+半導体領域771-2は、多層配線層42と接触している。P-半導体領域774-2は、P+半導体領域773-2を覆うように、P+半導体領域773-2の上方(オンチップレンズ47側)に配置され、N-半導体領域772-2は、N+半導体領域771-2を覆うように、N+半導体領域771-2の上方(オンチップレンズ47側)に配置されている。言い換えれば、P+半導体領域773-2およびN+半導体領域771-2は、半導体基板41内の多層配線層42側に配置され、N-半導体領域772-2とP-半導体領域774-2は、半導体基板41内のオンチップレンズ47側に配置されている。また、N+半導体領域771-2とP+半導体領域773-2との間にも、それらの領域を分離するための分離部775-2が酸化膜等により形成されている。
 隣り合う画素10どうしの境界領域である、所定の画素10の信号取り出し部765-1のN+半導体領域771-1と、その隣の画素10の信号取り出し部765-2のN+半導体領域771-2との間にも、酸化膜764が形成されている。
 半導体基板41の光入射面側の界面には、正の固定電荷を持つ膜を積層して光入射面全体を覆うP+半導体領域701が形成されている。
 以下、信号取り出し部765-1および信号取り出し部765-2を特に区別する必要のない場合、単に信号取り出し部765とも称することとする。
 また、以下、N+半導体領域771-1およびN+半導体領域771-2を特に区別する必要のない場合、単にN+半導体領域771とも称し、N-半導体領域772-1およびN-半導体領域772-2を特に区別する必要のない場合、単にN-半導体領域772とも称することとする。
 さらに、以下、P+半導体領域773-1およびP+半導体領域773-2を特に区別する必要のない場合、単にP+半導体領域773とも称し、P-半導体領域774-1およびP-半導体領域774-2を特に区別する必要のない場合、単にP-半導体領域774とも称することとする。また、分離部775-1および分離部775-2を特に区別する必要のない場合、単に分離部775とも称することとする。
 半導体基板41に設けられたN+半導体領域771は、外部から画素10に入射してきた光の光量、すなわち半導体基板41による光電変換により発生した信号電荷の量を検出するための電荷検出部として機能する。なお、N+半導体領域771の他に、ドナー不純物濃度が低いN-半導体領域772も含めて電荷検出部とみなすこともできる。また、P+半導体領域773は、多数キャリア電流を半導体基板41に注入するための、すなわち半導体基板41に直接電圧を印加して半導体基板41内に電界を発生させるための電圧印加部として機能する。なお、P+半導体領域773の他に、アクセプター不純物濃度が低いP-半導体領域774も含めて電圧印加部とみなすこともできる。
 多層配線層42が形成された側である半導体基板41のおもて面側の界面に、例えば、所定の間隔で規則的に配置された拡散膜811が形成されている。また、図示は省略されているが、拡散膜811と半導体基板41界面との間には、絶縁膜(ゲート絶縁膜)が形成されている。
 拡散膜811は、多層配線層42が形成された側である半導体基板41のおもて面側の界面に、例えば、所定の間隔で規則的に配置され、半導体基板41から多層配線層42へ抜ける光、および、後述する反射部材815で反射された光が、拡散膜811で拡散されることで、半導体基板41の外(オンチップレンズ47側)へ突き抜けることを防止する。拡散膜811の材料も、ポリシリコン等の多結晶シリコンを主成分とする材料であればよい。
 なお、拡散膜811は、N+半導体領域771-1およびP+半導体領域773-1の位置と重ならないように、N+半導体領域771-1およびP+半導体領域773-1の位置を避けて形成されている。
 図33において、多層配線層42の4層の第1金属膜M1乃至第4金属膜M4のうち、最も半導体基板41に近い第1金属膜M1には、電源電圧を供給するための電源線813、P+半導体領域773-1または773-2に所定の電圧を印加するための電圧印加配線814、および、入射光を反射する部材である反射部材815が含まれる。電圧印加配線814は、コンタクト電極812を介してP+半導体領域773-1または773-2と接続され、P+半導体領域773-1には所定の電圧MIX0を印加し、P+半導体領域773-2には所定の電圧MIX1を印加する。
 図33の第1金属膜M1において、電源線813および電圧印加配線814以外の配線は反射部材815となるが、図が煩雑となるのを防止するため一部の符号が省略されている。反射部材815は、入射光を反射する目的で設けられるダミー配線である。反射部材815は、平面視において電荷検出部であるN+半導体領域771-1および771-2と重なるように、N+半導体領域771-1および771-2の下方に配置されている。また、第1金属膜M1では、N+半導体領域771に蓄積された電荷をFD722へ転送するため、N+半導体領域771と転送トランジスタ721とを接続するコンタクト電極(不図示)も形成されている。
 なお、この例では、反射部材815を、第1金属膜M1の同一層に配置することとするが、必ずしも同一層に配置するものに限定されない。
 半導体基板41側から2層目の第2金属膜M2では、例えば、第1金属膜M1の電圧印加配線814に接続されている電圧印加配線816、転送駆動信号TRG、リセット駆動信号RST、選択駆動信号SEL、FD駆動信号FDGなどを伝送する制御線817、グランド線などが形成されている。また、第2金属膜M2には、FD722なども形成されている。
 半導体基板41側から3層目の第3金属膜M3では、例えば、垂直信号線29や、シールド用の配線などが形成される。
 半導体基板41側から4層目の第4金属膜M4では、例えば、信号取り出し部65の電圧印加部であるP+半導体領域773-1および773-2に、所定の電圧MIX0またはMIX1を印加するための電圧供給線(不図示)が形成されている。
 CAPD画素である図33の画素10の動作について説明する。
 垂直駆動部22は画素10を駆動させ、光電変換により得られた電荷に応じた信号をFD722AとFD722B(図32)とに振り分ける。
 垂直駆動部22は、コンタクト電極812等を介して2つのP+半導体領域773に電圧を印加する。例えば、垂直駆動部22は、P+半導体領域773-1に1.5Vの電圧を印加し、P+半導体領域773-2には0Vの電圧を印加する。
 電圧の印加により、半導体基板41における2つのP+半導体領域773の間に電界が発生し、P+半導体領域773-1からP+半導体領域773-2へと電流が流れる。この場合、半導体基板41内の正孔(ホール)はP+半導体領域773-2の方向へと移動することになり、電子はP+半導体領域773-1の方向へと移動することになる。
 したがって、このような状態でオンチップレンズ47を介して外部からの赤外光(反射光)が半導体基板41内に入射し、その赤外光が半導体基板41内で光電変換されて電子と正孔のペアに変換されると、得られた電子はP+半導体領域773間の電界によりP+半導体領域773-1の方向へと導かれ、N+半導体領域771-1内へと移動する。
 この場合、光電変換で発生した電子が、画素10に入射した赤外光の量、すなわち赤外光の受光量に応じた信号を検出するための信号電荷として用いられることになる。
 これにより、N+半導体領域771-1には、N+半導体領域771-1内へと移動してきた電子に応じた電荷が蓄積されることになり、この電荷がFD722Aや増幅トランジスタ724A、垂直信号線29A等を介してカラム処理部23で検出される。
 すなわち、N+半導体領域771-1の蓄積電荷が、そのN+半導体領域771-1に直接接続されたFD722Aに転送され、FD722Aに転送された電荷に応じた信号が増幅トランジスタ724Aや垂直信号線29Aを介してカラム処理部23により読み出される。そして、読み出された信号に対して、カラム処理部23においてAD変換処理等の処理が施され、その結果得られた画素信号が信号処理部26へと供給される。
 この画素信号は、N+半導体領域771-1により検出された電子に応じた電荷量、すなわちFD722Aに蓄積された電荷の量を示す信号となる。換言すれば、画素信号は画素10で受光された赤外光の光量を示す信号であるともいうことができる。
 なお、このときN+半導体領域771-1における場合と同様にしてN+半導体領域771-2で検出された電子に応じた画素信号も適宜測距に用いられるようにしてもよい。
 また、次のタイミングでは、これまで半導体基板41内で生じていた電界と反対方向の電界が発生するように、垂直駆動部22によりコンタクト等を介して2つのP+半導体領域73に電圧が印加される。具体的には、例えば、P+半導体領域773-2に1.5Vの電圧が印加され、P+半導体領域773-1には0Vの電圧が印加される。
 これにより、半導体基板41における2つのP+半導体領域773の間で電界が発生し、P+半導体領域773-2からP+半導体領域773-1へと電流が流れる。
 このような状態でオンチップレンズ47を介して外部からの赤外光(反射光)が半導体基板41内に入射し、その赤外光が半導体基板41内で光電変換されて電子と正孔のペアに変換されると、得られた電子はP+半導体領域773間の電界によりP+半導体領域773-2の方向へと導かれ、N+半導体領域771-2内へと移動する。
 これにより、N+半導体領域771-2には、N+半導体領域771-2内へと移動してきた電子に応じた電荷が蓄積されることになり、この電荷がFD722Bや増幅トランジスタ724B、垂直信号線29B等を介してカラム処理部23で検出される。
 すなわち、N+半導体領域771-2の蓄積電荷が、そのN+半導体領域771-2に直接接続されたFD722Bに転送され、FD722Bに転送された電荷に応じた信号が増幅トランジスタ724Bや垂直信号線29Bを介してカラム処理部23により読み出される。そして、読み出された信号に対して、カラム処理部23においてAD変換処理等の処理が施され、その結果得られた画素信号が信号処理部26へと供給される。
 なお、このときN+半導体領域771-2における場合と同様にしてN+半導体領域771-1で検出された電子に応じた画素信号も適宜測距に用いられるようにしてもよい。
 このようにして、同じ画素10において互いに異なる期間の光電変換で得られた画素信号が得られると、信号処理部26は、それらの画素信号に基づいて対象物までの距離を算出することができる。
 以上のように構成されるCAPD画素としての画素10においても、半導体基板41をSiGe領域またはGe領域で形成することにより、近赤外光の量子効率を高めることができ、センサ感度を向上させることができる。
<21.測距モジュールの構成例>
 図34は、上述した受光素子1を用いて測距情報を出力する測距モジュールの構成例を示すブロック図である。
 測距モジュール500は、発光部511、発光制御部512、および、受光部513を備える。
 発光部511は、所定波長の光を発する光源を有し、周期的に明るさが変動する照射光を発して物体に照射する。例えば、発光部511は、光源として、波長が780nm以上の赤外光を発する発光ダイオードを有し、発光制御部512から供給される矩形波の発光制御信号CLKpに同期して、照射光を発生する。
 なお、発光制御信号CLKpは、周期信号であれば、矩形波に限定されない。例えば、発光制御信号CLKpは、サイン波であってもよい。
 発光制御部512は、発光制御信号CLKpを発光部511および受光部513に供給し、照射光の照射タイミングを制御する。この発光制御信号CLKpの周波数は、例えば、20メガヘルツ(MHz)である。なお、発光制御信号CLKpの周波数は、20メガヘルツに限定されず、5メガヘルツや100メガヘルツなどであってもよい。
 受光部513は、物体から反射した反射光を受光し、受光結果に応じて距離情報を画素ごとに算出し、物体(被写体)までの距離に対応するデプス値を画素値として格納したデプス画像を生成して、出力する。
 受光部513には、上述した間接ToF方式(ゲート方式またはCAPD方式)の画素構造を有する受光素子1、SPDAD画素の画素構造を有する受光素子1が用いられる。例えば、受光部513としての受光素子1は、発光制御信号CLKpに基づいて、画素アレイ部21の各画素10の浮遊拡散領域FD1またはFD2に振り分けられた電荷に応じた画素信号から、距離情報を画素ごとに算出する。
 以上のように、被写体までの距離情報を求めて出力する測距モジュール500の受光部513として、上述した間接ToF方式の画素構造、または、直接ToF方式の画素構造を有する受光素子1を組み込むことができる。これにより、センサ感度を向上させ、測距モジュール500としての測距特性を向上させることができる。
<22.電子機器の構成例>
 なお、受光素子1は、上述したように測距モジュールに適用できる他、例えば、測距機能を備えるデジタルスチルカメラやデジタルビデオカメラなどの撮像装置、測距機能を備えたスマートフォンといった各種の電子機器に適用することができる。
 図35は、本技術を適用した電子機器としての、スマートフォンの構成例を示すブロック図である。
 スマートフォン601は、図35に示されるように、測距モジュール602、撮像装置603、ディスプレイ604、スピーカ605、マイクロフォン606、通信モジュール607、センサユニット608、タッチパネル609、および制御ユニット610が、バス611を介して接続されて構成される。また、制御ユニット610では、CPUがプログラムを実行することによって、アプリケーション処理部621およびオペレーションシステム処理部622としての機能を備える。
 測距モジュール602には、図34の測距モジュール500が適用される。例えば、測距モジュール602は、スマートフォン601の前面に配置され、スマートフォン601のユーザを対象とした測距を行うことにより、そのユーザの顔や手、指などの表面形状のデプス値を測距結果として出力することができる。
 撮像装置603は、スマートフォン601の前面に配置され、スマートフォン601のユーザを被写体とした撮像を行うことにより、そのユーザが写された画像を取得する。なお、図示しないが、スマートフォン601の背面にも撮像装置603が配置された構成としてもよい。
 ディスプレイ604は、アプリケーション処理部621およびオペレーションシステム処理部622による処理を行うための操作画面や、撮像装置603が撮像した画像などを表示する。スピーカ605およびマイクロフォン606は、例えば、スマートフォン601により通話を行う際に、相手側の音声の出力、および、ユーザの音声の収音を行う。
 通信モジュール607は、インターネット、公衆電話回線網、所謂4G回線や5G回線等の無線移動体用の広域通信網、WAN(Wide Area Network)、LAN(Local Area Network)等の通信網を介したネットワーク通信、Bluetooth(登録商標)、NFC(Near Field Communication)等の近距離無線通信などを行う。センサユニット608は、速度や加速度、近接などをセンシングし、タッチパネル609は、ディスプレイ604に表示されている操作画面に対するユーザによるタッチ操作を取得する。
 アプリケーション処理部621は、スマートフォン601によって様々なサービスを提供するための処理を行う。例えば、アプリケーション処理部621は、測距モジュール602から供給されるデプス値に基づいて、ユーザの表情をバーチャルに再現したコンピュータグラフィックスによる顔を作成し、ディスプレイ604に表示する処理を行うことができる。また、アプリケーション処理部621は、測距モジュール602から供給されるデプス値に基づいて、例えば、任意の立体的な物体の三次元形状データを作成する処理を行うことができる。
 オペレーションシステム処理部622は、スマートフォン601の基本的な機能および動作を実現するための処理を行う。例えば、オペレーションシステム処理部622は、測距モジュール602から供給されるデプス値に基づいて、ユーザの顔を認証し、スマートフォン601のロックを解除する処理を行うことができる。また、オペレーションシステム処理部622は、測距モジュール602から供給されるデプス値に基づいて、例えば、ユーザのジェスチャを認識する処理を行い、そのジェスチャに従った各種の操作を入力する処理を行うことができる。
 このように構成されているスマートフォン601では、測距モジュール602として、上述した測距モジュール500を適用することで、例えば、所定の物体までの距離を測定して表示したり、所定の物体の三次元形状データを作成して表示する処理などを行うことができる。
<23.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図36は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図36に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図36の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図37は、撮像部12031の設置位置の例を示す図である。
 図37では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図37には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、車外情報検出ユニット12030や撮像部12031に適用され得る。具体的には、受光素子1または測距モジュール500を、車外情報検出ユニット12030や撮像部12031の距離検出処理ブロックに適用することができる。車外情報検出ユニット12030や撮像部12031に、本開示に係る技術を適用することにより、人、車、障害物、標識又は路面上の文字等の物体までの距離を高精度に測定することができ、得られた距離情報を用いて、ドライバの疲労を軽減したり、ドライバや車両の安全度を高めることが可能になる。
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 また、上述した受光素子1おいては、信号キャリアとして電子を用いる例について説明したが、光電変換で発生した正孔を信号キャリアとして用いるようにしてもよい。
 例えば、上述した受光素子1おいては、各実施の形態の全てまたは一部を組み合わせた形態を採用することができる。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、本明細書に記載されたもの以外の効果があってもよい。
 なお、本技術は、以下の構成を取ることができる。
(1)
 光電変換領域を含む画素が行列状に配列された画素アレイ領域を有し、
 前記画素アレイ領域が形成された第1の半導体基板の各画素の前記光電変換領域がSiGe領域またはGe領域で形成される
 受光素子。
(2)
 前記第1の半導体基板の各画素の前記光電変換領域がSiGe領域またはGe領域で形成され、前記第1の半導体基板の各画素の前記光電変換領域以外の領域は、Si領域で形成される
 前記(1)に記載の受光素子。
(3)
 前記画素は、前記光電変換領域としてのフォトダイオードと、前記フォトダイオードで生成された電荷を転送する転送トランジスタとを少なくとも有し、
 前記第1の半導体基板の各画素の前記転送トランジスタのゲート下の領域も、前記SiGe領域またはGe領域で形成される
 前記(1)または(2)に記載の受光素子。
(4)
 前記第1の半導体基板の画素アレイ領域全体が、前記SiGe領域またはGe領域で形成される
 前記(1)乃至(3)のいずれかに記載の受光素子。
(5)
 前記画素は、前記光電変換領域としてのフォトダイオードと、前記フォトダイオードで生成された電荷を転送する転送トランジスタと、前記電荷を一時的に保持する電荷保持部とを少なくとも有し、
 前記電荷保持部は、前記SiGe領域またはGe領域の上にSi領域で形成される
 前記(3)または(4)に記載の受光素子。
(6)
 前記SiGe領域またはGe領域のGe濃度が、前記第1の半導体基板の深さに応じて異なる
 前記(1)乃至(5)のいずれかに記載の受光素子。
(7)
 前記第1の半導体基板の光入射面側のGe濃度が、前記第1の半導体基板の画素トランジスタ形成面のGe濃度よりも濃い
 前記(6)に記載の受光素子。
(8)
 前記第1の半導体基板は、前記画素アレイ領域と、各画素の制御回路を含むロジック回路領域とを含む
 前記(1)乃至(7)のいずれかに記載の受光素子。
(9)
 各画素の制御回路を含むロジック回路領域が形成された第2の半導体基板をさらに備え、
 前記第1の半導体基板と前記第2の半導体基板とが積層されて構成される
 前記(1)乃至(8)のいずれかに記載の受光素子。
(10)
 前記受光素子は、ゲート方式の間接ToFセンサである
 前記(1)乃至(9)のいずれかに記載の受光素子。
(11)
 前記受光素子は、CAPD方式の間接ToFセンサである
 前記(1)乃至(9)のいずれかに記載の受光素子。
(12)
 前記受光素子は、前記画素にSPADを備える直接ToFセンサである
 前記(1)乃至(9)のいずれかに記載の受光素子。
(13)
 前記受光素子は、全画素が赤外光を受光する画素であるIR撮像センサである
 前記(1)乃至(9)のいずれかに記載の受光素子。
(14)
 前記受光素子は、赤外光を受光する画素とRGBの光を受光する画素とを有するRGBIR撮像センサである
 前記(1)乃至(9)のいずれかに記載の受光素子。
(15)
 半導体基板の画素アレイ領域の各画素の少なくとも光電変換領域を、SiGe領域またはGe領域で形成する
 受光素子の製造方法。
(16)
 Si領域にGeをイオン注入することにより、前記SiGe領域またはGe領域を形成する
 前記(15)に記載の受光素子の製造方法。
(17)
 前記半導体基板のSi領域を除去した領域に、エピタキシャル成長により前記SiGe領域またはGe領域を形成する
 前記(15)に記載の受光素子の製造方法。
(18)
 前記半導体基板の前記SiGe領域またはGe領域の上に、電荷保持部となるSi層を形成する
 前記(15)乃至(17)のいずれかに記載の受光素子の製造方法。
(19)
 前記SiGe領域またはGe領域のGe濃度が前記半導体基板の深さに応じて異なるように形成する
 前記(15)乃至(18)のいずれかに記載の受光素子の製造方法。
(20)
 所定の発光源と、
 光電変換領域を含む画素が行列状に配列された画素アレイ領域を有し、
 前記画素アレイ領域が形成された第1の半導体基板の各画素の前記光電変換領域がSiGe領域またはGe領域で形成される
 受光素子
 を備える電子機器。
 1 受光素子, 10 画素, PD フォトダイオード, TRG 転送トランジスタ, 21 画素アレイ部, 41 半導体基板(第1基板), 42 多層配線層, 50 P型の半導体領域, 52 N型の半導体領域, 111 画素アレイ領域, 141 半導体基板(第2基板), 201 画素回路, 202 ADC(AD変換器), 351 酸化膜, 371 MIM容量素子, 381 第1のカラーフィルタ層, 382 第2のカラーフィルタ層, 441 Nウェル領域, 442 P型拡散層, 500 測距モジュール, 511 発光部, 512 発光制御部, 513 受光部, 601 スマートフォン, 602 測距モジュール

Claims (20)

  1.  光電変換領域を含む画素が行列状に配列された画素アレイ領域を有し、
     前記画素アレイ領域が形成された第1の半導体基板の各画素の前記光電変換領域がSiGe領域またはGe領域で形成される
     受光素子。
  2.  前記第1の半導体基板の各画素の前記光電変換領域がSiGe領域またはGe領域で形成され、前記第1の半導体基板の各画素の前記光電変換領域以外の領域は、Si領域で形成される
     請求項1に記載の受光素子。
  3.  前記画素は、前記光電変換領域としてのフォトダイオードと、前記フォトダイオードで生成された電荷を転送する転送トランジスタとを少なくとも有し、
     前記第1の半導体基板の各画素の前記転送トランジスタのゲート下の領域も、前記SiGe領域またはGe領域で形成される
     請求項1に記載の受光素子。
  4.  前記第1の半導体基板の画素アレイ領域全体が、前記SiGe領域またはGe領域で形成される
     請求項1に記載の受光素子。
  5.  前記画素は、前記光電変換領域としてのフォトダイオードと、前記フォトダイオードで生成された電荷を転送する転送トランジスタと、前記電荷を一時的に保持する電荷保持部とを少なくとも有し、
     前記電荷保持部は、前記SiGe領域またはGe領域の上にSi領域で形成される
     請求項3に記載の受光素子。
  6.  前記SiGe領域またはGe領域のGe濃度が、前記第1の半導体基板の深さに応じて異なる
     請求項1に記載の受光素子。
  7.  前記第1の半導体基板の光入射面側のGe濃度が、前記第1の半導体基板の画素トランジスタ形成面のGe濃度よりも濃い
     請求項6に記載の受光素子。
  8.  前記第1の半導体基板は、前記画素アレイ領域と、各画素の制御回路を含むロジック回路領域とを含む
     請求項1に記載の受光素子。
  9.  各画素の制御回路を含むロジック回路領域が形成された第2の半導体基板をさらに備え、
     前記第1の半導体基板と前記第2の半導体基板とが積層されて構成される
     請求項1に記載の受光素子。
  10.  前記受光素子は、ゲート方式の間接ToFセンサである
     請求項1に記載の受光素子。
  11.  前記受光素子は、CAPD方式の間接ToFセンサである
     請求項1に記載の受光素子。
  12.  前記受光素子は、前記画素にSPADを備える直接ToFセンサである
     請求項1に記載の受光素子。
  13.  前記受光素子は、全画素が赤外光を受光する画素であるIR撮像センサである
     請求項1に記載の受光素子。
  14.  前記受光素子は、赤外光を受光する画素とRGBの光を受光する画素とを有するRGBIR撮像センサである
     請求項1に記載の受光素子。
  15.  半導体基板の画素アレイ領域の各画素の少なくとも光電変換領域を、SiGe領域またはGe領域で形成する
     受光素子の製造方法。
  16.  Si領域にGeをイオン注入することにより、前記SiGe領域またはGe領域を形成する
     請求項15に記載の受光素子の製造方法。
  17.  前記半導体基板のSi領域を除去した領域に、エピタキシャル成長により前記SiGe領域またはGe領域を形成する
     請求項15に記載の受光素子の製造方法。
  18.  前記半導体基板の前記SiGe領域またはGe領域の上に、電荷保持部となるSi層を形成する
     請求項15に記載の受光素子の製造方法。
  19.  前記SiGe領域またはGe領域のGe濃度が前記半導体基板の深さに応じて異なるように形成する
     請求項15に記載の受光素子の製造方法。
  20.  光電変換領域を含む画素が行列状に配列された画素アレイ領域を有し、
     前記画素アレイ領域が形成された第1の半導体基板の各画素の前記光電変換領域がSiGe領域またはGe領域で形成される
     受光素子
     を備える電子機器。
PCT/JP2021/025083 2020-07-17 2021-07-02 受光素子およびその製造方法、並びに、電子機器 WO2022014364A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180049528.6A CN115803887A (zh) 2020-07-17 2021-07-02 光接收元件、光接收元件的制造方法和电子装置
JP2022536256A JPWO2022014364A1 (ja) 2020-07-17 2021-07-02
US18/004,773 US20230307473A1 (en) 2020-07-17 2021-07-02 Light receiving element, manufacturing method for same, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020122780 2020-07-17
JP2020-122780 2020-07-17

Publications (1)

Publication Number Publication Date
WO2022014364A1 true WO2022014364A1 (ja) 2022-01-20

Family

ID=79555322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025083 WO2022014364A1 (ja) 2020-07-17 2021-07-02 受光素子およびその製造方法、並びに、電子機器

Country Status (4)

Country Link
US (1) US20230307473A1 (ja)
JP (1) JPWO2022014364A1 (ja)
CN (1) CN115803887A (ja)
WO (1) WO2022014364A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043069A1 (ja) * 2022-08-22 2024-02-29 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置
WO2024048267A1 (ja) * 2022-09-02 2024-03-07 ソニーセミコンダクタソリューションズ株式会社 光検出装置および測距装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212977A1 (ja) * 2016-06-07 2017-12-14 雫石 誠 光電変換素子とその製造方法、分光分析装置
WO2018174090A1 (ja) * 2017-03-22 2018-09-27 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び信号処理装置
WO2020017339A1 (ja) * 2018-07-18 2020-01-23 ソニーセミコンダクタソリューションズ株式会社 受光素子および測距モジュール
WO2020022349A1 (ja) * 2018-07-26 2020-01-30 ソニー株式会社 固体撮像素子、固体撮像装置及び固体撮像素子の製造方法
JP2020517114A (ja) * 2017-04-13 2020-06-11 アーティラックス・インコーポレイテッド ゲルマニウム‐シリコン光感知装置ii

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212977A1 (ja) * 2016-06-07 2017-12-14 雫石 誠 光電変換素子とその製造方法、分光分析装置
WO2018174090A1 (ja) * 2017-03-22 2018-09-27 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び信号処理装置
JP2020517114A (ja) * 2017-04-13 2020-06-11 アーティラックス・インコーポレイテッド ゲルマニウム‐シリコン光感知装置ii
WO2020017339A1 (ja) * 2018-07-18 2020-01-23 ソニーセミコンダクタソリューションズ株式会社 受光素子および測距モジュール
WO2020022349A1 (ja) * 2018-07-26 2020-01-30 ソニー株式会社 固体撮像素子、固体撮像装置及び固体撮像素子の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043069A1 (ja) * 2022-08-22 2024-02-29 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置
WO2024048267A1 (ja) * 2022-09-02 2024-03-07 ソニーセミコンダクタソリューションズ株式会社 光検出装置および測距装置

Also Published As

Publication number Publication date
CN115803887A (zh) 2023-03-14
JPWO2022014364A1 (ja) 2022-01-20
US20230307473A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
WO2022014365A1 (ja) 受光素子およびその製造方法、並びに、電子機器
KR102663339B1 (ko) 수광 소자, 거리측정 모듈, 및, 전자 기기
WO2021060017A1 (en) Light-receiving element, distance measurement module, and electronic apparatus
WO2022014364A1 (ja) 受光素子およびその製造方法、並びに、電子機器
WO2021251152A1 (ja) 受光装置およびその製造方法、並びに、測距装置
WO2021187096A1 (ja) 受光素子および測距システム
WO2021085172A1 (ja) 受光素子、測距モジュール、および、電子機器
WO2021256261A1 (ja) 撮像素子、電子機器
WO2021085171A1 (ja) 受光素子、測距モジュール、および、電子機器
WO2024043056A1 (ja) 撮像素子、測距装置
WO2022209856A1 (ja) 光検出装置
WO2022118635A1 (ja) 光検出装置および測距装置
TW202147596A (zh) 測距裝置
CN115485843A (zh) 测距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536256

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21841589

Country of ref document: EP

Kind code of ref document: A1