WO2022013919A1 - 精製方法 - Google Patents

精製方法 Download PDF

Info

Publication number
WO2022013919A1
WO2022013919A1 PCT/JP2020/027256 JP2020027256W WO2022013919A1 WO 2022013919 A1 WO2022013919 A1 WO 2022013919A1 JP 2020027256 W JP2020027256 W JP 2020027256W WO 2022013919 A1 WO2022013919 A1 WO 2022013919A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
wavelength
crystal form
infrared rays
purification method
Prior art date
Application number
PCT/JP2020/027256
Other languages
English (en)
French (fr)
Inventor
謙光 藤内
大貴 加藤
良夫 近藤
和成 山田
Original Assignee
日本碍子株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社, 国立大学法人大阪大学 filed Critical 日本碍子株式会社
Priority to PCT/JP2020/027256 priority Critical patent/WO2022013919A1/ja
Priority to JP2022535999A priority patent/JP7506883B2/ja
Publication of WO2022013919A1 publication Critical patent/WO2022013919A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/22Separation; Purification; Stabilisation; Use of additives
    • C07C231/24Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/88Carboxylic acid amides having nitrogen atoms of carboxamide groups bound to an acyclic carbon atom and to a carbon atom of a six-membered aromatic ring wherein at least one ortho-hydrogen atom has been replaced
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/56Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen

Definitions

  • the present invention relates to a purification method.
  • Patent Document 1 discloses a method for purifying an organic compound using laser light.
  • a semistable substance is selectively produced from a solution of a substance containing a stable form and a metastable form as a crystalline form
  • a laser beam is irradiated into the solution to generate bubbles to generate metastable.
  • Metastable crystals are selectively produced by generating shaped crystal nuclei.
  • Patent Document 1 laser light irradiation is performed to generate bubbles in the solution, and attention is not paid to infrared absorption wavelength light peculiar to a substance.
  • the present invention has been made to solve such a problem, and a main object thereof is to selectively obtain a specific crystal form.
  • the purification method of the present invention A purification method for selectively obtaining a specific crystal form of a compound having a plurality of crystal forms.
  • the infrared wavelength in which the ratio of the absorption rate of the crystal forms other than the specific crystal form to the absorption rate of the specific crystal form is 1.3 or more is set as the target wavelength, and the above-mentioned Using an infrared emitting device capable of emitting infrared rays including a target wavelength, the solvent is evaporated while irradiating the solution with infrared rays containing the target wavelength to selectively precipitate the specific crystal form. It is a thing.
  • a specific crystal form can be selectively obtained.
  • the reason why a specific crystal form is selectively obtained is not clear, but it is considered as follows. That is, when the solution is irradiated with infrared rays containing a target wavelength in which the ratio of the absorption rate of the crystal form other than the specific crystal form to the absorption rate of the specific crystal form is 1.3 or more, the specific crystal form in the solution is applied. It is considered that the crystal forms other than the above are more active in thermal vibration than the specific crystal form and the crystal nuclei are less likely to be generated, and as a result, the specific crystal form is selectively precipitated.
  • FIG. 1 Perspective view of the purification apparatus 1 (partially shown in cross section). Partial bottom view of the infrared heater 10. Graph showing infrared absorption spectrum of febuxostat. The graph which shows the infrared absorption spectrum of acetaminophen.
  • the purification method of the present embodiment is a purification method for selectively obtaining a specific crystal form of a compound having a plurality of crystal forms, and is a specific method for absorbing a specific crystal form in an infrared absorption spectrum of the plurality of crystal forms.
  • Infrared rays containing the target wavelength in the solution are set to the target wavelength with an infrared wavelength having an absorption rate ratio of 1.3 or more in the crystal form other than the crystal form, and an infrared emitting device capable of emitting infrared rays including the target wavelength is used.
  • the solvent is evaporated while irradiating with a specific crystal form to selectively precipitate a specific crystal form.
  • a predetermined wavelength ⁇ [ ⁇ m] is set as the target wavelength, and the solvent is evaporated while irradiating the solution with the infrared rays by using an infrared emitting device capable of emitting infrared rays including the wavelength ⁇ [ ⁇ m].
  • the crystal form a is selectively precipitated.
  • the reason why the crystal form a is selectively precipitated is not clear, but it is considered as follows. That is, since the ratio (Ab / Aa) of the absorption rate of the crystal form b to the absorption rate of the crystal form a at the wavelength ⁇ [ ⁇ m] is 1.3 or more, the solution is irradiated with infrared rays containing the wavelength ⁇ [ ⁇ m].
  • the crystal form b in the solution has more active thermal vibration than the crystal form a and the crystal nuclei are less likely to be generated, and as a result, the crystal form a is selectively precipitated. If Ab / Aa is less than 1.3, the crystalline form a is less likely to be selectively deposited, which is not preferable.
  • infrared rays having a peak at the wavelength ⁇ [ ⁇ m] may be used as the infrared rays including the wavelength ⁇ [ ⁇ m].
  • the compound that can be purified by the purification method of this embodiment is not particularly limited, and examples thereof include febuxostat and acetaminophen.
  • the solvent for dissolving the compound is not particularly limited, and examples thereof include 2-propanol and the like.
  • any infrared emitting device capable of emitting infrared rays including a wavelength ⁇ [ ⁇ m] can be used.
  • the infrared emitting device a device having a plate-shaped radiator and a planar heater as a heat source can be used.
  • the infrared emitting device it is preferable to use an infrared emitting device capable of emitting infrared rays having a peak at a wavelength ⁇ [ ⁇ m], particularly an infrared ray having a peak at a wavelength ⁇ [ ⁇ m] and having a narrow half width.
  • Examples of such an infrared emitting device include a metamaterial emitter and an infrared emitting device with a filter.
  • Examples of the metamaterial emitter include a MIM (Metal-Insulator-Metal) type, a microcavity type, a metaatom type, and a laminated type.
  • MIM Metal-Insulator-Metal
  • microcavity type for example, the one described in Reference 1 (JSME TED Newsletter, No. 74, pp.7-10, 2014) can be used. This MIM type will be described in detail later.
  • As the microcavity type and the metaatom type for example, those described in Reference 2 (JSME TED Newsletter, No. 74, pp. 2-6, 2014) can be used.
  • the laminated type for example, the one described in Reference 3 (ACS Cent. Sci., Vol. 5, pp319-326, 2019) can be used.
  • the infrared emitting device with a filter for example, the infrared heater described in Japanese Patent No. 6442355 can be used.
  • FIG. 1 is a perspective view of the purification apparatus 1, and a part thereof is shown in a cross section.
  • FIG. 2 is a partial bottom view of the infrared heater 10. The left-right direction, front-back direction, and up-down direction are as shown in FIG.
  • the purification device 1 is a device that precipitates a specific crystal form from the solution 22 in the flat petri dish 20 using an infrared heater 10.
  • Solution 22 is a compound in which a compound having a plurality of crystalline forms is dissolved in a solvent.
  • the infrared heater 10 is an example of a MIM type metamaterial emitter, and includes a heater main body 11, a structure 30, and a casing 70.
  • the infrared heater 10 radiates infrared rays toward the solution 22 in the flat petri dish 20 arranged below.
  • the heater main body 11 is configured as a so-called planar heater, and is a heating element 12 in which a linear member is curved in a zigzag manner, and a protective member which is an insulator that comes into contact with the heating element 12 and covers the periphery of the heating element 12. It is equipped with 13.
  • Examples of the material of the heating element 12 include W, Mo, Ta, Fe—Cr—Al alloy and Ni—Cr alloy.
  • Examples of the material of the protective member 13 include an insulating resin such as polyimide and ceramics.
  • the heater main body 11 is arranged inside the casing 70. Both ends of the heating element 12 are connected to a pair of input terminals (not shown) attached to the casing 70, respectively. Electric power can be supplied to the heating element 12 from the outside via the pair of input terminals.
  • the heater main body 11 may be a planar heater having a ribbon-shaped heating element wound around an insulator.
  • the structure 30 is a plate-shaped radiator arranged below the heating element 12.
  • the structure 30 has a first conductor layer 31 (metal pattern), a dielectric layer 34, a second conductor layer 35 (metal substrate), and a support substrate 37 from the lower outside to the inside of the infrared heater 10. They are stacked in this order.
  • the structure 30 is arranged so as to close the opening below the casing 70.
  • the first conductor layer 31 is configured as a metal pattern having a periodic structure in which metal electrodes 32 having the same shape and the same size are arranged at equal intervals on the dielectric layer 34.
  • a plurality of square metal electrodes 32 are arranged on the dielectric layer 34 at intervals D1 in the left-right direction at equal intervals and at equal intervals D2 in the front-rear direction. It is configured as a metal pattern that is spaced apart and evenly spaced from each other.
  • the metal electrode 32 has a shape in which the thickness (vertical height) is smaller than the horizontal width W1 (horizontal width) and the vertical width W2 (front-back width).
  • D1 and D2 are equal, and W1 and W2 are equal.
  • the material of the metal electrode 32 include gold and aluminum (Al).
  • the metal electrode 32 is bonded to the dielectric layer 34 via an adhesive layer (not shown).
  • the material of the adhesive layer include chromium (Cr), titanium (Ti), ruthenium (Ru) and the like.
  • the dielectric layer 34 is a flat plate-shaped member whose upper surface is joined to the second conductor layer 35.
  • the dielectric layer 34 is sandwiched between the first conductor layer 31 and the second conductor layer 35.
  • the portion of the lower surface of the dielectric layer 34 where the metal electrode 32 is not arranged is a radiation surface 38 that radiates infrared rays to the object.
  • Examples of the material of the dielectric layer 34 include alumina (Al 2 O 3 ) and silica (SiO 2 ).
  • the second conductor layer 35 is a metal plate whose upper surface is joined to the support substrate 37 via an adhesive layer (not shown).
  • an adhesive layer (not shown).
  • the material of the second conductor layer 35 the same material as that of the first conductor layer 31 can be used.
  • the material of the adhesive layer include chromium (Cr), titanium (Ti), ruthenium (Ru) and the like.
  • the support substrate 37 is a flat plate-shaped member fixed inside the casing 70 by a fixture or the like (not shown), and supports the first conductor layer 31, the dielectric layer 34, and the second conductor layer 35.
  • Examples of the material of the support substrate 37 include materials such as Si wafers and glass, which can easily maintain a smooth surface, have high heat resistance, and have low thermal warpage.
  • the support substrate 37 may be in contact with the lower surface of the heater main body 11 or may be arranged vertically and vertically separated through a space without contacting the lower surface of the heater main body 11. When the support substrate 37 and the heater main body 11 are in contact with each other, they may be joined.
  • Such a structure 30 functions as a metamaterial emitter having a property of selectively emitting infrared rays having a specific wavelength. This property is believed to be due to the resonance phenomenon described by Magneticpolariton.
  • the magnetic polariton is a resonance phenomenon in which a strong electromagnetic field confinement effect is obtained in the dielectric (dielectric layer 34) between the upper and lower two conductors (first conductor layer 31 and second conductor layer 35). be.
  • the portion of the dielectric layer 34 sandwiched between the second conductor layer 35 and the metal electrode 32 becomes the radiation source of infrared rays.
  • the infrared rays emitted from the radiation source go around the metal electrode 32 and are radiated to the surrounding environment from the portion of the dielectric layer 34 where the metal electrode 32 is not arranged (that is, the radiation surface 38).
  • the resonance wavelength is adjusted by adjusting the materials of the first conductor layer 31, the dielectric layer 34 and the second conductor layer 35, and the shape and periodic structure of the first conductor layer 31. Can be done.
  • the infrared rays emitted from the radiation surface 38 of the structure 30 exhibit a characteristic that the emissivity of infrared rays having a specific wavelength is increased.
  • the above-mentioned material so as to have the property of radiating infrared rays having a maximum peak of 0.7 or more (preferably 0.8 or more) and an emissivity of 0.7 or more (preferably 0.8 or more) from the radiation surface 38 at 5 ⁇ m or less, more preferably 1.0 ⁇ m or less).
  • the shape and periodic structure are adjusted.
  • the structure 30 has a characteristic of emitting infrared rays having a steep maximum peak having a relatively small half width and a relatively high emissivity.
  • the half-value width is not particularly limited, but is preferably 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, still more preferably 1.0 ⁇ m or less.
  • the casing 70 has a substantially rectangular parallelepiped shape with a space inside and an open bottom surface.
  • the heater main body 11 and the structure 30 are arranged in the space inside the casing 70.
  • the casing 70 is made of metal (for example, SUS or aluminum) so as to reflect infrared rays emitted from the heating element 12.
  • a flat petri dish 20 containing the solution 22 is placed at a position below the first conductive layer 31 of the infrared heater 10.
  • the solution 22 is a solution in which the organic compound X is dissolved in a solvent.
  • electric power is supplied to both ends of the heating element 12 from a power source (not shown) via an input terminal.
  • the electric power is supplied so that the temperature of the heating element 12 becomes a preset temperature (for example, several hundred ° C., although not particularly limited).
  • a preset temperature for example, several hundred ° C., although not particularly limited.
  • energy is transferred to the surroundings by one or more of the three forms of heat transfer of conduction, convection, and radiation, and the structure 30 is heated.
  • the structure 30 rises to a predetermined temperature, becomes a secondary radiator, and emits infrared rays.
  • a predetermined wavelength ⁇ [ ⁇ m] is set as the target wavelength, and infrared rays having a peak at the wavelength ⁇ [ ⁇ m] are set so as to be emitted from the structure 30.
  • the distances D1 and D2 of the metal electrodes 32 of the structure 30 and the width W1 of the metal electrodes 32 are such that the infrared rays emitted from the structure 30 become infrared rays having a peak at a predetermined wavelength ⁇ [ ⁇ m].
  • W2 and the period ⁇ 1, ⁇ 2 of the metal pattern are set.
  • the infrared heater 10 is designed to mainly emit infrared rays of a target wavelength, it is difficult to exclude all radiation other than the target wavelength in the infrared radiation of the structure 30, and it is under the atmosphere. Then, convection radiation from each part of the heater to the surroundings is also predicted. Therefore, when constructing an actual process, various considerations should be given to the shape of the device and the like so that the temperature of the raw material and the like does not rise excessively due to the accompanying heat flow.
  • the MIM type infrared heater 10 since the MIM type infrared heater 10 is used, it can be designed so that the peak wavelength of the emitted infrared rays matches the target wavelength with high accuracy.
  • the first conductor layer 31 of the infrared heater 10 is configured as a metal pattern having a periodic structure in which metal electrodes 32 having the same shape and the same size are arranged at equal intervals from each other.
  • the infrared heater 10 changes the peak wavelength of infrared rays emitted according to the horizontal width W1 and the vertical width W2 of the metal electrode 32.
  • the horizontal width W1 and the vertical width W2 of the metal electrode 32 can be accurately manufactured according to the design values, for example, by drawing with a well-known electron beam drawing device and lifting off. Therefore, the work of adjusting the peak wavelength of the infrared rays radiated from the infrared heater 10 to the target wavelength can be performed relatively easily and accurately.
  • the metal electrode 32 has a rectangular shape, but it may have a circular shape.
  • the diameter of the circular metal electrode 32 corresponds to the horizontal width W1 and the vertical width W2.
  • Febuxostat is known to have a plurality of crystalline forms F1, F2, H1.
  • a graph of the infrared absorption spectrum of each crystal form is shown in FIG. Table 1 shows the absorption rate of the infrared absorption spectrum of each crystal form at a wavelength of 3.7 ⁇ m.
  • Table 1 also shows the ratio of the absorption rates of F1 and F2 to the absorption rate of H1.
  • febuxostat product code F0847, Tokyo Chemical Industry
  • 2-propanol sigma-aldrich
  • a test sample was prepared by dissolving the mixture with light stirring. The solvent was evaporated and crystals were precipitated by radiating the test sample with infrared rays having a wavelength of 3.7 ⁇ m (here, infrared rays having a peak at a wavelength of 3.7 ⁇ m) (radiation source temperature 400 ° C.) for 30 minutes.
  • Infrared rays were radiated using the MIM type infrared heater 10.
  • the height h of the first conductor layer 31 (metal electrode 32) made of Au is 100 nm
  • the thickness d of the dielectric layer 34 made of Al 2 O 3 is 100 nm
  • the height f of the second conductor layer 35 made of Au is 200 nm.
  • the width W1 and length W2 of the metal electrode 32 are set to 840 nm
  • the intervals D1 and D2 are set to 1160 nm
  • the periods ⁇ 1 and ⁇ 2 are set to 2000 nm
  • infrared rays (half-value width 0.5 ⁇ m) having a peak at a wavelength of 3.7 ⁇ m are emitted. rice field.
  • the crystal form of the precipitated crystal was identified by XRD analysis, the crystal form was H1.
  • XRD analysis was performed using an X-ray diffractometer (product names: Ultra IV, Rigaku).
  • the solution is irradiated with infrared rays having a peak at a wavelength of 3.7 ⁇ m. It is considered that the crystalline forms F1 and F2 in the solution have more active thermal vibration than the crystalline form H1 and the crystal nuclei are less likely to be generated, and as a result, the crystalline form H1 is selectively precipitated.
  • Acetaminophen is known to have a plurality of crystalline forms F1 and F2.
  • a graph of the infrared absorption spectrum of each crystal form is shown in FIG. Table 1 shows the absorption rate of the infrared absorption spectrum of each crystal form at a wavelength of 6.7 ⁇ m.
  • Table 1 also shows the ratio of the absorption rate of F1 to the absorption rate of F2.
  • Acetaminophen product code H0190, Tokyo Chemical Industry 25 mg was used instead of febuxostat 25 mg, and infrared rays containing a wavelength of 6.7 ⁇ m instead of infrared rays containing a wavelength of 3.7 ⁇ m (here, a wavelength of 6.7 ⁇ m).
  • a test sample was prepared in the same manner as in Example 1 except that infrared rays having a peak were used and the radiation source temperature was set to 600 ° C., and the crystal form was identified by XRD analysis. As a result, the crystal form was F2.
  • the height h of the first conductor layer 31 (here, the layer having the circular metal electrode 32) of the infrared heater 10 is 50 nm
  • the thickness d of the dielectric layer 34 is 190 nm
  • the height of the second conductor layer 35 is high.
  • the f is 100 nm
  • the diameter of the circular metal electrodes 32 (corresponding to W1 and W2) is 2.16 ⁇ m
  • the distance between the metal electrodes (corresponding to D1 and D2) is 1.84 ⁇ m
  • the setting was set to 4.0 ⁇ m, and infrared rays (half-value width 0.5 ⁇ m) having a peak at a wavelength of 6.7 ⁇ m were emitted.
  • the ratio of the absorption rate of the crystalline form F1 to the absorption rate of the crystalline form F2 at a wavelength of 6.7 ⁇ m is 1.3, when the solution is irradiated with infrared rays having a peak at a wavelength of 6.7 ⁇ m, the crystalline form in the solution It is considered that the thermal vibration of F1 becomes more active than that of the crystal form F2 and the crystal nuclei are less likely to be generated, and as a result, the crystal form F2 is selectively precipitated.
  • the present invention can be used to selectively obtain a specific crystal form of a compound having a plurality of crystal forms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Resistance Heating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本発明の精製方法は、複数の結晶形を持つ化合物の特定の結晶形を選択的に得る方法である。具体的には、複数の結晶形の赤外線吸収スペクトルにおいて特定の結晶形の吸収率に対する特定の結晶形以外の結晶形の吸収率の比が1.3以上である赤外線波長を目標波長に設定し、目標波長を含む赤外線を放出可能な赤外線放出装置を用いて、溶液に目標波長を含む赤外線を照射させながら溶媒を蒸発させて特定の結晶形を選択的に析出させる。

Description

精製方法
 本発明は、精製方法に関する。
 目的とする有機化合物を精製する方法として、蒸留、再結晶、クロマトグラフィ、抽出などが一般的に知られている。また、レーザ光を利用した有機化合物の精製方法が特許文献1に開示されている。特許文献1では、結晶形として安定形及び準安定形を含む物質の溶液から準安定形の物質を選択的に製造するにあたり、溶液中へレーザ光を照射することにより気泡を発生させて準安定形結晶核を発生させ、準安定形結晶を選択的に製造している。
特開2014-189462号公報
 しかしながら、特許文献1では、レーザ光照射は溶液中に気泡を発生させるために行っており、物質に特有の赤外吸収波長光については着目されていない。
 本発明はこのような課題を解決するためになされたものであり、特定の結晶形を選択的に得ることを主目的とする。
 本発明の精製方法は、
 複数の結晶形を持つ化合物の特定の結晶形を選択的に得る精製方法であって、
 前記複数の結晶形の赤外線吸収スペクトルにおいて前記特定の結晶形の吸収率に対する前記特定の結晶形以外の結晶形の吸収率の比が1.3以上である赤外線波長を目標波長に設定し、前記目標波長を含む赤外線を放出可能な赤外線放出装置を用いて、前記溶液に前記目標波長を含む赤外線を照射させながら前記溶媒を蒸発させて前記特定の結晶形を選択的に析出させる、
 ものである。
 この精製方法によれば、特定の結晶形を選択的に得ることができる。特定の結晶形が選択的に得られる理由は明らかではないが、以下のように考えられる。すなわち、特定の結晶形の吸収率に対する特定の結晶形以外の結晶形の吸収率の比が1.3以上である目標波長を含む赤外線が溶液に照射されると、溶液中の特定の結晶形以外の結晶形は特定の結晶形に比べて熱振動が活発になり結晶核が生成されにくくなり、その結果特定の結晶形が選択的に析出すると考えられる。
精製装置1の斜視図(一部を断面で示した)。 赤外線ヒーター10の部分底面図。 フェブキソスタットの赤外線吸収スペクトルを示すグラフ。 アセトアミノフェンの赤外線吸収スペクトルを示すグラフ。
 以下に本発明の好適な実施形態について説明する。
 本実施形態の精製方法は、複数の結晶形を持つ化合物の特定の結晶形を選択的に得る精製方法であって、複数の結晶形の赤外線吸収スペクトルにおいて特定の結晶形の吸収率に対する特定の結晶形以外の結晶形の吸収率の比が1.3以上である赤外線波長を目標波長に設定し、目標波長を含む赤外線を放出可能な赤外線放出装置を用いて、溶液に目標波長を含む赤外線を照射させながら溶媒を蒸発させて特定の結晶形を選択的に析出させるものである。
 例えば、2つの結晶形a,bを持つ有機化合物Xが溶媒に溶解した溶液から、溶媒を蒸発させて特定の結晶形aを選択的に析出させる場合について説明する。ここでは、結晶形a,bの赤外線吸収スペクトルの所定の波長λ[μm]における吸収率をAa,Abとしたとき、Ab/Aa≧1.3の関係を満たすものとする。この場合、所定の波長λ[μm]を目標波長に設定し、その波長λ[μm]を含む赤外線を放出可能な赤外線放出装置を用いて、溶液にその赤外線を照射させながら溶媒を蒸発させる。これにより、結晶形aが選択的に析出する。結晶形aが選択的に析出する理由は明らかではないが、以下のように考えられる。すなわち、波長λ[μm]における結晶形aの吸収率に対する結晶形bの吸収率の比(Ab/Aa)が1.3以上であるため、その波長λ[μm]を含む赤外線が溶液に照射されると、溶液中の結晶形bは結晶形aに比べて熱振動が活発になり結晶核が生成されにくくなり、その結果結晶形aが選択的に析出すると考えられる。なお、Ab/Aaが1.3未満になると、結晶形aが選択的に析出しにくくなるため、好ましくない。例えば、波長λ[μm]を含む赤外線として波長λ[μm]にピークを有する赤外線を用いてもよい。
 本実施形態の精製方法で精製可能な化合物としては、特に限定するものではないが、例えば、フェブキソスタットやアセトアミノフェンなどが挙げられる。化合物を溶解させる溶媒としては、特に限定するものではないが、例えば2-プロパノールなどが挙げられる。
 本実施形態の精製方法では、波長λ[μm]を含む赤外線を放出可能な赤外線放出装置であれば、どのようなものでも用いることができる。例えば、赤外線放出装置としては、板状の放射体と、熱源としての面状ヒーターとを有するものを用いることができる。また、赤外線放出装置としては、波長λ[μm]にピークを有する赤外線、特に波長λ[μm]にピークを有する半値幅の狭い赤外線を放出可能な赤外線放出装置を用いることが好ましい。そのような赤外線放出装置としては、例えば、メタマテリアルエミッターやフィルタ付きの赤外線放出装置などが挙げられる。メタマテリアルエミッターとしては、MIM(Metal-Insulator-Metal)タイプ、マイクロキャビティタイプ、メタアトムタイプ、積層タイプなどが挙げられる。MIMタイプについては、例えば参考文献1(JSME TED Newsletter, No.74, pp.7-10, 2014)に記載されたものを用いることができる。このMIMタイプについては、後で詳述する。マイクロキャビティタイプやメタアトムタイプとしては、例えば参考文献2(JSME TED Newsletter, No.74, pp.2-6, 2014)に記載されたものを用いることができる。積層タイプとしては、例えば参考文献3(ACS Cent. Sci., Vol.5, pp319-326, 2019)に記載されたものを用いることができる。フィルタ付きの赤外線放出装置としては、例えば特許第6442355号公報に記載された赤外線ヒーターを用いることができる。
 図1は、精製装置1の斜視図であり、一部を断面で示した。図2は、赤外線ヒーター10の部分底面図である。なお、左右方向、前後方向及び上下方向は、図1に示した通りとする。
 精製装置1は、赤外線ヒーター10を用いてフラットシャーレ20内の溶液22から特定の結晶形を析出させる装置である。溶液22は、複数の結晶形を持つ化合物を溶媒に溶解させたものである。
 赤外線ヒーター10は、MIMタイプのメタマテリアルエミッターの一例であり、ヒーター本体11と、構造体30と、ケーシング70とを備えている。この赤外線ヒーター10は、下方に配置されたフラットシャーレ20内の溶液22に向けて赤外線を放射する。
 ヒーター本体11は、いわゆる面状ヒーターとして構成されており、線状の部材をジグザグに湾曲させた発熱体12と、発熱体12に接触して発熱体12の周囲を覆う絶縁体である保護部材13とを備えている。発熱体12の材質としては、例えばW,Mo,Ta,Fe-Cr-Al合金及びNi-Cr合金などが挙げられる。保護部材13の材質としては、例えばポリイミドなどの絶縁性の樹脂やセラミックス等が挙げられる。ヒーター本体11は、ケーシング70の内部に配置されている。発熱体12の両端は、ケーシング70に取り付けられた図示しない一対の入力端子にそれぞれ接続されている。この一対の入力端子を介して、発熱体12に外部から電力を供給可能である。なお、ヒーター本体11は、絶縁体にリボン状の発熱体を巻き付けた構成の面状ヒーターとしてもよい。
 構造体30は、発熱体12の下方に配設された板状の放射体である。構造体30は、赤外線ヒーター10の下方外側から内側に向かって、第1導体層31(金属パターン)と、誘電体層34と、第2導体層35(金属基板)と、支持基板37とがこの順に積層されている。構造体30は、ケーシング70の下方の開口を塞ぐように配置されている。
 第1導体層31は、図2に示すように、誘電体層34上に同じ形状で同じサイズの金属電極32が互いに等間隔に配設された周期構造をもつ金属パターンとして構成されている。具体的には、第1導体層31は、複数の四角形状の金属電極32が誘電体層34上で左右方向に間隔D1ずつ離れて互いに等間隔に配設されると共に前後方向に間隔D2ずつ離れて互いに等間隔に配設された金属パターンとして構成されている。金属電極32は、厚さ(上下高さ)が横幅W1(左右方向の幅)及び縦幅W2(前後方向の幅)よりも小さい形状をしている。金属パターンの横方向の周期はΛ1=D1+W1、縦方向の周期はΛ2=D2+W2である。ここではD1とD2とは等しく、W1とW2とは等しいとする。金属電極32の材料としては、例えば金、アルミニウム(Al)などが挙げられる。金属電極32は、図示しない接着層を介して誘電体層34に接合されている。接着層の材質としては、例えばクロム(Cr)、チタン(Ti)、ルテニウム(Ru)などが挙げられる。
 誘電体層34は、上面が第2導体層35に接合された平板状の部材である。誘電体層34は、第1導体層31と第2導体層35との間に挟まれている。誘電体層34の下面のうち金属電極32が配設されていない部分は、対象物に赤外線を放射する放射面38となっている。誘電体層34の材質としては、例えばアルミナ(Al23),シリカ(SiO2)などが挙げられる。
 第2導体層35は、上面が支持基板37に図示しない接着層を介して接合された金属板である。第2導体層35の材質は、第1導体層31と同様の材質を用いることができる。接着層の材質としては、例えばクロム(Cr)、チタン(Ti)、ルテニウム(Ru)などが挙げられる。
 支持基板37は、ケーシング70の内部に図示しない固定具などにより固定された平板状の部材であり、第1導体層31、誘電体層34及び第2導体層35を支持する。支持基板37の材質としては、例えばSiウェハ、ガラスなどのように、平滑面が維持しやすく、耐熱性が高く、熱反りが低い素材が挙げられる。支持基板37は、ヒーター本体11の下面に接触していてもよいし、接触せず空間を介して上下に離間して配設されていてもよい。支持基板37とヒーター本体11とが接触している場合には両者は接合されていてもよい。
 こうした構造体30は、特定の波長の赤外線を選択的に放射する特性を有するメタマテリアルエミッターとして機能する。この特性は、マグネティックポラリトン(Magneticpolariton)で説明される共鳴現象によるものと考えられている。なお、マグネティックポラリトンとは、上下2層の導体(第1導体層31及び第2導体層35)間の誘電体(誘電体層34)内において強い電磁場の閉じ込め効果が得られる共鳴現象のことである。これにより、構造体30では、誘電体層34のうち第2導体層35と金属電極32とによって挟まれる部分が赤外線の放射源となる。そして、その放射源から放たれる赤外線は金属電極32をまわり込んで、誘電体層34のうち金属電極32が配設されていない部分(すなわち放射面38)から周囲環境に放射される。また、この構造体30では、第1導体層31、誘電体層34及び第2導体層35の材質や、第1導体層31の形状及び周期構造を調整することで、共鳴波長を調整することができる。これにより、構造体30の放射面38から放射される赤外線は、特定の波長の赤外線の放射率が高くなる特性を示す。本実施形態では、構造体30が、波長0.9μm以上25μm以下(好ましくは2.5μm以上25μm以下(4000~400cm-1))の範囲内に半値幅が2.0μm以下(好ましくは1.5μm以下、より好ましくは1.0μm以下)で放射率が0.7以上(好ましくは0.8以上)の最大ピークを有する赤外線を放射面38から放射する特性を有するように、上述した材質、形状及び周期構造などが調整される。すなわち、構造体30は、半値幅が比較的小さく放射率が比較的高い急峻な最大ピークを有する赤外線を放射する特性を有する。半値幅は、特に限定するものではないが、例えば2.0μm以下が好ましく、1.5μm以下がより好ましく、1.0μm以下が更に好ましい。
 ケーシング70は、内部に空間を有し且つ底面が開放された略直方体の形状をしている。このケーシング70内部の空間に、ヒーター本体11及び構造体30が配置されている。ケーシング70は、発熱体12から放出される赤外線を反射するように金属(例えばSUSやアルミニウム)で形成されている。
 こうした精製装置1の使用例を以下に説明する。先ほど述べたように、2つの結晶形a,bを持つ有機化合物Xが溶媒に溶解した溶液から、溶媒を蒸発させて特定の結晶形aを選択的に析出させる場合を例にとって説明する。ここでも、結晶形a,bの赤外線吸収スペクトルの所定の波長λ[μm]における吸収率をAa,Abとしたとき、Ab/Aa≧1.3の関係を満たすものとする。
 まず、赤外線ヒーター10の第1導電層31の下方位置に溶液22の入ったフラットシャーレ20を配置する。溶液22は、有機化合物Xが溶媒に溶解したものである。次に、図示しない電源から入力端子を介して発熱体12の両端に電力を供給する。電力の供給は、発熱体12の温度が予め設定された温度(特に限定するものではないが、例えば数百℃)になるように行う。所定の温度に達した発熱体12からは、伝導・対流・放射の伝熱3形態のうち1以上の形態によって周囲にエネルギーが伝達され、構造体30が加熱される。その結果、構造体30は所定温度に上昇し、二次放射体となって、赤外線を放射するようになる。
 この場合、所定の波長λ[μm]を目標波長に設定し、その波長λ[μm]にピークを有する赤外線が構造体30から放射されるように設定する。具体的には、構造体30から放射される赤外線が所定の波長λ[μm]にピークを有する赤外線となるように、構造体30の金属電極32の間隔D1,D2、金属電極32の幅W1,W2及び金属パターンの周期Λ1,Λ2を設定する。フラットシャーレ20内の溶液22に波長λ[μm]にピークを有する赤外線を照射すると、時間の経過と共に溶液22の溶媒が蒸発し、最終的に結晶形aの有機化合物Xの結晶が選択的に析出する。
 上述した赤外線ヒーター10は、目的波長の赤外線を主として放射するように設計されてはいるが、構造体30の赤外線放射において、目的波長以外の放射をすべて除外することは困難であり、また大気下では、ヒーター各部からの周囲への対流放熱も予測される。したがって、実際のプロセスを構成する場合、こうした付随の熱流動が起因となって原料等が過度に温度上昇しないよう、装置形状等に各種考慮がなされるべきである。
 以上詳述した本実施形態の精製方法によれば、特定の結晶形を選択的に得ることができる。また、MIMタイプの赤外線ヒーター10を用いるため、放射する赤外線のピーク波長を目的波長に精度よく合うように設計することができる。ここで、赤外線ヒーター10の第1導体層31は、同じ形状で同じサイズの金属電極32が互いに等間隔に配設された周期構造をもつ金属パターンとして構成されている。赤外線ヒーター10は、金属電極32の横幅W1及び縦幅W2に応じて放射する赤外線のピーク波長が変化する。金属電極32の横幅W1及び縦幅W2は、例えば周知の電子線描画装置による描画とリフトオフにより設計値通りに精度よく作ることができる。そのため、赤外線ヒーター10から放射される赤外線のピーク波長を目的波長に合わせる作業を、比較的簡単に且つ精度よく行うことができる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 上述した実施形態では、金属電極32を四角形状としたが、円形状としてもよい。この場合、円形状の金属電極32の直径が横幅W1や縦幅W2に相当する。
[実施例1]
 フェブキソスタットは、複数の結晶形F1,F2,H1を有することが知られている。各結晶形の赤外線吸収スペクトルのグラフを図3に示す。各結晶形の赤外線吸収スペクトルの波長3.7μmにおける吸収率を表1に示す。表1には、H1の吸収率に対するF1,F2の吸収率の比も併せて示す。
Figure JPOXMLDOC01-appb-T000001
 フェブキソスタット(製品コードF0847,東京化成工業)25mgをフラットシャーレ(φ32mm×16mm)に量り取り、2-プロパノール(シグマアルドリッチ)1mLを加え、80℃に調温したホットプレート上で2分間加温し、軽く撹拌しながら溶解させることにより試験サンプルを作製した。試験サンプルに波長3.7μmを含む赤外線(ここでは波長3.7μmにピークを持つ赤外線)(放射源温度400℃)を30分間放射することで溶媒を蒸発させ結晶を析出させた。赤外線は、MIMタイプの赤外線ヒーター10を用いて放射した。Au製の第1導体層31(金属電極32)の高さhを100nm、Al23製の誘電体層34の厚みdを100nm、Au製の第2導体層35の高さfを200nm、金属電極32の横幅W1と縦幅W2を840nm、間隔D1,D2を1160nm、周期Λ1,Λ2を2000nmに設定し、波長3.7μmにピークを持つ赤外線(半値幅0.5μm)を放射させた。析出した結晶について、XRD分析によって結晶形を同定したところ、結晶形はH1であった。XRD分析は、X線回折装置(製品名UltimaIV,Rigaku)を用いて行った。
 波長3.7μmにおける結晶形H1の吸収率に対する結晶形F1,F2の吸収率の比はそれぞれ9.0,7.0であるため、波長3.7μmにピークを有する赤外線が溶液に照射されると、溶液中の結晶形F1,F2は結晶形H1に比べて熱振動が活発になり結晶核が生成されにくくなり、その結果結晶形H1が選択的に析出したと考えられる。
[実施例2]
 アセトアミノフェンは、複数の結晶形F1,F2を有することが知られている。各結晶形の赤外線吸収スペクトルのグラフを図4に示す。各結晶形の赤外線吸収スペクトルの波長6.7μmにおける吸収率を表1に示す。表1には、F2の吸収率に対するF1の吸収率の比も併せて示す。
Figure JPOXMLDOC01-appb-T000002
 フェブキソスタット25mgの代わりにアセトアミノフェン(製品コードH0190,東京化成工業)25mgを用いたことと、波長3.7μmを含む赤外線の代わりに波長6.7μmを含む赤外線(ここでは波長6.7μmにピークを持つ赤外線)を用いたことと、放射源温度を600℃にしたこと以外は、実施例1と同様にして試験サンプルを作製し、XRD分析によって結晶形を同定した。そうしたところ、結晶形はF2であった。実施例2では、赤外線ヒーター10の第1導体層31(ここでは円形の金属電極32を有する層)の高さhを50nm、誘電体層34の厚みdを190nm、第2導体層35の高さfを100nm、円形の金属電極32の直径(W1,W2に相当)を2.16μm、金属電極同士の間隔(D1、D2に相当)を1.84μm、周期(Λ1,Λ2に相当)を4.0μmに設定し、波長6.7μmにピークを持つ赤外線(半値幅0.5μm)を放射させた。
 波長6.7μmにおける結晶形F2の吸収率に対する結晶形F1の吸収率の比は1.3であるため、波長6.7μmにピークを有する赤外線が溶液に照射されると、溶液中の結晶形F1は結晶形F2に比べて熱振動が活発になり結晶核が生成されにくくなり、その結果結晶形F2が選択的に析出したと考えられる。
 本発明は、複数の結晶形を有する化合物の特定の結晶形を選択的に得るのに利用可能である。
1 精製装置、10 赤外線ヒーター、11 ヒーター本体、12 発熱体、13 保護部材、20 フラットシャーレ、22 溶液、30 構造体、31 第1導体層、32 金属電極、34 誘電体層、35 第2導体層、37 支持基板、38 放射面、70 ケーシング、W1 横幅、W2 縦幅、D1,D2 間隔。

Claims (5)

  1.  複数の結晶形を持つ化合物の特定の結晶形を選択的に得る精製方法であって、
     前記複数の結晶形の赤外線吸収スペクトルにおいて前記特定の結晶形の吸収率に対する前記特定の結晶形以外の結晶形の吸収率の比が1.3以上である赤外線波長を目標波長に設定し、前記目標波長を含む赤外線を放出可能な赤外線放出装置を用いて、前記溶液に前記目標波長を含む赤外線を照射させながら前記溶媒を蒸発させて前記特定の結晶形を選択的に析出させる、
     精製方法。
  2.  前記赤外線放出装置は、板状の放射体と、熱源としての面状ヒーターとを有する、
     請求項1に記載の精製方法
  3.  前記赤外線放出装置は、前記目標波長にピークを有する赤外線を放出可能である、
     請求項1又は2に記載の精製方法。
  4.  前記赤外線放出装置は、外から内に向かって金属パターンと誘電体層と金属基板とがこの順に積層された構造体から前記目標波長にピークを有する赤外線を放出するものであり、前記金属パターンは、前記誘電体層上に同じ形状で同じサイズの金属電極が互いに等間隔に配列されたものであり、前記金属電極の幅に応じて放射する赤外線のピーク波長が変化する、
     請求項3に記載の精製方法。
  5.  前記化合物は、フェブキソスタット又はアセトアミノフェンである、
     請求項1~4のいずれか1項に記載の精製方法。
PCT/JP2020/027256 2020-07-13 2020-07-13 精製方法 WO2022013919A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/027256 WO2022013919A1 (ja) 2020-07-13 2020-07-13 精製方法
JP2022535999A JP7506883B2 (ja) 2020-07-13 2020-07-13 精製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027256 WO2022013919A1 (ja) 2020-07-13 2020-07-13 精製方法

Publications (1)

Publication Number Publication Date
WO2022013919A1 true WO2022013919A1 (ja) 2022-01-20

Family

ID=79555296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027256 WO2022013919A1 (ja) 2020-07-13 2020-07-13 精製方法

Country Status (2)

Country Link
JP (1) JP7506883B2 (ja)
WO (1) WO2022013919A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012529537A (ja) * 2009-06-10 2012-11-22 テバ ファーマシューティカル インダストリーズ リミティド フェブキソスタットの結晶形
JP2014189462A (ja) * 2013-03-27 2014-10-06 Osaka Univ 結晶製造方法、準安定形結晶、医薬の製造方法および医薬
WO2018034305A1 (ja) * 2016-08-19 2018-02-22 日本碍子株式会社 有機化合物の精製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012529537A (ja) * 2009-06-10 2012-11-22 テバ ファーマシューティカル インダストリーズ リミティド フェブキソスタットの結晶形
JP2014189462A (ja) * 2013-03-27 2014-10-06 Osaka Univ 結晶製造方法、準安定形結晶、医薬の製造方法および医薬
WO2018034305A1 (ja) * 2016-08-19 2018-02-22 日本碍子株式会社 有機化合物の精製方法

Also Published As

Publication number Publication date
JP7506883B2 (ja) 2024-06-27
JPWO2022013919A1 (ja) 2022-01-20

Similar Documents

Publication Publication Date Title
JP7242806B2 (ja) 有機化合物の精製方法
US10822292B2 (en) Method for producing reaction product
JPWO2018079386A1 (ja) 赤外線ヒーター
US20200122112A1 (en) Infrared processing device
WO2022014397A1 (ja) 精製方法
JPWO2019225726A1 (ja) 積層型ふく射光源
WO2022013919A1 (ja) 精製方法
US20210045195A1 (en) Infrared radiation device
JP6692046B2 (ja) 赤外線ヒーター
JP2005086117A (ja) 基板加熱用清浄超高温ヒータ
US11710628B2 (en) Infrared light radiation device
WO2023062715A1 (ja) 低アルコール飲料の製法
US10245574B1 (en) Microwave reactor vessel
JP2009228120A (ja) 成膜装置、及び成膜方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944890

Country of ref document: EP

Kind code of ref document: A1