WO2022014087A1 - 不活化装置および不活化方法 - Google Patents

不活化装置および不活化方法 Download PDF

Info

Publication number
WO2022014087A1
WO2022014087A1 PCT/JP2021/008462 JP2021008462W WO2022014087A1 WO 2022014087 A1 WO2022014087 A1 WO 2022014087A1 JP 2021008462 W JP2021008462 W JP 2021008462W WO 2022014087 A1 WO2022014087 A1 WO 2022014087A1
Authority
WO
WIPO (PCT)
Prior art keywords
person
sensor
closed space
light
irradiation unit
Prior art date
Application number
PCT/JP2021/008462
Other languages
English (en)
French (fr)
Inventor
龍志 五十嵐
広行 大橋
善彦 奥村
篤史 今村
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to US17/792,966 priority Critical patent/US20230149578A1/en
Priority to CN202111252808.5A priority patent/CN114306664B/zh
Priority to EP21786077.4A priority patent/EP3960055A4/en
Priority to CN202180002424.XA priority patent/CN114206399B/zh
Publication of WO2022014087A1 publication Critical patent/WO2022014087A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/24Apparatus using programmed or automatic operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0624Apparatus adapted for a specific treatment for eliminating microbes, germs, bacteria on or in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/14Means for controlling sterilisation processes, data processing, presentation and storage means, e.g. sensors, controllers, programs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/25Rooms in buildings, passenger compartments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/26Textiles, e.g. towels, beds, cloths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/11Apparatus for controlling air treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/11Apparatus for controlling air treatment
    • A61L2209/111Sensor means, e.g. motion, brightness, scent, contaminant sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0626Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0642Irradiating part of the body at a certain distance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0661Radiation therapy using light characterised by the wavelength of light used ultraviolet

Definitions

  • the present invention relates to an inactivating device and an inactivating method for inactivating harmful microorganisms and viruses.
  • Harmful microorganisms as described above proliferate or float in the space on the surface of floors, walls, etc. in the space or inside humans (in some cases, animals) entering and exiting the space. This tendency is particularly noticeable in medical facilities. That is, infectious microorganisms derived from patients are sprayed in a narrow space such as a hospital room for inpatients, a toilet in the hospital room, or a toilet adjacent to an outpatient reception. Then, the infectious microorganisms spread adhere to the surface (floor, wall, etc.) constituting this narrow space, or float in the space. Therefore, it infects the next person (other patients, visitors, etc.) who entered the space (toilet, etc.), and in some cases, the infectious disease may spread in the medical facility.
  • infectious microorganisms derived from patients are sprayed in a narrow space such as a hospital room for inpatients, a toilet in the hospital room, or a toilet adjacent to an outpatient reception. Then, the infectious microorganisms spread
  • Patent Document 1 Japanese Patent Laid-Open No. 2017-5282578 discloses a decontamination device that irradiates a decontamination target space with ultraviolet rays (UVC light) to decontaminate the space.
  • UVC light ultraviolet rays
  • Patent Document 2 US Patent Application Publication No. 2010/0032859
  • a motion sensor and a door sensor are installed in the elevator, and the sensor detects a state in which a human is absent in the elevator and the door is closed.
  • the wavelength of the emitted ultraviolet rays is a wavelength between about 240 nm and about 280 nm.
  • Harmful microorganisms propagate or float in the narrow space of the facility is often caused by humans (patients) and animals having harmful microorganisms entering and exiting the above space. Therefore, it is essentially efficient to decontaminate in such a facility not only on the surface and space in the facility but also on the surface of humans (patients) and animals existing in the area.
  • Patent Document 1 Japanese Patent Laid-Open No. 2017-528258
  • Patent Document 2 US Patent Application Publication No. 2010/0032859
  • decontamination is performed by using ultraviolet irradiation.
  • the system is configured to stop the emission of ultraviolet rays when humans are present in the irradiation area. Therefore, the conventional decontamination system cannot efficiently decontaminate the facility.
  • it is not possible to decontaminate the surface of humans (patients) and animals it is necessary to broaden the area to be decontaminated in consideration of the range of behavior of humans (patients) and animals.
  • an object of the present invention to provide an inactivating device and an inactivating method capable of efficiently inactivating harmful microorganisms and viruses.
  • one aspect of the inactivating device is an inactivating device that inactivates microorganisms and / or viruses harmful to the human body, and is in a closed space where a person can enter and leave.
  • An ultraviolet irradiation unit that irradiates light containing ultraviolet rays having a wavelength that inactivates harmful microorganisms and / or viruses to the human body, a sensor that detects the location of the person in the closed space, and a detection signal from the sensor.
  • the control unit for controlling the irradiation and non-irradiation of the light by the ultraviolet irradiation unit is provided, and the control unit determines that a person exists in the closed space based on the detection signal from the sensor. Within the period of time, the space including the person is controlled to be irradiated from the ultraviolet irradiation unit for a predetermined time according to the wavelength of the ultraviolet rays contained in the light emitted from the ultraviolet irradiation unit.
  • the time for irradiating a person with ultraviolet rays shall be the time corresponding to the wavelength of the ultraviolet rays.
  • the degree of influence on the human body by ultraviolet irradiation differs depending on the wavelength of ultraviolet rays. Therefore, by irradiating a person with ultraviolet rays for a predetermined time according to the wavelength of the ultraviolet rays, decontamination can be efficiently performed without adversely affecting the human body.
  • the control unit determines from the sensor that there is no person in the closed space based on the detection signal, the closed space in which the person is absent from the ultraviolet irradiation unit. It may be controlled to irradiate the light inside. In this way, by irradiating a closed space where a person is absent with light containing ultraviolet rays, harmful microorganisms and viruses that originally existed in the closed space, and when a person enters, diffuse into the closed space or the closed space.
  • the control unit irradiates the light from the ultraviolet irradiation unit into the closed space in which the person is absent for a certain period of time, and then does not irradiate the light from the ultraviolet irradiation unit. It may be controlled to. In this case, it is possible to provide a rest time for the light source of the ultraviolet irradiation unit, and the life of the light source can be extended.
  • the senor includes a first sensor for detecting the entry and exit of a person into the closed space, and the control unit uses the first sensor to enter the person in the closed space.
  • the ultraviolet irradiation unit may be controlled to irradiate the space including the person for the predetermined time after detecting the entry of the person. In this case, it is possible to irradiate the person with light including ultraviolet rays immediately after the person enters the closed space, and more efficiently suppress the spread of harmful microorganisms and viruses from the person into the closed space. be able to.
  • the first sensor is at least one of a motion sensor that detects the presence or absence of a person in the closed space and a door sensor that detects the opening and closing of the door forming the closed space. May be. In this case, it is possible to easily and appropriately detect the entry and exit of a person into the closed space.
  • the senor includes a second sensor that detects the presence of a person at a predetermined position in the closed space, and the control unit uses the second sensor to detect the presence of a person in the closed space.
  • the ultraviolet irradiation unit may be controlled to irradiate the space including the person for the predetermined time. In this way, by irradiating a person present at a predetermined position with light containing ultraviolet rays, it is possible to effectively irradiate the intended portion of the surface of the human body with ultraviolet rays.
  • the senor has a first sensor that detects the entry and exit of a person into the closed space, and a first sensor that detects the presence of a person at a predetermined position in the closed space.
  • the control unit detects that a person has entered the closed space by the first sensor
  • the control unit controls the light from the ultraviolet irradiation unit to be non-irradiation
  • the control unit includes the two sensors.
  • the ultraviolet irradiation unit may be controlled to irradiate the space including the person for the predetermined time. ..
  • the ultraviolet irradiation is temporarily stopped when the person enters the closed space, and the person is exposed to the person at a predetermined position for a predetermined time. It can irradiate light including ultraviolet rays.
  • the first sensor is a door sensor that detects the opening and closing of the door forming the closed space
  • the control unit is determined by the second sensor in the closed space.
  • the ultraviolet irradiation unit enters the closed space where no person is present. It may be controlled to irradiate the light. In this case, both the detection signal from the first sensor and the detection signal from the second sensor can be confirmed to appropriately determine that no person is present in the closed space.
  • UV irradiation when an undesired opening and closing of a door occurs due to forgetting to lock the door or a malfunction of the door, it is possible to prevent a person from erroneously determining that he / she has left the closed space and starting ultraviolet irradiation.
  • UV irradiation by preventing UV irradiation from starting for a certain period of time after the door is opened and closed, for example, when a person enters a closed space and is temporarily present at a position other than the predetermined position, UV irradiation is performed. Can be prevented from starting.
  • the closed space may be a private room toilet
  • the second sensor may be a pressure sensor provided on the toilet seat.
  • a state in which a person sits on the toilet seat of a toilet bowl in a private room toilet can be detected as a state in which the person is present at a predetermined position. Since the movement of a human sitting on the toilet seat is relatively small, it is possible to effectively inactivate harmful microorganisms and viruses existing on the surface of the human body (skin and the surface of clothing).
  • the ultraviolet irradiation unit may be arranged at a position where the person who is present at the predetermined position is irradiated with the light from the back of the head side of the person. In this case, it is possible to prevent the light including the ultraviolet rays emitted from the ultraviolet irradiation unit from being directly irradiated to the human eye. Therefore, it is possible to suppress the occurrence of eye disorders (eye pain, redness, inflammation of the cornea, etc.).
  • the ultraviolet irradiation unit may be arranged at a position where the light is irradiated from the upper part to the lower part of the closed space. In this case, it is possible to irradiate the entire closed space with light including ultraviolet rays. Therefore, for example, harmful microorganisms and viruses adhering to the walls and floors forming the closed space can be appropriately inactivated.
  • the maximum permissible ultraviolet exposure amount per day for the human body determined according to the wavelength of the ultraviolet rays to be irradiated is D max (mJ / cm 2 ), and the illuminance on the ultraviolet irradiation surface of the human body is W. (MW / cm 2 )
  • the predetermined time is the time T1 (sec) that satisfies T1 ⁇ D max / (W ⁇ N). It may be set. In this case, it is possible to irradiate a person with ultraviolet rays having a wavelength suitable for inactivating microorganisms and viruses harmful to the human body within a light amount range that does not adversely affect the human body.
  • the ultraviolet irradiation operation from the ultraviolet irradiation unit is performed by alternately repeating the ultraviolet light emission operation time and the subsequent pause time, and the ultraviolet light emission operation repeated once or more.
  • the total operating time may be set to be the time T1.
  • the ultraviolet light emitting operation time may be 10 ms or more and 1000 ms or less
  • the rest time may be 10 ms or more and 10 seconds or less.
  • the ultraviolet irradiation period until the ultraviolet irradiation time reaches T1 for a predetermined time becomes long, and for example, ultraviolet irradiation can be performed even when bacteria, viruses, etc.
  • the ultraviolet irradiation unit that performs such an operation may have a light emitting diode (LED) or a laser diode (LD) that emits ultraviolet rays.
  • LED light emitting diode
  • LD laser diode
  • the ultraviolet light emission operation and the pause time can be repeated at high speed by the power supply control.
  • the ultraviolet irradiation unit may have a KrCl excimer lamp that emits ultraviolet rays having a center wavelength of 222 nm. In this case, the adverse effect on the human body due to the irradiation of ultraviolet rays can be suppressed. Further, in the above-mentioned inactivating device, the ultraviolet rays contained in the light emitted from the ultraviolet irradiation unit may exist only in the wavelength range of 190 nm to 235 nm. In this case, the adverse effect on the human body due to the irradiation of ultraviolet rays can be appropriately suppressed.
  • one aspect of the inactivation method according to the present invention is an inactivation method for inactivating harmful microorganisms and / or viruses to the human body, and the location of a person in a closed space where a person can enter and leave by a sensor.
  • It includes a step of controlling the irradiation and non-irradiation of the light into the space and irradiating the space including the person from the ultraviolet irradiation unit for a predetermined time according to the wavelength of the ultraviolet ray contained in the light. ..
  • the time for irradiating a person with ultraviolet rays shall be the time corresponding to the wavelength of the ultraviolet rays.
  • the degree of influence on the human body by ultraviolet irradiation differs depending on the wavelength of ultraviolet rays. Therefore, by irradiating a person with ultraviolet rays for a predetermined time according to the wavelength of the ultraviolet rays, decontamination can be efficiently performed without adversely affecting the human body.
  • harmful microorganisms and viruses can be efficiently inactivated by irradiating a human with light containing ultraviolet rays for a predetermined time.
  • FIG. 1 is a diagram showing a structural example of the inactivated system according to the present embodiment.
  • FIG. 2 is a flowchart illustrating the operation of the first embodiment.
  • FIG. 3 is a time chart illustrating the operation of the first embodiment.
  • FIG. 4 is a flowchart illustrating the operation of the modified example of the first embodiment.
  • FIG. 5 is a time chart illustrating the operation of the modified example of the first embodiment.
  • FIG. 6 is a flowchart illustrating the operation of the second embodiment.
  • FIG. 7 is a time chart illustrating the operation of the second embodiment.
  • FIG. 8 is a flowchart illustrating the operation of the modified example of the second embodiment.
  • FIG. 9 is a time chart illustrating the operation of the modified example of the second embodiment.
  • FIG. 10 is a time chart illustrating the operation of the modified example of the second embodiment.
  • an inactivation system that inactivates harmful microorganisms and viruses by irradiating ultraviolet rays in a particularly narrow space (a closed space such as a hospital room, a toilet, or an elevator) in a facility where people frequently gather will be described.
  • the inactivation system in the present embodiment intentionally irradiates a living body such as a human (patient) or an animal, which has been forgotten from the viewpoint of safety, with ultraviolet rays for a predetermined time to inactivate harmful microorganisms and viruses. ..
  • FIG. 1 is a diagram showing a configuration example of an inactivated system according to the present embodiment.
  • an inactivating system an example of an inactivating system that inactivates harmful microorganisms and viruses existing in a private room toilet will be described.
  • This inactivating system includes an inactivating device 100.
  • the inactivating device 100 includes at least one of an ultraviolet irradiation unit (UV irradiation unit) 10A and 10B that emits ultraviolet rays into a closed space (private room toilet) 200.
  • UV irradiation unit ultraviolet irradiation unit
  • the wavelength range of the ultraviolet rays emitted by the UV irradiation units 10A and 10B is, for example, 200 nm to 320 nm.
  • the UV irradiation unit 10A is provided on the ceiling 201 in the private room toilet 200.
  • the UV irradiation unit 10A may be provided in the upper part of the private room toilet 200, and may be provided in the upper part of the wall portion 202 in the private room toilet 200, for example.
  • Ultraviolet rays are emitted downward from the UV irradiation unit 10A, and the ultraviolet rays are applied to the space of the private room toilet 200, the wall portion 202, the floor, and the like. Further, the ultraviolet rays emitted from the UV irradiation unit 10A are applied to the human (for example, patient) 300 who has entered the private room toilet 200 from the upper part of the human 300.
  • the UV irradiation unit 10B is provided on the wall portion 202 in the private room toilet 200. Ultraviolet rays are mainly emitted from the UV irradiation unit 10B in the downward direction from the mounting position.
  • the UV irradiation unit 10B is arranged at a position in the private room toilet 200 on the assumption that a person 300 who takes a predetermined posture at a predetermined position is irradiated with ultraviolet rays.
  • the UV irradiation unit 10B is installed on the wall portion 202 of the private room toilet 200 on the assumption that when the human 300 takes a posture of sitting on the toilet bowl 211, the human 300 is irradiated with ultraviolet rays. .. More specifically, when the human 300 sits on the toilet bowl 211, the UV irradiation unit 10B is installed on the wall portion 202 facing the back of the head of the human 300. By installing the UV irradiation unit 10B in this way, the ultraviolet rays emitted from the UV irradiation unit 10B are applied to the human 300 from above the back of the head of the human 200 sitting on the toilet bowl 211, and the human 300's eyes are exposed to the ultraviolet rays. Not directly irradiated.
  • the inactivating device 100 can include at least one of a motion sensor 11, a pressure sensor 12, and a door sensor 13 as a sensor for detecting the location of the human 300 in the private room toilet 200.
  • the motion sensor 11 and the door sensor 13 are sensors for detecting the entry and exit of a person into and out of the private room toilet 200
  • the pressure sensor 12 is a sensor for detecting the presence of a person at a predetermined position in the private room toilet 200.
  • the motion sensor 11 is installed on the ceiling 201, for example, as shown in FIG. 1, and detects the presence or absence of the human 300 in the space of the private room toilet 200.
  • the pressure sensor 12 is installed inside the toilet seat 212, for example, as shown in FIG. 1, and detects whether or not the human 300 is seated on the toilet seat 212 provided on the toilet bowl 211.
  • the door sensor 13 is installed on the door 203, for example, as shown in FIG. 1, and detects the opening and closing of the door 203 of the private room toilet 200.
  • the inactivating device 100 includes a control unit 20.
  • the control unit 20 receives the detection signals from the sensors 11 to 13 and controls the irradiation and non-irradiation of ultraviolet rays from the UV irradiation units 10A and 10B based on the detection signals.
  • the control unit 20 is at least one of the UV irradiation units 10A and 10B during the period when it is determined that the human 300 is present in the private room toilet 200 based on at least one detection signal of the sensors 11 to 13. Therefore, the ultraviolet rays are controlled to irradiate the inside of the private room toilet 200 including the human 300 for a predetermined time according to the wavelength of the ultraviolet rays.
  • control unit 20 controls the irradiation of ultraviolet rays from the UV irradiation unit 10A based on the detection signal of the motion sensor 11 will be described. Further, in the present embodiment, when the human 300 is absent in the private room toilet 200, as a general rule, ultraviolet irradiation is continuously performed from the UV irradiation unit 10A into the private room toilet 200.
  • FIG. 2 is a flowchart illustrating the operation of the inactivating device 100 in the present embodiment.
  • step S1 the control unit 20 determines whether or not the location of the human 300 in the private room toilet 200 is detected based on the detection signal from the motion sensor 11. Then, when the control unit 20 determines that the location of the human 300 has not been detected, the control unit 20 waits until the location of the human 300 is detected, and when the location of the human 300 is detected, the process proceeds to step S2.
  • step S2 the control unit 20 starts counting the timer 1 which is a counter.
  • step S3 the control unit 20 detects whether or not the predetermined time T1 has elapsed from the start of counting of the timer 1, that is, the location of the human 300 in the private room toilet 200, based on the count value of the timer 1. Then, it is determined whether or not the predetermined time T1 has elapsed. Then, if the predetermined time T1 has not elapsed, the control unit 20 waits until the predetermined time T1 elapses, and if it is determined that the predetermined time T1 has elapsed, the process proceeds to step S4.
  • the predetermined time T1 is a time corresponding to the wavelength of the ultraviolet rays emitted from the UV irradiation unit 10A, and is set to be equal to or less than the maximum time during which the living body can be irradiated according to the safety standard.
  • the predetermined time T1 will be described in detail later.
  • step S4 the control unit 20 ends the count of the timer 1 and resets the count value of the timer 1.
  • step S5 the control unit 20 stops the emission of ultraviolet rays from the UV irradiation unit 10A.
  • step S6 the control unit 20 determines whether or not the human 300 has left the private room toilet 200 based on the detection signal from the motion sensor 11. Then, when it is determined that the human 300 has not left, the control unit 20 waits as it is, and when it is determined that the human 300 has left, the process proceeds to step S7.
  • step S7 the control unit 20 starts emitting ultraviolet rays from the UV irradiation unit 10A, and returns to step S1.
  • FIG. 3 is a time chart illustrating the operation of the inactivating device 100 in the present embodiment.
  • the UV irradiation unit 10A continuously irradiates the private room toilet 200 with ultraviolet rays.
  • the location of the human 300 is detected by the motion sensor 11 at the time point A, and the counting of the timer 1 is started.
  • the irradiation of the ultraviolet rays into the private room toilet 200 and the human 300 is stopped.
  • ultraviolet rays are emitted from the UV irradiation unit 10A into the private room toilet 200 until the predetermined time T1 elapses, and the human 300 in the private room toilet 200 is emitted. Is irradiated with ultraviolet rays. After that, when the human 300 exits from the private room toilet 200, at that time B, the motion sensor 11 detects that the human 300 has exited, and the irradiation of ultraviolet rays into the private room toilet 200 is resumed.
  • the ultraviolet rays in the wavelength range of 200 nm to 320 nm emitted from the UV irradiation units 10A and 10B include ultraviolet rays having an adverse effect on the human body.
  • irradiation with ultraviolet rays in the above wavelength range may induce cancer due to erythema or DNA damage on the skin, or may cause eye damage (eye pain, hyperemia, inflammation of the cornea, etc.).
  • ultraviolet irradiation in the above wavelength range does not have an adverse effect on the living body unless the integrated light amount (dose amount) on the living body, which is the object to be irradiated, exceeds a predetermined amount. Focusing on this point, the present inventors set the irradiation time for humans (predetermined time T1) and dared to irradiate humans with ultraviolet rays.
  • the daily UV exposure received by a person using a closed space (private room toilet) is D (mJ / cm 2 ).
  • the illuminance on the UV irradiation surface of a human is W (mW / cm 2 )
  • the number of times a person enters a closed space (private room toilet) per day is N
  • the UV irradiation time during one stay in the private room toilet is T1.
  • the daily ultraviolet exposure amount D is expressed as follows.
  • D (mJ / cm 2 ) W (mW / cm 2 ) x N (times) x T1 (sec) ... (1)
  • This number is the value set by the ACGIH (American Conference of Governmental Industrial Hygienists).
  • the illuminance on the irradiation surface of a human being irradiated with ultraviolet rays is 0.022 (mW / cm 2 ) and the number of times the private room toilet attached to the hospital room is used per day (the number of times the person enters the private room toilet) N is 10 times. From the above equation (2), the ultraviolet irradiation time T1 during one stay in the private room toilet is 30 (sec) or less.
  • the ultraviolet light source included in the UV irradiation unit 10A is a low-pressure mercury lamp that emits ultraviolet rays having a wavelength of 253.7 nm
  • the predetermined time T1 set in FIGS. 2 and 3 is 30 (sec) or less, the ultraviolet rays are emitted. It means that the irradiation has no adverse effect on the human 300. Therefore, in this case, the predetermined time T1 is set to, for example, 30 (sec), which is the maximum time.
  • the illuminance on the irradiation surface of a human being irradiated with ultraviolet rays is such that the head (top) when the human 300 is standing in the closed space (private room toilet) 200 is the ultraviolet irradiation surface, and the closed space (private room toilet).
  • the distance from the ceiling 201 of 200 to the head of the human 300 standing on the floor is a value set as the ultraviolet irradiation distance.
  • N' 2 to 3 times may be set and the ultraviolet irradiation time T1 may be set. It is preferable that the number of times N that a person enters the closed space in one day is set to a large value on the safety side.
  • a low-voltage mercury lamp it does not light up immediately even if power is supplied, and it takes some time to light up. Therefore, when a low-pressure mercury lamp is used as an ultraviolet light source, irradiation of ultraviolet rays and non-irradiation cannot be repeated at relatively short intervals by power supply control. Therefore, in this case, a shutter for shading may be provided, and the irradiation and non-irradiation of ultraviolet rays may be controlled by controlling the opening and closing of the shutter while the low-pressure mercury lamp is lit.
  • the ultraviolet light source for example, a KrCl excimer lamp that emits ultraviolet rays having a central wavelength of 222 nm can also be used.
  • an excimer lamp it lights up immediately after power is supplied. Therefore, unlike the case where a low-pressure mercury lamp is used as a light source, it is not necessary to provide a shutter for shading. That is, when the irradiation and non-irradiation of ultraviolet rays are repeated at relatively short intervals, the power supply to the excimer lamp may be controlled.
  • UV radiation having a central wavelength of 222 nm kill bacteria and the like, but have little adverse effect on human cells.
  • UV radiation with a low wavelength, such as about 200 nm passes through water very efficiently, but is highly absorbed by the outer part (cytoplasm) of human cells and is sufficient to reach the cell nucleus containing radiation-sensitive DNA. May have no energy. Therefore, the above-mentioned low-wavelength UV radiation typically has less adverse effect on human cells, that is, on humans.
  • Bacteria are typically much smaller physically than human cells. Specifically, typical bacterial cells have a diameter of less than about 1 ⁇ m, whereas human cells typically have a diameter of about 10 ⁇ m to 30 ⁇ m, depending on the type and site. Therefore, the above low wavelength UV radiation can easily penetrate and kill bacteria.
  • the illuminance on the irradiation surface of a human being irradiated with ultraviolet rays is 0.022 (mW / cm 2 ), and the private room toilet attached to the hospital room.
  • N the number of times of using the above (number of times of entering the private room toilet)
  • N the number of times of entering the private room toilet
  • one private room when a KrCl excimer lamp that emits ultraviolet rays having a central wavelength of 222 nm is used according to the above equation (2).
  • the ultraviolet irradiation time T1 during the stay in the toilet is 95 (sec) or less.
  • the predetermined time T1 set in FIGS. 2 and 3 is, for example, 95 (sec), which is the maximum time. ) Can be set.
  • the KrCl excimer lamp has a central wavelength of 222 nm, but also emits a small amount of light in other wavelength ranges. Therefore, in actual use, it is preferable to use a wavelength selection filter that transmits only light having a wavelength range of 190 nm to 235 nm, which has little adverse effect on the human body, and cuts light in other wavelength ranges.
  • a wavelength selection filter for example, an optical filter having a dielectric multilayer film composed of two layers of HfO and two layers of SiO can be used.
  • the optical filter, HfO 2 layer and SiO 2 layer are alternately laminated dielectric multilayer film is formed on one surface of a substrate made of synthetic quartz glass, HfO 2 layer and on the other surface of the substrate It can be configured to be AR coated with two layers of SiO.
  • the thickness of the HfO 2 layer in the dielectric multilayer film is about 240 nm
  • the thickness of the SiO 2 layer is 1460 nm
  • the total number of layers of the HfO 2 layer and the SiO 2 layer can be 33 layers.
  • the wavelength selection filter it is also possible to use an optical filter having a dielectric multi-layer film according to the SiO 2 layer and the Al 2 O 3 layer.
  • an optical filter having a dielectric multi-layer film according to the HfO 2 layer and SiO 2 layer as a wavelength selective filter
  • using an optical filter having a dielectric multi-layer film according to the SiO 2 layer and the Al 2 O 3 layer Compared with the case, the total number of layers can be reduced. Therefore, the transmittance of ultraviolet rays when the incident angle is 0 ° can be increased, and the light intensity of ultraviolet rays in a desired wavelength range of 190 to 235 nm can be secured. Moreover, by reducing the total number of layers, the cost can be reduced accordingly.
  • the inactivating device 100 in the present embodiment contains ultraviolet rays having a wavelength that inactivates microorganisms and / or viruses harmful to the human body in a closed space (private room toilet 200) where a person can enter and leave.
  • An ultraviolet irradiation unit (UV irradiation unit) 10A for irradiating light is provided.
  • the inactivating device 100 includes a motion sensor 11 for detecting the presence or absence of a person in the private room toilet 200 as a sensor for detecting the location of a person in the private room toilet 200.
  • the control unit 20 has a predetermined time according to the wavelength of the ultraviolet rays emitted from the UV irradiation unit 10A within the period in which it is determined that a person exists in the private room toilet 200 based on the detection signal from the motion sensor 11. (T1), the UV irradiation unit 10A controls to irradiate the space including a person with ultraviolet rays.
  • the predetermined time T1 for irradiating a person with ultraviolet rays can be set to a time corresponding to the wavelength of the ultraviolet rays. Since the degree of influence on the human body by ultraviolet irradiation differs depending on the wavelength of ultraviolet rays, by setting T1 for a predetermined time according to the wavelength of ultraviolet rays, a wavelength suitable for decontamination within a light amount range that does not adversely affect the human body. It is possible to irradiate a person with ultraviolet rays. Specifically, the predetermined time T1 is the time T1 that satisfies the above equation (2). In this way, since the ultraviolet irradiation time is set for each wavelength of the irradiated ultraviolet rays based on the safety standard, the adverse effect on the human body due to the ultraviolet irradiation can be appropriately suppressed.
  • the control unit 20 acquires information on the wavelength of the ultraviolet rays emitted from the UV irradiation unit 10A, sets a predetermined time T1 based on the safety standard based on the acquired information, and sets the predetermined time T1 of the light of the UV irradiation unit 10A. Irradiation and non-irradiation may be controlled. That is, the predetermined time T1 may be configured to be variably set according to the light source used.
  • the UV irradiation unit 10A is controlled to irradiate the space including the person with ultraviolet rays for a predetermined time T1. Can be done. In this way, the person can be irradiated with ultraviolet rays immediately after the person enters the private room toilet 200. Therefore, it is possible to more efficiently suppress the diffusion of harmful microorganisms and viruses from humans into the private room toilet 200.
  • the UV irradiation unit 10A when it is determined by the motion sensor 11 that there is no person in the private room toilet 200 (exited from the private room toilet 200), the UV irradiation unit 10A enters the private room toilet 200 in which no person is present. It can be controlled to irradiate ultraviolet rays. In this way, by irradiating the private room toilet 200 where no one is present with ultraviolet rays, harmful microorganisms and viruses originally present in the private room toilet 200, and harmful microorganisms diffused inside the private room toilet 200 due to the invasion of a person. It is possible to inactivate at least a part of harmful microorganisms and viruses floating in the air flowing into the private room toilet 200 when a person enters. Further, when a person is absent in the private room toilet 200, the above-mentioned inactivation can be performed more effectively by continuously irradiating the private room toilet 200 with ultraviolet rays.
  • the UV irradiation unit 10A can be arranged at a position where light is irradiated downward from the upper part of the private room toilet 200, specifically, on the ceiling 201 of the private room toilet 200. Therefore, the UV irradiation unit 10A can irradiate the entire private room toilet 200 with light including ultraviolet rays. Therefore, for example, harmful microorganisms and viruses adhering to the wall portion 202, the door 203, the floor, and the like of the private room toilet 200 can be appropriately inactivated.
  • a motion sensor 11 for detecting the presence or absence of a person in the private room toilet 200 is used as a sensor for detecting the entry and exit of a person in the private room toilet 200 has been described. Any sensor can be used as long as it can detect that a person has entered the 200 and that a person has left the private room toilet 200.
  • FIG. 4 is a flowchart illustrating the operation of the inactivating device 100 in this modification.
  • the same step numbers are assigned to the parts that perform the same processing as in FIG. 2, and the parts having different processing will be mainly described below.
  • control unit 20 starts emitting ultraviolet rays from the UV irradiation unit 10A in step S7, and then shifts to step S12 to start counting the timer 2 which is a counter.
  • step S13 the control unit 20 determines whether or not a predetermined time T2 has elapsed from the start of counting of the timer 2, that is, after the human 300 has left the private room toilet 200, based on the count value of the timer 2. It is determined whether or not the predetermined time T2 has elapsed.
  • the control unit 20 waits until the predetermined time T2 has elapsed, and if it is determined that the predetermined time T2 has elapsed, the process proceeds to step S14.
  • the predetermined time T2 is set to a time sufficient to inactivate at least a part of harmful microorganisms and viruses existing in the private room toilet 200 where the human 300 has left.
  • the control unit 20 stops emitting ultraviolet rays from the UV irradiation unit 10A, and returns to step S1.
  • FIG. 5 is a time chart illustrating the operation of the inactivating device 100 in this modification.
  • the ultraviolet irradiation from the UV irradiation unit 10A into the private room toilet 200 is stopped before the human 300 enters the private room toilet 200.
  • the location of the human 300 is detected by the motion sensor 11 at that time point A, the timer 1 count is started, and the human 300 is entered into the private room toilet 200 and the human 300. Irradiation of ultraviolet rays starts. Then, after a predetermined time T1 elapses from the time point A, the irradiation of the ultraviolet rays into the private room toilet 200 and the human 300 is stopped.
  • the UV irradiation unit 10A starts UV irradiation from. Then, during the period from that time until the predetermined time T1 elapses, the UV irradiation unit 10A irradiates the human 300 in the private room toilet 200 with ultraviolet rays. After that, when the human 300 exits from the private room toilet 200, at that time B, the motion sensor 11 detects that the human 300 has exited, the timer 2 starts counting, and the ultraviolet rays into the private room toilet 200 are started. Irradiation is resumed. Then, when a predetermined time T2 elapses from the time point B when the human 300 leaves the private room toilet 200, the irradiation of ultraviolet rays into the private room toilet 200 is stopped at the time point C.
  • the UV irradiation unit 10A irradiates the private room toilet 200 in which no person is present with ultraviolet rays, and the ultraviolet irradiation is performed for a certain period of time (predetermined). Time T2) After that, the ultraviolet irradiation from the UV irradiation unit 10A may be stopped.
  • the ultraviolet irradiation into the private room toilet 200 in which a person is absent for a certain period of time it is possible to provide a rest time of the ultraviolet light source possessed by the UV irradiation unit 10A, and the life of the ultraviolet light source is extended. be able to.
  • the motion sensor 11 detects that the human 300 has entered the closed space (private room toilet) 200, and the ultraviolet rays from the UV irradiation unit 10A are based on the detection signal of the motion sensor 11.
  • the case of controlling the irradiation of the above was described.
  • the pressure sensor 12 detects a state in which the human 300 is seated on the toilet seat 212 in the private room toilet 200 and controls the irradiation of ultraviolet rays based on the detection signal of the pressure sensor 12 will be described. do.
  • the ultraviolet irradiation into the private room toilet 200 is continuously performed. Further, the ultraviolet irradiation is performed using the UV irradiation unit 10B.
  • FIG. 6 is a flowchart illustrating the operation of the inactivating device 100 in the present embodiment.
  • the control unit 20 determines whether or not the location of the human 300 in the private room toilet 200 is detected based on the detection signal from the motion sensor 11. Then, when the control unit 20 determines that the location of the human 300 has not been detected, the control unit 20 waits until the location of the human 300 is detected, and when the location of the human 300 is detected, the process proceeds to step S22.
  • step S22 the control unit 20 stops the emission of ultraviolet rays from the UV irradiation unit 10B, and proceeds to step S23.
  • step S23 the control unit 20 determines whether or not the seating of the human 300 on the toilet seat 212 is detected based on the detection signal from the pressure sensor 12. Then, when the control unit 20 determines that the seating of the human 300 has not been detected, the control unit 20 waits until the seating of the human 300 is detected, and when the seating of the human 300 is detected, the process proceeds to step S24.
  • step S24 the control unit 20 starts emitting ultraviolet rays from the UV irradiation unit 10B, and proceeds to step S25.
  • step S25 the control unit 20 starts counting the timer 1 which is a counter.
  • step S26 the control unit 20 detects whether or not the predetermined time T1 has elapsed from the start of counting of the timer 1, that is, the seating of the human 300 on the toilet seat 212 based on the count value of the timer 1. It is determined whether or not the predetermined time T1 has elapsed since then. Then, if the predetermined time T1 has not elapsed, the control unit 20 waits until the predetermined time T1 elapses, and if it is determined that the predetermined time T1 has elapsed, the process proceeds to step S27.
  • the predetermined time T1 is a time corresponding to the wavelength of the ultraviolet rays emitted from the UV irradiation unit 10B, and is set to be equal to or less than the maximum time during which the living body can be irradiated according to the safety standard.
  • the predetermined time T1 can be, for example, the same time as in the first embodiment.
  • the UV irradiation unit 10B is installed on the wall portion 202 of the private room toilet 200 on the assumption that when the human 300 takes a posture of sitting on the toilet bowl 211, ultraviolet rays are irradiated from above the back of the head of the human 300. ..
  • the illuminance on the irradiation surface (head) of the human 30 in this case is the illuminance when the human 300 standing by using the UV irradiation unit 10A is irradiated with ultraviolet rays as in the first embodiment described above. It may be the same value. That is, the illuminance on the irradiation surface of a human being irradiated with ultraviolet rays can be 0.092 (mW / cm 2 ).
  • step S27 the control unit 20 ends the count of the timer 1 and resets the count value of the timer 1.
  • step S28 the control unit 20 stops the emission of ultraviolet rays from the UV irradiation unit 10B.
  • step S29 the control unit 20 determines whether or not the human 300 has left the private room toilet 200 based on the detection signal from the motion sensor 11. Then, when it is determined that the human 300 has not left, the control unit 20 waits as it is, and when it is determined that the human 300 has left, the process proceeds to step S30.
  • step S30 the control unit 20 starts emitting ultraviolet rays from the UV irradiation unit 10B, and returns to step S21.
  • FIG. 7 is a time chart illustrating the operation of the inactivating device 100 in the present embodiment.
  • the UV irradiation unit 10B continuously irradiates the private room toilet 200 with ultraviolet rays.
  • the location of the human 300 is detected by the motion sensor 11 at that time P, and the irradiation of ultraviolet rays into the private room toilet 200 is stopped.
  • the human 300 in the private room toilet 200 sits on the toilet seat 212, the seating of the human 300 is detected by the pressure sensor 12 at that time Q, the timer 1 count is started, and the ultraviolet rays into the private room toilet 200 are started. Irradiation is started. Then, after a predetermined time T1 elapses from the time point Q, the irradiation of the ultraviolet rays into the private room toilet 200 and the human 300 is stopped.
  • the ultraviolet irradiation from the UV irradiation unit 10B is once stopped, but when the human 300 sits on the toilet seat 212, the UV irradiation unit 10B is used for a predetermined time T1.
  • Ultraviolet rays are emitted into the private room toilet 200, and the human 300 in the private room toilet 200 is irradiated with the ultraviolet rays.
  • the motion sensor 11 detects that the human 300 has exited, and the irradiation of ultraviolet rays into the private room toilet 200 is resumed.
  • the control unit 20 has a detection signal from the pressure sensor 12 within a period in which it is determined that a person exists in the private room toilet 200 based on the detection signal from the motion sensor 11.
  • the UV irradiation unit 10B controls to irradiate the space including a person with ultraviolet rays for a predetermined time (T1). In this way, by irradiating a person existing at a predetermined position in a closed space with light containing ultraviolet rays, it is possible to effectively irradiate a intended place on the surface of the human body with ultraviolet rays.
  • the movement of a person sitting on the toilet seat 212 in the private room toilet 200 is relatively small. Therefore, by irradiating a human sitting on the toilet seat 212 with ultraviolet rays, harmful microorganisms and viruses existing on the surface of the human body (skin and the surface of clothing) can be effectively inactivated.
  • the control unit 20 detects that a person has entered the private room toilet 200 by the motion sensor 11, the control unit 20 stops the ultraviolet irradiation from the UV irradiation unit 10B and detects the seating on the toilet seat 212 by the pressure sensor 12. Then, for a predetermined time (T1), the UV irradiation unit 10B controls to irradiate the space including a person with ultraviolet rays.
  • T1 a predetermined time
  • the UV irradiation unit 10B controls to irradiate the space including a person with ultraviolet rays.
  • ultraviolet rays can be irradiated for a predetermined time (T1). Therefore, it is possible to appropriately irradiate the inside of the private room toilet 200 in which a person is absent and the ultraviolet irradiation to the person who has entered the private room toilet 200.
  • the UV irradiation unit 10B is installed on the wall portion 202 of the private room toilet 200 on the assumption that the human 300 is irradiated with ultraviolet rays when the human 300 takes a sitting position on the toilet bowl 211.
  • the amount of dose on the floor surface can be increased as compared with the case where the UV irradiation unit 10A is used. That is, it is possible to effectively inactivate harmful microorganisms and viruses adhering to the floor surface.
  • the UV irradiation unit 10B is arranged at a position where ultraviolet rays are irradiated from the back of the head side of the human 300 when the human 300 takes a posture of sitting on the toilet bowl 211. Therefore, the ultraviolet rays emitted from the UV irradiation unit 10B can be prevented from being directly irradiated to the eyes of the human 300. Therefore, it is possible to suppress the occurrence of eye disorders (eye pain, redness, inflammation of the cornea, etc.).
  • the UV irradiation unit 10B is used to irradiate the ultraviolet rays
  • the UV irradiation unit 10A provided on the ceiling 201 of the private room toilet 200 can also be used.
  • the UV irradiation unit 10A is used, the illuminance on the ultraviolet irradiation surface of the human 300 sitting on the toilet seat 212 is smaller than the illuminance on the ultraviolet irradiation surface of the human 300 standing on the floor, for example, 0.010 (mW). / Cm 2 ).
  • the light source of the UV irradiation unit 10A is a low-pressure mercury lamp
  • the number of times the private room toilet attached to the hospital room is used per day (the number of times the private room toilet is entered) N is set to 10 times ( According to the formula 2), the ultraviolet irradiation time (predetermined time T1) during one stay in the private room toilet is 60 (sec).
  • the light source of the UV irradiation unit 10A is a KrCl excimer lamp
  • the number of times the private room toilet attached to the hospital room is used per day (the number of times the private room toilet is entered) N is set to 10 times, and the above ( According to the formula 2), the ultraviolet irradiation time (predetermined time T1) during one stay in the private room toilet is 210 (sec).
  • the ultraviolet irradiation time (predetermined time T1) can be lengthened as compared with the case where the UV irradiation unit 10B is used.
  • the pressure sensor 12 provided on the toilet seat 212 is used as the sensor for detecting the state in which the person sits on the toilet seat 212 in the private room toilet 200 has been described.
  • FIG. 8 is a flowchart illustrating the operation of the inactivating device 100 in this modification.
  • parts to be subjected to the same processing as in FIG. 6 are assigned the same step numbers, and the parts having different processing will be mainly described below.
  • control unit 20 starts emitting ultraviolet rays from the UV irradiation unit 10B in step S30, and then shifts to step S31 to start counting the timer 2 which is a counter.
  • step S31 the control unit 20 determines whether or not a predetermined time T2 has elapsed from the start of counting of the timer 2, that is, after the human 300 has left the private room toilet 200, based on the count value of the timer 2. It is determined whether or not the predetermined time T2 has elapsed.
  • the control unit 20 waits until the predetermined time T2 has elapsed, and if it is determined that the predetermined time T2 has elapsed, the process proceeds to step S32.
  • the predetermined time T2 is set to a time sufficient to inactivate at least a part of harmful microorganisms and viruses existing in the private room toilet 200 where the human 300 has left.
  • the control unit 20 stops emitting ultraviolet rays from the UV irradiation unit 10B, and returns to step S21.
  • FIG. 9 is a time chart illustrating the operation of the inactivating device 100 in this modification.
  • the ultraviolet irradiation from the UV irradiation unit 10B into the private room toilet 200 is stopped before the human 300 enters the private room toilet 200.
  • the location of the human 300 is detected by the motion sensor 11 at the time point P.
  • the seating of the human 300 is detected by the pressure sensor 12 at that time Q, the timer 1 starts counting, and the inside of the private room toilet 200 and the human 300 are irradiated with ultraviolet rays. Starts.
  • a predetermined time T1 elapses from the time point Q
  • the irradiation of the ultraviolet rays into the private room toilet 200 and the human 300 is stopped.
  • the human 300 enters the private room toilet 200 and sits on the toilet seat 212. Then, the ultraviolet irradiation from the UV irradiation unit 10B is started. Then, during the period from that time until the predetermined time T1 elapses, the UV irradiation unit 10B irradiates the human 300 in the private room toilet 200 with ultraviolet rays. After that, when the human 300 exits from the private room toilet 200, at that time R, the motion sensor 11 detects that the human 300 has exited, the timer 2 starts counting, and the ultraviolet rays into the private room toilet 200 are started.
  • the UV irradiation unit 10B irradiates the private room toilet 200 in which no person is present with ultraviolet rays, and the ultraviolet irradiation is performed for a certain period of time (predetermined). Time T2) After that, the ultraviolet irradiation from the UV irradiation unit 10B may be stopped.
  • the ultraviolet irradiation into the private room toilet 200 in which a person is absent for a certain period of time it is possible to provide a pause time of the ultraviolet light source possessed by the UV irradiation unit 10B, and the life of the ultraviolet light source is extended. be able to.
  • FIG. 10 is a time chart illustrating the operation of the inactivating device 100 in this modification.
  • the UV irradiation unit 10B continuously irradiates the private room toilet 200 with ultraviolet rays.
  • the door sensor 13 detects that the door 203 has been opened at that time, and the irradiation of ultraviolet rays into the private room toilet 200 is stopped. .. Subsequently, at P2 when the human 300 enters the private room toilet 200 and the door 203 is closed, the door sensor 13 detects that the door 203 is closed. Then, at this time point P2, the timer 0 count is started. The timer 0 is set to end the count when a predetermined time T0 has elapsed from the start of the operation, transmit the count end signal to the control unit 20, and reset the count.
  • the timer 0 is set to be reset by the control unit 20 when the pressure sensor 12 detects that the human 300 sits on the toilet seat 212 even during counting.
  • the predetermined time T0 is set to be sufficiently longer than the time from when the human 300 enters the private room toilet 200 to when the person 300 sits on the toilet seat 212.
  • the timer 1 count is started, and the ultraviolet rays into the private room toilet 200 are started. Irradiation is started. At this time, the timer 0 count ends. Then, after a predetermined time T1 elapses from the time point Q, the irradiation of the ultraviolet rays into the private room toilet 200 and the human 300 is stopped.
  • the UV irradiation unit 10B is used for a predetermined time T1.
  • Ultraviolet rays are emitted into the private room toilet 200, and the human 300 in the private room toilet 200 is irradiated with the ultraviolet rays.
  • the door sensor 13 detects that the door 203 is opened at that time R1.
  • the door sensor 13 detects that the door 203 is closed.
  • the timer 0 count is started.
  • the human 300 has left the private room toilet 200, and even if T0 has elapsed from the time point R2 for a predetermined time, the pressure sensor 12 does not detect sitting on the toilet seat 212. Therefore, at the time point R3 when the predetermined time T0 has elapsed from the time point R2, the irradiation of the ultraviolet rays into the private room toilet 200 is restarted.
  • the door sensor 13 can detect the opening and closing of the door 203, it is possible to irradiate the closed space (private room toilet 200) with ultraviolet rays in a state where the door 203 is closed. Therefore, it is possible to prevent an object outside the closed space from being unintentionally irradiated with ultraviolet rays.
  • control unit 20 starts counting the timer 0 when the door sensor 13 detects that the door 203 is closed.
  • the control unit 20 starts counting the timer 0 when the pressure sensor 12 does not detect the seating of the human 300. May be good.
  • the timer 0 count starts. It can be prevented from being done.
  • the detection signal indicating the seating of the human 300 is received from the pressure sensor 12
  • the door 203 is closed by the door sensor 13 unless the detection signal indicating the sitting of the human 300 is next received from the pressure sensor 12.
  • the count of the timer 0 can be prevented from starting. In this way, by confirming both the detection signal from the door sensor 13 and the detection signal from the pressure sensor 12, it is possible to appropriately determine that no person is present in the private room toilet 200.
  • ultraviolet irradiation when a human being is absent in the private room toilet 200, ultraviolet irradiation may be performed in the private room toilet 200 for a predetermined time only T2. That is, the irradiation of the ultraviolet rays into the private room toilet 200 may be terminated when the predetermined time T2 has elapsed from the time point R3 in FIG.
  • the inactivating device 100 is installed in the private room toilet has been described, but the present invention is not limited to the above.
  • the inactivating device 100 can be installed in a particularly narrow space of a facility where people frequently gather, such as a hospital room, an elevator, or a conference room.
  • the timing of irradiating the human with ultraviolet rays from the inactivating device 100 may be any timing during the period in which the human exists in the closed space. However, if it is possible to detect the timing at which harmful microorganisms or viruses are likely to be scattered during the period in which a human is present in the closed space, it is preferable to irradiate the ultraviolet rays at that timing.
  • the inactivating device 100 is installed in a closed space where a person can enter and leave has been described, but the closed space may be a space where animals other than humans can enter and leave. good.
  • the total light emission operation time is predetermined. It may be time T1.
  • the power supply to the excimer lamp is controlled so that the light emission operation time of the excimer lamp is 10 ms or more and 1000 ms or less and the subsequent pause time is 10 ms or more and 10 seconds or less, the light emission operation and the pause are repeated.
  • the time T1 is the sum of the light emission operation times.
  • the operation time of the Kr excimer lamp is 100 ms
  • the pause time is 100 ms
  • the predetermined time T1 is 30 sec
  • the number of light emission operations of the KrCl is 300 times
  • the operation time of the Kr excimer lamp is It will be 60 sec including the rest time.
  • the ultraviolet irradiation period to the person or the space including the person is T1 for a predetermined time, but when the operation of the light source is an intermittent operation including a pause time, the ultraviolet irradiation period is , It becomes longer than the predetermined time T1.
  • the space containing people is a toilet
  • ultraviolet rays can be emitted even when bacteria, viruses, etc. are scattered due to defecation or splash. It is possible to increase the possibility that irradiation can be performed.
  • the opening and closing of the light-shielding shutter is controlled as described above.
  • the ultraviolet light source a light source capable of repeating the ultraviolet light emitting operation and the pause time by power supply control is suitable.
  • a light source for example, an excimer lamp (KeCl excimer lamp) or a solid-state light source (light emitting diode (LED), laser diode (LD)) as described above can be used.
  • the inactivating device and the inactivating method according to the present invention it is possible to provide the original sterilizing ability of ultraviolet rays and the inactivating ability of viruses without adversely affecting the human body by irradiation with ultraviolet rays.
  • it can be used in a manned environment, and by installing it in a space such as a facility or vehicle where people and animals exist, it is possible to irradiate the entire space. It can provide virus suppression and sterilization of the surface of installation members in air and space.
  • SDGs United Nations-led Sustainable Development Goals
  • it will contribute significantly to eradicating infectious diseases such as AIDS, tuberculosis, malaria and neglected tropical diseases, as well as combating hepatitis, water-borne and other infectious diseases.
  • 10A, 10B UV irradiation unit, 11 ... human sensor, 12 ... pressure sensor, 13 ... door sensor, 20 ... control unit, 100 ... inactivation device, 200 ... closed space (private room toilet), 201 ... ceiling, 202 ... wall Department, 203 ... Door, 300 ... Human

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

有害な微生物やウイルスを効率的に不活化することができる不活化装置および不活化方法が開示される。 不活化装置は、人が入退出可能な閉鎖空間内に、人体に有害な微生物および/またはウイルスを不活化する波長の紫外線を含む光を照射する紫外線照射部と、閉鎖空間内における人の所在を検出するセンサと、センサからの検出信号に基づいて、紫外線照射部による光の照射および非照射を制御する制御部と、を備える。制御部は、センサからの検出信号に基づいて閉鎖空間内に人が存在すると判断される期間内において、紫外線照射部から照射される光に含まれる紫外線の波長に応じた所定時間、紫外線照射部から人を含む空間に光を照射するように制御する。

Description

不活化装置および不活化方法
 本発明は、有害な微生物やウイルスを不活化する不活化装置および不活化方法に関する。
 医療施設、学校、役所等、頻繁に人が集まる施設は、有害な微生物(バクテリアやカビ等)やウイルスが繁殖しやすい環境にある。これらの有害な微生物やウイルスは、特に、上記施設における狭い空間(病室、トイレ、エレベータ内などの閉鎖空間)で繁殖しやすい。
 上記のような有害な微生物は、上記空間における床や壁等の表面上や上記空間に出入りする人間(場合によっては動物)の内部で増殖する、あるいは、上記空間内を浮遊する。
 この傾向は、特に医療施設内で顕著である。すなわち、入院患者用の病室や病室内のトイレ、外来受付に隣接するトイレなどの狭い空間においては、患者由来の感染性微生物が撒布される。そして、撒布された感染性微生物は、この狭い空間を構成する表面(床、壁等)へ付着したり、空間内を浮遊したりする。そのため、その空間(トイレなど)に入った次の人間(他の患者や訪問者など)に感染し、場合によっては感染症が医療施設内で蔓延することもある。
 以上のような状況を改善するために、人間(場合によっては動物)が集まる施設(特に医療施設)においては、上記のような有害な微生物(例えば、感染性微生物)を除染(殺菌)する措置が求められる。
 特許文献1(特表2017-528258号公報)には、除染対象空間に紫外線(UVC光)を照射し、当該空間を除染する除染装置が開示されている。この除染装置は、上記の除染対象空間内における人の不在を検知した際に、当該空間内に紫外線を放出する。
 また、特許文献2(米国特許出願公開第2010/0032859号明細書)には、エレベータに人感センサ、ドアセンサを設置し、上記センサがエレベータ内に人間が不在で、ドアが閉まった状態を検知した際、エレベータ内に殺菌用の紫外線を放出するシステムが開示されている。ここで、放出する紫外線の波長は、約240nmと約280nmとの間の波長としている。
特表2017-528258号公報 米国特許出願公開第2010/0032859号明細書
 施設の狭い空間内で有害な微生物が繁殖したり浮遊したりするのは、有害な微生物を有する人間(患者)や動物が、上記空間に出入りすることに起因することが多い。よって、本来的にはこのような施設における除染は、施設内の表面や空間のみならず、その領域に存在する人間(患者)や動物の表面に対して行うことが効率的となる。
 しかしながら、除染に適した波長を有する紫外線の照射は、人間や動物に悪影響を与える。そのため、上記特許文献1(特表2017-528258号公報)や特許文献2(米国特許出願公開第2010/0032859号明細書)に開示されているように、紫外線照射を用いて除染する除染システムでは、人間や動物の安全性を考慮し、照射領域に人間が存在する場合は紫外線の放出を停止するように構成している。
 したがって、上記従来の除染システムでは、施設の除染を効率的に行うことができない。また、人間(患者)や動物の表面の除染を行うことができないため、人間(患者)や動物の行動範囲を考慮して、除染すべき領域を広範囲に広げる必要がある。
 そこで、本発明は、有害な微生物やウイルスを効率的に不活化することができる不活化装置および不活化方法を提供することを課題としている。
 上記課題を解決するために、本発明に係る不活化装置の一態様は、人体に有害な微生物および/またはウイルスを不活化する不活化装置であって、人が入退出可能な閉鎖空間内に、前記人体に有害な微生物および/またはウイルスを不活化する波長の紫外線を含む光を照射する紫外線照射部と、前記閉鎖空間内における前記人の所在を検出するセンサと、前記センサからの検出信号に基づいて、前記紫外線照射部による前記光の照射および非照射を制御する制御部と、を備え、前記制御部は、前記センサからの検出信号に基づいて前記閉鎖空間内に人が存在すると判断される期間内において、前記紫外線照射部から照射される前記光に含まれる紫外線の波長に応じた所定時間、前記紫外線照射部から前記人を含む空間に前記光を照射するように制御する。
 このように、敢えて人に対して所定時間、紫外線を含む光を照射することで、人体の表面(皮膚や衣類の表面)に存在する少なくとも1つの有害な微生物やウイルスを不活化することができる。そのため、人から閉鎖空間内への有害な微生物やウイルスの拡散を抑制することができる。また、閉鎖空間から退出した人が、閉鎖空間外に有害な微生物やウイルスの拡散してしまうことを抑制することができる。したがって、施設内の除染すべき領域の拡大を抑制することができ、効率的に施設の除染を行うことができる。
 さらに、人に対して紫外線を照射する時間は、当該紫外線の波長に応じた時間とする。紫外線照射による人体への影響の度合いは、紫外線の波長ごとに異なる。そのため、紫外線の波長に応じた所定時間だけ人に対して紫外線を照射するようにすることで、人体へ悪影響を及ぼすことなく、効率的に除染を行うことができる。
 また、上記の不活化装置において、前記制御部は、前記センサから検出信号に基づいて前記閉鎖空間内に人が存在しないと判断された場合、前記紫外線照射部から前記人が不在の前記閉鎖空間内に前記光を照射するように制御してもよい。
 このように、人が不在の閉鎖空間に紫外線を含む光を照射することで、閉鎖空間内に元々存在した有害な微生物やウイルス、人が進入したことにより閉鎖空間内部に拡散したり、閉鎖空間内の一部表面に人が接触して付着したりする有害な微生物やウイルス、および人が進入したときに閉鎖空間内部に流入する空気中に浮遊した有害な微生物やウイルスの少なくとも一部を効果的に不活化することができる。
 さらに、上記の不活化装置において、前記制御部は、前記紫外線照射部から前記人が不在の前記閉鎖空間内への前記光を一定時間行った後、前記紫外線照射部からの前記光を非照射に制御してもよい。
 この場合、紫外線照射部が有する光源の休止時間を設けることが可能となり、当該光源の寿命を延伸することができる。
 また、上記の不活化装置において、前記センサは、前記閉鎖空間内への人の入退出を検知する第1のセンサを含み、前記制御部は、前記第1のセンサにより前記閉鎖空間内に人が進入したことを検知してから前記所定時間、前記紫外線照射部が前記人を含む空間に前記光を照射するように制御してもよい。
 この場合、人が閉鎖空間内に進入した直後に、人に対して紫外線を含む光を照射することができ、人から閉鎖空間内への有害な微生物やウイルスの拡散をより効率的に抑制することができる。
 さらに、上記の不活化装置において、前記第1のセンサは、前記閉鎖空間内における人の存在の有無を検知する人感センサ、および前記閉鎖空間を形成するドアの開閉を検知するドアセンサの少なくとも一方であってよい。
 この場合、閉鎖空間内への人の入退出を容易かつ適切に検知することができる。
 また、上記の不活化装置において、前記センサは、前記閉鎖空間内における所定位置に人が存在することを検知する第2のセンサを含み、前記制御部は、前記第2のセンサにより前記閉鎖空間内における所定位置に人が存在することを検知してから前記所定時間、前記紫外線照射部が前記人を含む空間に前記光を照射するように制御してもよい。
 このように、所定位置に存在する人に対して紫外線を含む光を照射することで、人体表面の意図した箇所に効果的に紫外線を照射することができる。
 さらにまた、上記の不活化装置において、前記センサは、前記閉鎖空間内への人の入退出を検知する第1のセンサと、前記閉鎖空間内における所定位置に人が存在することを検知する第2のセンサと、を含み、前記制御部は、前記第1のセンサにより前記閉鎖空間内に人が進入したことを検知した場合、前記紫外線照射部からの前記光を非照射に制御し、前記第2のセンサにより前記閉鎖空間内における所定位置に人が存在することを検知してから前記所定時間、前記紫外線照射部が前記人を含む空間に前記光を照射するように制御してもよい。
 この場合、人が進入する前の閉鎖空間に紫外線を含む光が照射されていたら、人が閉鎖空間内に進入した際に一旦紫外線照射を停止し、予め定めた所定位置で所定時間、人に紫外線を含む光を照射することができる。
 また、上記の不活化装置において、前記第1のセンサは、前記閉鎖空間を形成するドアの開閉を検知するドアセンサであって、前記制御部は、前記第2のセンサにより前記閉鎖空間内における所定位置に人が存在することが検知されていない場合に、前記第1のセンサによりドアの開閉を検知した場合、その時点から一定時間後に、前記紫外線照射部から人が不在の前記閉鎖空間内に前記光を照射するように制御してもよい。
 この場合、第1のセンサからの検出信号および第2のセンサからの検出信号の双方を確認して、閉鎖空間内に人が存在しないことを適切に判断することができる。例えばドアの施錠忘れやドアの不具合等で不所望のドアの開閉が発生した場合に、人が閉鎖空間から退出したと誤判断して紫外線照射を開始してしまうことを防止することができる。また、ドアが開閉した後、一定時間は紫外線照射を開始しないようにすることで、例えば人が閉鎖空間に進入した後、一時的に所定位置以外の位置に存在するような場合に、紫外線照射を開始してしまうことを防止することができる。
 さらに、上記の不活化装置において、前記閉鎖空間は、個室トイレであって、前記第2のセンサは、便座に設けられた圧力センサであってよい。
 この場合、個室トイレ内にて人間が便器の便座に座した状態を、人が所定位置に存在する状態として検知することができる。便座に座した状態の人間の動きは比較的小さいので、効果的に人体表面(皮膚や衣類の表面)に存在する有害な微生物やウイルスを不活化することができる。
 また、上記の不活化装置において、前記紫外線照射部は、上記所定位置に存在する人に対して当該人の後頭部側から前記光を照射する位置に配置されていてもよい。
 この場合、紫外線照射部から放出される紫外線を含む光が、人の目に直接照射されないようにすることができる。したがって、目の障害(眼痛、充血、角膜の炎症など)の発生を抑制することができる。
 さらに、上記の不活化装置において、前記紫外線照射部は、前記閉鎖空間の上部から下方に前記光を照射する位置に配置されていてもよい。
 この場合、閉鎖空間全体に紫外線を含む光を照射することが可能となる。したがって、例えば、閉鎖空間を形成する壁や床に付着する有害な微生物やウイルスも適切に不活化することができる。
 また、上記の不活化装置において、照射される紫外線の波長に応じて定められた人体に対する1日の最大許容紫外線露光量をDmax(mJ/cm)、人体の紫外線照射面における照度をW(mW/cm)、1日に前記閉鎖空間内に同じ人が進入する回数をNとするとき、前記所定時間は、T1≦Dmax/(W×N)を満たす時間T1(sec)に設定されていてもよい。
 この場合、人体に悪影響を及ぼさない光量範囲内で、人体に有害な微生物やウイルスの不活化に適した波長を有する紫外線を人に照射することができる。
 また、上記の不活化装置において、前記紫外線照射部からの紫外線照射動作は、紫外線発光動作時間とそれに続く休止時間とを交互に繰り返し行われるものであって、1回以上繰り返される紫外線発光動作の動作時間の総和が前記時間T1となるように設定されていてもよい。そして、この場合、前記紫外線発光動作時間が10ms以上1000ms以下であり、前記休止時間が10ms以上10秒以下であるようにしてもよい。
 この場合、休止時間が存在するので、紫外線の照射時間が所定時間T1に到達するまでの紫外線照射期間が長くなり、例えば、排便やスプラッシュに伴う細菌、ウイルス等の飛散時にも紫外線照射を実施できる可能性を高くすることができる。
 このような動作を行う紫外線照射部は、紫外線を放出する発光ダイオード(LED)もしくはレーザダイオード(LD)を有していてもよい。この場合、給電制御により紫外線発光動作と休止時間とを高速に繰り返すことができる。
 さらにまた、上記の不活化装置において、前記紫外線照射部は、中心波長222nmの紫外線を放出するKrClエキシマランプを有していてもよい。この場合、紫外線照射による人体への悪影響を抑制することができる。
 また、上記の不活化装置において、前記紫外線照射部から放出される前記光に含まれる紫外線は、190nm~235nmの波長域にのみ存在してもよい。この場合、紫外線照射による人体への悪影響を適切に抑制することができる。
 さらに、本発明に係る不活化方法の一態様は、人体に有害な微生物および/またはウイルスを不活化する不活化方法であって、センサによって人が入退出可能な閉鎖空間内における人の所在を検出するステップと、前記閉鎖空間内に人が存在すると判断される期間内において、前記人体に有害な微生物および/またはウイルスを不活化する波長の紫外線を含む光を照射する紫外線照射部による前記閉鎖空間内への前記光の照射および非照射を制御し、前記光に含まれる紫外線の波長に応じた所定時間、前記紫外線照射部から前記人を含む空間に前記光を照射するステップと、を含む。
 このように、敢えて人に対して所定時間、紫外線を含む光を照射することで、人体の表面(皮膚や衣類の表面)に存在する少なくとも1つの有害な微生物やウイルスを不活化することができる。そのため、人から閉鎖空間内への有害な微生物やウイルスの拡散を抑制することができる。また、閉鎖空間から退出した人が、閉鎖空間外に有害な微生物やウイルスの拡散してしまうことを抑制することができる。したがって、施設内の除染すべき領域の拡大を抑制することができ、効率的に施設の除染を行うことができる。
 さらに、人に対して紫外線を照射する時間は、当該紫外線の波長に応じた時間とする。紫外線照射による人体への影響の度合いは、紫外線の波長ごとに異なる。そのため、紫外線の波長に応じた所定時間だけ人に対して紫外線を照射するようにすることで、人体へ悪影響を及ぼすことなく、効率的に除染を行うことができる。
 本発明では、敢えて人間に対して所定時間、紫外線を含む光を照射することで、有害な微生物やウイルスを効率的に不活化することができる。
 上記した本発明の目的、態様及び効果並びに上記されなかった本発明の目的、態様及び効果は、当業者であれば添付図面及び請求の範囲の記載を参照することにより下記の発明を実施するための形態(発明の詳細な説明)から理解できるであろう。
図1は、本実施形態における不活化システムの構造例を示す図である。 図2は、第一の実施形態の動作を説明するフローチャートである。 図3は、第一の実施形態の動作を説明するタイムチャートである。 図4は、第一の実施形態の変形例の動作を説明するフローチャートである。 図5は、第一の実施形態の変形例の動作を説明するタイムチャートである。 図6は、第二の実施形態の動作を説明するフローチャートである。 図7は、第二の実施形態の動作を説明するタイムチャートである。 図8は、第二の実施形態の変形例の動作を説明するフローチャートである。 図9は、第二の実施形態の変形例の動作を説明するタイムチャートである。 図10は、第二の実施形態の変形例の動作を説明するタイムチャートである。
 以下、本発明の実施形態を図面に基づいて説明する。
(第一の実施形態)
 本実施形態では、頻繁に人が集まる施設の特に狭い空間(病室、トイレ、エレベータ内などの閉鎖空間)において紫外線照射を行い、有害な微生物やウイルスを不活化する不活化システムについて説明する。本実施形態における不活化システムは、従来は安全の観点から見送られてきた人間(患者)や動物といった生体に対する紫外線照射を敢えて所定時間実施して、有害な微生物やウイルスを不活化するものである。
 図1は、本実施形態における不活化システムの構成例を示す図である。本実施形態では、不活化システムとして、個室トイレ内に存在する有害な微生物やウイルスを不活化する不活化システムの例を説明する。
 この不活化システムは、不活化装置100を備える。不活化装置100は、閉鎖空間(個室トイレ)内200に紫外線を放出する紫外線照射部(UV照射部)10A、10Bの少なくとも一方を備える。ここで、UV照射部10A、10Bが放出する紫外線の波長域は、例えば200nm~320nmである。
 UV照射部10Aは、個室トイレ200内の天井201に設けられている。なお、UV照射部10Aは、個室トイレ200内の上部に設けられていればよく、例えば、個室トイレ200内の壁部202の上側部分に設けられていてもよい。
 このUV照射部10Aからは、下方向に紫外線が放出され、当該紫外線が、個室トイレ200の空間や、壁部202、床等に照射される。また、UV照射部10Aから放出される紫外線は、個室トイレ200に進入した人間(例えば、患者)300に対しては、当該人間300の上部から照射される。
 UV照射部10Bは、個室トイレ200内の壁部202に設けられている。UV照射部10Bからは、主として取付位置から下方に向かう方向に紫外線が放出される。このUV照射部10Bは、個室トイレ200において、所定位置で所定の姿勢を取る人間300に紫外線を照射することを想定した位置に配置される。
 具体的には、UV照射部10Bは、人間300が便器211に座した姿勢を取った際に当該人間300に紫外線を照射することを想定して、個室トイレ200の壁部202に設置される。より具体的には、UV照射部10Bは、人間300が便器211に座した際、当該人間300の後頭部と対向する壁部202に設置される。
 このようにUV照射部10Bを設置することで、UV照射部10Bから放出される紫外線は、便器211に座した人間200の後頭部側上方より当該人間300に照射され、この人間300の目には直接には照射されない。
 また、不活化装置100は、個室トイレ200内における人間300の所在を検知するためのセンサとして、人感センサ11と、圧力センサ12と、ドアセンサ13との少なくとも1つを備えることができる。
 人感センサ11およびドアセンサ13は、個室トイレ200への人の入退出を検知するセンサであり、圧力センサ12は、個室トイレ200内における所定位置に人が存在することを検知するセンサである。
 人感センサ11は、例えば図1に示すように天井201に設置され、個室トイレ200の空間内での人間300の存在の有無を検知する。
 圧力センサ12は、例えば図1に示すように便座212の内部に設置され、便器211に設けられた便座212に人間300が座したかどうかを検知する。
 ドアセンサ13は、例えば図1に示すようにドア203に設置され、個室トイレ200のドア203の開閉を検知する。
 さらに、不活化装置100は、制御部20を備える。制御部20は、各センサ11~13からの検出信号を受信し、当該検出信号をもとにUV照射部10A、10Bからの紫外線の照射および非照射を制御する。
 具体的には、制御部20は、センサ11~13の少なくとも1つの検出信号をもとに個室トイレ200内に人間300が存在すると判断された期間中に、UV照射部10A、10Bの少なくとも一方から、紫外線を、当該紫外線の波長に応じた所定時間、上記人間300を含む個室トイレ200内に照射するように制御する。
 本実施形態では、制御部20は、人感センサ11の検知信号に基づき、UV照射部10Aからの紫外線の照射を制御する場合について説明する。また、本実施形態では、個室トイレ200内に人間300が不在の場合、原則として、UV照射部10Aから個室トイレ200内への紫外線照射が連続して行われるものとする。
 以下、本実施形態における不活化装置100の動作について説明する。
 図2は、本実施形態における不活化装置100の動作を説明するフローチャートである。
 まずステップS1において、制御部20は、人感センサ11からの検出信号をもとに、個室トイレ200内における人間300の所在を検知したか否かを判定する。そして、制御部20は、人間300の所在を検知していないと判定した場合には、人間300の所在を検知するまで待機し、人間300の所在を検知するとステップS2に移行する。
 ステップS2では、制御部20は、カウンタであるタイマー1のカウントを開始する。
 次にステップS3では、制御部20は、タイマー1のカウント値をもとに、タイマー1のカウント開始から所定時間T1が経過したか否か、即ち、個室トイレ200内における人間300の所在を検知してから所定時間T1が経過したか否かを判定する。そして、制御部20は、所定時間T1が経過していない場合には所定時間T1が経過するまで待機し、所定時間T1が経過したと判定するとステップS4に移行する。
 ここで、所定時間T1は、UV照射部10Aから放出される紫外線の波長に応じた時間であり、安全規格上、生体に照射可能な最大時間以下に設定される。所定時間T1については、後で詳述する。
 ステップS4では、制御部20は、タイマー1のカウントを終了するとともに、タイマー1のカウント値をリセットする。
 ステップS5では、制御部20は、UV照射部10Aからの紫外線の放出を停止する。
 ステップS6では、制御部20は、人感センサ11からの検出信号をもとに、個室トイレ200内から人間300が退出したか否かを判定する。そして、制御部20は、人間300が退出していないと判定した場合にはそのまま待機し、人間300が退出したと判定するとステップS7に移行する。
 ステップS7では、制御部20は、UV照射部10Aからの紫外線の放出を開始し、ステップS1に戻る。
 図3は、本実施形態における不活化装置100の動作を説明するタイムチャートである。
 個室トイレ200内に人間300が進入する前、即ち、個室トイレ200内に人間300が不在の間は、UV照射部10Aから個室トイレ200内への紫外線照射が連続して行われている。
 この状態から個室トイレ200内に人間300が進入すると、その時点Aにおいて、人感センサ11により人間300の所在が検知され、タイマー1のカウントが開始される。そして、時点Aから所定時間T1経過後に、個室トイレ200内および人間300への紫外線の照射が停止する。
 このように、個室トイレ200内に人間300が進入した後も、所定時間T1が経過するまでの期間は、UV照射部10Aから個室トイレ200内に紫外線が放出され、個室トイレ200内の人間300に紫外線が照射される。
 そして、その後、個室トイレ200内から人間300が退出すると、その時点Bにおいて、人感センサ11により人間300が退出したことが検知され、個室トイレ200内への紫外線の照射が再開される。
 以下、人間300へ紫外線を照射する照射時間(所定時間T1)について説明する。
 UV照射部10A、10Bから放出される200nm~320nmの波長域の紫外線は、人体に悪影響を及ぼす紫外線を含む。例えば、上記の波長域の紫外線が照射されると、紅斑や皮膚のDNA損傷による癌の誘発や、目の障害(眼痛・充血・角膜の炎症など)が起こり得る。
 但し、上記の波長域の紫外線照射は、照射対象物である生体への積算光量(ドーズ量)が所定の量を越えなければ、生体への悪影響は及ぼさない。本発明者らは、この点に着目して、人間への照射時間(所定時間T1)を設定し、敢えて人間に対して紫外線を照射するようにした。
 閉鎖空間(個室トイレ)を使用する人間が受ける、1日の紫外線露光量をD(mJ/cm)とする。人間の紫外線照射面における照度をW(mW/cm)、1日に閉鎖空間(個室トイレ)内に人間が進入する回数をN、1回の個室トイレ内滞在中における紫外線照射時間をT1とすると、1日の紫外線露光量Dは、以下のように表される。
 D(mJ/cm)=W(mW/cm)×N(回)×T1(sec)・・・(1)
 閉鎖空間(個室トイレ)を使用する人間に対する、1日の最大許容紫外線露光量をDmax(mJ/cm)とすると、紫外線照射に起因する人間への悪影響を防止するには、Dmax≧Dとすればよい。
 つまり、1回の個室トイレ内滞在中における紫外線照射時間T1は、以下のように表される。
 T1≦Dmax/(W×N)・・・(2)
 例えば、紫外線光源として、波長253.7nmの紫外線を放出する低圧水銀ランプを用いる場合を考える。この場合、波長253.7nmの紫外線の1日の最大許容紫外線露光量は、安全規格上、Dmax=6(mJ/cm)となっている。この数値は、ACGIH(American Conference of Governmental Industrial Hygienists:米国産業衛生専門家会議)で定められた値である。
 紫外線照射される人間の照射面上の照度を0.022(mW/cm)、病室に付属する個室トイレを1日に使用する回数(個室トイレ内に進入する回数)Nを10回とすると、上記(2)式より、1回の個室トイレ内滞在中における紫外線照射時間T1は30(sec)以下となる。
 つまり、UV照射部10Aが有する紫外線光源が、波長253.7nmの紫外線を放出する低圧水銀ランプである場合、図2および図3において設定した所定時間T1が30(sec)以下であれば、紫外線照射による人間300に対する悪影響はないということになる。そこで、この場合には、所定時間T1を、例えば最大時間である30(sec)に設定する。
 なお、上記の紫外線照射される人間の照射面上の照度は、閉鎖空間(個室トイレ)200内において人間300が立っているときの頭部(頂部)を紫外線照射面とし、閉鎖空間(個室トイレ)200の天井201から床上に立っている人間300の頭部までの距離を紫外線照射距離として設定した値である。
 また、上記の閉鎖空間(個室トイレ)内に人間が進入する回数Nは、病室に付属する個室トイレを1日に使用する回数とし、N=10回とした。しかしながら、病院外来に付属する個室トイレの場合、待合で待機する複数の人間が各々1日に個室トイレを利用する回数N´は、病室に付属する個室トイレの利用回数Nよりも少ないと考えられる。したがって、この場合には、例えばN´=2~3回とし、紫外線照射時間T1を設定するようにしてもよい。
 なお、1日に閉鎖空間内に人間が進入する回数Nは、安全サイドに多めに設定しておくことが好ましい。
 さらに、低圧水銀ランプの場合、給電しても直ちに点灯するものではなく、点灯までにある程度時間を要する。よって、紫外線光源として低圧水銀ランプを用いた場合、給電制御によって紫外線の照射と非照射とを比較的短い間隔で繰り返すことができない。そのため、この場合には、遮光用のシャッタが設け、低圧水銀ランプを点灯状態のままシャッタの開閉を制御することで紫外線の照射と非照射とを制御してもよい。
 また、紫外線光源としては、例えば、中心波長222nmの紫外線を放出するKrClエキシマランプを用いることもできる。
 エキシマランプの場合、給電後直ちに点灯する。よって、光源として低圧水銀ランプを用いる場合とは異なり、遮光用のシャッタを設ける必要はない。つまり、紫外線の照射と非照射とを比較的短い間隔で繰り返す場合には、エキシマランプに対する給電を制御すればよい。
 また、中心波長222nmの紫外線は、バクテリア等は殺菌するが、ヒト細胞への悪影響が少ない光である。
 UV放射線は、低波長ほど貫通力が小さい。例えば、約200nmといった低波長のUV放射線は、非常に効率良く水を通過するものの、ヒト細胞の外側部分(細胞質)による吸収が大きく、放射線に敏感なDNAを含む細胞核に到達するのに十分なエネルギーを有さない場合がある。そのため、上記の低波長のUV放射は、典型的には、ヒト細胞に対して、つまりヒトに対する悪影響が少ない。
 これに対して、バクテリアは、典型的にはヒト細胞よりも物理的にはるかに小さい。具体的には、典型的なバクテリア細胞が直径約1μm未満であるのに対し、ヒト細胞は、種類や部位にもよるが、典型的には直径約10μm~30μmである。
 したがって、上記の低波長のUV放射は、バクテリアを容易に貫通し、殺菌することが可能である。
 現行の安全規格によると、波長222nmの紫外線の1日の最大許容紫外線露光量は、Dmax=21(mJ/cm)となっており、上述した波長253.7nmの紫外線よりも多い。つまり、当該安全規格からも、波長222nmの紫外線は、波長253.7nmの紫外線と比べてヒトに対する悪影響が少ない光であることがわかる。
 上述した波長253.7nmの紫外線を放出する低圧水銀ランプを用いた場合と同様に、紫外線照射される人間の照射面上の照度を0.022(mW/cm)、病室に付属する個室トイレを1日に使用する回数(個室トイレ内に進入する回数)Nを10回とすると、上記(2)式により、中心波長222nmの紫外線を放出するKrClエキシマランプを用いた場合の1回の個室トイレ内滞在中における紫外線照射時間T1は、95(sec)以下となる。
 このように、UV照射部10Aが有する紫外線光源が、中心波長222nmの紫外線を放出するKrClエキシマランプである場合、図2および図3において設定した所定時間T1は、例えば最大時間である95(sec)に設定することができる。
 なお、KrClエキシマランプは、その放出光の中心波長は222nmであるが、それ以外の波長範囲の光もわずかながら放出する。よって、実際に使用する場合は、人体への悪影響の少ない波長域190nm~235nmの光のみを透過し、それ以外の波長域の光をカットする波長選択フィルタを用いることが好ましい。
 波長選択フィルタとしては、例えば、HfO層およびSiO層による誘電体多層膜を有する光学フィルタを用いることができる。具体的には、当該光学フィルタは、合成石英ガラスよりなる基板の一面にHfO層およびSiO層が交互に積層されてなる誘電体多層膜が形成され、基板の他面にHfO層およびSiO層によるARコーティングが施された構成とすることができる。例えば、誘電体多層膜におけるHfO層の厚みは約240nm、SiO層の厚みは1460nmで、HfO層およびSiO層の層数は総数33層とすることができる。
 なお、波長選択フィルタとしては、SiO層およびAl層による誘電体多層膜を有する光学フィルタを用いることもできる。
 しかしながら、波長選択フィルタとしてHfO層およびSiO層による誘電体多層膜を有する光学フィルタを用いた場合には、SiO層およびAl層による誘電体多層膜を有する光学フィルタを用いた場合と比較して、層の総数を少なくすることができる。そのため、入射角が0°のときの紫外線の透過率を高めることができ、所望の波長域190~235nmの紫外線の光強度を確保することができる。また、層の総数が少なくなることで、その分のコストを削減することができる。
 以上説明したように、本実施形態における不活化装置100は、人が入退出可能な閉鎖空間(個室トイレ200)内に、人体に有害な微生物および/またはウイルスを不活化する波長の紫外線を含む光を照射する紫外線照射部(UV照射部)10Aを備える。また、不活化装置100は、個室トイレ200内における人の所在を検出するセンサとして、個室トイレ200内における人の存在の有無を検知する人感センサ11を備える。そして、制御部20は、人感センサ11からの検出信号に基づいて個室トイレ200内に人が存在すると判断される期間内において、UV照射部10Aから照射される紫外線の波長に応じた所定時間(T1)、UV照射部10Aから人を含む空間に紫外線を照射するように制御する。
 このように、敢えて人に対して所定時間T1、紫外線を含む光を照射することで、人体の表面(皮膚や衣類の表面)に存在する少なくとも1つの有害な微生物やウイルスを不活化することができる。そのため、人から閉鎖空間(個室トイレ200)内への有害な微生物やウイルスの拡散を抑制することができる。
 また、閉鎖空間(個室トイレ200)から退出した人は、紫外線の照射後であり、皮膚や衣類表面に付着している有害な微生物やウイルスが減少もしくは除去されているため、閉鎖空間(個室トイレ200)から退出した人から他の領域への有害な微生物やウイルスの拡散を抑制することができる。したがって、施設内の除染すべき領域の拡大を抑制することができ、効率的に施設の除染を行うことができる。
 さらに、人に対して紫外線を照射する所定時間T1は、当該紫外線の波長に応じた時間とすることができる。紫外線照射による人体への影響の度合いは、紫外線の波長ごとに異なるため、紫外線の波長に応じて所定時間T1を設定することで、人体に悪影響を及ぼさない光量範囲内で除染に適した波長の紫外線を人に照射することができる。
 具体的には、所定時間T1は、上記(2)式を満たす時間T1とする。このように、安全規格に基づいて、照射される紫外線の波長ごとに紫外線照射時間を設定するので、紫外線照射による人体への悪影響を適切に抑制することができる。
 なお、制御部20は、UV照射部10Aから放出される紫外線の波長に関する情報を取得し、取得された情報をもとに安全規格に基づく所定時間T1を設定し、UV照射部10Aの光の照射および非照射を制御してもよい。つまり、所定時間T1は、使用する光源に応じて可変に設定可能な構成であってよい。
 また、本実施形態では、人感センサ11により個室トイレ200内に人が進入したことを検知してから所定時間T1、UV照射部10Aが人を含む空間に紫外線を照射するように制御することができる。このように、人が個室トイレ200内に進入した直後に、人に対して紫外線を照射することができる。したがって、人から個室トイレ200内への有害な微生物やウイルスの拡散をより効率的に抑制することができる。
 さらに、本実施形態では、人感センサ11により個室トイレ200内に人が存在しない(個室トイレ200から退出した)と判断された時点で、UV照射部10Aから人が不在の個室トイレ200内に紫外線を照射するように制御することができる。
 このように、人が不在の個室トイレ200内に紫外線を照射することで、個室トイレ200内に元々存在した有害な微生物やウイルス、人が進入したことにより個室トイレ200内部に拡散した有害な微生物やウイルス、および人が進入したときに個室トイレ200内部に流入する空気中に浮遊した有害な微生物やウイルスの少なくとも一部を不活化することができる。また、個室トイレ200内に人が不在の場合、個室トイレ200内への紫外線照射を連続して行うことで、上記の不活化をより効果的に行うことができる。
 また、UV照射部10Aは、個室トイレ200の上部から下方に光を照射する位置、具体的には個室トイレ200の天井201に配置することができる。したがって、UV照射部10Aは、個室トイレ200全体に紫外線を含む光を照射することが可能となる。したがって、例えば、個室トイレ200の壁部202やドア203、床などに付着する有害な微生物やウイルスも適切に不活化することができる。
 なお、本実施形態では、個室トイレ200内への人の入退出を検知するセンサとして、個室トイレ200内における人の存在の有無を検知する人感センサ11を用いる場合について説明したが、個室トイレ200に人が進入したこと、および個室トイレ200から人が退出したことを検知可能であれば任意のセンサを用いることができる。
(第一の実施形態の変形例)
 上述した第一の実施形態では、個室トイレ200内に人間300が不在の場合、UV照射部10Aから個室トイレ200内への紫外線照射が連続して行われる場合について説明した。しかしながら、個室トイレ200内に人間が不在の場合、個室トイレ200内への紫外線照射を所定時間T2だけ行われるようにしてもよい。
 図4は、本変形例における不活化装置100の動作を説明するフローチャートである。この図4において、図2と同一処理を行う部分には同一ステップ番号を付し、以下、処理の異なる部分を中心に説明する。
 制御部20は、ステップS1において、個室トイレ200内における人間300の所在を検知すると、ステップS11に移行して、UV照射部10Aからの紫外線の放出を開始し、ステップS2に移行する。
 また、制御部20は、ステップS7においてUV照射部10Aからの紫外線の放出を開始した後、ステップS12に移行して、カウンタであるタイマー2のカウントを開始する。
 次にステップS13では、制御部20は、タイマー2のカウント値をもとに、タイマー2のカウント開始から所定時間T2が経過したか否か、即ち、個室トイレ200から人間300が退出してから所定時間T2が経過したか否かを判定する。そして、制御部20は、所定時間T2が経過していない場合には所定時間T2が経過するまで待機し、所定時間T2が経過したと判定するとステップS14に移行する。
 ここで、所定時間T2は、人間300が退出した個室トイレ200内に存在する有害な微生物やウイルスの少なくとも一部を不活化するのに十分な時間に設定する。
 ステップS14では、制御部20は、UV照射部10Aからの紫外線の放出を停止し、ステップS1に戻る。
 図5は、本変形例における不活化装置100の動作を説明するタイムチャートである。
 ここでは、個室トイレ200内に人間300が進入する前に、UV照射部10Aから個室トイレ200内への紫外線照射が停止されているものとする。
 この状態で個室トイレ200内に人間300が進入すると、その時点Aにおいて、人感センサ11により人間300の所在が検知され、タイマー1のカウントが開始されるとともに、個室トイレ200内および人間300への紫外線の照射が開始する。そして、時点Aから所定時間T1経過後に、個室トイレ200内および人間300への紫外線の照射が停止する。
 このように、個室トイレ200内に人間300が進入する前にUV照射部10Aからの紫外線照射が停止されている場合であっても、個室トイレ200内に人間300が進入したら、UV照射部10Aからの紫外線照射を開始する。そして、その時点から所定時間T1が経過するまでの期間は、UV照射部10Aから個室トイレ200内の人間300に紫外線が照射される。
 その後、個室トイレ200内から人間300が退出すると、その時点Bにおいて、人感センサ11により人間300が退出したことが検知され、タイマー2のカウントが開始されるとともに、個室トイレ200内への紫外線の照射が再開される。
 そして、個室トイレ200内から人間300が退出した時点Bから所定時間T2経過すると、その時点Cにおいて、個室トイレ200内への紫外線の照射が停止する。
 このように、人感センサ11により個室トイレ200内に人が存在しないと判断された場合、UV照射部10Aから人が不在の個室トイレ200内に紫外線を照射し、紫外線照射を一定時間(所定時間T2)行った後、UV照射部10Aからの紫外線照射を停止するようにしてもよい。人が不在の個室トイレ200内への紫外線照射を一定時間だけ行われるようにすることで、UV照射部10Aが有する紫外線光源の休止時間を設けることが可能となり、当該紫外線光源の寿命を延伸することができる。
(第二の実施形態)
 次に、本発明における第二の実施形態について説明する。
 上述した第一の実施形態では、閉鎖空間(個室トイレ)200に人間300が進入したことを人感センサ11で検知し、この人感センサ11の検出信号に基づき、UV照射部10Aからの紫外線の照射を制御する場合について説明した。この第二の実施形態では、個室トイレ200内にて人間300が便座212に着座した状態を圧力センサ12で検知し、この圧力センサ12の検知信号に基づき、紫外線の照射を制御する場合について説明する。
 本実施形態においては、個室トイレ200内に人間300が不在の場合、原則として、個室トイレ200内への紫外線照射が連続して行われるものとする。
 また、紫外線照射は、UV照射部10Bを用いて行われるものとする。
 図6は、本実施形態における不活化装置100の動作を説明するフローチャートである。
 まずステップS21において、制御部20は、人感センサ11からの検出信号をもとに、個室トイレ200内における人間300の所在を検知したか否かを判定する。そして、制御部20は、人間300の所在を検知していないと判定した場合には、人間300の所在を検知するまで待機し、人間300の所在を検知するとステップS22に移行する。
 ステップS22では、制御部20は、UV照射部10Bからの紫外線の放出を停止し、ステップS23に移行する。
 ステップS23では、制御部20は、圧力センサ12からの検出信号をもとに、便座212への人間300の着座を検知したか否かを判定する。そして、制御部20は、人間300の着座を検知していないと判定した場合には、着座を検知するまで待機し、人間300の着座を検知するとステップS24に移行する。
 ステップS24では、制御部20は、UV照射部10Bからの紫外線の放出を開始し、ステップS25に移行する。
 ステップS25では、制御部20は、カウンタであるタイマー1のカウントを開始する。
 次にステップS26では、制御部20は、タイマー1のカウント値をもとに、タイマー1のカウント開始から所定時間T1が経過したか否か、即ち、便座212への人間300の着座を検知してから所定時間T1が経過したか否かを判定する。そして、制御部20は、所定時間T1が経過していない場合には所定時間T1が経過するまで待機し、所定時間T1が経過したと判定するとステップS27に移行する。
 ここで、所定時間T1は、UV照射部10Bから放出される紫外線の波長に応じた時間であり、安全規格上、生体に照射可能な最大時間以下に設定される。所定時間T1は、例えば、第一の実施形態と同様の時間とすることができる。
 UV照射部10Bは、人間300が便器211に座した姿勢を取った際に、人間300の後頭部側上方から紫外線を照射することを想定して、個室トイレ200の壁部202に設置されている。そのため、この場合の人間30の照射面(頭部)での照度は、上述した第一の実施形態のようにUV照射部10Aを用いて立っている人間300に紫外線を照射する場合の照度と同じ値としてよい。つまり、紫外線照射される人間の照射面上の照度は0.092(mW/cm)とすることができる。
 ステップS27では、制御部20は、タイマー1のカウントを終了するとともに、タイマー1のカウント値をリセットする。
 ステップS28では、制御部20は、UV照射部10Bからの紫外線の放出を停止する。
 ステップS29では、制御部20は、人感センサ11からの検出信号をもとに、個室トイレ200内から人間300が退出したか否かを判定する。そして、制御部20は、人間300が退出していないと判定した場合にはそのまま待機し、人間300が退出したと判定するとステップS30に移行する。
 ステップS30では、制御部20は、UV照射部10Bからの紫外線の放出を開始し、ステップS21に戻る。
 図7は、本実施形態における不活化装置100の動作を説明するタイムチャートである。
 個室トイレ200内に人間300が進入する前、即ち、個室トイレ200内に人間300が不在の間は、UV照射部10Bから個室トイレ200内への紫外線照射が連続して行われている。
 この状態から個室トイレ200内に人間300が進入すると、その時点Pにおいて、人感センサ11により人間300の所在が検知され、個室トイレ200内への紫外線の照射が停止する。
 その後、個室トイレ200内の人間300が便座212に着座すると、その時点Qにおいて、圧力センサ12により人間300の着座が検知され、タイマー1のカウントが開始されるとともに、個室トイレ200内への紫外線の照射が開始される。そして、時点Qから所定時間T1経過後に、個室トイレ200内および人間300への紫外線の照射が停止する。
 このように、個室トイレ200内に人間300が進入すると、一旦、UV照射部10Bからの紫外線照射が停止されるが、人間300が便座212に着座すると、所定時間T1の間、UV照射部10Bから個室トイレ200内に紫外線が放出され、個室トイレ200内の人間300に紫外線が照射される。
 そして、その後、個室トイレ200内から人間300が退出すると、その時点Rにおいて、人感センサ11により人間300が退出したことが検知され、個室トイレ200内への紫外線の照射が再開される。
 以上説明したように、本実施形態では、制御部20は、人感センサ11からの検出信号に基づいて個室トイレ200内に人が存在すると判断される期間内において、圧力センサ12からの検出信号に基づいて便座212に着座していることを検知してから所定時間(T1)、UV照射部10Bから人を含む空間に紫外線を照射するように制御する。
 このように、閉鎖空間内の所定位置に存在する人に対して紫外線を含む光を照射することで、人体表面の意図した箇所に効果的に紫外線を照射することができる。また、個室トイレ200内にて便座212に座した状態の人間の動きは比較的小さい。そのため、便座212に座した状態の人間に紫外線を照射するようにすれば、効果的に人体表面(皮膚や衣類の表面)に存在する有害な微生物やウイルスを不活化することができる。
 また、制御部20は、人感センサ11により個室トイレ200内に人が進入したことを検知した場合、UV照射部10Bからの紫外線照射を停止し、圧力センサ12により便座212への着座を検知してから所定時間(T1)、UV照射部10Bから人を含む空間に紫外線を照射するように制御する。
 これにより、人が進入する前の個室トイレ200に紫外線が照射されている場合には、人が個室トイレ200内に進入した際に一旦紫外線照射を停止し、便座212に着座した状態の人間に対して所定時間(T1)紫外線を照射することができる。したがって、人が不在の個室トイレ200内への紫外線照射と、個室トイレ200に進入した人に対する紫外線照射とを適切に行うことができる。
 さらに、UV照射部10Bは、人間300が便器211に座した姿勢を取った際に当該人間300に紫外線を照射することを想定して、個室トイレ200の壁部202に設置されているため、UV照射部10Bを用いて紫外線照射を行うことで、UV照射部10Aを用いた場合と比較して床面でのドーズ量を大きくすることができる。つまり、床面に付着した有害な微生物やウイルスを効果的に不活化することができる。
 また、UV照射部10Bは、人間300が便器211に座した姿勢を取った際に当該人間300の後頭部側から紫外線を照射する位置に配置されている。したがって、UV照射部10Bから放出される紫外線が、人間300の目に直接照射されないようにすることができる。したがって、目の障害(眼痛、充血、角膜の炎症など)の発生を抑制することができる。
 なお、本実施形態では、UV照射部10Bを用いて紫外線照射を行う場合について説明したが、個室トイレ200の天井201に設けられたUV照射部10Aを用いることもできる。
 UV照射部10Aを用いる場合、便座212に座っている人間300の紫外線照射面での照度は、床上に立っている人間300の紫外線照射面での照度と比較すると小さく、例えば0.010(mW/cm)となる。
 そのため、UV照射部10Aが有する光源が低圧水銀ランプである場合には、病室に付属する個室トイレを1日に使用する回数(個室トイレ内に進入する回数)Nを10回とすると、上記(2)式により、1回の個室トイレ内滞在中における紫外線照射時間(所定時間T1)は、60(sec)となる。
 また、UV照射部10Aが有する光源がKrClエキシマランプである場合には、病室に付属する個室トイレを1日に使用する回数(個室トイレ内に進入する回数)Nを10回とすると、上記(2)式により、1回の個室トイレ内滞在中における紫外線照射時間(所定時間T1)は、210(sec)となる。
 このように、UV照射部10Aを用いた場合、UV照射部10Bを用いた場合と比較して紫外線照射時間(所定時間T1)を長くすることができる。
 なお、本実施形態では、個室トイレ200内にて人が便座212に座した状態を検知するセンサとして、便座212に設けられた圧力センサ12を用いる場合について説明したが、人が便座212に座した状態を検知可能であれば任意のセンサを用いることができる。
(第二の実施形態の変形例(1))
 上述した第二の実施形態では、個室トイレ200内に人間300が不在の場合、UV照射部10Aから個室トイレ200内への紫外線照射が連続して行われる場合について説明した。しかしながら、個室トイレ200内に人間が不在の場合、個室トイレ200内への紫外線照射を所定時間T2だけ行われるようにしてもよい。
 図8は、本変形例における不活化装置100の動作を説明するフローチャートである。この図8において、図6と同一処理を行う部分には同一ステップ番号を付し、以下、処理の異なる部分を中心に説明する。
 制御部20は、ステップS21において、個室トイレ200内における人間300の所在を検知すると、ステップS23に移行する。
 また、制御部20は、ステップS30においてUV照射部10Bからの紫外線の放出を開始した後、ステップS31に移行して、カウンタであるタイマー2のカウントを開始する。
 次にステップS31では、制御部20は、タイマー2のカウント値をもとに、タイマー2のカウント開始から所定時間T2が経過したか否か、即ち、個室トイレ200から人間300が退出してから所定時間T2が経過したか否かを判定する。そして、制御部20は、所定時間T2が経過していない場合には所定時間T2が経過するまで待機し、所定時間T2が経過したと判定するとステップS32に移行する。
 ここで、所定時間T2は、人間300が退出した個室トイレ200内に存在する有害な微生物やウイルスの少なくとも一部を不活化するのに十分な時間に設定する。
 ステップS33では、制御部20は、UV照射部10Bからの紫外線の放出を停止し、ステップS21に戻る。
 図9は、本変形例における不活化装置100の動作を説明するタイムチャートである。
 ここでは、個室トイレ200内に人間300が進入する前に、UV照射部10Bから個室トイレ200内への紫外線照射が停止されているものとする。
 この状態で個室トイレ200内に人間300が進入すると、その時点Pにおいて、人感センサ11により人間300の所在が検知される。その後、人間300が便座212に着座すると、その時点Qにおいて、圧力センサ12により人間300の着座が検知され、タイマー1のカウントが開始されるとともに、個室トイレ200内および人間300への紫外線の照射が開始する。そして、時点Qから所定時間T1経過後に、個室トイレ200内および人間300への紫外線の照射が停止する。
 このように、個室トイレ200内に人間300が進入する前にUV照射部10Aからの紫外線照射が停止されている場合であっても、個室トイレ200内に人間300が進入し、便座212に着座したら、UV照射部10Bからの紫外線照射を開始する。そして、その時点から所定時間T1が経過するまでの期間は、UV照射部10Bから個室トイレ200内の人間300に紫外線が照射される。
 その後、個室トイレ200内から人間300が退出すると、その時点Rにおいて、人感センサ11により人間300が退出したことが検知され、タイマー2のカウントが開始されるとともに、個室トイレ200内への紫外線の照射が再開される。
 そして、個室トイレ200内から人間300が退出した時点Rから所定時間T2経過すると、その時点Sにおいて、個室トイレ200内への紫外線の照射が停止する。
 このように、人感センサ11により個室トイレ200内に人が存在しないと判断された場合、UV照射部10Bから人が不在の個室トイレ200内に紫外線を照射し、紫外線照射を一定時間(所定時間T2)行った後、UV照射部10Bからの紫外線照射を停止するようにしてもよい。人が不在の個室トイレ200内への紫外線照射を一定時間だけ行われるようにすることで、UV照射部10Bが有する紫外線光源の休止時間を設けることが可能となり、当該紫外線光源の寿命を延伸することができる。
(第二の実施形態の変形例(2))
 上述した第二の実施形態では、人感センサ11を用いて個室トイレ200内における人間300の所在を検知する場合について説明したが、ドアセンサ13を用いて個室トイレ200への人間300の入退出を検知するようにしてもよい。
 図10は、本変形例における不活化装置100の動作を説明するタイムチャートである。
 個室トイレ200内に人間300が進入する前、即ち、個室トイレ200内に人間300が不在の間は、UV照射部10Bから個室トイレ200内への紫外線照射が連続して行われている。
 この状態から個室トイレ200内に人間300が進入すべくドア203を開けると、その時点P1において、ドアセンサ13によりドア203が開いたことが検知され、個室トイレ200内への紫外線の照射が停止する。続いて、個室トイレ200内に人間300が進入しドア203が閉じられた時点P2において、ドアセンサ13によりドア203が閉じられたことが検知される。
 すると、この時点P2において、タイマー0のカウントが開始される。タイマー0は、動作開始から所定時間T0が経過した時点でカウントを終了し、カウント終了信号を制御部20に送信するとともに、リセットされるように設定されている。なお、タイマー0は、カウントの途中でも、圧力センサ12により人間300が便座212に座したことが検知された場合は、制御部20によってリセットされるように設定されている。
 ここで、上記の所定時間T0は、個室トイレ200内に人間300が進入した後、便座212に座すまでの時間よりも十分長くなるように設定されている。
 その後、個室トイレ200内の人間300が便座212に着座すると、その時点Qにおいて、圧力センサ12により人間300の着座が検知され、タイマー1のカウントが開始されるとともに、個室トイレ200内への紫外線の照射が開始される。このとき、タイマー0のカウントは終了する。そして、時点Qから所定時間T1経過後に、個室トイレ200内および人間300への紫外線の照射が停止する。
 このように、個室トイレ200内に人間300が進入すると、一旦、UV照射部10Bからの紫外線照射が停止されるが、人間300が便座212に着座すると、所定時間T1の間、UV照射部10Bから個室トイレ200内に紫外線が放出され、個室トイレ200内の人間300に紫外線が照射される。
 そして、その後、個室トイレ200内から人間300が退出すべくドア203を開けると、その時点R1において、ドアセンサ13によりドア203が開いたことが検知される。続いて、個室トイレ200から人間300が退出しドア203が閉じられた時点R2において、ドアセンサ13によりドア203が閉じられたことが検知される。
 すると、この時点R2において、タイマー0のカウントが開始される。人間300は個室トイレ200から退出しており、時点R2から所定時間T0が経過しても、圧力センサ12による便座212への着座は検知されない。そのため、時点R2から所定時間T0が経過した時点R3において、個室トイレ200内への紫外線の照射が再開される。
 このように、人感センサ11に替えてドアセンサ13を用いた場合でも、タイマー0のカウントを用いることで、上述した第二の実施形態と同様の効果が得られる。また、ドアセンサ13によりドア203の開閉を検知することができるので、ドア203が閉まった状態で閉鎖空間(個室トイレ200)内に紫外線を照射することができる。そのため、閉鎖空間外の物体に意図せず紫外線が照射されることを防止することができる。
 なお、ここでは、制御部20は、ドアセンサ13によりドア203が閉じられたことが検知された時点で、タイマー0のカウントを開始する場合について説明した。しかしながら、制御部20は、ドアセンサ13によりドア203が閉じられたことが検知された時点で、圧力センサ12により人間300の着座が検知されていない場合に、タイマー0のカウントを開始するようにしてもよい。
 この場合、人間300が便座212に座したままの状態で、ドア203の施錠忘れやドア203の不具合等の理由により不所望のドア203の開閉が発生した場合には、タイマー0のカウントが開始されないようにすることができる。
 言い換えると、圧力センサ12から人間300の着座を示す検出信号を受け取った場合には、次に圧力センサ12から人間300の退座を示す検出信号を受信しない限り、ドアセンサ13によりドア203が閉じられたことを示す検出信号を受信しても、タイマー0のカウントは開始しないようにすることができる。
 このように、ドアセンサ13からの検出信号と圧力センサ12からの検出信号の双方を確認することで、個室トイレ200内に人が存在しないことを適切に判断することができる。
 また、第二の実施形態の変形例(1)のように、個室トイレ200内に人間が不在の場合、個室トイレ200内への紫外線照射を所定時間T2だけ行われるようにしてもよい。つまり、図10の時点R3から所定時間T2が経過した時点で、個室トイレ200内への紫外線の照射を終了させてもよい。
(変形例)
 なお、上記各実施形態においては、不活化装置100を個室トイレに設置する場合について説明したが、上記に限定されるものではない。不活化装置100は、病室やエレベータ、会議室など、頻繁に人が集まる施設の特に狭い空間に設置することができる。
 また、不活化装置100から人間に紫外線を照射するタイミングは、人間が閉鎖空間内に存在する期間中の任意のタイミングであってよい。ただし、人間が閉鎖空間内に存在する期間のうち、有害な微生物やウイルスが飛散する可能性が高いタイミングを検知可能な場合には、そのタイミングで紫外線を照射することが好ましい。
 また、上記各実施形態においては、不活化装置100を人が入退出可能な閉鎖空間に設置する場合について説明したが、上記閉鎖空間は、人以外の動物が入退出可能な空間であってもよい。
 また、上記各実施形態における、人または人を含む空間へ所定時間T1だけ紫外線を照射しているが、光源の動作が発光と非発光とを繰り返す動作である場合、発光動作時間の総和を所定時間T1としてもよい。
 例えば、エキシマランプへの給電を制御して、当該エキシマランプの発光動作時間を10ms以上1000ms以下とし、それに続く休止時間を10ms以上10秒以下として、発光動作と休止とを繰り返す場合、上記の所定時間T1は発光動作時間の総和となる。
 具体的には、例えばKrClエキシマランプの発光動作時間を100ms、休止時間を100msとし、所定時間T1が30secであるときは、KrClの発光動作回数は300回となり、Krエキシマランプの動作時間は、休止時間を含め60secとなる。
 すなわち、光源の動作が連続動作の場合、人または人を含む空間への紫外線照射期間は所定時間T1となるが、光源の動作が休止時間を含む断続的な動作である場合、紫外線照射期間は、所定時間T1より長くなる。
 例えば、人を含む空間がトイレであるとき、光源の動作が断続的となるように制御して紫外線照射期間をより長く設定することにより、排便やスプラッシュに伴う細菌、ウイルス等の飛散時にも紫外線照射を実施できる可能性を高くすることができる。
 なお、上記のように発光動作時間が10ms以上1000ms以下、休止時間が10ms以上10秒以下とする場合、低圧水銀ランプの場合は前記したように遮光用のシャッタの開閉を制御することになるが、場合によってはシャッタの開閉動作を高速にする必要があり、対応が難しい。
 よって、紫外線光源としては、給電制御で紫外線発光動作と休止時間とを繰り返すことが可能な光源が好適である。
 そのような光源としては、例えば前記したようなエキシマランプ(KeClエキシマランプ)や固体光源(発光ダイオード(LED)、レーザダイオード(LD))などが使用可能である。
 本発明に係る不活化装置および不活化方法によれば、紫外線照射による人体への悪影響を及ぼすことなく、紫外線本来の殺菌、ウイルスの不活化能力を提供することができる。特に、従来の紫外線光源とは異なり、有人環境で使用できるという特徴を生かし、人や動物が存在する施設や乗物などの空間内に設置することで、当該空間内全体を照射することができ、空気と空間内の設置部材表面のウイルス抑制・除菌を提供することができる。
 このことは、国連が主導する持続可能な開発目標(SDGs)の目標3「あらゆる年齢の全ての人々が健康的な生活を確保し、福祉を促進する」に対応し、また、ターゲット3.3「2030年までに、エイズ、結核、マラリア及び顧みられない熱帯病といった伝染病を根絶するとともに、肝炎、水系感染症およびその他の感染症に対処する」に大きく貢献するものである。
 なお、上記において特定の実施形態が説明されているが、当該実施形態は単なる例示であり、本発明の範囲を限定する意図はない。本明細書に記載された装置及び方法は上記した以外の形態において具現化することができる。また、本発明の範囲から離れることなく、上記した実施形態に対して適宜、省略、置換及び変更をなすこともできる。かかる省略、置換及び変更をなした形態は、請求の範囲に記載されたもの及びこれらの均等物の範疇に含まれ、本発明の技術的範囲に属する。
 10A,10B…UV照射部、11…人感センサ、12…圧力センサ、13…ドアセンサ、20…制御部、100…不活化装置、200…閉鎖空間(個室トイレ)、201…天井、202…壁部、203…ドア、300…人間

 

Claims (20)

  1.  人体に有害な微生物および/またはウイルスを不活化する不活化装置であって、
     人が入退出可能な閉鎖空間内に、前記人体に有害な微生物および/またはウイルスを不活化する波長の紫外線を含む光を照射する紫外線照射部と、
     前記閉鎖空間内における前記人の所在を検出するセンサと、
     前記センサからの検出信号に基づいて、前記紫外線照射部による前記光の照射および非照射を制御する制御部と、を備え、
     前記制御部は、
     前記センサからの検出信号に基づいて前記閉鎖空間内に人が存在すると判断される期間内において、前記紫外線照射部から照射される前記光に含まれる紫外線の波長に応じた所定時間、前記紫外線照射部から前記人を含む空間に前記光を照射するように制御することを特徴とする不活化装置。
  2.  前記制御部は、
     前記センサから検出信号に基づいて前記閉鎖空間内に人が存在しないと判断された場合、前記紫外線照射部から前記人が不在の前記閉鎖空間内に前記光を照射するように制御することを特徴とする請求項1に記載の不活化装置。
  3.  前記制御部は、
     前記紫外線照射部から前記人が不在の前記閉鎖空間内への前記光を一定時間行った後、前記紫外線照射部からの前記光を非照射に制御することを特徴とする請求項2に記載の不活化装置。
  4.  前記センサは、前記閉鎖空間内への人の入退出を検知する第1のセンサを含み、
     前記制御部は、
     前記第1のセンサにより前記閉鎖空間内に人が進入したことを検知してから前記所定時間、前記紫外線照射部が前記人を含む空間に前記光を照射するように制御することを特徴とする請求項1から3のいずれか1項に記載の不活化装置。
  5.  前記第1のセンサは、前記閉鎖空間内における人の存在の有無を検知する人感センサ、および前記閉鎖空間を形成するドアの開閉を検知するドアセンサの少なくとも一方であることを特徴とする請求項4に記載の不活化装置。
  6.  前記センサは、前記閉鎖空間内における所定位置に人が存在することを検知する第2のセンサを含み、
     前記制御部は、
     前記第2のセンサにより前記閉鎖空間内における所定位置に人が存在することを検知してから前記所定時間、前記紫外線照射部が前記人を含む空間に前記光を照射するように制御することを特徴とする請求項1から3のいずれか1項に記載の不活化装置。
  7.  前記センサは、
     前記閉鎖空間内への人の入退出を検知する第1のセンサと、
     前記閉鎖空間内における所定位置に人が存在することを検知する第2のセンサと、を含み、
     前記制御部は、
     前記第1のセンサにより前記閉鎖空間内に人が進入したことを検知した場合、前記紫外線照射部からの前記光を非照射に制御し、
     前記第2のセンサにより前記閉鎖空間内における所定位置に人が存在することを検知してから前記所定時間、前記紫外線照射部が前記人を含む空間に前記光を照射するように制御することを特徴とする請求項1から3のいずれか1項に記載の不活化装置。
  8.  前記第1のセンサは、前記閉鎖空間を形成するドアの開閉を検知するドアセンサであって、
     前記制御部は、
     前記第2のセンサにより前記閉鎖空間内における所定位置に人が存在することが検知されていない場合に、前記第1のセンサによりドアの開閉を検知した場合、その時点から一定時間後に、前記紫外線照射部から人が不在の前記閉鎖空間内に前記光を照射するように制御することを特徴とする請求項7に記載の不活化装置。
  9.  前記閉鎖空間は、個室トイレであって、
     前記第2のセンサは、便座に設けられた圧力センサであることを特徴とする請求項6に記載の不活化装置。
  10.  前記閉鎖空間は、個室トイレであって、
     前記第2のセンサは、便座に設けられた圧力センサであることを特徴とする請求項7に記載の不活化装置。
  11.  前記紫外線照射部は、上記所定位置に存在する人に対して当該人の後頭部側から前記光を照射する位置に配置されていることを特徴とする請求項6に記載の不活化装置。
  12.  前記紫外線照射部は、上記所定位置に存在する人に対して当該人の後頭部側から前記光を照射する位置に配置されていることを特徴とする請求項7に記載の不活化装置。
  13.  前記紫外線照射部は、前記閉鎖空間の上部から下方に前記光を照射する位置に配置されていることを特徴とする請求項1から3のいずれか1項に記載の不活化装置。
  14.  照射される紫外線の波長に応じて定められた人体に対する1日の最大許容紫外線露光量をDmax(mJ/cm)、人体の紫外線照射面における照度をW(mW/cm)、1日に前記閉鎖空間内に同じ人が進入する回数をNとするとき、
     前記所定時間は、下式を満たす時間T1(sec)に設定されていることを特徴とする請求項1から3のいずれか1項に記載の不活化装置。
     T1≦Dmax/(W×N)
  15.  前記紫外線照射部からの紫外線照射動作は、紫外線発光動作とそれに続く休止とが交互に繰り返し行われるものであって、
     1回以上繰り返される前記紫外線発光動作の動作時間の総和が前記時間T1となるように設定されることを特徴とする請求項14に記載の不活化装置。
  16.  前記紫外線発光動作の動作時間が10ms以上1000ms以下であり、前記休止の時間が10ms以上10秒以下であることを特徴とする請求項15に記載の不活化装置。
  17.  前記紫外線照射部は、中心波長222nmの紫外線を放出するKrClエキシマランプを有することを特徴とする請求項1から3のいずれか1項に記載の不活化装置。
  18.  前記紫外線照射部は、紫外線を放出する発光ダイオード(LED)もしくはレーザダイオード(LD)を有することを特徴とする請求項16に記載の不活化装置。
  19.  前記紫外線照射部から放出される前記光に含まれる紫外線は、190nm~235nmの波長域にのみ存在することを特徴とする請求項1から3のいずれか1項に記載の不活化装置。
  20.  人体に有害な微生物および/またはウイルスを不活化する不活化方法であって、
     センサによって人が入退出可能な閉鎖空間内における人の所在を検出するステップと、
     前記閉鎖空間内に人が存在すると判断される期間内において、前記人体に有害な微生物および/またはウイルスを不活化する波長の紫外線を含む光を照射する紫外線照射部による前記閉鎖空間内への前記光の照射および非照射を制御し、前記光に含まれる紫外線の波長に応じた所定時間、前記紫外線照射部から前記人を含む空間に前記光を照射するステップと、を含むことを特徴とする不活化方法。
PCT/JP2021/008462 2020-03-17 2021-03-04 不活化装置および不活化方法 WO2022014087A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/792,966 US20230149578A1 (en) 2020-07-13 2021-03-04 Inactivation device and inactivation method
CN202111252808.5A CN114306664B (zh) 2020-07-13 2021-03-04 灭活装置
EP21786077.4A EP3960055A4 (en) 2020-07-13 2021-03-04 INACTIVATION DEVICE AND METHOD OF INACTIVATION
CN202180002424.XA CN114206399B (zh) 2020-07-13 2021-03-04 灭活装置以及灭活方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020047045 2020-03-17
JP2020-119894 2020-07-13
JP2020119894A JP2021146178A (ja) 2020-07-13 2020-07-13 不活化装置および不活化方法

Publications (1)

Publication Number Publication Date
WO2022014087A1 true WO2022014087A1 (ja) 2022-01-20

Family

ID=81940791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008462 WO2022014087A1 (ja) 2020-03-17 2021-03-04 不活化装置および不活化方法

Country Status (6)

Country Link
US (1) US20230149578A1 (ja)
EP (1) EP3960055A4 (ja)
JP (1) JP2021146178A (ja)
CN (2) CN114206399B (ja)
TW (1) TW202200219A (ja)
WO (1) WO2022014087A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7255923B1 (ja) 2022-01-27 2023-04-11 Necプラットフォームズ株式会社 紫外線照射システム及び紫外線照射方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098156A (ja) * 2009-11-09 2011-05-19 Miura:Kk 紫外線殺菌装置
JP2014508612A (ja) * 2011-03-07 2014-04-10 ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク バクテリアに選択的に作用するとともに/又は殺菌する装置、方法及びシステム
WO2017183538A1 (ja) * 2016-04-22 2017-10-26 三菱電機株式会社 空気清浄機
JP2018114209A (ja) * 2017-01-20 2018-07-26 日機装株式会社 医療用導管
WO2019186880A1 (ja) * 2018-03-29 2019-10-03 サンエナジー株式会社 紫外線照射装置、紫外線照射方法、照明装置および紫外線照射システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161095A (ja) * 2006-12-27 2008-07-17 Univ Of Tokushima 紫外線殺菌装置と紫外線殺菌方法
US7692172B2 (en) * 2008-08-06 2010-04-06 Sound Health Designs, LLC System and method for germicidal sanitizing of an elevator or other enclosed structure
JP2015171440A (ja) * 2014-03-11 2015-10-01 株式会社Nbcメッシュテック 深紫外線照射によるウイルス不活化方法、及び装置
KR20160070195A (ko) * 2014-12-09 2016-06-20 백은숙 공간 개방형 살균소독 시스템
US9623133B2 (en) * 2015-01-30 2017-04-18 The Boeing Company Lavatory disinfection system
WO2017147460A1 (en) * 2016-02-25 2017-08-31 Ralph Birchard Lloyd System and method for disinfecting an occupied environment using direction controlled germicidal radiation
US11141499B2 (en) * 2016-10-19 2021-10-12 Christopher Alexander CORSETTI Sanitization system
CN207079220U (zh) * 2017-08-02 2018-03-09 山西省农业科学院农产品加工研究所 紫外线耦合高压脉冲电场的醋杀菌装置
JP7023798B2 (ja) * 2018-06-15 2022-02-22 日機装株式会社 紫外線照射装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098156A (ja) * 2009-11-09 2011-05-19 Miura:Kk 紫外線殺菌装置
JP2014508612A (ja) * 2011-03-07 2014-04-10 ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク バクテリアに選択的に作用するとともに/又は殺菌する装置、方法及びシステム
WO2017183538A1 (ja) * 2016-04-22 2017-10-26 三菱電機株式会社 空気清浄機
JP2018114209A (ja) * 2017-01-20 2018-07-26 日機装株式会社 医療用導管
WO2019186880A1 (ja) * 2018-03-29 2019-10-03 サンエナジー株式会社 紫外線照射装置、紫外線照射方法、照明装置および紫外線照射システム

Also Published As

Publication number Publication date
CN114306664A (zh) 2022-04-12
US20230149578A1 (en) 2023-05-18
JP2021146178A (ja) 2021-09-27
EP3960055A4 (en) 2022-06-08
CN114206399B (zh) 2023-09-15
CN114306664B (zh) 2024-04-16
TW202200219A (zh) 2022-01-01
CN114206399A (zh) 2022-03-18
EP3960055A1 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
JP6954496B1 (ja) 不活化装置および不活化方法
JP7136238B2 (ja) 不活化装置および不活化方法
KR102514375B1 (ko) 지능형 안티 바이러스 엘리베이터
WO2022014087A1 (ja) 不活化装置および不活化方法
JP7193019B2 (ja) 不活化装置および不活化方法
KR20150000852U (ko) 도어 핸들용 손 살균장치
US20220047732A1 (en) Decontamination of body surfaces and articles with harmless radiation and related methods
JP7226509B2 (ja) 不活化装置および不活化方法
Akshat et al. AT89S52-Microcontroller Based Elevator with UV-C disinfection to prevent the transmission of COVID-19
JP6885504B1 (ja) 不活化装置および不活化方法
CN113975437B (zh) 灭活装置以及灭活方法
KR102346972B1 (ko) 방역 살균을 위한 램프 팩키지
JP6912014B1 (ja) 不活化方法および不活化システム
JP2024003292A (ja) 室内殺菌装置
JP2022136005A (ja) ドアセット、ドアハンドルセットおよび殺菌ユニット
JP2022170895A (ja) 紫外線照射装置および紫外線照射方法
JP2023119620A (ja) 不活化処理方法、不活化処理システム
JP2022134282A (ja) 不活化装置および不活化方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021786077

Country of ref document: EP

Effective date: 20211019

NENP Non-entry into the national phase

Ref country code: DE